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The design of structures that can yield efficient sound

insulation performance is a recurring topic in the acoustic

engineering field. Special attention is given to panels,

which can be designed using several approaches to

achieve considerable sound attenuation. In a previous

work, we have presented the concept of thickness-varying

periodic plates with optimised profiles to inhibit flexural

wave energy propagation. In this work, motivated by

biological structures that present multiple locally-resonant

elements able to cause acoustic cloaking, we extend our

shape optimisation approach to design panels that achieve

improved acoustic insulation performance using either

thickness-varying profiles or locally-resonant attachments.

The optimisation is performed using numerical models that

combine the Kirchhoff plate theory and the plane wave

expansion method. Our results indicate that panels based

on locally resonant mechanisms have the advantage of

being robust against variation in the incidence angle of

acoustic excitation and, therefore, are preferred for single-

leaf applications.
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1. Introduction

Sound insulation has been one of the most studied subjects in various fields of Engineering [1–3]. Common

solutions to achieve this objective include (i) the use of absorptive materials chosen to accept acoustic energy

and dissipate it in the form of heat [4,5], and (ii) the use of systems with a large impedance mismatch in the

acoustic transmission path, thus reflecting the sound energy, instead of transmitting it [6,7].

Recent findings in the field of Biology have shown that the wings of moths and butterflies are endowed

with specialized double-layered scales with nanostructures that are able to effectively perform ultrasound

absorption and create an acoustic camouflage against predators [8,9]. In this case, multiple scales which

individually contribute as sub-wavelength resonating elements are connected via a thin membrane to absorb

impinging waves over a wide frequency range [10]. Such intriguing capabilities may certainly entice the

design of novel acoustic metamaterials (MMs) for various engineering applications [11]. Especially, a

remarkable resemblance with panels with embedded resonators and their application in noise insulation

is promptly noticed.

Panels are a common solution for sound insulation in many engineering vibroacoustic applications [12].

In this case, the control of noise in the low-frequency regions depends on the stiffness and/or mass of

the panel [13], which may lead to increasingly large panel thickness to improve acoustic performance. To

avoid this issue, a number of panel designs such as sandwich [14], honeycomb [15], and fibre-reinforced

composite panels [16] are capable of combining high stiffness with low mass. These solutions may further

benefit from the use of (i) phononic crystals (PCs) and (ii) periodic MMs, since these may possess phononic

band gaps, i.e., frequency ranges where no free wave propagation is allowed in the solid medium [17].

Such frequency bands arise typically due to the mechanisms of (i) Bragg scattering [18], in which case

the frequency range is associated with the periodicity of the medium, and (ii) local resonance [19], where

Fano-like interference is capable of opening band gaps in the sub-wavelength scale [20].

Claeys et al. have discussed the acoustic radiation efficiency of local resonance-based MMs [21] and

proposed its use in the design of a lightweight acoustic insulator [22]. The use of distributed resonators

has also been investigated as an option to create MMs for both thin [23] and thick [24] plate structures

using the plane wave expansion (PWE) method to achieve an improved sound transmission loss (STL).

Furthermore, Van Belle et al. have demonstrated [25] that both PCs and MMs are able to improve the

STL of infinite plates. For MMs, this reduction occurs inside the band gap regions, due to sub-wavelength

vibration suppression, while, for PCs, these occur outside the band gap regions due to specific vibration

patterns. However, investigations on the use of corrugated profiles [26,27] to design both PCs and MMs for

vibroacoustic applications remain largely unexplored.

In a previous work, we have proposed the optimisation of Fourier coefficients describing the shape of

periodic plates for maximising Bragg-type band gaps for structural applications [28]. In this work, motivated

by the characteristics obtained by the combination of resonating elements connected via a thin membrane

present in moth wings, we propose the extension of our previously presented optimisation approach to

design (i) thickness-varying panels or (ii) panels embedded with multiple resonating elements for sound

insulation applications. The optimisation is performed for the normal incidence of impinging waves and

is also assessed for the cases of oblique and diffuse incidence. Both single- and double-leaf panels are

investigated.

In Section 2, we revise the concepts relative to thickness-varying plates and periodically distributed

resonators and their corresponding Fourier series representation. Section 3 presents some key concepts and

definitions, which are needed for the analysis of the vibroacoustic behaviour. Section 4 briefly reviews the

formulation for the vibroacoustic behaviour of a single-leaf infinite panel and its extension to the double-leaf

case using the PWE method, describing also the metrics related with the calculation of the STL and radiated

acoustic pressure, as well as analytical solutions. Section 5 presents the optimisation problem, stating its

cost function, optimised variables, and constraints, and Section 6 presents the obtained numerical results.

Concluding remarks are drawn in Section 7.

2. Periodic media and Fourier series representation
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(a) Plate displacement field

Even though the sound transmission characteristics of simple panels are commonly obtained considering

analytical solutions [29], numerical formulations are generally required for complex structures [30,31]. The

PWE method can be applied to determine the wave propagation characteristics of one-, two- [32], and three-

dimensional periodic MMs [33], and its improved computational efficiency, when compared with finite

element-based methods [34], further motivates its use for optimisation problems [35–37]. The PWE method

requires the analytical description of the displacement field of the medium and its material/geometric

properties using their corresponding Fourier series, which are described in this section.

Consider a plate lying in the xy-plane with coordinates described by the two-dimensional position vector

r =xî + yĵ. The plate transverse displacement uz(r, t) can be described using [28]

uz(r, t) = e
−iωt∑

G

ûz(G)e
i(k+G)⋅r

, (2.1)

where ûz(G) represents spatial Fourier coefficients, the wave propagation in the plate is described by the

direction and wavelength given by the wave vector k = kxî + ky ĵ, and G is the reciprocal lattice vector,

which is given, for a square plate of side length L, by

G= nx
2π

L
î + ny

2π

L
ĵ =Gnx, ny , (2.2)

for integers {nx, ny} ∈Z. If indexes nx and ny are in the range [−Nmax,Nmax], one obtains a number of

plane waves equal to nG = (1 + 2Nmax)2.

In the case of a thin plate where the effects of rotational inertia and shear strain are negligible, the

Kirchhoff plate theory can be used to obtain the corresponding elastodynamic equations, which can be

written in the rectangular coordinate system as [38,39]

∂2

∂x2
[D(∂2uz

∂x2
+ ν

∂2uz

∂y2
)] + 2 ∂2

∂x∂y
[D(1 − ν) ∂2uz

∂x∂y
] + ∂2

∂y2
[D(ν ∂2uz

∂x2
+
∂2uz

∂y2
)] + ρh∂2uz

∂t2
= q(r, t) ,
(2.3)

where ρ is the material density, ν is the Poisson’s ratio, h is the plate thickness, D =Eh3/12(1 − ν2) is

the plate flexural stiffness, where E is the Young’s modulus, and q(r, t) is the distributed loading on the

plate surface, which can include the presence of both fluid loading and the interaction with mass-spring

resonators.

The flexural wave speed in plates is given by

c = 4

√
D

ρh

√
ω , (2.4)

which leads to the relation between the wavelength λ and frequency f , after substituting c =λf and ω = 2πf ,

written as λ = 4

√
D
ρh

√
2π
f

, where the relation h≪λ must hold true for all the analysed frequencies for the

Kirchhoff plate theory to be valid.

(b) Plate thickness

The periodic thickness of the thin plate (figure 1) can be described by the spatial-dependent function h(r)
given by

h(r) =∑
G

ĥ(G) eiG⋅r
, (2.5)

where the Fourier coefficients of h(r) can be written, for integers nx and ny (Eq. (2.2)) as

ĥ(Gnx, ny) = ĥnx, ny , (2.6)

leading to the expression of the thickness profile of a plate in terms of the coefficients of the corresponding

reciprocal lattices as

h(r) =∑
ny

∑
nx

ĥnx, nye
iGnx,ny ⋅r . (2.7)
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Figure 1: Thickness h(r) for a periodic thin plate lying on the xy plane.

The space-dependent flexural rigidity of the plate is given by D(r) = Eh3(r)
12(1−ν2)

, which has the same

period as h(r), and can also be expressed in terms of its Fourier series using

D(r) =∑
G

D̂(G) eiG⋅r
, (2.8)

with Fourier coefficients D̂(G) that can be obtained from the coefficients ĥ(G) using the procedure

described in [28].

The set of coefficients ĥnx, ny can be determined such that a thickness profile which presents the best

possible sound insulation performance is obtained, while respecting imposed geometric constraints. The

optimisation problem with its associated metrics and constraints are defined in Section 5.

(c) Mass-spring resonators

The inclusion of periodic resonator-type structures is an interesting option to control vibrations in the sub-

wavelength scale [40–43]. Here we consider a set of nr independent ideal mass-spring resonators, where

each resonator is defined by a point mass mp and a spring stiffness kp (figure 2a), fixed to the plate

at coordinates rp =xp î + ypĵ (figure 2b). Since the plate is periodic, the p-th resonator has coordinates

which are restricted to the unit cell domain, i.e., −L/2 < {xp, yp} <L/2, with a corresponding out-of-plane

displacement, up(rp, t), exerting a force with intensity Fp(rp, t) on the plate (figure 2c), which holds for

p = {1, 2, . . . , nr}.

Figure 2: Distribution of mass-spring resonators on a thin plate. (a) The p-th resonator is composed of a

mass mp and a spring kp (b) with coordinates (xp, yp). (c) The displaced mass exerts an out-of-plane force

with intensity Fp at the plate.

The periodic force qr(r, t) applied by the set of resonators on the plate can be described by

qr(r, t) = e−iωt∑
p
∑
R

Fp(rp +R, t) δ(r − (rp +R)) , (2.9)
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where R =mxL î +myL ĵ, {mx, my} ∈Z, is the square lattice direct vector, representing the plate

periodicity, and δ(r − (rp +R)) = δ(x − (xp +mxL)) δ(y − (yp +myL)) is the two-dimensional Dirac

delta function [42], which implies δ(r≠ rp +R) = 0.

The periodic spring force can be related with the dynamic equation of the p-th resonator mass by

Fp(rp +R, t) = kp(up(rp +R, t) − uz(rp +R, t)) =−mpüp(rp +R, t) , (2.10)

where both the resonator and plate displacements, respectively, up(r, t) and uz(r, t), are evaluated at the

points rp +R and can be used, by considering harmonic displacements denoted in the form f(r, t) =
e−iωtf(r), to write

Fp(r, t) = kpmpω
2

kp −mpω2
uz(r, t) . (2.11)

Equation (2.1) implies uz(rp +R) = eik⋅Ruz(rp), which can be used with the relation given by [34,41]

∑
R

e
ik⋅R

δ(r − (rp +R)) = 1

S
∑
G

e
i(k+G)⋅r

e
−i(k+G)⋅rp , (2.12)

where S =L2, and combined with Eq. (2.9) and (2.11) using distinct summation indexes, to write

qr(r, t) = e−iωt∑
p

kpmpω
2

kp −mpω2

1

S
∑
G

e
i(k+G)⋅r

e
−i(k+G)⋅rp ∑

H

ûz(H)ei(k+H)⋅rp . (2.13)

This equation can be included as corresponding loading terms to account for locally resonant

mechanisms present in the plate.

3. Fluid-structure interaction

In this section, we introduce the basic definitions associated with the analysis of the vibroacoustic problem,

including the representation of acoustic waves and the fluid-structure coupling formulation. Since we

are concerned with acoustic insulation applications, the fluid is generally considered as air, although the

presented denomination has been chosen for the sake of generality [31].

Consider an incident plane wave (Pi) propagating through a fluid, which impinges on an infinite

thin plate. The plate immersed in fluid will be referred to as panel. The resulting motion of the plate

excites the surrounding fluid, which causes the formation of both reflected (Pr) and transmitted (Pt) plane

waves, respectively, at the same and the opposing sides of the incident face (figure 3a). The wavenumber

components of the incident wave can be described using the angles ϕ, with respect to the z-axis, and its

projection in the xy-plane with an angle θ, with respect to the x-axis (figure 3b).

Figure 3: Acoustic plane waves: (a) incident (Pi), reflected (Pr), and transmitted (Pt) waves; (b) wave

vector of the incident wave ki, its component k in the xy-plane, and angles ϕ and θ for spherical coordinates

projection.
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The incident plane wave can thus be expressed as [31]

Pi(r, z, t) = e−iωt
P ie

ik⋅r
e

ikzz , (3.1)

where P i represents the incident plane wave complex amplitude, the in-plane components of the incident

wave vector ki are represented by k and the out-of-plane components by kz , with wavenumber components

described in the Cartesian coordinate system using

kx = k0 sinϕ cos θ , ky = k0 sinϕ sin θ , kz = k0 cosϕ , (3.2)

where k0 = ∣ki∣ =ω/c0 is the wavenumber of the incident wave, with ω the angular frequency of the incident

wave, and c0 the speed of sound in air. The wavelength induced in the plate by the incident plane wave is

given by
√

k2x + k2y = ∣k∣ = k0 sinϕ and is named trace wavenumber [13], which becomes zero for the case

of normal incidence.

The reflected and transmitted waves can be described, respectively, similarly to Eq. (2.1), as [24]

Pr(r, z, t) = e−iωt∑
G

P̂r(G)ei(k+G)⋅r
e
−ikza(G)z , (3.3a)

Pt(r, z, t) = e−iωt∑
G

P̂t(G)ei(k+G)⋅r
e

ikza(G)z , (3.3b)

where kza(G) is the z-direction component of the wave vectors associated with the reflected and

transmitted waves, which depend on the wavenumber of the incident wave and the trace wavenumber and

can be calculated according to

kza(G) =√k2
0
− ∣k +G∣2 , if k

2

0 ≥ ∣k +G∣2 , (3.4a)

kza(G) = i
√∣k +G∣2 − k2

0
, if k

2

0 < ∣k +G∣2 . (3.4b)

Both reflected and transmitted sound pressures have nG Fourier coefficients (P̂r(G) and P̂t(G),
respectively), which must be determined with the application of the fluid-structure coupling equations.

The incident plane wave can be rewritten, keeping the same notation as Eq. (3.3), as

Pi(r, z, t) = e−iωt∑
G

P̂i(G)ei(k+G)⋅r
e

ikzz , (3.5)

where P̂i(G =0) =P i and P̂i(G ≠0) = 0.

Henceforth, we shall suppose that the plate is thin enough so that the effects of waves applying pressure

at the lower and upper sides of the panel can be approximated by their application at the plate midsurface

(z = 0). Acoustic waves apply pressures in opposing directions (see figure 3a): the incident and reflected

waves create a force in the positive (+z) direction, while the transmitted wave creates a force in the negative

(−z) direction. Such fluid loading qf = qf (r, t) can be written using Eqs. (3.3) and (3.5) as

qf (r, t) =Pi(r, z = 0, t) + Pr(r, z = 0, t) − Pt(r, z = 0, t) = e−iωt∑
G

[P̂i(G) + P̂r(G) − P̂t(G)]ei(k+G)⋅r
.

(3.6)

The continuity of accelerations at the fluid-structure interface can be described as

∂P

∂z
∣
z=z0

= ρ0ω
2
uz ∣z=z0 , (3.7)

where z0 is the z-coordinate of the fluid-structure interface, and ρ0 is the mass density of the fluid. Since

here a two-dimensional plate model is used, the transverse displacement is independent of the z-coordinate,

which implies uz ∣z=z0 = uz .



7

rs
ta

.ro
ya

ls
o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

h
il.

T
ra

n
s
.

R
.
S

o
c
0
0
0
0
0
0
0

..................................................................

Equation (3.7) can be evaluated for the incident and reflected waves and expanded using Eqs. (2.1),

(3.3a), and (3.5), leading to the relation, for each G, given by

P̂r(G) = kz

kza(G) P̂i(G) + iρ0ω
2

kza(G) ûz(G) . (3.8)

An analogous relation can be used for the coupling at the transmitting face, where the continuity of

accelerations and Eqs. (3.3b) and (2.1) allow to write

P̂t(G) =− iρ0ω
2

kza(G) ûz(G) . (3.9)

Equations (3.8) and (3.9) can be substituted in Eq. (3.6) to write

qf (r, t) = e−iωt∑
G

[(1 + kz

kza(G))P̂i(G) + 2 iρ0ω
2

kza(G) ûz(G)]ei(k+G)⋅r
, (3.10)

which represents the equivalent loading imposed on the plate by the incident pressure wave and the fluid-

structure interaction.

In the next sections, for the sake of simplicity, the effects of the thickness variation and the inclusion of

resonators are presented separately.

4. Sound insulation panels

(a) Single-leaf formulation

Considering the case of a PC, i.e., a thickness-varying plate without the presence of local resonators, Eqs.

(2.5) and (2.8) can be used with a summation index of H for material properties, and Eqs. (3.10) and (2.1)

with a summation index G for displacement and acoustic waves in Eq. (2.3), one obtains

e
−iωt∑

H

∑
G

[D̂(H){[(kx +Gx)(kx +Gx +Hx) + (ky +Gy)(ky +Gy +Hy)]2
+ ν[(kx +Gx)(ky +Gy +Hy) − (ky +Gy)(kx +Gx +Hx)]2}ûz(G) − ω2

ρĥ(H)ûz(G)
− (1 + kz

kza(G))P̂i(G)δ(H) − 2 iρ0ω
2

kza(G) ûz(G)δ(H)]ei(k+G+H)⋅r = 0 .

(4.1)

The orthogonality property of the complex exponential [44,45] can be used to write, for every r and H,

a set of linear equations, for i = 1, . . . , nG, obtained by substituting H =Gi −Gj and G =Gj , written as

∑
Gj

[D̂ij{[(kx +Gxj)(kx +Gxi) + (ky +Gyj)(ky +Gyi)]2

+ ν[(kx +Gxj)(ky +Gyi) − (ky +Gyj)(kx +Gxi)]2} − ω2
ρĥij]ûz(Gj)

− (1 + kz

kza(Gi))P̂i(Gi) − 2 iρ0ω
2

kza(Gi) ûz(Gi) = 0 ,
(4.2)

where D̂ij = D̂(Gi −Gj), ĥij = ĥ(Gi −Gj). This previous equation can be simplified as

∑
Gj

[D̂ijfij − ω
2
ρĥij]ûz(Gj) − 2 iρ0ω

2

kza(Gi) ûz(Gi) =(1 + kz

kza(Gi))P̂i(Gi) , (4.3)

where fij = fij(k,Gi,Gj) is given by

fij = [(kx +Gxj)(kx +Gxi) + (ky +Gyj)(ky +Gyi)]2 + ν[(kx +Gxj)(ky +Gyi) − (ky +Gyj)(kx +Gxi)]2 .
(4.4)
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Equation (4.2) represents a set of nG linear equations, which can be rewritten in matrix form last relation

allows to determine the Fourier components ûz(G) using

(D̃ +Df )ûz = f , (4.5)

where the matrix D̃ can be written as

D̃ = K̃ − ω2
M̃ , (4.6)

with the components of matrices K̃, M̃, the diagonal matrix Df , and the vector f are respectively given by

(K̃)ij = D̂ijfij , (M̃)ij = ρĥij , (Df )ii =−2 iρ0ω
2

kza(Gi) , (f)i =(1 + kz

kza(Gi))P̂i(Gi) , (4.7)

and the vector of unknowns is given by

ûz = {ûz(G1), . . . , ûz(GnG)}T . (4.8)

In Eq. (4.5), matrix D̃ accounts for the periodic plate dynamic stiffness characteristics, matrix Df

includes the additional impedance associated with the fluid-structure interaction, and vector f represents the

excitation induced by the incident wave pressure. Finally, the vector of Fourier coefficients of the transmitted

wave can be represented as

P̂t = {P̂t(G1), . . . , P̂t(GnG)}T , (4.9)

which can be directly obtained from the solution of Eq. (4.5) with the use of Eq. (3.9). Thus, for each pair

of angles indicating the direction of the incident wave (ϕ, θ), Eq. (4.5) can be solved for a given set of

angular frequencies, ω, thus yielding the Fourier components relative to the plate displacements, uz(r, t),
and, consequently, transmitted waves, Pt(r, z, t). This formulation is similar to that presented by Xiao et

al. [23], with the proper use of Fourier series coefficients corresponding to the plate thickness variation.

The dispersion characteristics of the wave propagation in the plate can be obtained by neglecting the

terms associated with fluid loading and external excitation in Eq. (4.5) (i.e., Df =0 and f =0, respectively),

thus obtaining the eigenproblem stated as

K̃ûz =ω
2
M̃ûz , (4.10)

which can be solved for ω =ω(k) scanning the contour of the irreducible Brillouin zone (i.e., restricting the

wave vector to the contour of the region defined by the high-symmetry points Γ (0, 0), X (π/L, 0), and M(π/L, π/L) in the reciprocal space) for a single unit cell of the thickness-varying plate periodic structure

(see [28] for details).

Now considering the case of an elastic MM, i.e., a constant-thickness plate with resonators under fluid

loading, Eq. (2.3) can be used for the case of constant thickness and the presence of mass-spring resonators,

obtaining

D(∂4uz
∂x4

+ 2
∂4uz

∂2x∂2y
+
∂4uz

∂y4
) + ρh∂2uz

∂t2
= qf (r, t) + qr(r, t) , (4.11)

which can be combined with Eqs. (2.1), (2.13), and (3.10) to write

∑
G

[D[(kx +Gx)2 + (ky +Gy)2]2 − ω2
ρh]ûz(G)ei(k+G)⋅r =∑

G

[(1 + kz

kza(G))P̂i(G) + 2 iρ0ω
2

kza(G) ûz(G)]ei(k+G)⋅r+

∑
p

kpmpω
2

kp −mpω2

1

S
∑
G

e
i(k+G)⋅r

e
−i(k+G)⋅rp ∑

H

ûz(H)ei(k+H)⋅rp .

(4.12)

The orthogonality property of the complex exponentials can once again be used to write an equation

analogous to Eq. (4.2), leading to

[D[(kx +Gxi)2 + (ky +Gyi)2]2 − ω2
ρh − 2

iρ0ω
2

kza(Gi) ]ûz(Gi)
+∑

Gj

[∑
p

kpmpω
2

mpω2 − kp
1

S
e
−i(Gi−Gj)⋅rp]ûz(Gj) =(1 + kz

kza(Gi))P̂i(Gi) .
(4.13)
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The previous equation can be rewritten in the matrix form as

(D +Dr +Df )ûz = f , (4.14)

where the matrix D can be written as

D =K − ω2
M , (4.15)

with the diagonal matrices K and M, and matrix Dr having their terms respectively given by

(K)ii =D[(kx +Gxi)2 + (ky +Gyi)2]2 , (M)ii = ρh ,
(Dr)ij =∑

p

kpmpω
2

mpω2 − kp
1

S
e
−i(Gi−Gj)⋅rp .

(4.16)

In Eq. (4.14), matrix Dr represents the dynamic contribution of the distributed resonators, which is

superposed to the matrix that represents the constant-thickness plate dynamic stiffness matrix, Dr. It is also

interesting to notice, in comparison with Eq. (4.7), that matrices K and M correspond, respectively, to the

diagonals of matrices K̃ and M̃, while matrix Df and vector f remain the same. A similar problem can

be formulated to derive the dispersion relation for a given configuration of resonators, as described in the

Supplementary Material.

Equation (4.14) accounts for the inclusion of periodically distributed resonators, represented by the term

Dr , on a constant-thickness plate whose dynamic stiffness behaviour is represented by the term D. An

analogy with Eq. (4.5) suggests that the general case, i.e., with the inclusion of resonators on a plate with a

varying thickness profile, can be obtained by performing the substitution D→ D̃, leading to

(D̃ +Dr +Df )ûz = f . (4.17)

Equation (4.17) can therefore be used as a general formulation of the STL of the infinite panel, from

which the simplified cases of the PC and elastic MM can be derived by reducing to Eq. (4.5) or Eq. (4.14),

respectively.

(b) Extension to double-leaf panels

Consider now the case of a double-leaf sound insulation panel, composed by thin plates labelled as L and

R, respectively located at z = 0 and z = d, immersed in a fluid, as depicted in figure 4.

Figure 4: Double-leaf panel with leaves at a distance d away from each other. Incident (Pi) and reflected

(Pr) waves are formed before the left leaf (L), while transmitted waves (Pt) are formed after the right leaf

(R). Standing waves (Pti and Pri) are developed inside the cavity filled with fluid.

In this case, it is necessary to distinguish between the transverse displacements associated with panel

leaves L and R, and also discriminate the standing waves Pti and Pri, that are developed inside the fluid
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cavity, described by

u
(L)
z (r, t) = e−iωt∑

G

û
(L)
z (G)ei(k+G)⋅r

, (4.18a)

u
(R)
z (r, t) = e−iωt∑

G

û
(R)
z (G)ei(k+G)⋅r

, (4.18b)

Pti(r, z, t) = e−iωt∑
G

P̂ti(G)ei(k+G)⋅r
e

ikza(G)z , (4.18c)

Pri(r, z, t) = e−iωt∑
G

P̂ri(G)ei(k+G)⋅r
e
−ikza(G)z . (4.18d)

Following the same reasoning as in the previous section, we will begin by writing the fluid-structure

coupling equations that allow to express the Fourier coefficients of the plane waves of interest.

Considering the continuity of accelerations (Eq. (3.7)) at the incident face of panel leaf L and at the

transmitted face of panel leaf R, one has, respectively, the relations

P̂r(G) = kz

kza(G) P̂i(G) + iρ0ω
2

kza(G) û(L)z (G) , (4.19a)

P̂t(G) =− iρ0ω
2

kza(G)eikza(G)d
û
(R)
z (G) . (4.19b)

The standing waves can be related in an analogous way, considering the continuity of accelerations at the

transmitted face of panel leaf L and incident face of panel leaf R, which leads to the the Fourier coefficients

of the plane waves inside the acoustic cavity expressed as

P̂ti(G) = ρ0ω
2

2kza(G) sin(kza(G)d)(e−ikza(G)dû
(L)
z (G) − û(R)z (G)) , (4.20a)

P̂ri(G) = ρ0ω
2

2kza(G) sin(kza(G)d)(eikza(G)dû
(L)
z (G) − û(R)z (G)) . (4.20b)

Equations (4.19) and (4.20) can now be coupled with the dynamic equations of both plates. The fluid

loading on panel leaf L can be written as

q
(L)(r, t) =Pi(r, z = 0, t) + Pr(r, z = 0, t) − Pti(r, z = 0, t) − Pri(r, z = 0, t) , (4.21)

which can be combined with Eqs. (4.19) and (4.20) to derive an equation analogous to Eq. (4.2) for panel

leaf L, which can be stated as

∑
Gj

[D̂(L)
ij

fij − ω
2
ρĥ
(L)
ij
]û(L)z (Gj) + ρ0ω

2

kza(Gi)( − i +
1

tan(kza(Gi)d))û(L)z (Gi)
−

ρ0ω
2

kza(Gi) sin(kza(Gi)d) û(R)zk
(Gi) =(1 + kz

kza(Gi))P̂i(Gi) ,
(4.22)

where D̂
(L)
ij

and ĥ
(L)
ij

refer to the Fourier coefficients of the flexural stiffness and thickness of panel leaf L

computed for the reciprocal lattice vectors Gi −Gj .

Analogously, the fluid loading on panel leaf R can be written as

q
(R)(r, t) =Pti(r, z = d, t) + Pri(r, z = d, t) − Pt(r, z = d, t) , (4.23)

thus leading to an equation analogous to Eq. (4.22) for panel leaf R, which reads

∑
Gj

[D̂(R)
ij

fij − ω
2
ρĥ
(R)
ij
]û(R)z (Gj) − ρ0ω

2

kza(Gi) sin(kza(Gi)d) û(L)z (Gi)
+

ρ0ω
2

kza(Gi)( − i +
1

tan(kza(Gi)d))û(R)z (Gi) = 0 ,
(4.24)

where D̂
(R)
ij

and ĥ
(R)
ij

have the same meaning as in Eq. (4.22), but for panel leaf R.



11

rs
ta

.ro
ya

ls
o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

h
il.

T
ra

n
s
.

R
.
S

o
c
0
0
0
0
0
0
0

..................................................................

Equations (4.22) and (4.24) can be organized in the form of a linear system as

⎡⎢⎢⎢⎢⎣
D̃(L) +D(d)

f
D
(c)
f

D
(c)
f

D̃
(R) +D(d)

f

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

û
(L)
z

û
(R)
z

⎫⎪⎪⎬⎪⎪⎭ ={
f

0
} , (4.25)

where matrices D̃(L) = K̃(L) − ω2M̃(L), D̃(R) = K̃(R) − ω2M̃(R), are given by Eq. (4.7) for panel leaves

L and R, respectively, the loading vector f is also given by the same equation, and diagonal matrices D
(d)
f

,

D
(c)
f

have elements given by

(D(d)
f
)ii = ρ0ω

2

kza(Gi)( − i +
1

tan(kza(Gi)d)) ,
(D(c)

f
)ii =− ρ0ω

2

kza(Gi) sin(kza(Gi)d) ,
(4.26)

and the vectors of unknowns correspond to the Fourier coefficients for the displacements of panel leaves L

and R (see Eq. (4.8)).

Interestingly, matrix D
(d)
f

accounts for the fluid loading impedance at one side (Df /2, see Eq. (4.7))

and a contribution for the cavity impedance (tan term); meanwhile, the coupling between panel leaves L

and R is provided by matrix D
(c)
f

. The form of Eq. (4.26) suggests that it can be easily extended for an

arbitrary number of leaves.

(c) Acoustic metrics

The sound power transmission coefficient (τ ) can be calculated for a given set of angles (ϕ, θ) and angular

frequency ω using [23]

τ(ϕ, θ, ω) = ∑G ∣P̂t(G)∣2 Re(kza(G))∣P̂i∣2kz . (4.27)

Thus, the sound transmission loss (STL) can be obtained using

STL(ϕ, θ, ω) = 10 log ( 1

τ(ϕ, θ, ω)) . (4.28)

For the case of acoustic waves with oblique incidence angles, the diffuse power transmission coefficient

(τd) may be calculated using [46]

τd(θ, ω) =∫ π/2

0

τ(ϕ, θ, ω) sin 2ϕdϕ , (4.29)

which, for the purpose of numerical evaluation, can be evaluated using angles between 0o and 78o [13].

This definition can also be used with Eq. (4.28) to express the diffuse STL as

STLd(θ, ω) = 10 log ( 1

τd(θ, ω)) . (4.30)

With the purpose of validating the PWE formulation, analytical expressions obtained from the literature

are also presented. The analytical sound power transmission coefficient (τa) for an infinite constant-

thickness flat plate (and thus independent of θ) with the same fluid on both sides can be calculated

using [46]

τ
s
a(ϕ, ω)= (2ρ0c0 secϕ)2(2ρ0c0 secϕ)2 + (ωρh− (D/ω)(k0 sinϕ)4)2 , (4.31)

which can be used in the place of the numerically obtained τ(ϕ, θ, ω) in Eq. (4.28) to calculate the

analytical STL.
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The frequency fco given by

fco(ϕ) = 1

2π
( c0

sinϕ
)2
√

ρh

D
, (4.32)

is named coincidence frequency [13], and corresponds to the frequency at which the structural impedance

for the plate is minimal for a given incidence angle (ϕ), causing a dip in the STL curve. For ϕ =π/2 this

frequency becomes minimal, and is named critical frequency.

For the case of a double-leaf panel with plates of constant thickness, the power transmission coefficient

is given by

τ
d
a (ϕ, ω) = ∣ 2i(ρ0c0 secϕ)2 sin(k0d cosϕ)(iωρhL + z0)(iωρhR + z0) sin2(k0d cosϕ) + (ρ0c0 secϕ)2 ∣

2

, (4.33)

where z0 = ρ0c0 secϕ(1 − i cot(k0d cosϕ)) is a term associated with the cavity impedance and hL and hR

are the thicknesses of the first and second leaves, respectively.

5. Optimisation problem

In the low-frequency range, a common solution to improve the STL consists of increasing the panel

thickness. However, this is not the most economical solution, since it certainly implies more mass and the

use of more material. Thus, the proposed objective here is to determine either an optimal thickness profile

distribution or the inclusion of mass-spring resonators to achieve the maximum STL at a given frequency

of interest. Thus, this optimisation objective can be stated as

maximize
d

φ =∫
ωmax

ωmin

1 − e−∆STL(ω)

1 + e−∆STL(ω)
dω , (5.1)

where ∆STL(ω) = STL(ϕ = 0, ω) − STLref(ϕ = 0, ω) is the difference between the normal STL obtained

for a set d of design variables and the reference STL computed for an initial constant-thickness plate,

integrated over the frequency range [ωmin, ωmax]. The set of design variables d may refer either to a plate

thickness profile (hnx, ny , see Eq. (2.6)) or to a set of mass-spring resonators (kp, mp, rp, see Eq. (2.13)).

The proposed integrand becomes 1 for ∆STL≫ 0 and −1 for ∆STL≪ 0, which indicates an improvement

(degradation) with respect to the original STL for sufficiently larger (smaller) values. It is important to

notice that the incidence angle ϕ = 0 does not contribute to the computation of the diffuse STL (Eqs. (4.29)

and (4.30)), which must be verified to assess the improvement in performance in this case.

The definition of the constraints will depend on the case treated. Therefore, we will describe the

thickness-varying plate without resonators case and the constant-thickness plate with resonators case

separately hereafter.

(a) Thickness-varying plate without resonators

Starting from Eq. (2.7), the plate thickness may be rewritten explicitly in terms of the x and y coordinates

using Eq. (2.2) as

h(x, y) =∑
ny

∑
nx

ĥnx, nye
inx(2π/L)xe

iny(2π/L)y , (5.2)

which presents a considerable reduction in the number of variables ĥnx, ny needed to describe the

plate shape when assuming a symmetry of coefficients centered around ĥ0, 0, i.e., ĥnx, ny = ĥnx,−ny =
ĥ−nx, ny = ĥ−nx,−ny .

The constraints on the plate thickness can be written as hmin ≤h(x, y) ≤hmax, where hmin and hmax

are the minimum and maximum allowed values of plate thickness, respectively, which must hold true for

−L/2 ≤ {x, y}≤L/2. An additional constraint can be imposed to evaluate different plate thickness profiles

that present the same mass per unit area. This can be achieved by setting a fixed mean value for the plate

thickness, which means material addition implies in the same amount of material removal. Thus, this does

not imply in an additional constraint, but in the removal of ĥ0, 0 from the list of optimisation variables, fixing
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it at the beginning of the optimisation process. This leaves us with the suitable boundaries of optimisation

variables given by

− hmax ≤ ĥnx, ny ≤ hmax ,∀{nx, ny}≠ {0,0} . (5.3)

The interested reader is referred to a thorough discussion on this approach [28].

(b) Constant-thickness plate with resonators

For the case of the inclusion of resonators, some simplifications may be assumed to reduce the number

of optimisation variables. First, by recalling that the medium is periodic, let us assume that the resonating

structures are equally distributed through the unit cell. Thus, let us assume that the locations of the p-th

resonator is uniquely determined by

xp =−L/2 + Lrnx , yp =−L/2 + Lrny , (5.4)

where Lr =L/(nrd + 1) is the spacing between consecutive resonators in a given direction x or y (figure

5), where the total number of resonators is given by nr =n2

rd, and 0 ≤ {nx, ny} ≤nrd.

Figure 5: Unit cell with dimensions L ×L with evenly spaced resonators at a distance Lr from each other.

It is also reasonable to assume that the mass of each resonator is constant, i.e., mp =∆m/nr , ∀p, where

∆m is the total added mass of the resonators. To keep the same base of comparison between distinct designs,

we also restrict the total amount of added mass to keep the same mass per unit cell. This can be achieved

by setting

∆m = ρL2
∆h, (5.5)

where ∆h =h0 − h is the thickness variation of the plate, calculated as the difference between the current

thickness h and the initial thickness h0. Thus, for a plate with constant thickness h <h0, the mass of the

resonators can be determined.

The stiffness kp of each resonator can be set by properly choosing their resonant frequency, ωp, i.e.,

kp =mpω
2
p , for p = {1,2, . . . , nr}. The resonant frequency of each resonator can be obtained by sampling

a two-dimensional function of a continuous stiffness written as

ωp =ωc(xp, yp) (5.6)

where the continuous function ωc(x, y) can be expressed in the same way as Eq. (5.2), i.e.,

ωc(x, y) =∑
ny

∑
nx

ω̂nx, nye
inx(2π/L)xe

inx(2π/L)y . (5.7)

Expressing a continuous resonant frequency function in such a manner may present great advantages

for a large number of resonators, since the ωc(x, y) function may be sampled at will without increasing the
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number of design variables. The lower and upper bounds of ωc(x, y) may be selected as

ω
(r)
min
≤ωc(x, y) ≤ω(r)max , (5.8)

where ω
(r)
min

and ω
(r)
max refer to the minimum and maximum frequencies of interest, respectively. The

constraints on the stiffness function can be set in an analogous way as used for thickness, i.e., Eq. (5.3),

using

ω
(r)
min
≤ ω̂0,0 ≤ω

(r)
max , (5.9a)

−ω(r)max ≤ ω̂nx, ny ≤ω
(r)
max ,∀{nx , ny} ≠ {0,0} . (5.9b)

6. Results

The STL computations are performed using the numeric PWE-based formulations presented in Section

4 for both the thickness-varying plates (PCs) and the constant-thickness plate with included mass-spring

resonators (MMs). The results are computed using the material properties of aluminium (Young’s modulus

E = 70 GPa, Poisson’s coefficient ν = 0.3, and mass density ρ = 2700 kg/m3). The mean plate thickness is

chosen as h = 3 mm and this is the constant value for analytical formulations. For these material properties

and plate thickness, the critical frequency (Eq. (4.32)) is 4 kHz. For the maximum frequency of 1 kHz (well

below the critical frequency), the maximum flexural wave speed (Eq. (2.4)) is 170 m/s, which corresponds

to a minimum wavelength λmin = 170 mm and a relation h/λmin ≈ 1/57. For the PC plate, the thickness

remains in the range [hmin, hmax] = [1, 5] mm. A square lattice of length L = 40hmax = 200 mm is also

considered to ensure a surface that has a smooth variation and allows to disregard deviations in the fluid-

structure interaction with respect to the plate mean thickness. For the double-leaf configuration, leaves are

separated by d = 1.5hmax = 7.5 mm. The surrounding fluid is air at 20oC, with a sound speed c0 = 340 m/s

and mass density ρ0 = 1.2 kg/m3. The PWE-based numerical method for computing the STL uses nG = 169
plane waves (Nmax = 6). For the optimisation process, a total of 28 parameters is used (−6 ≤ {nx, ny} ≤ 6
with symmetric parameters, see Section 5).

(a) Comparison between analytical and numerical results

We start by comparing the STLs obtained for both normal (ϕ = 0o) and diffuse incidences (0o ≤ϕ ≤ 78o

for the computation of Eq. (4.29)) for both the analytical and PWE-based numerical solutions (Eqs. (4.5)).

Figure 6 shows an excellent agreement between both. While no differences are noticed for the single-

leaf case (figure 6a), a small deviation is noticed for the double-leaf diffuse case (figure 6b), where the

PWE approach presents slightly different STL values above 800 Hz. An STL dip corresponding to the

mass-air-mass resonance of the double-leaf system is also noticed at 340 Hz.

Figure 6: Computed STLs for the (a) single-leaf and (b) double-leaf panels. The curves indicate the results

for the normal and diffuse incidence cases, comparing both analytical and PWE approaches.
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The following section presents the optimisation results obtained for a one-octave frequency range

centred at 350 Hz (chosen close to the STL dip for the double-leaf initial case), i.e., from 248 Hz to 495

Hz.

(b) Optimisation results

The results for the PC case consider a fixed mean thickness of h0 =h = 3 mm. For the analysed frequency

range, the obtained optimal thickness profile indicates a large area with the maximum thickness and a

circular thickness reduction at the centre of the unit cell (hmax = 5 mm and hmin = 1 mm, respectively,

see figures 7a and 7b). The computed normal incidence STL for the single-leaf case (figure 7c) presents a

large increase of the STL curve inside the frequency range of interest (75.0 dB at 464 Hz), followed by a

decrease outside this range (0.01 dB at 532 Hz). The points of maximum and minimum correspond to the

displacement profiles shown, for each case, using equivalent colour coding for the absolute displacement:

an increase in the STL is achieved by a overall decrease in displacements of the unit cell (anti-resonance

behaviour, represented in the green square), while a decrease in the STL curve is associated with an increase

in the displacement of the region with the smallest thickness (resonance behaviour, represented in the

purple square). It is also interesting to notice that no degradation is noticed before the upper limit of the

optimisation frequency range. Very similar results are obtained when analysing other frequency ranges (see

Supplementary Material).

For the double-leaf case, a similar result is obtained (figure 7d), although, in this case, two anti-

resonances (87.0 dB at 427 Hz and 85.0 dB at 506 Hz) and two resonances (0.29 dB at 534 Hz and

0.01 dB at 562 Hz) are present, which arises due to the combination of unit cell displacements in anti-phase

(AP) and in-phase (P) combinations (shown with the same colour coding for proper comparison). Thus, an

overall increase of performance is observed in the frequency range of interest. However, the STL dip due to

the mass-air-mass resonance is still present.

However, one must recall that, for the normal incidence, the in-plane wavenumbers are zero (i.e., kx =
ky = 0), and thus the characteristics observed in the STL for normal incidence are not necessarily associated

with any particular in-plane wave propagation attenuation mechanisms. Thus, to correlate the STLs with

the plate structural behaviour, we plot the dispersion relation for the PC plate along with some noticeable

wave modes (figure 8a), which shows partial band gaps are opened due to Bragg scattering (187.1 Hz –

215.3 Hz and 537.4 Hz – 582.0 Hz for the ΓX direction, 346.3 Hz – 407.5 Hz for the XM region, and

756.7 Hz – 804.1 Hz for the ΓM directions, respectively). Some wave modes associated with these band

gaps may present the same displacement profiles as the resonance points of the normal incidence, as in the

case of the wave modes indicated as (i), (ii), and (iv) (red squares), while other wave modes, such as the one

indicated by (iii) (blue square), do not present the same displacement profile as a localized STL resonance.

Thus, wave modes (i), (ii), and (iv) may be excited by acoustic impinging waves.

To confirm this correlation, the results for oblique (ϕ ≠ 0) incident waves using the values ϕ ={0, 5o, . . . , 85o} are plotted for the directions θ = 0 and θ =π/4 and shown with the partial band gaps

calculated for the direction ΓX and ΓM, respectively. For the ΓX direction (θ = 0, figure 8b), resonances

are easily noticed both above and below the second band gap, which correspond to the wave modes (i)

and (ii) excited at different frequencies. For the ΓM direction (θ = π/4, figure 8c), this is noticeable for

the wave mode (iv), just below the shown band gap. For frequencies immediately above the band gap the

STL remains unaffected, since the associated wave mode (iii) is not excited by the incident acoustic wave.

Thus, the immediate effect of the opened partial band gaps is to impede the formation of resonances in their

interior, although anti-resonances may still be present. The consequence of these characteristics is noticed

when analysing the diffuse STLs for the single- (figure 8d) and double-leaf cases (figure 8e). Although

sharp peaks may be introduced in the diffuse STL for both cases, the target frequency range may also

present ranges where degradation occurs.

For the MM case, the resonators are included keeping a constant unit cell mass. The plate thickness is

now reduced to hmin, while the mass corresponding to the thickness variation, ∆m = 216 g, is added in

the form of resonators, with resonating frequencies in the range [ω(r)
min

, ω
(r)
max]/2π = [0.001, 10] kHz, thus

allowing the resonators to vary over a wide frequency range. The optimisation process is performed for the
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Figure 7: Results for the PC panel considering normal incidence. (a,b) Optimised unit cell in the single-leaf

case and (c) corresponding improvement in the STL within the target frequency range due to an anti-

resonance (green square), with a decrease of the STL outside the target frequency range due to resonance

(purple square). (d) Same for the double-leaf case with optimised unit cell with anti-phase (AP) and in-

phase (P) anti-resonances (green squares) and resonances (purple squares).

cases of a single resonator and also multiple distributed resonators (chosen for a total number of 25, in this

case).

We begin by analysing the resonator distribution obtained by each optimisation and their corresponding

dispersion relations. For the single resonator case, a resonant frequency of 518 Hz is indicated by the

optimisation process (figure 9a), which results in a dispersion diagram with a full band gap (i.e., for all
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Figure 8: Results for the PC panel under oblique and diffuse incidences. (a) Dispersion diagram for the

optimised unit cell with partial band gaps (green regions) associated with wave modes (i), (ii), (iv) (red

squares), and (iii) (blue square). STL considering oblique incidence angles for directions (b) θ = 0 and (c)

θ =π/4. STL for diffuse incidence for (d) single- and (e) double-leaf cases.

propagation directions) in the 38.3 Hz – 60.5 Hz frequency range (figure 9b). The inclusion of a resonator

with a large mass results in the flattening of the first flexural branch [42], which is associated with a wave

mode showing large displacements at the resonator (wave mode (i) at 38.3 Hz, red square) and a wave mode

with pronounced displacements at the plate (wave mode (ii) at 60.5 Hz, blue square).
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For the case of multiple resonators, the optimisation indicates one resonator with a higher frequency (819

Hz) and several resonators with lower frequencies (368 Hz – 557 Hz range, figure 9c), with an appreciable

superposition over the target optimisation frequency range. The resulting band diagram presents multiple

flat bands (figure 9d), which represent zero group velocity branches typical of locally resonant wave modes.

Although this design presents a wide effective band gap (around 440 Hz – 785 Hz) this may not necessarily

translate into an effective STL gain, since, although some wave modes are associated with the displacement

of resonators (wave mode (iii) at 438.7 Hz, blue square), several wave modes are still associated with large

plate displacements (e.g., wave mode (iv) at 664.9 Hz, red square).

Figure 9: Optimisation results for the MM panel. (a) Single-resonator result with (b) dispersion diagram

showing band gaps (green patches) and wave modes (i) and (ii) showing predominantly resonator (blue

square) or plate displacements (red square). (c) Multiple-resonator result with (d) dispersion diagram

showing several zero group velocity branches, opening large band gaps and wave modes (iii) and (iv).
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The resulting STLs for the single-leaf under normal incidence are presented with the corresponding

STLs for the constant-thickness plates with the mean thickness values of h (initial value) and hmin (on

which the resonators are embedded) in figure 10a. The resulting STL is richer in dynamic behaviour when

compared with the equivalent results for the PC. Examples of anti-resonance (green squares) and resonance

behaviour (purple squares) are exemplified by S1 – S4 (for the single resonator MM) and M1 – M3 (for

the multiple-resonator MM). Each displacement profile uses a colour scale normalized with respect to its

maximum displacement for the purpose of comparing the plate and resonator displacements, while using

the same out-of-plane displacement scaling factor.

The single resonator MM presents an STL similar to the plate with thickness hmin, with deviations

exemplified by the points labelled as S1 – S4. Increases in this STL (46.7 dB at 67 Hz for S1 and 51.4

dB for 358 Hz for S3, respectively) are associated with an overall reduction in the plate displacement,

while decreases in the STL (≈ 0 dB at 110 Hz for S2 and 0.03 dB at 367 Hz for S4) are associated with

smaller resonator displacements and larger plate displacements. The resulting STL does not achieve an

improvement over the desired optimisation frequency range. The multiple-resonator MM design is able to

achieve a significantly higher STL. As in the PC design, no degradation is noticed in the STL until the

upper edge of the optimisation frequency range. Analogously to the single resonator MM design, the anti-

resonances show a large displacement of the resonator masses and small plate displacements (e.g., 67.3 dB

at 409 Hz for M1 and 75.7 dB at 432 Hz for M2), while for the resonances, this behaviour is the opposite

(e.g., ≈ 0 dB at 664 Hz for M3).

For the multiple-resonator MM case, the wavelength-independence of the flat bands in the corresponding

dispersion diagram (figure 9d) also facilitate relating the wave modes with the anti-resonances and

resonances: the anti-resonance M2 presents a frequency very similar to wave mode (iii) and the resonance

M3 similar to wave mode (iv). Thus, although a wide band gap does exist and may be beneficial for structural

applications, its effectiveness in improving the STL is conditioned to the shapes of the wave modes, which

may be excited by impinging acoustic waves. Also, unlike the single resonator design, the use of several

diverse resonators is able to achieve STL improvements in a broader frequency range, thus overcoming the

shortcomings of the narrow frequency range influence of the resonant behaviour typically associated with

single-frequency resonators.

The computed STLs using diffuse incidence for the single-leaf case are presented for the single- and

multiple-resonator MM designs for the directions θ = 0 (figure 10b) and θ =π/4 (figure 10c). The resulting

behaviour is very similar to the normal incidence case, although with smaller improvements in the STL.

Also, it is interesting to notice that the wavelength independence of such locally-resonant based designs

is insensitive to variations in the angle of incidence of the acoustic excitation, which implies an improved

robustness for practical applications.

The obtained results for both the single- and multiple-resonator double-leaf MM designs under normal

incidence (figure 11a) presents both STLs following the overall behaviour of the thinner plate, with the

main characteristic of shifting the mass-air-mass resonant frequency to higher values, removing it from

the optimisation frequency range. However, while the multi-resonator MM design introduces a single dip

in the STL, the single-resonator design introduces two new dips at the vicinity of the previously existing

one. Despite local deviations, the overall behaviour in the optimisation frequency range is nearly constant,

presenting an overall degradation of the STL with respect to the thicker plate. A similar behaviour is

observed for the double-leaf diffuse incidence case (figure 11b, shown for θ = 0 and θ =π/4), thus not

presenting any justifiable gains over the original, thicker plate.

We have also performed an optimisation considering the possibility of changing both the thickness

profile and resonator distribution, allowing the mean thickness to change while adding the corresponding

mass reduction in the form of distributed resonators. The results yielded practically the same design as in the

PC case (with deviations in the thickness parameters smaller than 1 × 10−5) with zero resonator masses).

This result is partially owed to the form of the integrand in the optimisation metric (see Eq. (5.1)), which

quickly converges to unity for sufficiently large improvements in the STL, thus favouring smaller STL

improvements in wider frequency ranges (typical of PC designs) over large STL improvements in narrow

frequency ranges (typical of MM designs).



20

rs
ta

.ro
ya

ls
o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

h
il.

T
ra

n
s
.

R
.
S

o
c
0
0
0
0
0
0
0

..................................................................

Figure 10: Computed STLs for the single-leaf MM panel designs. (a) Normal-incidence case; improvements

in the STLs are associated with localized resonator displacements (green squares, S1, S3, M1, and M2),

while degradation occurs due to large plate displacements (purple squares, S2, S4, and M3), both related

with the wave modes (figures 9b and 9d, (i)–(iv)). (b) Diffuse-incidences cases (directions θ = 0 and θ =π/4)

for minimum and maximum panel thickness, single-resonator, and multiple-resonator designs. The thinner

plate (hmin) is used for the attachment of resonators.
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Figure 11: Computed STLs for the double-leaf MM panel configuration. (a) Normal and (b) diffuse

incidence cases for minimum and maximum panel thickness, single-resonator, and multiple-resonator

designs.

7. Conclusions

Inspired by the locally resonant structures present in butterfly and moth wings and based on our previously

work on thickness-varying plates for structural applications, we have investigated the utilization of these

structures for acoustic insulation systems using both single- and double-leaf configurations.

With the proposed optimisation scheme, we obtained a PC plate with a thickness profile that presents an

improvement in the STL under normal incidence, for both single- and double-leaf configurations, based on

the anti-resonance behaviour of the unit cell. However, its dispersion diagram reveals that several wave

modes may be excited by acoustic impinging waves outside of existing band gaps, thus degrading its

performance for diffuse incidence cases.

The same optimisation procedure allows to obtain MMs constituted by plates with a reduced thickness

and distributed resonators, while keeping the same unit cell mass. In this case, we obtained an optimised

unit cell which produces wide band gaps associated with zero group velocity branches, with wave modes

predominantly associated with either resonator or plate displacements. The use of multiple resonators with

smaller masses achieves a superior STL performance when compared with a single resonator with a large

mass, which is achieved by the excitation of the wave modes yielded by the different combinations of

resonator displacements, thus obtaining improvements over a wider frequency range. The resulting STLs

present similar behaviours for both normal and diffuse incidences, in contrast with the PC designs. For

the double-leaf case, however, no real gains are achieved, since the resulting systems present a behaviour

similar to that of a thinner plate.

In view of such results, it is clear that MM-based designs perform in a remarkably more robust manner

for both normal and diffuse incidence cases for single-leaf configurations, due to their independence of

the associated wavelength for the incident acoustic waves. These observations may also indicate why

evolutionary pressure has led to the specialization of butterfly and moth wing structures in such a manner.

The proposed PC-based designs, however, remain as interesting options when addressing normally-incident

waves for both single- and double-leaf configurations.

Data Accessibility. This article has no additional data.
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