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Abstract: An accumulating body of evidence indicates a tight relationship between the endocrine
system and abnormal social behavior. Two evolutionarily conserved hypothalamic peptides, oxytocin
and arginine-vasopressin, because of their extensively documented function in supporting and
regulating affiliative and socio-emotional responses, have attracted great interest for their critical
implications for autism spectrum disorders (ASD). A large number of controlled trials demonstrated
that exogenous oxytocin or arginine-vasopressin administration can mitigate social behavior
impairment in ASD. Furthermore, there exists long-standing evidence of severe socioemotional
dysfunctions after hypothalamic lesions in animals and humans. However, despite the major role
of the hypothalamus for the synthesis and release of oxytocin and vasopressin, and the evident
hypothalamic implication in affiliative behavior in animals and humans, a rather small number of
neuroimaging studies showed an association between this region and socioemotional responses
in ASD. This review aims to provide a critical synthesis of evidences linking alterations of the
hypothalamus with impaired social cognition and behavior in ASD by integrating results of both
anatomical and functional studies in individuals with ASD as well as in healthy carriers of oxytocin
receptor (OXTR) genetic risk variant for ASD. Current findings, although limited, indicate that
morphofunctional anomalies are implicated in the pathophysiology of ASD and call for further
investigations aiming to elucidate anatomical and functional properties of hypothalamic nuclei
underlying atypical socioemotional behavior in ASD.
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1. Introduction

Autism spectrum disorders (ASD) are neurodevelopmental disorders with complex and diversified
pathogenesis characterized by dramatic impairment of social communication, social interaction and
empathy with an estimated prevalence in the general population ranging from 1 in 100 to 1 in
54 children [1]. ASD are heterogeneous disorders with multisystem and multigenic origin, where
even identical genetic variations may lead to divergent phenotypic characteristics [2]. Neuroimaging
studies suggested widespread abnormalities involving distributed brain networks [3–7], but convincing
evidences of systematic differences in brain network dynamics underlying the cognitive and behavioral
symptoms of ASD are still lacking. On the other hand, an accumulating body of evidence indicates a
tight relationship between the modulatory functions of the endocrine system and typical and atypical
social behavior [8–12]. In particular, two evolutionarily conserved hypothalamic peptides, the oxytocin
(OT) and arginine-vasopressin (AVP), because of their extensively documented role in supporting
and regulating affiliative and socio-emotional responses [13–17] have attracted great interest for their
critical implications in ASD.
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Animal studies revealed that OT and AVP critically mediate social and affiliative behavior [18–20].
In addition, administration of OT has been shown to facilitate protective and nursing behavior toward
pups [21]. In non-human mammals, OT is generally observed to facilitate approach behavior by
decreasing avoidance of proximity and reducing defensive behavior, whereas AVP appears to modulate
aggressive responses in relation to pair bonding and mating behavior, especially in males [22,23].
In humans, the effects of intranasal OT administration indicate a reduction of social stress and
anxiety facilitating positive social approach and interaction, and affiliative behavior [24–27]. Moreover,
intranasal AVP administration in humans, similarly to the effects observed in animals, has been shown
to differentially influence social behavior in males and females, with increasing aggressive and agonistic
responses in men and facilitation of pair bonding in women [28]. Several investigations also reported
an association of the levels of peripheral OT and oxytocin receptor (OXTR) polymorphisms with the
diagnosis and severity of ASD [29]. Genomic and epigenetic evidences for OXTR deficiency have been
also observed in individuals with ASD [30]. Remarkably, a large number of controlled trials indicated
that intranasal OT and AVP administration can ameliorate social abilities in autism [31–36].

Altered OT and AVP synthesis and release appear to be among the core dysfunctions underpinning
the impairments in social and communication behavior of individuals with ASD [9,11,37], although it
remains unclear whether OT neuropeptide can be used as biochemical marker for ASD [38].

OT and AVP are synthesized by magnocellular neurons of the supraoptic and paraventricular
nuclei of the hypothalamus that secret them into the peripheral blood circulation through the posterior
pituitary gland. Importantly, these peptides also act as neurotransmitters through the dendritic
terminals of magnocellular neurons that release them into the hypothalamic extracellular fluid [39],
and through parvocellular neurons projections to brainstem and subcortical regions, such as the
amygdala, nucleus accumbens and hippocampus [40,41]. In addition, besides passive diffusion in brain
circuits following dendritic release [42,43], OT transmission is also mediated by widespread long-range
axonal projections of hypothalamic OT neurons [14] permitting direct modulation of the amygdala and
other forebrain regions [20]. Correspondingly, OT and AVP receptors have been localized in various
brain regions including the hypothalamus and the limbic system [30,44,45]. Notably, differential OT
release mechanisms through dendritic and axonal terminals characterize hypothalamic activity. In fact,
dendritic OT release can occur with no spiking activity, and thus, no secretion into the peripheral
circulation; vice versa, electrical activity of the cell bodies can induce OT release from axon terminals
without central OT release from the dendrites [46,47]. Moreover, dendritic release can lead to a very
large disproportion between the concentration of OT in the extracellular fluid of the hypothalamic
supraoptic nucleus and that in the periphery by over 100-fold greater [41].

Furthermore, there exists long-standing evidence of severe socioemotional impairment after
hypothalamic lesions, involving in particular the ventromedial nuclei [48]. Rage has been observed
after ventromedial hypothalamic lesions in both animals and humans (Wheatley 1944 [49]; Reeves &
Plum 1969 [50]). Separation-induced distress vocalization can be elicited by electrical stimulation of the
medial hypothalamus in guinea pigs (Herman & Panksepp 1981 [51]). Stereotactic stimulation studies
in humans showed altered sexual behavior triggered by accidental focal lesions of rostromedial basal
forebrain structures including the septo-hypothalamic area [52]. In addition, hypothalamic stimulation
can also induce pleasurable experiences and prosocial behavior in humans [53,54]. For instance, several
investigations demonstrated reduced aggressive behavior and increased social interactions after deep
brain stimulation of the posteromedial hypothalamus [55].

Nonetheless, despite the unquestionable key role of the hypothalamus in the production of
the OT and AVP (Swanson and Sawchenko, 1983), the severe socioemotional dysfunctions caused
by hypothalamic lesions, and the apparent association between hypothalamic neuropeptides and
socio-affective responses in ASD and neurotypical population (NT), hypothalamic involvement remains
elusive in most of neuroimaging investigations exploring the neural correlates of normal and abnormal
human socioemotional behavior [56–62]. In particular, a surprisingly limited number of studies
analyzed the implication of the hypothalamus in the social impairment of individuals with ASD.



Brain Sci. 2020, 10, 435 3 of 17

Building on the above mentioned evidences, this review aims at providing a synthesis of
neuroimaging investigations reporting morphofunctional alterations of the hypothalamus in ASD
through the examination of data from individuals with ASD as well as from healthy carriers of
genetic risk variation in OT receptors, as several polymorphisms of OT receptor genes have been
associated with modulation of socioemotional responses and ASD [63–71]. A description of MR-based
anatomical studies reporting abnormal morphology of the hypothalamic region will be followed by a
survey of the few existing task-based and resting state functional MRI studies reporting hypothalamic
alterations in individuals with ASD and in healthy carriers of genetic risk variation in OT receptors.
A critical discussion integrating anatomical and functional findings will then attempt to provide some
interpretations of the possible role of the hypothalamus, and its functional exchanges with cortical and
subcortical networks, in the atypical socioemotional responses of ASD individuals. In conclusion, some
fundamental open questions aiming at elucidating the morphological and functional hypothalamic
anomalies and their impact on social cognition and behavior in ASD will be proposed.

2. Literature Search

This review is based on a Pubmed and Scopus search aiming to comparatively analyze the current
literature until April 2020 using the following keywords “autism” AND “hypothalamus” AND “social.”
In total, 236 papers were obtained from Scopus, whereas only 22 papers from Pubmed. After refining
the search by limiting articles that included the term “MRI,” 42 documents remained in Scopus and
just one in Pubmed. The remaining publications were then further screened for articles reporting
original research studies. Careful inspection of papers, aiming to identify anatomical and functional
investigations related to ASD, led to additional rejections of few unrelated papers as well as inclusion
of some others missing in the initial literature search, and surprisingly resulted in only 10 relevant
scientific publications for our qualitative analysis.

2.1. Structural MRI Studies

One of the first direct evidence linking anatomical alterations of the hypothalamus with ASD was
provided by a study assessing structural MRI based measures of brain morphometry in children and
adolescents with ASD (n = 52) [72]. ASD individuals with respect to typically developing controls
showed significant decrease of gray matter (GM) volume in the hypothalamic region including the
supraoptic and paraventricular nuclei, independently of age, IQ or gender. No differences were
observed in global volumes of GM, white matter and cerebrospinal fluid.

In another study, hypothalamic atrophy was measured in young male adults with ASD (n = 10)
with respect to neurotypical participants using two complementary structural analysis approaches [73].
First, an ROI-based voxel-based morphometry (VBM) analysis applied to the hypothalamic region,
delineated through manual segmentation and including voxels in the third ventricular space between
the left and right hypothalamus, revealed reduced GM density of the hypothalamus and increased
cerebrospinal fluid density in the third ventricle proximal to paraventricular nucleus. Second, an
automatic method was applied to a larger cohort of male ASD individuals (n = 41) to estimate ventricular
volume of the third ventricle. This method aimed to indirectly validate previous results on the basis of
the assumption that relative increase of third ventricle would imply volume reduction of the adjoining
tissues. This analysis demonstrated an increase of third ventricle volume that was independent of the
lateral ventricles (used as covariate), and thus excluded global brain volume increase.

Recently, decreased volume in the bilateral hypothalamus along with increased volume in the left
amygdala and left hippocampus was observed in young children with ASD (n = 14, mean age = 4.5)
compared to typically developing children (n = 14, mean age = 4.1) [74]. In addition, the authors
observed that the hypothalamic volume was positively correlated with plasma AVP concentration.

In parallel, several indirect evidences of abnormal hypothalamic structure and function in ASD
emerged from studies of healthy OXTR risk allele carriers, in particular with the OXTR variant rs53576
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that appears to be associated with lowered socioemotional responses [63,75] and is often observed in
individuals with ASD [76–80].

One of the first demonstrations in this direction was a multimodal neuroimaging genetics approach
that permitted to identify several neural alterations in a large sample (n = 212) of healthy Caucasian
OXTR risk allele carriers [64]. Tost et al., using VBM, revealed a significant decrease of hypothalamic
GM volume in rs53576 risk allele carriers that correlated with the degree of allele risk. Notably,
decreased hypothalamic volume was predictive of a lower prosocial temperament trait in males.
Structural correlation analysis, information that has been shown to mirror anatomical connectivity,
showed allele-dependent increase of coupling between the hypothalamus and higher-order limbic
processing areas, such as the dorsal anterior cingulate cortex, including the paracingulate cortex and
amygdala (encompassing high density OT receptors), in rs53576A allele carriers.

In a consecutive study using VBM methods, reduction of GM volume in the dorsal anterior
cingulate gyrus and hypothalamus was also associated in carriers of OXTR rs2254298A, another
identified genetic risk variant for ASD; this result was mainly related to male carriers [81]. Structural
covariance analysis revealed a significant increase in the structural connectivity between hypothalamus
and dACG in rs2254298A carriers, similar to that observed in rs53576A carriers. The observed increase
of anatomical coupling in healthy carriers of genetic risk variants for ASD may suggest abnormal
connectivity related to alterations of several white matter morphological properties as well as atypical
functional interactions [82,83].

Additional studies examining brain morphology in individuals with single nucleotide
polymorphisms in the OXTR gene related to ASD indicated other alterations of locale brain volumes
including the hypothalamus. Inoue et al. [84], adopting a manual tracing methodology for measuring
regional brain volume, observed larger bilateral amygdala volume in Japanese adult carriers of OXTR
rs2254298A, proportional to the dose of this allele. No significant association of this genotype was
instead observed with hypothalamus as well as with global brain volume. In a subsequent analysis on
the same data using VBM, stimulated by result of Tost et al. (2011), the same authors reported that
rs2254298A was also associated with reduced GM volume in the dACG but not in the hypothalamus
and amygdala [85]. However, they observed an interaction effect between gender and rs2254298A
genotype in the right hypothalamus, reflecting smaller right hypothalamus volume in females only.

2.2. Functional MRI Studies

Aoki et al. in a focused metanalysis of 13 fMRI studies in ASD individuals during emotional-face
processing (considering both emotional-face vs non-emotional-face and emotional-face vs non-face
contrasts) observed abnormal functioning of several subcortical regions [86] among which hypothalamic
hypoactivity was prominent. In particular, individuals with ASD (n = 226, age ranging from 9 to
37 years) in comparison to NT controls (n = 251, age ranging from 9.2 to 28.6) showed significant
hypoactivation of the hypothalamus, and hyperactivation of the bilateral thalamus, bilateral caudate,
left cingulate and right precuneus. The comparison of emotional-face to non-face conditions showed
a similar activation pattern but hypoactivity was also observed in the parahippocampal gyrus and
amygdala, in addition to the hypothalamus. In line with behavioral studies demonstrating impaired
emotional-face processing in ASD [56], the observed alteration of subcortical rather than cortical
regions during face perception suggested dysfunctional unconscious processes in relation to social
cognition. Notably, reduced hypothalamic activity was not observed in each of single studies included
in the metanalysis, possibly because of their limited statistical power [87].

Preliminary evidence of a direct association between hypothalamic dysfunction and social
interaction was also shown by Chaminade et al. that measured fMRI-based brain responses in
ASD individuals (n = 10, mean age 21) during a more realistic and entertaining social behavior
consisting of an interactive videogame of the popular “stone-paper-scissors” game [88]. ASD and
NT participants played against three different agents: a human being, a humanoid robot endowed
with artificial intelligence attempting to win the games by considering previous games’ results, and
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a computer that randomly generated the three possible responses. A significant interaction effect
between Agent (Human, Robot) and Group (ASD, NT) delineated an activation cluster in the left and
right hypothalamus, attributed to the paraventricular nucleus, resulting from decreased activity when
ASD participants played against the human as compared to the artificial agent, with respect to NT.
In addition, functional connectivity analysis of the left hypothalamus revealed a single cluster in the
left temporoparietal junction resulting from the interaction effect of Group and Agent. Specifically,
a significant negative coupling between the left hypothalamus and left temporoparietal junction (lTPJ)
was measured when NT played against the robot and when ASD participants played against the human.
Moreover, the coupling observed when ASD participants played against the human, but not against
the robot and computer, was negatively correlated with the severity of autistic symptoms measured
with Autistic Spectrum Quotient [89]. Interestingly, the decreased modulation of hypothalamic
nuclei activity along with negative functional connectivity between hypothalamus and lTPJ, a region
associated with anthropomorphization—which is the tendency to attribute human traits to artificial
agents—was observed when ASD individuals interacted with a human player, and similarly when
NT individuals played against the robot. The anticorrelation between lTPJ and hypothalamus might
reflect inhibitory activity exerted by the lTPJ on hypothalamic nuclei that would then result in reduced
social motivation and reward for human interactions in ASD.

In line with hypothalamic functional alterations in ASD during processing of emotional
expressions [86], reduced hypothalamic activation was also observed in adult carriers of risk OXTR
gene mutation for autism [64,81]. Tost et al. (2010), besides abnormal anatomy of the hypothalamus,
reported functional alteration of hypothalamic activity during perception of facial expressions (using
a Face-Matching Task). In particular, they observed increased fMRI-based connectivity (measured
with cross correlation) between hypothalamus and amygdala, and decreased amygdala activation
in adult carriers of rs53576A (n = 228) with respect to individuals with the GG genotype [64]. In a
subsequent analysis the same authors observed reduced deactivation of the dorsal anterior cingulate
and paracingulate cortex associated with healthy carriers of another OXTR gene polymorphism, the
rs2254298A [81]. Moreover, differential functional brain connectivity was revealed by genotype-by-sex
interaction effect associated with negative coupling of the hypothalamus with dACG and amygdala in
male rs2254298A carriers, and positive coupling in females.

Likewise, Wang et al. (2013) demonstrated gender dependent effects of OXTR rs53576 gene
variation on hypothalamic functional connectivity in healthy individuals. Specifically, whole brain
analyses of local functional connectivity density (FCD) during resting-state fMRI data (n = 270) revealed
a main effect of genotype on the local FCD in the hypothalamus and no gender-by-genotype interaction
effect, although local FCD in male AA homozygotes was significantly lower than in male G-allele
carriers [90]. Additional analysis of gender-by-genotype interaction considering resting-state functional
connectivity of the hypothalamic region only showed significantly weaker coupling between the
hypothalamic region and the left dorsolateral prefrontal cortex in male AA homozygotes with respect
to male G-allele carriers.

3. Discussion

Building on the well-recognized role of the hypothalamus in the production of the OT and AVP,
and the emerging evidences of an association between activity of hypothalamic neuropeptides and
socioaffective responses in ASD and NT population, we here aimed to inspect the current neuroimaging
literature in humans in search for evidences of hypothalamic alterations in relation to the core social
deficits in ASD. Examination of current structural and functional MRI studies reporting alterations
of the hypothalamus in ASD, although rather limited, revealed quite consistent morphofunctional
abnormalities. Specifically, two main findings emerged from VBM and fMRI analyses, in both adults
and children: anatomical hypothalamic atrophy and functional hypoactivation during face processing
and social interaction, respectively.
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3.1. Hypothalamic Morphological Alterations

Anatomical hypothalamic atrophy was mainly related to smaller hypothalamic volume in both
ASD individuals [72] and healthy carriers of OXTR genetic risk variant for ASD, and to reduced GM
density observed in ASD [73]. Notably, in line with gender-dependent differences in the expression of
the OXTR gene [91,92], hypothalamic structural abnormalities in healthy carriers of OXTR genetic risk
variant for ASD appear not equivalent in males and females and dependent on OXTR variants [64,85].

Sexual dimorphisms of the hypothalamus might follow similar gender-related differences observed
in other brain regions including the amygdala, as well as in interhemispheric connectivity, along
with differences in hormone-related personal traits, cognition, behavior and psychiatric disorders
manifestation [93], ultimately mirroring ASD prevalence that appears larger in males than in females
with a male-to-female ratio closer to 3:1 [94].

The observed anatomical abnormality of the hypothalamus is in line with several neuroimaging
observations that, although not always congruently, reported morphological changes in ASD in
multiple brain regions [95,96], including reduced volume in the social brain network [97–100].

However, it remains difficult to infer the exact neuronal mechanisms leading to hypothalamic
atrophy, since variations of multiple properties of GM can equally affect VBM signal. Changes at the level
of neuronal cell bodies, glia or neuropils might all contribute to hypothalamic grey matter reduction and
differentially affect regulation of central neuropeptides and peripheral hormonal regulation through
abnormal synthesis and release. Indeed, postmortem brain analysis in ASD highlighted various
anatomical anomalies related to neuronal density and size, dendritic spine density, glia and cerebral
vasculature [101]. In particular, lower neuronal density has been measured in human brain regions
involved in social behavior such as the fusiform gyrus and amygdala [102–104], as well as in specific
layers of ACC [105], possibly reflecting specific hypoactivation of these same regions in ASD.

Moreover, some insights about neural mechanisms underlying hypothalamic atrophy might
arise from animal models of ASD. Genetically modified animal models such as the Black and Tan
Brachyury (BTBR) mouse model [106,107] and the copy number variants mouse model simulating the
15q11-13 duplication in human (15q dup) [108] were also associated with decreased GM volume of
the hypothalamus. In addition, mice carriers of neurexin gene mutations have been associated with
fewer oxytocin-expressing neurons in the hypothalamic paraventricular nucleus [109]. Similarly, mice
with missense heterozygous mutation in the contactin-associated protein-like 2 (CNTNAP2) were
characterized by specific reduction in the number of OT expressing cells in the paraventricular nucleus
in association with reduced OT concentrations in brain extracts [110]. In humans, reduced plasma
concentration of OT has been indeed measured in ASD [111] and predicted social impairment [29],
but no clear evidences of alterations at central level emerged. Some indications suggest a possible
correlation between plasma and CNS OT concentrations, but this correspondence seems particularly
dependent upon the assessing methods employed [112]. Thus, there are currently no demonstrations
of the specific impact of hypothalamic atrophy on OT transmission to brain circuits in humans.

3.2. Hypothalamic Functional Alterations

FMRI studies in ASD revealed hypoactivation of the hypothalamus in relation to face processing,
and during interactive play with humans. Likewise, reduced hypothalamic activity during face
perception was also observed in healthy carriers of risk genetic mutations for ASD [64].

As for morphometric anomalies, no direct interpretation of the neuronal processes underlying
hypothalamic fMRI hypoactivation is yet possible. Decreased BOLD response does not necessarily
imply reduced OT/AVP release. Although dendritic and axonal neuropeptides release is generally
enhanced by increased action potential frequency, the BOLD signal neither directly nor exclusively
reflects neuronal spiking activity but correlates more strongly with local field potentials, which represent
postsynaptic activity and integrative soma-dendritic processes [113]. Considering the observed possible
uncoupling between hypothalamic spiking activity and dendritic oxytocin release, which can be locally
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mediated by intracellular calcium stores independently of action potentials [114], decreased BOLD
signal in the hypothalamus might indeed reflect reduced dendritic release of oxytocin.

Animal models of ASD indicate some convergent evidences in relation to the hypothalamic
activity. For instance, 15q dup mice showed no hypothalamic activation in response to odor
stimulation and resting-state functional hypoconnectivity in a widespread brain network including the
hypothalamus [115]. Conversely, hypothalamic activity positively correlated with measures of typical
social behavior in rats not responding to exposure to valproic acid in utero, another animal model of
ASD [116].

In humans, hypoactivation of the hypothalamus and reduced oxytocin secretion has been observed
in eating disorders [117,118]. However, to date, a clear demonstration of any relationship between
hypothalamic activity and OT release at central and peripheral level in humans is still lacking.
Furthermore, the limited spatial resolution of the considered studies does not permit to correctly
attribute hypoactivation to single hypothalamic nuclei, all having diverse functions in the autonomic
and central nervous system.

Reduced activation of the hypothalamus was also frequently associated with decreased amygdala
activity in both ASD and carriers of OXTR rs53576A allele, in particular during face processing [64,86].
These findings are consistent with several previous studies reporting decreased amygdala activation
during face perception in ASD [119,120]; nevertheless, opposite findings were also reported, but they
were supposedly ascribable to longer gaze fixation time and higher anxiety level of individuals with
ASD [58,121,122].

Hypothalamic nuclei can be controlled directly by the amygdala through the amygdalofugal
pathway and the stria terminalis, and indirectly through the bed nucleus of the stria terminalis, which
mediates stimulation of the hypothalamic-pituitary-adrenal axis. Projections of the central amygdala
to the hypothalamus and brainstem can directly trigger autonomic fear responses [123]. Stimulation of
amygdaloid OXT receptors is then assumed to inhibit these efferences’ activity so as to decrease aversive
responses to socially-relevant stimuli [20,124,125], which would be increased in case of diminished
amygdala activation. Accordingly, increased hypothalamic activity and amygdala deactivation appear
to mediate initiation and consolidation of social relationship in healthy individuals. Such a reverse
activation pattern of the hypothalamus and amygdala has been associated with several social behaviors
such as other people’s trust and trustworthiness [126] and mother–infant and pair bonding [127–130],
as well as visual processing of personally known faces including same-sex sibling and best friend with
respect to unknown faces [131].

Prosocial behavior can be enhanced by hypothalamic through the modulation of two
complementary responses: enhancement of social stimuli saliency processing and reduction of
fear and avoidance behavior, both mechanisms being strictly dependent on amygdala activity [132,133].
Notably, AVP and OT have opposite modulatory effects on fear and anxiety-related behavior: the
former by enhancing sympathetic responses such as stress level, anxiety, aggressiveness and boosting
fear memory consolidation, the latter by acting on complementary parasympathetic responses that
facilitate prosocial attitude and interactions as well as extinction of conditioned avoidance responses.
These opposite regulatory neurophysiological processes result from activation of distinct elements of
an inhibitory network within the medial part of the amygdala, and consecutive integration of different
afferences to the central amygdala into a modulatory output to the hypothalamus and brainstem for
appropriate anxiety and fear responses [134].

In addition, the hypothalamus can significantly influence socioemotional responses through
a complex network that includes widely distributed, mostly bi-directional, neural connections to
other brain regions. The hypothalamus is interconnected with basal forebrain areas such as the
periamygdaloid region and the septal nuclei and other brainstem nuclei through the medial forebrain
bundle, which mediates top-down modulation of both somatic and visceral activity by the forebrain
and limbic system, as well as bottom-up influences of higher brain activity by internal organs and
bodily interoceptive signals.
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Previous studies reporting hypothalamic activation concurrent to other socioemotional-related
brain regions indeed indicated widespread interactions of the hypothalamus with emotional,
motivational and social brain centers [132,135–138]. However, the still scarce evidence of functional
connectivity of the hypothalamus in both NT and ASD individuals, which might also be partly
dependent of the variable association between hypothalamic spiking activity and oxytocin release, do
not permit to clarify how this region interacts during typical and atypical socioemotional behavior.

Indirect indications about alterations of functional connectivity emerge from studies on healthy
carriers of risk genetic mutations for ASD. Tost et al. (2010) measured increased structural and functional
connectivity during face perception between hypothalamus and amygdala in OXTR risk allele carriers,
suggesting a dysfunctional coupling underlying inappropriate responses to socially-relevant stimuli,
although the actual nature of their interactions remains unknown. In addition, the same authors
observed a negative coupling between hypothalamus and dorsal anterior cingulate and paracingulate
cortex resulting from respectively decreased and increased activity [64]. Direct projections of the
anterior cingulate cortex (ACC) to the hypothalamus have been demonstrated in both animals and
humans [139,140]. Interestingly, concurrent increased activity in the paracingulate cortex and in the
septal area, including the hypothalamus, has been associated with unconditional trust towards other
people [126]. Maladaptive changes in trusting behavior, for instance after repeated violations of trust,
consequent to exogenous administration of oxytocin, have been associated with increased ACC activity
and decreased amygdala and midbrain activation [141]. The anticorrelation between the hypothalamus
and ACC might then result from exaggerated ACC inhibitory activity of the hypothalamic nuclei
preventing adaptive social behavior. The ACC is an important regulatory center that, through direct
projections to the amygdala, insula, ventral striatum, hypothalamus and brainstem [140] can control
socioemotional responses. Remarkably, it has been proposed that the medial prefrontal cortex, including
ACC, would encode abstract representation of social experiences [142] permitting to predict and guide
social goal-directed behavior based on social prediction error [143,144]. In line with this assumption,
ACC connections with brain regions related to emotion and reward such as OFC, ventral and dorsal
striatum, amygdala, insula and hypothalamus would then support generation of active inferences
of affective, interoceptive and reward values [145,146] of socioemotional responses, as well as the
minimization of prediction error between expected and actual behavioral outcome, the latter seemingly
compromised in ASD [9,147].

3.3. Relevance of Hypothalamic Alterations in Healthy Carriers of Genetic Risk Variation in OT Receptors

Structural and functional alterations of the hypothalamus in individuals with polymorphisms of
the OXTR gene are intriguing considering the increasing evidence indicating their relationship with
ASD [79]. For instance, the OXTR rs53576A and recently the rs2268498 were associated with ASDs
in both Asian and Caucasian populations [76,77,148,149]. Despite some inconsistency of the studies
linking OXTR rs53576 variant with impaired socioemotional traits and behavior [150], the rs53576 and
rs2254298 OXTR single nucleotide polymorphisms were shown to correlate with increased severity of
social deficits in ASD, and less with social deficit in ADHD, thus indicating a differential relationship
between this neuropeptide receptor gene allele and the social phenotype [80]. A metanalysis on the
relationship between the OXTR rs53576 variant and human sociality indicated a clear influence of this
OXTR polymorphism on individual psychological traits related to social responses to other people (for
instance extraversion, empathy, and social loneliness) [151]. In short, neuroimaging findings in healthy
carriers of OXTR rs53576A and OXTR rs2254298A genotypes indicate that alterations in the expression,
and possibly function, of OXTR gene might be related to abnormal morphofunctional characteristics
of the hypothalamus in ASD. However, it is conceivable that other OT signaling genes, such as the
structural gene for OT (OT/neurophysin-I) [152] and gene for OT secretion (CD38) [153] that along
with the OXTR have been frequently linked to human social behavior [154], might also contribute to
structural and functional brain alterations in ASD.
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4. Conclusions

The few studies that have thus far observed, directly or indirectly, a relationship between the
hypothalamus and ASD indicate both structural and functional alterations. However, considering
the paucity of current investigations, further well-defined studies are strongly needed to clarify
morphological and functional properties of hypothalamic nuclei and their complex functional exchanges
with cortical and subcortical networks during socioemotional behavior in ASD (Figure 1).
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Table 1. Questions for future research. 

• What are the specific phenotypic expressions of morphofunctional alterations of the 

hypothalamus? 

• Do morphofunctional hypothalamic alterations have similar phenotypic expressions in 

neurotypical and ASD individuals? 

• How structural and functional characteristics of the hypothalamus manifest across 

development in ASD? 

• Can morphofunctional hypothalamic alterations help to characterize subtypes of ASD? 

• What is the contribution of structural gene for oxytocin and gene for oxytocin secretion in the 

hypothalamic alterations? 

• What is the specific role of anatomical and functional subdivisions of the hypothalamus in 

atypical socioemotional behavior? 

• What is the dynamic functional connectivity between the hypothalamus and amygdala in 

ASD? 

• Does task-related modulation of hypothalamic activity in ASD reflect dynamic changes of 

oxytocin concentration at peripheral and central level? 

  Figure 1. Questions for future research.

Current neurophysiological investigations on the role of the hypothalamus in typical and atypical
human social behavior have been likely hindered by several limitations related to the experimental
methodology and MR signal acquisition techniques, resulting in a surprising disregard of its essential
contribution. Designing protocols that permit to assess neural activity during realistic and entraining
social scenarios, with rigorous control of experimental variables, for both NT and ASD individuals, is
particularly challenging. In addition, MRI acquisition schemes adopted in most of previous anatomical
and functional brain investigations in ASD were not specifically tailored for the hypothalamus.
Neuroimaging of the small hypothalamic nuclei is certainly arduous as needs very high spatial
resolution to clearly delineate their functional subdivisions and at the same time it requires prevention
of potential partial volume effects, compensation for signal-dropouts occurring in ventromedial
subcortical regions and correction for distortions generated by neighboring ventricles and blood
vessels. Nevertheless, extraordinary progresses in high-field and ultra-high-field MRI techniques
indicate feasibility of high-resolution structural [155,156] and functional [157,158] imaging of the
human hypothalamus, and might then valuably support the elucidation of morphological and
functional properties of this region in typical and atypical socioemotional behavior. Ultimately, greater
understanding of the human hypothalamic morphology and functions is essential not only for the
comprehension of socioemotional behavior but also in relation to the direct implication of hypothalamic
neuropeptides in synaptic activity and plasticity [37], and neurogenesis [159], that may considerably
impact the still obscure pathophysiology of ASD.
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