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1. INTRODUCTION 

Estimating the volume enclosed in a three-dimensional (3D) 
surface point cloud is a widely explored topic in several scientific 
fields. With the increase of technologies for the virtual 
reconstruction of 3D environments and objects, many devices, 
such as Kinect, Lidar, Real sense, make it possible to acquire a 
depth image with increasing accuracy and resolution [1]-[4]. 
Several fields, such as mobile robotics [5], reverse prototyping 
[6], industrial automation, and land management, require 
accurate and efficient data processing to extract geometrical 
features from the real environment, such as distances, areas, and 
volume estimations. Among different geometric features, 
volume estimation has been presented as a challenging issue and 

widely studied with different approaches in the literature. From 
the literature contributions on object volume estimation based 
on the 3D point cloud, Chang et al. [7] used the slice method and 
least-squares approach achieving high accuracy by investigating 
mainly known and homogeneous solids. The same 3D point 
cloud volume calculation based on the slice method was applied 
by Zhi et al. [8]. In general, the main limitation of using the 
sliding method for volume estimation is the dependence on the 
quality of the point cloud and the impossibility to work with 
complex shapes. 

Bi et al. [10] and Xu et al. [11] estimated the canopy volume 
measurement by using only the simple Convex Hull algorithm 
[12] with the problem of volume overestimation in the case of 
concave surfaces. Lin et al. [13] improved the convex hull 
algorithm to handle concave polygons for the estimation of the 
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This article proposes a state-of-the-art algorithm for estimating the 3D volume enclosed in a surface point cloud via a modified extension 
of the Monte Carlo integration approach. The algorithm consists of a pre-processing of the surface point cloud, a sequential generation 
of points managed by an affiliation criterion, and the final computation of the volume. The pre-processing phase allows a spatial re-
orientation of the original point cloud, the evaluation of the homogeneity of its points distribution, and its enclosure inside a rectangular 
parallelepiped of known volume. The affiliation criterion using the explosion of cube faces is the core of the algorithm, handles the 
sequential generation of points, and proposes the effective extension of the traditional Monte Carlo method by introducing its 
applicability to the discrete domains. Finally, the final computation estimates the volume as a function of the total amount of generated 
points, the portion enclosed within the surface point cloud, and the parallelepiped volume. The developed method proves to be accurate 
with surface point clouds of both convex and concave solids reporting an average percentage error of less than 7 %. It also shows 
considerable versatility in handling clouds with sparse, homogeneous, and sometimes even missing points distributions. A performance 
analysis is presented by testing the algorithm on both surface point clouds obtained from meshes of virtual objects as well as from real 
objects reconstructed using reverse engineering techniques. 
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tree crown volume, but their approach is still limited to providing 
a gross volume estimation that cannot be applied to complex 
objects with fine details.  

Lee et al. [9] proposed a waste volume calculation using the 
triangular meshing method starting from the acquired point 
cloud. On one hand, this method results as accurate as the 
goodness of the acquired point cloud, on the other hand, it 
completely relies on mesh processing tools, such as MeshLab 
[14], and it cannot work if the 3D reconstructed object is an open 
domain.  

We propose an innovative and competitive method to 
compute the volume of an object based on 3D point clouds via 
a modified extension of the Monte Carlo integration approach 
without the interpolation or the mesh reconstruction of the 
surface point cloud, it can handle homogeneous and non-
homogeneous point cloud surfaces, complex and simple shapes 
as well as open and close domains.  

1.1. The Monte Carlo Approach 

Traditional methods for numerical integration on a volume, 
such as Riemann Integral [15] or Cavalieri-Simpson [16] partition 
the space into a dense grid, approximate the distribution in each 
cell with elements of known geometry and compute the overall 
volume by summing up all the contributions. In contrast, within 
a previously defined interval containing the distribution of 
interest, the Monte Carlo method generates random points with 
uniform distributions along the different dimensions to estimate 
the integral [17]. As shown in Figure 1 in the case of a 2D 
example we wish to calculate the area Atarget of a closed surface. 
The geometric element under consideration (green line, 
S2DTargetObject) is enclosed within a 2D box of known area Abox 
which encloses S2DTargetObject. The total amount (N) of randomly 
generated points (Pgenerated) will fall inside S2DBox. While some of 
them will fall outside S2DTargetObject (blue points), the others will 
fall inside (red points, nInsidePoints). In the 2D case, Pgenerated is 
identified with its 2D cartesian coordinates (xPgenerated, yPgenerated). 
An affiliation criterion (most often expressed by a simple 
mathematical equation) allows the identification and counting of 
points dropped in and out of the S2DTargetObject. 

In particular, these elements are regulated by the following 
expression:  

𝐴target = lim
𝑛→∞

𝑛InsidePoints 

𝑁
∙ 𝐴box (1)  

1.2. 3D Extension of the Monte Carlo Approach 

As reported by Newman et al. [18], this computational 
approach is particularly suitable for high-dimensional integrals. 

For this reason, we extended the 2D Monte Carlo method 
described in the previous subsection to the calculation of the 3D 
volumes starting from their discrete surface’s representation. 
Each point cloud can have, within a certain range, variable 
resolution, and spatial distribution homogeneity. In this case, N 
points are generated with uniform distribution along the three 
dimensions to estimate the volume of the unknown object 
(VTargetObject) inside the prismatic element (S3DBox). In the 3D case, 
Pgenerated is identified with its 3D cartesian coordinates (xPgenerated, 
yPgenerated, zPgenerated). The VTargetObject is then calculated by counting 
the number of Pgenerated that fell inside it (nInsidePoints). Equation (1) 
becomes: 

𝑉targetObject = lim
𝑛→∞

𝑛InsidePoints 

𝑁
∙ 𝑉box (2)  

Usually, having the target object represented by a continuous 
surface and described by a mathematical equation, as in the 2D 
case, the affiliation criterion is expressed by a continuous 
mathematical model. It is, therefore, easier to determine when a 
point falls within and without the S3DTargetObject. However, the 
problem becomes more difficult when the S3DTargetObject is 
represented by the discrete distribution of some points lying on 
its surface (S3DPointCloud), as can be shown in Figure 2. In this case, 
it is difficult to determine when a point falls within the 
S3DPointCloud or not. Moreover, in cases where the S3DPointCloud 
comes from a real acquisition, noise must also be taken into 
account. In fact, due to some acquisition errors not all the points 
of the cloud lie on the S3DTargetObject.  

This paper can be divided as follows: 

• In the introduction we presented the problem of 
volume computation from point clouds, the state of the 
art, and our approach by describing the traditional 
Monte Carlo method, its 3D extension, and its 
limitations.  

• In the following section, we describe our algorithm for 
volume estimation of point clouds based on the Monte 
Carlo approach. 

• In the third section, we present the results obtained for 
the validation of the algorithm, testing it on both virtual 
and real objects. 

• In the final section, we expose the drawn conclusions. 

 

Figure 1. 2D example of Monte Carlo Integral approach - In green the 
geometric element under consideration (S2DTargetObject), in black the 2D box 
(S2DBox) of known area, in red the inside points, and blue the outside points.  

 
Figure 2. Extension of the Monte Carlo Integral approach to the point cloud 
of a 3D sphere (S3DPointCloud) enclosed in a 3D box (S3DBox). 
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2. DEVELOPED ALGORITHM  

The algorithm reported as pseudocode in Appendix A and 
explained here below takes the following parameters as input 
decided by the user: 

• The point cloud acquired from the surface of an object 
whose volume is computed. 

• The number of points N with which the Monte Carlo 
volume estimation must be performed. 

The algorithm is composed of a pre-processing function and 
a classification function. The pre-processing of the point cloud 
checks its orientation, encloses the cloud surface in a box of 
known volume (S3DBox), and performs a preliminary analysis of 
its distribution. The classification function is based on the "cube 
explosion" affiliation criterion, described in the following 
paragraphs. 

2.1. Pre-processing 

Given the total amount of points N, an efficient Monte Carlo 
approach should provide the smallest box which encloses the 
volume taken for the measurement. In fact, with a fixed N the 
bigger is S3DBox the lower is the 3D point resolution and the worst 
is the accuracy of the Monte Carlo method. Hence the S3DBox is 
defined by taking the minimum and maximum points in each one 
of the three principal directions x, y, z of the S3DPointCloud. To 
further minimize the box dimensions a previous re-orientation 
of the S3DPointCloud is performed by applying the Principal 
Component Analysis (PCA). Once the S3DBox is defined its 
volume is computed and used at the end of the affiliation 
criterion as Vbox.  

In the case of real objects, S3DPointCloud is collected by using 
depth cameras or other 3D scanners. The higher is the resolution 
of the tool, the denser is the point cloud. In the case of virtual 
objects, this point cloud is obtained by collecting the mesh 
nodes. The denser is the mesh, the more homogeneous is the 
point cloud distribution. However, the homogeneity of the point 
distribution is a factor that cannot be taken for granted. For this 
reason, a preliminary statistical analysis over the S3DPointCloud is 
carried out to obtain the parameters needed for the affiliation 
criterion, the core of the Monte Carlo method. In particular, the 

parameters are obtained from the quantile distribution Q of the 
distances between each point and its closest neighbors.  

2.2. Affiliation criterion using the "Explosion" of Cube Faces 

The proposed affiliation criterion iteratively defines whether 
each Pgenerated inside S3DBox by the Monte Carlo method belongs 
to the external or internal domain of the S3DPointCloud. The 
affiliation criterion that we have developed is based on the 
concept of "Explosions of Cube Faces". The idea is based on the 
generation of a cube of known edge (lcube), around each Pgenerated, 
and iteratively extruding each one of its faces to determine how 
and how many times it encounters the S3DPointCloud, Figure 3. Each 
one of the 6 face extrusions corresponds to a specific direction η 
along with one of the 3 main directions x, y, z and returns a binary 
judgment (Jη). Jη is 0 or 1 respectively if the point is supposed to 
be outside or inside the S3DPointCloud. Eventually, by taking the 
mode of all Jη the final judgment (J) is assessed, and the point 
affiliation (internal or external) is defined. Each cube is oriented 
by using the same reference system of S3DPointCloud. At each 
iteration, the procedure selects the direction η and extrudes the 
relative faces of the cube along their outgoing normal.  

Initially, lcube is determined by the following empirical 
equation:  

𝑙cube = 𝑄0.5 ∙ 3.5
(

𝑄0.85
𝑄0.5

 − 1)
 (3)  

where Q0.5 and Q0.85 are the quantiles at 50 % and 85 % of the 
distribution of the distances between each point and its closest 
neighbors respectively. Equation (3) and the chosen quantiles are 
obtained by an empirical validation of the performances. In 
particular, the choice of Q0.5 considers the median distance of 
two consecutive points and Q0.85 highlights the S3DPointCloud sparse 
distribution and avoids initializing a small cube whose extruded 
faces pass through S3DPointCloud without touching its points.  

Histograms of the distribution of the relative distances 
between each point and its closest neighbors for two different 
S3DPointCloud are shown in Figure 4. In particular, the first 
histogram is referred to as non-homogenous point cloud, 
specifically, Pokémon (Mew), while the second is referred to the 
homogeneous cloud of the geometric solid sphere, both reported 
in Table 1. On one hand from the first distribution is possible to 
observe that the ratio between Q0.85 and Q0.5 is 2.74, on the other 
hand, the quantile ratio of the second distribution is 1.01. The 
quantile ratio shows the proportion of the sparse portions of 
S3DPointCloud concerning the distribution of the average distances. 
In Mew ‘s S3DPointCloud the ratio is higher because we have strong 
non-homogeneous distribution, such as a dense clustering of 
points for the eyes and sparse on the belly. In the sphere’s 
S3DPointCloud the ratio is close to one as the difference between 
Q0.85 and Q0.5 is almost null due to the homogeneity of the point 
cloud distribution.  

Each face extrusion may intercept a sub-portion of 
S3DPointCloud points (Pintercepted). If the total amount of intercepted 
points overcomes the threshold value (thintercepted) of 3 points, lcube 
is reduced of lreduction and the extrusion is repeated. The criterion 
for choosing thintercepted equal to 3 points depends on the 
clusterization checks introduced to strengthen the algorithm, as 
explained at the end of this section. 

The value of lreduction has been empirically set equal to 10 % of 
the actualized value of lcube as a compromise between final 
accuracy and computational time. The smaller lreduction is the 
higher the final accuracy is but the longer the final computational 
time.  

 
Figure 3. Example of explosion in the z-direction (η = z) of one cube’s face 
from the position of a Pgenerated - interception of 2 clusters of points (in green, 
Pintercepted). 
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Following, a clustering algorithm subdivides the Pintercepted into 
different clusters of points (Pcluster) along η. Jη assumes the values 
1 or 0 if the total amount of clusters is, respectively, odd or even.  

The clusterization is performed by re-ordering Pintercepted along 

η. Computing the coordinate differences along η of each point 
from its consecutive, it is possible to obtain a sequence of 
distances. Ideally, considering Pcluster orthogonal to η, this 

difference within each Pcluster should be null, as all the Pcluster 
points lie on the same orthogonal plane. However, in real 
applications, several issues may occur, such as a slight inclination 
of Pcluster concerning η or a random noise affecting the Pcluster 
distribution along η. To overcome these problems, a threshold 
(Thcluster) is set empirically equal to Q0.5. Therefore, considering 
the Pintercepted re-ordered along η, whenever a distance between 

Table 1. Algorithms outputs with virtual objects. 

Virtual 
Object Name 

Original Virtual Model 
Original Point Cloud 

( S3DTargetObject) 
MeshLab Reconstruction Our Output 

Cube 

   

 

 
 

Sphere 

 
  

 

 
 

Arm 

    

Hand 

    

Pokémon 
Mew 
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two consecutive points results to be less than Thcluster the two 
points belong to the same Pcluster. Otherwise, a new Pcluster begins. 
A further issue that affects the clusterization occurs when the 
extrusion intercepts tangentially S3DPointCloud. In this case, a 
misleading clusterization is performed and further checks are 
needed to make the affiliation criterion more robust. In 
particular, this can be detected by performing an analysis of 
variance over each Pcluster. If the variance of one single Pcluster is 
greater than Thcluster the entire analysis along η is compromised 
and Jη needs to be discarded.  

To make the affiliation criterion more robust a limitation on 
the maximum number of clusters encountered along each 
extrusion is also introduced. In particular, only those directions 
η are selected that have a total amount of clusters less than or 
equal to 1. This reduces the probability of encountering 
misleading clusters such as in the case of noisy point clouds 
acquired from real objects. The noise mostly appears as isolated 
points outside S3DPointCloud, and rarely inside it. Furthermore, this 
allows justifying the choice of thintercepted referring to the minimum 
number of points that define a plane.  

3. RESULTS 

This section reports the validation of the extended Monte 
Carlo algorithm on real and virtual objects considering different 
shapes. A total of nine objects, including regular geometric 

solids, such as spheres or prisms as well as more complex shapes, 
such as human hands, arms, Pokemon (Mew), and the 3D 
scanning of ancient bronze statuettes of mythological figures 
were considered for this discussion. Point clouds of real objects 
were acquired from the real environment with an Azure Kinect 
ToF Camera and a Konica Minolta Vivid VI-9i 3D scanner for 
reverse engineering. The volumes used as a reference for the 
validation of the measures on virtual and real objects were 
respectively computed using the virtual mesh and the volume 
estimation by immersion in water [19]. 

The Monte Carlo algorithm accuracy increases with the total 
amount of points generated, as can be observed in Figure 5 and 
Figure 6. In particular Figure 6 reports the measurement of the 
mean and variance with a box plot of the relative error 
distribution as a function of the number of Pgenerated. As can be 
seen, the error is particularly high when few Pgenerated are 
generated and gradually decreases as the number increases. For 
both virtual and real solids, depending on the resolution of the 
point cloud and the reported details, the asymptotic percentage 
error is below 7 % computed with respect to the reference 
volume when the total amount of Pgenerated is greater than 42875. 
On the contrary, with a low number of Pgenerated, the accuracy is 
low. It is also worth noting that the variance of the measures 
decreases as the number of Pgenerated increases. This indicates that 

 
(A) 

 
(B) 

Figure 4. Distribution of distances between each point and its closest 
neighbors for (A) Pokemon Mew and (B) the sphere point clouds.  

 

Figure 5. Error distribution of the Pokémon Mew volume estimation in % with 
respect to the increasing number of generated points with the Explosion 
Cubes Criterion. 

 

Figure 6. Box plot of the error distribution considering all the nine objects 
along with the increasing number of generated points with the Explosion 
Cubes criterion. 



 

ACTA IMEKO | www.imeko.org June 2022 | Volume 11 | Number 2 | 6 

for all objects considered, even for convex, non-uniform, and 
folded point clouds, the relative error decreases and converges 
with the same trend.  

As a general rule, on one hand, the performance of the 
algorithm can be driven by selecting the number of generated 
points. On the other hand, the more are the Pgenerated the long is 
the computational time.  

The average times spent by the proposed algorithm are shown 
in Figure 7. The tests were performed on a MacBook Pro 2 GHz 
Intel Core i5 quad-core 16 GB of RAM in MATLAB_R2020b 
environment. The average time grows as the number of points 
increases no-linearly as shown in Figure 7. However, with the 
same accuracy, the average computational time is less than or 
comparable to the time taken by the volume estimation methods 
reported in the literature.  

Therefore, the user is allowed to choose the total amount of 
Pgenerated with which Monte Carlo has to be executed as a trade-
off between the level of desired accuracy, Figure 6, and the 
computational time, Figure 7. In addition, due to the asymptotic 
behavior of the error, the increase in performance becomes 
negligible after a threshold. For these reasons, it is convenient to 
choose a total amount of Pgenerated just above the estimated 
volume that has stabilized (in our case 42875 Pgenerated).  

However, the greater is the total amount of Pgenerated the higher 
is the resolution of the point cloud generated by the Monte Carlo 
algorithm. This can be used as visual feedback to evaluate the 
goodness of the affiliation criterion and compare it with the 

Table 2. Algorithms outputs with real objects. 

Real 
Object Name 

Real object 
Original Point Cloud 

(S3DTargetObject) 
MeshLab Reconstruction Our Output 

Cerbero 

   
 

Ballerina 

   
 

Head 

 

 
   

Mecurio 

   
 

 

Figure 7. Computational times of the proposed algorithm changing the 
number of generated points (Pgenerated). 
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algorithms that reconstruct the mesh. As shown in the last 
column of both tables Table 1 and Table 2, the representation of 
the inner points with the developed method returns a good 
representation of the original point cloud, S3DPointCloud. On the 
contrary, mesh reconstructions are not always reliable. A mesh 
reconstruction using the default parameters of the Poisson’s 
Reconstruction Method [8] in the MeshLab environment is 
shown in the fourth column of the same tables. As can be 
observed, good results are returned only for uniformly 
distributed point clouds and regular shapes, while the same 
cannot be assessed for complex shapes or non-uniform point 
clouds, such as Pokémon Mew and the Hand, with consequent 
negative repercussions on volumes calculation. 

Another important aspect to consider when the volume is 
computed concerns the possibility to work with discontinuous 
and partially open surfaces, such as in Figure 8(A), where the 
acquired point cloud results to have huge discontinuities around 
the elbow. Most of the volume estimation algorithms based on 
the mesh reconstruction need manual fitting and adjustments to 
manage the missing clusters of points, otherwise, the 
measurement cannot be pursued. On the contrary, the prosed 
affiliation criterion for the Monte Carlo volume integration is 
robust to discontinuities due to the democratic judgment of the 
6 cube faces. In fact, even if along a few directions the point 
cloud results to be open, and these faces extrusions will return 
Jη = 0, the final judgment J will still be equal to 1. 

Table 3 shows the actual volume of the objects compared 
with that obtained with Meshlab, when possible, and our 
proposed method with its error percentage on the measurement. 
Nevertheless, given the choice of the external box and 
maintaining its ratio to the calculated volume, taken any object, 
its percentage error does not change by scaling its size. This 
means that the uncertainty on the measurement is proportional 
to the percentage error multiplied by the calculated volume. 

4. CONCLUSIONS 

This paper proposes an extension of the 3D Monte Carlo 
method for calculating the volumes of objects starting from their 
surface point clouds. The overall algorithm includes a pre-
processing analysis that re-orient and evaluates the point cloud, 
an affiliation criterion based on the explosion of cube faces to 
discern the inner and the outer points of the Monte Carlo 
method, and a final volume estimate as described in Equation 
(2). As the reported results include also convex, complex, and 
folded surfaces, such as the Pokémon Mew or the Cerbero point 
cloud it was possible to show that the cube explosion affiliation 
criterion results be stable and reliable, returning consistent and 
repeatable measurements compared with gold-standard software 
for volume measurements, such as MeshLab. 

The algorithm proves to be accurate with point clouds of 
different objects, both in terms of shape and distribution of 
points. The performances are then tested with the surface point 
clouds of 9 virtual and real objects, reporting an average 
percentage error on the tested samples lower than 7% with a 
computational amount of time of a few minutes depending on 
the desired accuracy.  
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