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FITTED FRONT TRACKING METHODS FOR TWO-PHASE
INCOMPRESSIBLE NAVIER{STOKES FLOW: EULERIAN AND

ALE FINITE ELEMENT DISCRETIZATIONS

MARCO AGNESE AND ROBERT N •URNBERG

Abstract. We investigate novel �tted �nite element approximations fo r two-phase Navier{Stokes
ow. In particular, we consider both Eulerian and Arbitrary Lagrangian{Eulerian (ALE) �nite
element formulations. The moving interface is approximate d with the help of parametric piecewise
linear �nite element functions. The bulk mesh is �tted to the interface approximation, so that
standard bulk �nite element spaces can be used throughout. T he meshes describing the discrete
interface in general do not deteriorate in time, which means that in numerical simulations a
smoothing or a remeshing of the interface mesh is not necessa ry. We present several numerical
experiments, including convergence experiments and bench mark computations, for the introduced
numerical methods, which demonstrate the accuracy and robu stness of the proposed algorithms.
We also compare the accuracy and e�ciency of the Eulerian and ALE formulations.

Key words. Incompressible two-phase ow, Navier{Stokes equations, A LE method, free bound-
ary problem, surface tension, �nite elements, and front tra cking.

1. Introduction

Fluid ow problems with a moving interface are encountered in many applica-
tions in physics, engineering and biophysics. Typical applications include drops
and bubbles, die swell, dam break, liquid storage tanks, ink-jet printing and fuel
injection. For this reason, developing robust and e�cient numerical methods for
these ows is an important problem and has attracted tremendousinterest over the
last few decades.

A crucial aspect of these types of uid ow problems is that apart f rom the
solution of the ow in the bulk domain, the position of the interface separating the
two bulk phases also needs to be determined. At the interface certain boundary
conditions need to be ful�lled, which specify the motion of the phase boundary.
These conditions relate the variables of the bulk ow, velocity and pressure, across
the two phase, taking into account external inuences, such as for example surface
tension. Numerically, in order to be able to compute the ow solution as well as the
interface geometry, a measure to track the interface starting from an initial position
needs to be incorporated. There are several strategies to dealwith this problem,
which can be divided into two categories depending on the viewpoint: interface
capturing and interface tracking.

Interface capturing methods use an Eulerian description of the interface, which
is de�ned implicitly. A characteristic scalar �eld, that is advected by t he ow,
is used to identify the two phases as well as the interface along the boundaries
of the individual uid domains. Depending on the method, this scalar � eld may
be, for example, a discontinuous Heaviside function or a signed-distance function.
The most important methods, which belong to this category, are the volume-of-
uid method, the level-set method and the phase-�eld method. In the volume-
of-uid method, the characteristic function of one of the phasesis approximated
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numerically, see e.g. [38, 50, 49]. In the level-set method, the interface is given
as the level set of a function, which has to be determined, see e.g. [54, 53, 47,
34, 35, 55]. Instead, the phase-�eld method works with di�use interfaces, and
therefore the transition layer between the phases has a �nite size. There is no
tracking mechanism for the interface, but the phase state is included implicitly in
the governing equations. The interface is associated with a smooth, but highly
localized variation of the so-called phase-�eld variable. Examples forphase-�eld
methods applied to two-phase ow are [39, 5, 44, 15, 27, 22, 42, 1, 4, 36, 32].
Extensions of the method to multi-phase ows can be found in [24, 25, 16, 6]. The
appeal of interface capturing approaches is the fact that they are usually easy to
implement, and that they o�er an automated way to deal with topolo gical changes.

Interface tracking approaches, instead, use a Lagrangian description of the inter-
face which is described explicitly. Here the interface is representedby a collection of
particles or points, and this representation is transported by thebulk ow velocity.
The great advantage of interface tracking approaches is that they o�er an accurate
and computationally e�cient approximation of the evolving interface . Challenges
are the mesh quality both of the interface representation and of the bulk trian-
gulations, as well as the need to heuristically deal with topological changes. We
refer e.g. to [57, 7, 56, 31, 10, 12] for further details, and to [43, 48] for the related
immersed boundary method, which is used to simulate uid-structure interactions
using Eulerian coordinates for the uid and Lagrangian coordinatesfor the struc-
ture.

In this paper we use a direct description of the interface using a parametrization
of the unknown interface, similarly to the previous work [12]. In particular, our
numerical method will be based on a piecewise linear parametric �nite elements,
and the description of the interface will be advected in normal direction with the
normal part of the uid velocity. The tangential degrees of freedom of the inter-
face velocity are implicitly used to ensure a good mesh quality, and thisis a main
feature of our proposed methods. But in contrast to [12], where an un�tted bulk
�nite element approximation was used, we will adopt a �tted mesh approach, which
means that the discrete interface is composed of faces of elements from the bulk tri-
angulation. Fitted and un�tted bulk mesh approaches are fundamentally di�erent
approximation methods, and need specialized implementation techniques. A �tted
method has the advantage that discontinuity jumps at the interface are captured
naturally, but it has the disadvantage that in a standard Eulerian method the ve-
locity needs to be interpolated from an old mesh to a new mesh, unlessthe interface
is stationary. Hence so-called Arbitrary Lagrangian Eulerian (ALE) methods are
often proposed. Here the equations are posed in a moving domain framework, and
an arbitrary Lagrangian velocity may be chosen to improve the quality of the bulk
mesh. The original idea for ALE methods goes back to the papers [23, 40], and we
refer to [46, 45, 28, 29, 31, 37, 30] for applications to two-phaseNavier{Stokes ow.

In this paper we will propose both standard Eulerian and ALE �nite element
approximations for two-phase incompressible Navier{Stokes ow. One aim of our
paper is to investigate numerically, if there is a clear advantage of ALE type meth-
ods over standard Eulerian methods. We stress that we are not aware of any
detailed comparisons between �tted Eulerian and ALE front trackin g methods in
the literature. This paper aims to �ll this gap. On the other hand, sim ilar compar-
isons between ALE type interface tracking methods and various interface capturing
methods have been presented in e.g. [41, 26]. We note that in the case of viscous
incompressible two-phase Stokes ow, there is no need for the numerical method
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Figure 1. The domain 
 in the case d = 2.

to interpolate the velocity from the old to the new mesh. Hence there is no need
to employ an ALE method. In fact, in the case of two-phase Stokesow, all our
proposed numerical methods collapse the approximation considered by the authors
in [3].

The remainder of the paper is organized as follows. In Section 2 we introduce
the precise mathematical model of two-phase ow that we study,and formulate the
weak formulations on which our Eulerian and ALE �nite element approximations
will be based. In Section 3 we introduce four di�erent fully discrete � nite element
discretizations, and in Section 4 we discuss computational issues for their implemen-
tation as well as the employed solution methods. Finally, in Section 5 wepresent
several numerical simulations for the introduced �nite element approximations. In
particular, we investigate their accuracy in convergence tests with the help of two
exact solutions. Moreover, we compare the performance of our schemes in two well
known benchmark problems.

2. Mathematical model and weak formulations

Let 
 � Rd, for d = 2 or d = 3 be a given domain that contains two di�erent
immiscible, incompressible uids (liquid-liquid or liquid-gas) which for all t 2 [0; T ]
occupy time dependent regions 
+ (t) and 
 � (t) := 
 n 
 + (t) and which are sepa-
rated by an interface (�( t)) t 2 [0;T ] , �( t) � 
. We limit ourselves to interfaces formed
by closed hypersurfaces, see Figure 1 for a pictorial representation in the cased = 2.
For later use, we assume that (�(t)) t 2 [0;T ] is a su�ciently smooth evolving hyper-
surface without boundary that is parametrized by ~x(�; t) : � ! Rd, where � � Rd

is a given reference manifold such that �(t) = ~x(� ; t). Then

(1) ~V(~z; t) := ~xt (~q; t) 8 ~z = ~x(~q; t) 2 �( t) ;

de�nes the velocity of �( t), and ~V : ~� is the normal velocity of the evolving hyper-
surface �( t), where ~� (t) is the unit normal on �( t) pointing into 
 + (t).

Denoting the velocity and pressure by~u and p, respectively, we introduce the
stress tensor

(2) � = � (r ~u + ( r ~u)T ) � p id = 2 � D (~u) � p id ;
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where � (t) = � + X
 + ( t ) + � � X
 � ( t ) , with � � 2 R> 0, denotes the dynamic viscosi-
ties in the two phases, id2 Rd� d is the identity matrix and D(~u) := 1

2 (r ~u+( r ~u)T )
is the rate-of-deformation tensor. Here and throughout,XD denotes the character-
istic function for a set D.

The uid dynamics in the bulk domain 
 is governed by the two-phase Na vier{
Stokes model

� (~ut + ( ~u :r ) ~u) � 2� r : D(~u) + r p = ~f in 
 � (t) ;(3a)

r : ~u = 0 in 
 � (t) ;(3b)

where � (t) = � + X
 + ( t ) + � � X
 � ( t ) , with � � 2 R> 0, denotes the uid density in

the two phases, and where~f := � ~f 1 + ~f 2 is a possible forcing term. The velocity
and stress tensor need to be coupled across the free surface �(t). Viscosity of the
uids leads to the continuity condition

(4) [~u]+� = ~0 on �( t) ;

where [~u]+� := ~u+ � ~u� denote the jump in velocity across the interface �(t). Here
and throughout, we employ the shorthand notation ~h� := ~h j 
 � ( t ) for a function
~h : 
 � [0; T ] ! Rd; and similarly for scalar and matrix-valued functions. The
assumption that there is no change of phase leads to the dynamic interface condition

(5) ~V : ~� = ~u : ~� on �( t) ;

which means that the normal velocity of the interface needs to match the ow
normal velocity across the interface �(t). Moreover, the momentum conservation
in a small material volume that intersects the interface leads to thestress balance
condition

(6) [� ~� ]+� = �r s :� � on �( t) ;

where � � is the interface stress tensor andr s : is the surface divergence on �(t).
The operator r s is the surface gradient on �(t) and it is the orthogonal projection of
the usual gradient operator r on the tangent space of the surface �(t). Therefore,
given a smooth function h de�ned on a neighbourhood of �( t), it is de�ned as

(7) r s h(~z) = P(~z) r h(~z) = r h(~z) � r h(~z) : ~� (~z) ~� (~z) ; ~z 2 �( t) ;

with the usual projection operator P de�ned as

(8) P = id � ~� ~� T on �( t) :

It can be shown that the de�nition of r s h does not depend on the chosen extension
of h, but only on the value of h on �( t). See e.g. [20,x2.1] for details. For later use,
we also de�ne the surface Laplacian, also known as Laplace{Beltrami operator, � s

on �( t) as

(9) � s = r s : r s :

We restrict ourselves to the case that the only force acting on theinterface is
the surface tension contact force. Therefore the interface stress tensor� � has the
following constitutive equation

(10) � � =  P ;

where  is the surface tension coe�cient. Substituting (10) in (6) we obtain , as-
suming  is constant, the so called clean interface model for the interfacialforces

(11) [� ~� ]+� = �  { ~� on �( t) ;
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which, in the case of Newtonian stress tensor (2), assumes the form

(12) [2� D (~u) : ~� � p ~� ]+� = �  { ~� on �( t) :

Here { denotes the mean curvature of �(t), i.e. the sum of the principal curvatures
of �( t), where we have adopted the sign convention that{ is negative where 
 � (t)
is locally convex. In particular, see e.g. [20], it holds that

(13) � s
~id = { ~� on �( t) :

In order to close the system, we prescribe the initial data �(0) = � 0 and the
initial velocity ~u(0) = ~u0. Finally, we impose the Dirichlet condition ~u = ~g on @1

and the free-slip condition ~u :~n = 0 and � ~n :~t = 0, 8 ~t 2 f ~ng? , on @2
, with ~n
denoting the outer unit normal of @
 and f ~ng? := f~t 2 Rd : ~t :~n = 0 g. As usual,
it holds that @
 = @1
 [ @2
 and @1
 \ @2
 = ; . Therefore the total system of
equations can be rewritten as follows:

� (~ut + ( ~u :r ) ~u) � 2� r : D(~u) + r p = ~f in 
 � (t) ;(14a)

r : ~u = 0 in 
 � (t) ;(14b)

~u = ~g on @1
 ; ~u :~n = 0 ; � ~n :~t = 0 8 ~t 2 f ~ng? on @2
 ;(14c)

[~u]+� = ~0 on �( t) ;(14d)

[2� D (~u) : ~� � p ~� ]+� = �  { ~� on �( t) ;(14e)

(~V � ~u) : ~� = 0 on �( t) ;(14f)

�(0) = � 0 ; ~u(0) = ~u0 :(14g)

In what follows we introduce di�erent weak formulations for (14a{g ), on which our
�nite element approximations will be based.

2.1. Eulerian weak formulations. In order to obtain a weak formulation for
(14a{g), we de�ne the function spaces, for a given~b 2 [H 1(
)] d,

U(~b) := f ~� 2 [H 1(
)] d : ~� = ~b on @1
 ; ~� :~n = 0 on @2
 g ;

P := L 2(
) ; eP := f � 2 P :
Z



� dL d = 0 g;

and let, as usual, (�; �) and h�; �i �( t ) denote the L 2{inner products on 
 and �( t),
respectively. In addition, we let L d and H d� 1 denote the Lebesgue measure inRd

and the (d � 1)-dimensional Hausdor� measure, respectively.
We also need a weak form of the di�erential geometry identity (13), which can

be obtained by multiplying (13) with a test function and performing int egration by
parts leading to

(15) h{ ~�; ~� i �( t ) +
D

r s
~id; r s ~�

E

�( t )
= 0 8 ~� 2 [H 1(�( t))]d :

Moreover, on noting (2) and (12), we have that
Z


 + ( t ) [ 
 � ( t )
(r : � ) : ~� dL d = �

�
� ; r ~�

�
�

D
[� ~� ]+� ; ~�

E

�( t )

= �
�

2 � D (~u) � p id; r ~�
�

�
D

[2� D (~u) : ~� � p ~� ]+� ; ~�
E

�( t )

=
�

p; r : ~�
�

� 2
�

� D (~u); D (~� )
�

+ 
D

{ ~�; ~�
E

�( t )
(16)
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for all ~� 2 U(~0). Hence a standard weak formulation of (14a{g) is given as follows.
Given �(0) = � 0 and ~u(�; 0) = ~u0, for almost all t 2 (0; T) �nd �( t) and (~u; p;{ )( t) 2
U(~g) � eP � H 1(�( t)) such that

�
� ~u t ; ~�

�
+

�
� (~u :r ) ~u;~�

�
+ 2

�
� D (~u); D (~� )

�
�

�
p; r : ~�

�
� 

D
{ ~�; ~�

E

�( t )

=
�

~f ; ~�
�

8 ~� 2 U(~0) ;(17a)

(r : ~u; ' ) = 0 8 ' 2 eP;(17b)
D

~V � ~u; � ~�
E

�( t )
= 0 8 � 2 H 1(�( t)) ;(17c)

h{ ~�; ~� i �( t ) +
D

r s
~id; r s ~�

E

�( t )
= 0 8 ~� 2 [H 1(�( t))]d(17d)

holds for almost all times t 2 (0; T ]. We notice that if p 2 P is part of a solution to
(14a{g), then so is p + c for an arbitrary c 2 R.

An alternative to the weak formulation (17a{d) can be obtained by following the
paper [12]. These authors show that it is possible to derive an energybound not
only on the continuous level but also for a discretization based on this formulation.
Due to the resulting structure of the equation, we will refer to this form as the
antisymmetric weak formulation, and it is given as follows. Given �(0) = � 0 and
~u(�; 0) = ~u0, for almost all t 2 (0; T) �nd �( t) and (~u; p;{ )( t) 2 U(~g) � eP� H 1(�( t))
such that

1
2

�
d
dt

(� ~u; ~� ) + ( � ~u t ; ~� ) + ( �; [(~u :r ) ~u] : ~� � [(~u :r ) ~� ] : ~u)
�

+ 2
�

� D (~u); D (~� )
�

�
�

p; r : ~�
�

� 
D

{ ~�; ~�
E

�( t )
=

�
~f ; ~�

�
8 ~� 2 U(~0) ;

(18)

holds, together with (17b{d). For a derivation of (18) we refer to [12], see also [2].

2.2. ALE model and weak formulation. The Arbitrary Lagrangian Eulerian
(ALE) technique consists in reformulating the time derivative ~ut by expressing
it with respect to a �xed reference con�guration. A special homeomorphic map,
called the ALE map, associates, at each timet, a point in the current computational
domain 
( t) to a point in the reference domain D. Note that for convenience we
consider the domain 
 to be time-dependent, even though in our situation it is
�xed.

We now reformulate the two-phase Navier{Stokes system (14a{g), which is ex-
pressed in terms of Eulerian coordinates~z 2 
( t), by rewriting the velocity time
derivative ~ut with respect to the so called ALE coordinate ~q 2 D . Analogously
to what is done in a front tracking approach to parametrize the interface �( t), we
can de�ne the �xed reference manifoldD and extend the map~x(�; t) to parametrize

( t) as 
( t) = ~x(D; t). This extended map clearly still satis�es �( t) = ~x(� ; t),
given that � � D . Moreover, we let @D be partitioned as @D = @1D [ @2D with
@1D \ @2D = ; .

Now, let h : 
( t) � [0; T ] ! R be a function de�ned on the Eulerian frame. The
corresponding function on the ALE frame ĥ is de�ned as

(19) ĥ : D � [0; T ] ! R; ĥ(~q; t) = h(~x(~q; t); t):

In order to compute the time derivative of (19) with respect to the ALE frame,

using the chain rule, we have @̂h(~q;t )
@t = @h(~x (~q;t ) ;t )

@t = @h(~z;t )
@t + ~xt (~q; t) : r h(~z; t).
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Therefore it holds that @h(~z;t )
@t = @̂h(~q;t )

@t � ~xt (~q; t) : r h(~z; t). Finally, introducing
the domain velocity

(20) ~W(~z; t) := ~xt (~q; t) 8 ~z = ~x(~q; t) 2 
( t)

and the time derivative in the ALE frame

(21)
@h(~z; t)

@t

�
�
�
�
D

:=
@̂h(~q; t)

@t
8 ~z = ~x(~q; t) 2 
( t) ;

we obtain

(22) ht = ht jD � ~W : r h :

The identity (22) is naturally extended to vector valued functions. We stress the
fact that the domain velocity ~W for the interface points is consistent with the
interface velocity ~V. Therefore it holds that ~W j �( t ) = ~V. We also point out that the
ALE mapping is somehow arbitrary, apart from the requirement of conforming to
the evolution of the domain boundary. Indeed the map of the boundary @i D of the
reference domain has then to provide, at allt, the boundary @i 
( t) of the current
con�guration, with i = 1 ; 2.

Using (22) in the momentum equation (14a), we can rewrite it as:

� ( ~ut jD + (( ~u � ~W) : r ) ~u) � 2� r : D(~u) + r p = ~f in 
 � (t) :(23)

We can notice that, with respect to the original formulation, there is a convective-
type term due to the domain movement and the time derivative is computed in the
�xed reference frame D. Moreover, contrary to the original system, not only the
regions 
 � (t) are time dependent but also the whole domain 
(t) is time dependent.

Obviously, if the domain is �xed, the additional convective term is zero and the
time derivative in the ALE frame coincides with the usual time derivativ e in the
Eulerian frame. This means that ~W = ~0 corresponds to a pure Eulerian method,
while ~W = ~u corresponds to a fully Lagrangian scheme. In our case, since we
have a �xed domain 
, the ALE formulation might not seem very usefu l. But, at
the discrete level, we are concerned with the evolution of the discrete triangulated
domains. Therefore the discrete ALE map describes the evolution of the grid during
the domain movement. It is indeed at the discrete level that the advantage of the
ALE formulation emerges, as in an ALE setting the time advancing scheme provides
directly the evolution of the unknowns at mesh nodes and thus thatof the degrees
of freedom of the discrete solutions.

In order to de�ne the ALE weak formulation, we need to use a di�erent functional
setting for the test functions with respect to the one used for the Eulerian weak
formulations. The reason is that here it needs to be de�ned on the moving domain

( t). Therefore we introduce the admissible spaces of test functionson the reference
domain D

U(~b) := f ~� 2 [H 1(D)]d : ~� = ~b on @1D ; ~� :~n = 0 on @2Dg ;

P := L 2(D) ; eP := f � 2 P :
Z

D
� dL d = 0 g;
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for a given~b 2 [H 1(D)]d . Then, using the ALE mapping, we can de�ne the admis-
sible spaces of test functions on the moving domain 
(t) by setting

U(~b) := f ~� :
[

t 2 [0;T ]


( t) � f tg ! Rd; ~� = ~̂� � ~x � 1; ~̂� (�; t) 2 U(~b) 8 t 2 [0; T ]g ;

eP := f � :
[

t 2 [0;T ]


( t) � f tg ! R; � = �̂ � ~x � 1; �̂ (�; t) 2 eP 8 t 2 [0; T ]g :

Hence, the ALE weak formulation of (23), (14b{g) is given as follows. Given �(0) =
� 0 and ~u(�; 0) = ~u0, �nd (�( t)) t 2 [0;T ] and (~u; p;{ ) 2 U(~g) � eP � H 1(

S
t 2 [0;T ] �( t) �

f tg) such that
�

� ~u t jD ; ~�
�


( t )
+

�
� ((~u � ~W) : r ) ~u;~�

�


( t )
+ 2

�
� D (~u); D (~� )

�


( t )

�
�

p; r : ~�
�


( t )
� 

D
{ ~�; ~�

E

�( t )
=

�
~f ; ~�

�


( t )
8 ~� 2 U(~0) ;(24a)

(r : ~u; ' )
( t ) = 0 8 ' 2 eP ;(24b)

and (17c,d) hold for almost all times t 2 (0; T ]. Here (�; �)
( t ) denotes theL 2{inner
products on 
( t).

3. Finite element approximations

3.1. Eulerian �nite element approximations. We consider the partitioning
tm = m � , m = 0 ; : : : ; M , of [0; T ] into uniform time steps � = T

M , see [12].
Moreover, let T m , 8 m � 0, be a regular partitioning of the domain 
 into disjoint
open simplicesom

j , j = 1 ; : : : ; J m

 . From now on, the domain 
 which we consider

is the polyhedral domain de�ned by the triangulation T m . On T m we de�ne the
�nite element spaces

Sm
k := f � 2 C(
) : � jom 2 P k (om ) 8 om 2 T m g; k 2 N ;

where Pk (om ) denotes the space of polynomials of degreek on om . Moreover, Sm
0

is the space of piecewise constant functions onT m and let ~I m
k be the standard

interpolation operator onto [Sm
k ]d.

Let Um (~g) � U(~I m
k ~g) and Pm � P be the �nite element spaces we use for the

approximation of velocity and pressure, and letePm := Pm \ eP. In this paper, we
restrict ourselves to the choice P2{(P1+P0), i.e. we setUm (~0) = [ Sm

2 ]d \ U(~0) and
Pm = Sm

1 + Sm
0 , but generalizations to other spaces are easily possible.

We consider a �tted �nite element approximation for the evolution of the inter-
face �( t). Let � m � Rd be a (d � 1)-dimensional polyhedral surface approximating
the closed surface �(tm ), m = 0 ; : : : ; M . Let 
 m

+ denote the exterior of � m and let

 m

� be the interior of � m , where we assume that �m has no self-intersections. Then

 = 
 m

� [ � m [ 
 m
+ , and the �tted nature of our method implies that


 m
+ =

[

o2T m
+

o and 
 m
� =

[

o2T m
�

o ;

where T m = T m
+ [ T m

� and T m
+ \ T m

� = ; . Let ~� m denote the piecewise constant
unit normal to � m such that ~� m points into 
 m

+ . In addition, let � m = � + X
 m
+

+
� � X
 m

�
2 Sm

0 and � m = � + X
 m
+

+ � � X
 m
�

2 Sm
0 .

In order to de�ne the parametric �nite element spaces on � m , we assume that
� m =

S J �
j =1 � m

j , where f � m
j gJ �

j =1 is a family of mutually disjoint open ( d � 1)-

simplices with verticesf ~qm
k gK �

k=1 . Then we de�ne V (� m ) := f ~� 2 [C(� m )]d : ~� j � m
j

2
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P1(� m
j ); j = 1 ; : : : ; J� g =: [ W (� m )]d, where W (� m ) � H 1(� m ) is the space of

scalar continuous piecewise linear functions on �m , with f � m
k gK �

k=1 denoting the
standard basis ofW (� m ). As usual, we parametrize the new surface �m +1 over � m

using a parametrization ~X m +1 2 V (� m ), so that � m +1 = ~X m +1 (� m ). Moreover,
let h�; �i h

� m be the mass lumped inner product on �m de�ned as

(25) hv; wi h
� m := 1

d

J �X

j =1

H d� 1(� m
j )

dX

k=1

(v w)(( ~qm
j k

)� );

where f ~qm
j k

gd
k=1 are the vertices of� m

j , and where we de�ne the limit v((~qm
j k

)� ) :=
lim

� m
j 3 ~p! ~qm

j k

v(~p). We naturally extend (25) to vector valued functions. Finally, let

h�; �i � m denote the standardL 2{inner product on � m .
Our fully discrete �nite element approximations based on the standard weak

formulation (17a{d) are given as follows. Here we consider an explicitand an
implicit treatment of the convective term in the Navier{Stokes equation.

(A h
ex): Let � 0, an approximation to �(0), and ~U0 2 U0(~g) be given. For m =

0; : : : ; M � 1, �nd ( ~Um +1 ; Pm +1 ; ~X m +1 ; � m +1 ) 2 Um (~g) � ePm � V (� m ) � W (� m )
such that
 

� m
~Um +1 � ~I m

2
~Um

�
; ~�

!

+
�

� m (~I m
2

~Um : r ) ~Um +1 ; ~�
�

+ 2
�

� m D( ~Um +1 ); D (~� )
�

�
�

Pm +1 ; r : ~�
�

� 
D

� m +1 ~� m ; ~�
E

� m
=

�
� m ~f m +1

1 + ~f m +1
2 ; ~�

�
8 ~� 2 Um (~0) ;

(26a)

�
r : ~Um +1 ; '

�
= 0 8 ' 2 ePm ;

(26b)

*
~X m +1 � ~id

�
; � ~� m

+ h

� m

�
D

~Um +1 ; � ~� m
E

� m
= 0 8 � 2 W (� m ) ;

(26c)



� m +1 ~� m ; ~�

� h

� m +
D

r s ~X m +1 ; r s ~�
E

� m
= 0 8 ~� 2 V(� m )

(26d)

and set � m +1 = ~X m +1 (� m ). Here we have de�ned ~f m +1
i (�) := ~I m

2
~f i (�; tm +1 ),

i = 1 ; 2.
(A h

im ): Let � 0, an approximation to �(0), and ~U0 2 U0(~g) be given. For m =
0; : : : ; M � 1, �nd ( ~Um +1 ; Pm +1 ; ~X m +1 ; � m +1 ) 2 Um (~g) � ePm � V (� m ) � W (� m )
such that
 

� m
~Um +1 � ~I m

2
~Um

�
; ~�

!

+
�

� m ( ~Um +1 : r ) ~Um +1 ; ~�
�

+ 2
�

� m D( ~Um +1 ); D (~� )
�

�
�

Pm +1 ; r : ~�
�

� 
D

� m +1 ~� m ; ~�
E

� m
=

�
� m ~f m +1

1 + ~f m +1
2 ; ~�

�
8 ~� 2 Um (~0) ;

(27)

and (26b{d), and set � m +1 = ~X m +1 (� m ). Since the convective term in (26a) is
treated explicitly, the scheme (A h

ex) is a linear scheme that leads to a coupled linear
system of equations for the unknowns (~Um +1 ; Pm +1 ; ~X m +1 ; � m +1 ) at each time
level. On the other hand, in (27) the convective term is treated implicitly, and so



622 M. AGNESE AND R. N •URNBERG

(A h
im ) is a nonlinear scheme that leads to a coupled nonlinear system of equations

for the unknowns (~Um +1 ; Pm +1 ; ~X m +1 ; � m +1 ) at each time level.
An alternative fully discrete �nite element approximation is based on t he formu-

lation (18), (17b{d). In particular, we consider the following scheme.
(Bh ): Let � 0, an approximation to �(0), and ~U0 2 U0(~g) be given. For m =

0; : : : ; M � 1, �nd ( ~Um +1 ; Pm +1 ; ~X m +1 ; � m +1 ) 2 Um (~g) � ePm � V (� m ) � W (� m )
such that
1
�

�
1
2 (I m

0 � m � 1 + � m ) ~Um +1 � I m
0 � m � 1~I m

2
~Um ; ~�

�
+ 1

2

�
(� m ~I m

2
~Um : r ) ~Um +1 ; ~�

�

� 1
2

�
(� m ~I m

2
~Um : r ) ~� ; ~Um +1

�
+ 2

�
� m D( ~Um +1 ); D (~� )

�
�

�
Pm +1 ; r : ~�

�

� 
D

� m +1 ~� m ; ~�
E

� m
=

�
� m ~f m +1

1 + ~f m +1
2 ; ~�

�
8 ~� 2 Um (~0) ;

(28)

and (26b{d), and set � m +1 = ~X m +1 (� m ). We note that the scheme (Bh ) corre-
sponds to [12, (4.6a{d)] in the setting of an un�tted �nite element a pproximation.
Similarly to [12, Theorem 4.1] it is then straightforward to show that t here exists
a unique solution to (Bh ) that ful�ls an energy inequality. In the un�tted case
this energy inequality leads to an overall stability result if the bulk mesh does not
change. Of course, in the �tted case considered here this will never be the case, un-
less the interface is stationary. Nevertheless, it is of interest to see how the scheme
(Bh ) performs in practice, compared to (A h

ex) and (A h
im ).

Moreover, we remark that all three schemes, (A h
ex), (A h

im ) and (Bh ), share the
equations (26d). Apart from de�ning the discrete curvature, th e equations (26d)
can also be viewed as a side constraint on the distribution of mesh points, see [8, 9]
for further details. In particular, they lead to an implicit tangential motion of the
vertices on the discrete interface, so that the vertices of �m will in general be very
well distributed in practice. For example, in the cased = 2 it is possible to prove
an asymptotic equidistribution property, see [2, Theorem 5].

Finally, we stress that the three schemes (A h
ex), (A h

im ) and (Bh ), all feature at
least one term containing the interpolated velocity ~I m

2
~Um , and so an interpolation

of the old velocity ~Um onto the new meshT m is necessary, see alsox4.1.4 below.
In order to avoid such an interpolation, we consider an ALE formulation next.

3.2. ALE �nite element approximation. In order to derive our fully discrete
ALE �nite element approximation, we �rst introduce a semidiscrete c ontinuous-in-
time �tted �nite element approximation of (24a{d). Let Th be a regular partitioning
of the reference domainD into disjoint open simplices oh

j , j = 1 ; : : : ; J h
D . From now

on, the reference domainD, which we consider, is the polyhedral domain de�ned
by the triangulation Th . On Th we de�ne the �nite element spaces

Sh
k (D) := f � 2 C(D) : � joh 2 P k (oh ) 8 oh 2 Th g; k 2 N ;

as well asSh
0 (D), the space of piecewise constant functions onTh .

Then, using the discrete ALE mapping~xh , we can de�ne the �nite element spaces
on the discretized moving domains 
h (t) = ~xh (D; t) by

Sh
k (
 h (t)) := f � : 
 h (t) ! R; � = �̂ � ~x � 1

h ; �̂ 2 Sh
k (D)g ; k 2 N [ f 0g :

Here ~xh 2 [Sh
1 ]d maps each simplex with straight faces inTh to a simplex with

straight faces belonging to the triangulationT h (t) of the discretized moving domain

 h (t). For later use, we let Uh (~g; t) � [Sh

2 (
 h (t))]d and eP h (t) � Sh
1 (
 h (t)) +
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Sh
0 (
 h (t)) denote the appropriate spaces for the discrete velocities and pressure. In

addition, we also de�ne the discrete domain velocity as

(29) ~W h (~z; t) :=
K 
X

k=1

�
d
dt

~ph
k (t)

�
' h

k (~z; t) 2 [Sh
1 (
 h (t))]d ;

with f ' h
k (�; t)gK 


k=1 denoting the standard basis ofSh
1 (
 h (t)), and f ~ph

k (t)gK 

k=1 denot-

ing the vertices of T h (t).
Given (� h (t)) t 2 [0;T ], a family of (d � 1)-dimensional polyhedral surfaces with

unit normal ~� h (t) pointing into 
 h
+ (t), the exterior of � h (t), analogously to the

fully discrete case discussed in the previous section, we introduce the piecewise
linear �nite element spaces W (� h (t)) and V (� h (t)), with f � h

k (�; t)gK �
k=1 denoting

the standard basis of the former. Hence� h
k (~qh

l (t); t) = � kl for all k; l 2 f 1; : : : ; K � g
and t 2 [0; T ], where f ~qh

k (t)gK �
k=1 are the vertices of �h (t). We also notice that the

discrete interface velocity ~Vh de�ned as

(30) ~Vh (~z; t) :=
K �X

k=1

�
d
dt

~qh
k (t)

�
� h

k (~z; t) 2 V (� h (t)) ;

see e.g. [11, (3.3)], is simply the trace of~W h on � h . We also introduce the interior

 h

� (t) = 
( t) n 
 h
+ (t), and the L 2{inner products ( �; �)
 h ( t ) and h�; �i � h ( t ) on 
 h (t)

and � h (t), respectively. Moreover, let h�; �i h
� h ( t ) be the mass lumped inner product

on � h (t). Finally, we let ~f h
i (�; t) := ~I h

2
~f i (�; t), i = 1 ; 2, where ~I h

2 denotes the
standard interpolation operator onto [Sh

2 (
 h (t))]d, and set � h (t) = � + X
 h
+ ( t ) +

� � X
 h
� ( t ) 2 Sh

0 (
 h (t)) and � h (t) = � + X
 h
+ ( t ) + � � X
 h

� ( t ) 2 Sh
0 (
 h (t)).

Then, given � h (0) and ~Uh (0) 2 Uh (~g;0), for t 2 (0; T ] �nd � h (t) and
( ~Uh ; Ph ; ~Vh ; � h )( t) 2 Uh (~g; t) � eP h (t) � V (� h (t)) � W (� h (t)) such that

�
� h ~Uh

t

�
�
�
D

; ~�
�


 h ( t )
+

�
� h (( ~Uh � ~W h ) : r ) ~Uh ; ~�

�


 h ( t )
+ 2

�
� h D( ~Uh ); D (~� )

�


 h ( t )

�
�

Ph ; r : ~�
�


 h ( t )
� 

D
� h ~� h ; ~�

E

� h ( t )
=

�
� h ~f h

1 + ~f h
2 ; ~�

�


 h ( t )
8 ~� 2 Uh (~0; t) ;

(31a)

�
r : ~Uh ; '

�


 h ( t )
= 0 8 ' 2 eP h (t) ;

(31b)

D
~Vh ; � ~� h

Eh

� h ( t )
�

D
~Uh ; � ~� h

E

� h ( t )
= 0 8 � 2 W (� h (t)) ;

(31c)



� h ~� h ; ~�

� h

� h ( t ) +
D

r s
~id; r s ~�

E

� h ( t )
= 0 8 ~� 2 V (� h (t)) :

(31d)

The semidiscrete continuous-in-time �tted �nite element scheme (31a{d) is a system
of ODEs. Indeed, on de�ning the appropriate time-dependent matrices and vectors,



624 M. AGNESE AND R. N •URNBERG

we can rewrite (31a{d) in algebraic form as

~M h

 (t)

d
dt

~U + ~B h

 (t) ~U + ~D h




�
t; ~Uh ; ~W h � ~U + ~Ch


 (t)P �  ~N h
� ;
 (t)� = ~ch (t; ~f h

1 ; ~f h
2 ) ;

(32a)

[ ~Ch

 (t)]T ~U = 0 ;

(32b)

[ ~N h
� (t)]T d

dt
~X � ~N h

� ;
 (t) ~U = 0 ;

(32c)

~N h
� (t)� + ~Ah

� (t) ~X = 0 ;

(32d)

where ~U, P, � and ~X are the unknown vectors for the velocity, pressure, interface
curvature and interface position, respectively. See [2, (6.15)] for details.

It is now straightforward to obtain a fully discrete �nite element app roximation
of (32a{d), since the only missing part is the temporal discretization. On recalling
the partitioning tm = m � , m = 0 ; : : : ; M , of [0; T ], and on applying a semi-implicit
Euler scheme to (32a{d), we obtain

1
�

~M h

 (tm +1 ) ~Um +1 + ~B h


 (tm ) ~Um +1 + ~D h



�
tm ; ~Um +1 ; ~W m +1 � ~Um +1 + ~Ch


 (tm )Pm +1

�  ~N h
� ;
 (tm )� m +1 =

1
�

~M h

 (tm +1 ) ~Um + ~ch (tm ; ~f m +1

1 ; ~f m +1
2 ) ;

(33a)

[ ~Ch

 (tm )]T ~Um +1 = 0 ;

(33b)

1
�

[ ~N h
� (tm )]T ~X m +1 � ~N h

� ;
 (tm ) ~Um +1 =
1
�

[ ~N h
� (tm )]T ~X m ;

(33c)

~N h
� (tm )� m +1 + ~Ah

� (tm ) ~X m +1 = 0 ;

(33d)

where ~W m , m = 1 ; : : : ; M are some fully discrete bulk mesh velocities which,
starting from 
 0, induce a sequence of bulk meshes 
m = ~xm (D), m = 1 ; : : : ; M ,
where ~xm 2 [Sh

1 (
 m )]d is an approximation to ~xh (�; tm ).
Following [45], we now rewrite (33a{d) into a form that is common in the � nite

element literature. Firstly, let Um (~g) = f ~� : 
 m ! Rd; ~� = ~̂� � (~xm ) � 1; ~̂� 2 U(~g) \
[Sh

2 (D)]dg and eP m = f � : 
 m ! R; � = �̂ � (~xm ) � 1; �̂ 2 eP \ (Sh
1 (D) + Sh

0 (D))g.
Now to ease the notation, we introduce the following convention. For a function
hk de�ned on 
 k , we can immediately transport it to any other con�guration 
 m ,
with k 6= m, using the mapping ~xk � (~xm )� 1. Hence, when we need to integrate
hk on 
 m we will write simply

R

 m hk dL d instead of

R

 m hk � ~xk � (~xm )� 1 dL d,

and we will adopt the same notation used for the inner products. Then, our ALE
�nite element approximation (33a{d), which is based on the variational formulation
(24a{d), can be written as follows.

(Ch
ALE ): Let 
 0, � 0, and ~U0 2 U0(~g) be given. For m = 0 ; : : : ; M � 1, �nd

( ~Um +1 ; Pm +1 ; ~X m +1 ; � m +1 ; ~W m +1 ) 2 Um +1 (~g) � eP m +1 � V (� m ) � W (� m )�
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[Sh
1 (
 m )]d such that ~W m +1 j � m = 1

� ( ~X m +1 � ~id j � m ) and such that
�

� m

�
~Um +1 ; ~�

�


 m +1

+
�

� m (( ~Um +1 � ~W m +1 ) : r ) ~Um +1 ; ~�
�


 m

+ 2
�

� m D( ~Um +1 ); D (~� )
�


 m
�

�
Pm +1 ; r : ~�

�


 m
� 

D
� m +1 ~� m ; ~�

E

� m

=
�

� m

�
~Um ; ~�

�


 m +1

+
�

� m ~f m +1
1 + ~f m +1

2 ; ~�
�


 m
8 ~� 2 Um (~0) ;(34a)

�
r : ~Um +1 ; '

�


 m
= 0 8 ' 2 eP m ;(34b)

and (26c,d), and set �m +1 = ~X m +1 (� m ), as well as 
 m +1 = ~xm +1 (D), where
~xm +1 = ~xm + � ~W m +1 . Here we note that in practice the bulk mesh velocity ~W m +1

will be obtained with the help of an iterative solution and smoothing procedure,
see the next section for more details. Moreover, we recall that the side constraint
(26d) will lead to a uniform distribution of the vertices on � m in the cased = 2,
and to well distributed vertices in d = 3.

We stress that since the ALE formulation describes the evolution ofthe solution
along trajectories, the velocity ~Um is de�ned on all the domains, and so in partic-
ular on 
 m and 
 m +1 . Hence no interpolation of the velocity is necessary in the
ALE formulation, unless a full bulk remeshing is performed because of severe mesh
deformations. Finally we remark that at the discrete level, the domain 
 m often
plays the role of the reference manifold, so thatD is never used in practice.

4. Solution methods

4.1. Eulerian schemes. In this subsection we discuss the solution methods and
other implementation issues for the three Eulerian schemes (A h

ex), (A h
im ) and (Bh ).

4.1.1. Algebraic formulations. As is standard practice for the solution of lin-
ear systems arising from discretizations of Navier{Stokes equations, we avoid the
complications of the constrained pressure spaceePm in practice by considering an
overdetermined linear system withPm instead. For example, for the scheme (A h

ex)
we consider the system (26a{d) with ePm replaced by Pm . For non-zero Dirichlet
boundary data ~g this requires a correction term on the right hand side of (26b). In
particular, we replace (26b) with

(35)
�

r : ~Um +1 ; '
�

=
('; 1)
L d(
)

Z

@1 

(~I m

2 ~g) :~n dH d� 1 8 ' 2 Pm :

The linear system of equations arising at each time step of the scheme (A h
ex) then can

be formulated as: Find (~Um +1 ; Pm +1 ; � m +1 ; � ~X m +1 ), where ~X m +1 = ~X m + � ~X m +1 ,
such that

(36)

0

B
B
B
@

~B 
 ~C
 �  ~N � ;
 0
~CT


 0 0 0
~N T

� ;
 0 0 � 1
�

~N T
�

0 0 ~N � ~A �

1

C
C
C
A

0

B
B
@

~Um +1

Pm +1

� m +1

� ~X m +1

1

C
C
A =

0

B
B
@

~c
~�
0

� ~A � ~X m

1

C
C
A ;

where (~Um +1 ; Pm +1 ; � m +1 ; � ~X m +1 ) here, in a slight abuse of notation, denote the
coe�cients of these �nite element functions with respect to some chosen basis func-
tions. Moreover, ~X m denotes the coe�cients of ~id j � m with respect to the basis
of V (� m ). The de�nitions of the matrices and vectors in (36) directly follow f rom
(26a,c,d), (35), and their exact de�nitions can be found in e.g. [2,x5.5]. Note that
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for the submatrices we have used the convention that the subscripts refer to the test
and trial domains, respectively. A single subscript is used where thetwo domains
are the same. Of course, the algebraic formulation of the linear scheme (Bh ) can
also be stated in the form (36).

In order to solve the nonlinear scheme (A h
im ), we employ the following �xed

point iteration. Let � m and ~Um 2 Um � 1(~g) be given. Let ~Um +1 ;0 = ~I m
2

~Um and
�x � f > 0. Then, for s � 0, �nd ( ~Um +1 ;s+1 ; Pm +1 ;s+1 ; ~X m +1 ;s+1 ; � m +1 ;s+1 ) 2
Um (~g) � Pm � V (� m ) � W (� m ) such that

 

� m
~Um +1 ;s+1 � ~I m

2
~Um

�
; ~�

!

+
�

(� m ~Um +1 ;s : r ) ~Um +1 ;s+1 ; ~�
�

+ 2
�

� m D( ~Um +1 ;s+1 ); D (~� )
�

�
�

Pm +1 ;s+1 ; r : ~�
�

� 
D

� m +1 ;s+1 ~� m ; ~�
E

� m

=
�

� m ~f m +1
1 + ~f m +1

2 ; ~�
�

8 ~� 2 Um (~0) ;

(37a)

�
r : ~Um +1 ;s+1 ; '

�
=

('; 1)
L d(
)

Z

@1 

(~I m

2 ~g) :~n dH d� 1 8 ' 2 Pm ;

(37b)

*
~X m +1 ;s+1 � ~id

�
; � ~� m

+ h

� m

�
D

~Um +1 ;s+1 ; � ~� m
E

� m
= 0 8 � 2 W (� m ) ;

(37c)



� m +1 ;s+1 ~� m ; ~�

� h

� m +
D

r s ~X m +1 ;s+1 ; r s ~�
E

� m
= 0 8 ~� 2 V(� m ) ;

(37d)

and repeat the iteration until k~Um +1 ;s+1 � ~Um +1 ;skL 1 � � f . Finally, set � m +1 =
~X m +1 ;s+1 (� m ) and ( ~Um +1 ; Pm +1 ; � m +1 ) = ( ~Um +1 ;s+1 ; Pm +1 ;s+1 ; � m +1 ;s+1 ).
Clearly, (37a{d) is a linear system for the unknowns (~Um +1 ;s+1 ; Pm +1 ;s+1 ; ~X m +1 ;s+1 ;
� m +1 ;s+1 ) that is of the form (36).

Remark 1. At times we will be interested in numerical simulations for non diver-
gence-free solutions, in particular when considering our convergence experiments in
x5.1. Here the condition (3b) is replaced byr : ~u = f div in 
 � (t). Clearly, this
leads to an additional term on the right-hand side of the discrete continuity equation
(26b). In particular, we have to replace(35) with
(38)

�
r : ~Um +1 ; '

�
=

�
f div ; ' �

('; 1)
(1; 1)

�
+

('; 1)
L d(
)

Z

@1 

(~I m

2 ~g) :~n dH d� 1 8 ' 2 Pm :

The same adjustment is made on the right-hand side of(37b). In addition, we
observe that the weak formulation(18) needs to be suitably adjusted, with the ad-
ditional term 1

2 (� f div ~u;~� ) on the right-hand side of(18), see[2] for details. As a
consequence, the term1

2 (� m f div ~Um ; ~� ) needs to be added to the right-hand side of
(28) for the scheme(Bh ).

4.1.2. Solvers for the linear (sub)problems. Following the authors' approach
in [3], see also [12, 10], for the solution of (36) we use a Schur complement approach
that eliminates ( � m +1 ; � ~X m +1 ) from (36), and then use an iterative solver for the
remaining system in (~Um +1 ; Pm +1 ). This approach has the advantage that for
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the reduced system well-known solution methods for �nite element discretizations
for standard Navier{Stokes discretizations may be employed. Thedesired Schur
complement can be obtained as follows. Let

(39) � � :=
�

0 � 1
�

~N T
�

~N � ~A �

�
;

be the interface condensed operator. Then (36) can be reducedto

 
~B 
 +  ( ~N � ;
 0) � � 1

�

� ~N T
� ; 

0

� ~C

~CT


 0

! �
~Um +1

Pm +1

�
=

 
~c+  ( ~N � ;
 0) � � 1

�

� 0
� ~A � ~X m

�

~�

!(40a)

and

(40b)
�

� m +1

� ~X m +1

�
= � � 1

�

�
� ~N T

� ;

~Um +1

� ~A � ~X m

�
:

We notice that when  = 0 the linear system (40a) becomes

(41)
� ~B 
 ~C


~CT

 0

� �
~Um +1

Pm +1

�
=

�
~c
~�

�
;

which for � + = � � and � + = � � corresponds to a discretization of the one-phase
Navier{Stokes problem. This system is well known and a classical wayto solve it
is to use a preconditioned GMRES iteration. Therefore, we solve (40a), which is
a slight modi�cation of (41), employing a preconditioned GMRES iterat ive solver.
For the inverse � � 1

� we employ a sparseLU decomposition, which we obtain with
the help of the sparse factorization package UMFPACK, see [18], inorder to reuse
the factorization. Having obtained ( ~Um +1 ; Pm +1 ) from (40a), we solve (40b) for
(� m +1 ; � ~X m +1 ).

As preconditioner for (40a) we employ the standard Navier{Stokes matrix

(42)
� ~B 
 ~C


~CT

 0

�
;

recall (41). Of course, as the pressure in the Navier{Stokes problem (41) is only
unique up to a constant, the block matrix (42) is singular. Hence, in order to
e�ciently apply the preconditioner (42) as part of an iterative solut ion method
for (40a), one can either use a sparseQR factorization method as provided by
SPQR, see [19]. Alternatively, the matrix (42) can be suitably doctored to make
it invertible, and then a sparse LU factorization can be obtained with the help of
UMFPACK, see [18], as usual. In practice we pursued the latter approach, as it
proved to be slightly more e�cient. We refer to [2, x4.6] for more details.

4.1.3. Mesh generation and smoothing. Given the initial polyhedral surface
� 0, we create a triangulation T 0 of 
 that is �tted to � 0 with the help of the
packageGmsh, see [33]. The mesh generation process is controlled by characteristic
length parameter, which describes the �neness of the resulting mesh. Then, for
m � 0, having computed the new interface �m +1 , we would like to obtain a bulk
triangulation T m +1 that is �tted to � m +1 , and ideally is close toT m . This is to
avoid unnecessary overhead from remeshing the domain 
 completely. To this end,
we perform the following smoothing step onT m , which is inspired by the method
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proposed in [29], see also [31]. Having obtained� ~X m +1 from the solution of (36),
we solve the linear elasticity problem: Find a displacement~ 2 [H 1(
)] d such that
(43)
r : (2 D( ~ ) + ( r :~ ) id ) = ~0 in 
 m

� ; ~ = � ~X on � m ; ~ :~n = 0 on @
 :

In practice we approximate (43) with piecewise linear elements and solve the result-
ing system of linear equations with the UMPFACK package, see [18]. The obtained
discrete variant of ~ , at every vertex of the current bulk grid T m , then represents
the variation in their position that we compute in order to obtain T m +1 .

Occasionally the deformation of the mesh becomes too large, and soa complete
remeshing of 
 becomes necessary. In order to detect the need for a complete
remeshing, we de�ne the angle criterion

(44) min
o2T m +1

min
� 2 ] (o)

� � Ca ;

where Ca is a �xed constant. Moreover, ] (o) is the set of all the angles of the
simplex o, which can be computed as� ij = cos� 1(� ~ni : ~nj ), 8 i; j 2 f 0; : : : ; dg,
with ~ni the unitary normal to the simplex face i . In practice we perform a full
remeshing if the criterion (44) holds with Ca = 20 � . We stress that in all our
numerical simulations we never need to remesh the interface �m itself.

4.1.4. Velocity interpolation. We notice that in the three Eulerian schemes
(A h

ex), (A h
im ) and (Bh ), all feature at least one term containing the interpolated

velocity ~I m
2

~Um . Here the interpolation operator is needed because the velocity
~Um , which has been computed at time levelm � 1, is de�ned on T m � 1. Therefore,
at the next time level m, the previous velocity ~Um needs to be interpolated onT m ,
which will in general be di�erent from T m � 1, in order to be used.

The interpolation routine simply consists in evaluating the discrete function ~Um

in all the degrees of freedom of a piecewise quadratic function de�ned on T m . The
e�ciency of this computation hinges on quickly �nding the element in th e bulk
triangulation T m � 1 that contains the coordinates of the degree of freedom onT m

that is currently of interest. Of course, a naive linear looping over all elements in
T m � 1 is highly ine�cient. A simple optimization to this naive search consists in
starting a guided search from the last correctly found element, in the hope that
the degrees of freedom onT m are traversed in such a way, the successive points
are close to each other. If the element does not contain the new point, then the
guided search moves to the neighbouring element that is opposite the vertex with
the largest distance to the new point. For a convex domain, this search is always
well-de�ned. For nonconvex domains this guided search can be combined with a
naive linear search whenever a boundary face is encountered in thelocal search for
the next neighbour.

The last ingredient to our velocity interpolation algorithm is the trave rsal of
the degrees of freedom onT m . Ideally we would like to have a continuous path
of elements, which visits, only once, all the elements ofT m . This ensures that
successive degrees of freedom on the new mesh are spatially close,and so the local
guided search for the next element ofT m � 1 to visit is likely to be very short.
Unfortunately, since we use unstructured meshes, such a path,in general, is di�cult
to construct. Hence, instead of explicitly constructing such a path, we create a
�ctitious background lattice � Zd \ 
 that covers the domain 
. Then each element
of T m is assigned to the point on the lattice that is closest to its barycentre.
Depending on the size of the lattice,� , multiple entities can be mapped to the
same point on the lattice. Since the lattice is structured, it is straightforward to
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build a continuous path which visits all its points. For example, for a rectangular
domain in 2d we can use a snaking path that traverses the lattice alternating left-
to-right and right-to-left, see Figure 2. Now, in practice, the elements of T m are

Figure 2. Continuous path (red) traversing a �ctitious back-
ground lattice.

visited following the given lattice path. This means that, for each latt ice point
traversed, the associated entities onT m are visited. Clearly, for the algorithm to
be e�cient, the lattice size � should be neither too small nor too large. In practice
we use� proportional to the characteristic length of the bulk mesh.

4.2. ALE scheme. The solution technique used to solve the ALE scheme (Ch
ALE )

is very similar to the one used to solve the nonlinear scheme (A h
im ), recall (37a{d),

in that we use a �xed point iteration. However, the main di�erence is t hat at each
time step for the ALE scheme we also �nd a bulk mesh velocity ~W m +1 , and hence
a new bulk mesh 
 m +1 , as part of the solution process. More precisely, we �nd a
solution for the scheme (Ch

ALE ) as follows. Let � m and ~Um 2 Um (~g) be given. Set
~Um +1 ;0 = ~Um , ~ m +1 ;0 = ~0, 
 m +1 ;0 = 
 m and �x � f > 0. Then, for s � 0, �nd
( ~Um +1 ;s+1 ; Pm +1 ;s+1 ; ~X m +1 ;s+1 ; � m +1 ;s+1 ) 2 Um (~g) � P m � V (� m ) � W (� m ) such
that
�

� m

�
~Um +1 ;s+1 ; ~�

�


 m +1 ;s

+

  

� m

 

~Um +1 ;s �
~ m +1 ;s

�

!

: r

!

~Um +1 ;s+1 ; ~�

!


 m

+ 2
�

� m D( ~Um +1 ;s+1 ); D (~� )
�


 m
�

�
Pm +1 ;s+1 ; r : ~�

�


 m
� 

D
� m +1 ;s+1 ~� m ; ~�

E

� m

=
�

� m

�
~Um ; ~�

�


 m +1 ;s

+
�

� m ~f m +1
1 + ~f m +1

2 ; ~�
�


 m
8 ~� 2 Um (~0) ;

(45a)

�
r : ~Um +1 ;s+1 ; '

�


 m
=

('; 1)
 m

L d(
)

Z

@1 
 m
(~I m

2 ~g) :~n dH d� 1 8 ' 2 P m ;

(45b)

*
~X m +1 ;s+1 � ~id

�
; � ~� m

+ h

� m

�
D

~Um +1 ;s+1 ; � ~� m
E

� m
= 0 8 � 2 W (� m ) ;

(45c)



� m +1 ;s+1 ~� m ; ~�

� h

� m +
D

r s ~X m +1 ;s+1 ; r s ~�
E

� m
= 0 8 ~� 2 V (� m ) :

(45d)
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Having obtained ~X m +1 ;s+1 , the new bulk displacement ~ m +1 ;s+1 is computed via
the linear elasticity problem (43), seex4.1.3, and the new bulk mesh 
m +1 ;s+1 is
updated accordingly. This iteration is repeated until kUm +1 ;s+1 � Um +1 ;skL 1 � � f

and k~ m +1 ;s+1 � ~ m +1 ;skL 1 � � f . Finally, set � m +1 = ~X m +1 ;s+1 (� m ), 
 m +1 ;s+1 =

 m +1 and (~Um +1 ; Pm +1 ; � m +1 ; ~W m +1 ) = ( ~Um +1 ;s+1 ; Pm +1 ;s+1 ; � m +1 ;s+1 ;
1
�  m +1 ;s+1 ). Clearly, (45a{d) is once again a linear system of equations for the
unknowns (~Um +1 ;s+1 ; Pm +1 ;s+1 ; ~X m +1 ;s+1 ; � m +1 ;s+1 ) of the form (36).

Similarly to the Eulerian schemes, we monitor the mesh quality of the bulk
meshes 
m +1 with the help of the criterion (44). In practice, if (44) holds with
Ca = 20 � , then we perform a full remeshing of the domain 
, keeping � m +1 �xed,
and obtain the discrete velocity approximation on the new mesh via the procedure
described inx4.1.4.

5. Numerical results

We implemented our numerical schemes within theDUNEframework, using the
FEM toolbox dune-fem, see [14, 13, 21]. As grid manager we employedALBERTA,
[52], and all the meshes were created with the libraryGmsh, [33]. All the schemes de-
scribed in this paper are implemented as aDUNEmodule calleddune-navier-stokes
-two-phase , available at https://github.com/magnese/dune-navier-stokes-
two-phase. The simulations were performed as single thread computations on a
cluster of Xeon CPUs with frequency between 2.40GHz to 3.00GHz, and with at
least 16GB of memory.

5.1. Convergence experiments. Here we consider convergence experiments for
exact solutions to the incompressible two-phase Navier{Stokes ow problem. These
exact solutions will be characterised by expanding spheres. In particular, let �( t) =
f ~z 2 Rd : j~zj = r (t)g be a sphere of radiusr (t), with curvature { (t) = � d� 1

r ( t ) . Then,
for � 2 R� 0, it can be shown that the expanding sphere with radius

(46a) r (t) = e � t r (0) ;

together with
(46b)

~u(~z; t) = � ~z ; p (~z; t) = �
�
 � 2 �

� + � � �

d � 1
r (t)

�
{ (t)

�
X
 � ( t ) �

L d(
 � (t))
L d(
)

�
;

is an exact solution to the problem (14a{g), with (14b) replaced by

r : ~u = � d in 
 � (t) ;

and with ~f (�; t) = � � 2 ~id and ~g = � ~id on e.g. 
 = ( � 1; 1)d with @1
 = @
.
A nontrivial divergence free and radially symmetric solution ~u can be constructed

on a domain that does not contain the origin. To this end, consider e.g. 
 =
(� 1; 1)d n [� 1

3 ; 1
3 ]d. Then, for � 2 R� 0, the expanding sphere with radius

(47a) r (t) = ([ r (0)]d + � t d )
1
d ;

together with
(47b)

~u(~z; t) = �
~z

j~zjd
; p(~z; t) = �

�
 + 2 �

� + � � �

r (t)d� 1

�
{ (t)

�
X
 � ( t ) �

L d(
 � (t))
L d(
)

�
;

is an exact solution to the problem (14a{g) with ~f (~z; t) = � (1 � d) � 2 j~zj � 2d ~z and
~g(~z) = � j~zj � d ~z on @1
 = @
.

https://github.com/magnese/dune-navier-stokes-
two- phase
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Table 1. Discretization parameters for the convergence experi-
ments. The values forJ M


 correspond to the scheme (A h
im ).

(46a,b) (47a,b)
J � � J 0


 J M

 J 0


 J M



32 6:4 � 10� 2 296 310 460 216
64 1:6 � 10� 2 1 240 1 240 1 040 444

128 4� 10� 3 4 836 4 836 2 628 1 378
256 10� 3 18 476 18 476 7 460 4 476

Table 2. (� + = � � = � + = � � =  = 1 ; � = 0 :15) Convergence
experiments for (46a,b) on (� 1; 1)2 over the time interval [0; 1],
with the discretization parameters from Table 1.

J � k � h � � k L 1 k ~U � I h
2 ~u k L 2 EOC k ~U � I h

2 ~u k L 2 ( H 1 ) k P � pk L 2 EOC CPU[s]

( A h
ex )

32 3.96456e-04 0 - 0 3.05157e-01 - 5
64 1.03429e-04 0 - 0 1.57053e-01 0.96 61

128 2.61302e-05 0 - 0 7.09596e-02 1.15 1 317
256 6.53463e-06 0 - 0 1.99794e-02 1.79 29 194

( A h
im )

32 3.96456e-04 0 - 0 3.05157e-01 - 6
64 1.03429e-04 0 - 0 1.57053e-01 0.96 134

128 2.61302e-05 0 - 0 7.09596e-02 1.15 2 649
256 6.53463e-06 0 - 0 1.99794e-02 1.79 49 990

( B h )
32 3.96456e-04 0 - 0 3.05157e-01 - 5
64 1.03429e-04 0 - 0 1.57053e-01 0.96 45

128 2.61302e-05 0 - 0 7.09596e-02 1.15 1 567
256 6.53463e-06 0 - 0 1.99794e-02 1.79 30 997

( Ch
ALE )

32 3.96823e-04 1.94467e-06 - 1.74315e-05 3.01900e-01 - 10
64 1.03462e-04 1.27547e-07 3.93 1.33117e-06 1.57054e-01 0 .94 160

128 2.61390e-05 4.26296e-08 1.58 3.78211e-07 7.09597e-02 1.15 2 420
256 6.53680e-06 1.09827e-08 1.91 9.46271e-08 1.99793e-02 1.79 47 181

For the following convergence tests, we choose the initial surface�(0) = f ~z 2
Rd : j~zj = 1

2 g, @1
 = @
 and adaptive bulk meshes that use a �ner resolution close
to the interface. We compute the discrete solution over the time interval [0; 1]. We
begin with the exact solution (46a,b) for � = 0 :15 on 
 = ( � 1; 1)2, with the physical
parameters� + = � � = � + = � � =  = 1. Details on the discretization parameters
are given in Table 1, where we also state the �nal number of bulk elements, J M


 ,
for the scheme (A h

im ). The values ofJ M

 for the remaining three schemes were very

similar.
We report on the computed errors in Table 2, where we have de�nedthe error

quantities

k� h � � kL 1 := max
m =1 ;:::;M

k� m � �( tm )kL 1 ;

where k� m � �( tm )kL 1 := max k=1 ;:::;K � dist(~qm
k ; �( tm )), as well as

k~U � I h
2 ~ukL 2 :=

"

�
MX

m =1

k~Um � I m
2 ~u(�; tm )k2

L 2 (
)

# 1
2

;

k~U � I h
2 ~ukL 2 (H 1 ) :=

"

�
MX

m =1

k~Um � I m
2 ~u(�; tm )k2

H 1 (
)

# 1
2

;
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Table 3. (� + = 103; � � = 102; � + = 10; � � = 1 ;  = 1 ; � = 0 :15)
Convergence experiments for (47a,b) on (� 1; 1)2 n [� 1

3 ; 1
3 ]2 over

the time interval [0 ; 1], with the discretization parameters from
Table 1.

J � k � h � � k L 1 k ~U � I h
2 ~u k L 2 EOC k ~U � I h

2 ~u k L 2 ( H 1 ) k P � pk L 2 EOC CPU[s]

( A h
ex )

32 4.13976e-03 1.24661e-03 - 2.59441e-02 2.28403e-00 - 8
64 1.07627e-03 4.80240e-04 1.38 1.35253e-02 1.20439e-00 0 .92 102

128 2.55529e-04 3.70025e-04 0.38 1.20309e-02 5.89258e-01 1.03 2 810
256 6.66480e-05 1.42910e-04 1.34 6.48222e-03 2.69953e-01 1.10 88 056

( A h
im )

32 3.99899e-03 1.23928e-03 - 2.61424e-02 2.30983e-00 - 11
64 1.07657e-03 4.80445e-04 1.37 1.35256e-02 1.20449e-00 0 .94 126

128 2.55562e-04 3.70165e-04 0.38 1.20325e-02 5.89236e-01 1.03 3 223
256 6.66478e-05 1.42914e-04 1.34 6.48232e-03 2.69982e-01 1.10 95 315

( B h )
32 5.56564e-02 3.33673e-01 - 8.38557e-00 9.98404e+01 - 8
64 1.05282e-03 4.75502e-04 9.45 1.37127e-02 2.01792e+01 2 .31 112

128 2.52742e-04 3.82170e-04 0.32 1.24067e-02 2.00690e+01 0.01 3 138
256 6.55951e-05 1.45885e-04 1.36 6.67192e-03 2.00294e+01 0 98 893

( Ch
ALE )

32 4.20717e-03 1.33379e-03 - 3.03240e-02 4.92318e-00 - 15
64 1.11280e-03 4.91358e-04 1.44 1.42754e-02 2.47229e-00 0 .99 90

128 2.54196e-04 3.30194e-04 0.57 1.31294e-02 1.24058e-00 0.99 991
256 6.37496e-05 1.35898e-04 1.25 6.41819e-03 6.08051e-01 1.01 11 970

and kP � pkL 2 :=
h
�

P M
m =1 kPm � p(�; tm )k2

L 2 (
)

i 1
2
. Moreover, we also de�ne the

estimated order of convergence EOC as EOC = lnerror1
error0

=ln h1

h0
, where error1 and

error0 are the errors for the computations with characteristic lengths h1 < h0.
We observe from Table 2 that the schemes (A h

ex), (A h
im ) and (Bh ) capture the

velocity solution exactly. This is possible because the true velocity is linear, see
(46b). We also notice that all the schemes capture the interface position with the
same accuracy and exhibit similar errors for the pressure. In terms of the overall
CPU times, we notice that the two linear schemes (A h

ex) and (Bh ), as well as the
two nonlinear schemes (A h

im ) and (Ch
ALE ), have similar execution times, with the

CPU times for the linear schemes lower than for the nonlinear schemes. Finally, we
note that the number of full remeshings performed whenJ � = 32 was, depending
on the scheme, between 1 and 4 while it was always 0 in all the other simulations
for this test case.

In a second set of convergence experiments, we �x 
 = (� 1; 1)2 n [� 1
3 ; 1

3 ]2 for
the exact solution (47a,b) with � = 0 :15 and the physical parameters

� + = 103 ; � � = 102 ; � + = 10 ; � � = 1 ;  = 1 :

We report on the errors of the exact solution (47a,b) in Table 3.
Firstly, we observe that the velocity and the interface position is captured with

similar accuracy by all four schemes. However, we notice that the pressure error
does not appear to converge for the scheme (Bh ), which may be caused by the dis-
continuous jumps in density and viscosity. In addition, the scheme (Ch

ALE ) exhibits
slightly higher pressure errors compared to (A h

ex) and (A h
im ). We also note the

vastly superior CPU times for the scheme (Ch
ALE ) compared to the other schemes.

This is caused by the fact that the domain is nonconvex, and so we employ a simple
linear search in our velocity interpolation routine, recall x4.1.4. Of course, the ALE
scheme only needs to interpolate the velocity when a complete bulk remeshing is
performed, and this leads to a signi�cant reduction in the total simulation time. Fi-
nally, we note that the number of full remeshings performed duringany simulation
for this test case was always between 3 and 9.
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Table 4. Discretization parameters for the benchmark problem I.

J � J 0

 J M



(A h

ex) (A h
im ) (Bh ) (Ch

ALE )
32 2 210 1 816 1 816 1 794 1 820
64 8 822 7 544 7 156 7 490 7 566

128 35 092 29 276 29 014 28 968 28 296

Table 5. (� + = 103; � � = 102; � + = 10; � � = 1 ;  = 24:5) Bench-
mark problem I, with the discretization parameters from Table 4.

J � = 32 J � = 64 J � = 128 J � = 32 J � = 64 J � = 128
(A h

ex) (A h
im )

s=min 0.8929 0.8975 0.9001 0.8925 0.8973 0.9004
ts== s=

min
1.9040 1.9040 1.9170 2.0410 1.9120 1.9160

Vc;max 0.2439 0.2424 0.2411 0.2439 0.2423 0.2410
tVc = Vc; max 0.9350 0.9300 0.9180 0.9340 0.9300 0.9190
zc(t = 3) 1.0829 1.0852 1.0822 1.0820 1.0841 1.0819
CPU[s] 10 236 29 610 234 396 17 771 72 837 403 904

(Bh ) (Ch
ALE )

s=min 0.8788 0.8851 0.8883 0.9013 0.9010 0.9030
ts== s=

min
1.7920 1.7190 1.6790 1.9460 1.9050 1.8460

Vc;max 0.2359 0.2344 0.2334 0.2435 0.2422 0.2410
tVc = Vc; max 0.8860 0.8820 0.8750 0.9370 0.9330 0.9200
zc(t = 3) 1.0648 1.0622 1.0607 1.0877 1.0865 1.0824
CPU[s] 5 887 19 703 146 538 13 628 63 136 351 867

5.2. Benchmark computations. Here we will present benchmark computations
for the two rising bubble test cases proposed in [41, Table I]. To this end, we use the
setup described in [41, Figure 2], which is 
 = (0; 1)� (0; 2) with @1
 = [0 ; 1]�f 0; 2g
and @2
 = f 0; 1g � (0; 2). Moreover, the initial interface is � 0 = f ~z 2 R2 :
j~z � ( 1

2 ; 1
2 )T j = 1

4 g. We also let ~f = � 0:98�~e2 and ~g = ~0. For the discretization
parameters, we choose� = 10 � 3, T = 3 and nearly uniform bulk meshes.

We recall that the paper [41] used the proposed benchmarks to compare two
di�erent codes based on the level-set method with a direct front tracking ALE
method, while the same benchmarks were used in [4, 32] to investigate di�erent
phase-�eld methods. Finally, in [12] an un�tted front tracking meth od was used
for these benchmark problems.

5.2.1. Benchmark problem I. The physical parameters for the test case 1 in
[41, Table I] are given by

(48) � + = 103 ; � � = 102 ; � + = 10 ; � � = 1 ;  = 24:5 :

We list our discretization parameters for this benchmark computation in Table 4,
and report on the quantitative results for our four schemes in Table 5. Here we have

de�ned the ~ed-component of the bubble's centre of mass aszm
c =

R

 m

�
~id :~ed dL d

L d (
 m
� ) , the
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Figure 3. (� + = 103; � � = 102; � + = 10; � � = 1 ;  = 24:5)
Pressure evolution for the benchmark problem I for the scheme
(A h

im ) with J � = 128 interface elements.
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Figure 4. Velocity vector �eld for the simulation in Figure 3.
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Figure 5. A plot of the sphericity s=over time for the simulation in
Figure 3 for the schemes (A h

ex) (orange), (A h
im ) (red), ( Bh ) (green)

and (Ch
ALE ) (blue).
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Figure 6. A plot of the rising velocity Vc over time for the sim-
ulation in Figure 3 for the schemes (A h

ex) (orange), (A h
im ) (red),

(Bh ) (green) and (Ch
ALE ) (blue).
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Figure 7. A plot of the barycentre zc over time for the simula-
tion in Figure 3 for the schemes (A h

ex) (orange), (A h
im ) (red), ( Bh )

(green) and (Ch
ALE ) (blue).

degree of sphericity ass=m = �
1
d [2dL d(
 m

� )]
d � 1

d =H d� 1(� m ), and the bubble's rise
velocity as V m

c =
R


 m
�

~Um :~ed dL d=L d(
 m
� ).

We observe that the results in Table 5 are in very good agreement, except for
the scheme (Bh ). For this reason, we do not consider the scheme (Bh ) further in
this section. The results for the remaining three schemes agree very well with the
corresponding numbers from the �nest discretization run of group 3 in [41], which
are given by 0.9013, 1.9000, 0.2417, 0.9239 and 1.0817, and which aregenerally
accepted as the most accurate in that paper. In fact, very similarresults are
also obtained in [12, Tables 2 and 3]. Moreover, we note that the number of full
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Figure 8. A plot of the relative inner area
L 2 (
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� ) over time for

the simulation in Figure 3 for the schemes (A h
ex) (orange), (A h

im )
(red), (Bh ) (green) and (Ch

ALE ) (blue).

Table 6. (� + = 103; � � = 1 ; � + = 10; � � = 0 :1;  = 1 :96) Bench-
mark problem II on 
 = (0 ; 1) � (0; 2) over the time interval [0; 3].

(A h
ex) (A h

im ) (Ch
ALE )

s=min 0.5435 0.5473 0.5266
ts== s=

min
3.0000 3.0000 3.0000

Vc;max 1 0.2503 0.2502 0.2502
tVc = Vc; max 1 0.7290 0.7290 0.7300

Vc;max 2 0.2403 0.2403 0.2400
tVc = Vc; max 2 2.1070 2.1540 2.0670

zc(t = 3) 1.1383 1.1387 1.1385
CPU[s] 132 498 236 635 236 253

remeshings performed during any simulation for this test case was always between
2 and 4.

In Figure 3 we show the evolution of the discrete pressures for a simulation
with J � = 128 interface elements using the scheme (A h

im ), while the velocities are
visualized in Figure 4.

Finally, in Figures 5, 6, and 7 are reported, respectively, the evolution of the
sphericity s=, rising velocity Vc and barycentre zc over time. We notice almost
identical results for the three schemes (A h

ex), (A h
im ) and (Ch

ALE ), which are in very
good agreement with the plots shown in [41]. We also note the excellentarea
conservation shown in 8, where we visualize the evolution of the relative inner area
L 2 (
 m

� )
L 2 (
 0

� ) over time.

5.2.2. Benchmark problem II. The physical parameters for the test case 2 in
[41, Table I] are given by

(49) � + = 103 ; � � = 1 ; � + = 10 ; � � = 0 :1 ;  = 1 :96:

We report on the quantitative results for this benchmark computation in Table 6,
where we have usedJ � = 128 interface elements andJ 0


 = 35 092 initial bulk
elements. The �nal number of bulk elements, J M


 , for the schemes (A h
ex), (A h

im )
and (Ch

ALE ) was 10 638, 10 716 and 9 972, respectively.
We observe that the results in Table 6 are in good agreement with thecorre-

sponding numbers from the �nest discretization run of group 3 in [41], which are
given by 0.5144, 3.0000, 0.2502, 0.7317, 0.2393, 2.0600 and 1.1376. Here we note
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Figure 9. (� + = 103; � � = 1 ; � + = 10; � � = 0 :1;  = 1 :96)
Pressure evolution for the benchmark problem II for the scheme
(A h

ex), with J � = 128 interface elements.
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Figure 10. Velocity vector �eld for the simulation in Figure 9.
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that there is little agreement on these results between the three groups in [41], but
we believe the numbers of group 3 to be the most reliable ones. In fact, very similar
results are also obtained in [12, Tables 5 and 6]. Moreover, we note that the num-
ber of full remeshings performed for this test case using the schemes (A h

ex), (A h
im )

and (Ch
ALE ) was 787, 788 and 808, respectively. These large numbers are caused by

the strong deformation of the rising bubble, with the narrow tail st ructure leading
to very elongated bulk elements. In fact, until time t = 2 only 6 remeshings are
needed for each of the three schemes.

It is interesting to note that for this benchmark, the methods in [41] do not agree
on whether the two tails of the rising bubble experience pinch-o� of some droplets.
But we note that the most accurate method there indicates that no pinch-o� occurs,
in agreement with our results and the results in [4, 12]. Of course, ina front tracking
method like ours topological changes need to be performed heuristically when they
occur, and this can be done, for example, as described in [17, 51].

In Figure 9 we show the evolution of the discrete pressures for a simulation
with J � = 128 interface elements using the scheme (A h

ex), while the velocities are
visualized in Figure 10.

As before we show plots of the sphericitys=, the rising velocity Vc, the barycentre

zc and the relative inner area
L 2 (
 m

� )
L 2 (
 0

� ) over time in Figures 11, 12, 13 and 14,

respectively. In the former three �gures we note the good agreement with the plots
shown in [41]. As regards the plot of the relative inner area in Figure 14, we observe
oscillations in the relative inner area betweent = 2 :1 and t = 2 :3 which are caused
by the very thin �laments originating at the bottom of the rising bubb le.
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Figure 11. A plot of the sphericity s= over time for the simulation
in Figure 9 for the schemes (A h

ex) (orange), (A h
im ) (red) and (Ch

ALE )
(blue).

Conclusions

We have introduced three Eulerian and one ALE scheme for the �tted �nite
element approximation of two-phase Navier{Stokes ow. Computationally the main
di�erence between the Eulerian schemes and the ALE scheme is thatfor the former
a bulk mesh adjustment needs to be performed after every time step, since the
interface mesh in general moves, and so the �tted bulk mesh needsto be adjusted.
Here we employ a bulk mesh smoothing procedure based on a linear elasticity
problem. The mesh smoothing necessitates the interpolation of thediscrete velocity
approximation onto the new bulk mesh. It is often thought that the interpolation
errors introduced by this procedure, together with the additional computational
e�ort for the calculation of the interpolation, makes ALE schemes vastly superior to
standard Eulerian approximations. However, our numerical results do not bear this
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Figure 12. A plot of the rising velocity Vc over time for the simu-
lation in Figure 9 for the schemes (A h

ex) (orange), (A h
im ) (red) and

(Ch
ALE ) (blue).
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Figure 13. A plot of the barycentre zc over time for the simula-
tion in Figure 9 for the schemes (A h

ex) (orange), (A h
im ) (red) and

(Ch
ALE ) (blue).
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Figure 14. A plot of the relative inner area
L 2 (
 m

� )
L 2 (
 0

� ) over time for

the simulation in Figure 9 for the schemes (A h
ex) (orange), (A h

im )
(red) and (Ch

ALE ) (blue).

out. In particular, for the physical and discretization parameters that we consider,
the Eulerian schemes (A h

ex) and (A h
im ) perform as well as the ALE scheme (Ch

ALE )
in most of our convergence tests and benchmark computations. We conjecture that
this good performance of the Eulerian schemes is connected to thefact that all our
schemes maintain the interface mesh quality throughout, and so the interface mesh,
and the �nite element information stored on it, is never heuristically adjusted, not
even during a full bulk remeshing. Moreover, thanks to an e�cient element-traversal
algorithm, the additional computational e�ort needed for the velo city interpolation
was only noticeable on nonconvex domains.
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