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1. Introduction and statement of the main results

In his pioneering paper [35], Serrin refined Alexandrov’s method of moving planes [6] and
employed it to prove that a function defined in a bounded domain having constant nonzero Laplacian
and satisfying constant Dirichlet and Neumann boundary condition is necessarily rotationally
symmetric. In fact, in [35] it was shown that similar results hold more generally for a vast class of
elliptic PDEs. Serrin’s result and the method of moving planes have given rise to a prolific field of
research on overdetermined boundary value problems. Nowadays Serrin’s technique has been
employed to study analogous problems in a number of works, among which we
mention [8, 14, 23, 27]. An alternative proof of Serrin’s result was given by Weinberger [38] using a
completely different method, essentially based on a comparison argument with the model solutions.
Weinberger’s method and in particular its use of a P-function has also experienced quite some
success [16, 18, 19, 22, 34]. For further insights on these methods and their applications, see also [28]
and references therein.

The above mentioned papers all gave rise to interesting characterizations of solutions supported in
a ball. In this work, we are instead interested in characterizations of solutions supported in an annulus.
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Let us explain our setting in more detail. Let Ei b Eo ⊂ R
2 be two nonempty simply connected

bounded domains, whose boundaries ∂Eo = Γo and ∂Ei = Γi are simple closed smooth curves, and let
Ω = Eo \ Ei. By construction, Ω is a bounded domain that is not simply connected, with boundary

∂Ω = Γi t Γo .

We are interested in studying pairs (Ω, u), where Ω has the above structure and u : Ω → R is a
solution to the following problem 

∆u = −2, in Ω ,

u = a ,
∂u
∂ν

= α, on Γi ,

u = b ,
∂u
∂ν

= β, on Γo ,

(1.1)

where a, b, α, β are constants and ν is the unit-normal pointing outside Ω. This overdetermined
boundary value problem has been well studied, especially in the case where a > b and α ≥ 0. Under
this assumption, the method of moving planes shows its strength and allows to prove some powerful
rigidity results. A particularly nice one is the following, due to Reichel.

Theorem 1.1 ( [31, Theorem 2]). Let (Ω, u) be a solution to problem (1.1) such that a > b and
b < u < a in Ω. Then Ω is an annulus and u is rotationally symmetric with ∂u/∂|x| < 0.

It is worth mentioning that Reichel’s result is slightly stronger, as it also works for more general
PDEs and it allows Ei (and thus Γi) to be disconnected. In [36], Sirakov generalized previous results [1,
5,40] and proved that Reichel’s thesis remains true if one allows different values of a and α on different
connected components of Γi. He was also able to replace the hypothesis u < a with the weaker α ≥ 0.
We also remark that similar symmetry results have been proven to hold for more general families
of elliptic operators. In [36] it is shown that the same result works for quasi-linear regular strongly
elliptic operator. Similar results also hold for quasi-linear possibly degenerate elliptic operators [5],
fully nonlinear operators [32] and for the fractional Laplacian [37]. For further symmetry results on
this and related problems, see also [7, 16, 17, 29, 33].

On the other hand, it seems that less attention has been brought to the case a < b. One possible
explaination is that the moving plane method works well when the model solution are monotonically
decreasing along the radial coordinate, but seems to be harder to employ when the model solutions are
monotonically increasing. In this work, our aim is to discuss this case and to prove the analogue of
Theorem 1.1, namely:

Theorem 1.2. Let (Ω, u) be a solution to problem (1.1) such that a < b and a < u < b in Ω. Then Ω is
an annulus and u is rotationally symmetric with ∂u/∂|x| > 0.

The strategy of the proof is based on the method developed in [2]. There, problem (1.1) has been
studied in the case a = b = 0, using a new comparison strategy. Of course, under that hypothesis,
monotonicity is lost and there are some complications, especially concerning the behaviour of the
solution near the set of the maxima of the function u. However, we will show that the core of the
method employed in [2] is perfectly suited to study the case discussed in this paper. In fact, we can
adapt most of the argument in [2] to prove Theorem 1.2.
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Perhaps surprisingly, our method proves to be less effective in the more studied case b < a. We will
try to explain along the work why this is the case. Nevertheless, we will be able to employ our method
to prove a slightly weaker version of Theorem 1.1 (namely, we will need to assume the additional
condition 2a + α2 ≤ 2b + β2, see Theorem 4.1). As we will see, the proof is also less elementary
than the one for Theorem 1.2. It does seem then that the moving plane method is still the one best
suited to characterize rotationally symmetric solutions that are radially decreasing. Nevertheless, our
alternative proof may be of interest: it is novel and it expands on our method in ways that may find
further applications in the future.

Let us conclude with some final comments on the above results and on future applications. First of
all, one natural question would be whether similar characterizations can be achieved for model
solutions that are not monotonic along the radial coordinate. In this case, the situation is less clear as
there are negative results: in [25] it is proven that there exist solutions to (1.1) with α = β that are not
rotationally symmetric. In the case a = b = 0, there are both positive ( [2, Theorem B and
Theorem C]) and negative results ( [2, Theorem A]). Another natural question concerns whether our
method can be applied to more general elliptic equations (in the same way as the Weinberger’s
comparison method [38] was then developed in [18, 19, 22]) or to other problems in Riemannian
geometry. In fact, the most part of our arguments (with the notable exception of the Pohozaev
identity) do not rely on the structure of the Euclidean space at all. As a couple of examples of further
applications, this method has proven to be quite successful to characterize static spacetimes in
General Relativity [10–13] and somewhat similar techniques have been employed for other problems
in General Relativity [4, 21] and for p-harmonic functions in manifolds with nonnegative Ricci
curvature in [3, 20].

The paper is structured as follows. In Section 2 we show that for any acceptable choice of a, b, α, β
there is a rotationally symmetric solution solving problem (1.1). This is necessary in order to start our
method, as we need to select a model solution to compare with. Section 3 is the heart of the paper: a
crucial gradient estimate (Theorem 3.1) is introduced and exploited to obtain some important length
bounds for the boundary components (Proposition 3.2). In Subsection 3.3 these two results are then
used, in combination with a divergence theorem argument, to prove Theorem 1.2. Unfortunately, the
method described in Subsection 3.3 does not work to prove Theorem 1.1. In Section 4 we then develop
a new alternative argument, based on a combination of the Pohozaev identity and the isoperimetric
inequality, leading to the proof of Theorem 4.1, which is a weaker version of Theorem 1.1. Finally, in
Section 5 we further comment on the complications that one has to deal with when studying the case
a > b, trying to analyze where they come from and how one may try to overcome them. Ultimately,
the purpose of this final section is that of understanding what are the limits of our method and how far
they can be pushed.

2. Setting up the comparison argument

Our first aim is that of understanding whether there are some relations that are always in place
between the constants a, α, b, β. The main tool that will help us in this regard is the well known
Pohozaev identity [30]. In our framework, this formula has the following form∫

Ω

4u dA =
1
2

∫
∂Ω

(4 u + |∇u|2) 〈X | ν〉 d`
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=
1
2

(4 b + β2)
∫

Γo

〈X | ν〉 d` +
1
2

(4 a + α2)
∫

Γi

〈X | ν〉 d` ,

where X = (x1, x2) is the position vector and ν is the exterior normal to ∂Ω. We use d`, dA to denote
the line element and area element respectively, whereas 〈 · | · 〉 is the standard scalar product between
vectors of R2. Recalling that div X = 2 and using the divergence theorem, we deduce∫

Ω

4u dA = (4 b + β2) |Eo| − (4 a + α2) |Ei| . (2.1)

From this formula we deduce some relations between a, b, α, β, summarized in the following result.

Proposition 2.1. Let (Ω, u) be a solution to problem (1.1).

• If a > b and b < u < a in Ω, then 4a + α2 > 4b + β2, α ≥ 0, β < 0,
• If a < b and a < u < b in Ω, then 4a + α2 > 4b + β2, α < 0, β ≥ 0.

Proof. We start by recalling that Ω = Eo \ Ei, so that in particular |Eo| = |Ω| + |Ei|. As a consequence,
we can rewrite (2.1) in the following two forms∫

Ω

(
4 u − 4 a − α2

)
dA = (4 b + β2 − 4 a − α2) |Eo| ,∫

Ω

(
4 u − 4 b − β2

)
dA = (4 b + β2 − 4 a − α2) |Ei| .

If b < u < a in Ω, then the left hand side of the first equation is negative, whereas if a < u < b in Ω,
then the left hand side of the second equation is negative. In both cases, we deduce 4a + α2 > 4b + β2.

The signs for α and β follow immediately from the hypothesis that a is the maximum (resp.
minimum) of u and b is the minimum (resp. maximum) of u. The fact that β , 0 when b < u < a and
that α , 0 when a < u < b is a consequence of the Hopf Lemma (recall ∆u = −2 < 0). �

In order to start our comparison argument, we first need to take a close look at the model solutions.
In particular, we first have to make sure that we always have a model solution to compare with, for any
acceptable value of a, b, α, β.

It can be easily checked that the rotationally symmetric solutions to ∆u = −2 have the form

u = L −
1
2
|x|2 + M log |x| , (2.2)

with L,M ∈ R. When M ≤ 0, these solutions are monotonically decreasing with respect to |x|. When
M > 0, these solutions are monotonically increasing for |x| <

√
M and they are monotonically

decreasing for |x| >
√

M.

Remark 1. As in [2], one can fix the value of L by means of a rescaling of the function and of the
domain, ending up with the one-parameter family

u =
1 − |x|2

2
+ M log |x| .

However, for our purposes in this paper this is not necessary, as it is actually easier to work directly
with (2.2).
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We expect that for any acceptable choice (according to Proposition 2.1) of a, b, α, β, there should be
a solution of the form (2.2) solving our problem (1.1). This is true in the case a < b, as guaranteed by
the following lemma:

Lemma 2.2. If a < b, α < 0, β ≥ 0, 4a + α2 > 4b + β2, then there exist constants L and M > 0 and
two radii 0 < ri < ro ≤

√
M so that the function u = L − |x|2/2 + M log |x| satisfies problem (1.1) in

the annulus Ω = {ri < |x| < ro}.

Proof. The proof of the lemma is more of a long exercise. We start by imposing the conditions we
want on L,M, ro, ri, namely 

L − r2
i /2 + M log ri = a

L − r2
o/2 + M log ro = b

M − r2
i = −α ri

M − r2
o = β ro

(2.3)

and we employ the last two equations to obtain

ri =
α ±
√
α2 + 4M
2

, ro =
−β ±

√
β2 + 4M
2

. (2.4)

Since we are assuming α < 0 and β ≥ 0, in order for ro, ri to be positive, we need to choose the plus
sign in (2.4) and we need M > 0.

Substituting in the first two equations, we then deduce that we have a solution if and only if we can
find a zero for the function

F(M) = 4a + α2 − 4b − β2 + α
√
α2 + 4M + β

√
β2 + 4M + 4M log

−β +
√
β2 + 4M

α +
√
α2 + 4M

 . (2.5)

Taking the limit at zero and infinity, we compute

lim
M→0

F(M) = 4a − 4b < 0 ,

lim
M→+∞

F(M) = 4a + α2 − 4b − β2 > 0 .

It follows by continuity of F that there is a value 0 < M < ∞ such that F(M) = 0, as wished. �

The case a > b appears to be more complicated. In the next lemma we will show that we can still
find a model to compare with as long as we assume the additional condition 2a + α2 ≤ 2b + β2. This is
the first instance in which we notice complications in the case a > b. More specifically, it seems that
negative values of M are harder to deal with. In this respect, the hypothesis 2a +α2 ≤ 2b +β2 is helpful
as it forces M ≥ 0.

Lemma 2.3. Let a > b, α ≥ 0, β < 0, 4a+α2 > 4b+β2. If we further have 2a+α2 ≤ 2b+β2, then there
exist constants L and M ≥ 0 and two radii

√
M ≤ ri < ro so that the function u = L− |x|2/2 + M log |x|

satisfies problem (1.1) in the annulus Ω = {ri < |x| < ro}.
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Proof. Proceeding as in the proof of Lemma 2.2, we find again the expressions (2.4) for ro and ri.
Notice that, in contrast with the previous case, both signs for ± in (2.4) are possible. However, since
we are ultimately interested in having M ≥ 0, this again essentially forces us to choose the plus sign in
the formulæ (2.4) for ri and ro. Therefore, as in the previous lemma, we reduce ourselves to finding a
zero for the function (2.5). We compute

F(0) = 4a + 2α2 − 4b − 2β2 ,

lim
M→+∞

F(M) = 4a + α2 − 4b − β2 > 0 .

Since we are assuming 4a + 2α2 − 4b − 2β2 ≤ 0, we conclude again that there is a value 0 ≤ M < ∞

such that F(M) = 0. �

3. Exploiting the comparison argument

In the previous section we have developed a way to compare a general solution of (1.1) with a model
solution (2.2). Building on that, in this section we develop our comparison technique. In Subsection 3.1
we prove a crucial gradient estimate, that is then exploited in Subsection 3.2 to prove length bounds for
the boundary components Γi and Γo. The results in both these subsection work in both the case a < b
and b < a. In Subsection 3.3 we will then specialize to the case a < b and we will prove Theorem 1.2.

3.1. Gradient estimate

Let u be a solution to problem (1.1) for some fixed values of a, α, b, β. In the case a > b, assume
further that 2a + α2 ≤ 2b + β2. Then, Lemmata 2.2 and 2.3 tell us that there exist constants L ∈ R,
M ≥ 0, ro > 0, ri > 0 such that the model solution

u = L −
1
2
|x|2 + M log |x| ,

in the annulus {ri < |x| < ro}, solves problem (1.1) for the same values of a, α, b, β.
From now on, the constants L ∈ R, M ≥ 0, ro > 0, ri > 0 will always be the ones prescribed by

Lemmata 2.2 and 2.3. We are now ready to set up our comparison argument, in the spirit of [2]. We
start by defining the pseudo-radial function Ψ : Ω→ R implicitly via the following identity

u = L −
1
2

Ψ2 + M log Ψ . (3.1)

It is easily seen that the function G(Ψ) = L −Ψ2/2 + M log Ψ is monotone in (0,
√

M] and [
√

M,+∞),
hence the pseudo-radial function Ψ = G−1(u) is well defined as long as Ψ2 , M inside Ω. From now on
we will always assume that a < u < b or b < u < a, and from this it easily follows that the function Ψ

actually takes values between ri (attained at Γi) and ro (attained at Γo). On the other hand, Lemmata 2.2
and 2.3 tell us that either ri < ro ≤

√
M or

√
M ≤ ri < ro. Therefore, for all our purposes, the function

Ψ : Ω→ [ri, ro] will always be well defined.
We also introduce the two functions

W = |∇u|2 and W0 =

(
M − Ψ2

Ψ

)2

. (3.2)
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The function W0 corresponds to the value that |∇u|2 would have on the model solution. In fact, it is
easily checked that, for the model solutions (2.2), it holds W0 ≡ W pointwise. Our strategy is then that
of comparing W and W0 in Ω, ultimately trying to prove that they have to coincide.

First of all, notice that, by construction, W and W0 coincide on the boundary of Ω, namely when
Ψ = ro and when Ψ = ri. We will now show that, under our hypotheses, W is actually controlled by
W0 on the whole Ω.

Theorem 3.1 (Gradient Estimates). Let (Ω, u) be a solution to problem (1.1) with respect to some
choice of a, α, b, β. Suppose that a < u < b or b < u < a. In the case b < u < a, assume further that
2a + α2 ≤ 2b + β2. Let W, W0 be defined as above. Then it holds

W ≤ W0 in Ω , (3.3)

Moreover, if W = W0 at some point in the interior of Ω, then (Ω, u) is rotationally symmetric.

Remark 2. This theorem is clearly inspired by [2, Theorem 3.1], however we mention that similar
gradient estimates have already found applications in a number of problems. One of the most notable
ones is the paper [9] and the subsequent developments in [15, 26], where a gradient comparison
argument very much resembling Theorem 3.1 has been obtained and exploited for static spacetimes
in General Relativity. The introduction of the pseudo-radial function is instead more recent (it was
exploited in the series of papers [11–13] for static spacetimes). This function is really helpful as it
allows to have an explicit formula for W0. This is crucial in the computations that follows: we will see
that Ψ will appear in all the important computations in this section.

Proof. The proof is essentially the same as the one in [2], but let us give some comments. Let L ∈ R,
M ≥ 0, ro > 0, ri > 0 be the constants prescribed by Lemmata 2.2 and 2.3.

The crucial estimate is deduced starting from the following quantity

∇2u +
2M

(M − Ψ2)2 du ⊗ du +

[
1 −

M
(M − Ψ2)2 |∇u|2

]
gR2 ,

where du ⊗ du is the 2 × 2 matrix with entries ∂u
∂xi

∂u
∂x j and gR2 is the 2 × 2 identity matrix. The heuristic

behind the choice of the quantity above is essentially the fact that it can be computed to be zero on
the model solution. Computing explicitly its square norm and using the fact that it is nonnegative, we
obtain the following estimate for the hessian of u:

|∇2u|2 ≥ −
2 M

(M − Ψ2)2 〈∇(W −W0)|∇u〉 + 2
[
1 +

2 M2

Ψ2(M − Ψ2)2 |∇u|2 −
M2

(M − Ψ2)4 |∇u|4
]
.

Starting now from the equality ∆|∇u|2 = 2|∇2u|2 and plugging in this estimate, after some computations
we obtain an elliptic inequality for the quantity W −W0

∆(W −W0) ≥ −
4 M

(M − Ψ2)2 〈∇(W −W0)|∇u〉 +
4 M

(M − Ψ2)2

[
1 −

M
(M − Ψ2)2 |∇u|2

]
(W −W0) .

Considering the function Fγ = γ (W −W0), where γ = γ(Ψ) > 0, one gets
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∆Fγ ≥ −
2Ψ

M − Ψ2

[
γ′

γ
−

2 M
Ψ(M − Ψ2)

]
〈∇Fγ|∇u〉 −

2 Ψ

M − Ψ2

[
γ′

γ
−

2 M
Ψ(M − Ψ2)

]
Fγ

+
W
W0

(γ′
γ

)′
−

(
γ′

γ

)2

+
Ψ2 + 5M

Ψ(M − Ψ2)
γ′

γ
−

4 M2

Ψ2(M − Ψ2)2

 Fγ , (3.4)

where we have used ′ to denote the differentiation with respect to Ψ. We now need to find a function γ
such that the coefficients of the zero order terms have the right sign. A good choice is to set

γ′

γ
=

2M
Ψ(M − Ψ2)

,

which corresponds to choosing

γ =
Ψ
√

W0
=

Ψ2

|M − Ψ2|
.

We know that Ψ2 , M inside Ω, hence γ is well defined in the interior of Ω. However, Ψ2 may attain
the value M on the boundary ∂Ω: this happens when α = 0 (which implies from (2.4) that ri =

√
M)

or when β = 0 (which implies from (2.4) that ro =
√

M). Let us for the moment assume that this does
not happen, so that Fγ is well defined on the whole Ω. With this choice of γ, it is easily seen that Fγ

satisfies

∆Fγ −
8 M Ψ2

(M − Ψ2)4 |∇u|2 Fγ ≥ 0 . (3.5)

Since M ≥ 0, it follows that Fγ satisfies the Maximum Principle in Ω. Furthermore, W = W0 on
∂Ω by construction, hence the Maximum Principle implies that Fγ ≤ 0 (equivalently, W ≤ W0) on
the whole Ω. Furthermore, if the equality W = W0 holds at one point p in the interior of N, then,
applying the Strong Maximum Principle in a neighborhood of p, we deduce that W = W0 on the
whole Ω. It is then easy to conclude the desired rigidity statement with standard arguments, see for
instance [10, Theorem 4.2].

It remains to discuss the case where Ψ2 = M on one of the boundary components, say Γi (for Γo,
the same argument applies). In this case, we consider ε > 0 and a small neighborhood Uε = {x ∈
Ω : d(x,Γi) < ε} of Γi, and we work on the domain Ωε = Ω − Uε. Clearly Fγ is well defined
and satisfies the Maximum Principle in Ωε. We will then obtain the desired result by taking ε → 0,
provided we can prove that Fγ → 0 as we approach Γi. It is easily seen that Fγ goes to zero if and
only if W/

√
W0 goes to zero, which in turn is equivalent to |∇u|2/

√
a − u → 0, see [2, Lemma A.1].

The latter is granted by the Reverse Łojasiewicz Inequality [11, Theorem 2.2] (to be more precise, [11,
Theorem 2.2] cannot be applied directly, as it is written for interior points only; however the proof
extends without modifications to the case at hand). �

3.2. Length bounds

Following again [2], we can now exploit the gradient estimate proven above to obtain length bounds
for both Γi and Γo.

Proposition 3.2. Let (Ω, u) be a solution to problem (1.1) with respect to some choice of a, α, b, β.
Suppose that a < u < b or b < u < a. In the case b < u < a, assume further that 2a + α2 ≤ 2b + β2.
Then

|Γi| ≤ 2π ri and |Γo| ≥ 2π ro . (3.6)
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Proof. We will prove the length bound for Γi only, as the one for Γo is proven in the same way (up to
some sign differences coming from the fact that ∇Ψ is pointing outside Ω on Γo). Let us also suppose
for the moment that α , 0, so that the gradient of u does not vanish on Γi. Recalling that Ψ = G−1(u),
where G(x) = L − x2/2 + M log x, we easily compute

∇Ψ =
Ψ

M − Ψ2∇u =
∇u
√

W0
.

In particular the norm |∇Ψ| =
√

W/W0 is equal to 1 on Γi by construction and is less than 1 inside Ω

thanks to (3.3). In particular, the inequality 〈∇|∇Ψ|2 | ∇Ψ〉 ≤ 0 holds on Γi and the curvature κ of Γi at
any point of Γi satisfies

κ =
|∇Ψ|2∆Ψ − 1

2 〈∇|∇Ψ|2 | ∇Ψ〉

|∇Ψ|3
= ∆Ψ −

1
2
〈∇|∇Ψ|2 | ∇Ψ〉 ≥ ∆Ψ = 1/Ψ = 1/ri . (3.7)

Integrating κ ≥ ri on Γi, recalling that the total curvature of a simple curve is equal to 2π, we get

2π ≥ |Γi|/ri .

This concludes the proof of the length bound for Γi when α , 0.
If instead α = 0, we have W = W0 = 0 on Γi, so |∇Ψ| =

√
W/W0 is not well defined and we need

to find a workaround. Let p ∈ Γi and let us extend u to a smooth function in a neighborhood U of p.
We can do it by means of Whitney Extension Theorem [39], that clearly applies to our case since u is
smooth up to the boundary (see for instance [24, Theorem 6.19]). With a slight abuse of notation, let
us still call u the smooth function defined on U that coincides with the original u in Ω∩U. In the spirit
of [11, Theorem 3.1], we consider the signed distance function r to Γi. Namely, |r(x)| = dist(x,Γi)
and r > 0 inside Ω, r < 0 outside Ω. If U is taken to be small enough, the function r is known to
be smooth with |∇r| ≡ 1 in U. We can then proceed exactly as in [11, Theorem 3.1] to show that
u = a + (∆u/2)r2 + r3ω in U, where ω is a smooth function. In particular, in Ω ∩ U we have

u = a − r2 + r3 ω . (3.8)

Recalling ∆u = −2, from this expansion we easily compute that ∆r = 3ω on Γi. Furthermore, recalling
that u = G(Ψ) = L − Ψ2/2 + r2

i log Ψ (notice that, if α = 0, from (2.3) we have M = r2
i ), starting from

the Taylor series for G at ri, with some computations one also gets an expansion for Ψ in Ω ∩ U:

Ψ = ri + r +

(
1

6ri
−
ω

2

)
r2 + o(r3) .

Computing |∇Ψ| from this expansion using |∇r| = 1 in U and recalling that |∇Ψ| ≤ 1 thanks to the
gradient estimates, we deduce 3ω ≤ 1/ri. We now use the fact that Γi = {r = 0} is a level set of r to
compute its curvature as follows

κ =
|∇r|2∆r − 1

2 〈∇|∇r|2 | ∇r〉
|∇r|3

= ∆r = 3ω ≤ 1/ri .

Integrating on Γi we then obtain the desired length bound. �
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3.3. Proof of Theorem 1.2

In this subsection, we focus on the case a < b and we prove Theorem 1.2. For simplicity, let us start
by discussing the case where ∇u does not vanish on the boundary of Ω, namely for the moment let us
assume β , 0 (notice that we know that α is strictly positive in the case a < b, so α cannot vanish).
Using the divergence theorem and recalling that ∆u = −2, we compute∫

Ω

2
M − Ψ2 dA =

∫
Ω

−
∆u

M − Ψ2 dA =

∫
Ω

〈
∇

(
1

M − Ψ2

) ∣∣∣∣∣∇u
〉

dA −
∫
∂Ω

〈∇u | ν〉
M − Ψ2 d`

=

∫
Ω

2 Ψ2

(M − Ψ2)3 |∇u|2 dA −
∫
∂Ω

〈∇u | ν〉
M − Ψ2 d` , (3.9)

where ν is the outward unit normal to ∂Ω = Γi t Γo. Since we are in the case a < b, then ν = −∇u/|∇u|
on Γi and ν = ∇u/|∇u| on Γo. Setting W = |∇u|2 as usual, and recalling the expression (3.2) of W0 in
terms of Ψ, the identity above can be written as∫

Ω

2 Ψ2

(M − Ψ2)3 (W0 −W) dA =

∫
Γi

|∇u|
M − Ψ2 d` −

∫
Γo

|∇u|
M − Ψ2 d` . (3.10)

Notice that the left hand side is nonnegative because of (3.3). Furthermore, since we are focusing
on the case a < b, we have Ψ < ro <

√
M hence

|∇u|
M − Ψ2 =

1
Ψ

√
W
W0

.

Since by construction W = W0 on ∂Ω, from (3.10) we immediately deduce

0 ≤
|Γi|

ri
−
|Γo|

ro
. (3.11)

On the other hand, the length bounds in Proposition 3.2 give us the opposite inequality. Therefore the
equality must hold in (3.11), and from (3.10) in particular we obtain that W ≡ W0 in Ω. The result now
follows from the rigidity statement in Theorem 3.1.

It remains to discuss the case where β is equal to zero. In this case, the boundary term in (3.9) is
ill-defined, as one has Ψ2 = r2

o = M on Γo. To avoid this problem, we just need to apply the divergence
theorem in Ω \ {u > b − ε}, and then take the limit as ε → 0. From (3.8) it follows easily that the
quantity 〈∇u | ν〉/(M − Ψ2) goes to 1/Ψ = 1/ro as we approach Γo. The proof then proceeds exactly as
in the case β , 0.

4. Exploiting the Pohozaev identity

In this section we focus on the case a > b and we prove Theorem 1.1 under the additional hypothesis
that 2a + α2 ≤ 2b + β2. Let us give the precise statement for the convenience of the reader.

Theorem 4.1. Let (Ω, u) be a solution to problem (1.1) such that a > b, b < u < a in Ω and 2a + α2 ≤

2b + β2. Then Ω is an annulus and u is rotationally symmetric with ∂u/∂|x| < 0.
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As discussed, all the arguments in Subsections 3.1 and 3.2 still work in this case. Unfortunately
however, the strategy employed in Subsection 3.3 to complete the proof for a < b, does not work when
a > b. In fact, one can check that in this case the inequality that one gets at the end has the opposite
sign of (3.11), hence it does not combine with the length bounds from Proposition 3.2 anymore. We
will then need to exploit a more delicate argument based on sharp estimates coming from the Pohozaev
identity and the isoperimetric inequality.

Let us start by writing

4 u = 2ϕ + (4u − 2ϕ) = −ϕ∆u + (4u − 2ϕ) ,

where

ϕ = 2u −
Ψ4 − 4MΨ2 + 4M2 log Ψ + k

2(M − Ψ2)
, (4.1)

for k ∈ R constant to be chosen later. The function ϕ is constant on the level sets of u, hence we can
consider the function ϕ̇ representing the derivative of ϕ with respect to u. More precisely, ϕ̇ : Ω→ R is
the function satisfying ∇ϕ = ϕ̇∇u. We then use the divergence theorem to write the following sequence
of identities ∫

Ω

4u dA =

∫
Ω

[−ϕ∆u + (4u − 2ϕ)] dA

=

∫
Ω

[ϕ̇|∇u|2 + 4u − 2ϕ] dA −
∫
∂Ω

ϕ
∂u
∂ν

d`

=

∫
Ω

ϕ̇

(
W −

2ϕ − 4u
ϕ̇

)
dA − αϕi |Γi| − β ϕo |Γo| , (4.2)

where we have denoted by ϕi and ϕo the (constant) value of ϕ on Γi, Γo, respectively.
The choice of ϕ in (4.1) has been done so that it holds (2ϕ− 4u)/ϕ̇ = W0. Combining (4.2) with the

Pohozaev identity (2.1), we obtain∫
Ω

ϕ̇ (W −W0) dA = (4 b + β2) |Eo| − (4 a + α2) |Ei| + αϕi |Γi| + β ϕo |Γo| .

Since |Eo| = |Ei| + |Ω|, we can write the above equation in the following way:∫
Ω

ϕ̇ (W −W0) dA = (4 b + β2 − 4 a − α2) |Ei| + (4 b + β2) |Ω| + αϕi |Γi| + β ϕo |Γo| .

Recall from Proposition 2.1 that 4a+α2 > 4b+β2. Furthermore, combining the isoperimetric inequality
with the length bound in Proposition 3.2 we get

|Ei| ≤
|Γi|

2

4π
≤

1
2

ri |Γi| .

Finally, we have the identity

−2 |Ω| =

∫
Ω

∆u dA =

∫
∂Ω

∂u
∂ν

d` = α |Γi| + β |Γo| .
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Combining these insights together, we obtain the following inequality:∫
Ω

ϕ̇ (W −W0) dA ≥
[
4 b + β2 − 4 a − α2

2
ri + αϕi − 2bα −

β2

2
α

]
|Γi| +

[
β ϕo − 2bβ −

β3

2

]
|Γo| .

Recall that the constants appearing in the above formula are related as follows:

a = L −
r2

i

2
+ M log ri , b = L −

r2
o

2
+ M log ro , α = ri −

M
ri
, β =

M
ro
− ro .

Using these identities and formula (4.1) for ϕ, with some computations we can rewrite the above
inequality as ∫

Ω

ϕ̇ (W −W0) dA ≥
M(4b + β2 − 4L − M) + k

2

(
|Γi|

ri
−
|Γo|

ro

)
. (4.3)

Let us now analyze ϕ̇. Differentiating (4.1), we get

ϕ̇ =
Ψ2

(M − Ψ2)3

[
4MΨ2 − Ψ4 − 4M2 log Ψ − k

]
.

One can check that the quantity in square brakets is monotonically decreasing in Ψ. Since we know
from Lemma 2.3 that Ψ2 ≥ r2

i ≥ M, in order for ϕ̇ to be positive in Ω it is then sufficient to choose

k ≥ 4Mr2
i − r4

i − 4M2 log ri = 4LM + M2 − 4aM − α2r2
i

Choosing k exactly equal to the above value, recalling from (3.3) that W ≤ W0, we then get from (4.3):

0 ≥
M(4b + β2 − 4a − α2r2

i /M)
2

(
|Γi|

ri
−
|Γo|

ro

)
Since r2

i ≥ M > 0 and 4b + β2 − 4a − α2 < 0, this implies

|Γi|

ri
−
|Γo|

ro
≥ 0

But we have the opposite inequality from Proposition 3.2, therefore everything must be an equality. As
a consequence, W = W0 on the whole Ω and we conclude using the rigidity statement in Theorem 3.1.

5. Further comments

In the previous sections we have shown that we are able to deal with the case a > b and prove
Theorem 1.1 if we assume the additional hypothesis 2a + α2 ≤ 2b + β2. While this hypothesis is
somewhat restrictive, it still allows to get some nontrivial applications. As a particularly relevant
example, we now argue that our weaker version of Theorem 1.1, namely Theorem 4.1, is still strong
enough to deal with the cases of interest in [2]. There, Theorem 1.1 was invoked in the proof
of [2, Theorem B] on a domain Ωo (the outer domain, in the terminology of [2]) for a function u
satisfying problem (1.1) with α = 0, b = 0 and β2/2a ≥ 1 (the latter inequality followed
from [2, Theorem 2.1]). Under those hypotheses, the inequality 2a + α2 ≤ 2b + β2 is trivially satisfied.
In other words, Theorem 4.1 is enough for the intended applications in [2].
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The rest of this section is devoted to further comment on the hypothesis 2a + α2 ≤ 2b + β2.
Specifically, we discuss what can go wrong when this hypothesis is not in place and what are the
complications that one would need to overcome in order to prove Theorem 1.1 in full generality using
our approach.

The first basic step that one needs in order to start our comparison argument is of course to have
a model to compare with. In other words, given a solution (Ω, u) of problem (1.1) for some a, b, α, β
with a > b, we need to have a model solution (2.2) solving the same problem. This is granted by
Lemma 2.3 when 2a + α2 ≤ 2b + β2. Unfortunately, an analogous result seems harder to prove when
2a + α2 > 2b + β2.

In case we are able to show that there is a model solution to compare with, there is still another
crucial complication, namely the proof of Theorem 3.1. In fact, in order to prove the gradient estimate
W ≤ W0, we relied on the Maximum Principle applied to the elliptic inequality (3.5). Unfortunately,
when M < 0 (this can happen when 2a+α2 > 2b+β2), the zeroth order term of (3.5) has the wrong sign,
hence we cannot apply the Maximum Principle. It is possible with some work to find a workaround, at
least under the additional hypothesis that r2

i ≥ −M.

Theorem 5.1 (Gradient Estimates, M < 0). Let (Ω, u) be a solution to problem (1.1) and suppose that
b < u < a. Suppose that there exist L,M, ro, ri such that the corresponding model solution (2.2) solves
the problem for the same a, b, α, β. Let W, W0 be defined as in (3.2). If r2

i ≥ −M > 0, then it holds

W ≤ W0 in Ω , (5.1)

Moreover, if W = W0 at some point in the interior of Ω, then (Ω, u) is rotationally symmetric.

Proof. We start by observing that we can write (3.4) as

∆Fγ ≥
2Ψ

Ψ2 − M

[
γ′

γ
+

2 M
Ψ(Ψ2 − M)

]
〈∇Fγ|∇u〉 −

2 Ψ

Ψ2 − M

[
γ′

γ
+

2 M
Ψ(Ψ2 − M)

] F2
γ

γW0

+
W
W0

(γ′
γ

)′
−

(
γ′

γ

)2

+
Ψ2 − 5M

Ψ(Ψ2 − M)
γ′

γ
+

4 M
Ψ2(Ψ2 − M)

 Fγ . (5.2)

If we ask the quantity in the last square bracket to be equal to zero, we obtain the following formula
for γ

γ =
Ψ2∣∣∣2Ψ2 − (Ψ2 + M)(log Ψ − k)

∣∣∣ .
where k ∈ R is a constant. In particular we get

γ′

γ
+

2 M
Ψ(Ψ2 − M)

=
Ψ4 + 4MΨ2 − M2 − 4MΨ2(log Ψ − k)

Ψ(Ψ2 − M)[2Ψ2 − (Ψ2 + M)(log Ψ − k)]
. (5.3)

Since Ψ2 ≥ r2
i ≥ −M > 0, choosing k to be big enough we have that the right hand side of (5.3) is

negative at any point in Ω. As a consequence, for such k, from (5.2) we get

∆Fγ − 2
Ψ4 + 4MΨ2 − M2 − 4MΨ2(log Ψ − k)

(Ψ2 − M)2[2Ψ2 − (Ψ2 + M)(log Ψ − k)]
〈∇Fγ|∇u〉 ≥ 0 .

We can then apply the Maximum Principle to find out that Fγ is nonpositive on the whole Ω. This
concludes the proof. �
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The question still remains open of whether it is possible to remove the hypothesis r2
i ≥ −M in the

above theorem. Looking at the proof, it is clear that the freedom in the choice of k should allow to
weaken that hypothesis. However, it does seem hard to remove it entirely.

The rest of our arguments does not seem to depend heavily on the hypothesis 2a + α2 ≤ 2b + β2.
In other words, even in the case 2a + α2 > 2b + β2, our method should allow to conclude the desired
rigidity, provided we have a model solution to compare with and the gradient estimate W ≤ W0 is in
force. In order to prove Theorem 1.1 in full generality using our approach, these seem to be the two
issues that are left to address.
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