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FITTED FRONT TRACKING METHODS FOR TWO-PHASE
INCOMPRESSIBLE NAVIER{STOKES FLOW: EULERIAN AND
ALE FINITE ELEMENT DISCRETIZATIONS

MARCO AGNESE AND ROBERT N  URNBERG

Abstract.  We investigate novel tted nite element approximations fo r two-phase Navier{Stokes

ow. In particular, we consider both Eulerian and Arbitrary Lagrangian{Eulerian (ALE) nite
element formulations. The moving interface is approximate d with the help of parametric piecewise
linear nite element functions. The bulk mesh is tted to the interface approximation, so that

standard bulk nite element spaces can be used throughout. T he meshes describing the discrete
interface in general do not deteriorate in time, which means that in numerical simulations a
smoothing or a remeshing of the interface mesh is not necessary. We present several numerical
experiments, including convergence experiments and bench mark computations, for the introduced
numerical methods, which demonstrate the accuracy and robu stness of the proposed algorithms.
We also compare the accuracy and e ciency of the Eulerian and  ALE formulations.

Key words.  Incompressible two-phase ow, Navier{Stokes equations, A LE method, free bound-
ary problem, surface tension, nite elements, and front tra  cking.

1. Introduction

Fluid ow problems with a moving interface are encountered in many applica-
tions in physics, engineering and biophysics. Typical applications inclde drops
and bubbles, die swell, dam break, liquid storage tanks, ink-jet printng and fuel
injection. For this reason, developing robust and e cient numerical methods for
these ows is an important problem and has attracted tremendousinterest over the
last few decades.

A crucial aspect of these types of uid ow problems is that apart from the
solution of the ow in the bulk domain, the position of the interface separating the
two bulk phases also needs to be determined. At the interface cestn boundary
conditions need to be ful lled, which specify the motion of the phase lmundary.
These conditions relate the variables of the bulk ow, velocity and pressure, across
the two phase, taking into account external in uences, such asdr example surface
tension. Numerically, in order to be able to compute the ow solution as well as the
interface geometry, a measure to track the interface startingrfom an initial position
needs to be incorporated. There are several strategies to dealith this problem,
which can be divided into two categories depending on the viewpoint: iterface
capturing and interface tracking.

Interface capturing methods use an Eulerian description of the inerface, which
is de ned implicitly. A characteristic scalar eld, that is advected by t he ow,
is used to identify the two phases as well as the interface along the dundaries
of the individual uid domains. Depending on the method, this scalar eld may
be, for example, a discontinuous Heaviside function or a signed-diahce function.
The most important methods, which belong to this category, are tre volume-of-
uid method, the level-set method and the phase- eld method. In the volume-
of- uid method, the characteristic function of one of the phasesis approximated
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numerically, see e.g. [138. 850, 49]. In the level-set method, the inteate is given
as the level set of a function, which has to be determined, see e.g54, [53,[47,
34, [35,[55]. Instead, the phase- eld method works with diuse intafaces, and
therefore the transition layer between the phases has a nite size There is no
tracking mechanism for the interface, but the phase state is inclued implicitly in

the governing equations. The interface is associated with a smoothbut highly

localized variation of the so-called phase- eld variable. Examples fophase- eld
methods applied to two-phase ow are [39,[5,44[ 15/ 27, 22,42 W, (36, [32].
Extensions of the method to multi-phase ows can be found in[[24[2516,[€]. The
appeal of interface capturing approaches is the fact that they & usually easy to
implement, and that they o er an automated way to deal with topolo gical changes.

Interface tracking approaches, instead, use a Lagrangian desption of the inter-
face which is described explicitly. Here the interface is representeloly a collection of
particles or points, and this representation is transported by thebulk ow velocity.
The great advantage of interface tracking approaches is that tey o er an accurate
and computationally e cient approximation of the evolving interface . Challenges
are the mesh quality both of the interface representation and of lhe bulk trian-
gulations, as well as the need to heuristically deal with topological chnges. We
refer e.g. to [57 /75631, 10, 12] for further details, and td [} (48] for the related
immersed boundary method, which is used to simulate uid-structure interactions
using Eulerian coordinates for the uid and Lagrangian coordinatesfor the struc-
ture.

In this paper we use a direct description of the interface using a pametrization
of the unknown interface, similarly to the previous work [12Z]. In paticular, our
numerical method will be based on a piecewise linear parametric nite Eements,
and the description of the interface will be advected in normal diretion with the
normal part of the uid velocity. The tangential degrees of freedom of the inter-
face velocity are implicitly used to ensure a good mesh quality, and thiss a main
feature of our proposed methods. But in contrast to [[12], where a un tted bulk
nite element approximation was used, we will adopt a tted mesh approach, which
means that the discrete interface is composed of faces of elemsritom the bulk tri-
angulation. Fitted and un tted bulk mesh approaches are fundamentally di erent
approximation methods, and need specialized implementation techniges. A tted
method has the advantage that discontinuity jumps at the interface are captured
naturally, but it has the disadvantage that in a standard Eulerian method the ve-
locity needs to be interpolated from an old mesh to a new mesh, unlegke interface
is stationary. Hence so-called Arbitrary Lagrangian Eulerian (ALE) methods are
often proposed. Here the equations are posed in a moving domainafimework, and
an arbitrary Lagrangian velocity may be chosen to improve the qualily of the bulk
mesh. The original idea for ALE methods goes back to the paper§[220], and we
refer to [46,[45,28[ 20, 31,37,-30] for applications to two-phadsavier{Stokes ow.

In this paper we will propose both standard Eulerian and ALE nite element
approximations for two-phase incompressible Navier{Stokes ow. One aim of our
paper is to investigate numerically, if there is a clear advantage of AE type meth-
ods over standard Eulerian methods. We stress that we are not aare of any
detailed comparisons between tted Eulerian and ALE front trackin g methods in
the literature. This paper aims to Il this gap. On the other hand, sim ilar compar-
isons between ALE type interface tracking methods and various ineérface capturing
methods have been presented in e.d. [40L, 26]. We note that in the ea®f viscous
incompressible two-phase Stokes ow, there is no need for the nuemical method
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Figure 1. The domain in the case d=2.

to interpolate the velocity from the old to the new mesh. Hence thee is no need
to employ an ALE method. In fact, in the case of two-phase Stokesow, all our
proposed numerical methods collapse the approximation considedleby the authors
in [3].

The remainder of the paper is organized as follows. In Section] 2 we irdduce
the precise mathematical model of two-phase ow that we study,and formulate the
weak formulations on which our Eulerian and ALE nite element approximations
will be based. In Section[8 we introduce four di erent fully discrete nite element
discretizations, and in Sectior 4 we discuss computational issuesrftheir implemen-
tation as well as the employed solution methods. Finally, in Sectioi’b wepresent
several numerical simulations for the introduced nite element appoximations. In
particular, we investigate their accuracy in convergence tests wh the help of two
exact solutions. Moreover, we compare the performance of ouckemes in two well
known benchmark problems.

2. Mathematical model and weak formulations

Let RY, for d = 2 or d = 3 be a given domain that contains two di erent
immiscible, incompressible uids (liquid-liquid or liquid-gas) which for all t 2 [0; T]
occupy time dependent regions . (t) and  (t):= n . (t) and which are sepa-
rated by an interface ((t))i2po;7), (t) . We limit ourselves to interfaces formed
by closed hypersurfaces, see Figufé 1 for a pictorial represerttan in the cased = 2.
For later use, we assume that ( (t))i2[0.7] iS @ su ciently smooth evolving hyper-
surface without boundary that is parametrized by x(;t): ! RY, where Rd
is a given reference manifold such that () = %( ;t). Then

(1) V(z;t) = %(q;) 8z2=x(¢g;H)2 (1);

de nes the velocity of (t), and V:~ is the normal velocity of the evolving hyper-
surface (t), where ~(t) is the unit normal on ( t) pointing into . (t).

Denoting the velocity and pressure byt and p, respectively, we introduce the
stress tensor

) _= (ru+(re)7) pid=2 D(+) pid;
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where (t)= +X @+ X (), With 2 R. o, denotes the dynamic viscosi-
ties in the two phases, id2 RY ¢ is the identity matrix and D (t) := 3 (r &+(r #)7)
is the rate-of-deformation tensor. Here and throughout,Xp denotes the character-
istic function for a set D.

The uid dynamics in the bulk domain is governed by the two-phase Na vier{
Stokes model

(3a) (g +(d:r)d) 2 r :D()+r p=1f in (t);
(3b) r:4=0 in (1);
where (t)= +X ,ph+ X (g, with 2 R, denotes the uid density in
the two phases, and wherd™:= 3 + 3 is a possible forcing term. The velocity

and stress tensor need to be coupled across the free surface)( Viscosity of the
uids leads to the continuity condition

(4) [t]" =0 on (t);

where " := 4. t denote the jump in velocity across the interface (t). Here
and throughout, we employ the shorthand notationti := fij () for a function
h: [0;T]! RY; and similarly for scalar and matrix-valued functions. The
assumption that there is no change of phase leads to the dynamic ietface condition
(5) Vi~=4d:~ on (t);

which means that the normal velocity of the interface needs to math the ow
normal velocity across the interface (t). Moreover, the momentum conservation
in a small material volume that intersects the interface leads to thestress balance
condition

(6) [L~T"=7r1 si_ on (t);
where _ is the interface stress tensor and s : is the surface divergence on ¢).
The operatorr s is the surface gradient on (t) and it is the orthogonal projection of

the usual gradient operatorr on the tangent space of the surface ). Therefore,
given a smooth functionh de ned on a neighbourhood of (t), it is de ned as

(7 r<sh(@=P@r h(za=r h(zx) r h(@:~a~(3; 22 (1);
with the usual projection operator P_de ned as
(8) P=id ~~T on (t):

It can be shown that the de nition of r s h does not depend on the chosen extension
of h, but only on the value of h on (t). See e.g.[[20x2.1] for details. For later use,
we also de ne the surface Laplacian, also known as Laplace{Beltrairoperator, ¢
on (t)as

©) s=Tsils:
We restrict ourselves to the case that the only force acting on theinterface is

the surface tension contact force. Therefore the interface s¢ss tensor_ has the
following constitutive equation

(10) = P;

where is the surface tension coe cient. Substituting (I0) in (€} we obtain, as-
suming is constant, the so called clean interface model for the interfacialorces

(11) L~T"=  {~ on(1);
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which, in the case of Newtonian stress tensof{2), assumes therfo
(12) 2D (t):~ p-I"= {~ on (1):

Here{ denotes the mean curvature of (t), i.e. the sum of the principal curvatures
of (' t), where we have adopted the sign convention tha{ is negative where (t)
is locally convex. In particular, see e.g.[[20], it holds that

(13) sid={~ on (1):

In order to close the system, we prescribe the initial data (0) = o and the
initial velocity #(0) = Ho. Finally, we impose the Dirichlet condition 4= gon @
and the free-slip conditon+:r=0and _A:t=0, 8t 2fnag’, on @, with A
denoting the outer unit normal of @ and fag® := ft2 RY:t:a =0g. As usual,

itholdsthat @= @ [ @ and @ \ @ = ;. Therefore the total system of
equations can be rewritten as follows:

(14a) (g +(dir)d) 2 r :DM)+r p=1 in (t);
(14b)  riw=o0 in (t);
(14c) H=9 on@ ; 4:r=0; _nA:t=0 8t2fng’ on@ ;
(14d) [t =0 on (t);
(14e) 2D ():~ p-T"= {~ on (1);
(14f) (V d4):~=0 on (t);
(149) 0= o;  #0)= to:

In what follows we introduce di erent weak formulations for (IZa{g ), on which our
nite element approximations will be based.

2.1. Eulerian weak formulations. In order to obtain a weak formulation for
(IZ3{g), we de ne the function spaces, for a giverb2 [H()] ¢,

Ub = f~2[H)] %:~=b onz@ © =0 on @ g;
P:=L?%); P:=f 2P: dLY=0g;

and let, as usual, (; ) and h; i () denote the L2{inner products on and ( t),
respectively. In addition, we let LY and HY ! denote the Lebesgue measure iRY
and the (d 1)-dimensional Hausdor measure, respectively.

We also need a weak form of the di erential geometry identity (13), which can
be obtained by multiplying (L3) with a test function and performing int egration by
parts leading to

D E
(15) =~y + rsirs= =0 8-2[H((N":
t
Moreover, on noting (@) and (I2), we have that
z D E
(r:):~dit= v~ [LA]5T .
- - t
OO D E
=  2D(&) pidr T [2D(t):~ p-]TiT
- - D E (v

(16) = pr:7 2 D@WE;DO) + {57 .
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for all =2 U(0). Hence a standard weak formulation of [I4k{g) is given as follows
Given (0)= oand4(;0)= to, foralmostallt 2 (0;T) nd ( t)and (u;p;{)(t) 2
u P HI((t)) such that
(8 (1) 5 i
gy ” + (wir)wT +2 0 D (#);D(7) H =7,
o - t

(17a) = 77 872U(9);
(17b) g :u;')=|(:_) 8' 2P;

(17¢c) VvV 4 ~ =0 8 2H'((1);
ol E
(A7d) Wo~~iy+ rsitirs~ =0 8~2[H((O)

holds for almost all timest 2 (0; T]. We notice that if p2 P is part of a solution to
(I23{g), then so isp+ c for an arbitrary c2 R.

An alternative to the weak formulation (I7ald) can be obtained by following the
paper [12]. These authors show that it is possible to derive an energlyound not
only on the continuous level but also for a discretization based on ths formulation.
Due to the resulting structure of the equation, we will refer to this form as the
antisymmetric weak formulation, and it is given as follows. Given (0) = ¢ and
d( ;0) = tg, foralmostallt 2 (0;T) nd ( t)and (&;p;{ )(t) 2 U(g) P HI((1)
such that

- T R L PGS CEOT P CHAREY
(18) D E
#2 D(9DO)  priT {57 =

holds, together with (I7D{d). For a derivation of (I8) we refer to [12], see alsd]2].

77 872U();

2.2. ALE model and weak formulation. The Arbitrary Lagrangian Eulerian
(ALE) technique consists in reformulating the time derivative ¢ by expressing
it with respect to a xed reference con guration. A special homeamorphic map,
called the ALE map, associates, at each time, a point in the current computational
domain ( t) to a point in the reference domainD. Note that for convenience we
consider the domain to be time-dependent, even though in our situation it is
xed.

We now reformulate the two-phase Navier{Stokes system[{I4a{ly which is ex-
pressed in terms of Eulerian coordinates 2 ( t), by rewriting the velocity time
derivative t; with respect to the so called ALE coordinate g 2 D. Analogously
to what is done in a front tracking approach to parametrize the interface (t), we
can de ne the xed reference manifold D and extend the mapx( ;t) to parametrize
(t)as (t) = %(D;t). This extended map clearly still satises (t) = %( ;t),
given that D . Moreover, we let @ be partitioned as @ = @D [ @D with
@D\ @D = ;.

Now, leth: (t) [0;T]! R be afunction de ned on the Eulerian frame. The
corresponding function on the ALE framefi is de ned as

(19) fi:D [OT1Y R (a9 = h(x(e; ;1)
In order to compute the time derivative of ([9) with respect to the ALE frame,
using the chain rule, we have@‘(@?t“) = @“*(@q;‘)?‘) = @’gf) + % (g;9:r h(z;?).
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Therefore it holds that % = % % (g;9 :r h(z;1). Finally, introducing
the domain velocity

(20) W(z;t):= x(a;) 8z=x(e;92 (1)
and the time derivative in the ALE frame

@Kz _ (g

(21) at . = ot 8z=x(e:02 (1),
we obtain
(22) he = hijp W:r h:

The identity (22) is naturally extended to vector valued functions. We stress the
fact that the domain velocity W for the interface points is consistent with the
interface velocity V. Therefore it holds that Wj ( y= V. We also point out that the
ALE mapping is somehow arbitrary, apart from the requirement of conforming to
the evolution of the domain boundary. Indeed the map of the boundry @D of the
reference domain has then to provide, at alk, the boundary @ ( t) of the current
con guration, with i =1; 2.
Using (22) in the momentum equation (14&), we can rewrite it as:

(23) (tejp +((8 W):ir)4) 2 r :D(d)+r p=1f in (t):

We can notice that, with respect to the original formulation, there is a convective-
type term due to the domain movement and the time derivative is compted in the
xed reference frame D. Moreover, contrary to the original system, not only the
regions (t) are time dependent but also the whole domain (t) is time dependent.

Obviously, if the domain is xed, the additional convective term is zero and the
time derivative in the ALE frame coincides with the usual time derivativ e in the
Eulerian frame. This means that W = 0 corresponds to a pure Eulerian method,
while W = 4 corresponds to a fully Lagrangian scheme. In our case, since we
have a xed domain , the ALE formulation might not seem very usefu |. But, at
the discrete level, we are concerned with the evolution of the discte triangulated
domains. Therefore the discrete ALE map describes the evolutionfahe grid during
the domain movement. It is indeed at the discrete level that the adantage of the
ALE formulation emerges, as in an ALE setting the time advancing sckeme provides
directly the evolution of the unknowns at mesh nodes and thus thatof the degrees
of freedom of the discrete solutions.

In order to de ne the ALE weak formulation, we need to use a di erent functional
setting for the test functions with respect to the one used for tre Eulerian weak
formulations. The reason is that here it needs to be de ned on the roving domain
( t). Therefore we introduce the admissible spaces of test functionsn the reference
domain D

Ub):=f~2[HYD)":"=b onZ@D; “n=0 on @Dg;

P:=1L%D); ®:=f 2P: dL%=0g;

D
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for a givend 2 [H1(D)]9. Then, using the ALE mapping, we can de ne the admis-
sible spaces of test functions on the moving domain ) by setting

7 1

um) = f~: [ (t) f tg! RY; ~= x 5 7‘(;t)ZU(‘tj) 8t2][0;T]g;
t12[0;T]

Bi=f () ftg! Ry =~ x1 ~GH2R 8t2[0Tg:
t2[0;T]

Hence, the ALE weak formulation of (Z3), (I4B{g) is given as foIIowsSGwen (0) =

oand#(;0)= to, nd (( t)ezoryand (p{) 208 P HY( 7 (1)
ftg) such that

tdp:” ot (v W)ir)e™ o +20 D (4);D(7)
(v D E (0 = =
24a T ~T = 07 8 72 U(0);
(24a) P (o { . (o (0)

(24b) (r:e')(y=0 8" 2PF;

and (I7g,d) hold for almost all timest 2 (0; T]. Here (; ) ( 1) denotes theL ?{inner
products on ( t).

3. Finite element approximations

3.1. Eulerian nite element approximations. We consider the partitioning
tm = m , m=0;:::;M, of [0;T] into uniform time steps = Ml see [[12].
Moreover, let T™, 8 m 0, be a regular partitioning of the domain into disjoint

open simplicesa™, j =1;:::;J™. From now on, the domain which we consider
is the polyhedral domain de ned by the triangulation T™. On T™ we de ne the

nite element spaces

mo=f 2C(): jm2Pk(0™)80d"2T™g; k2N;
where P, (0™) denotes the space of polynomials of degrele on o™. Moreover, Si’
is the space of piecewise constant functions off ™ and let I" be the standard
interpolation operator onto [S" 19.

Let UM(g) U(I"g and P™ P be the nite element spaces we use for the
approximation of velocity and pressure, and letP™ := P™\ P. In this paper, we
restrict ourselves to the choice P2{(P1+P0), i.e. we setU™(0) = [S']9\ U(0) and
P™ = SI" + SJ', but generalizations to other spaces are easily possible.

We consider a tted nite element approximation for the evolution of the inter-
face (t). Let ™ RYbea( 1) -dimensional polyhedral surface approximating
the closed surface (m), m=0;:::;M. Let T denote the exterior of ™ and let

™ be the interior of ™, where we assume that ™ has no self-intersections. Then
= ™ ™7 m and the tted nature of our method implies that

[

= o and ™M= (o
02T M 02T m
whereT™ = T [T mand T™"\T ™ = ;. Let ~™ denote the piecewise constant
unit normal to ™ such that ~™ points into  I'. In addition, let ™ = , X = +
Xm2Syand "= X m+ Xm2SF.
In orger to de ne the parametnc nite element spaces on ™, we assume that
m = i1 Jm, where f mg] -, is a family of mutually dISjOInt open (d 1)-

simplices with vertlcesfeﬂ"gk:1 . Thenwe deneV( ™):=f~2[C( M)]%:~j n2
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Pi( ")0 =153 g = [W( ™9, where W( ™) H( ™M) is the space of
scalar continuous piecewise linear functions on ™, with f E’gfz1 denoting the
standard basis ofW( ™). As usual, we parametrize the new surface ™** over ™
using a parametrization X™*1 2 V( ™M), so that ™*! = xX™*1( M) Moreover,
let h; i", be the mass lumped inner product on ™ de ned as

ash 1 X d 1/ m X
(25) hviwi', = 5 H® (")
j=1 k=1

(vw)((¢;) )

wherefeﬂgﬂz1 are the vertices of [, and where we de ne the limit v((¢}) ) :=
i ?!igln o v(p). We naturally extend (P5) to vector valued functions. Finally, let
] : K

h; i = denote the standardL?{inner product on ™.

Our fully discrete nite element approximations based on the standad weak
formulation (L7afd) are given as follows. Here we consider an explicitand an
implicit treatment of the convective term in the Navier{Stokes equation.

(A): Let 0, an approximation to (0), and T° 2 U°(g) be given. Form =
0;:::;M 1, nd (gM*l;pmtl.xm+l. m+ly 5 ymg P™ V(M) w(™
such that

m+1 m
mU rg]U ;_._ + m(rg]Um:r)Um+l;~ +2 m2(0m+l),2(~)

(26a)

D E
Pm+1;r e m+1 ~m;~ i - mr{n+l +f~£n+l;~ 8 ~2 Um(O);

(26b)

r:gmtt;r =0 8' 2P,
(260) .

xm+l iy h D E

o —em gm*l; ~m =0 8 2w(M);
(26d) D E

m+1__m;_,_h + rsX'm+l;rS~ m=0 8"2!( m)

m

and set M* = X™*( M) Here we have dened " () = M f(tmer),
i=1;2.

(Al ): Let 9, an approximation to (0), and U° 2 U°(g) be given. Form =
0;:::;M 1, nd (QM*l;pmtl.xm+l. m+ly 5 ymig) P™ V(M) W(M™
such that

m Um+1 I—-En gm

;T o+ MO ir)om™t T +2 MDE™);D(D)

(27) D E

F)m+l;r e m+l~m;~ m: mfln+1+f~én+1;~ 8~2Um(0);
and (260{d), and set M*1 = XM*1( ™)  Since the convective term in [Z6a) is
treated explicitly, the scheme (A", ) is a linear scheme that leads to a coupled linear
system of equations for the unknowns @m*1;pm+*l.xm+l. m+l) 5t each time
level. On the other hand, in (Z4) the convective term is treated impliatly, and so
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(Al ) is a nonlinear scheme that leads to a coupled nonlinear system of egtions
for the unknowns (@M*1;pm+L.xm+l. m+l) gt each time level.

An alternative fully discrete nite element approximation is based on the formu-
lation (L8), (L7b{d). In particular, we consider the following scheme.

(BM"): Let ©, an approximation to (0), and U° 2 U°(g) be given. Form =
0;:::;M 1, nd (gM*L;pmHloxmil. mEly 5 ymig) P™ V(™) W( ™M)
such that

1
= %U(r)n m 1, m)Um+l |(r)n m 1|-£nUm;~ +% (mr-énUm:r)Umﬂ;—-
% (mrénUm:r)-v; Um+l +2 mg(um-kl)'g(—v) Pm+l;r -~
(28) D E
m+1~m;~ - mf~{n+l+f~£n+l;~ 8~2 Um(ﬁ),

m

and (26B{d), and set m*! = XM*1( M) We note that the scheme B") corre-
sponds to [12, (4.6a{d)] in the setting of an un tted nite element a pproximation.
Similarly to [L2] Theorem 4.1] it is then straightforward to show that t here exists
a unique solution to (BM) that fulIs an energy inequality. In the un tted case
this energy inequality leads to an overall stability result if the bulk mesh does not
change. Of course, in the tted case considered here this will nevebe the case, un-
less the interface is stationary. Nevertheless, it is of interest to se how the scheme
(B") performs in practice, compared to @AJ,) and (A).

Moreover, we remark that all three schemes, A1), (Al) and (B"), share the
equations [26d). Apart from de ning the discrete curvature, the equations [264l)
can also be viewed as a side constraint on the distribution of mesh pdis, see([8/ 9]
for further details. In particular, they lead to an implicit tangential motion of the
vertices on the discrete interface, so that the vertices of ™ will in general be very
well distributed in practice. For example, in the cased = 2 it is possible to prove
an asymptotic equidistribution property, see [2, Theorem 5].

Finally, we stress that the three schemes Al ), (Al ) and (B"), all feature at
least one term containing the interpolated velocity " O™, and so an interpolation
of the old velocity U™ onto the new meshT™ is necessary, see alséf.1.4 below.
In order to avoid such an interpolation, we consider an ALE formulation next.

3.2. ALE nite element approximation. In order to derive our fully discrete
ALE nite element approximation, we rst introduce a semidiscrete ¢ ontinuous-in-
time tted nite element approximation of (24ald). Let T" be a regular partitioning

on, the reference domainD, which we consider, is the polyhedral domain de ned
by the triangulation T". On T" we de ne the nite element spaces
Sf(D):=f 2CMD): jn2Pk(d")80"2T"g; k2N;

as well asSf (D), the space of piecewise constant functions of".
Then, using the discrete ALE mappingy, we can de ne the nite element spaces
on the discretized moving domains "(t) = ,(D;t) by

St Mty=f ") R, =~ %% ~2SM(D)g; k2 N[f 0g:

Here %, 2 [S']% maps each simplex with straight faces inT" to a simplex with
straight faces belonging to the triangulation T " (t) of the discretized moving domain

h(t). For later use, we let U"(g;t)  [SH( M(t)]Y and BM(t)  SI( M) +
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SH( M(t)) denote the appropriate spaces for the discrete velocities andrpssure. In
addition, we also de ne the discrete domain velocity as

X
(29) Wiz = S i@ 2 S) o)
k=1

with f' f(;t)gk_, denoting the standard basis ofS{'( "(t)), and f g (t)g;., denot-
ing the vertices of T (t).

Given ( h(t))tz[o;T], a family of (d 1)-dimensional polyhedral surfaces with
unit normal ~"(t) pointing into " (t), the exterior of "(t), analogously to the
fully discrete case discussed in the previous section, we introducéhé piecewise
linear nite element spaces W ( "(t)) and V( "(t)), with f P(;t)gs, denoting

andt 2 [O;T], wherefe[?(t)gle are the vertices of "(t). We also notice that the
discrete interface velocity V" de ned as

X
(30) ViEg= od® hE2v( o)
k=1

see e.g.[T101, (3.3)], is simply the trace ofv" on ". We also introduce the interior
h(t)= ( tyn (1), and the L%{inner products ( ; ) ny and h; i ngy on M(t)
and "(t), respectively. Moreover, leth; ihh(t) be the mass lumped inner product
on "(t). Finally, we let f"(;t) := ¥ f(;t), i = 1,2, where} denotes the
standard interpolation operator onto [S§( "(1))]?, and set "(t) =+ X n(yy +
Xng2SH( "M)and "()= + X o+ X ongy 2S5 "(1).
Then, given "(0) and O"(0) 2 U"(g;0), for t 2 (0;T] nd M(t) and
(O PRV (D) 2UNe) B V(") W( "(t) such that

hgh .~ h((gh hy- h.~ n ");D("
U : + U W : U X +2 D U 1D
Yo oy ( )ir) h(D) 2ODRO -,
(31a) D E
Phr i~ hh.~ = "+ 82 U'(@);
h () h(o) "o
(31b)
rghs =0 8' 2P"(t);
n(t)
(31c)
D En D E
yhe < h gh: ~h =0 8 2W( "(t);
h(t) (1)
(31d) D E
h
T N vy =0 82 ") :

The semidiscrete continuous-in-time tted nite element scheme (313{d) is a system
of ODEs. Indeed, on de ning the appropriate time-dependent matices and vectors,



624 M. AGNESE AND R. N URNBERG
we can rewrite (31a{d) in algebraic form as

(32a)

Nt (t) L0 B"()u+ D" oM wh o+ C()P R (1) =€t TD);
(32b)

[C"(t]'u=0;

(32¢)

[Nam = NP (U =0;

(32d)
NM(t) + AM(t)X =0;

whered, P, and X are the unknown vectors for the velocity, pressure, interface
curvature and interface position, respectively. See[2, (6.15)of details.

It is now straightforward to obtain a fully discrete nite element app roximation
of (323{d), since the only missing part is the temporal discretization. On recalling
the partitioning t, = m ,m=0;:::;M, of [0; T], and on applying a semi-implicit
Euler scheme to [3Z&{d), we obtaln

EMh(tm+l)Um+l + Bh(tm)Um+l + Dh tm.Um+1.Wm+l Um+1 + Ch(tm)Pm+l
(33a)
1 o

Nh; (tm) m+1 - _Mh(tm+l)Um+éq(tm;f_{n 1,f"£n 1),
(33b)
[Ch(tm)]TUm+1 =0:
(33c)
E[N’h(tm)]TX-m+1 Nh; (tm)Um+1 - }[Nh(tm)]TX-m;
(33d)
Nh(tm) m+1 4 Ah(tm)x-m+l :0,

where W™, m = 1;:::;M are some fully discrete bulk mesh velocities which,
starting from 9, mduce a sequence of bulk meshesm =x"(D),m=1;:::;M,
where x™ 2 [Sh( ™19 is an approximation to X" (;tm).

Following [45], we now rewrite (33a{d) into a form that is common in the nite
element literature. Firstly, let U™(g)= f~: ™1 RI; ~=7 (x™) 1; "2 U(g)\
[Sh(D)9gandP™=f : ™M1 R; =~ (x") 1; ~2 PR\ (SI(D)+ S§(D)g.
Now to ease the notation, we introduce the following convention. Fo a function
hk dened on K, we can immediately transport it to any other con guration ™,
with k 6 m, using the mappmg;x (¥™) 1. Hence, when we need to integrate
hk on ™ we will write simply ~ ,, h* dL9 instead of , h* ¢ (x™) ®dL¢Y,
and we will adopt the same notat|on used for the inner products. Then, our ALE
nite element approximation (83ajd), which is based on the variational formulation
(@244{d), can be written as follows.

(Cle): Let 9 0 and O 2 W(g) be given. Form =0;:::;M 1, nd
(Um+1;Pm+1;X-m+1; m+1;Wm+1) 2 Um+1(g) pm+1 M( m) W( m)



FITTED FRONT TRACKING METHODS FOR TWO-PHASE NAVIER{STOKES FLOW 625

[SP( ™9 such that W™* j w= 1(X™*  fdj =) and such that

_mUm+1.~ + m((Um+l va+1):r )Um+1 .~
m+1 D E
+2 mQ(Um+l),Q(~) Pm+l;r e m+1 __m;-
m
(34a) = —ogm; - L BUACIETS By . 8T2U™(0);

m +1

(34b) r :gm*t; =0 8'2pPM;

and (26¢,d), and set ™*1 = X™M*1( M) as well as M** = xM*1 (D), where
¥M*+L = M4+ WM+l Here we note that in practice the bulk mesh velocityw ™ *!

will be obtained with the help of an iterative solution and smoothing procedure,
see the next section for more details. Moreover, we recall that ta side constraint
(26d) will lead to a uniform distribution of the vertices on ™ in the cased = 2,

and to well distributed vertices in d = 3.

We stress that since the ALE formulation describes the evolution otthe solution
along trajectories, the velocity U™ is de ned on all the domains, and so in partic-
ularon ™ and ™*'. Hence no interpolation of the velocity is necessary in the
ALE formulation, unless a full bulk remeshing is performed becausefasevere mesh
deformations. Finally we remark that at the discrete level, the doman ™ often
plays the role of the reference manifold, so thaD is never used in practice.

4. Solution methods

4.1. Eulerian schemes. In this subsection we discuss the solution methods and
other implementation issues for the three Eulerian schemesA®,), (Afl.) and (B").

4.1.1. Algebraic formulations. As is standard practice for the solution of lin-
ear systems arising from discretizations of Navier{Stokes equatits, we avoid the
complications of the constrained pressure spacB™ in practice by considering an
overdetermined linear system withP™ instead. For example, for the schemeA®,)
we consider the system[([Z6a{d) withP™ replaced by P™. For non-zero Dirichlet
boundary data g this requires a correction term on the right hand side of [26b). In
particular, we replace (26B) with

(35) rogmty =—((;, Do (pgidHe b g 2pn:
L0 a
The linear system of equations arising at each time step of the schear(A", ) then can

be formulated as: Find @™*%;pm*1. m+l. xm+1) whereXm*l = xmM4 xm+l,
such that

0 1
B C N . 0 0 Um+1 1
cT o 0 0 pm+1 § %

(36) %N T; 0 0 1 NTE m+1
0 0 N A X m+ A X“m

where @M*1;pm+l, m+l. xm+l) here, in a slight abuse of notation, denote the
coe cients of these nite element functions with respect to some cosen basis func-
tions. Moreover, X™ denotes the coe cients of idj = with respect to the basis
of V( ™). The de nitions of the matrices and vectors in (B8] directly follow from
(284d,c,d), (38), and their exact de nitions can be found in e.g. [2,x5.5]. Note that
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for the submatrices we have used the convention that the subsipts refer to the test
and trial domains, respectively. A single subscript is used where théwo domains
are the same. Of course, the algebraic formulation of the linear seéme B") can
also be stated in the form [386).

In order to solve the nonlinear scheme Al ), we employ the following xed
point iteration. Let ™ and O™ 2 UM (g) be given. Let UM% = " O™ and
X ¢ > 0. Then, for s 0. nd (Um+l;s+l-Pm+l;s+l-X-m+l;s+l- m+l;s+l) 2
umg P™ V(™) W( ™) such that

!
mUm+l;S+1 r;num.- + ( mUm+1;s:r)Um+l;s+1.~

D E
+2 m D(Um+1;s+1).D(~) Pm+1;'s+1.r e m+l;s+l _m.~
(37a)
- mf-:lr-n+l +f-£n+1;—- 8~ 2 Um(o)’
(37b) - .
LHMA+L s+l L ’ . d 1 ' m .
r:o ; L30) (" g):ndH 8' 2P";
(3*70) .
X m+ls+l id D E
;~m Um+l;s+l;~m =0 8 2W( m)'
(37d) b E

m

m+ls+l _m._h rgXmrlstlop =0 8~2V(™);
) ' m - !

and repeat the iteration until kgm*1s+¥1  gm*lisk ¢. Finally, set mM*l =

X m+l ;s+1( m) and (Um+1 pm+l. m+1) = ( gm+l;s+l.pm+lis+l. m+l s+l )

Clearly, (37a{d) is a linear system for the unknowns @M *1:s+1 : pm+lis+l . gm+1 s+l .
m+1;s+1) that is of the form (8B).

Remark 1. At times we will be interested in numerical simulations for ron diver-
gence-free solutions, in particular when considering our @nvergence experiments in
¥5.1. Here the condition Bh) is replaced byr :4 = fgy in (t). Clearly, this
leads to an additional term on the right-hand side of the disete continuity equation
(28h). In particular, we have to replace (B5) with

(38)

[ 1. Z
rogmtls = fgys G, 61 (g :AdHY * 8' 2pP™:
@

(1;1) Ld()
The same adjustment is made on the right-hand side of370). In addition, we
observe that the weak formulation(I8) needs to be suitably adjusted, with the ad-
ditional term %( f giv t;7) on the right-hand side of([L8), see[2] for details. As a

consequence, the term% ( ™fgyv O™;7) needs to be added to the right-hand side of
@8) for the scheme(B").

4.1.2. Solvers for the linear (sub)problems. Following the authors' approach
in [3], see also[1Z,10], for the solution of{36) we use a Schur complem@pproach
that eliminates ( ™*1; X™*1) from (BB), and then use an iterative solver for the
remaining system in @™*1;P™*1). This approach has the advantage that for



FITTED FRONT TRACKING METHODS FOR TWO-PHASE NAVIER{STOKES FLOW 627

the reduced system well-known solution methods for nite element dscretizations
for standard Navier{Stokes discretizations may be employed. Thedesired Schur
complement can be obtained as follows. Let

0 iINT

(39) =N x :

be the interface condensed operator. Ther[{36) can be reduced

(40a) | |
B+ (N, 0 Yo c o™t o_ e+ (N, 0 ' 0%,
cT 0 pm+l - -~

and
m+1 L NT. Um+l

We notice that when =0 the linear system (@0d) becomes

B Cc gm+1 ot
(41) cT 0 pm+1 T~
which for . = and ;. = corresponds to a discretization of the one-phase

Navier{Stokes problem. This system is well known and a classical wayo solve it
is to use a preconditioned GMRES iteration. Therefore, we solve[(4&), which is
a slight modi cation of (41}, employing a preconditioned GMRES iterative solver.
For the inverse ! we employ a sparsd.U decomposition, which we obtain with
the help of the sparse factorization package UMFPACK, see [18], irder to reuse
the factorization. Having obtained (O™*1;P™*1) from (&04), we solve [40b) for
( m+1; X-m+1 )
As preconditioner for (408) we employ the standard Navier{Stokes matrix

B C
(42) T o
recall (4T). Of course, as the pressure in the Navier{Stokes pidem (@1) is only
unique up to a constant, the block matrix (#2) is singular. Hence, in ader to
e ciently apply the preconditioner (42)] as part of an iterative solut ion method
for (B0d), one can either use a spars€R factorization method as provided by
SPOR, seel[19]. Alternatively, the matrix (42) can be suitably doctored to make
it invertible, and then a sparse LU factorization can be obtained with the help of
UMFPACK, see [18], as usual. In practice we pursued the latter appoach, as it
proved to be slightly more e cient. We refer to [2] x4.6] for more details.

4.1.3. Mesh generation and smoothing. Given the initial polyhedral surface

0, we create a triangulation T® of that is tted to O with the help of the
packageGmshseel[33]. The mesh generation process is controlled by charactdigs
length parameter, which describes the neness of the resulting msh. Then, for
m 0, having computed the new interface ™*!, we would like to obtain a bulk
triangulation T™*! that is tted to ™*', and ideally is close toT™. This is to
avoid unnecessary overhead from remeshing the domain completg. To this end,
we perform the following smoothing step onT™, which is inspired by the method
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proposed in [29], see alsd [31]. Having obtainedk ™** from the solution of (B6),
we solve the linear elasticity problem: Find a displacement™ 2 [H1()] ¢ such that
(43)

r:@2D(7)+(r :D)id)=0 in ™; = X on ™; =0 on @ :

In practice we approximate (43) with piecewise linear elements and dee the result-
ing system of linear equations with the UMPFACK package, see’[18]. Th obtained
discrete variant of ~, at every vertex of the current bulk grid T™, then represents
the variation in their position that we compute in order to obtain T™M*! .

Occasionally the deformation of the mesh becomes too large, and socomplete
remeshing of becomes necessary. In order to detect the needof a complete
remeshing, we de ne the angle criterion

(44) min  min Ca;
02T m+1 2] (o)

where C, is a xed constant. Moreover, ] (0) is the set of all the angles of the

with #; the unitary normal to the simplex face i. In practice we perform a full
remeshing if the criterion (44) holds with C; = 20 . We stress that in all our
numerical simulations we never need to remesh the interface™ itself.

4.1.4. Velocity interpolation. We notice that in the three Eulerian schemes
(AL), (Ah) and (B"), all feature at least one term containing the interpolated
velocity " U™. Here the interpolation operator is needed because the velocity
O™, which has been computed at time levem 1,isdened onT™ *. Therefore,
at the next time level m, the previous velocity U™ needs to be interpolated onT™,
which will in general be dierent from T™ 1, in order to be used.

The interpolation routine simply consists in evaluating the discrete function O™
in all the degrees of freedom of a piecewise quadratic function deed onT™. The
e ciency of this computation hinges on quickly nding the element in th e bulk
triangulation T™ 1 that contains the coordinates of the degree of freedom o ™
that is currently of interest. Of course, a naive linear looping over dl elements in
T™ 1is highly ine cient. A simple optimization to this naive search consists in
starting a guided search from the last correctly found element, in he hope that
the degrees of freedom o™ are traversed in such a way, the successive points
are close to each other. If the element does not contain the new g, then the
guided search moves to the neighbouring element that is opposite thvertex with
the largest distance to the new point. For a convex domain, this seah is always
well-de ned. For nonconvex domains this guided search can be conited with a
naive linear search whenever a boundary face is encountered in thecal search for
the next neighbour.

The last ingredient to our velocity interpolation algorithm is the trave rsal of
the degrees of freedom o ™. Ideally we would like to have a continuous path
of elements, which visits, only once, all the elements of ™. This ensures that
successive degrees of freedom on the new mesh are spatially clasgd so the local
guided search for the next element ofT™ ! to visit is likely to be very short.
Unfortunately, since we use unstructured meshes, such a patln general, is di cult
to construct. Hence, instead of explicitly constructing such a pah, we create a
ctitious background lattice  Z9\ ~that covers the domain . Then each element
of T™ is assigned to the point on the lattice that is closest to its barycente.
Depending on the size of the lattice, , multiple entities can be mapped to the
same point on the lattice. Since the lattice is structured, it is straightforward to
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build a continuous path which visits all its points. For example, for a rectangular
domain in 2d we can use a shaking path that traverses the lattice altmating left-
to-right and right-to-left, see Figure B Now, in practice, the elements of T™ are

SRS
SR

ALK
SR

v

Figure 2. Continuous path (red) traversing a ctitious back-
ground lattice.

visited following the given lattice path. This means that, for each lattice point
traversed, the associated entities oril ™ are visited. Clearly, for the algorithm to

be e cient, the lattice size  should be neither too small nor too large. In practice
we use proportional to the characteristic length of the bulk mesh.

4.2. ALE scheme. The solution technique used to solve the ALE scheme@, ¢ )
is very similar to the one used to solve the nonlinear schemeA(., ), recall 37a{d),
in that we use a xed point iteration. However, the main di erence is t hat at each
time step for the ALE scheme we also nd a bulk mesh velocityWw™** | and hence
a new bulk mesh ™*!  as part of the solution process. More precisely, we nd a
solution for the scheme €4, ) as follows. Let ™ and O™ 2 U™ (¢) be given. Set
gm+1i0 - gm ~m+10-9 m*10= Mmagnd x ; > 0. Then, fors 0, nd
(Um+1 ;s+1 : Pm+1 ;s+1 ;X-m+1 s+l : m+l ;s+1) 2 ym (g) pm M( m) W( m) such

that | | |

m ~m+1 ;s.
- Um+1 s+l . + m Um+1 'S r Um+1 s+l o
m+1 ;s
D E
+2 m Q(Umﬂ ;s+1);g(~) Pm+1 ;s+1;r -~ m+1;s+1 ~m;~
(45a)
m
= —om- + M 8 =2 U"(0);
m+1 ;s m
(45b) - 7
r :Um+l;s+1;- — I!_d()m (I_g]_g)ﬂde 1 8" me,
m @ m
(45¢)
- hoop E
X-m+1 s+l id )
;~m Um+1,s+1;~m m:O 8 2W( m);
(45d) D E

m

. h .
m+1,s+1__m;__ + rSX-m+1,s+1;rS__ =0 8~2V( m):
m
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Having obtained X ™*1:5*1 the new bulk displacement ~™*1:$*1 js computed via
the linear elasticity problem (@3), seeX4.1.3, and the new bulk mesh M*1:i*1 g
updated accordingly. This iteration is repeated until kUM *1:s*¥1  ym+Lisk, , f
and k-m+l s+1 ~m+1 ;skL1 ‘. Finally, set m+1l — X—m+l s+1 ( m)’ m+1l;s+1 —
m+1 and (Um+l;Pm+l; m+l;Wm+l) = (Um+l;s+l;Pm+l;s+l; m+l;s+1;

1 m+lis+1)  Clearly, (B5a{d) is once again a linear system of equations for the

unknowns (@M*1is*tl, pm+lis+l . gem+lis+l . m+lis+1) of the form (B6).

Similarly to the Eulerian schemes, we monitor the mesh quality of the buk
meshes ™*! with the help of the criterion (&4). In practice, if (44) holds with
Ca = 20 , then we perform a full remeshing of the domain , keeping ™*! xed,
and obtain the discrete velocity approximation on the new mesh via tte procedure
described inX¥4.1.4.

5. Numerical results

We implemented our numerical schemes within theDUNHEramework, using the
FEM toolbox dune-fem, see [[14[ 113, 21]. As grid manager we employesl BERTA
[52], and all the meshes were created with the libraryGmsh[33]. All the schemes de-
scribed in this paper are implemented as ®@UNEodule calleddune-navier-stokes
-two-phase , available at https://github.com/magnese/dune-navier-stokes-
two-phase. The simulations were performed as single thread computations on a
cluster of Xeon CPUs with frequency between 2.40GHz to 3.00GHz,ral with at
least 16GB of memory.

5.1. Convergence experiments. Here we consider convergence experiments for
exact solutions to the incompressible two-phase Navier{Stokes w problem. These
exact solutions will be characterised by expanding spheres. In pécular, let ( t) =
fz2 RY:jzj = r(t)g be a sphere of radius (t), with curvature { (t) = % Then,
for 2 R o, it can be shown that the expanding sphere with radius

(46a) ry=e' r(0);
together with
(46b)
N Ld t
WEy= 2 p@YE 2 ST (O X o gl

is an exact solution to the problem [I4&{g), with ({4D) replaced by
r:d= d in (1);

and with f(;t) = 2idandg= ioneg. =( 11)%with @ = @

A nontrivial divergence free and radially symmetric solution 4 can be constructed
on a domain that does not contain the origin. To this end, consider e.g =
( L1)n[ %;1]19 Then, for 2R o, the expanding sphere with radius

(47a) rt)=((rO)¢+ td)e;
together with
(47b)
d
WEY= g REDE 2 o {0 X o gy

is an exact solution to the problem [IZ&{g) with f(z;t)= (1 d) ?jg 2z and
2= jFd ‘zon@ = @


https://github.com/magnese/dune-navier-stokes-
two- phase
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Table 1. Discretization parameters for the convergence experi-
ments. The values forJ™ correspond to the schemeA&D ).

(#64,b) @7a.b)
J J 0 J M 0 J M
32 64 10 2 296 310 460 216
64 16 102 1240 1240 1040 444
128 4103 4836 4836 2628 1378
256 103 18476 18476 7460 4476

Table 2. ( + = = 4 = = =1; =0:15) Convergence
experiments for (46a,b) on ( 1;1)? over the time interval [0;1],
with the discretization parameters from Table [1.

J k ke 1 ko 10wk , EOC kO |§ukLz(H1) kP pk » EOC CPUs|
(AT

32 3.96456e-04 0 - 0 3.05157e-01 - 5

64 1.03429e-04 0 - 0 1.57053e-01 0.96 61

128 2.61302e-05 0 0 7.09596e-02 1.15 1317

256 6.53463e-06 0 0 1.99794e-02 1.79 29194
(AT

32 3.96456e-04 0 - 0 3.05157e-01 - 6

64 1.03429e-04 0 - 0 1.57053e-01 0.96 134

128 2.61302e-05 0 0 7.09596e-02 115 2649

256  6.53463e-06 0 0 1.99794e-02 179 49990

(8"

32 3.96456e-04 0 B 0 3.05157e-01 B 5

64 1.03429¢-04 0 - 0 1.57053e-01  0.96 45

128 2.61302e-05 0 - 0 7.09596e-02  1.15 1567

256  6.53463e-06 0 0 1.99794e-02 179 30997
(Che )

32 3.96823e-04 1.94467e-06 B 1.74315e-05 3.01900e-01 B 10

64 1.03462¢-04 1.27547e-07 3.93 1.33117e-06 1.57054e-01 0 .94 160

128 2.61390e-05 4.26296e-08 1.58 3.78211e-07 7.09597e-02 115 2420

256  6.53680e-06 1.09827e-08 1.91 9.46271e-08 1.99793e-02 179 47181

For the following convergence tests, we choose the initial surfacg0) = fz 2
RY:jgj = %g, @ = @ and adaptive bulk meshes that use a ner resolution close
to the interface. We compute the discrete solution over the time inerval [0; 1]. We
begin with the exact solution @&3,b) for =0:150n =( 1;1)?, with the physical
parameters . = = 4 = = = 1. Details on the discretization parameters
are given in Table[d, where we also state the nal number of bulk elemsats, JM ,
for the scheme A, ). The values of JM for the remaining three schemes were very
similar.

We report on the computed errors in Table[2, where we have de nedhe error
guantities

k" ko= max k™ (tm)ket ;

wherek ™ (tm)kir = maxy=;.x dist('; ( tm)), as well as
" . #
kO™ 15 (st K2

kKO 1) ko

" #
kO™ 10 b tm)KEy

N

ko |Q‘Uk|_2(H1) .
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Table 3. + =10% =10% ,=10; =1; = =0:15)
; 132 1.1792
Conv_erge_nce expenments_ for[(Z_?]g,b) on (_1, 1)“n[ 3;3]° over
the time interval [0; 1], with the discretization parameters from
Table 1.
J Kk " ke 1 ko 10wk , EOC kO IgukLz(Hl) kP pk 2 EOC CPU[s]
(AR
32  4.13976e-03 1.24661e-03 2.59441e-02 2.28403e-00 8
64  1.07627e-03 4.80240e-04 1.38 1.35253e-02 1.20439e-00 .92 102
128  2.55529e-04 3.70025e-04 0.38 1.20309e-02 5.89258e-01 1.03 2810
256  6.66480e-05 1.42910e-04 1.34 6.48222e-03 2.69953e-01 1.10 88 056
(AR
32 3.99899e-03 1.23928e-03 - 2.61424e-02 2.30983e-00 11
64  1.07657e-03 4.80445e-04 1.37 1.35256e-02 1.20449e-00 .94 126
128  2.55562e-04 3.70165e-04 0.38 1.20325e-02 5.89236e-01 1.03 3223
256  6.66478e-05 1.42914e-04 1.34 6.48232e-03 2.69982e-01 1.10 95315
(8")
32  5.56564e-02 3.33673e-01 - 8.38557e-00 9.98404e+01 8
64  1.05282e-03 4.75502e-04 9.45 1.37127e-02 2.01792e+01 31 112
128  2.52742e-04 3.82170e-04 0.32 1.24067e-02 2.00690e+01 0.01 3138
256  6.55951e-05 1.45885e-04 1.36 6.67192e-03 2.00294e+01 0 98 893
(Chg )
32 4.20717e-03 1.33379e-03 - 3.03240e-02 4.92318e-00 15
64  1.11280e-03 4.91358e-04 1.44 1.42754e-02 2.47229e-00 .99 90
128  2.54196e-04 3.30194e-04 0.57 1.31294e-02 1.24058e-00 0.99 991
256  6.37496e-05 1.35898e-04 1.25 6.41819e-03 6.08051e-01 1.01 11970
h p, ¥
and kP pk . := m=1 KP™ p( ;tm)kfz() . Moreover, we also de ne the

estimated order of convergence EOC as EOC = | FFSF; =In ﬂ—l where error, and
0

errorg are the errors for the computations with characteristic lengths h < hy.

We observe from Table[2 that the schemesA~,), (Al ) and (B") capture the
velocity solution exactly. This is possible because the true velocity is liear, see
(@8h). We also notice that all the schemes capture the interface gsition with the
same accuracy and exhibit similar errors for the pressure. In terra of the overall
CPU times, we notice that the two linear schemes AR, ) and (B"), as well as the
two nonlinear schemes A',) and (Gl ¢ ), have similar execution times, with the
CPU times for the linear schemes lower than for the nonlinear schense Finally, we
note that the number of full remeshings performed whenl = 32 was, depending
on the scheme, between 1 and 4 while it was always 0 in all the other sirfations
for this test case.

In a second set of convergence experiments, we x = ( 1;1)°n] %; %]2 for
the exact solution (47a,b) with = 0:15 and the physical parameters

+ =10%; =10%; ., =10; =1; =1

We report on the errors of the exact solution [47a,b) in Table[3.

Firstly, we observe that the velocity and the interface position is cgtured with
similar accuracy by all four schemes. However, we notice that the ggssure error
does not appear to converge for the schemeB('), which may be caused by the dis-
continuous jumps in density and viscosity. In addition, the scheme Cf ¢ ) exhibits
slightly higher pressure errors compared to Al) and (Al). We also note the
vastly superior CPU times for the scheme (¢ ) compared to the other schemes.
This is caused by the fact that the domain is nonconvex, and so we eploy a simple
linear search in our velocity interpolation routine, recall X4.1.4. Of course, the ALE
scheme only needs to interpolate the velocity when a complete bulk meeshing is
performed, and this leads to a signi cant reduction in the total simulation time. Fi-
nally, we note that the number of full remeshings performed duringany simulation
for this test case was always between 3 and 9.
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Table 4. Discretization parameters for the benchmark problem I.

J Jo JM

(AL) (Ah)  (BM (Cue)
32 2210 1816 1816 1794 1820
64 8822 7544 7156 7490 7566
128 35092 29276 29014 28968 28296

Table5. ( .+ =10% =10% , =10; =1; =24:5)Bench-
mark problem I, with the discretization parameters from Table [,

J =32 J =64 J =128|J =32 J =64 J =128

(A% (Al
Soin 0.8929 0.8975 0.9001| 0.8925 0.8973 0.9004
t 1.9040 1.9040 1.9170| 2.0410 1.9120 1.9160

Ss=S
Vemax | 0.2439  0.2424  0.2411| 0.2439 0.2423  0.2410
tv=vems | 0.9350 0.9300  0.9180| 0.9340 0.9300  0.9190
z(t=3) | 1.0829 10852 1.0822| 1.0820 1.0841  1.0819
CPU[s] | 10236 29610 234396 17771 72837 403904

| (B") | (Ge) |
S.. | 0.8788 0.8851  0.8883| 0.9013 0.9010  0.9030
t 17920 17190 16790 1.9460 1.9050  1.8460

S=S
Vc;mr;;n 0.2359 0.2344 0.2334| 0.2435 0.2422 0.2410
tve=vemw | 0.8860  0.8820 0.8750| 0.9370  0.9330 0.9200
z.(t=3) | 1.0648 1.0622 1.0607| 1.0877 1.0865 1.0824
CPU[s] 5887 19703 146538 13628 63136 351867

5.2. Benchmark computations. Here we will present benchmark computations
for the two rising bubble test cases proposed iri[41, Table I]. To this ed, we use the
setup described in[|41, Figure 2], whichis =(0;1) (0;2)with @ =[0 ;1]f 0;2g
and @ = f0;1g (0;2). Moreover, the initial interface is o = fz 2 R? :
iz (3:3)7i= 9. We also letf"= 0:98 ~, and g = 0. For the discretization
parameters, we choose =10 3, T =3 and nearly uniform bulk meshes.

We recall that the paper [41] used the proposed benchmarks to copare two
di erent codes based on the level-set method with a direct front tracking ALE
method, while the same benchmarks were used inl[4,32] to investigatdi erent
phase- eld methods. Finally, in [IZ] an un tted front tracking meth od was used
for these benchmark problems.

5.2.1. Benchmark problem I. The physical parameters for the test case 1 in
[41, Table 1] are given by

(48) + =103; =10%; . =10; =1; =245:

We list our discretization parameters for this benchmark computaton in Table 4,
and report on the quantitative results for our four schemes in Talle/3. Here we have
m id:eq dL®
the

de ned the €5-component of the bubble's centre of mass ag]" = T
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(@ t=10 1 by t=1

() t=2 (d t=3
Figure 3. ( + = 10% = 10% ., =10; =

=1; = 24:5)
Pressure evolution for the benchmark problem | for the scheme
(Al ) with J =128 interface elements.

Q i

(@ t=10 1

() t=1

(©) t=2 (d) t=3
Figure 4.

Velocity vector eld for the simulation in Figure 3.1
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Figure 5. A plot of the sphericity sover time for the simulation in
Figure [3 for the schemes AL,) (orange), (Af,) (red), (B") (green)
and (G ¢ ) (blue).

0 05 1 15 2 25 3

Figure 6. A plot of the rising velocity V. over time for the sim-
ulation in Figure Blfor the schemes Af) (orange), (All) (red),
(B") (green) and (G, ¢ ) (blue).
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Figure 7. A plot of the barycentre z. over time for the simula-
tion in Figure Blfor the schemes Al ) (orange), (Al},) (red), (B")
(green) and (G, ¢ ) (blue).

degree of sphericity ass = @[2dLY9( ™) =HY I( M), and the bubble's rise
velocity asV,™ =, O™ :gq dL9=L9( ™).

We observe that the results in Table[% are in very good agreement,xeept for
the scheme B"). For this reason, we do not consider the schemeR") further in
this section. The results for the remaining three schemes agree mewell with the
corresponding numbers from the nest discretization run of growp 3 in [41], which
are given by 0.9013, 1.9000, 0.2417, 0.9239 and 1.0817, and which gemerally
accepted as the most accurate in that paper. In fact, very similarresults are
also obtained in [12, Tables 2 and 3]. Moreover, we note that the numér of full
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1.00000

0.99999 |
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0.99995 |
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0.99991

2 m
Figure 8. A plot of the relative inner area %0—; over time for

the simulation in Figure Bl for the schemes A!,) (orange), (Af.)
(red), (BM) (green) and (G} ¢ ) (blue).

Table 6. ( + =10% =1; , =10; =0:1; =1:96)Bench-
mark problem [lon =(0 ;1) (0;2) over the time interval [O; 3].

(Agx) (Aihm) (Q&LE )

s., 05435 05473 0.5266
te.e  3.0000 3.0000 3.0000

Vemaci 0.2503  0.2502  0.2502
tVo=voms,  0.7290 0.7290 0.7300
Vemax2 0.2403 0.2403  0.2400
tVozVoms, 2.1070 2.1540 2.0670
z(t=3) 11383 1.1387 1.1385
CPU[s] 132498 236635 236253

remeshings performed during any simulation for this test case waslaays between
2 and 4.

In Figure B we show the evolution of the discrete pressures for a smmtion
with J = 128 interface elements using the schemeA(}. ), while the velocities are
visualized in Figure[4.

Finally, in Figures Bl |6, and[4 are reported, respectively, the evolubn of the
sphericity s, rising velocity V. and barycentre z. over time. We notice almost
identical results for the three schemes A%,), (Al) and (G ¢ ), which are in very
good agreement with the plots shown in[[41]. We also note the excellerarea
c?nservation shown in8, where we visualize the evolution of the relate inner area
%0—)) over time.

5.2.2. Benchmark problem II. The physical parameters for the test case 2 in
[41, Table 1] are given by

(49) , =103; =1; ., =10; =0:1; =1:96:
We report on the quantitative results for this benchmark computation in Table B]
where we have used] = 128 interface elements andJ® = 35092 initial bulk
elements. The nal number of bulk elements, JM, for the schemes Al,), (Al
and (G} g ) was 10638, 10716 and 9972, respectively.

We observe that the results in Table[6 are in good agreement with thecorre-

sponding numbers from the nest discretization run of group 3 in [4]], which are
given by 0.5144, 3.0000, 0.2502, 0.7317, 0.2393, 2.0600 and 1.1376&reHve note
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(@ t=10 1 (b) t=1

© t=2 ) t=3

Figure 9. (+ =10% =1; , =10; =0:1, = 1:96)
Pressure evolution for the benchmark problem Il for the scheme
(A, with J =128 interface elements.

(@ t=10 1 by t=1

© t=2 ) t=3

Figure 10. Velocity vector eld for the simulation in Figure 9.1
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that there is little agreement on these results between the three ups in [41], but
we believe the numbers of group 3 to be the most reliable ones. In fgorery similar

results are also obtained in [12, Tables 5 and 6]. Moreover, we note &t the num-

ber of full remeshings performed for this test case using the schees AL), (Af)

and (G} ¢ ) was 787, 788 and 808, respectively. These large numbers are sad by
the strong deformation of the rising bubble, with the narrow tail structure leading

to very elongated bulk elements. In fact, until time t = 2 only 6 remeshings are
needed for each of the three schemes.

It is interesting to note that for this benchmark, the methods in [41] do not agree
on whether the two tails of the rising bubble experience pinch-o of ®me droplets.
But we note that the most accurate method there indicates that no pinch-o occurs,
in agreement with our results and the results in [4, 12]. Of course, im front tracking
method like ours topological changes need to be performed heuristlly when they
occur, and this can be done, for example, as described in [17, 51].

In Figure 9 we show the evolution of the discrete pressures for a siation
with J = 128 interface elements using the schemeA®,), while the velocities are
visualized in Figure 10.

As before we show plots of the sphericitys, the rising velocity V., the barycentre
Z:. and the relative inner area %:—; over time in Figures 11, 12, 13 and 14,
respectively. In the former three gures we note the good agrement with the plots
shown in [41]. As regards the plot of the relative inner area in Figure 14we observe
oscillations in the relative inner area betweent = 2:1 andt = 2:3 which are caused
by the very thin laments originating at the bottom of the rising bubb le.

Figure 11. A plot of the sphericity s over time for the simulation
in Figure 9 for the schemes Al) (orange), (Af,) (red) and (Ch ¢ )
(blue).

Conclusions

We have introduced three Eulerian and one ALE scheme for the tted nite
element approximation of two-phase Navier{Stokes ow. Computaionally the main
di erence between the Eulerian schemes and the ALE scheme is thdbr the former
a bulk mesh adjustment needs to be performed after every time sp, since the
interface mesh in general moves, and so the tted bulk mesh needs be adjusted.
Here we employ a bulk mesh smoothing procedure based on a linear diagy
problem. The mesh smoothing necessitates the interpolation of theiscrete velocity
approximation onto the new bulk mesh. It is often thought that the interpolation
errors introduced by this procedure, together with the additional computational
e ort for the calculation of the interpolation, makes ALE schemes vastly superior to
standard Eulerian approximations. However, our numerical resuls do not bear this
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L L L L L
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Figure 12. A plot of the rising velocity V. over time for the simu-
lation in Figure 9 for the schemes AL,) (orange), (Af.) (red) and

(GlLe ) (blue).
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Figure 13. A plot of the barycentre z; over time for the simula-
tion in Figure 9 for the schemes A~ ) (orange), (Af) (red) and

(GlLe ) (blue).
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Figure 14. A plot of the relative inner area %0—)) over time for

the simulation in Figure 9 for the schemes A") (orange), (Af.)
(red) and (G} ¢ ) (blue).

out. In particular, for the physical and discretization parameters that we consider,
the Eulerian schemes Af,) and (Al ) perform as well as the ALE scheme ¢}, ¢ )
in most of our convergence tests and benchmark computations. ¥conjecture that
this good performance of the Eulerian schemes is connected to tHact that all our
schemes maintain the interface mesh quality throughout, and so tk interface mesh,
and the nite element information stored on it, is never heuristically adjusted, not
even during a full bulk remeshing. Moreover, thanks to an e cient element-traversal
algorithm, the additional computational e ort needed for the velo city interpolation
was only noticeable on nonconvex domains.
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