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Introduction

Since the dawn of time infectious diseases have caused great damage to human societies.
During the Middle Ages for example, the death toll of the black plague was as high as the
30-60% of human population [1]. After the introduction of the first vaccine, which dates
back to 1796, when Edward Jenner successfully used cowpox material to induce immunity to
smallpox, the effectiveness of prevention and control programs aimed at reducing the burden
of diseases caused by infectious pathogens has significantly improved. Vaccination programs
have played a crucial role in the efforts aimed at reducing the incidence of infectious diseases.
As a result of vaccination policies, global eradication of smallpox has been achieved more
than 30 years ago, polio is currently circulating only in few countries around the world and
measles mortality has globally decreased by 79% between 2000 and 2015 [2]. However, large
epidemics still represent a persisting major threat for public health in both developing and
developed countries. According to the World Health Organization each year at least 15
millions people die because of infectious diseases [3]. Low-income countries are the most
affected, with almost one third of the yearly deaths ascribable to acute lower respiratory
infections, HIV, malaria and tuberculosis. The twenty-first century has only just begun, yet
the world has already experienced at least four emergency situations caused by infectious
diseases: the 2003 Severe Acute Respiratory Syndrome (SARS) epidemic, the 2009 H1N1
influenza pandemic, the 2014-2016 Ebola epidemic and, more recently, the emergence of
Zika virus. In addition, in recent years, some of the most developed countries have failed
to maintain a sufficiently high vaccine uptake to control vaccine preventable diseases [4],
partially due to the growing skepticism about vaccines, suggesting that the battle against
infectious diseases is still far from being won.

Mathematical modeling has been used since the beginning of the last century to identify
the key general mechanisms driving the spread of infectious diseases [5]. Nowadays, it rep-
resents a powerful tool with a wide range of applications in epidemiology and public health
[6]. One key role of mathematical modeling is the "understanding" of the past, which is an
essential step to better inform the design of future public health control measures. Indeed,
epidemiological data provide only fragmentary evidences about the diseases epidemiology
and only partial information about the dynamics underlying what is observed. Mathe-
matical models, informed with data, can help disentangling the complexity of transmission
and provide explanations for the trends observed (e.g. recurrent epidemics, seasonality)
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[7]. More importantly, mathematical modeling plays a crucial role in projecting the future
trends of infectious disease dynamics and in estimating the impact of possible interventions
thus, supporting health authorities in the choice of adequate strategies for the effective
prevention and control of infectious cases. During the last decades, models have been often
coupled with cost-effectiveness analyses which evaluate the economic sustainability of an
intervention from a public health perspective. The economic evaluation of a number of
vaccination programs have been used in the past to help inform public health decisions for
a variety of infectious diseases; such as; meningo C and B [8, 9], pneumococcal disease [10],
influenza [11, 12] and varicella [13, 14, 15, 16].

Over the past decades, the number of countries which uses mathematical modeling to
support public health decisions has been increasing. According to a recent report published
by the European Centre for Disease Prevention and Control (ECDC) about 70% of the
European Union member states consider mathematical modelling as part of the process
for planning routine vaccination strategies [17]. More recently, mathematical modeling has
also played a key role to inform public health authorities during the emergence of new
epidemics. During the 2014-2016 Ebola epidemic in West Africa, a Modeling Task Force
was activated by the Centre for Disease Control and Prevention (CDC) to estimate in real-
time key epidemiological quantities, useful to make public health decisions and allocate
resources [18]. This experience has strengthened the awareness of health authorities about
the importance of modeling tools, especially in the early stages of an outbreak and when
data are lacking.

The increasing use of modeling by public health decision makers brings out the challenge
of building models, whose results should be as much accurate and realistic as possible. To
this aim, they need to be informed with data and to include the individual and population
features which play a relevant role in the spread of the disease. A lot of studies have
contributed in this direction, by shedding light on the role of heterogeneous mixing patterns
by age [19], of human mobility [20, 21] or the sociodemographic structure of the population
[22]. However, there are some issues that require further investigation.

One of them is represented by the inclusion in models of realistic demographic dynamics.
Standard modeling approaches assume the population as either constant or characterized
by a stable age-structure, and even when the projection of future epidemiological trends
account for realistic demographic changes, models were calibrated under the assumption
of constant demographic conditions. However, some recent modeling studies strongly have
highlighted population demographic factors as relevant drivers in the dynamics of infectious
disease and encourages the introduction of a new class of epidemiological models accounting
for realistic demographic dynamics [23, 24].

Another topic that requires further investigation is the interplay between epidemics and
human behavioral changes [25]. The capability of individual responses to alter transmission
dynamics is well known [26, 27, 28], however a proper understanding and quantification of
its impact is required in order to improve control efforts [29].

Finally, the difficulties recently experienced by most developed countries in the attain-
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ment and maintenance of vaccination coverage levels that are sufficiently high to eliminate
the disease have produced unexpected and novel epidemiological conditions, characterized
by a low circulation of viruses and local interruption of disease transmission, making more
difficult the interpretation of such complex dynamics. A better understanding of the epi-
demiological features of low-circulation settings is therefore necessary to fill important gaps
in the basic knowledge on the epidemiology of infectious diseases and more adequate mod-
eling tools should be provided to inform future intervention programs.

The works presented in this thesis attempt to shed light on some of the previously high-
lighted issues and to contribute to the development of the field of epidemiological modeling.

In Chapter 1 we explore the role of demographic changes in the transmission dynamics
of varicella and Herpes Zoster. To this aim, a transmission model informed with country-
specific demographic data is developed, and used to investigate the past dynamics of vari-
cella and HZ in Spain and predict their future burden under illustrative demographic and
vaccination scenarios.

In Chapter 2 the model developed in Chapter 1 is combined with a cost-effectiveness
analysis to evaluate the joint impact of demographic changes and varicella and HZ vacci-
nation strategies, which are currently under consideration, on the future epidemiology of
varicella and HZ in Italy.

In Chapter 3 we use a computational model embedded in a Bayesian framework in order
to detect and quantify the effect of spontaneous behavioral changes on the spatiotemporal
dynamics of the 2009 H1N1 influenza pandemic in England.

In Chapter 4 we analyze the current epidemiology of measles in Italy to provide some
insights into its epidemiological features in a low circulation setting. In particular, we use
a detailed computational model, informed with regional heterogeneities in the age-specific
seroprevalence profiles, to estimate where secondary infections occur and the attack rates
that we can expect in different regions.
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Chapter 1

The impact of demographic changes on the
epidemiology of varicella and Herpes Zoster

1.1 Background

Varicella zoster virus (VZV) is responsible for two clinically different diseases. The first
exposure to VZV usually occurs in childhood and causes varicella disease. After recovery,
the virus remains dormant in sensory ganglia and in about 30% of cases it will reactivate
later in life, causing herpes zoster (HZ) [30], an inflammatory skin disease associated with
more serious morbidity [31]. In 1965, Hope-Simpson hypothesized that secondary exposures
to VZV (also called "exogenous boosting events") boost the host’s VZV-specific antibodies,
thereby reducing the risk of developing HZ [32]. Later, it was found that the main com-
ponent of immunity against HZ was cell-mediated [33, 34], but Hope-Simpson’s exogenous
boosting hypothesis has been corroborated by immunological studies showing an increase
of VZV-specific T cells in people exposed to contacts with the virus [35, 36, 37, 38], as
well as by epidemiological [39, 40] and modelling studies [40, 41, 42, 43]. Mathematical
models of VZV transmission dynamics, all based on the exogenous boosting hypothesis,
unanimously predict that mass immunization against varicella, which has been already in-
troduced in some countries [44, 45], including some regions of Spain [46], may result in a
temporary increase of HZ incidence [41, 42, 47, 48] as a consequence of the expected reduc-
tion of VZV re-exposures after vaccination. Nonetheless, empirical evidence coming from
surveillance programmes of HZ provides ambiguous results, with some studies showing an
increase of HZ following mass immunization and others not [49, 50]. However, an increase
in HZ incidence has been detected in several areas long before the introduction of the vari-
cella vaccine [51, 52, 53, 54] and, more recently, in areas without relevant VZV vaccination
history [50, 55]: for example, in the Community of Madrid (where until 2005 the vaccine
was introduced only for individuals at high risk of complications), the annual HZ incidence
has risen from about 2.5 to about 3.6 cases per 1,000 individuals per year between 1997 and
2004, and the trend was statistically significant [55]. This suggests the presence of other
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factors that might confound trend interpretations. One such factor may be represented
by demographic changes. During the twentieth century, industrialized countries completed
their fertility transitions [56], with a massive decline in birth rates and substantial popula-
tion ageing. In particular, since 1980, several central and southern European countries have
experienced sustained below-replacement fertility [57]. This work1 aims at exploring the
role of demographic changes in VZV transmission and reactivation dynamics by making use
of a mathematical model. The developed model, informed with country-specific epidemio-
logical and demographic data, is used to investigate the past dynamics of varicella and HZ
in Spain, and to predict their future burden under different demographic and vaccination
scenarios.

1.2 Methods

1.2.1 Data

Demographic changes for the period 1900-2009 were modelled using data on yearly birth
rates [58], age-specific mortality rates [59] and age-specific migration flows [60, 61, 62] over
time. Historical age structures of the Spanish population [58] were used to validate the
demographic model. Available projections on mortality, birth and migration rates [63]
relative to the period 2010-2050 were used for model predictions about future dynamics.
For what concerns the transmission model, as no survey data on social mixing patterns
[19, 64] are available for Spain, we parametrized age-specific contact patterns with estimates
based on census-type data provided by a previously published study [65]. Calibration was
done using age-specific VZV seroprevalence data in 1996 for Spain, made available by the
European Seroepidemiological Network 2 [66], and age-specific data on HZ incidence from
2005 to 2006 [67]. Model estimates were also qualitatively compared against an independent
dataset that included age-specific HZ incidence data in the years 1997-2004 [55].

1.2.2 The model

We use a stochastic individual-based age-structured epidemiological model for the natural
history of varicella and HZ, explicitly accounting for demographic changes. Epidemiological
transitions are modelled as in [43]: individuals are born susceptible to VZV and develop
varicella upon contacts with VZV-infectious individuals. Contacts are assumed to be struc-
tured by age according to a mixing matrix previously estimated for Spain [65] and rescaled
at each time step by the current age distribution of the population, following the approach
proposed in [24]. After recovery, individuals gain lifelong immunity against varicella and
become susceptible to HZ. The risk of HZ increases with age and time elapsed since the
last exposure episode. We assume that the risk of HZ declines progressively upon repeated

1published in the Proceedings of the Royal Society B: Biological Sciences. Marziano et al. (2015)
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contacts with VZV-infectious individuals, in order to take into account the accumulation
of protection against reactivation that Hope-Simpson postulated to follow from successive
re-exposures to VZV [31, 32]. Only a fraction of contacts that would result in varicella in-
fection in susceptible individuals lead to an effective immune boosting in VZV-experienced
individuals. After recovery from HZ, individuals are assumed to become lifelong immune to
new episodes of VZV reactivation [40, 41, 42, 43]. Indeed, secondary HZ episodes, although
possible, are relatively rare in immunocompetent individuals [31]. The vital dynamics of
the population is explicitly modelled in order to reproduce the observed changes in the
demographic structure of the Spanish population over the period 1900-2009, following the
approach of a previously published model for Italy [23]. As in [23], the model is initialized in
1900 at both demographic and epidemiologic equilibrium, whereas for the following years,
demographic dynamics are driven by variations of birth, age-specific mortality and migra-
tion rates. Postulating that the level of the birth rate is a main determinant of transmission
in childhood infections, we believe the hypothesis of epidemiological equilibrium in 1900 is
motivated by the fact that most of the fertility decline in Spain occurred after that date
[68]. Full details about the developed model are reported in section A.1 of the appendix,
together with a validation of the demographic model against observed longitudinal data on
the age structure of the Spanish population.

1.2.3 Model calibration and validation

Model calibration was carried out by a Bayesian approach using uniform prior distributions
on the six model parameters combined with the likelihood of varicella and zoster data. The
latter is defined as the product between the binomial likelihood of the observed age-specific
VZV serological profile in 1996 [66] and the Poisson likelihood of the observed age-specific
HZ incidence in 2005-2006 [67]. Computation of posterior distributions was carried out by
means of a Monte Carlo Markov chain approach with random-walk Metropolis-Hastings
sampling with normal jump distributions. Convergence of MCMC (22,000 iterations) was
assessed by considering several different starting points and by visual inspection, after a
burn-in period of 2,000 iterations. Details on model calibration and the estimated posterior
distribution of parameters are available in section A.1 of the appendix.

1.2.4 Demographic projections

The model is used to retrospectively analyse the impact of demographic changes on varicella
and HZ (period 1900-2009) and to predict their future dynamics (period 2010-2050). The
latter were simulated by using both published demographic projections [63] and theoretical
scenarios, based for simplicity on temporal changes during the prediction period (2010-2050)
of the birth rate only. Theoretical scenarios have been formulated by assuming that all
other demographic indicators are kept equal to their 2009 values, based on the assumption
that mortality and migration play a minor role on dynamics of varicella infection. In fact,
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the circulation of infectious diseases depends on the fraction of susceptibles within the
population, which, in the case of childhood infections, is shaped by the birth rate. As
varicella occurs predominantly in children, either an increase or a decrease of the birth rate
has the potential of leading respectively to higher or lower VZV circulation, which can affect
the dynamics of HZ through the effect of boosting. Figure 1.1 shows the reported birth
rate in Spain over the period 1900-2009, along with projected scenarios for the period 2010-
2050. In particular, we considered a baseline projection scenario that assumes a constant
birth rate; one that assumes a linear decrease of the birth rate up to a minimum of 0 in
2050 (denoted by “L" for “lowest"); and one assuming a linear increase with a doubling of
the 2009 birth rate over the same period (denoted by “H" for “highest"). Although these
scenarios are demographically naive, they represent useful illustrative limit cases for HZ.
A more realistic scenario, based on published population projections made available from
the United Nations [63] for Spain, has also been considered; this scenario includes changes
in mortality rates and migration fluxes, and projects a decrease of the birth rate between
2010 and 2030, followed by a partial recovery between 2030 and 2050 (Figure 1.1).
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Figure 1.1: Birth rate over time in Spain. Yearly birth rate as observed in Spain during
the period 1900-2009 (grey line) and as assumed by different prediction scenarios consid-
ered (2010-2050). Illustrative scenarios: H, baseline and L, Scenario based on published
population projections of the UN [63].
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1.2.5 Vaccination

The model is applied to evaluate the potential long-term effects of a varicella vaccination
programme starting in 2010 on future HZ incidence under the baseline scenario for de-
mographic projections. Vaccine is administered to children at the age of 15 months. We
assume different combined levels of vaccine efficacy and coverage, namely 80%, 90% and
100%. Successfully immunized individuals are assumed to be fully protected against VZV
infection (i.e. we do not explicitly consider breakthrough varicella infections) [69]. More-
over, vaccinated individuals can develop HZ from vaccine strain, although at a lower rate
compared with natural VZV, as observed in [70].

1.3 Results

Figure 1.2 shows the ability of the model to fit the VZV serological profile observed in
Spain in 1996. Observed and estimated 95% CI intersect for all younger age classes (age
20 years or below). The model also reproduces the observed age-specific HZ incidence in
2005-2006. The observed yearly incidence lies in the 95% CI of the estimated incidence for
most age groups. Moreover, the model captures the decreasing trend of incidence in the
elderly, which may be ascribed to exogenous boosting effects [42, 43].

1.3.1 Historical period (1900-2009)

Figure 1.3 shows model results for the period 1900-2009. According to the model, the overall
decreasing trend of the birth rate observed since 1900 has led to a reduction of the fraction of
VZV seropositive individuals at all ages (Figure 1.3a). For instance, the estimated fraction
of children who have acquired varicella by 10 years of age dropped from 99.2% (95% CI
98.8-99.6) in 1900 to a minimum of 81.5% (95% CI 76.5-85.8) in 2004. Consequently, the
mean age at varicella infection is estimated to increase from about 1.4 (95% CI 1.2-1.6) to
a maximum of 5.6 (95% CI 4.9-6.2) years (Figure 1.3b). Most of this increase (from about
2.5 to 5.6 years) occurs during the prolonged epoch of low fertility started in the second
half of the 1970s [58]. The modelled effect of changes in the birth rate on varicella is due to
a depletion of new susceptible individuals that sustain the circulation of the infection, and
occurs with a delay of a few years. Major fertility fluctuations observed in the past century
are reflected in the estimated mean age at infection. For example, the increase in the mean
age at varicella infection that is estimated around 1940 (Figure 1.3b) is a consequence of
the temporary brisk drop of the birth rate during the Spanish civil war in 1936-1939 (Figure
1.1); similarly, the stabilization in the mean age estimated in the decade 2000-2009 is due to
the recovery of the birth rate started in the late 1990s. As regards HZ, the model estimates
a gradual increase of the incidence rates since 1900 (Figure 1.3c, inset). This trend, at least
for recent years, has been documented for Spain by a surveillance study [55] reporting a
remarkable growth in the total yearly HZ incidence over the period 1997-2004. In particular,
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Figure 1.2: VZV seroprevalence and HZ incidence. a Age-specific VZV seroprevalence
as observed in data from Spain in 1996 [66] and as estimated by the model. Vertical lines
represent 95% CI of the data computed by exact binomial test. b HZ incidence by age
group as observed in 2005-2006 [67] and as estimated by the model. In both panels, grey
areas show the 95% CI of model estimates.

HZ incidence is approximately stable for younger individuals, with virtually all of the HZ
growth concentrated at ages above 65 [55]. In comparison, our model estimates an increase
in the total incidence of about 12% (up to 18% by assuming different contact patterns by
age; see section A.5 of the appendix) over the same period, from 3.52 (95% CI 3.18-3.87)
to 3.93 (95% CI 3.58-4.31) cases per 1000 individuals, also concentrated in older adults.
These changes in HZ incidence are reflected in a progressive increase of the mean age at VZV
reactivation from about 33.6 (95% CI 29.3-37.7) years in 1900 to 54.4 (95% CI 52.9-56.1)
years in 2009 (Figure 1.3d). The estimated HZ growth is mainly ascribable to the declining
birth rate via the complex dynamics of exogenous boosting. Indeed, the individual risk of
HZ is higher when the number of experienced episodes of VZV re-exposures is low. The
sustained decrease of the birth rate substantially reduced VZV circulation and frequency of
re-exposures in the population, therefore contributing to increase the overall HZ risk at the
population level. In other words, each cohort has been replaced over time by a new cohort
with a lower level of protection, which has caused the increase of HZ incidence throughout
the past century at virtually all ages. It is worth noting that, owing to these indirect and
cumulative effects, the result of a changing birth rate becomes visible on HZ incidence after
a significant delay of a few decades. For instance, the model estimates that despite the
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Figure 1.3: Estimated impact of demographic changes on VZV epidemiology
(1900-2009) a Estimated age-specific VZV seroprevalence at different years. b Estimated
mean age (and 95% CI, shaded areas) at varicella over time. c Estimated age-specific
HZ incidence at different years. The inset shows the total HZ incidence over time and
disaggregated by age group. d Estimated mean age at VZV reactivation (and 95% CI).

increasing birth rate in 2000-2009, HZ incidence keeps growing, although at a slower rate
(Figure 1.3c, inset). The delay in the effect of birth rate changes on HZ incidence is intrinsic
in the long time scales of VZV reactivation, which critically depends on the accumulation
of individual immunological protection through VZV re-exposures over several decades.
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1.3.2 Prediction period (2010-2050)

Model predictions on the future epidemiology of varicella are shown in Figure 1.4, under
the three illustrative demographic scenarios presented in the Methods section. Results
for scenarios based on realistic population projections [63] are qualitatively similar to the
scenario where a constant birth rate is assumed and they are subjected to the same general
considerations characterizing the analysis of the illustrative scenarios. They are therefore
reported for brevity in section A.3 of the appendix. In the baseline scenario (where a
constant birth rate is assumed), the predicted mean age at VZV infection (Figure 1.4a)
and the serological profile (Figure 1.4b) remain substantially stable after 2010. Scenario L,
which assumes a decreasing birth rate, results in a remarkable rise of the mean age at VZV
infection (Figure 1.4a) and in a decrease in the seropositive fraction at all ages (Figure 1.4c).
On the opposite, scenario H, characterized by a growing birth rate, results in a decrease of
the mean age at VZV infection (1.4a) and a growing fraction of seropositive individuals at
all ages (Figure 1.4d). The predicted impact of these scenarios on future HZ epidemiology
is shown in Figure 1.5. In the baseline scenario, the model predicts an increase of the mean
age at VZV reactivation, from 54.4 years (95% CI 52.9-56.1) in 2009 to 62.0 years (95%
CI 60.7-63.2) in 2050 (Figure 1.5a). Correspondingly, the age-specific HZ incidence (Figure
1.5b) also increases, especially in adults and in the elderly, with peak values rising from
about 10 to about 20 cases per 1000 individuals. This trend of HZ growth is consistent with
the observed historical trend [55] and occurs despite the relative stability of the underlying
varicella dynamics (Figure 1.4a) as a result of the delayed effect of the decreasing birth rate
in the second half of the past century on the risk of HZ development. In scenario L, the
increase in HZ incidence is inflated by the further decrease of VZV circulation predicted
during the period 2010-2050 (Figure 1.5c). In scenario H, the increase of VZV circulation
started in the first decade of the twenty-first century mitigates the growth of HZ incidence
and eventually counterbalances it after a few decades (Figure 1.5d, inset).

1.3.3 Predictions under varicella vaccination

Figure 1.6 shows the age-specific and total HZ incidence over time in the case of a varicella
vaccination programme starting in 2010 and assuming a combined level of vaccine effective-
ness and coverage of 90%, under the baseline demographic scenario. The model predicts a
further dramatic increase of HZ incidence in all non-vaccinated cohorts, as a consequence of
the increased risk owing to the rapid decline of varicella circulation (see section A.4 of the
appendix). In particular, the total HZ incidence is predicted to increase by 185% between
2010 and 2050, from 4.24 (95% CI 3.86-4.67) to 12.09 (95% CI 11.02-13.30) cases per 1000
individuals, compared with an 89% increase in the baseline scenario without vaccination
(Figure 1.5b, inset). Similarly, the peak age-specific incidence soars to 37.5 cases per 1000
individuals in 2050 compared with a maximum of about 20 cases per 1000 individuals in
the same year in the corresponding vaccination-free scenario. HZ incidence caused by the
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Figure 1.4: Predicted impact of demographic changes on the future epidemiology
of varicella (2010-2050) a Predicted mean age (and 95% CI, shaded areas) at varicella
over time. Different colors correspond to different projection scenarios. b-d Predicted age-
specific VZV seroprevalence at different years for the baseline scenario (b) the "lowest birth
rate" scenario L (c) and the "highest birth rate" scenario H.

reactivation of the vaccine strain is negligible, contributing less than 1.4% of all HZ cases
that occurred throughout the prediction period. Results based on a different combined level
of vaccine effectiveness and coverage are shown in section A.4 of the appendix.
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Figure 1.5: Predicted impact of demographic changes on the future epidemiology
of HZ (2010-2050) a Predicted mean age (and 95% CI, shaded areas) at HZ over time.
Different colors correspond to different projection scenarios. b-d Predicted age-specific HZ
incidence at different years for the baseline scenario (b) the "lowest birth rate" scenario L
(c) and the "highest birth rate" scenario H. The insets show the total HZ incidence over
time disaggregated by age group.

1.4 Discussion

In the past century, a range of demographic changes has occurred in most industrialized
countries [56], yielding a massive decrease of fertility and a progressive ageing of the popula-
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Figure 1.6: Joint predicted impact of demographic changes and varicella vac-
cination on the future epidemiology of HZ (2010-2050) . Predicted age-specific
HZ incidence at different years under the baseline demographic scenarios and a vaccination
programme starting in 2010 with 90% coverage and 100% life-long efficacy. The inset shows
the total HZ incidence over time disaggregated by age group.

tion [58]. In this work, we investigate the impact of demographic dynamics on the epidemi-
ology of varicella and HZ in Spain, by using an age-structured individual-based stochastic
model of VZV transmission dynamics. The model is calibrated against the age-specific
profiles of VZV seroprevalence and HZ incidence, and is able to qualitatively reproduce the
age-specific increase in HZ observed between 1997 and 2004 [55]. In the model, a decrease in
the birth rate results in a decrease of VZV circulation, owing to the depletion of susceptible
individuals that fuel transmission. Under Hope-Simpson’s exogenous boosting hypothesis,
the reduced VZV circulation results in an increase of the reactivation risk. In particular, the
model suggests that HZ incidence has been increasing in Spain since the beginning of the
past century, in association with a strong reduction of varicella circulation, mainly caused
by the progressive decline in fertility. While varicella-related epidemiological changes follow
demographic changes with a delay of a few years, consequences on HZ incidence require
several decades to reveal. As a consequence, under all demographic projections considered
for the future, the model predicts a further increase of HZ incidence until at least 2040.
This trend is expected to be eventually reverted only in the case of a massive, sustained
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growth of the birth rate over the next decades.
Model results are a consequence of the assumption that varicella and HZ dynamics are

linked through the exogenous boosting hypothesis. The existence of a relationship between
VZV re-exposures and reduced HZ risk is largely supported by data [35, 36, 37, 39, 40], even
though some opposing evidence [71] shows that the question is far from being completely
elucidated and requires further study. Published mathematical models of VZV [40, 41, 42,
43] unanimously integrate the exogenous boosting hypothesis, as it represents a simple and
plausible explanation of the observed age-specific HZ incidence patterns in several European
countries [40, 41, 42, 43, 48, 55, 67, 72]. In this study, we chose to adopt a formulation
that accounts for the cumulative increase of protection with repeated exposures, termed
“progressive immunity" in a previously proposed study [43]. The progressive immunity
model has been shown to accurately fit HZ data in several European countries, including
Spain [43]. However, we found similar qualitative results when using a different formulation
of the exogenous boosting hypothesis (following [42, 47, 48]), where immunity does not
cumulate with successive re-exposure episodes (see secton A.6 in the appendix).

A limitation of this model concerns the representation of contact patterns for the trans-
mission dynamics of VZV. Actual mixing patterns may change significantly over time,
following changes in socio-demographic characteristics [65, 73] (e.g. household size and
composition, characteristics of the educational system, school attendance levels). However,
changes in contact patterns by age that occurred during the past century are difficult to
reconstruct quantitatively, because neither historical data on mixing patterns themselves
nor detailed historical epidemiological data useful to identify these patterns are available.
In the absence of sufficient information on historical mixing patterns, and because the con-
struction of time-dependent contact matrices is beyond the scope of this paper, we adopted
recent estimates of age-specific mixing patterns [65], rescaled by the fraction of population
by age group at each time step [24]. However, the main results of this work are robust
with respect to this assumption. To support this claim, we performed a further analysis
where mixing patterns are assumed to be homogeneous by age. Model estimates obtained
under this alternative contact pattern scheme support the same qualitative conclusions with
limited quantitative variations (see section A.5 in the appendix).

The choice of Spain for this study was dictated by the availability of longitudinal HZ
incidence data [55], which show a strong trend of growth before the introduction of varicella
vaccination. Similar trends have been reported in the pre-vaccine era in other geographical
settings (e.g. USA [53], UK [54], Canada [51, 52, 54]), but factors underlying the growth
of HZ have not been elucidated yet. Our study shows that demographic changes have
contributed, at least partially, to this trend in Spain and may possibly be generalizable to
other geographical settings that underwent comparable demographic changes.

Nonetheless, it is important to stress that, as shown in the literature [42, 43, 74], the
epidemiology of Varicella Zoster Virus is characterized by a strong heterogeneity across
different countries. In particular, epidemiological evidences coming from France show that
this country has been characterized by a stable incidence of varicella and HZ during the
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period 2005-2015 [75]. In order to test the flexibility of the model to reproduce stable trends
in HZ incidence over time, we applied the proposed model to the French population and
epidemiological data. Obtained results show that, since the fertility transition in France was
milder than in other European countries (e.g. Spain and Italy), the epidemiology of varicella
and HZ has been much more stable during the last decades (see Appendix A.7). However,
the availability of age-specific varicella incidence data highlights a potential limitation of
the proposed model in reproducing the observed epidemiological patterns. In particular,
available data show a progressive increase of varicella incidence among young children since
the 90s along with a decrease of the number of cases in the older age groups, suggesting a
decrease in the average age at varicella. One possible explanation for this specific pattern
is the potential effect on social mixing caused by the increase in school enrollment rates
occurred during the last century [76]. The assumption on mixing patterns used in this
work does not allow capturing these changes. A possible future refinement of the model
could include time varying matrices for contacts at school, based on temporal changes in
enrollment rates.

Results obtained in this work suggest that retrospective evaluations of the effects of
varicella immunization on HZ epidemiology might have been confounded by pre-existing
trends in HZ epidemiology triggered by demographic changes occurred in the past [49,
77]. Model simulations reproduce this situation by showing that, in the years immediately
following the introduction of vaccination, the variation in HZ trends owing to vaccination
may be subtle and hard to distinguish from that occurring in the pre-vaccine era. Therefore,
we suggest that the approach proposed here may help to disentangle the effect of natural
epidemiological processes from that of vaccination, eventually allowing a more accurate
assessment of past and future interventions.
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Appendix A

A.1 The model

In this study we use a stochastic individual-based model for Varicella-Zoster Virus (VZV)
transmission and reactivation. Full details are provided hereafter.

Description

The population is stratified by 101 one-year age classes, a ∈ {0,1,2, ...,99,100+}. The model
accounts for the vital dynamics of the Spanish population, by considering yearly variations
in birth rate, mortality rates and migration fluxes. All individuals are born susceptible
to VZV and acquire varicella with a time-dependent, age-specific force of infection (FOI)
defined as:

λj(t) = β∑
k

Cjk(t)yk(t) (A.1)

where

• λj(t) is the FOI for age class j at time t;

• β is the VZV transmission rate;

• Cjk(t) is the contact matrix at time t, defined as the number of contacts of an indi-
vidual in the age group j with individuals in the age group k. More specifically, it is
computed at each time as Cjk(t) = C̃jkπk(t), where estimates for contacts provided
in [65], C̃jk, are rescaled by the current fraction of individuals in the age group k over
the total population, πk(t).

• yk(t) is the fraction of varicella-infectious individuals within the age group k at time
t;

This form of the FOI was previously proposed in the classical modelling literature for
measles [78, 79] and theoretically analysed [24] in the context of demographic changes. In
formulation (A.1), we neglect the contribution of Herpes Zoster (HZ) infected individuals
to the FOI, based on the observation that HZ is less infectious and much less frequent than
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varicella [80]. VZV infected individuals recover at a constant rate γ. Once recovered from
varicella, individuals gain lifelong immunity to VZV reinfection and become susceptible to
HZ. The risk of developing HZ is reduced by subsequent re-exposures to VZV infectious
individuals, called boosting events, that occur at a rate proportional to the FOI through
a coefficient z ∈ [0,1]. This coefficient represents the assumption that only a fraction z of
the contacts that would result in varicella infection in susceptibles triggers a boosting of
the immune response against HZ.
HZ susceptible individuals reactivate VZV, thus developing HZ, according to a risk that
depends on the number of VZV exposure episodes i, on the age of the host a and on the
time elapsed since last VZV exposure τ . In particular, we assume the same functional form
as in [43]:

ρi(a, τ) = ρ0q
(i−1)2eθa(a−a0)

+
eθτ τ (A.2)

where

• ρi(a, τ) is the VZV reactivation risk;

• the term q(i−1)2 , where q ∈ [0,1], accounts for the reduction of HZ risk when the
number of VZV exposures increases (i = 1 represents primary varicella infection);

• the exponential term eθa(a−a0)
+
, where θa > 0 and (a−a0)+ ∶= max(0, a−a0), accounts

for the increase of HZ risk due to immunosenescence of the host [34]. We assume that
aging begins to have an effect on the risk of reactivation starting from age a0 = 45
years [41, 43];

• the exponential term eθτ τ , where θτ > 0, accounts for the increase of HZ risk as the
time elapsed since last VZV exposure episode increases;

• ρ0 is the risk of developing HZ for individuals younger than 45 years of age (a < a0),
who have just recovered from varicella infection (τ = 0, i = 1).

Individuals who have developed HZ are assumed to become permanently immune to VZV
reactivation, based on the fact that recurrent HZ is relatively uncommon in immunocom-
petent persons [31], as detailed in the Methods section in the main text.
A schematic representation of the model is given in Figure A.1.

The model requires the tracking of HZ susceptibility states by age, time since last exposure
to VZV and cumulative number of re-exposures. Considering 100 one-year age groups, a
mean number of lifetime re-exposures of about 7 (see Section A.3) and a yearly discretization
for the time since last exposure, the number of possible states for individuals susceptible to
HZ amounts to at least 7 × 100 × 100/2 = 35,000 (division by 2 accounts for the time since
last exposure being always smaller than chronological age), which possibly underestimates
the actual number of states, since some individuals may experience more than 7 re-exposure
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Figure A.1: Flow diagram of the model. Varicella and HZ. S: VZV susceptible individuals; I:
varicella infectious individuals; ZSi: HZ susceptible individuals with i episodes of previous exposure
to VZV; ZR: individuals who have developed HZ. λ(a, t): time and age-dependent force of infection;
γ: constant recovery rate from varicella; z: boosting efficacy and ρi(a, τ): VZV reactivation rate.

episodes. In this study, the considered population size replicates the one on which the HZ
calibration dataset was collected (the region of Navarra, about 600,000 individuals in 2009).
Comparing population size with the number of HZ susceptibility states, it results that the
mean population in each state is smaller than 600,000/35,000 ≈ 17. This number gets even
smaller if we consider the possible underestimate of the number of HZ susceptibility states,
that the model’s population at the beginning of the century was about 1/3 of the current
one, that not all individuals are HZ susceptibles and that the distribution of the popula-
tion across model states is not homogeneous. Deterministic models assume a continuous
variable for the population size over the various structural dimensions (represented here by
chronological age, age since last exposure, and number of exposures): such assumption is
only valid for a sufficiently large number of individuals in each compartment. For these
reasons we preferred a stochastic individual-based model over a deterministic one.

Simulation algorithm

For each individual we take into account:

• age a, measured in years, a ∈ {0, ...,100};
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• epidemiological status:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Susceptible to VZV
Infected by varicella
HZ susceptible
Infected or recovered from HZ

• number of VZV exposures

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i = 0 Varicella susceptible individual
i = 1 Primary varicella infection
i > 1 Subsequent boosting episodes

• a∗, age of the individual at the time of last VZV exposure occurrence.

Time is discretized using a step of 1 week. At each time step the following events occur:

• Recoveries: the number of recoveries is obtained by sampling a Poisson distribution
with parameter γI, where γ is the recovery rate and I is the current total number of
infectious individuals.

• Primary varicella infections: the number of varicella infections is obtained, for each
age group j, by sampling a Poisson distribution with parameter λjSj where λj is
defined in Eq. (A.1) and Sj is the current total number of susceptibles in age group
j. For each infected individual, i is set to 1 and a∗ is updated with his current age.

• Boosting events: the number of boosting events is obtained, for each age group j, by
sampling a Poisson distribution with parameter zλjZSj , where z is the parameter
which accounts for boosting efficacy, λj is defined in Eq. (A.1) and ZSj is the current
total number of HZ susceptibles in age group j. For each boosted individual, i is
incremented by 1 and a∗ is updated with his current age.

• Births: the number of births is obtained by sampling a Poisson distribution with
parameter bN/52, where b, N denote respectively the crude birth rate for the current
year and the current total population.

The following events occur at a yearly frequency (at the end of each year):

• VZV reactivations: for each HZ susceptible individual with i VZV exposure episodes,
age a, and time since last exposure τ = a−a∗, VZV reactivation may occur according
to a Bernoulli sample with probability ρi(a, τ), defined in Eq. (A.2).

• Deaths: for each individual of age a death may occur according to a Bernoulli sample
with probability µ(a), representing age-specific mortality rate for the current year.
µ(a) is obtained as the weighted mean of male- and female-specific mortality rates
for age a, where the weight is the sex ratio. item Migrations: a number of individuals
is added or removed from the population based on the relative age-specific migration
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flux for the current year. In the case of a positive migration rate, the epidemiological
status of added individuals is assigned according to the current epidemiological profile
in the resident population.

• Aging: at the end of each year the age of all individuals is incremented by 1, with the
exception of those belonging to the age class a = 100.

Model inputs

The model takes as input the following data:

• yearly birth rates [58] for the time period considered in the simulation (shown in
Figure 1.1);

• annual sex- and age-specific mortality rates [59] for the considered period (Figure
A.2a-b);

• yearly migration fluxes [61, 62] (Figure A.2c);

• age structure of the migrant population [60];

• age-specific contact matrix estimated for Spain in [65].
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Figure A.2: Historical demographic data. a Age-specific mortality rate, females [59]. b
Age-specific mortality rate, males [59]. c Yearly migration flux in % of the population [61, 62]

A.2 Model calibration

The model has six free parameters:

• the VZV transmission rate β;
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• four parameters defining the VZV reactivation rate: ρ0, θa, θτ , q (see Eq. (A.2));

• the boosting efficacy z.

The parameter vector is defined as Θ = (β, ρ0, θa, θτ , q, z). The posterior distribution of
parameters was explored by using Markov Chain Monte Carlo (MCMC) applied to the
likelihood of observed data, using uniform prior distributions. The likelihood is defined as
the product between the binomial likelihood LA of the observed VZV serological profile by
age in 1996 [66] and the Poisson likelihood LB of the observed HZ incidence profile by age
in 2005-2006 [67]. Specifically,

LA(nm, rm∣Θ) =
M

∏
m=1

nm!

rm!(nm − rm)!(pm(Θ))rm(1 − pm(Θ))nm−rm (A.3)

where

• M is the number of ages considered in the serological profile [66];

• nm is the number of individuals of age m observed in [66];

• rm is the number of seropositive individuals of age m observed in [66];

• pm(Θ) is the VZV seroprevalence for age m, simulated by the model in 1996 with
parameter set Θ.

and

LB(kj ∣Θ) =∏
j∈J

e−ηj(Θ)(ηj(Θ))kj
kj !

(A.4)

where

• J is the set of age groups in the HZ incidence profile [67];

• kj is the total number of HZ cases in the j-th age group observed in [67];

• ηj(Θ) is the number of HZ cases in the age group j, simulated by the model in 2005-
2006 in a population of the same size as that analyzed in [67], with parameter set
Θ.

We determined the posterior distribution of Θ using random-walk Metropolis-Hastings sam-
pling [81]. At each iteration, the algorithm evaluates the likelihood of a new candidate
vector of parameters, that is accepted or not based on the standard Metropolis-Hastings
algorithm. The values of a new candidate parameter vector are randomly sampled from
normal distributions having mean equal to the current values and standard deviations given
in Table 1.1. The algorithm is run for 22,000 iterations and a burn-in period of 2,000 itera-
tions is considered. Convergence is checked by considering several different starting points
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Table 1.1: Standard deviations for parameters.

Parameter Standard Deviation Range
β 4.3 ⋅ 10−2 [0,+∞)

ρ0 7.0 ⋅ 10−5 [0,+∞)

θa 8.8 ⋅ 10−3 [0,+∞)

θτ 4.3 ⋅ 10−3 [0,+∞)

q 6.3 ⋅ 10−2 [0,1]

z 2.4 ⋅ 10−2 [0,1]

and by visual inspection. Estimated mean values and 95%CI of parameters are reported in
Table 1.2. The reported mean values and credible intervals are computed from the selected
realizations of the model, and thus account for both the stochasticity of model realizations
and the uncertainty in model parameters estimates.

Table 1.2: Estimates of parameters obtained for Spain.

Parameter Description Mean Unit 95% CI
β VZV transmission rate 1.02 × 105 weeks−1 0.95 × 105,1.10 × 105

ρ0 HZ risk at birth 1 2.63 × 10−3 years−1 1.96 × 10−3 , 3.21 × 10−3

θa
Rate of risk exponential growth
with chronological age a 1 11.19 × 10−2 years−1 7.53 × 10−2 , 14.53 × 10−2

θτ
Rate of risk exponential growth
with time since last exposure τ 1 4.77 × 10−2 years−1 3.89 × 10−2 , 5.81 × 10−2

q
Parameter regulating HZ
risk reduction with increasing number
of re-exposures to VZV 1

0.64 0.46 , 0.81

z Boosting efficacy 0.73 0.64 , 0.83
1 ρi(a, τ) = ρ0q

(i−1)2eθa(a−a0)
+

eθτ τ

A.3 Additional results

Historical period (1900-2009)

The model is able to correctly reproduce the observed evolution of the population age
structures [58], as shown in Figure A.3. The curves show downward peaks, reflecting the
brisk drop of birth rate (Figure 1.1) during the Spanish Civil War (1936-1939).
The remarkable changes in the population age structure shown above have led, according
to the model, to a reduction of VZV circulation. This has produced a reduction over time
of the estimated mean number of VZV re-exposures collected by HZ susceptibles (Figure
A.4), that has led to the increase in HZ incidence (Figure 1.3c).
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Figure A.3: Age distribution of the population at different years as observed [58] (dotted lines)
and as predicted by the model (solid lines).
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Figure A.4: Estimated mean number of VZV re-exposures by age at different years.

Prediction scenarios (2010-2050)

In this section we discuss further results obtained for the illustrative scenarios presented in
the main text for Spain and results obtained for an official demographic projection scenario
based on the 2012 UN population prospects [63].

Illustrative scenarios

The predicted evolution of the age structure of the Spanish population in the “Lowest-
birth rate" (L, Figure 1.1) and“Highest-birth rate" (H, Figure 1.1) scenarios are shown in
Figures A.5a and A.5c. Scenario L is characterized by a remarkable aging of the population,
whereas in scenario H the fraction of young individuals in the population is predicted to
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increase. Such changes lead respectively to a decrease (scenario L) and to an increase
(scenario H) of VZV circulation, that influences the age-specific number of boosting events
within the population. In particular, as shown in Figure A.5b, in scenario L the mean
number of boosting events by age is predicted to decrease during the period 2010-2050 and
this explains the predicted strong increase in HZ (see Figure 1.5c in the main text). On
the other hand, as shown in Figure A.5d, the increasing VZV circulation in scenario H
leads to an increase of the mean number of VZV re-exposures for young people and adults,
which partially mitigates the HZ increase caused by demographic changes occurred during
the last century (see Figure 1.5d).
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Figure A.5: a Age distribution of the population at different years in scenario L. b Mean number
of VZV re-exposures by age at different years in scenario L. c As a but for scenario H. d As b but
for scenario H.

Scenario based on UN demographic projections

In addition to the illustrative scenarios proposed in the main text we considered an official
demographic projection scenario for Spain, based on the medium variant of the 2012 UN
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population prospects [63]. This scenario predicts an initial decrease followed by a recovery
of the birth rate between 2010 and 2050 (see Figure 1.1) and a progressive decrease of
migration fluxes and mortality rates, especially in the elderly, during the same period.
As shown in Figure A.6, results obtained for this scenario are quite similar to the baseline,
which assumes constant birth, mortality and migration rates for the whole prediction period.
This is because the variation in the birth rate predicted during the period 2010-2050 by
the realistic scenario considered is negligible when compared to that experienced during the
last century and HZ dynamics are much less sensitive to changes in migration fluxes and
mortality rates in adults and older individual, as they do not impact significantly on age
groups involved in varicella transmission.
In summary, even under realistic demographic projections, an increase of HZ incidence
should be expected in Spain as a consequence of the dramatic demographic changes that
characterized the last century.
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Figure A.6: Predicted HZ incidence in Spain (2010-2050). Comparison between base-
line and realistic scenario. a Age-specific HZ incidence predicted by the model at different
years for the baseline scenario. b As a but fot the demographic scenario based on UN population
prospects [63].

A.4 Vaccination

In addition to results provided in the main text, we report in Figure A.7 the total incidence
of varicella and HZ over time under a vaccination program starting in 2010 and targeting
children of 15 months of age, considering different scenarios for the combined value of
coverage and efficacy: 80%, 90% and 100%. Figure A.7 shows that coverage does not
significantly affect the HZ incidence; however coverage at 80% is not sufficient to provide
elimination of varicella in the long term.
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Figure A.7: Model predictions under a vaccination program starting in 2010 and for
different scenarios for the combined value of vaccine efficacy and coverage. a Total
varicella incidence over time. b Total HZ incidence over time.

A.5 Homogeneous mixing

To provide a comparison of model results under a different assumption on mixing patterns,
we recalibrated the model by assuming homogeneous mixing (i. e. Cjk(t) = 1). We show
that the model behavior is qualitatively similar to that reported in the main text, with a
reduction over the past century of VZV circulation (Figure A.8a) and a growth in the mean
age at varicella (A.8b), total and age-specific HZ incidence (A.8c and inset) and mean age
at VZV reactivation (A.8d). In particular, under the homogeneous mixing assumption, the
predicted growth of the total HZ incidence between 1997 and 2004 is higher (about 18%)
than that predicted using age-specific contact matrices (about 12%). We conclude that the
HZ growth predicted as a consequence of demographic changes is robust under different
assumptions on mixing patterns.

A.6 A different formulation of exogenous boosting

The model was also recalibrated using a different formulation of the exogenous boosting
hypothesis. In this alternative formulation, the mechanism of VZV reactivation is modeled
as in [42, 47, 48]. In particular, once recovered from varicella individuals acquire lifelong
immunity to varicella and temporary immunity to HZ. After an average time of 1/δ the
protection against HZ wanes and individuals become susceptible to VZV reactivation. HZ
susceptibles may either be boosted or develop HZ. The risk of VZV reactivation has the
following functional form [47]:

ρ(a) = ωe−φa + aηπ ω,φ, η, π > 0 (A.5)
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Figure A.8: Estimated impact of demographic changes on VZV epidemiology by as-
suming homogeneous mixing. Historical period (1900-2009). a Estimated age-specific
VZV seroprevalence at different years. b Estimated mean age (and 95%CI, shaded areas) at vari-
cella over time. c Estimated age-specific HZ incidence at different years. The inset shows the total
HZ incidence over time and disaggregated by age group. d Estimated mean age (and 95%CI, shaded
areas) at HZ over time.

The model is schematically described in Figure A.9.
Results obtained are, again, qualitatively analogous to those shown in the main text, with
an increasing trend in the estimated total HZ incidence (Figure A.10a) over the last cen-
tury. In this case, the estimated growth is smaller than that predicted by the progressive
immunity model (reproposed here for convenience, Figure A.10b). We conclude, that the
HZ growth predicted as a consequence of demographic changes is robust under different
model formulations of exogenous boosting.
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Figure A.9: Flow diagram of the model based on [47]. S: VZV susceptible individuals; I:
varicella infectious individuals; Zp: individuals recovered from varicella and temporary protected
against VZV reactivation; ZS: HZ susceptibles individuals; ZR: individuals who have developed
HZ. λ(a, t): time-dependent force of infection, γ: constant recovery rate from varicella, z: boosting
efficacy, 1/δ: duration of immunity to HZ after exposure to varicella and ρ(a): VZV reactivation
rate.
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Figure A.10: Total HZ incidence and disaggregated by age group. a As predicted by the
alternative model formulation based on a mechanism of temporary immunity. b As predicted by
progressive immunity model.

A.7 The case of France

Methods

We applied the model presented in Chapter 1 to investigate the epidemiology of varicella
and HZ in France during the period 1850-2015.
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Model inputs

The model take as input the following data:

• yearly birth rates [59] for the time period considered in the simulation (Figure A.11a);

• annual sex- and age-specific mortality rates [59] for the considered period (e.g. Figure
A.11b);

• yearly migration fluxes [82] (Figure A.11c);

• age structure of the migrant population [60];

• age-specific contact matrix estimated for France in [83].
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Figure A.11: Historical demographic data. a Yearly birth rate [59] b Age-specific mortality
rate, females [59]. c Yearly migration flux in % of the population [82]

Data used for calibration

Model calibration was performed analogously to the case of Spain, by using age-specific
VZV seroprevalence data in 2003, based on [84], and age-specific data on HZ incidence
in 2015 [75] for France. Model estimates were qualitatively compared against age-specific
HZ incidence data between 2005-2015 and age-specific varicella incidence data between
1991-2015, both provided by [75].

Results

The model accurately reproduces the observed changes in the age distribution of the France
between 1850-2015 [59], see Figure A.12. The model is able to reproduce the age-specific
VZV seroprevalence observed in France in 2003 (Figure A.13a); the 95% CI of model esti-
mates (grey area) overlap for almost all age groups with the data (red lines). Nonetheless,
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Figure A.12: Age distribution of the French population at different years as observed [59] (black)
and as predicted by the model (red)

it partially fails in reproducing the sudden increase of the seroprevalence observed between
3 and 4 years of age, which is likely ascribable to the pre-primary school enrollment. Figure
A.13b show the capability of the model to reproduce the age-specific HZ incidence observed
in 2015, including the decreasing incidence in the elderly, which is a feature of both French
and Spanish HZ incidence data.

Historical period (1850-2015)

Historical demographic data reported in Figure A.11 show that during the last century
France experienced a decrease in the birth rate less remarkable than the one observed in
Spain (-39% vs -73% decrease between 1900 and 2000). According to model estimates,
demographic changes occurred in France resulted in an relatively stable VZV circulation,
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Figure A.13: VZV seroprevalence and HZ incidence. a Age-specific VZV seropreva-
lence as observed in data from France in 2003 [84] and as estimated by the model. Vertical
lines represent 95% CI of the data computed by exact binomial test. b HZ incidence by age
group as observed in 2015 [75] and as estimated by the model. In both panels, grey areas
show the 95% CI of model estimates.

as shown by the estimated evolution of the serological profile over time (Figure A.14a) and
by the more contained increase in the mean age at varicella compared to the case of Spain
(Figure A.14b). Moreover, since the frequency of boosting events does not substantially
change over time, the estimated increase in HZ incidence is mild (see Figure A.14 c/d).

Epidemiological validation

The French Sentinelles Network provides estimates for the incidence of varicella between
1991-2015 and the incidence of HZ between 2005-2015. We use this data to validate mod-
eling results obtained during the corresponding periods.
The model estimates a stable overall and age-specific HZ incidence during 2005-2015, which
is qualitatively and quantitatively compliant with what observed in the data (see Figure
A.15a and Figure A.16). The total incidence of varicella observed in France between 1991
and 2015 show seasonal waves, however, its mean is qualitatively stable (red, Figure A.15b).
The predicted total incidence of varicella during 1991-2015, slightly overestimate the ob-
served one, though the overall temporal trend is rather consistent with data (blue, Figure
A.15b). However, as shown in Figure A.17 the model fails to capture the age-specific
varicella incidence observed between 1991 and 2015, especially the increasing number of
cases in early childhood (1-3 years of age), where most of varicella occurs.

The analysis performed shows that in the case of France demographic changes are
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Figure A.14: Estimated impact of demographic changes on VZV epidemiology in
France (1850-2015) a Estimated age-specific VZV seroprevalence at different years. b
Estimated mean age at varicella over time. c Estimated mean number of VZV re-exposures
by age at different years in scenario L. d Estimated age-specific HZ incidence at different
years.

sufficient to explain the temporal trends of overall varicella and HZ incidence. In particular,
the country was characterized by a stable incidence of varicella and HZ during the last
decades. However, data highlight that a stable incidence at the population level can mask
changes in the distribution of cases among different age groups, as is the case of varicella in
France. This suggest the presence of other factors, beyond demographic changes, that can
influence the dynamics of VZV. One possible crucial factor shaping varicella incidence over
time may be represented by changes in enrollment rates of pre-primary school and nursery,
which likely occurred during the last decades. Indeed, school attendance play a relevant
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Figure A.15: Total varicella and HZ incidence in France. a Total HZ incidence (per 1,000
individuals) as observed in the data [75] (red) and as estimated by the model (blue) over the period
2005-2015. b Total varicella incidence (per 1,000 individuals) as observed in the data [75] (red) and
as estimated by the model (blue) over the period 1991-2015.

role in the spread of childhood diseases, affecting contacts among children, which represent
the greatest fraction of susceptibles in the population.
A possible refinement of the model may include information on changing enrollment rates
by rescaling the contacts occurring at school.
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Figure A.16: Age-specific HZ incidence (per 1,000 individuals) as observed in the data [75] (red)
and as estimated by the model (blue) over the period 2005-2015.
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Figure A.17: Age-specific varicella incidence (per 1,000 individuals) as observed in the data [75]
(red) and as estimated by the model (blue) over the period 1991-2015.
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Chapter 2

A dynamic cost-effectiveness analysis of vari-
cella and Herpes Zoster vaccination programs

2.1 Background

Varicella zoster virus (VZV) is a DNA virus belonging to the Herpesviridae family that af-
fects only humans. Infection by VZV could result in two distinct diseases: varicella, which is
a highly communicable and widespread childhood disease, and Herpes Zoster (HZ), caused
by reactivation of VZV that remains latent in the dorsal root ganglia after primary vari-
cella infection. Exposures to varicella-infected individuals (also called "boosting events")
are believed to boost the VZV-specific immune response thereby inhibiting VZV reactiva-
tion [32, 35, 36, 37, 38]. At present, chickenpox remains the most frequent notified disease in
Italy affecting almost the entire birth cohort and continuing to show an endemic-epidemic
pattern. Although it is usually a mild disease with a relative low percentage of compli-
cations, especially in immunocompetent children, varicella is highly contagious and may
develop more severe consequences and disabling symptoms in adults. Reactivation of the
virus is more likely to occur in immunocompromised patients or the elderly. HZ is charac-
terized by a vesicular eruption along the course of the nerve and is often associated with
pain. The most common complication of HZ is the postherpetic neuralgia (PHN), a persis-
tent and intractable chronic pain that occurs in 5 to 30% of HZ cases [74, 85]. Opposite to
varicella, HZ is not a notifiable disease in Italy.
A live attenuated vaccine against varicella was developed in 1974 and it has been introduced
in some countries starting from 1995 [86]. However, in many developed countries its intro-
duction into the national schedule still represents a matter of discussion. First, VZV mass
immunization may potentially increase the incidence of more severe varicella cases among
adults [87]. Another main concern is that the lack of boosting events caused by the reduc-
tion of varicella circulation may lead to an increase of HZ incidence in the post-vaccination
period. Results coming from surveillance programs of HZ in countries that have introduced
VZV mass immunization do not provide univocal evidences. Some countries detected an
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increase of HZ following mass varicella immunization and others did not observe any effect
on HZ incidence [49, 50]. Mathematical models for VZV unanimously predict an increase
of HZ incidence as a consequence of the reduction of boosting associated to varicella vacci-
nation, however the magnitude of such increase may depend on modeling assumptions on
the mechanism of VZV reactivation [41, 42, 47, 48], whose biology has not been elucidated
yet [35, 36, 37, 39, 40, 71]. Moreover, as shown in Chapter 1, an increase in HZ incidence
should be expected in the next decades as a consequence of past demographic changes and
their effect may be hard to disentangle from that of varicella immunization.
Finally, in more recent years, a vaccine against HZ has been licensed [88] and it has been
recommended in some countries both in combination with varicella vaccination (e.g. US)
and alone (e.g. France, UK), yielding the evaluation of post-vaccination trends even more
complex.
Cost-effectiveness analyses is nowadays considered an essential tool to be used to allocate
scarce public health resources. Through these techniques we are able to estimate the net
health benefit and costs associated with a given intervention and taking into consideration
all positive and negative, direct and indirect, effects that result from the introduction of
a program. In particular, the economic evaluation of a number of vaccination strategies
has been used in the past to help inform public health decisions for a variety of infectious
diseases such as meningo C and B [8, 9], pneumococcal disease [10], influenza [11, 12] and
varicella [13, 14, 15, 16]. Modelling and economic analyses on varicella vaccination, in par-
ticular, has been conducted for a number of countries and results appear to be hindered by
the assumptions made on the existence of the boosting mechanism [89]. More specifically,
varicella vaccination results economically acceptable when the model does not consider the
indirect effect of the vaccine on the epidemiology of zoster. When, conversely, when the
model takes into account the potential increase of zoster incidence as a consequence of
varicella vaccination, the cost-effectiveness of the program becomes questionable [89].
In this study we use the individual-based stochastic model introduced in Chapter 1 to eval-
uate the joint impact of demographic changes and different varicella and HZ vaccination
strategies on the future epidemiology of varicella and HZ in Italy. In particular, in order to
take into account the uncertainty regarding the mechanism of VZV reactivation, we con-
sider two different modeling assumptions on exogenous boosting. The first one has been
more traditionally used in the literature [47], whereas the second one more close to the
biology has been shown to fit better the age profile for HZ incidence in several countires,
including Italy [43]. The final aim of this work is to provide a picture of the effectiveness
and cost-effectiveness of different varicella and HZ vaccination strategies, including both the
uncertainty regarding the biological mechanism of boosting, the one regarding the economic
parameters and the underlying effect of demographic changes.
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2.2 Methods

In this study we use a stochastic individual-based model for varicella and HZ epidemiol-
ogy, adapted from the previous one developed for Spain [90]. We investigate the effect of
demographic changes on the past and future epidemiology of varicella and HZ in Italy and
perform a cost-effectiveness analysis of varicella and HZ vaccination, taken individually or
combined.

2.2.1 Epidemiological and demographic data

Demographic changes for the period 1900-2014 are modelled using data on yearly variations
of birth rate, age-specific mortality rates and net migration fluxes over time specific for Italy
[59, 91]. Demographic changes during the prediction period (2015-2100) are modeled using
projections on births, mortality and migration available from the 2015 Revision of the
World Population prospects [92]. As in [90], we assume heterogeneous mixing patterns by
age according to the synthetic contact matrices estimated for Italy in [65]. Epidemiological
parameters are estimated using data on the Italian VZV seroprevalence profile observed in
1996 [66] and age-specific data on HZ incidence in 2004 [72].

2.2.2 The model

Natural history of varicella and HZ

Two different modeling formulations on the effect of boosting are considered. The first one
is based on [32, 43] and will be referred in the rest of the chapter as "Progressive Immu-
nity" (PI). The second one, which was introduced in [47], will be denoted as "Temporary
Immunity" (TI).
Both models have been already introduced in Chapter 1, to which we refer for all details.
Briefly, in both models maternal antibodies confer protection against varicella infection
to new-borns for 6 months on average, after which children become susceptible to VZV
natural (i.e. wild-type) infection (S). Susceptible individuals are exposed to a time- and
age-dependent force of infection. Varicella infected individuals (I) recover after 3 weeks on
average and acquire life-long immunity against varicella.
In Model PI, after recovery from varicella individuals become susceptible to HZ (ZS). The
rate of VZV reactivation depends on: i) the individual chronological age, ii) the number of
re-exposures to VZV already experienced and iii) the time elapsed since last exposure to
VZV (see Equation A.2 and Figure A.1). According to this formulation, multiple exposures
to VZV-infectious individuals lead to a progressive decrease of the HZ risk [32, 43].
In Model TI, individuals recovered from varicella acquire temporary protection against HZ
(Zp). After an average time of 1

δ the acquired immunity wanes and individuals become
susceptible to HZ (ZS). The VZV reactivation rate depends on the individual chronological
age (see Equation A.5 and Figure A.9).
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In both models, HZ susceptibles may either be boosted or develop HZ and, in the latter
case, they become lifelong immune to HZ (ZR).

Varicella and HZ vaccination

The varicella vaccine is administered with a coverage c, starting from the year 2015. Vac-
cine failure is assumed to occur at vaccine administration with a probability (1− p), where
p is the probability to be immunized for targeted susceptible individuals. As a consequence
of vaccine failure, individuals are still susceptible to VZV (S*) and they can experience a
milder varicella infection (the so-called breakthrough varicella). Individuals infected with
breakthrough varicella may transmit the disease, nevertheless they are assumed to be half
contagious as natural cases [93].
Analogously to the case of natural varicella, under Model PI individuals recovered from
breakthrough varicella become susceptible to HZ (ZS*), whereas under Model TI they
become temporarily immune against HZ (Z∗p). In both models, successfully immunized in-
dividuals are assumed to gain lifelong protection against VZV infection (VP), though they
can develop HZ from the vaccine strain. Vaccinated individuals (VP), including those that
have experienced vaccine failure (ZS*), experience VZV reactivation at a lower rate com-
pared to unvaccinated. In particular, the VZV reactivation rate for vaccinated individuals
is rescaled by a factor χ, whose value is based on the literature [70].
In both models, all individuals that are susceptible to HZ are exposed to an age- and time-
dependent force of boosting.
The HZ vaccine is administered to a proportion cHZ of the HZ susceptible individuals
targeted by the program (ZS, ZS* and VP). Successfully immunized individuals acquire
life-long immunuty to HZ, whereas those experiencing vaccine failure, which occurs with a
probability 1 − pHZ , remain susceptible to HZ.
A schematic representation of the models is given Figure 2.1 (Model PI) and Figure 2.2
(Model TI).

2.2.3 Demographic and vaccination scenarios

No vaccination. As a baseline, we consider a model without varicella nor HZ vaccination.
The evolution of varicella and HZ epidemiology under this model is only driven by the
changing demography.

In order to investigate the cost-effectiveness of varicella and HZ vaccination we consider
eight different scenarios and compare them to the case of no vaccination. In particular,
following the guidelines in PNPV 2016-2018 [94], we implement varicella vaccination with
a 2-dose schedule (first dose at 15 months of age, second dose at 5-6 years of age) and HZ
vaccination programs targeted either at 50 or 65 years old individuals.
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Figure 2.1: Flow diagram of the model Progressive Immunity (PI). Varicella and HZ
natural history and vaccination. S: individuals susceptible to natural varicella; I: individuals
infected with natural varicella; ZSi: individuals susceptible to natural HZ with i episodes of previ-
ous exposure to VZV; S*: individuals susceptible to breakthrough varicella; I*: individuals infected
with breakthrough varicella; ZS∗i : individuals susceptible to HZ after infection with breakthrough
varicella with i episodes of previous exposure to VZV; VP: individuals successfully immunized to
varicella and susceptible to HZ from varicella vaccine strain; ZR: individuals who have developed
HZ. λ(a, t): time and age-dependent force of infection; γ: constant recovery rate from varicella;
z: boosting efficacy, ρi(a, τ): VZV reactivation rate, c: varicella vaccination coverage, p: varicella
vaccine efficacy; χ scale factor for the VZV reactivation rate of vaccinated individuals. HZ suscep-
tible individuals (light blue compartments) move to ZR with a probability cHZpHZ where cHZ is
the HZ vaccination coverage and pHZ is the HZ vaccine efficacy.
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Figure 2.2: Flow diagram of the model Temporary Immunity (TI). Varicella and HZ
natural history and vaccination. S: individuals susceptible to natural varicella; I: individu-
als infected with natural varicella; Zp: individuals recovered from natural varicella and temporary
protected against VZV reactivation; ZS: individuals susceptible to natural HZ; S*: individuals
susceptible to breakthrough varicella; I*: individuals infected with breakthrough varicella; Z∗p: in-
dividuals recovered from breakthrough varicella and temporary protected against VZV reactivation;
ZS*: individuals susceptible to HZ after infection with breakthrough varicella; VP: individuals suc-
cessfully immunized to varicella and temporary immune to HZ; VP*: individuals susceptible to
HZ from vaccine strain; ZR: individuals who have developed HZ. λ(a, t): time and age-dependent
force of infection; γ: constant recovery rate from varicella; z: boosting efficacy, 1/δ: duration of
immunity to HZ after exposure to varicella; ρ(a): VZV reactivation rate, c: varicella vaccination
coverage, p: varicella vaccine efficacy; χ scale factor for the VZV reactivation rate of vaccinated
individuals. HZ susceptible individuals (light blue compartments) move to ZR with a probability
cHZpHZ where cHZ is the HZ vaccination coverage and pHZ is the HZ vaccine efficacy.
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Varicella vaccination only. We consider two extreme scenarios, chosen with respect to
their effects on the epidemiology of HZ. The first scenario, called "worst-case scenario",
is the one having the greatest effect on HZ as it tends to eliminate VZV circulation, thus
removing the exogenous boosting effect. This scenario presents a varicella vaccination cov-
erage and efficacy of 95% (combined for the first and second dose), and it assumes the
highest estimate obtained in [70] for the relative risk of VZV reactivation among vaccinated
individuals, χ = 0.23. The second scenario, called "best-case scenario", is the one having
the least effect on HZ as it maintains a moderate level of VZV circulation and, in turn, a
higher protective effect of exogenous boosting. This scenario presents a varicella vaccina-
tion coverage of 70%, a varicella vaccine efficacy of 65%, and it assumes the lowest estimate
obtained in [70] for the relative risk of VZV reactivation among vaccinated individuals,
χ = 0.08.

HZ vaccination only. We consider two possible scenarios that vary in terms of age at
vaccination. For both scenarios we assume an HZ vaccination coverage of 60% and a vaccine
efficacy of 70%. For what concerns the age at vaccination, in the first scenario the vaccine
is administered at 50 years of age (we will refer to it as "Zoster50"), whereas in the second
at 65 years (we will refer to it as "Zoster65").

Combined varicella and HZ vaccination. The last four scenarios combine the two vari-
cella vaccination scenarios ("worst-case scenario" and "best-case scenario") with the two
HZ vaccination scenarios considered ("Zoster50" and "Zoster65").
A summary of the scenario considered is reported in Table 2.1.

Table 2.1: Description of the vaccination scenarios considered. The coverage
and efficacy of the varicella vaccine are denoted respectively by c and p. χ is the scale
factor for the VZV reactivation rate among vaccinated. cHZ and pHZ are respectively the
coverage and the efficacy of the HZ vaccine.

Scenario c p χ cHZ pHZ

Age at
HZ

vaccination
Worst-case 95% 95% 0.23 - - -
Best-case 70% 65% 0.08 - - -
Zoster50 - - - 60% 70% 50y
Zoster65 - - - 60% 70% 65y

Worst-case+Zoster50 95% 95% 0.23 60% 70% 50y
Worst-case+Zoster65 95% 95% 0.23 60% 70% 65y
Best-case+Zoster50 70% 65% 0.08 60% 70% 50y
Best-case+Zoster65 70% 65% 0.08 60% 70% 65y
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2.2.4 Model calibration

Analogously to the model presented in Chapter 1, the model is calibrated by using Monte
Carlo Markov chain applied to the product of the binomial likelihood of the VZV sero-
prevalence profile in 1996 [66] and the Poisson likelihood of the observed age-specific HZ
incidence in 2004 [72].

2.2.5 Cost-effectiveness analysis

A cost-utility economic framework is applied to the outcome of the epidemiological models.
In particular, the epidemiological and economic impact of the eight intervention scenarios,
with respect to the no vaccination strategy, are reported in terms of averted deaths, QALYs
gained, and net costs. More specifically, the number of averted deaths due to a specific
vaccination scenario S̄ (ADS̄) vs no vaccination is defined as the sum (over all ages) of
the averted deaths due to infection with natural varicella (ADNV

S̄
), breakthrough varicella

(ADBV
S̄

) and Herpes Zoster (ADHZ
S̄

), which are computed as follows:

ADNV
S̄ =DNV

novacc −DNV
S̄ = [NPV NV

novacc −NPV NV
S̄ ] ×HRNV ×CFRNV

ADBV
S̄ =DBV

novacc −DBV
S̄ = [NPV BV

novacc −NPV BV
S̄ ] ×HRBV ×CFRBV

ADHZ
S̄ =DHZ

novacc −DHZ
S̄ = [NPV HZ

novacc −NPV HV
S̄ ] ×HRHZ ×CFRHZ

where D is the number of deaths under a specific vaccination scenario. NPVS̄ is the net
present value of infection cases under a specific vaccination scenario and is computed as:

NPVS̄ =
T

∑
t=1

Ct
(1 + r)t

where Ct is the number of infection cases at time t, T is the time horizon considered and
r is the discount rate. CFR is the case fatality rate per hospitalized individual and HR
is the hospitalization rate per case of infection. The averted deaths are calculated under
the assumption that only people who are hospitalized for varicella or HZ carry the risk of
dying because of the infection.
The QALY gain due to a specific vaccination scenario S̄ (QGS̄) vs no vaccination, is defined
as the sum (over all ages) of the QALY gain due to infection with natural varicella (QGNV

S̄
),

breakthrough varicella (QGBV
S̄

) and Herpes Zoster (QGHZ
S̄

), which are computed as follows:

QGNVS̄ = QLNVnovacc −QLNVS̄ = [NPV NV
novacc −NPV NV

S̄ ] × [QLm +QLd ×HRNV ×CFRNV ]

QGBVS̄ = QLBVnovacc −QLBVS̄ = [NPV BV
novacc −NPV BV

S̄ ] × [QLm +QLd ×HRBV ×CFRBV ]

QGHZS̄ = QLHZnovacc −QLHZS̄ = [NPV HZ
novacc −NPV HZ

S̄ ] × [QLm +QLd ×HRHZ ×CFRHZ]
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where QL is the total QALY loss associated with a specific vaccination scenario,QLm is the
QALY loss per case of infection due to morbidity, and QLd is the QALY loss per case of
infection due to death calculated on the basis of age-specific life expectancies (experienced
only by people who have been hospitalized).
The net total costs associated to a specific vaccination scenario S̄ (NCS̄) vs no vaccination,
are defined as the sum of the net costs associated to infection with natural varicella (NCNV

S̄
),

breakthrough varicella (NCBV
S̄

) and Herpes Zoster (NCHZ
S̄

), which are computed as follows:

NCNVS̄ = TCNVS̄ − TCNVnovacc = [NPV NV
novacc −NPV NV

S̄ ] × [CGP +CH ×HR] +NPVvd ×CV ]

NCBVS̄ = TCBVS̄ − TCBVnovacc = [NPV BV
novacc −NPV BV

S̄ ] × [CGP +CH ×HR] +NPVvd ×CV ]

NCHZS̄ = TCHZS̄ − TCHZnovacc = [NPV HZ
novacc −NPV HZ

S̄ ] × [CGP +CH ×HR] +NPVvd ×CV ]

where TC are the total costs associated with a specific vaccination scenario and add up to
the total cost of disease and the total cost of vaccination. Direct costs (GP, hospital and
treatment) and costs of the vaccination program are considered. In particular, the cost of
disease per case of infection amounts to CGP , the total outpatient cost (cost of GP visit
and cost of treatment given by GP), and CH , the total inpatient cost, experienced only by
those who are hospitalized. The cost of vaccination per administered vaccine dose (NPVvd)
amounts to CV , which combines the cost of vaccination and the respective administration
costs.
A stochastic simulation of a certain vaccination scenario S̄ is defined cost-effective if

K ×QGS̄ −NCS̄ > 0 (2.1)

where K, taken equal to 40,000 e, is the maximum value that the payer (in our case, the
National Health System) is willing to pay for an additional QALY gained. According to the
formula, a vaccination scenario is deemed cost-effective with respect to the no vaccination
scenario whenever the benefits, namely, the economic value of the QALY gained, dominate
over the net costs. Cost-effectiveness results are produced for three different time horizons
(25, 50 and 86 years) and discount rates are fixed at 1.5% and 3% per year. The percentage
of runs that are cost-effective is computed as the percentage of simulations that satisfies
Equation 2.1. In this way, we take into account the uncertainty intrinsic to stochasticity
and parameter estimation.
In order to assess the robustness of our results with respect to the economic parameters, a
probabilistic sensitivity analysis was also performed, whereby we included uncertainties in
the economic and quality of life (QoL) parameters, generated under a Bayesian framework.
Epidemiological and economic parameters used to perform the cost-effectiveness analysis
are summarized in Table B.1-B.3 reported in the appendix.
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2.3 Results

Both models reproduce well the VZV serological profile observed in Italy in 1996, including
the drop in the percentage of seropositives after the first year of age, which is ascribable to
the waning of maternal antibodies (see Figure 2.3 a/c). The mean estimate obtained by
the model (black line) lies within the 95% CI of the data for all considered age groups. For
what concerns HZ, both models are capable to reproduce the HZ incidence by age observed
in 2004 (Figures 2.3 b/d), even though with some differences. Model PI captures well the
incidence of HZ in adults and elderly, whereas it slightly overestimates the HZ incidence
in individuals younger than 30 years. In particular, Model PI accurately reproduce the
slope of the HZ increase occurring between 40 and 80 years and it is able to capture the
decreasing trend in HZ incidence observed after 80 years of age.
Model TI is more precise in reproducing the incidence of HZ in individuals younger than
30 years, whereas it performs slightly worse both in capturing the increasing trend in the
age-groups 40-80 years and the decrease of HZ incidence after 80 years of age.

2.3.1 VZV epidemiology in Italy (1900-2015)

The model was firstly used to investigate the past epidemiology of VZV infection and
reactivation under the effect of demographic changes.
As shown in Figure B.1 in the appendix during the last century the Italian population
underwent a fertility transition comparable to that observed in Spain [90]. According to
both models (PI and TI) the overall decreasing trend of the birth rate observed in Italy
since 1900 has led to a reduction of the fraction of VZV seropositive individuals at all
ages and to an increase in the estimated mean age at varicella infection (see Figure B.2
in the appendix). The decrease in varicella circulation over time has resulted in an overall
reduction in the frequency of boosting events, whose impact on HZ incidence is different
depending on the formulation used to model exogenous boosting. In particular, as shown
in Figure 2.4, according to Model PI the reduction of boosting results in a 138% increase
in the total HZ incidence between 1900 to 2015, whereas the one estimated by Model TI is
less remarkable (53%). On the other hand, the increase in the estimated mean age at VZV
reactivation, which is mainly ascribable to population aging, has the same magnitude in
both models (see Figure B.3 in the appendix). These results suggest that the dynamics of
HZ incidence are much more sensitive to changes in varicella circulation, which in the past
were mainly driven by demographic changes, when we model boosting according to PI.

2.3.2 VZV epidemiology in Italy (2015-2100)

In all scenarios considered for the future we model changes in the age distribution of the
population using projections on the yearly birth rate and mortality rates by age provided
by the UN for Italy [92]. According to the 2015 UN World Population Prospects the Italian
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Figure 2.3: VZV seroprevalence and HZ incidence. a Age-specific VZV seroprevalence
as observed in data from Italy in 1996 [66] and as estimated by the model PI. Grey areas
show the 95% CI of model estimates, vertical lines represent 95% CI of the data computed
by exact binomial test. b HZ incidence by age group as observed in 2004 [72] and as
estimated by the model PI. c As a but as estimated by the model TI. d As b but as
estimated by the model TI.

birth rate will remain approximatively stable during the period 2015-2100 (see Figure B.1 in
the appendix), whereas the age-specific mortality rate will experience a progressive decrease
during the same period.

No vaccination

Results obtained by both models show a stable epidemiology of varicella during the pre-
diction period (see Figure 2.5 a/c) which is explained by the relative stability of the birth
rate. Analogously to what observed in the case of Spain, under both models the incidence
of HZ will continue its growth and it will stabilize only after some decades (see Figure 2.5
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Figure 2.4: Total HZ incidence over time. a Total incidence of HZ over the period 1900-2015
as estimated by the model PI. b As a but as estimated by the model TI.

b/d). Such growth is ascribable to two factors, the first one is population aging that acts
equally in both models, the second one is the delayed effect of past changes in the boosting
effect. As previously noticed, the latter play a more relevant role in Model PI, as opposed
to Model TI, and it is responsible for the quantitative difference in the predicted HZ inci-
dence increase. In particular, during the period 2015-2100, Model PI estimates a maximum
increase in the total HZ incidence of about 56% and it will stabilize in the long term at a
48% higher value than in 2015. On the other hand, the maximum increase estimated by
Model TI amounts to 11% and stabilizes in the long term at a value 3% higher than in
2015.

Varicella vaccination only

Predictions from both models suggest that in the worst-case scenario, which assumes a
high varicella vaccination coverage (95%) and high vaccine efficacy (95%), we can expect a
sudden and enduring reduction in varicella incidence (see Figure B.4 a/b in the appendix).
As a consequence, starting from 2015 the frequency of VZV re-exposures among HZ sus-
ceptibles experiences a remarkable drop. As shown in Figure 2.6 a/b, according to both
models, the lack of boosting will result in an increase of natural HZ incidence in the first
decades after the introduction of vaccination. After this period, since varicella vaccination
is effective in reducing the fraction of individuals susceptible to natural HZ, the incidence
of HZ is expected to decrease. However, in the long term, the incidence of natural HZ will
progressively be replaced by the HZ cases among vaccinated individuals, i.e. from break-
through or vaccine strain.
In the best-case scenario we assume a lower varicella vaccine coverage (70%) and efficacy
(65%). This vaccination strategy results less effective in reducing the incidence of varicella
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Figure 2.5: Varicella and HZ incidence in the scenario with no vaccination (2015-
2100). a Total incidence of varicella as estimated by the model PI during the period 2015-2100 in
the scenario without nor varicella or HZ vaccination. b Total incidence of HZ as estimated by the
model PI during the period 2015-2100 in the scenario without nor varicella or HZ vaccination. c
As a but as estimated by the model TI. d As b but as estimated by the model TI.

that will keep circulating both as natural and breakthrough (see Figure B.4 c/d). As a
consequence, the reduction of boosting after 2015 is milder than in the worst-case scenario
and this results in a more contained increase of HZ incidence in the post-vaccination pe-
riod. Moreover, since in this scenario natural varicella continues circulating , natural HZ
will play an important role even in the long term (See Figure 2.6 c/d). The magnitude
of the predicted changes in HZ incidence depends on the boosting formulation considered.
Moreover, it is worth noting that the predicted changes in HZ incidence are not purely
ascribable to varicella immunization, but encompass also the increase of HZ due to demo-
graphic changes. It is thus crucial to interpret results obtained in light of the dynamics
predicted in the absence of vaccination, when the dynamics are influenced by demographic
processes only.
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Figure 2.6: Total HZ incidence in the scenarios with varicella vaccination only (2015-
2100). a Total incidence of HZ overall (red line) and total incidence of HZ developed after infection
with breakthrough varicella or from varicella strain (blue line) as estimated by the model PI during
the period 2015-2100 in the worst-case scenario for varicella vaccination only (95% coverage and
95% efficacy). b As a but as estimated by the model TI. c As a but as estimated by the model
PI in the best-case scenario for varicella vaccination only (70% coverage and 65% efficacy). d As c
but as estimated by the model TI.

For instance, in the worst case scenario Model PI estimates a maximum increase in the total
HZ incidence of about 71% with respect to 2015, however only the 20% of this increase may
be directly ascribed to varicella immunization.

HZ vaccination only and combined with varicella vaccination

The introduction of an HZ vaccination program can be used to mitigate the increase of HZ
incidence both in the absence or presence of varicella mass immunization. For instance,
according to Model PI, the HZ vaccination scenario "Zoster65" would reduce by 26% the
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long term incidence of HZ expected in the scenario without interventions. If we combine
"Zoster65" with the "worst case scenario" for varicella immunization, the peak incidence
expected would be reduced by 30%.

2.3.3 Cost-effectiveness analysis

Firstly, we consider the whole epidemiological and demographic uncertainty in the net
present values of the predicted cases of varicella and HZ, as generated by the mathemat-
ical model, and we combine it with the "observed" values for the economic and quality
of life parameters (Base case analysis, Table B.2-B.3 in the appendix). In this way, the
uncertainty in the results is due exclusively to the demographic and epidemiological data.
Figures 2.7-2.10 report for each epidemiological model (PI and TI) the results of the cost-
effectiveness analysis, under the base case, and considering three time horizons (25, 50, and
86 years). Results are presented in terms of averted deaths, QALYs gained, net costs and
percentage of cost-effective runs. The implementation of a vaccination program including
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Figure 2.7: Cost-effectiveness analysis results for the worst-case scenario of varicella
vaccination alone vs no vaccination, under the base case. Median number (over 2,000
stochastic simulations) of the averted deaths, QALYs gained, net costs and percentage of runs that
are cost-effective, for the three considered time horizons as obtained by using model TI (top row)
and PI (bottom row).

only varicella vaccination is not deemed cost-effective, especially under the epidemiological
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Figure 2.8: Cost-effectiveness analysis results for the best-case scenario of varicella
vaccination alone vs no vaccination, under the base case. Median number (over 2,000
stochastic simulations) of the averted deaths, QALYs gained, net costs and percentage of runs that
are cost-effective, for the three considered time horizons as obtained by using model TI (top row)
and PI (bottom row).

predictions based on model PI. Figures 2.7 and 2.8 (bottom row) show that, compared to no
vaccination, both worst- and best-case scenarios would result in a negative balance in terms
of averted deaths and QALYs gained, especially after 50 years since the implementation of
the program. When looking at the probability of the program of being cost-effective, we
notice that less than 50% of runs are cost-effective for all time horizons, in particular for the
time horizons of 50 years. The fact that the worst situation is reported for the middle time
horizon can be explained by the fact that 50 years after the implementation of the vaccina-
tion program, the predicted HZ incidence is at the highest level, starting to decrease after
having reached the peak (see for instance Figure 2.6 a/c). Hence, a vaccination program
that aims only at reducing VZV circulation has also the drawback of reducing the boosting
effect and thus increasing HZ incidence in the medium term. If we focus on the difference
between the worst- and the best-case scenarios (Figures 2.7 and 2.8, bottom row), we see
that the former, characterized by higher coverage and efficacy and higher percentage of
vaccinated that will get HZ, performs worse in terms of averted deaths and QALYs gained
(more deaths under the vaccination scenario and less QALYs gained), and also in terms of
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costs (higher costs mainly due to higher varicella vaccination coverage and higher cost of
disease for increased HZ cases).
The results of HZ vaccination alone, at either 50 or 65 years, are shown in Figures B.5a in
the appendix and in Figure 2.9. In both models (PI and TI) and for all the time horizons,
HZ vaccination is always cost-effective. In particular, both programs perform very well in
terms of averted deaths and QALYs gained, with benefits increasing over the time horizons,
but also in terms of net costs with respect to no vaccination. By protecting older people
from getting HZ, the vaccination programs prevent the potential high costs of disease at
older ages (more hospitalizations and higher risk of death) and the reduction in the related
QoL and deaths.
Moreover, vaccinating at 65 years of age results better than at 50 years, since the benefits
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Figure 2.9: Cost-effectiveness analysis results for the scenario with HZ vaccination
alone targeted at 65 years old vs no vaccination, under the base case. Median number
(over 2,000 stochastic simulations) of the averted deaths, QALYs gained, net costs and percentage
of runs that are cost-effective, for the three considered time horizons as obtained by using model
TI (top row) and PI (bottom row).

in terms of averted deaths and QALYs gained increase with the age at vaccination, being
the incidence higher, while the net costs remain more or less the same.
Finally, when combining varicella vaccination with HZ vaccination, we manage to partially
compensate the drawbacks of varicella vaccination with the positive effects of HZ vaccina-
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Figure 2.10: Cost-effectiveness analysis results for the worst-case scenario of varicella
vaccination and HZ vaccination at 65 years vs no vaccination, under the base case.
Median number (over 2,000 stochastic simulations) of the averted deaths, QALYs gained, net costs
and percentage of runs that are cost-effective, for the three considered time horizons as obtained
by using model TI (top row) and PI (bottom row).

tion, thus obtaining a higher percentage of cost-effective runs (see Figure 2.10 and Figures
B.5-B.6). As a matter of fact, the increase in the medium term of HZ incidence, predicted
by model PI following varicella vaccination, is counterbalanced by the protective effect of
HZ vaccination among the elderly. In this way, vaccinating the people more at risk of de-
veloping HZ, we manage to maintain a positive balance, increasing over the time horizons,
in terms of averted deaths and QALY gained, but also in terms of net costs. The result
is that the percentage of cost-effective runs is very high, also after 25 years, mostly if we
vaccinate at 65 years (e.g. see difference between Figure 2.10 and B.5b in the appendix,
bottom row).

2.3.4 Probabilistic sensitivity analysis

We also performed a probabilistic sensitivity analysis (PSA) to investigate the effect of
the uncertainty in the economic and quality of life (QoL) parameters, generated under a
Bayesian framework. In general, we assumed a Gamma distribution for the continuous
positive parameters (costs and number of GP visits), and a Beta distribution for the prob-
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ability parameters, that are bounded between 0 and 1. More details on the distribution
assumed for each parameter are given in Table B.1-B.3 in the appendix.
To assess the effect of the economic and QoL uncertainty, we employed the following proce-
dure. Each single realisaton of the economic and QoL model parameters is combined to all
the stochastic runs of the epidemiological (and demographic) model, and the median values
of the number of averted deaths, QALYs gained, net costs, and percentage of cost-effective
runs are derived. Replicating this procedure for all the runs of the economic and QoL
model, we managed to take into account the economic and QoL uncertainty, which is then
reported as credible intervals around the median values of the outputs. In the appendix
we report the results of the cost-effectiveness analysis under the PSA, for the two different
mathematical models (PI and TI), and for three time horizons (25, 50, and 86 years), in
terms of the four outputs presented above (Figures B.7-B.10). Comparing the resulting
outputs of the PSA with those reported for the base case analysis, we notice that there is
consistency among the median values of the outputs. The effect of the uncertainty in the
economic and QoL model is evident mostly for the scenarios with varicella vaccination only,
for which we found large credible intervals for all the outputs. In particular, we highlight
the large economic and QoL uncertainty for the averted deaths and QALYs gained under
the longest time horizon (86 years).

2.4 Conclusions

About twenty years after the first licensing of the varicella vaccine, public health authorities
of several countries are still discussing its introduction into the national vaccination sched-
ules. The first concern is that varicella immunization programs could lead to an increase
in the incidence of varicella among adults, which is usually more severe than childhood
infection [87]. Second, the efficacy of the vaccine strongly depends on the number of doses
[95] and after vaccine failure people may still develop a milder form of the disease, i.e.
breakthrough varicella. However, the third and greatest cause of concern is that the re-
duction of varicella circulation may lead to an increase of HZ incidence, which is generally
characterized by more severe and persisting symptoms, debilitating sequelae and a higher
overall costs for treatment compared to varicella [72, 96]. More recently, a vaccine against
HZ has been licensed and introduced in some countries, e.g. France and the UK, with the
aim of containing its burden even in the absence of varicella vaccination [97, 98]. However,
if on one side the French public health authorities are not considering the introduction of
varicella vaccination, in the UK they are evaluating the possibility of starting a varicella
vaccination program targeted at 1 or 3 years old children.
One of the tools that is nowadays used to evaluate vaccination policies is the cost- effective-
ness analysis. This technique allows to take into account several factors, like for instance
the direct and indirect effects of the vaccine, the avertable burden of disease as well as the
costs of implementing the intervention. Past works on the cost-effectiveness of varicella
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vaccination have already consistently shown that the economic acceptability of the vaccine
introduction in several countries primarily depends on the in- or exclusion of exogenous
boosting in the model [89]. However, not only the analysis has not been performed in the
Italian setting, but also the combined effect of the boosting mechanism and the ongoing
demographic changes in the population structure (e.g. aging) has never been considered. In
this work we perform a cost-effectiveness analysis of varicella and HZ vaccination in Italy,
including the following innovative aspects. First, we test the robustness of our results by
using two different modeling assumptions about the effect of exogenous boosting on the risk
of developing HZ [43, 47]. Second, in both models we include realistic changes of the age
distribution of the population, in order to take into account trends in VZV epidemiology
that are not directly ascribable to the immunization programs.
Our findings confirm that the magnitude of the increase of HZ incidence after the in-
troduction of varicella vaccination depends on the formulation used to model exogenous
boosting. In particular, when assuming "progressive immunity" (PI) the dynamics of HZ
are much more sensitive to the changes in varicella circulation than when assuming "tem-
porary immunity" (TI), i.e. we obtain a more remarkable increase of HZ. According to the
cost-effectiveness analysis performed, these quantitative difference results critical from the
public health decision point of view especially when considering the introduction of vari-
cella vaccination alone. In particular, the extremely highly efficacious varicella vaccination
scenario considered here (95% efficacy and 95% coverage) results cost-effective in the short,
medium and long-term only when using model TI, whereas the percentage of cost-effective
runs for model PI is less than 50% for all considered time horizons. On the other hand,
HZ vaccination alone results highly cost-effective, independently of the model used, both if
the vaccine is administered at 50y or 65y and for all time horizons considered. Finally, the
combination of varicella and HZ vaccination are highly cost-effective for all models’ formu-
lation but, especially, when the HZ vaccine is given at 65 years. These results are robust
to changes in economic an QoL parameters and consistent with the outcome from the base
case analysis. To conclude, the analysis performed highlights that quantitative predictions
about the impact of different immunization strategies on the incidence of HZ strongly de-
pend on the modeling assumption on exogenous boosting. However, the cost-effectiveness
analysis results robustly show that, disregarding the way in which we model boosting, an
HZ vaccination program combined with a varicella vaccination program has a high prob-
ability of being cost-effective even considering all the different sources of uncertainty in
demographic, epidemiological and economic model parameters.
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Appendix B

B.1 Additional figures and tables
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Figure B.1: Historical demographic data in Italy and projections for the future. a Birth
rate over time in Italy. Yearly birth rate as observed in Italy during the period 1900-2014 [59, 91]
(grey line) and as predicted by the UN during 2015-2100 [92] b Age-specific mortality rate, females
[59]. c Age-specific mortality rate, males [59]. d Yearly migration flux in % of the population [91]
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Table B.1: Epidemiological parameters of the model. Base case values and variability due
to uncertainty.

Parameter Base case Distribution [95% CI] References
NV incidence
(per 1,000 PY) 8.43 (variable by age) Fixed Model prediction
HZ incidence
(per 1,000 PY) 3.92 (variable by age) Fixed Model prediction
Proportion of HZ
cases developing PHN 6.2% (variable by age) Beta [72]
Hospitalizations rate
for NV (per 1,000 cases) 2.36 (variable by age) Binomial a

BV vs NV
hospitalization rate 25% Beta [16.2%-35.2%] [99]
Hospitalizations
rate for HZ
(per 1,000 cases) 13.12 (variable by age) Binomial a

Hospitalizations rate
for PHN (per 1,000 cases) 40.77 (variable by age) Binomial a

Case fatality rate
for NV (per 1,000 cases) 4.01 (variable by age) Beta b

BV vs NV case
fatality rate 0.5% Beta [0.2%-1%] [100, 101]
HZ case fatality rate
(per 1,000 hospitalized) 12.70 (variable by age) Beta b

Number of GP
consultations per
NV varicella case (≤14y) 2 Gamma [1.6-2.4] [100]
Number of GP
consultations per
NV varicella case (>14y) 1 Gamma [0.6-1.4] [100]
Number of GP
consultations per BV
varicella case 0.5 Gamma [0.4-0.6] [100]

a Average number of hospitalizations by age due to varicella, HZ and PHN (Hospital Discharge Reg-
ister, HDR, 2001-2012) divided by the pre-vaccination incidence generated by the epidemiological model.
The incidence of PHN is calculated by multiplying the incidence of HZ estimated by the model by the
probability of developing PHN.

b Average number of deaths by age due to varicella (Italian National Health Institute, ISS 2001-2012)
and HZ (EU detailed mortality database, DMDB 2001-2012) divided by the respective estimates of the
hospitalization rates.
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Table B.2: Quality of life measures. Base case values and variability due to uncertainty.

Parameter Base case Distribution [95% CI] References
QALY loss NV (≤14y) 0.0036 Beta [0.003-0.005] [48]
QALY loss NV (>14y) 0.0052 Beta [ 0.004-0.006] [48]
BV vs NV QALY loss 60% Beta [35.8%-81.9%] [48]
QALY loss HZ (>14y) 0.075 (variable by age) Beta [102]
Background mortality rates Variable by age Fixed c

Population Variable by age Fixed c

c Population by age and national mortality rates were obtained from National Italian Institute of
Statistics [91]

Table B.3: Economic and vaccination parameters. Base case values and variability due to
uncertainty.

Parameter Base case Distribution [95% CI] References
GP consultation costs
for NV (≤14y) 20.90 e Gamma [18.1-23.9] [103]
GP consultation costs
for NV (>14y) 14.24 e Gamma [13.4-17.2] [104]
GP treatment costs
for NV (≤14y) 9.98 e Gamma [7.8-12.6] [105]
GP treatment costs
for NV (>14y) 20.93 e Gamma [18.1-24.1] [104]
Total hospitalization
costs for NV (≤14y) 338.83 e(variable by age) Gamma HDRd

Total hospitalization
costs for NV (>14y) 399.72 e(variable by age) Gamma HDRd

Outpatient costs for HZ 122.68 e Gamma [9.3-388.3] [72]
Outpatient costs for PHN 446.10 e Gamma [12.6-1552.8] [72]
Total hospitalization
costs for HZ (≤50y) 226.71 e(variable by age) Gamma HDRd

Total hospitalization
costs for HZ (>50y) 219.87 e(variable by age) Gamma HDRd

Total hospitalization
costs for PHN (≤50y) 61.77 e(variable by age) Gamma HDRd

Total hospitalization
costs for PHN (>50y) 44.27 e(variable by age) Gamma HDRd

Cost per dose of
varicella vaccination 35.00 e Fixed Invitation for bid
Cost per dose of
HZ vaccination 87.00 e Fixed Invitation for bid
Administration cost
per dose of vaccination 6.21 e Fixed [100]

d Hospital Discharge Register, 2001-2012
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Figure B.2: Estimated impact of demographic changes on varicella epidemiology in
Italy (1900-2009) a Age-specific VZV seroprevalence at different years as estimated by the model
PI. b Mean age (and 95% CI, shaded areas) at varicella over time as estimates by the model PI. c
As a but as estimated by the model TI. d As b but as estimated by the model TI.
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Figure B.3: Age at VZV reactivation in Italy. a Mean age at VZV reactivation (and 95%
CI) as estimated by the model PI. b As a but as estimated by the model TI.
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Figure B.4: Total varicella incidence in the scenarios with varicella vaccination only
(2015-2100). a Total incidence of varicella overall, i.e. natural and breakthrough, (red line) and
breakthrough varicella alone (blue line) as estimated by the model PI during the period 2015-2100
in the worst-case scenario for varicella vaccination only (95% coverage and 95% efficacy). b As
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by the model TI.
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Figure B.5: Cost-effectiveness analysis results, under the base case. Median number (over
2,000 stochastic simulations) of the averted deaths, QALYs gained, net costs and percentage of runs
that are cost-effective, for the three considered time horizons as obtained by using model TI (top
row) and PI (bottom row). a "Zoster50" scenario vs no vaccination b "Worst-case+Zoster50" vs
no vaccination.
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Figure B.6: Cost-effectiveness analysis results, under the base case. Median number (over
2,000 stochastic simulations) of the averted deaths, QALYs gained, net costs and percentage of
runs that are cost-effective, for the three considered time horizons as obtained by using model
TI (top row) and PI (bottom row). a "Best-case+Zoster50" scenario vs no vaccination b "Best-
case+Zoster65" vs no vaccination.
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Figure B.7: Cost-effectiveness analysis results for varicella vaccination alone vs no vac-
cination, under the PSA. Median number (over 2,000 stochastic simulations) of the averted
deaths, QALYs gained, net costs and percentage of runs that are cost-effective, for the three con-
sidered time horizons as obtained by using model TI (top row) and PI (bottom row). a Worst-case
scenario b Best-case scenario
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Figure B.8: Cost-effectiveness analysis results for HZ vaccination alone vs no vaccina-
tion, under the PSA. Median number (over 2,000 stochastic simulations) of the averted deaths,
QALYs gained, net costs and percentage of runs that are cost-effective, for the three considered
time horizons as obtained by using model TI (top row) and PI (bottom row). a Zoster50 scenario
b Zoster65 scenario
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Figure B.9: Cost-effectiveness analysis results for varicella and HZ vaccination vs
no vaccination, under the PSA. Median number (over 2,000 stochastic simulations) of the
averted deaths, QALYs gained, net costs and percentage of runs that are cost-effective, for the
three considered time horizons as obtained by using model TI (top row) and PI (bottom row). a
Zoster50+Worst-case scenario b Zoster65+Worst-case scenario
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Figure B.10: Cost-effectiveness analysis results for varicella and HZ vaccination vs
no vaccination, under the PSA. Median number (over 2,000 stochastic simulations) of the
averted deaths, QALYs gained, net costs and percentage of runs that are cost-effective, for the
three considered time horizons as obtained by using model TI (top row) and PI (bottom row). a
Zoster50+Best-case scenario b Zoster65+Best-case scenario
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Chapter 3

Detecting the signature of spontaneous human
responses to a pandemic threat

3.1 Background

In March 2009 a novel H1N1pdm influenza virus emerged in Mexico and started spreading
globally [106]. The first cases in Europe, mainly travellers coming back from infected areas
(Mexico and US), were recorded at the end of April 2009 [107]. At the beginning of June
2009, more than 70 countries had been reached by the infection and the World Health
Organization declared a pandemic. The spatial diffusion of 2009 H1N1 influenza showed
significant geographic heterogeneities [108, 109]; in Europe, the pandemic progressed from
West to East [110, 111] and about 66% of cases affecting European countries up to the
end of June 2009 were reported in the United Kingdom [112]. Unlike all other European
countries, which were characterized by moderate transmission in spring and summer and
by a single fall/winter wave, in 2009 the UK experienced two waves, the first one in late
spring/summer and the second one in the fall. The intensive air connections between the
UK and the US and the late closure of schools for summer holidays have been identified
as the main determinants of the first wave [111, 113]. Data collected since 2009, together
with modeling studies, have provided a clear picture of H1N1 epidemiology at the national
and international scale. However, some notable patterns of spread at the sub-country
level warrant further investigation. In particular, during the first wave of the pandemic,
H1N1 cases were heterogeneously dispersed within England. The regions of London and
West Midlands experienced early large school-based outbreaks [114, 115] and a more rapid
increase of GP consultation rates for ILI with respect to the other regions [107] - this
evidence was later confirmed by a cross-sectional serological study [116]. On the contrary,
the second wave spread in a much more homogeneous way, affecting most of the regions of
England soon after the reopening of schools after the summer break [117]. Here we aim to
investigate whether the observed spatiotemporal dynamics of the epidemic was shaped by
spontaneous behavioral changes.
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The effect of human response to an epidemic/pandemic threat has been widely theorized in
the last decade [29]. In the 2014-2015 Ebola epidemic in West Africa, its impact has been
clearly visible, especially in terms of population compliance to the intervention strategies
proposed by health authorities (e.g., contact tracing and safe burial practices), which have
been the main drivers of the elimination process [118, 119, 120]. For instance, in some
districts of Guinea, the local population did not allow contact tracers to follow identified
contacts of index cases [121]. Moreover, human behavior has the capability to drastically
alter the mobility pattern of the population (see for instance the marked drop of air flow to
the Hong Kong region recorded during the 2003 SARS epidemic [122]). However, the role
of human response in shaping the epidemic spread is not always as immediate to detect. In
particular, providing quantitative estimates of the effects of human behavior on the spread
of influenza represents a hard challenge. This is the reason why most of the works aimed
at estimating these effects are mainly theoretical [123, 124, 125, 126].
In this work a model-based Bayesian analysis of the spread of 2009 H1N1pdm influenza
virus provides evidence on human response to the pandemic threat and quantifies its effect
in shaping the epidemic spread.

3.2 Methods

3.2.1 The model

The model used in this work is a stochastic spatially-explicit individual-based model for
England adapted from previous models developed for Europe [22, 111, 127]. The model
can be seen as the combination of two different layers: i) a model of the socio-demographic
structure, ii) an infection transmission model.

Sociodemographic model

The socio-demographic structure of the model is the same as in [65] and we refer to this
work for all technical details.
Briefly, socio-demographic data on the age structure of the English population are used to
generate about 47 millions individuals, which are distributed in a grid of 3894 cells pro-
portionally to the population density, according to the Gridded Population of the World,
version 3 (GPW v3). Each individual is characterized by an age, belongs to an household
and - if of school age - to a school.
Households are allocated using an heuristic model previously proposed in [65], which repro-
duces data on household size, composition and age of households member by size specific
for the United Kingdom, as provided by the Statistical Office of the European Commission
(http://ec.europa.eu/eurostat), and preserves realistic age difference between members
of the same household. As shown in [65], the age distribution of the population, the house-
hold size, the household composition by size and the age distribution of household members
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by size simulated by using this model match the observed ones.
Schools are allocated proportionally to population density and the size is determined using
data on school size by level specific for the England [128]. School age children (5-18 years)
are assigned to a school of the corresponding education level using the resource competition
algorithm introduced in [129], which accounts for the population density of the considered
geographic area. The mean home-to-school distance obtained by using this algorithm re-
sults 4 km, in perfect agreement with the estimate provided by the Department of Transport
[130].

Seeding of infection

The number of cases imported at each time-step is based on the actual time-series of
travel-related cases reported in [131]. Some studies on 2009 H1N1 pandemic influenza have
highlighted that H1N1 importations in the early phase of the 2009 pandemic were strongly
correlated with air passenger flows. We thus determine the geographic location of imported
cases by randomly distribute cases among all English regions (i.e. NUTS1) proportionally
to air passenger arrivals. In particular, we use data on incoming air passenger flows during
the period April-June 2009 provided by the Civil Authority [132] to determine the fraction
of incoming passengers specific for each region of England. As shown in Figure 3.1, the
fraction of incoming passengers is not proportional to population density, with Greater
London accounting for about 70% of the total volume. For each time step, the number of
imported cases is distributed among regions proportionally to the corresponding fraction of
incoming passengers and, within each region, cases are assigned to a cell proportionally to
population density.

Infection transmission model

The transmission of influenza infection follows a discrete-time individual-based SEIR model
with time step ∆t = 1 day. The model explicitly considers transmission in schools, house-
holds and “other settings", which accounts for contacts occurring in the general community
(e.g. workplaces, means of transports, free-time activities).
At any time step of the simulation each susceptible individual i has a probability pi =
1 − e−∆tλi(t) of becoming infected. The probability of infection, which is re-computed at
each time step, depends on the individual risk of infection λi(t) that takes into account the
contribution of infection sources in each of the considered settings:

• contacts with infectious members of his/her household;

• contacts with infectious school-mates (if individual i is of school age);

• contacts with infectious people in “other settings".
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Figure 3.1: Incoming air passengers and population density. a Fraction of incoming air
passengers by region (%) based on data provided by the Civil Aviation Authority [132] on incoming
air flows by airport. b Fraction of population by region (i.e. NUTS1) of England as obtained from
Eurostat.

Transmission in “other settings" explicitly depends on the geographical distance, which is
modeled by a kernel function K.
More precisely, the risk of infection is defined by the following equation:

λi = ρ(ai)
⎡⎢⎢⎢⎢⎣

∑
{k=1,...,N ∣Hk=Hi}

Ikβh
(ni − 1)δ + ∑

{k=1,...,N ∣Sk=Si}

Ikβs
mi

+ ∑
{k=1,...,N}

IkβrK(dik)
∑{j=1,...,N}K(djk)

⎤⎥⎥⎥⎥⎦
where

• N is the population of England.

• Hi is the index of the household of individual i, ni is the number of members of the
household and δ = 1.63, as estimated in [133].

• Si is the index of the school where individual i eventually studies and mi is the school
size.

• Ik = 1 if individual k is infected, 0 otherwise.

• ai is the age of individual i.

• ρ(ai) is the age-dependent susceptibility to infection. For the sake of simplicity, we
divide the population into two groups: children (ai < 15 years), for which ρ(ai) = 1,
and adults (ai ≥ 15 years), for which ρ(ai) = σ ∈ [0,1]. We call σ relative susceptibility
of adults with respect to children.
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• βh is the transmission rate within households (day−1).

• βs is the transmission rate within schools (day−1).

• βr is the transmission rate in “other settings" (day−1).

• K(dij) is a decreasing function of the geographical distance dij between the house-
holds of individuals i and j, modelling human mobility patterns. In particular, we
assume that function K has the following form:

K(dij) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
1+d

α1
ij

up to week 33, 2009
1

1+d
α2
ij

from week 34, 2009
(3.1)

i.e. function K is shaped by one parameter during the first wave, α1, and one param-
eter during the second way, α2, where parameters α1 and α2 are estimated.

The model explicitly includes school closure for holidays, during which transmission in
schools is interrupted and transmission in “other settings" is multiplied by a factor τ ∈
[0,+∞). At any time step ∆t of the simulation exposed individuals become infectious at a
rate ∆t/TL, where TL is the latent period - assumed equal to the incubation period - that
lasts on average 1.5 days. Infectious individuals recover at a rate ∆t/TI , where TI is the
infectious period, which lasts on average 1.6 days. Recovered individuals are assumed to
be fully protected.
Simulations are initialized by including age-specific pre-pandemic immunity, as measured
in [116]. In particular, for each age class the corresponding proportion of initially immune
individuals is randomly sampled over the population.

3.2.2 Model calibration

Model calibration is performed using Markov Chain Monte Carlo (MCMC) sampling applied
to the product of the binomial likelihoods (L1 and L2) of the age-specific prevalence of H1N1
antibodies observed in England respectively in August 2009 [116] (after the first wave) and
in the period January-April 2010 [117] (after the second wave). Data are disaggregated into
the groupings of regions specified in Table 3.1.
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Table 3.1: Grouping of regions in the datasets used for model calibration.

Calibration dataset Group A Group B
Post-first wave [116] London

West Midlands
East Midlands
North-West
South-East
South-West

Post-second wave [117] London East Midlands
North-West
South-East
South-West
West Midlands

The model has the following free parameters: three transmission rates (in households,
schools and “other settings"), relative susceptibility of adults with respect to children, a
multiplying factor for the transmission in “other settings", one parameter regulating kernel
K(d) during the first wave (up to week 33, 2009) and one for the second wave (from week
34, 2009 until the end of the epidemic). More specifically, the vector of free parameters is
defined as

Θ = (βh, βs, βr, σ, τ, α1, α2)

and the two likelihood functions are defined as follows:

L1(nA
m, r

A
m, n

B
m, r

B
m∣Θ) = ∏

m∈M

nA
m!

rAm!(nA
m − rAm)!(p

A
m(Θ))rAm(1 − pA

m(Θ))nA
m−r

A
m

nB
m!

rBm!(nB
m − rBm)!(p

B
m(Θ))rBm(1 − pB

m(Θ))nB
m−r

B
m

(3.2)

where

• M is the set of age groups considered in [116];

• nA
m is the number of individuals in the m-th age group observed in Group A in the

post-first wave dataset [116];

• rAm is the number of seropositive individuals (haemagglutination inhibition titre 1:32
or more) in the m-th age group observed in Group A in the post-first wave dataset
[116];

• pA
m(Θ) is the seroprevalence in the m-th age group simulated by the model with

parameter set Θ in Group A after the first wave.
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• nB
m is the number of individuals in the m-th age group observed in Group B in the

post-first wave dataset [116];

• rBm is the number of seropositive individuals (haemagglutination inhibition titre 1:32
or more) in the m-th age group observed in Group B in the post-first wave dataset
[116];

• pB
m(Θ) is the seroprevalence in the m-th age group simulated by the model with

parameter set Θ in Group B after the first wave.

The likelihood L2 is defined analogously to L1 using the post-second wave dataset [117]
and the respective grouping of regions (see Table 3.1).
The posterior distribution of Θ is determined using random-walk Metropolis-Hastings sam-
pling [81]. In particular, we performed 21,000 simulations and considered a burn-in period
of 2,000 iterations. We assume no a priori knowledge on model parameters (i.e. flat prior
distributions), except for βh, for which we assume a prior uniform distribution in [0,2].
Indeed, when assuming βh = 2 we obtain a secondary attack rate in households that is more
than twice the one obtained for the same pandemic in [133]. Convergence was checked by
considering different starting points and by visual inspection (see for instance Figure 3.2).
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Figure 3.2: MCMC output at each iteration. a Transmission rate within households (day−1).
b Transmission rate within schools (day−1). c Transmission rate in “other settings" (day−1). d
Relative susceptibility of adults (≥ 15 years) with respect to children.

3.3 Results

We analyze seroprevalence data for England at the regional spatial resolution by using
the spatially explicit individual-based model of influenza transmission introduced in pre-
vious section. In particular, the model explicitly accounts for transmission in household
and school, and the transmission in the general community is assumed to depend on the
geographic distance between individuals. In this work, we consider two parameters regu-
lating the distance-dependent component of the force of infection (one for each epidemic
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wave) and estimate their posterior distributions. This allows us to evaluate whether the
distance-dependent component of the force of infection varied over time.

3.3.1 Epidemiological characterization of the 2009 H1N1 pandemic in
England.

According to seroprevalence data [116, 117] and our modeling analysis, a substantial pro-
portion of adults and elderly were already protected against H1N1 infection and most of
cases in 2009 occurred among school-age children (Figure 3.3a/b). We found that the low
proportion of cases among adults and elderly cannot be the result of contact patterns struc-
ture (adults and elderly have relatively less contacts than children and young adults [19, 65]
- this is entailed in model structure) and pre-pandemic immunity only. Model simulations
suggest that individuals older than 15 years were less susceptible to infection than younger
ones: relative susceptibility to infection of adults 0.61 (95%CI: 0.28-0.94), see Figure 3.3c.
Such estimate is in line with previous findings where adults were found to be approximately
half as susceptible as younger individuals [106, 133, 134, 135].
A second major determinant of epidemic spread is the reproduction number (i.e., the aver-
age number of secondary cases generated by an index case). We estimated a relatively low
transmissibility of the H1N1pdm virus compared to previous pandemics: effective repro-
duction number 1.45 (95% CI: 1.36–1.54) for the first wave and 1.30 (95% CI: 1.08-1.52)
early on in the second wave (Figure 3.3d). Both estimates are in line with results reported
in previous independent studies and reviewed in [136].
The limited transmissibility of H1N1pdm virus is not sufficient to justify the low overall

attack rate measured during the first wave; rather, it is a consequence of the drop of trans-
mission associated to the closure of schools for summer holidays, even though we found
an increase in the transmission in ‘other settings’ (representing all contacts except those
occurring in household and school - see Sec. Material and Methods), possibly ascribable
to increased activity of students outside schools. In particular, we estimated an increase of
1.2 (95% CI: 0.6-1.9) (Figure 3.3e), which is well aligned with findings obtained from the
analysis of seasonal influenza in France [137].
Although schools remained closed during summer (as well in fall and winter breaks), they
had a major role in the spread of infection. In particular, considering the whole pandemic,
we estimated that 17.8% (95% CI: 2.7-35.6) of the infections are linked to contacts at school
- this is remarkable considering that the fraction of school-age individuals in England cor-
responds to only 20% of the population. Moreover, we estimated that 34.7% (95% CI:
4.7-54.1) of infections occurred in households, and 47.5% (95% CI: 19.7-79.2) in ‘other set-
tings’ (Figure 3.3f). This figure remained quite constant over the course of the pandemic
(Figure 3.3f). Comparable values have been obtained in a previous work on the 2009 H1N1
pandemic in Italy [138], and for past influenza pandemics as well [139].
Results reported so far demonstrate that the model well reproduces the main epidemiolog-
ical features of the 2009 influenza pandemic in England.
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Figure 3.3: Epidemiological characteristics of the 2009 H1N1 influenza pandemic in
England. a Age-specific seroprevalence (mean, 95% CI) by age group and region as reported in
[116, 117] (proportion of serum samples with haemagglutination inhibition titre 1:32 or more) and
as estimated by the model, as of August 2009 (i.e., at the end of the first epidemic wave). b as a,
but as of January 2010 (i.e., at the end of the second wave). c Posterior distribution (median, 50%
CI, 95% CI) of the relative susceptibility to infection of adults (individuals aged 15 years or more)
with respect to children. d Boxplots (median, 50% CI, 95% CI) of the reproduction number as
estimated from the exponential growth of model simulations over the early phase of the first and of
the second wave (see section C.1 in the appendix for details). e Posterior distribution (median, 50%
CI, 95% CI) of the increase of the transmission rate in ‘other setting’ during holidays. f Boxplots
(median, 50% CI, 95% CI) of the fraction of cases by setting after the first and after the second
wave.

3.3.2 Distance dependent component of the force of infection and dis-
tance of secondary infections.

The distance dependent component of the force of infection is driven by a kernel function
distance K(d) = 1/(1 + dα) , where d is the geographic distance and α is the parameter
regulating the kernel (details in section 3.2). Basically, the kernel defines the distance at
which an infectious individual generates secondary infections through contacts in ‘other
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Figure 3.4: Distance-dependent force of infection. a Posterior distribution (median,
50% CI, 95% CI) of the parameter regulating the distance kernel describing transmission in ‘other
settings’ during the two waves. b Probability distribution of the distance at which secondary
infections are generated through contacts in ‘other settings’ as estimated for the two influenza
waves and as derived from Ferguson et al. [139], in which the kernel is slightly different and has
been calibrated on UK commuting data: K̃(d) = 1/(1 + (d/a)b), where d represents the distance,
a = 4 km, and b = 3. Note that the distance of secondary infections depends on both kernel function
and population density (which is responsible for the bumps in the curves). The curves were obtained
by averaging over 100 simulations run by using median values of the posterior distributions of model
parameters; ticks on the x-axis correspond to distances between two consecutive ticks so that for
instance 1 corresponds to secondary infections occurring between 0 km (e.g., infection between
members of the same household) and 1 km. c Probability distribution of the distance at which
secondary infections are generated (i.e., the distributions account for infection occurring in all
settings).

settings’ (i.e., all contacts except those occurring in household and school).
We estimated a significantly lower value (p-value< 0.0001) of the parameter α in the

first wave than in the second one: median α1 = 4.1 (95%CI: 0.5-5.9) and α2 = 2.2 (95%CI:
0.1-5.4), respectively (Figure 3.4a). This can be interpreted as a high force of infection due
to close distance contacts (roughly inside a radius of 5 km) and remarkably lower at higher
distances during the first wave, and to a less sharp decline in the fall wave (Figure 3.4b). In
particular, the mean distance of secondary infections linked to contacts in ‘other settings’
increases from 2.1 km (standard deviation, SD=0.67) during the early epidemic phase to
10.0 km (SD=29.1) later on. The latter well complies with the value obtained by using an
alternative kernel calibrated on commuting data [139], namely 10.9 km (SD=20.1), see also
Figure 3.4b. If we consider the mean distance of secondary infections irrespective of the
setting where the infection occurs, the figure becomes: 1.4 km (SD=3.8) during the first
wave, 5.3 km (SD=20.7) during the second wave, and 5.8 km (SD=15.6) if considering the
kernel parameterized on commuting data (Figure 3.4c). Again, our results highlight that i)
secondary infections occurred at a markedly lower distance during the initial phase of the
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pandemic, and ii) during the second wave the estimated distances well compare with those
obtained by considering a model calibrated on commuting flows.

A possible interpretation for the obtained findings can be a spontaneous behavioral
change occurred in the population as a response to the pandemic threat. In particular,
the lower distance of secondary infections in the early pandemic phase could have been
determined either by a reduction of human mobility or by precautionary behavior aimed
at decreasing the number of potentially infectious contacts at high distance from the place
of residence/study; both could have been caused by an initial overestimation of the risk of
infection. This initial overestimation has been detected in Italy [26] and Mexico [140] as
well, suggesting that this behavior could have been common to several countries.

One might argue that a change in the mobility pattern is not necessary to reproduce
the observed pattern of spread, or that the observed pattern of spread could be explained
by assuming a number of imported cases much larger than observed. Therefore, in order
to test the robustness of our findings, we introduced two alternative models (details in
section C.2 in the appendix). Briefly, the first alternative model assumes a unique value
for the kernel parameter (Model 1); the second one assumes a unique value for the kernel
parameter and the daily number of imported cases is assumed to be a free parameter (Model
2). According to the deviance information criterion (DIC), the baseline model should be
preferred to both alternative models - DIC= 390.9 for the baseline model, DIC=434.8 for
Model 1, and DIC=438.5 for Model 2. Moreover, both Model 1 and 2 show a spatiotemporal
spread in some regions of England (e.g., North-East) that appears to be less compliant
with observed evidence. Finally, the estimated number of imported cases from Model 2
largely overestimates the observed data. Overall, the performed sensitivity analysis reveals
that the spatiotemporal pattern of the 2009 pandemic in England can be explained by a
behavioral change remarkably decreasing the distance of secondary infections. According
to our modeling analysis, it is more likely that a behavioral response occurred in the early
phase of the pandemic only (baseline model); however, it is also possible that the human
response lasted for a longer period of time (Model 1).

3.3.3 Geographic spread of the pandemic.

Both the analysis performed by the Strategic Health Authorities [141] and serological data
[116, 117] on the first wave reveal very different incidence rates among regions. Such a
heterogeneous pattern is confirmed also by model predictions (Figure 3.5a). At the end of
the pandemic, however, both model predictions reported in Figure 3.5a and seroprevalence
rates show a rather homogeneous pattern across all England [117] (see also Figure 3.3b).
The same pattern can be found also by looking at age-specific prevalence rates (Figure
3.5b).
At the national level, the pandemic clearly showed two waves of infection (Figure 3.5c).
According to our modeling analysis and in agreement with previous investigations [142],
the second wave was characterized by a markedly higher peak weekly incidence (mean 28.2,
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95%CI: 14.2-43.9 cases per 1,000 individuals, to be compared with 10.8, 95%CI: 1.2-26.4
cases per 1,000 individuals for the first wave - Figure 3.5c). The crude number of ILI
notified cases shows the opposite pattern that, however, is the result of a markedly higher
(three to ten times higher) GP consultation rate during the first wave [135, 142]. By
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Figure 3.5: Spatio-temporal dynamics of 2009 H1N1 influenza pandemic in England. a
Estimated attack rate (mean and 95%CI) by region of England at the end of the two epidemic waves.
b Estimated attack rate by age (mean and 95%CI) in London and in all other England regions at
the end of the first wave and at the end of the second wave. c Weekly incidence of new reported
ILI cases in the UK [111] and weekly incidence of new infections estimated by model simulations
(mean and 95%CI) for England. Note that the comparison can be considered representative for the
timing of the epidemic only, and not for the absolute magnitude of incidence, as: i) ILI cases refer to
the entire UK, and ii) they are affected by underreporting (which was estimated to be remarkably
lower during the first epidemic wave [135, 142] than in the second one). d Weekly incidence of new
infections in London and in all other regions of England (grouped together) as estimated by the
model (mean and 95%CI).

looking more closely at the sub-national scale, the observed dynamics at the national scale
is determined by the sum of two very different dynamics at regional level: London suffered
a major epidemic wave during the summer and a more moderate one during the fall; the
opposite pattern can be observed in the other regions of England (Figure 3.5d). Such a
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pattern is clearly visible also by looking at the dynamics of weekly and cumulative incidence
at the resolution of single geographic cell (Figure 3.6a/b). In particular, it is apparent that
the fall wave (school reopening, week 37, 2009) spread on the territory in a remarkably
more homogeneous way and at a higher pace than the summer one. These patterns are
driven by the detected change in the distance of secondary infections: a lower distance
during the early phase corresponds to a lower rate of spatial diffusion of the infection, while
the estimated larger value in subsequent phases corresponds to a quicker and much more
homogeneous geographic spread.
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Figure 3.6: Simulated geographic spread of 2009 H1N1 influenza pandemic in England.
a Simulated weekly incidence of new infections in each single cell (median over 2,000 simulations).
b Simulated cumulative weekly incidence of new infections in each single cell (median over 2,000
simulations).

3.4 Discussion

In this work we use a computational model embedded in a Bayesian framework in order
to detect the effect of spontaneous behavioral changes in the dynamics of the 2009 H1N1
influenza pandemic in England. Our findings provide a clear picture of the epidemiology of
the 2009 pandemic, well compliant with the existing knowledge. Children younger than 15
years were the most affected age group; our analysis confirms that this was due not only to
their lack of pre-existing immunity and their higher contact rates [19, 65], but also to their
higher (about twice as much) susceptibility to infection than adults. We estimated a rela-
tively low value of the reproduction number (around 1.4) in both waves. We also provided
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quantitative estimates of the proportion of cases by setting that is crucial for determining
the effectiveness of intervention options, such as school closure [143], highlighting a major
contribution of schools to the overall transmission. Consistently with serum sample data
[117], we estimated a highly heterogeneous geographic spread across England: i) London
shows a marked first wave, while other regions show little evidence of a summer wave, ii)
the fall wave is remarkably lower in London than elsewhere, and iii) London shows a slightly
higher attack rate at the end of the epidemic.

What is notably novel in this study is the detection of a clear signal that the distance at
which secondary infections were generated changed over time. In particular, during the ini-
tial phase of the epidemic, when attention of the public on the pandemic threat was higher,
we found that infections were generated at a much closer distance than later on (i.e., 1.4 km
vs 5.3 km). In the following phases, we estimate that the radius of diffusion of the epidemic
became comparable with the distance traveled by commuters. A possible explanation for
such a pattern lies in behavioral changes, spontaneously emerged as a response to the pan-
demic threat. During an emerging epidemic people may engage precautionary behaviors
that alter the transmission dynamics of the disease [126, 144]. According to survey results
[145, 146], in the case of an influenza pandemic a large proportion of people is willing to
avoid crowded places, especially public transportation. For instance, a worker who usually
commutes to reach his workplace, would likely continue to travel the same distance to reach
the workplace even during a pandemic, but he might decide avoiding crowded environments
near the workplace (such as pubs, and restaurants) where he usually goes outside business
hours. Our findings suggest that in the early phase of the pandemic behavioral changes
may have led to either a reduction of mobility in absolute terms or, more likely, to a de-
crease in the number of potentially infectious contacts at high distance from the place of
residence/study. Therefore, our results support the idea already presented in [147] that the
geographic spread of influenza might be inaccurately described by raw commuting fluxes.

Our results, although pointing in the direction of a human behavioral adaptation to
a pandemic threat, are not conclusive. In fact, other factors could have been responsible
for the changes in the force of infection that we measured. For instance, the infection was
mainly spread by children, who are used to travel less frequently and at shorter distances
than adults [148, 149, 150]; this would entail a more marked decline of the force of infection
with distance. However, this argument does not provide any explanation for the difference
in the estimated kernel parameters for the two waves, especially if considering that sero-
prevalence data [116, 117] clearly show that children were the most affected age group in
both waves. Climatic factors such as absolute humidity have been shown to influence the
transmissibility of the virus [151]. However, given the limited size of the considered geo-
graphic area and the relative homogeneity of the territory in this respect, we do not expect
climatic factors to be responsible for the observed highly heterogeneous geographic pattern
of the first wave and for the subsequent homogeneous spread. Clearly, data quality and
(un)availability (far from being flawless) impose further limitations to the model. First,
concerning the initial seeding of the infection, we compute the region-specific probability
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of importing cases by using data on the total volume of incoming passengers by airport,
disregarding their origin and final destination. Second, our model neglects cross-border
infections that, given the geographic features of England, may have been imported from
Scotland or through the Channel Tunnel, i.e. from France and continental Europe. How-
ever, we do not expect them to have played a major role in the spread of the 2009 pandemic
as England was the first European region with sustained transmission. A further limitation
of the model is that transmission in workplaces is not explicitly modeled; in fact, its contri-
bution is entailed in the ‘other settings’ component of the force of infection. However, the
contribution of workplaces during the 2009 pandemic has been shown to be marginal [138].
Finally, it should be remarked that describing infection transmission through a distance
kernel neglects most details of human mobility. However, it has been shown that it gives
an adequate description, especially in a setting like that of the UK [152].

In conclusion, our results help shedding light on the epidemiology of the 2009 pandemic
and provide a possible explanation for the initially heterogeneous spatial spread of the
epidemic within England, followed by a highly homogeneous one. This analysis calls for a
deeper understanding of human interactions and movements under the pressure posed by
an epidemic threat. As preparedness plans for pandemic influenza are currently based on
mobility patterns not accounting for human response, we believe that our findings would
be instrumental for the design of more effective control strategies.
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Appendix C

C.1 Computation of Re

The effective reproduction number Re represents the average number of infections generated
by an infectious individual in a partly immune population. We estimated its value in the
first and in the second wave from the corresponding epidemic growth, following a technique
already employed in the literature [111, 139, 153]. Briefly, the exponential growth rates r1

and r2 of the two epidemic waves are estimated by fitting a linear model to the logarithm
of the incidence in the corresponding time window (week 18 to week 33 for the first wave,
from week 34 on for the second). Then, the effective reproduction number is computed as:

Rie = (1 + riTL)(1 + riTI) i ∈ {1,2}

where TL = 1.5 days and TI = 1.6 days are respectively the average duration of the latent
and infectious period.

C.2 Alternative models

We considered two alternative models in order to evaluate whether the difference in the ker-
nel parameter between the two epidemic waves that we obtained with the baseline model
is necessary to interpret the spatiotemporal pattern observed in the 2009 H1N1 pandemic
in England.
The first model (Model 1) is analogous to the baseline except for the assumption of a unique
kernel parameter for both epidemic waves (α=α1=α2). The model was recalibrated and we
obtained a median estimate for the kernel parameter α = 3.56 (95%CI: 0.1-5.9), which falls
between the values α1 and α2 obtained respectively for the first and for the second wave in
the baseline model (see Figure C.1a). According to Model 1, infections linked to contacts in
“other settings" occur at a mean distance of 2.2 Km (SD =1.58), which is greater, but close
to the value estimated by the baseline model in the first wave (see Figure C.1b). Analo-
gously, as shown in Figure C.1c, if we consider infections due to contacts occurring in all
considered settings, the mean distance of secondary infections becomes 1.8 Km (SD=5.6),
which is similar to the one obtained by the baseline model. In both cases, the mean dis-
tances obtained by Model 1 are remarkably lower than the one estimated by using the model
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calibrated on commuting flows (values reported in the main text). Results obtained suggest
that the spatiotemporal pattern of the 2009 pandemic may be alternatively explained by a
slighter behavioral response to the pandemic threat, when compared to the one obtained
by the baseline model during the first wave, but lasting the entire course of the pandemic.
However, when looking at the geographic spread of infection, results highlight that with
such a high value for the kernel parameter α the spread of the epidemic is too slow to reach
a peak in all regions, e.g. North-East (see Figure C.1d).
In the second model (Model 2) we assume, as we did for Model 1, a unique kernel parameter
(α=α1=α2), moreover, we add the number of daily imported cases to the set of free param-
eters in order to complete the time-series of travel-related cases reported in [131] till the
end of the pandemic. More specifically, at each-time step (1 day) the number of imported
cases is sampled from a Poisson distribution with parameter λ = −1+10δ, where δ ∈ [0,+∞]
and the geographic location of imported cases is determined analogously to the baseline
model (see Section 3.2.1). The median estimate for the kernel parameter obtained in this
case is α = 4.0 (95%CI: 0.6-5.9), which is very close to the value obtained by the baseline
model in the first wave (see Figure C.2a). The resulting daily number of imported cases
is much higher than the number of travel-related cases reported during the first months of
the pandemic (see Figure C.2b). According to Model 2, the epidemic spreads very slowly
both in the first and second wave, with a mean distance of secondary infections of 2.1 Km
(SD=0.65) in “other settings" and 1.8 Km (SD=5.5) overall (see Figure C.2c/d). Thus, a
very high number of imported cases is needed in order to reach an homogeneous spread over
the territory before the end of the epidemic. It is worth nothing that, since the distance of
secondary infections estimated by Model 2 is very low, even such a massive import of cases
does not allow the epidemic to reach a peak in all regions, e.g. North-West (see Figure
C.2e).
The models presented in this section provide alternative interpretations of the spatiotem-
poral pattern observed during the 2009 H1N1 pandemic in England. However, according to
the deviance information criterion (DIC) the baseline model has a DIC score smaller than
both the alternative models and should therefore be preferred (see Table C.1).

Table C.1: Deviance information criterion
(DIC) scores as obtained for the baseline and
the alternatives models.

Model DIC score
Baseline 390.9
Model 1 434.8
Model 2 438.5
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Figure C.1: Model 1. a Posterior distribution (median, 50% CI, 95% CI) of the parameters
regulating the distance kernel describing transmission in “other settings" as obtained by the baseline
model and by Model 1. b Probability distribution of the distance at which secondary infections are
generated through contacts in “other settings" as estimated for the two influenza waves by Model 1,
by the baseline model and as derived by using the kernel calibrated on UK commuting data [139].
The curves were obtained by averaging over 100 simulations run by using median values of the
posterior distribution of model parameters; ticks on the x-axis correspond to distances between two
consecutive ticks so that for instance 1 correspond to secondary infections occurring between 0 km
and 1 km. c Probability distribution of the distance at which secondary infections are generated
(i.e. the distribution accounts for infections occurring in all settings). d Mean weekly incidence of
new infections in North-East as estimated by Model 1 and by the baseline model.



96

0

500

1000

1500

Model Data

50000

53000

56000

1
8

2
3

2
8

3
3

3
8

4
3

4
8

5
3

0

5

10

15

20

25

30

35

40

In
c
id

e
n
c
e
 (

p
e
r 

1
,0

0
0
)

NE baseline

NE Model 2

0

1

2

3

4

5

6

K
e
rn

e
l 
p
a
ra

m
e
te

r,
 α

1
st

2
nd

1
st

2
nd

ba
se

lin
e

M
od

el
 2

1 10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1

Distance (Km)

P
ro

b
a
b
ili

ty
 o

f 
s
e
c
o
n
d
a
ry

in
fe

c
ti
o
n
s
 i
n
 ‘
o
th

e
r 

s
e
tt
in

g
s
’

Model 2

1
st

 wave

2
nd

 wave

mobility data

1 10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

1

Distance (Km)

P
ro

b
a
b
ili

ty
 o

f 
s
e
c
o
n
d
a
ry

in
fe

c
ti
o
n
s

Model 2

1
st

 wave

2
nd

 wave

mobility data

D
a

ily
 n

u
m

b
e

r 
o

f

im
p

o
rt

e
d

 c
a

s
e

s

Week of the year 2009

a c

d e

b

Figure C.2: Model 2. a Posterior distribution (median, 50% CI, 95% CI) of the parameters
regulating the distance kernel describing transmission in “other settings" as obtained by the baseline
model and by Model 2. b Posterior distribution (median, 50% CI, 95% CI) of the daily number
of imported cases as obtained by Model 2 and as reported in the time-series of travel-related
cases [131]. c Probability distribution of the distance at which secondary infections are generated
through contacts in “other settings" as estimated for the two influenza waves by Model 2, by
the baseline model and as derived by using the kernel calibrated on UK commuting data [139].
The curves were obtained by averaging over 100 simulations run by using median values of the
posterior distribution of model parameters; ticks on the x-axis correspond to distances between two
consecutive ticks so that for instance 1 correspond to secondary infections occurring between 0 km
and 1 km. d Probability distribution of the distance at which secondary infections are generated
(i.e. the distribution accounts for infections occurring in all settings). e Mean weekly incidence of
new infections in North-East as estimated by Model 2 and by the baseline model.
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Chapter 4

Measles epidemiology in low circulation set-
tings

4.1 Background

Measles is a highly contagious disease caused by a virus in the paramyxovirus family, which
is transmitted through the air or direct contact. Despite the availability of a vaccine since
1976, measles still represents one of the main causes of death among young children. The
elimination of measles is possible [154], even though it requires to reach and maintain very
high vaccination coverages (≥ 95%) with a two-dose vaccine schedule. The World Health
Organization (WHO) established the year 2015 as a target for measles elimination in the
European region, including Italy [155]. However, data collected in between July 2015 and
June 2016 show that measles elimination is far to be reached and the WHO had to establish
a new elimination goal by the year 2020 [156]. Indeed, during the last year 1818 cases of
measles were reported by 30 EU/EEA countries and Italy accounted for 31% of them. The
introduction of single-antigen measles vaccine in Italy dates back to 1979 and a measles-
mumps-rubella (MMR) vaccine has been recommended since the early 1990s. Between
1979 and 1999 routine vaccination with a single dose of measles vaccine at 15 months of
age was recommended. In 1999, the age of administration of the first dose of MMR vaccine
was lowered to 12 months and a two-dose schedule was recommended in regions that had
reached a coverage level of 80% or higher for the first dose. The Italian National Health
System was fully decentralized in 2001 and each of the 21 Italian regions is responsible
for the organization and delivery of its own health services, including vaccinations, as long
as they are in line with recommendations issued by the Ministry of Health. In 2003, a
National Plan for the Elimination of Measles and Congenital Rubella (NPEMCR) was
implemented and approved by all regions and a two-dose schedule was introduced in all of
them; the first at age 12-15 months and the second dose at 5-6 years or 11-12 years [157].
Measles coverage data in children, which are routinely collected by the Italian Ministry of
Health, show regional vaccine coverages well below the level necessary to interrupt endemic
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transmission. Moreover, the proportion of parents that decide not to vaccinate their children
is worryingly increasing. The mean national coverage for the first dose of MMR vaccine
has decreased from about 90.0% in 2012 (ranging from 71.5% to 96.7% in the country’s
21 regions) to 85% in 2015, with some regional coverages below 80% and the highest one
around 90% [158]. As for the second dose, the mean national coverage in children aged
5-6y (2008 birth cohort) is about 83% (regional range, 59.8% to 91.4%) [158]. In order to
implement effective vaccination strategies aimed at disease elimination it is important to
understand the features of measles epidemiology in settings where the circulation of the
virus is low. Indeed, most of the countries that have failed in achieving measles elimination
are characterized by transmission dynamics altered by the introduction of vaccination. The
long-lasting suboptimal coverages have produced groups of susceptibles, heterogeneously
distributed among the population that sporadically cause even large outbreaks. The aim
of this study is to provide some insights in this direction by focusing on the Italian setting.
In particular:

1. we provide updated estimates of the age-specific seroprevalence profiles in 2014-2015
in the 21 Italian regions, starting from the last available measles seroprevalence data,
collected in 2003-2004 [159] and taking into account the regional heterogeneities in
measles vaccination coverages observed during the last 10 years.

2. we analyze data on the number of measles cases reported during the period 2013-
2015 (source, Italian Ministry of Health) together with the reported epidemiological
links to obtain information about the serial interval of measles, i.e. the time between
symptom onset of an index case and a secondary case.

3. we use the serial interval estimate to reconstruct the missing epidemiological links.

4. we inform a detailed computational model with the information obtained and we use
it to estimate where secondary infections occur and the attack rates that we can
expect in different regions.

4.2 Methods

4.2.1 Data

Serological data collected in 2003-2004 [159] and regional MMR vaccine coverages observed
from 2004 to 2014 [158] are used to estimate regional serological profiles by age in 2014.
Data reported to the Italian National Surveillance System for measles over the period 2013-
2015 are analyzed to estimate the serial interval.
Demographic data on the age distribution of the population in 2014, household and schools
structure specific for Italy [91] are used to allocate the population of the computational
model. The regional age-specific serological profiles in 2014, based on [158, 159], are used
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to initialize the immunological status of the population. The distribution of outbreaks
by size obtained after the reconstruction of epidemiological links in data provided by the
Italian National Surveillance System is used to calibrate the epidemiological parameters of
the model.

4.2.2 Age-specific serological profile of the Italian population in 2014

The last serological profiles by age available for Italy are based on a serosurvey conducted
in 2004 [159]. Age-specific seroprevalences are provided in [159] for three geographical
groups: Northern regions (we will refer to this macro-region as "North"), Central regions
("Centre"), Southern regions and Islands ("South"). The serological profiles by age for the
three macro-regions are reported in Figure 4.1a, whereas the region members of each group
are reported in Table 4.1.
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Figure 4.1: Measles age-specific serological profiles by geographical area in 2004. a
Measles seroprevalence by age-group reported in [159] b Measles seroprevalence extended to one-
year age groups, based on [159].
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Table 4.1: Groups of regions considered in the serosurvey [159].

Macro-region Regions
North Piedmont, Lombardy, AP Trento,

AP Bolzano, Veneto, Friuli-Venezia-
Giulia, Liguria, Emilia-Romagna, Aosta
Valley

Center Tuscany, Umbria, Marche, Lazio
South Abruzzo, Molise, Apulia, Calabria, Sicily,

Sardinia, Campania, Basilicata

In order to estimate the age-specific serological profile by region in 2014, we developed a
simple demographic model, informed with regional coverage. Specifically, we initialize the
age-specific serological profile in 2004 for each region according to [159], by assuming that
the aggregated values are representative for each of the one-year age subgroups (see Figure
4.1b). Then, for each year (from 2005 on) we:

• shift the seroprevalence by one year in order to account for aging;

• set the seroprevalence of newborns (0 year-old individuals) to 50% in order to account
for the immunity conferred by maternal antibodies;

• set the seroprevalence of 1-year old individuals to 0%, in order to account for the
waning of maternal antibodies;

• set the seroprevalence of 2-year old individuals equal to the vaccine coverage specific
for that year and that region (see Figure 4.2).

4.2.3 Serial interval estimation

During the period from January 2013 to December 2015, 4336 cases of measles were reported
to the Italian National Surveillance System. The dataset provides for each case the date, the
region of reporting. Moreover, for a subset of cases an epidemiological link to other cases is
specified. Data on cluster of size two, i.e. couple of cases for which a certain epidemiological
link has been identified in the dataset, can be used to provide an estimate of the serial
interval. In particular, by assuming that the date of reporting usually corresponds to the
date of clinical onset, the difference between the date of reporting of the primary and the
secondary case represents a good approximation for the serial interval. We approximate
the distribution of the data with a Gamma distribution with shape α and rate β, by using
maximum likelihood [160].
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Figure 4.2: Regional measles vaccine coverages during 2004-2014. Measles vaccine coverage
by region as reported in [158]. The coverage includes the one of measles vaccine administered
alone (M) or combined with other vaccines, i.e. measles-mumps-rubella (MMR) or measles-mumps-
rubella-varicella (MMRV).

4.2.4 Reconstructing epidemiological links

About 60% of measles cases reported to the Italian National Surveillance System between
2013 and 2015 do not have any information about the source of infection. The reasons for
this gap can be various. First, since the data are collected at regional level and then reported
to the national authority, the amount of information may depend from the availability of
resources to employ in tracing the contacts, which can be very different among regions.
Second, the main purpose of case reporting is to have information about the incidence
of the disease and not to identify links between cases. Thus, local authorities are free
to decide whether performing further epidemiological investigations. Such considerations
suggest that the absence of an indication about epidemiological links does not guarantee
that the case considered is an index case, but possibly that the link has not been detected
(e.g. contacts in the general community between persons who do not know each other).
This is confirmed by the fact that a fraction of cases reported in the dataset without no
indications on epidemiological links are spatio-temporally compatible with other cases (e.g.
black line, Figure 4.3). Moreover, there are clusters of cases identified as disjoint in the
dataset, that could represent a unique outbreak (colored lines in Figure 4.3).
The distribution of the serial interval obtained by using the information on clusters of

size two is used to infer "probabilistically" the missing epidemiological links. In particular,
for each region and each reported case (starting from the second) we consider all the cases
which were reported previously and determine whether they are linked or not by applying
the following procedure:

• we compute the interval between the two dates of reporting;

• if the time interval lies inside the 95% CI of the estimated distribution of the serial
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Figure 4.3: Measles cases and epidemiological links reported in Lombardy (2013-2015).
Number of cases reported in Lombardy by date, from January 2013 to December 2015. Different
colors corresponds to different clusters, i.e. groups of cases for which an epidemiological link is
reported in the original dataset

interval the two cases are assumed to be epidemiologically linked;

• whenever the case results linked to multiple cases, the epidemiological link is assigned
probabilistically (i.e. by random sampling among all compatible links).

This procedure allows us to obtain a new distribution of outbreaks by size that will be used
to calibrate the computational model (see next section).

4.2.5 Modeling measles transmission in Italy

The model

The model used is an individual-based, stochastic model of measles transmission in Italy,
adapted from previous models developed for other infectious diseases. e.g. influenza, in
Europe [22, 111]. Individuals are distributed in households, according to data on household
structure specific for Italy, and they are assigned to a school if they are of school-age. In
particular we consider four education levels (from kindergartens to high school) and assign
each student to a school of the level corresponding to his age. The transmission of infection
is modeled through a discrete-time SEIR model (1 day time-step) with an exponentially
distributed latent period TL - assumed equal to the incubation period - and an exponentially
distributed infectious period TI , in such a way to obtain a gamma-distributed generation
time of mean TL + TI . In particular, since under the assumption that all people need the
same time to develop symptoms the serial interval and the generation time coincide, we will
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set TL + TI equal to the mean serial interval estimated from the data (see Section 4.2.3).
At any time step of the simulation each susceptible individual i has a probability pi =
1 − e∆tλi(t) of becoming infected, where λi(t) is the individual risk of infection and is
defined as:

λi(t) = ∑
{k=1,...,N ∣Hk=Hi}

Ik(t)βh + ∑
{k=1,...,N ∣Sk=Si}

Ik(t)βs
mi

+ ∑
{k=1,...,N ∣Rk=Ri}

Ik(t)βr
nk

where

• N is the population of Italy.

• Hi is the index of the household of individual i.

• Si is the index of the school where individual i eventually studies and mi is the school
size.

• ni is the number of people living in region Ri.

• Ik(t) = 1 if individual k is infected at time t, 0 otherwise.

• βh is the transmission rate within households (day−1).

• βs is the transmission rate within schools (day−1).

• βr is the transmission rate in the "general community" (day−1).

The immunological status of individuals is initialized according to the estimates of the age-
specific seroprevalence profile in 2014 obtained for each of the 21 Italian regions (see Section
4.2.2). Model simulation are initialized with one infected individual randomly chosen among
the Italian population.

Model calibration

The free parameters of the model are the transmission rates in households, schools and the
"general community". Model calibration was performed by using Markov chain Monte Carlo
(MCMC) sampling applied to the multinomial likelihood of the distribution of outbreaks by
size, as obtained from the cases reported during 2013-2015 with the procedure explained in
Section 4.2.4. In particular, for each parameter set Θ = (βh, βs, βr), we run 10,000 stochastic
simulations by seeding infection randomly within the population and we count the number
of secondary infections generated in each simulation (if any). After the 10,000 runs, we
compute the distribution of outbreaks by size generated by that specific parameter set and
the multinomial likelihood as:

L(n1, ..., nK ∣Θ) = N !
K

∏
k=1

(pk(Θ))nk
nk!

(4.1)

where
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• K is the number of groups of outbreak sizes considered in the data;

• nk is the number of outbreaks of size K observed in the data;

• N is the total number of outbreaks observed in the data;

• pk(Θ) is the probability of observing an outbreak of size K according to the model
with parameter set Θ.

We assume no a priori knowledge (i.e. flat prior distributions) on the transmission rates in
schools and in the "general community" (βs and βr), whereas for the βh we assume a prior
uniform distribution [0,5]. Indeed, when assuming βh = 5, the probability of a susceptible
individual living in the same household of a case to escape from infection is about 10−4.
There is no need to consider value of βh larger than 5, indeed, they would indiscriminately
result in a probability for a susceptible member of the household of the case of getting
infected almost equal to 1.
To determine the posterior distribution of Θ we use random-walk Metropolis-Hastings sam-
pling. In particular, we performed 400,000 MCMC simulation and checked convergence by
assuming different starting points and visual inspection. An example of the chains obtained
is shown in Figure 4.4.
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Figure 4.4: MCMC output at each iteration. a Transmission rate within households (day−1).
b Transmission rate within schools (day−1). c Transmission rate in the general community (day−1).

4.3 Results

4.3.1 Regional age-specific serological profile 2014

As shown in Figure 4.1, serological data collected in 2004 show a lower fraction of measles
seropositives in Northern regions than in Central or Southern ones, especially in the age
group 10-19 years. By means of the procedure described in Section 4.2.2 we obtain updated
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serological profiles by age for each of the 21 Italian regions, which are reported in Figure
4.5 and in the appendix. Results obtained highlight that the measles susceptibility profile
by age is strongly heterogeneous among Italian regions. These differences depend first on
the starting point, i.e. whether the considered region belonged to the "North", "Centre"
or "South" group in the 2004 serological survey. Indeed, regions originally belonging to the
"North" group are characterized by a higher proportion of susceptibles among young adults
and children with respect to Central and Southern regions, which is a consequence of the
shift of the seroprevalence gaps observed in 2004. For instance, in 2014 we estimate for
Emilia-Romagna ("North") a fraction of susceptibles between 0 and 35 years of about 27%,
compared to 22% in Umbria ("Center") and 20% in Sardinia ("South"), see Figure 4.5, top
row. On the other hand, susceptibility of children and infants mainly depends on vaccination
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Figure 4.5: Age-specific measles seroprevalence in 2014. Emilia-Romagna and AP Bolzano
belong to the group "North" in the serosurvey [159], Umbria and Tuscany to the "Centre", Sardinia
and Calabria to the "South".

coverages over the period 2004-2014, which in some cases are remarkably different also
between regions belonging to the same group. For instance, the proportion of susceptibles
individuals of school age (6-13 years) is much higher in the AP Bolzano, 28.6%, than in
Emilia-Romagna, 9.9% (see Figure 4.2a and 4.5a/b). On the other hand, the proportion of
susceptible school-aged children is more uniform, especially among Central regions (13.3%
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in Umbria vs 11.6% in Tuscany), due to less remarkable differences in vaccination coverages
during the last decade (e.g. see Figure 4.2b and 4.5c/d).

4.3.2 Serial interval

Figure 4.6a shows the distribution of the serial interval obtained by analyzing the clusters
of size two in the data (mean: 11.4 days, 95%CI: 3.3-19 days). The best fitting Gamma
distribution (red line in Figure 4.6a) as obtained by maximizing the likelihood has a shape
α = 8.65 and a rate β = 0.76. The mean serial interval according to the Gamma distribu-
tion results α

β = 11.4 days (95%CI 5.1-20.1 days). This value well complies with previous
estimates reported in the literature [161].
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Figure 4.6: Serial interval and distribution of outbreaks by size. a Distribution of the serial
interval of measles as observed in cluster of size two in the dataset (histogram) and as estimated by
fitting a Gamma distribution to the data (red line). b Proportion of outbreaks by size as observed
in the dataset and as estimated by reconstructing the missing espidemiological links.

4.3.3 Reconstructing epidemiological links

The information inferred on the distribution of the serial interval is used to reconstruct
missing epidemiological links with the procedure explained in Section 4.2.4. In this way, we
obtain for each region new clusterings of reported cases, e.g. compare Figure 4.7 with Figure
4.3, that result in a new distribution of outbreaks by size. The distribution of outbreaks
by size in the original dataset is compared to the one obtained after the process in Figure
4.6b.
In particular, the number of different outbreaks detected in the original data is 426, of
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Figure 4.7: Measles cases reported in Lombardy and inferred epidemiological links.
Number of cases reported in Lombardy by date, from January 2013 to December 2015. Different
colors corresponds to different clusters, as obtained by reconstructing the epidemiological links.

which about 85% were outbreaks without secondary infections (i.e. single cases), about
10% consisted of 2 to 5 cases and only a small fraction of outbreaks had more than 5 cases.
After the reconstruction of epidemiological links, the 4336 reported cases result grouped in
189 different outbreaks, of which about the 55% consists only of the index case, about the
25% of 2-5 cases and the remaining 20% is distributed among outbreaks with more than 5
cases. It is worth noting that according to our analysis a non negligible proportion (≈ 8%)
of the outbreaks consists of more than 50 cases.

4.3.4 Modeling measles epidemiology in Italy

Figure 4.8a compared the distribution of outbreaks by size obtained by the computational
model and the one estimated in the previous section, which was used for model calibra-
tion. In particular, after the introduction of an infected individual within a population
characterized by the serological profile by age of Italy in 2014, the model predicts a 49.8%
(95%CI 46.1-54.3%) of observing no secondary infections. The probability of generating
relatively small outbreaks (1-4 secondary cases) is about 28.5% (26.3-30.3%), decreases to
6.6% (5.5-7-5%) for outbreaks up to 10 cases and 7.4% (5.0-9.0%) for outbreaks up to 50
cases. However, according to the model, 8 in 100 imported cases may trigger outbreaks with
more than 50 cases. Our analysis additionally suggests, that - whenever secondary cases are
generated - most of them are ascribable to contacts in the "general community" (67.3%,
95%CI 53.3-81.6%), whereas contacts in households and schools account respectively for
17.6% (9.7-22.6) and 15.1% (4.2-27.3%) of transmission (see Figure 4.8b). One possible ex-
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planation for the marginal role played by transmission in households and at schools is that,
in a highly protected population, the fraction of susceptible individuals in these settings
may rapidly go to zero.
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Figure 4.8: Distribution of outbreaks by size and fraction of cases by setting. a Propor-
tion of outbreaks by size as obtained after the reconstruction of epidemiological links (light green)
and as estimated by the epidemiological model (mean, dark green, 95% CI, black). b Boxplots
(median, 50% CI, 95% CI) of the fraction of cases by setting.

Nonetheless, the probability of an index case to produce large outbreaks depends on the
regional susceptibility profiles. For instance the probability of outbreaks with more than 50
cases ranges from 2.8% in Basilicata to 37.5% in the AP Bolzano. Another quantity that is
strongly region-dependent is the average attack rate for outbreaks with more than 50 cases,
that can range from about 0.3% in Sardinia to 3.4% in AP Bolzano (see Figure 4.9). It is
worth nothing that the estimated attack rates could be an overestimation, given that we
are assuming homogeneous mixing in the "general community" within each region.

4.4 Conclusions

Measles is a highly infectious disease that is preventable through a vaccine made avail-
able in 1976. Mass immunization programs have been implemented since the early 90’s in
several countries and the WHO had set the year 2015 as elimination goal for measles in
Europe. However, data collected in the recent years show that the objective is far to be
reached. The countries that have failed in achieving measles elimination, e.g. Italy, are
characterized by a low circulation of the virus that is sufficient to cause sporadically large
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Figure 4.9: Attack rate (%) in outbreaks with more than 50 secondary cases by region.

outbreaks. Several studies on mathematical modeling of measles, either deterministic or
stochastic, have been published starting from late 80s, providing pictures of the transmis-
sion dynamics of the disease and a better understanding of the size and timing of possible
outbreaks [162, 163, 164, 165]. In Italy some measles modeling studies were conducted
[166, 167, 168], since then, the epidemiological situation of measles has changed and the
transmission dynamics of measles are affected by several years of suboptimal vaccination
coverages. The implementation of effective vaccination strategies aimed at disease elimi-
nation needs a better understanding of the epidemiological features of measles in settings
where the circulation of the virus is low. The aim of this study is to contribute to fill these
gaps by focusing on the case of Italy. Firstly, we provide an updated estimate of measles
seroprevalence by age in all Italian regions by using serological data collected in 2004 and
regional measles vaccination coverages over the period 2004-2014. Results obtained show
that there is remarkable heterogeneity in measles susceptibility profiles by age between re-
gions. Second, we estimate a serial interval of 11.4 days, in good agreement with previous
findings [161], by analyzing data on measles cases reported during the period 2013-2015
and the reported epidemiological links. Third, we use this information to reconstruct the
epidemiological links potentially missing in the original dataset. Finally, we use a computa-
tional model to estimate where secondary infections occur and the attack rates that we can
expect in different regions. Modeling results suggest that when importing an index case,
most of new infections are linked to contacts in the "general community". In addition, given
the heterogeneities in the regional susceptibility profiles by age, there are regions which are
more likely to experience large outbreaks (more than 50 cases). For instance, the highest
probability of an imported case to generate more than 50 secondary cases and the highest
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attack rate were estimated in the AP of Bolzano, respectively 37.5% and 3.4%.
The analysis performed has several limitations. First, when we update the age-specific
serological profile of 2004 to the year 2014 we start from estimates that, as observed in
[159], may be biased by the non-detection of seropositivity among vaccinated individuals,
which seem to be characterized by a lower level of antibodies with respect to people immune
after natural infection. Second, when estimating the age-specific seroprevalence we do not
consider the immunity acquired by people that got infected during the period 2004-2014
that, however, represent a negligible fraction of the population. Third, the estimation of
the serial interval is based on clusters of size two identified in the cases of measles reported
between 2013 and 2015. A refined version of the model could include information on mul-
tiple epidemiological links in the serial interval estimation [169]. Finally, we assume that
all individuals have the same level of infectivity. A future sensitivity analysis could include
the individual infectivity into the set of free parameters of the computational model.
Results obtained are not conclusive, even though they provide insights into some key epi-
demiological features of measles in the low-circulation Italian setting. In particular, our
findings highlight that the transmission dynamics of measles in the country are strongly
region-dependent and suggest that, in order to achieve measles elimination, intervention
strategies tailored to the different regions should be considered, rather than nationwide.
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Appendix D

D.1 Additional figures
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Figure D.1: Measles age-specific serological profiles by region as estimated in 2014.
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Conclusions

As recently pointed out by the European Center for Disease Prevention and Control (ECDC)
public health policy makers are increasingly turning to mathematical modeling to support
their decisions [17]. This trend has been calling for the introduction of a new class of
models that not only are able to explain qualitatively the dynamics of infectious diseases,
but also have the capability to provide quantitatively accurate and reliable results. To this
aim models are becoming more and more detailed and informed with data. However, there
is still much to be done in order to capture the individual and population features that
shape the spread of infectious diseases. This thesis addresses some issues in epidemiological
modeling that warrant further investigation.

In Chapter 1 we introduce an age-structured individual-based stochastic model of Vari-
cella Zoster Virus (VZV) transmission, whose main novelty is the inclusion of realistic
population dynamics over the last century. This chapter represents an attempt to answer
the need pointed out by recent studies [23, 24, 170] for a better understanding of the role
of demographic processes in shaping the circulation of infectious diseases.

In Chapter 2 we use the model for VZV transmission developed in Chapter 1 to eval-
uate the effectiveness of varicella and HZ vaccination programs in Italy. With a view to
the support of public health decisions, the epidemiological model is coupled with a cost-
effectiveness analysis. To the best of our knowledge, this work represents the first attempt
to evaluate the post-vaccination trends in varicella and HZ, both from an epidemiologi-
cal and economic perspective, in light of the underlying effect of demographic processes.
Another novelty of this study is that we take into account the uncertainty regarding the
mechanism of VZV reactivation, by comparing results obtained using two different model-
ing assumptions on exogenous boosting.

In Chapter 3 we retrospectively analyze the spatiotemporal dynamics of the 2009 H1N1
influenza pandemic in England, by using a spatially-explicit model of influenza transmis-
sion, accounting for socio-demographic and disease natural history data. The aim of this
work is to investigate whether the observed spatiotemporal dynamics of the epidemic was
shaped by a spontaneous behavioral response to the pandemic threat. This chapter, repre-
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sents an attempt to contribute to the challenge of understanding and quantifying the effect
of human behavioral changes on the spread of epidemics [25, 29].

In Chapter 4 we investigate the current epidemiology of measles in Italy, by using a de-
tailed computational model for measles transmission, informed with regional heterogeneities
in the age-specific seroprevalence profiles. The analysis performed in this chapter tries to
fill some of the existing gaps in the knowledge of the epidemiological features of vaccine
preventable diseases in frameworks characterized by a low circulation of the virus.

In the past century, most industrialized countries underwent a massive decline of fertility
and a progressive aging of the population [56]. We investigated the impact of demographic
dynamics on the epidemiology of varicella and HZ in Spain, by using an age-structured
individual-based stochastic model of VZV transmission dynamics, calibrated against the
age-specific profiles of VZV seroprevalence and HZ incidence (Chapter 1). The model qual-
itatively reproduces the remarkable growth of HZ incidence observed in Spain between 1997
and 2004, before the introduction of vaccination [55]. We demonstrate that this growth may
be partially ascribed to the reduction of varicella circulation that followed the overall de-
cline of the birth rate in the twentieth century. Model predictions further suggest that,
even under the most optimistic projections, HZ incidence will continue its rise for some
decades, thereby confounding the interpretation of the effects of varicella immunization on
HZ. Our findings confirm the important role of demographic processes in the epidemiology
of infectious diseases. Moreover, the model proposed may help to disentangle the effect of
natural epidemiological processes from that of vaccination, thereby allowing a more accu-
rate assessment of past and future interventions. To this aim we employed it to evaluate the
joint impact of demographic changes and different varicella and HZ vaccination strategies
on the future epidemiology of varicella and HZ in Italy (Chapter 2). In particular, we per-
formed a cost-effectiveness analysis of varicella and HZ vaccination by using two different
modeling assumptions about the effect of exogenous boosting on the risk of developing HZ.
Results obtained show that the increase of HZ incidence predicted after the introduction of
varicella vaccination strongly depends on the formulation used to model exogenous boost-
ing. In particular, when assuming "progressive immunity" the dynamics of HZ is more
affected by changes in varicella circulation, i.e. we obtain a more remarkable increase of HZ
than when assuming "temporary immunity". According to the cost-effectiveness analysis
performed, these quantitative difference become critical from the public health economical
perspective only when considering the introduction of varicella vaccination alone. On the
other hand, the introduction of HZ vaccination alone, either targeted at 50 or 60 years
old, results highly cost-effective, independently of the model used. Finally, results obtained
suggest that when considering the combination of varicella and HZ vaccination, the latter
partially compensates the negative drawbacks of varicella vaccination on the incidence of
HZ. In particular, all scenarios considered result highly cost-effective for both modeling
formulations but, especially, when the HZ vaccine is given at 65 years. The analysis per-
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formed highlights that the choice of the exogenous boosting assumption is a key factor in
the quantitative prediction of the impact of different immunization strategies on the inci-
dence of HZ. However, the cost-effectiveness analysis robustly show that, disregarding the
way in which we model boosting, an HZ vaccination program eventually combined with a
varicella vaccination program has a high probability of being cost-effective.

We introduced a computational model embedded in a Bayesian framework in order to
detect the effect of spontaneous behavioral changes in the spatiotemporal dynamics of the
2009 H1N1 influenza pandemic in England (Chapter 3). Our findings provide a clear pic-
ture of the epidemiology of the 2009 pandemic, well compliant with the existing knowledge.
Consistently with serum sample data, we estimate a highly heterogeneous pattern of geo-
graphic spread in the first few months of the epidemic, with London experiencing a marked
first wave during spring/summer, and an accelerated and much more homogeneous spread
in the subsequent phases. The main novelty of this study is the detection of a clear signal
that the distance at which secondary infections were generated changed over time. We
estimate that the mean distance of secondary infections was 1.4 km during the early phase
of the pandemic and increased to 5.3 km later on, comparable to 5.8 km estimated by using
commuting flows. A possible explanation for this change lies in the adoption of protective
behaviors emerged as a response to the pandemic threat, which may have been triggered
by an initial overestimation of the risk. Our findings provide quantitative insights on the
impact of human behavior on epidemic dynamics and shed light on the existing gaps in
the knowledge of spreading mechanisms of pandemic influenza. Since preparedness plans
for pandemic influenza are currently based on mobility patterns not accounting for human
response, we believe that our findings could support the design of more effective control
strategies.

Finally, we analyzed the current epidemiology of measles in Italy to provide some in-
sights into its epidemiological features in a low circulation setting (Chapter 4). First, we
provide updated estimates of the measles seroprevalence by age in all Italian regions. Re-
sults obtained show that the regional differences in measles vaccination coverage over the
last years have led to a fragmented epidemiological framework, e.g. the proportion of sus-
ceptibles of school-age ranges from 9% to 27% depending on the region. Second, we estimate
a serial interval for measles of 11.4 days, by analyzing the clusters of two cases reported
to the Italian National Surveillance System between 2013-2015, and we use this estimate
to reconstruct the missing epidemiological links. Finally, we use a computational model to
estimate where secondary infections occur and the attack rates in different regions. Results
obtained suggest that in the Italian low-circulation setting most of secondary measles cases
are linked to contacts in the "general community", about 67%, rather than in households
or at school. The estimated overall probability of an imported case to generate outbreaks
with more than 50 cases is about 8%. However, given the heterogeneities in the regional
serological profile by age, the probability of experiencing this occurrence varies from 3%
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to 38% depending on the region considered and, once the epidemic starts, we can expect
regional attack rates in the range 0.3% to 3.4%. Results obtained provide insights into some
key epidemiological features of measles in the low-circulation Italian setting. In particu-
lar, our findings highlight that the transmission dynamics of measles in Italy are strongly
region-dependent and suggest that, in order to achieve measles elimination, intervention
strategies tailored to the different regions should be considered, rather than nationwide.
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