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Summary of Notation

The following are the fixed notations in the text. Capital letters are used

for random variables and matrices; lowercase letters are used for random

variable realisations. Vectors are written in bold type. Additionally, we use

various letters for certain quantities, described below:

Symbol Description
p Number of particle types in the system
r Number of reactions
q Number of covariates, including the intercept
N Time intervals (Chap. 3-4)
T Time points (Chap. 5)
C Replicates (Chap. 5)
klj Number of particles of type l consumed in reaction j
slj Number of particles of type l produced by reaction j
vlj Net change in particle count of type l due to reaction j
θ Reaction rates
Y (t) Particle concentration process at time t
m(t) Mean of the process Y (t) conditional on filtration F−
λ(y;θ) Hazard rate of reaction j when system is in state y

Terminology
CME Chemical Master Equation
LLA Local Linear Approximation
LMA Local Mean-Field Approximation
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A process cannot be understood by stopping it. Understanding must move

with the flow of the process, must join it and flow with it.

— Frank Herbert, Dune





Chapter 1

Introduction

1.1 Research Motivation

The growing need to comprehensively interpret the complex dynamics of var-

ious natural phenomena such as stem cell differentiation and the spread of

infectious diseases, has driven the development and widespread adoption of

advanced statistical modeling frameworks. Specifically, quasi-reaction sys-

tems effectively describe the temporal dynamics of various biological and

biochemical processes, commonly governed by stochastic differential equa-

tions (Wilkinson, 2018; Britton et al., 2019; Craigmile et al., 2023). Accurate

inference of the unknown parameters which control the system dynamics is

important for predicting and characterizing their evolution over time.

Traditional methods for parameter estimation, such as the Local Lin-

ear Approximation (LLA), give an explicit approximation of the likelihood

function under specific assumptions (Shoji and Ozaki, 1998). However, LLA

methods are susceptible to bias when observations are too closely spaced in

time (Komorowski et al., 2011; Framba et al., 2024). Several approaches

have been suggested to reduce the variance of the estimates in such multi-

response non-linear models. To name a few, Fedorov (2013) proposed an

optimal design technique that relies on knowledge of the variance-covariance

matrix. However, such approach is often computationally inefficient and nu-

merical unstable in certain scenarios. Tikhonov regularization techniques

(Engl et al., 1996) offer an alternative way, though when measurements are

7



Chapter 1. Introduction 8

spaced too closely in time, concentrations may remain constant, resulting in

zero standard deviations and making regularization impractical.

A further limitation of the current quasi-reaction framework is the absence

of methods incorporating time-varying covariates to model reaction rates. In

many applications, such as epidemic models or genetic studies, including

extrinsic covariates like environmental conditions, population demographics,

and spatial variability can significantly improve the description of the model’s

dynamics (Britton et al., 2019). Additionally, it is reasonable to expect

that reaction rates may fluctuate over time due to changes in these external

factors. Existing approaches typically assume constant rates, which limit

their ability to fully capture the complexity of the dynamics.

Another significant challenge in inferring reaction rates in stochastic quasi-

reaction systems arises when observations are sampled at widely spaced in-

tervals. The system can evolve considerably between observations, making

it difficult to accurately infer the reactions that occurred during these gaps

(Milner et al., 2011). Traditional methods, such as the Local Linear Approx-

imation mentioned above, are inadequate in these scenarios because their

accuracy diminishes as the time intervals increase. Mean-field approxima-

tion techniques provide a more effective solution by focusing on the system’s

average dynamics rather than attempting to track every individual event

(Baccelli et al., 1992). These methods are computationally efficient and

work particularly well in unitary systems, where each reaction transforms

a single element into one or more products. In such cases, it is possible to

derive explicit solutions for the ordinary differential equations (ODEs) gov-

erning the process’s mean. For higher-order reactions, explicit solutions are

not feasible, and alternative approximation algorithms have been developed,

such as the moment-closure numerical method of Pellin et al. (2023), which

approximates the first moments of the system by truncating higher-order

terms, and the time scale separation approach of Lente et al. (2022), which

applies Taylor series expansions to exploit differences in reaction timescales.

However, these approaches involve either solving computationally expensive

non-linear systems or working with second-moment equations, which can

lead to inaccurate parameter estimates and poor predictions of the system’s

states. Using series expansions may not fully capture interactions across dif-
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ferent timescales. Additionally, these methods do not adequately address the

stiffness phenomenon—frequently encountered in biological systems—where

reaction rates have very different magnitudes, which leads to numerical in-

stability and further complicates the inference process.

1.2 Outline of the thesis

The thesis is structured as follows:

In the second chapter, we provide a thorough description of the quasi-

reaction framework, reviewing the theoretical foundations, and including the

role of the stochastic analysis in modelling chemical reactions at the par-

ticle level. We discuss state-of-the-art inference methodologies, including

likelihood-based methods and approximation techniques, alongside their lim-

itations. We present the mathematical results that will be utilized in the

subsequent chapters. Our objective is twofold: to provide these findings in

advance to facilitate the derivation of later results, while also avoiding over-

burdening the reader with additional complexities down the line. Further-

more, we introduce the datasets employed in the subsequent applications.

We detail the manipulations and preprocessing steps required to prepare

these datasets for analysis, explaining how the raw data were structured to

align with the computational models. This includes data transformation,

and the specific adjustments made to ensure compatibility with the inference

methodologies used in the study.

In the third chapter, we tackle the challenge of parameter inference for

quasi-reaction systems where observations are closely spaced in time. To ad-

dress the limitations of traditional approaches, we propose a framework that

incorporates latent event history models within the quasi-reaction system.

Event history models, initially developed for fields such as sociology and

medicine, focus on the hidden events driving observable system dynamics,

rather than directly modelling the system states themselves. In the context

of quasi-reaction systems, such a framework reconstructs the unobserved re-

actions that take place between consecutive time points. The methodology
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is based on defining the system as a series of reactions, each governed by

a hazard function depending on the system’s current state. These reaction

rates are assumed to remain constant at sufficiently small time intervals, and

the primary challenge is to infer the unobserved reaction events from the

observable system state.

To account for the fact that the latent events are not directly observable,

we employ an Expectation-Maximization (EM) algorithm for parameter es-

timation. At the E-step we apply an extended Kalman filter to predict the

latent events based on the dynamics observed throughout the time inter-

val. Since the occurred reaction counts follow a Poisson distribution, we

first approximate the Poisson-distributed events using a continuous Gamma

distribution, which is then transformed into a Gaussian form via marginal

transformation. This step enables the use of an extended Kalman filter de-

signed for non-linear systems, facilitating efficient parameter estimation even

in the presence of non-linearities in the system dynamics. At the M-step, we

optimize the log-likelihood function with respect to both the reaction param-

eters and the variance-covariance observation matrix, iterating the process

until convergence. The model accurately captures the underlying dynamics

with minimal bias, particularly in simulated scenarios where the temporal

correlation between observations is high due to closely spaced time points.

An illustration of the use of this inferential procedure on epidemiological

data, specifically early COVID-19 transmission data, shows how the approach

is able to return sensible estimates of the epidemiological parameters, includ-

ing the basic reproduction number (R0). The approach is applied to three

distinct phases of the first year of the COVID-19 epidemic in Italy: the initial

acute phase of widespread infection, a summer period with relaxed restric-

tions, and a third phase during the second lockdown. Our results show that

during Phase 2, the spread of infection was significantly limited, primarily

as a result of the containment measures implemented during Phase 1. In

Phase 3, there was a significant increase in infection rates, especially in the

southern regions of Italy, where the disease spread more quickly. Standard

errors of R0, calculated via the Delta method, reveal significant differences in

the basic reproduction number between consecutive phases. Interestingly, al-

though not explicitly accounted for in the model, the R0 estimates displayed
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a degree of geographical clustering, which can be attributed to the movement

of individuals between neighbouring regions. This clustering aligns with ex-

pectations, as human mobility plays an important role in the regional spread

of infectious diseases.

In a fourth chapter, we extend the latent event history model to include

covariates, thereby addressing the limitation of constant reaction rates, which

were assumed in the third chapter. To account for time-varying factors, we

modify the model to allow the reaction rates to depend on external covariates.

The inclusion of covariates is achieved by modelling the log-reaction rates

linearly on a vector of covariates. The EM algorithm developed in Chapter

3, is then modified to account for this change, with the Kalman filter in the

E-step now taking into account the effect of the covariates on the latent state

predictions.

In a simulation study, the enhanced model is applied to a classic SIR

epidemic framework, with a binary covariate representing the introduction

of a lockdown. The inferential procedure successfully captures the reduction

in transmission rates following the implementation of the lockdown, with the

estimated parameters closely reflecting the actual changes in the system. The

inclusion of the covariate allows the model to reflect the impact of interven-

tion measures, improving both the accuracy of parameter estimates and the

overall understanding of the system’s behaviour.

When applied to epidemiological data, specifically COVID-19 transmis-

sion data from Lombardy, Italy, in 2021, the model provided deeper insights

into the effects of covariates such as temperature and government-imposed

restrictions on both transmission and recovery rates. The parameter esti-

mates are closely aligned with those reported by the Italian government,

demonstrating the practical utility of the proposed approach in epidemic

monitoring.

In a fifth chapter, we focus on the issue of parameter inference when ob-

servations are widely spaced in time, a significant limitation to the existing

inferential methods based on stochastic models. In systems with higher-

order reactions, mean-field approximation methods often require numerical
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solutions, as the ordinary differential equations describing the process’s mean

typically do not have an explicit solution. This also leads to potential numer-

ical instabilities in stiff systems, where reaction rates differ significantly. Sys-

tems with at most one reactant per reaction —known as unitary systems—

allow for explicit solutions without the need for numerical integration. In

this chapter, we present a new approach that generalizes the case of unitary

systems to any generic system. In particular, by linearizing the rate function

with a first-order Taylor expansion, we approximate any generic system with

an ODEs system that has an explicit solution, as for the case of unitary sys-

tems. By doing this, we achieve computational efficiency while avoiding the

numerical instabilities inherent to traditional numerical methods for solving

ODEs, such as explicit Euler and Runge-Kutta. This approach is applied

locally for all observations, setting each value in the dataset as an initial

condition of the ODEs system and considering the explicit solution of this

problem as a projection of the state to the next time point. In this way,

we also take into account the non-linearity of the process, leading to high

accuracy of parameter estimates.

We further compare our approach with a correlation-based M-estimator,

which infers parameters in branching processes by matching the theoreti-

cal second moment of cell-type dynamics with the empirical one from the

observed data. The proposed local-mean field approximation method out-

performs the competitor across multiple metrics, providing more stable and

accurate estimates.

When applied to clonal tracking data from Rhesus Macaques, the pro-

posed inferential approach leads to valuable insights into the hematopoietic

process. The algorithm effectively captures the differentiation dynamics of

key blood cell types, with results that closely align with biological expecta-

tions.



Chapter 2

Theoretical and Computational

Framework

2.1 Stochastic Chemical Kinetics

In this section, we provide a review of the stochastic chemical kinetics frame-

work. Consider p molecular species Pl in a closed system with volume Ω.

We denote by Yl = [Pl] ∈ R+ the concentration of the l-th particle in the

system, i.e. the ratio of the number of molecules to the volume. The state

of the system is indicated with Y = ([P1], . . . , [Pp]). The following definition

formalizes the notation used for a quasi-reaction system.

Definition 1 (Quasi-reaction equation). A chemical reaction is qualitatively

described by the following expression

k1jP1 + ...+ kpjPp
θj−→ s1jP1 + ...+ spjPp, (2.1)

where the LHS (reactants) correspond to the molecules needed for the j-th

reaction, the RHS (products) are the results of the chemical transformation.

The stoichiometric coefficients klj, slj ∈ Z0 are the number of molecules of

the l-th reactant necessary to produce the l-th product in a single reaction

step. The concentration change for the occurrence of the j-th reaction is

captured by the vector V·j = k·j − s·j, which constitutes the j-th column of

the net effect matrix V ∈ Zp×r. θj ∈ R is the j-th reaction rate. For most

13
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systems, the law of conservation of mass holds, ensuring that the total mass

remains constant at all times in a closed system. However, this principle may

not apply in cases involving phenomena such as the spontaneous creation of

particles, where the concept is generalized using the term ”quasi.”.

Beyond qualitative description of the process, a kinetic mass-action method-

ology enables a more formal quantitative understanding of the chemical pro-

cess (Wilkinson, 2018). There are two contrasting views on causal entailment

in nature: determinism and randomness. Determinism asserts that natural

events follow causal laws that uniquely link the changes in concentrations.

That is, the next state of a system is determined without uncertainty by

the current and past states of the system. In a large class of quasi-reaction

systems, a frequently adopted relation is the rate law with definite orders

(Mortimer, 2000), in which the concentration of each species decreases in

proportion to the number of particles involved in the reaction and increases

based on the amount produced, with both changes scaled by the reaction

rate. Consequently, the reaction rate is directly proportional to the product

of the concentrations of the reactants, each raised to the power of their re-

spective stoichiometric coefficients. A set of ordinary differential equations

(ODEs) for the system (2.1) can be written as follows,

d[Pl]

dt
=

r∑
j=1

Vljθj[P1]k1j [P2]k2j . . . [Pp]
kpj l = 1, . . . , p. (2.2)

Deterministic modeling provides a practical approach by directly translat-

ing biochemical reactions into mathematical equations. However, observable

phenomena are causally related to numerous interacting factors, many of

which may remain unobserved or unidentified. Consequently, different reali-

sations of the same natural process show certain characteristics only to those

particular observations. Probabilistic methods might be more suitable to

mitigate this loss of information. Furthermore, while the particle dynamics

at the macroscale is largely shaped by spatiotemporal changes in the abun-

dance of particle components, at the microscale, particle events are driven

by discrete and random interactions among molecules (Ullah and Wolken-

hauer, 2011). Given these considerations, the thesis will primarily focus on
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the stochastic perspective.

Example 1 (Lotka-Volterra). In the early 20th century, Vito Volterra for-

mulated equations to describe the interaction between two species: a prey and

its predator. He aimed to explain population dynamics in the Adriatic Sea.

Alfred Lotka, independently, developed a similar model for chemical oscilla-

tions (Lotka, 1925). This system became known as the Lotka-Volterra model

(Boyce et al., 2017) and is the following

d

dt
[X1] = θ1[X1]− θ2[X1][X2]

d

dt
[X2] = θ2[X1][X2]− θ3[X2]

X1 and X2 represents respectively the prey and predator populations. The

parameter θ1 denotes the prey’s growth rate in the absence of predators, θ2 the

rate of predation, and θ3 the predator’s natural death rate. The corresponding

quasi-reaction equations are:

X1
θ1−→ 2X1

X1 +X2
θ2−→ 2X2

X2
θ3−→ ∅ (2.3)

Chemical reactions identification. The establishment of the timescale

at which the reactions take place is fundamental for providing a comprehen-

sive description of the involved reactions in the process and for achieving a

probabilistic understanding of the problem (Golightly and Wilkinson, 2005).

Many chemical reactions obtain the final product through several steps in-

volving intermediate reactants that nevertheless do not appear in the reac-

tion coefficients. The detection of such hidden reactants is still an element

of interest in numerous studies (Davis and Davis, 2012). When a reaction is

described using the same elements present at the molecular level, the time

factor corresponds to the elementary step. Conversely, if intermediate steps

are disregarded, it is referred to as a stoichiometric reaction. As elemen-

tary steps can be complex and difficult to isolate, while the stoichiometric

approach provides a clear balance of reactants and products, we will focus
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exclusively on the second case.

A second identifiability factor is the reversibility of reactions: a reaction

is reversible if the conversion of reactants to products and the opposite

occurs simultaneously (Davis and Davis, 2012). On the other hand, some

reactions occur in both directions but with a predominance of one over the

other. We will only consider irreversible reactions in this work to avoid the

simultaneity of events and the consequent loss of identifiability. For the same

reason, predominance will be achieved by separating the reaction into two

but with very different rate magnitudes, thus favouring the occurrence of one

over the other.

2.1.1 Mass-action stochastic kinetics

At low concentrations, the deterministic model (2.2) fails to capture the

discrete dynamics of molecular interactions, so it is necessary for a more

refined approach that accounts for the inherent stochasticity of processes.

There are two sources of randomness in a stochastic chemical system:

extrinsic noise encompasses environmental factors such as pressure, pH, or

temperature, that can cause unpredictability of the model. This often results

in the inclusion of a random fluctuation in reaction rates (Wilkinson, 2018).

In order to account for these factors in Chapter 4 we consider the effect of

covariates on the reaction rates. A second measure of uncertainty is intrinsic

noise and is based on the discreteness of kinetic systems (Swain et al., 2002).

Under reasonable assumptions—namely, that the system is well-stirred, and

in thermal equilibrium—statistical mechanics demonstrates that the collision

frequency between molecules remains constant, provided that both volume

and temperature are fixed. For molecules that are close enough for a reac-

tion to occur, the conditional probability of that reaction occurring becomes

independent of the system’s volume. This is because, while the chance of

molecules being close enough to react depends on the volume, the probabil-

ity of a reaction firing given their proximity is unaffected by it. As a result,

the overall likelihood of a reaction remains unchanged as long as molecules

are sufficiently close to interact. A more formal discussion can be found in

Gillespie (1992). Throughout this thesis, we will consider the model under
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the assumption that these conditions apply.

Hazard function We assume that if there are exactly klj molecules of type

l involved, the j-th reaction occurs after a waiting time Tj ∼ Exp(θj), for

j = 1, . . . , r. Given that collisions occur randomly, it is useful to quantify

the instantaneous rate at which a reaction takes place at a given time. This

leads to the following definition:

Definition 2 (Hazard function). The hazard function is the probability of

the event happening in an infinitesimal interval [t, t + dt), given that it has

not occurred until time t, i.e.

λj(t) = lim
dt→0

P(Tj < t+ dt | Tj > t)

dt
. (2.4)

We will use the above definition with the following result

Proposition 1. The hazard function of an exponential random variable Tj

with parameter θj is equal to θj.

Proof. The hazard function in Equation (2.4) can be rewritten as

λj(t) = lim
dt→0

P(Tj < t+ dt | Tj > t)

dt
= lim

dt→0

P(t < Tj < t+ dt)

dt · P(Tj > t)
.

Since P(Tj > t) = e−θjt, we have

P(t < Tj < t+ dt) = e−θjt − e−θj(t+dt) = e−θjt
(
1− e−θjdt

)
.

We substitute these expressions into the definition of the hazard function:

λj(t) = lim
dt→0

e−θjt
(
1− e−θjdt

)
dt · e−θjt

= lim
dt→0

1− e−θjdt

dt
.

To evaluate this limit, we use the fact that limx→0
1−e−x

x
= 1. Setting x =

θjdt, we have

lim
dt→0

1− e−θjdt

dt
= lim

x→0

θj (1− e−x)
x

= θj.
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Substrate concentrations evolve based only on their previous values. Thus,

we model it as a continuous-time counting Markov process Y (t) ∈ Np
0; the

realization yt is the p-dimensional vector where each component corresponds

to the count of molecules of the l-th species at time t ∈ [0, T ]. In most of

the cases, there may exist a time t such that ylt > klj, meaning there are

more molecules of type l in the system than required for the j-th reaction

to occur, allowing the reaction to take place in multiple combinatorial ways

(Wilkinson, 2018). This leads to the following formulation:

Tj ∼ Exp (λj(yt;θ)) ,

where

λj(yt;θ) = θj

p∏
l=1

(
ylt
klj

)
1ylt≥klj . (2.5)

We assume that the reaction times Tj are independent, so the first time of

occurrence follows an exponential distribution and the rate is the sum of the

individual hazard functions. While such an assumption of independence is

formally ill-defined since the occurrence of one reaction constrains or even

prevents others, this remains valid in terms of distribution up to the mini-

mum, after which the clock is reset thanks to the memoryless property of the

exponential distribution.

The hazard function depends on the specific reaction mechanism and

its order, with different forms of reactions arising based on the number of

molecules involved and their interactions. These reactions can be categorized

as follows:

1. A zeroth-order reaction is described by the quasi-reaction equation

R∅ : ∅ θj−→ Pl

While it may seem unlikely for substances to be created from nothing,

this definition permits the notion of a constant reaction rate. The

hazard function for the j-th reaction is given by λj(yt;θ) = θj.
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2. A first-order reaction is represented as

RI : Pl
θj−→?

The corresponding j-th hazard function is λj(yt,θ) = θjylt. The linear

dependence on the concentration vector offers a clear interpretation of

how the likelihood of the reaction occurring increases proportionally

with the concentration of the reactant.

3. A higher-order reaction generalizes the previous case. In this sce-

nario, the number of reactants or their stoichiometric coefficients is

strictly greater than one, and the quasi-reaction equation is the follow-

ing

R>I :

p∑
l=1

kljPl
θj−→?

Higher-order reactions serve as a fundamental tool for examining com-

plex systems with multiple interacting reactants, revealing the interplay

and combined effects within multi-component systems. The hazard

function is given by

λj(yt,θ) = θj

p∏
l=1

(
ylt
klj

)
,

and is no longer linear with respect to concentrations.

In biochemical terms, these definitions correspond to intuitive classifications:

a duplication reaction occurs as either a zeroth-order or first-order reaction

when the product is identical to the reactant. If the right-hand side (RHS)

is empty, the reaction is classified as a death reaction. In all other cases, the

process is termed a differentiation reaction.

2.1.2 The Master Equation

The reaction rates θ in a quasi-reaction system are typically unknown, and

their estimation provides valuable insight into the dynamics of the model,

based on an observed dataset. In order to infer these parameters from data, it
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is necessary to define the underlying probabilistic model. Under the hypothe-

sis of constant volume and thermal equilibrium, every Markov process admits

an explicit formulation of the evolution of the probability distribution over

time P (y; t), given by the Chemical Master Equation (CME)(McQuarrie,

1967; Schnakenberg, 1976; Gillespie, 1992). The CME is the following differ-

ential equation system for the process transition probabilities

dP (y; t)

dt
=

r∑
j=1

{λj(y − V·j;θ)P (y − V·j; t)− λj(y;θ)P (y; t)} . (2.6)

The Chemical Master Equation states that the flow of the probability of

being at a state y at time t is equal to the probability of arriving at y due

to the occurrence of the j-th reaction, given by λj(y − V·j;θ)P (y − V·j; t),
minus the probability of leaving y due to the occurrence of the j-th reaction,

given by λj(y;θ)P (y; t). Considering this over all reactions gives (2.6). A

solution of the CME is unfeasible due to the large dimension of possible state

configurations and for this reason, various approximation methods have been

proposed (Sjöberg et al., 2009; Basile et al., 2013; Gupta et al., 2021).

The first important result derived from the Chemical Master Equation

(2.6) is the ability to establish a framework for transitioning from a discrete

Markov process to its continuous counterpart. This approach is especially

valuable when estimating the parameters that govern the observation process

Y (t). One can achieve this by demonstrating the equivalence between the

CME and the Fokker-Planck equations. Let introduce the following propo-

sition

Proposition 2. As λj(y;θ)P (y; t) are analytic functions in y, the Chem-

ical Master Equation can be interpreted as a Kolmogorov Forward Equa-

tion, or Fokker-Planck equation, with drift V λ(y;θ) and diffusion matrix

VDiag(λ(y;θ))V T .

Proof. Under the regularity assumptions, we can perform a second-order

Taylor expansion of the product λj(y − V·j;θ)P (y − V·j; t) around y. This
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gives:

λj(y − V·j;θ)P (y − V·j; t) = λj(y;θ)P (y; t)+

+∇y {λj(y;θ)P (y; t)} ((y − V·j)− y)+

+
1

2
((y − V·j)− y)T∇2

y {λj(y;θ)P (y; t)} ((y − V·j)− y),

where ∇y and ∇2
y represents respectively the Jacobian and Hessian matrices

with respect to y. Simplifying this, we obtain:

λj(y − V·j;θ)P (y − V·j; t) =λj(y;θ)P (y; t)−∇y {λj(y;θ)P (y; t)}V·j

+
1

2
V T
·j ∇2

y {λj(y;θ)P (y; t)}V·j.

Thus, we have:

λj(y − V·j;θ)P (y − V·j; t)− λj(y;θ)P (y; t) =−∇y {λj(y;θ)P (y; t)}V·j

+
1

2
V T
·j ∇2

y {λj(y;θ)P (y; t)}V·j.

Substituting this expression into the Master equation, we get

dP (y, t)

dt
=

r∑
j=1

{
−∇y {λj(y;θ)P (y; t)}V·j +

1

2
V T
·j ∇2

y {λj(y;θ)P (y; t)}V·j
}
.

This simplifies to:

dP (y, t)

dt
=−∇y {V λ(y;θ)P (y; t)}

+
1

2
∇2
y

V
λ1(y;θ) . . . 0

...
. . .

...

0 . . . λr(y;θ)

V TP (y; t)

 ,

which can be identified as the Kolmogorov forward (Fokker-Planck) equation

with drift term V λ(y;θ) and diffusion matrix VDiag(λ(y;θ))V T .

A Kolmogorov Forward equation for the transition density P (y; t) cor-

responds to a multivariate diffusion process, known as the Ito process, with
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the same drift and diffusion terms. Thus the infinitesimal variation of the

process of observations yt can be rewritten as

dyt = V λ(yt;θ)dt+
(
VDiag(λ(yt;θ))V T

)1/2
dWt. (2.7)

A second result from the Chemical Master Equation is the connection

between the continuous deterministic formulation and the expected value

of the stochastic kinetic model. In some specific instances, these two are

identical. This connection can be demonstrated by deriving the system of

differential equations for the expected value of the stochastic kinetic model

m(t) = E[Y (t)|Y (t0) = y0]. To this end,

dml(t)

dt
=

d

dt

∑
y∈NN

0

ylP (y; t) =
∑
y∈NN

0

yl
dP (y; t)

dt
.

Using the Chemical Master Equation (2.6),

dml(t)

dt
=
∑
y∈NN

0

yl

r∑
j=1

[λj(y − V·j;θ)P (y − V·j; t)− λj(y;θ)P (y; t)] .

We swap the summation operators on the RHS as they span all possible state

configurations, leading to

dml(t)

dt
=

r∑
j=1

∑
y∈NN

0

yl [λj(y − V·j;θ)P (y − V·j; t)− λj(y;θ)P (y; t)] .

We make a substitution in the first addend of the RHS term and using the
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definition of the expectation of a function, and the linearity property,

dml(t)

dt
=

r∑
j=1

∑
y∈NN

0

(yl + Vlj)λj(y;θ)P (y; t)−
∑
y∈NN

0

ylλj(y;θ)P (y; t)


=

r∑
j=1

∑
y∈NN

0

[ylλj(y;θ)P (y; t) + Vljλj(y;θ)P (y; t)]


−

r∑
j=1

∑
y∈NN

0

ylλj(y;θ)P (y; t)

=
r∑
j=1

∑
y∈NN

0

Vljλj(y;θ)P (y; t)

=
r∑
j=1

VljE[λj(Y ;θ)].

In general, such ODEs system is not solvable directly, except in unitary

systems, i.e. in case all reactions have zero or first-order mass action rate

law (Wilkinson, 2018). In this case, the hazard function λ(y;θ) is linear in

y, thus it is possible to apply the linearity of the expectation, obtaining

dml(t)

dt
=

r∑
j=1

Vljλj(E[Y (t)];θ) =
r∑
j=1

Vljλj(m(t);θ). (2.8)

By considering an initial condition m(0) = m0, the above equation can

represented by the following first-order Cauchy problem,
dm(t)

dt
= Pθm(t) + bθ,

m(0) = m0.

(2.9)

The coefficient matrix Pθ and the inhomogeneous term bθ are both defined

in terms of the parameter vector θ. The former corresponds to reactions

involving a single reactant, while the latter represents spontaneous reactions,

independent of reactants. Utilizing some basic algebraic transformations and

defining the reactant matrix K = {klj}, Pθ and bθ can be explicitly written as
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Pθ = V diag(θ)KT and bθ,l =
∑

j Vljθj1{K.j=0}. If the matrix Pθ is invertible,

then the system (2.9) admits the explicit solution

m(t) = exp(tPθ)m0 + P−1
θ (exp(tPθ)− Ip) bθ. (2.10)

In Chapter 5, we will present a new approach that transform any generic

quasi-reaction system as unitary, by linearizing with a first-order Talyor ex-

pansion the rate function λ(y;θ) for y. Through this approximation, we can

always derive an explicit expression for the conditional mean of the process,

as the corresponding ODEs system (2.9) admits a closed-form solution. In

the following example, we illustrate how an exact solution of the conditional

mean of the concentrations process can be defined if the system is unitary.

Example 2 (Reduced Lotka-Volterra). Consider the previously defined sys-

tem (2.3), but without interaction between species, to deal only with at most

first-order reactions. Such a scheme correspond to the following quasi-reaction

equations:

X1
θ1−→ 2X1

X2
θ3−→ ∅.

Note that

K =

[
1 0

0 1

]
, V =

[
1 0

0 −1

]
,

and the hazard function vector is

λ(Y ;θ) =

[
θ1Y1

θ3Y2

]
.



25 2.1. Stochastic Chemical Kinetics

Thus, we get the following differential equation,

dm(t)

dt
= V λ(E[Y (t)];θ)

= V λ(m(t);θ)

=

[
1 0

0 −1

][
θ1m1(t)

θ3m2(t)

]

=

[
θ1 0

0 −θ3

]
︸ ︷︷ ︸

Pθ

[
m1(t)

m2(t)

]
.

The above equation is a first-order ODEs system without the inhomogeneous

term bθ. Following (2.10) and given the initial condition m0, the explicit

solution is

m(t) = exp

(
t

[
θ1 0

0 −θ3

])
·m0.

2.1.3 The Gillespie Algorithm

The chemical master equation has an exact correspondence with the stochas-

tic simulation algorithm proposed by Gillespie (1977). The Gillespie algo-

rithm provides an exact procedure to simulate such stochastic systems by

determining the time of the next reaction and which reaction will occur.

This means that the stochastic simulation algorithm produces realisations of

the Markov jump process Y (t) whose initial conditional densities are deter-

mined by the CME (Gillespie, 1992). Each reaction j = 1, . . . , r occurs at

a rate determined by its hazard function λj(y;θ), where θj represents the

reaction rate constant and y the current state of the system. The algorithm

is outlined as follows:

1. Set the initial time t = 0, with initial concentrations y0 and rate θ.

2. For each reaction j = 1, . . . , r, calculate λj(y;θ) based on the current

state y.
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3. Sample the time to the next reaction τ ,

τ ∼ Exp

( r∑
j=1

λj(y;θ)

)
.

4. Select the next reaction j with the following probability

P(”Reaction j occurring”|y,θ) =
λj(y;θ)∑r
i=1 λi(y;θ)

.

5. Update the state of the system by applying the net effect vector of the

selected reaction j:

y ← y + V·j

6. Set t = t+ τ .

7. Repeat the process from step 2 until a desired stopping time Tmax is

reached (using the memoryless property of the exponential distribu-

tion).

The Gillespie algorithm could be used in other frameworks based on Markov

jump processes, such as genetic regulatory systems or queueing networks

(Teugels, 2008), where transitions occur without explicitly modeling inter-

actions between components, extending its applicability beyond reaction-

based dynamics. However, incorporating reactions explicitly, as in the quasi-

reaction systems framework, provides greater versatility for studying the pa-

rameters governing the system dynamics. Chapters 3 and 4 investigate the

performance of the proposed inference method for several sampling time in-

tervals. It is common practice to set ∆t and evaluate the estimates using

the inference algorithm. However, as our simulations are performed with

the standard Gillespie algorithm, observations are not equidistant: for high

concentrations, a reaction is more likely to occur and the intervals between

observations are shorter. The data selection strategy used for the simulation

studies in Chapter 3 and 4 starts with generating T observations using the

Gillespie algorithm, given the initial values y0, and the true parameters θtrue.

Then, for a fixed k, measurements are retained every k time points from the
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Jump T=10 Occurred Reactions
Selected

data
N

Intervals
2 • ◦ • ◦ • ◦ • ◦ • ◦ 5 4
3 • ◦ ◦ • ◦ ◦ • ◦ ◦ • 4 3
5 • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ 2 1

Example of data selection. T = 10 time points are generated; the total number
of selected observations (N + 1) depends on the jump value. The analysis is
performed on the dataset indicated by filled dots; empty dots represent latent
reactions.

previously sampled trajectories. The value of k is referred to as jumps. The

greater the jump, the wider the interval between consecutive time points.

For ease of notation, we denote by N the number of intervals between the

selected points. Table 2.1 provides an example with T = 10 occurred events.

In Chapter 5, with a slight abuse of notation, we indicate the number of

selected observations (i.e. the size of the dataset) directly with T .

2.2 Inference

The observation process Y (t) is collected at discrete time points. In Chapter

5, multiple replicates of each trajectory are considered, whereas in Chapters

3 and 4, data from a single subject are analyzed. In this section, we will

present different inference methods for parameter estimation of the reaction

rates θ in stochastic quasi-reaction systems.

In Section 2.2.1 we describe the state-of-the-art Local Linear Approxi-

mation (LLA), which discretizes the moments of the continuous Ito process

and then estimates parameters using a least-squares approach. In Section

2.2.2, we present an alternative inference approach proposed by Golightly

and Wilkinson (2006), which utilizes a Bayesian framework combined with

a diffusion approximation. This method relies on the same moment ap-

proximations of the Ito process (2.7), but introduces latent unobserved data

points between observed time intervals. By augmenting the dataset with

these latent observations, the authors were able to enhance the accuracy

of parameter estimation, filling gaps between sparse data points. This ap-
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proach has similarities to the latent variable method discussed in Chapter 3,

as both frameworks make use of unobserved states to capture the underlying

dynamics of the system. In Section 2.2.3, we illustrate the Xu et al. (2019)’s

correlation-based method that minimizes the differences between theoretical,

computed from the CME, and empirical, obtained from the observed data,

second-order moments. This method serves as a competitor to the approach

we present in Chapter 5.

2.2.1 Local Linear Approximation

For each time interval, the Ito process (2.7) can be simplified by applying an

Euler-Maruyama approximation of the continuous increments process dyt,

and then by conducting a second approximation, that of considering finite

time intervals. This leads to the definition of a new process of the variation

of concentrations with conditional mean and variance as follows:

E[yi+1 − yi|yi] = V

λi1(yi;θ) · · · 0
...

. . .
...

0 · · · λir(yi;θ)

 (ti+1 − ti)

︸ ︷︷ ︸
Mi

θ1

...

θr


︸ ︷︷ ︸
θ

V[yi+1 − yi|yi] = V

λi1(yi;θ) · · · 0
...

. . .
...

0 · · · λir(yi;θ)

V T (ti+1 − ti)

︸ ︷︷ ︸
Wi(θ)

(2.11)

We can write the following regression equation

∆yi = Miθ + εi, (2.12)

where εt is a p-dimensional random vector with zero mean and variance-

covariance matrix Wi(θ). Each block Wi is a (p × p) matrix that describes

the covariance structure related to variations in particle counts at the i-th

observation time. A constraint least squares estimator θ̂LLA is the following:

θ̂LLA = arg min
θ

(∆y −Mθ)TW−1(∆y −Mθ) such that θ ≥ 0r.
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FIG. 2.1 Performance of LLA Inference on the Lotka-Volterra model
Across Time Intervals. The left panel illustrates the concentration dynamics
Y1 and Y2, sampled at various time intervals which are represented in different
colours. The right panel displays the log-scale estimates of θ1 corresponding to
the jumps values. For very close time intervals (orange triangular points), LLA
estimates are biased and lack precision due to numerical issues (boxplot on the
left). Conversely, for time intervals that are too distant (blue circular points), the
LLA poorly approximates the moments, as its accuracy is heavily dependent on the
choice of dt, leading to bad performance (boxplot on the right).

This method is referred to as Local Linear Approximation (LLA) because,

after estimating θ̂LLA, conditional on the state of the system at time ti, it

performs a linear forward prediction to estimate the state at the next time

point. The resulting trajectory consists of multiple locally linear segments,

which collectively approximate the system’s overall non-linear behavior. The

pseudo-code is presented in the Algorithm 1. The LLA method has two

main functions in the course of the thesis: firstly, it provides the values from

which we start the optimisation with our proposed methods. Secondly, it is

the benchmark against which we compare the proposed methods.

Method limitations and proposed solutions. A necessary condition

for a correct modelling of the continuous Ito process is the complete iden-

tification of the occurred events, which is given by assuming small time in-

tervals. For timescales that are too wide, such approximation reduces the
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Algorithm 1 Local Linear Approximation Method

Data: Observations vector ∆y and predictor matrix M
Result: Parameter estimates θLLA
Initialization: tol = ε, k = 0
θ(0) = arg minθ(∆y −Mθ)T (∆y −Mθ) s.t. θ ≥ 0r
while

∑r
j=1 |θ

(k)
j − θ

(k−1)
j | ≥ ε do

W (k) =


W0 0 · · · 0
0 W1 · · · 0
...

...
. . .

...
0 0 · · · WN−1


where W (k) = V diag(λ(y;θ(k)))V T∆t
θ(k+1) = arg minθ(∆y −Mθ)TW (k)(∆y −Mθ) s.t. θ ≥ 0r
k = k + 1

end while
θLLA = θ(k)

accuracy of LLA methods, and we propose the algorithm in Chapter 5 as

a possible solution. However, from the definition (2.11), we deduce that as

the time interval decreases, the change between consecutive concentrations

also becomes smaller. Such non-variability of the particle counts may lead to

numerical issues, as the covariance matrix might be extremely sparse. The

method proposed in Chapter 3 aims to solve this issue by focusing on the

events that generate the observations rather than on the observations them-

selves. All these scenarios are illustrated in Figure 2.1, where we considered

the Lotka Model (2.3) and simulate data using the selection strategy de-

scribed before to create three datasets, each containing five observations but

with different time intervals (jumps). For large time intervals (blue circular

points), the estimates from LLA are highly biased. For small time intervals

(orange trapezoidal points), the estimates remain biased and are less precise.

Only for specific time intervals (green triangular points), the LLA algorithm

demonstrates good performance, as indicated by the boxplot in the center.

The method proposed in Chapter 3 will perform better for the case of small

time intervals, while the method proposed in Chapter 5 will do better for the

case of large time intervals.
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2.2.2 The Bayesian inference approach of Golightly and

Wilkinson (2006)

Although not the focus of this thesis, reaction rates can be estimated also via

a Bayesian approach. In particular, in this section we present the method of

Golightly and Wilkinson (2006), who develop a Bayesian framework utilizing

a diffusion approximation of the continuous Ito process. They started defin-

ing a d-dimensional dataset Y (t) = (X(t),Z(t))T , where X(t) represents

the observed data and Z(t) refers to the unobserved or missing observations.

Given T measurements at evenly spaced times t0, . . . , tT , the observations

time interval [t0, tT ] is divided into mT + 1 elements evenly spaced points

t0 = τ0 = τ1 < τ2 < · · · < τn = tT for some positive integer m. The resulting

d(nm + 1) missing values are filled with yi simulated values, leading to the

augmented dataset ŷ. The joint posterior distribution for the parameters θ

and the latent process z, given the observed data x, is:

π(ŷ,θ) ∝ π(θ)π(z0)
T∏
i=1

f(yi|yi−1,θ),

where π(θ) and π(z0) are the priors on the parameters and the initial

latent state respectively, and

f(yi|yi−1,θ) = |Wi−1|−
1
2 exp

(
−1

2
(∆yi −Mi−1θ)TW−1

i−1(∆yi −Mi−1θ)

)
×(∆yi −Mi−1θ).

For example, a uniform prior can be chosen to reflect initial non-informativeness

about the parameters. Note how the formulation of the equation above is

a consequence of an Euler-Maruyama approximation as already seen for the

LLA approach. To obtain the distribution of the reaction parameters θ then

Golightly and Wilkinson (2006) employed a data augmentation procedure, al-

ternating between simulating the parameters conditioned on the augmented

data (including the missing values), and simulating the missing data given

the observed data and the current model parameters.
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Method limitations and proposed solutions. One significant concern

is the computational burden associated with MCMC sampling, particularly

as the dimensionality of the parameter space increases with the number of

latent variables introduced. This can lead to issues with convergence and

mixing, especially in high-dimensional settings. Another limitation of this

approach is its reliance on the diffusion approximation, which, while often

satisfactory for inference, may not accurately capture the underlying dynam-

ics of the system being modelled. The assumption that the stochastic process

can be adequately represented by a continuous approximation may overlook

important discrete behaviours inherent in the data, particularly in biologi-

cal systems where reactions may involve small populations of molecules and

significant stochastic fluctuations. Moreover, the efficacy of the MCMC sam-

pling method is highly dependent on the choice of priors for the parameters.

Inappropriate priors can lead to biased estimates or poor convergence proper-

ties. In Chapter 3 we present a different approach that, rather than estimat-

ing the observations between data points, predicts the events that occurred

in such time spans. The method uses a state-space model with a Kalman

Filter algorithm to efficiently reconstruct the latent occurred reactions.

2.2.3 The correlation-based M-estimator by Xu et al.

(2019)

The second problem of the local linear approximation occurs when the mea-

surements are far apart in time. Besides LLA, in Chapter 5, we will compare

our approach also with the one of Xu et al. (2019). The methodology was

rooted in a correlation-based M-estimator designed to align empirical corre-

lations derived from observed data with those predicted by the model. In

particular, the method involves the minimization of a loss function

f(θ;y) =
∑
ti

∑
m

∑
n′ 6=m

[
ψmn,i(θ;y)− ψ̂mn,i(y)

]2

,

where ψmn,i(θ;y) denotes the model-based correlation between the counts of

particle types m and n at time ti, and ψ̂mn,j(y) signifies the empirical correla-

tion computed from the observed read counts. The model-based correlation
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is given by

ψmn,j(θ;y) =
Cov[ym(tj),yn(tj);θ]

σ(ym(tj);θ)σ(yn(tj);θ)
,

where the numerator indicates the covariance between the counts of the spec-

ified particle types, and σ represents the standard deviation of these counts,

parameterized by the model. The optimization problem that Xu et al. (2019)

addressed can be shortly expressed as:

θ̂ = arg min
θ
f(θ;Y ),

subject to the constraints imposed by the biological context, such as the

non-negativity of the parameters. This optimization problem is solved using

numerical methods, given the potential non-linearity and complexity of the

loss function.

Method limitations and Proposed Solutions. One significant con-

straint of Xu et al. (2019)’s method is the reliance on the assumption that

the correlation structure adequately represents the underlying biological pro-

cesses. If the relationships among the particle types change over time or under

different environmental conditions, the model may fail to capture these dy-

namics accurately. Furthermore, while the method is designed to work with

sparse data, extreme sparsity could still lead to unreliable estimates, particu-

larly if the correlation between cell types is weak. A notable limitation of the

work is that it is restricted to first-order reactions, significantly constraining

the analysis and applicability to systems that exhibit higher-order dynamics.

2.3 Mathematical Tools and Methods

2.3.1 Exponential of matrices

The following result will be used in Chapter 5.

Given a squared matrix P ∈ Rn×n, its exponential is formally given by the

power series

eP =
∞∑
k=0

P k

k!
= Ip + P +

1

2
(P · P ) + . . . (2.13)
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The series converges for any matrix P , as P is a linear operator between

Banach spaces, and the exponential series has a radius of convergence ∞.

Although Eq. (2.13) is mathematically well-defined, it does not provide an

explicit formula for practical computation. Thus, numerical schemes are

typically employed. In particular, we will use the following approach (Al-

Mohy and Higham, 2010):

1. Scaling. The matrix P is scaled by a factor of 2−s, where s is chosen such

that ‖P‖ becomes sufficiently small to facilitate efficient computation

of the matrix exponential. The scaled matrix is defined as:

P ′ =
1

2s
P.

2. Padé Approximation. The scaled matrix exponential eP
′

is approxi-

mated using a rational function called the Padé approximant. For a

matrix A, the Padé approximant of order m is given by:

eA ≈

(
In + A

2m+1
+ A2

(2m+1)(2m)
+ · · ·

)
(
In − A

2m+1
+ A2

(2m+1)(2m)
− · · ·

) ,
where In denotes the identity matrix of dimension n and the number

of terms depends on the chosen degree m of the approximation.

3. Squaring. After computing the matrix exponential of the scaled matrix

P ′, the original scaling is recovered by successively squaring the result

s times, as follows:

eP =
(
eP
′
)2s

.

2.3.2 Analytical solutions to first-order ODE systems

The following result will be used in Chapter 5.

Consider the following non-homogeneous first-order ODE system

d

dt
y(t) = P · y(t) + b,
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where y,∈ Rn, P ∈ Rn×n, and b ∈ Rn. The system is solved by the method

of variation of parameters. First, consider the homogeneous case:

d

dt
y(t) = P · y(t).

Using the notation of exponential of a matrix defined in (2.13), the solution

to the homogeneous equation above is given by

yhom(t) = exp(P (t− t0)) · y(t0),

where y(t0) represents the initial condition. For the non-homogeneous equa-

tion, the general solution for the system is expressed as:

y(t) = exp(P (t− t0)) · y(t0) + exp(P (t− t0)) ·
∫ t

t0

exp(P (t− τ)) · b dτ.

If P is invertible, this expression simplifies to:

y(t) = exp(P (t− t0)) · y(t0) + P−1(exp(P (t− t0))− In)b.

.

2.3.3 Stiff problems

Stiffness is a common issue in solving ODEs systems when the solution con-

tains components that evolve on very different time scales. This results in

certain numerical methods, particularly explicit methods, being inefficient

or unstable unless extremely small time steps are used. Since the notion of

stiffness will be taken up in Chapter 5, as we will demonstrate that our pro-

posed method is robust to this phenomenon, we here provide a semiformal

definition, following Spijker (1996).

Definition 3. (Stiffness) ConsiderU(t) ∈ Rn, and a function f : [0, T ]×D ⊂
Rn → Rn. The following ODE system

U ′(t) = f(t,U(t)), t ∈ [0, T ], U (0) = U0,
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is considered stiff if the largest step size h∗ that ensures numerical stability

for explicit methods is much smaller than the step size hacc required to achieve

the desired accuracy. In other words, stiffness occurs when

h∗ � hacc.

Numerical methods aim to approximate the solution U(t) at discrete time

points tk using a step size hk = tk−tk−1. In the case of stiff problems, explicit

methods such as

Uk+1 = Uk + hkf(tk,Uk),

tend to become unstable unless the step size hk is chosen to be extremely

small. This instability arises because explicit methods impose stability con-

straints that are closely tied to the eigenvalues of the Jacobian matrix J(t,U) =
∂f
∂U

, which governs the local behaviour of the system. Specifically, to quantify

the degree of stiffness, one can introduce the concept of the condition number

of the Jacobian matrix, defined as follows:

κ(J) =
σmax

σmin

.

In the definition above, σmax(J) and σmin(J) are the largest and smallest

singular values of the Jacobian matrix J . A system is likely to be stiff if the

condition number satisfies

κ(J)� 1.

The condition number provides a measure of how sensitive the system is to

perturbations, with larger values indicating a greater degree of stiffness.

One of the most well-known examples demonstrating stiffness in quasi-

reaction models is the Robertson (1966)’s problem. The model describes a

set of three reactions involving the species A, B, and C, with the following
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ODEs and quasi-reaction equations scheme

dY1

dt
= −θ1Y1 + θ2Y2 · Y3

dY2

dt
= θ1Y1 − θ2Y2 · Y3 − θ3Y

2
2

dY3

dt
= θ3Y

2
2

where θ = (4 · 10−2, 3 · 107, 1 · 104), and initial value y0 = (1, 0, 0).

In this problem, the reaction rates θ1, θ2, and θ3 clearly exhibit significant

differences in magnitude. Specifically, θ1 is much smaller than θ2 and θ3,

indicating that the first reaction occurs at a much slower rate compared to the

other two, which are considerably faster. Given that the condition number

calculated for a generic yt = (1, 1, 1) is k(J) = 2.23 ·1019, an extremely small

time step h is required when applying explicit numerical methods to solve

the system in order to ensure stability for the fast reactions, even though the

first reaction evolves on a much longer time scale and does not require such

a fine resolution.

2.3.4 Optimization methods

Parametric inference techniques are fundamentally optimization problems,

where the objective is to maximize a likelihood function or a similar crite-

rion with respect to the parameters. In the thesis, we will deal with differ-

ent types of optimization problems, including both constrained and uncon-

strained cases.

In Chapters 3 and 4, the reaction rates are modeled as follows

θ = exp(Xβ),

where X ∈ RN×(q+1)r represents the matrix of covariates (which is simply the

identity matrix in the first Chapter), and β ∈ R(q+1)r×1 is the vector of pa-

rameters to be estimated. The objective is the maximization of the likelihood

function with respect to the parameters β, which are indirectly related to the

rates θ through the exponential function, which means that the reaction rates
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θ are guaranteed to be positive. To solve this unconstrained optimization

problem, we employ the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm (Shanno, 1970), a quasi-Newton method that iteratively improves an

estimate of the inverse Hessian matrix without explicitly calculating it. Here

we briefly present an outline of the algorithm.

Given a continuously differentiable objective function f(θ), with θ ∈ Rr,

the BFGS algorithm seeks to find its minimum by iteratively updating the

estimate of θ using a gradient descent approach. At each iteration k, the

parameter vector θk is updated based on the inverse Hessian approximation

Bk and the gradient of f evaluated at θk. The update rule for θ is:

θk+1 = θk −Bk∇f(θk),

where ∇f(θk) represents the gradient of the objective function at iteration

k. The updates Bk are defined with the following iterative rule:

Bk+1 = Bk +
JkJ

T
k

JTk ∆θk
− Bk∆θk∆θ

T
kBk

∆θTkBk∆θk
, (2.14)

where

Jk = ∇f(θk+1)−∇f(θk)

is the change in the gradient between iterations k and k + 1, and

∆θk = θk+1 − θk

is the change in the parameter vector. The two additive terms in the update

formula (2.14) have different goals: the first term increases the curvature in

the direction of the gradient change Jk, while the second term corrects the

curvature in the direction of the parameter update ∆θk.

In Chapter 5, the reaction rates are constant parameters rather than

in exponential form. In this case, both our method and the Local Linear

Approximation, which we use both for comparison and to obtain initial es-

timates for the optimization, involve a constrained minimization. As the

reaction rates must remain positive, we impose box constraints to ensure

this property during the optimization process. To this end, we employ the
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L-BFGS-B algorithm (Byrd et al., 1995), which adapts the standard BFGS

method to constrained problems. The parameter update is modified to in-

clude a projection step

θk+1 = Proj(θk −Bk∇f(θk)),

where Proj(·) projects each element of θk onto the feasible set defined by

θMIN and θMAX ,

Proj(θk) = min
(
θMAX ,max

(
θMIN ,θk

))
.

The L-BFGS-B algorithm effectively saves memory by storing only the last

m updates to ∆θk and Jk,and using only these values to update the inverse

Hessian approximation. This allows the handling of large-scale problems,

minimizing computational and memory usage. The update of Bk follows the

rule in (2.14), with the gradient step constrained by the projection operator.

2.3.5 Useful probability results

Lemma 1 is used in the Kalman Filter update step, in Chapter 3. In the

same section, Lemma 2 is applied to derive the expected log-likelihood of the

complete data for the Expectation-Maximization algorithm.

Lemma 1. Let Z and X be random vectors of size n and m, respectively.

Suppose Z and X are jointly distributed as:(
Z

X

)
∼ Nn+m

((
µZ

µX

)
,

(
ΣZ ΣZX

ΣT
ZX ΣX

))
.

Then, the marginal distribution of Z and the conditional distribution of Z |
(X = x) are:

Z ∼ Nn(µZ ,ΣZ)

Z | (X = x) ∼ Nn
(
µZ + ΣZXΣ−1

X (x− µX),ΣZ − ΣZXΣ−1
X ΣT

ZX

)
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Proof. Define µ =

(
µZ

µX

)
and Σ =

(
ΣZ ΣZX

ΣT
ZX ΣX

)
. We first compute the

marginal distribution of Z, then the conditional distribution Z | (X = x).

Consider the following affine transformation,

Z = A

(
Z

X

)
,

where A =
(
In 0m×m

)
, and 0m×m is a m-by-m matrix of zeros. Given that

the Gaussian distribution is invariant under linear transformations, Z also

follows a Gaussian distribution, with the following mean and variance:

E[Z] = E

(
A

(
Z

X

))
= Aµ = µZ

Var(Z) = AΣAT = ΣZ

Thus, we find thatZ ∼ Nn(µZ ,ΣZ). Using the transformationA =
(

0n×n Im
)

,

we derive thatX ∼ Nm(µX ,ΣX). For the conditional distribution Z | (X =

x), we use the following block matrix factorization of Σ:

Σ =

(
In ΣZXΣ−1

X

0m×n Im

)(
ΣZ − ΣZXΣ−1

X ΣT
ZX 0n×m

0m×n ΣX

)(
In 0m×n

Σ−1
X ΣT

ZX Im

)
.

The inverse of Σ is:

Σ−1 =

(
In 0n×m

−Σ−1
Z ΣT

ZX Im

)(
ΣZ − ΣZXΣ−1

X ΣT
ZX 0n×m

0m×n ΣX

)(
In −ΣZXΣ−1

X

0m×n Im

)
.

(2.15)

Now, let the joint probability density functions of (Z,X)T , Z, and Z | (X =

x) be denoted by fZ,X(z,x), fZ(z), and fZ|X(z | x), respectively. By the

definition of conditional probability:

fZ|X(z | x) =
fZ,X(z,x)

fX(x)
.
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From the properties of determinants, we obtain that∣∣∣∣ Σ

ΣX

∣∣∣∣ =
|Σ|∣∣∣∣

(
In 0n×m

0m×n ΣX

)∣∣∣∣
=

∣∣∣∣∣Σ
(

In 0n×m

0m×n Σ−1
X

)∣∣∣∣∣
=

∣∣∣∣∣
(

ΣZ ΣZXΣ−1
X

ΣT
ZX Im

)∣∣∣∣∣
=

∣∣∣∣∣∣ΣZ − ΣZXΣ−1
X︸ ︷︷ ︸

B

Σ>ZX

∣∣∣∣∣∣ .
Using equation (2.15), we can derive that((

z

x

)
− µ

)T

Σ−1

((
z

x

)
− µ

)
− (x− µX)TΣ−1

X (x− µX) =

(z − (µZ +B(x− µX)))T (ΣZ −BΣT
ZX)−1(z − (µZ +B(x− µX))).

Thus, we obtain

fZ|X(z|x) = (2π)−n/2|ΣZ −BΣT
ZX |−1/2×

× exp

(
−1

2
(z − (µZ +B(x− µX)))T (ΣZ −BΣT

ZX)−1(z − (µZ +B(x− µX)))

)
,

which defines the distribution Nn(µZ +B(x−µX),ΣZ−BΣT
ZX). The proof

is completed as

Z|(X = x) ∼ N (µZ + ΣZXΣ−1
X (x− µX),ΣZ − ΣZXΣ−1

X ΣT
ZX).

Lemma 2 (Expectation of Quadratic Forms). Let Z and X be random

vectors of size n, and let A ∈ Rn×n. Then,

E[ZTA ·X] = E[Z]TAE[X] + Tr(A · Cov(X,Z)).
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Proof. We compute

E[ZTAX] = E[Tr(ZTAX)] = E[Tr(AXZT )] = Tr(E[AXZT ]),

where the cyclic property of the trace operator has been used. Decomposing

the last addend of the RHS of the equation above, we have that

Tr(E[AXZT )) = Tr(A · Cov(X,Z) + E[X]E[Z]T )

= Tr(A · Cov(X,Z)) + Tr(A · E[X]E[Z]T )

= Tr(A · Cov(X,Z)) + Tr(E[Z]TA · E[X]),

where we have used the fact that both the trace and the expectation are

linear operators. We conclude that

E[ZTA ·X] = E[Z]TAE[X] + Tr(A · Cov(X,Z)).

2.4 Empirical Data used in the thesis

In this section, we present the datasets used to illustrate our methodolo-

gies, detailing their source, structure, and the manipulations required for the

analysis. The first and second analysis concern COVID-19 transmission in

Italy, characterized by closely spaced observations, as daily data was collected

throughout the pandemic. The third analysis focuses on clonal hematopoietic

tracking, where observations were collected at wider intervals, with responses

recorded on a monthly timescale.

2.4.1 COVID-19 Transmission in Italy

As of 20 February 2020, the Italian Department of Protezione Civile and the

National Institute of Statistics (ISTAT) have made COVID-19 data avail-

able at the provincial and regional levels through the platform http://dati.

istat.it/Index.aspx?QueryId=18460 and the GitHub repository https:

//github.com/pcm-dpc/COVID-19. In Chapter 3 we use these datasets di-

http://dati.istat.it/Index.aspx?QueryId=18460
http://dati.istat.it/Index.aspx?QueryId=18460
https://github.com/pcm-dpc/COVID-19
https://github.com/pcm-dpc/COVID-19
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rectly from the source, while in Chapter 4 the same data are imported using

the COVID-19 package by Guidotti and Ardia (2020). The collected data in-

cluded different stages of disease severity, cases of recovery, and deaths. Data

are reported in both daily variation and cumulative form since the beginning

of the pandemic.

We use the basic reproduction number R0 as the principal metric to assess

the severity of the disease’s spread. R0 is the expected number of secondary

infections produced by a single infected individual in a completely suscep-

tible population (Dietz, 1993). This epidemiological parameter serves as a

threshold indicator: R0 > 1 suggests that the disease will spread in the pop-

ulation, while R0 < 1 implies a decline in transmission and eventual disease

elimination. Mathematically, R0 is determined by the ratio of the rate at

which individuals enter into the state of being infected to the rate at which

they exit it, either through recovery or death. Specifically, it aggregates the

rates of infection, recovery, and death, providing a holistic view of the disease

dynamics within a population. By incorporating these multiple transmission

and recovery rates into a single measure, R0 simplifies the interpretation of

complex epidemiological data, giving a full comparison of various interven-

tions and policy outcomes, imposed during different phases of the pandemic.

COVID-19 in Italy (2020)

In Chapter 3, we consider COVID-19 data from March 9, 2020 (the begin-

ning of the first national lockdown) to January 13, 2021 (the conclusion of the

second nationwide imposed lockdown). We choose this timeframe both for

the expectation of interesting dynamics, as the lockdown imposed complete

isolation and therefore non-interaction between regions, and for the copious

set of results with which to compare the validity of the estimated results

(Mingliang et al., 2022; Remuzzi and Remuzzi, 2020). Spatial granularity

is considered at the regional level by separating the region of Trentino-Alto

Adige into the two provinces of Trento and Bolzano, due to their distinct

healthcare systems and independent management of COVID-19 directives

(Signorelli, 2019). In this way, the analysis accounts for the specific public

health responses and epidemiological conditions in each province. As the
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FIG. 2.2 Dataset used in Chapter 3: evolution of the number of con-
firmed infections (left), recovered cases (centre), and deaths (right)
across Italian regions. The three most affected regions—Campania, Lombardy,
and Veneto—are indicated with distinct colours, while the remaining regions are
shown in dark gray. Lombardy consistently exhibits the highest numbers of infec-
tions, recoveries, and deaths. The background shading indicates the three distinct
phases of the analysis, with the darker sections corresponding to the lockdown pe-
riods. From the post-first-lockdown phase (white area), a shift in dynamics is ob-
served: infections decrease while recoveries and deaths stabilize. In the subsequent
non-lockdown phase (right-grey area), there is a marked resurgence in infections
and deaths.

daily cumulative number of infected shows a clear difference during the lock-

down period from the non-lockdown period. We split the data into three

distinct phases, as visually depicted in Figure 2.2 and assume constant reac-

tion rates within each of these. The three phases are associated to different

public health policies and restrictions. In particular,

1. The first phase corresponds to the initial national lockdown, imple-

mented on March 9, 2020, which imposed strict restrictions on travel

and gatherings (Conte, 2020c). During this period, as seen in Figure 2.2

(left), the number of infections rose sharply in Lombardy, which consis-

tently exhibited the highest numbers throughout all phases. Campania

and Veneto followed similar upward trends but at lower levels.

2. The second phase marks the easing of these restrictions, beginning on

May 4, 2020, which allowed limited movement and the resumption of
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some economic activities (Conte, 2020b). During this phase, infection

rates appear relatively stable in all three regions, with no dramatic

increases, indicating a temporary control of the spread. However, the

cumulative numbers of recoveries and deaths continued to rise steadily,

as shown in the centre and right panels of Figure 2.2.

3. The third phase, starting on October 8, 2020, saw the reintroduction

of stricter measures, including mandatory mask-wearing and renewed

limits on gatherings (Conte, 2020a). This phase coincides with a steep

surge in infections, particularly in Lombardy, which reached its highest

levels of the entire pandemic. The number of recoveries also spiked

during this phase, suggesting that healthcare systems were actively

managing more cases. The increase in deaths underscores the severity

of the pandemic during this period.

Overall, the shaded regions in Figure 2.2 indicate the three distinct phases,

with the darkest shading representing periods of strict lockdown, highlight-

ing the effectiveness of public health interventions and their influence on

the pandemic’s trajectory, with distinct changes observed at the onset and

relaxation of each phase.

COVID-19 in Lombardy (2021)

The first COVID-19 vaccine in Italy was administered on December 27, 2020,

marking the beginning of the national vaccination campaign (Gozzi et al.,

2022). To evaluate the effect of the vaccination rollout on the population,

it was necessary to analyze data from the subsequent year when the im-

pact of immunization could be meaningfully observed. For these reasons, the

temporal dataset used in Chapter 4 spans the entire calendar year of 2021.

From a spatial perspective, the study focuses on Lombardy, the region that

recorded the highest number of infections during the first year of the pan-

demic (see Fig.2.2), and later emerged as the most heavily affected area in

terms of overall cases and deaths. Lombardy was also the site where some

of the strictest prevention and isolation measures were implemented, making

it a pivotal case for assessing the efficacy of public health policies (Biology,
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2022; Privitera, 2020).

We divided the infection process into three distinct stages: individuals

infected at home, those hospitalized, and those critically ill. The first state

is defined by subtracting the number of recovered cases, deaths, and hospital-

izations from the total confirmed cases. This represents individuals who are

infected but do not require hospitalization. The second state is calculated as

the difference between the number of hospitalizations and ICU admissions,

capturing patients who are hospitalized but not critically ill. The third state

is directly obtained from the original dataset as well as the numbers of re-

covered individuals and deaths. To refine the analysis, the daily differences

in confirmed cases are computed, reflecting changes over time.

Covariates Description. The period considered for the analysis encom-

passes a series of significant government interventions characterized by more

targeted public health strategies and refined isolation protocols. These mea-

sures included restricted mobility, mandatory mask-wearing, limitations on

access to public venues, and the enforcement of curfews. A key element that

unifies the stringency of these interventions is the Government Response In-

dex (GRI) (Hale et al., 2020), which quantifies the daily intensity of various

public health policies. Since the original index differentiates between na-

tional and regional measures, assigning a positive or negative sign to each,

we transform the GRI using absolute values to eliminate such distinction.

Environmental variables have been shown to influence the transmission,

severity, and fatality rates associated with COVID-19 (Kifer et al., 2021),

thus the average temperature in Lombardy has been included in our analysis

(ARPA Lombardia, 2022). We expanded the monthly temperatures into

a daily temperature sequence by repeating each average according to the

number of days in the respective month. Then we smoothed the discrete

values, appling a rolling mean with a window size of 5 days, centred on

each day. The first and last two values, which were undefined due to the

windowing, are set to the third and fourth values from the start and end of

the sequence, respectively, to avoid edge effects.
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FIG. 2.3 Covariates used in Chapter 4. The panels on the left display the
evolution of four covariates, from January 2021 to January 2022: Vax (vaccination
doses), Work (mobility trends for workplaces), GRI (Government Response Index),
and Temp (smoothed monthly temperature). The right panel shows the correlation
matrix between these covariates. The correlations suggest moderate relationships
between the variables, with no strong multicollinearity present.

Time spent at work significantly influences the probability of disease

transmission, as individuals in workplace settings are often in closer prox-

imity to one another, facilitating the spread of infectious agents (Guidotti

and Ardia, 2020). The % time-at-work covariate is derived from the Google

COVID-19 Mobility Reports, which present movement trends categorized by

location (Google, 2021). This variable reflects the smoothed percentage of

time individuals spent at work, relative to a baseline calculated as the median

value from the five weeks preceding the pandemic (January 3 – February 6,

2020). In our analysis, we apply a smoothing technique to mitigate the im-

pact of weekly patterns or artificial fluctuations caused by reduced activity

during weekends.

Figure 2.3 illustrates the evolution of the four covariates from January

2021 to January 2022. The left panels depict the time series trends for

each of these factors: The vaccinations variable shows a steady increase, re-

flecting the ongoing vaccination campaign, while the Work variable exhibits

fluctuations that correspond to changes in mobility restrictions and work-

from-home policies. In particular, the change in summer mobility compared

to the pre-COVID period is visible. The GRI reflects the intensity of pub-
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Covariate Description Time Reference

Vax Population with at least
one dose of vaccine

Daily Ministry of Health (2021)

Guidotti and Ardia (2020)

GRI Government Response
Index

Daily Hale et al. (2020)

Work Mobility trends for
places of work.

Daily Google (2021)

Temp Temperature. Monthly ARPA Lombardia (2022)

Table 2.2: Covariates used in Chapter 4. From left to right: variable names
used in the text, along with their descriptions, time intervals, and data sources.

lic health interventions, showing pronounced peaks during critical periods

in the spring and autumn, indicating more stringent measures in response

to rising infection rates. In contrast, the GRI is lower during the summer

months when the incidence of cases typically declines. Meanwhile, the av-

erage temperature fluctuates between 0 and 30 degrees Celsius, highlighting

the seasonal variations that may influence both public health responses and

the dynamics of the virus transmission. The right panel presents the cor-

relation matrix among these covariates. The moderate values suggest that

the selected variables were intentionally chosen to minimize multicollinear-

ity, ensuring that each covariate contributes uniquely to the analysis. The

covariates utilized in this analysis, along with their notation and sources, are

detailed in Table 2.2.

2.4.2 Clonal Hematopoietic Data

The third analysis aims to analyze data recorded at widely spaced time in-

tervals, a scenario that poses significant challenges for parameter estima-

tion. In this context, we analyzed clonal tracking data collected from Rhesus

Macaques, originally reported in (Wu et al., 2014), using the R package Karen

by Del Core et al. (2022), which facilitated direct comparison of our results

with those obtained by the original authors.

The study involves the mobilization of peripheral blood (MPB) CD34+
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FIG. 2.4 Clonal tracking data used in Chapter 5. Mean concentration over
time of each Rhesus Macaque specimen following transplantation. The p = 5 cell
types are reported with different colours and line styles.

cells from three Rhesus Macaques, which are transduced with barcoded vec-

tors to track the clonal dynamics. Following engraftment, granulocyte (G),

monocyte (M), lymphoid T, B, and natural killer (NK) cells are flow sorted

over periods of 9.5 months (ZH33), 6.5 months (ZH17), and 4.5 months

(ZG66). The total number of clones collected amounts to 1165 (ZH33), 1280

(ZH17), and 1291 (ZG66). The dataset consists of multiple matrices repre-

senting time-series data, with each matrix corresponding to the lineage of

a clone identifiable by its unique barcode sequence. We systematically re-

move any rows that contained only zero values, filtering out observations that

lacked meaningful data. As a pre-processing step, we excluded time points

where no barcodes are detected and removed all clones with fewer than three

temporal observations, ensuring sufficient data for robust analysis and mit-

igating potential matrix inversion issues. This process yields a total of 555

unique barcode IDs, distributed across 434, 50, and 19 different clone types

in specimens ZG66, ZH17, and ZH33, respectively. We then merged these

individual datasets into a single comprehensive dataset for further analysis.

By doing so, we assume that the chemical rates of hematopoietic differen-

tiation are the same across all individuals of the Rhesus macaque species.

Figure 2.4 shows the mean concentration over time of T, B, NK, M, and G

for the three species (ZH33, ZH17, ZG66).

The observation times, originally recorded in months, are rescaled to a
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daily scale to allow comparison of the estimated parameters with other state-

of-the-art studies, such as Del Core et al. (2023). This rescaling does not

alter the dataset itself, as it only involves transforming the time parameters

from months to days, which can be easily reverted to their original scale if

necessary.
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3.1 Introduction

An increasing number of natural phenomena can be described by quasi-

reaction systems of stochastic differential equations, as these are able to

capture the inherent stochasticity of many processes. Examples include the

stem cell differentiation process (Pellin et al., 2019, 2023), the dynamics

of a biological system (Wilkinson, 2018) or of an infectious disease spread-

ing (Britton et al., 2019), and the diverse applications of diffusion processes

(Craigmile et al., 2023). The dynamics of these systems depend critically on

parameters which are often unknown. Estimating these parameters is there-

fore important for characterizing and predicting the evolution of a dynamic

system.

The likelihood of the intermittently observed process has rarely an explicit

form (Wilkinson, 2018). To overcome this problem, Local Linear Approxi-

mation (LLA) methods provide an explicit approximation of the likelihood

function under some assumptions (Shoji and Ozaki, 1998). Nevertheless,

both in the case when observations are too spaced out in time and when

the inter-observations times are too close, estimates based on the LLA are

biased. Komorowski et al. (2011) present an extensive study on the effects of

correlation between molecule concentrations on statistical inference, in the

specific case of stochastic chemical kinetics models. Various approaches for

reducing the variance of parameter estimators in a generic multi-response,

non-linear model are available and could be used also in the case of dynamic

systems. In the context of D-optimal designs, the most commonly used cri-

terion assumes knowledge of the variance-covariance matrix (Fedorov, 2013).

Although alternatives exist that use only an estimate of this matrix (Cooray-

Wijesinha and Khuri, 1987), recent studies have observed that minimising

the determinant of the information matrix is computationally efficient but

not very robust (Hatzis and Larntz, 1992). An alternative approach is the

use of Tikhonov regularisation techniques (Engl et al., 1996). However, if the

measurements are taken very close together in time, the concentrations can

be constant, leading to zero standard deviations and making also regularisa-

tion infeasible.

An approach to overcome these limitations is proposed. Intuitively, when
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the particles in the system are observed very close in time, one may be able to

reconstruct which events of the stochastic process have taken place in order

to result in a change of the system from the current to the next time point.

Thus, the core element of the proposed approach involves integrating event

history analysis into the framework of quasi-reaction systems. Originally

conceived for sociological studies, event history models have been used on

a range of applications, from engineering to medicine, economics, political

science and psychology (Box-Steffensmeier and Jones, 2004). As the rates

governing the evolutions of the state of the system and of the underlying

event counting process are clearly linked, and they depend on the previous

state of the system, the first contribution of the paper will be to formalise a

joint statistical model that couples the two processes.

The second contribution of the paper is to develop an inferential proce-

dure for the proposed model. As the occurrence of the events is not observed,

an Expectation-Maximation (EM) algorithm for parameter estimation is de-

rived. In particular, at the E-step, Kalman filter (Kalman, 1960) is used

for the prediction of the latent events from the dynamics of the system ob-

served on the entire time interval. The most popular version of Kalman

filtering is for the case of Gaussian linear systems. However, an extension is

required. Firstly, since the latent event counts are not Gaussian, the Poisson

distribution is approximated with a continuous Gamma distribution, which

is then transformed to a Gaussian distribution via a marginal transforma-

tion. Secondly, since the resulting system is non-linear, an extended Kalman

filtering procedure is proposed for estimating the latent state of the event

count process (Anderson and Moore, 2012). This allows the evaluation of

the Q-function, which is then maximised at the M-step of the EM algorithm.

In this way, the approach relates to other implementations of EM algorithms

with an embedded Kalman filter, such as (Shumway and Stoffer, 1982) for

dynamic linear systems, and more recent extensions for non-linear systems,

such as the EM extended Kalman filter of Bar-Shalom et al. (2001), the EM

unscented Kalman filter of Wan and Van Der Merwe (2000) and the EM

particle filter of Zia et al. (2008).

The rest of the paper is organized as follows. In Section 3.2, the latent

event history model for quasi-reaction systems is formalized. In Section 3.3,
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the EM algorithm for parameter estimation is described. In Section 3.4, a

simulation study demonstrates the method’s performance and highlights the

settings where it is particularly advantageous compared to the existing LLA

approaches. In Section 3.5, an illustration of the method on the modelling

of the COVID-19 transmission dynamics in Italy is presented. Finally, in

Section 3.6, conclusions and directions for future work are discussed.

3.2 Modelling quasi-reaction systems

Consider a closed system in which p substrates interact, each denoted as Ql

with l = 1, . . . , p. These substrates could represent the compartments of

an infectious disease model, the cell types in a cell differentiation model, or

the different molecules in a biochemical reaction system. The j-th chemical

reaction can generally be described as

k1jQ1 + ...+ kpjQp
βj−→ s1jQ1 + ...+ spjQp j ∈ 1, . . . , r, (3.1)

where r indicates the number of reactions describing the dynamic system.

Let R denote the set of possible reactions. The stoichiometric coefficients

klj and slj are fixed integer values that describe the amount of substrate l,

as reactant and product, respectively, that is needed for reaction j to occur,

while θj = exp(βj) ∈ R+ is the rate at which reaction j occurs.

The log-reaction rates β = (β1, . . . , βr)
> characterize the evolution of

the dynamic system. These are the parameters that need to be estimated,

given realizations of the state of the system over time. Let then Yl(t) de-

note the amount of the l-th particle at time t, with t ∈ [0, T ]. Let Y(t) =

(Y1(t), . . . , Yp(t))
T ∈ Np

0 denote the state of the system at time t. Even if

reaction equations like (3.1) are often used to represent kinetic models, as

these facilitate a qualitative understanding of the dynamics, from a mathe-

matical point of view chemical reactions are modelled primarily as systems

of stochastic differential equations (Wilkinson, 2018). This methodology en-

ables a quantitative interpretation of the dynamics, as it allows to study the

temporal variation of the counts Y from the dynamics at the unit level.

According to the underlying dynamic system, particles encounter result-
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ing in an instantaneous firing of one of the reactions. As a result, the system

moves to the next state. Two viewpoints can be taken in the characteriza-

tion of the stochastic process that induces changes in the state Y over time.

The first viewpoint, presented in Section 3.2.1, models the stochastic process

by which reactions occur and, as a by-product, the state of the system Y

moves to a new configuration, deterministically. A second viewpoint, pre-

sented in Section 3.2.2, directly describes the change of the system based on

the amount of particles available at a certain point in time and the hazard

rate of each reaction at that point in time. As the occurrence of reactions is

not observed, the second viewpoint is the most direct approach for modelling

dynamic systems. Indeed, this is the approach considered in the literature

and the one that results in the traditional LLA approaches for parameter

estimation.

Instead, when the system is observed at small time intervals, one may

be able to reconstruct the underlying process of reactions, leading to a more

accurate characterization of the dynamic system. The main reason is the

high temporal correlation between the states at small time scales. Motivated

by this, Section 3.2.3 shows how the two viewpoints can be unified into a

joint statistical model.

3.2.1 Event process

Let ej := (tj, rj) be the event that reaction j ∈ R occurs at time tj. Asso-

ciated with this marked point process and with each reaction j, there is a

multivariate counting process

Nj(t) = #{Reactions of type j occurring in time interval [0, t], j ∈ R}.

Nj(t) is assumed to follow a non-homogeneous Poisson process

Nj(t) ∼ Poisson(Λj(t)),

with cumulative rate

Λj(t) = E[Nj(t) | Ft− ] =

∫ t

0

λj(Y (u);β)du,
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where Ft− is the history of the process up to, but excluding, time t.

The hazard rate λj(Y (t);β) depends on the state of the system at time

t as well as on the amount of particles of each type that are needed for

each reaction to occur, i.e., the stoichiometric coefficients klj in (3.1). In

particular, it holds that (Wilkinson, 2018)

λj(Y (t);β) = exp(βj)

p∏
l=1

(
Yl(t)

klj

)
, (3.2)

where
(
Yl(t)
klj

)
= 0, for all Yl(t) < klj.

3.2.2 Particle count process

The state of the system Y (t) is itself also a continuous time discrete Markov

process. In the particular setting of a quasi-reaction system, it is possible to

establish the temporal evolution of the probability distribution P (Y; t), i.e.,

the probability that Y is the state of the system at time t. This will again

depend on the state of the system just before time t. In particular, the dis-

tribution can be shown to satisfy the chemical master equations (Wilkinson,

2018)

dP (Y ; t)

dt
=
∑
j∈R

[λj (Y (t)− V·,j;β)P (Y − V·,j; t)− λj(Y (t);β)P (Y ; t)] ,

(3.3)

where V denotes the net effect matrix, with (l, j) entry given by vlj = slj−klj.
A solution of (3.3) gives the full transition probability kernel for the sys-

tem dynamics. The master equations, however, can be solved analytically

only in a small number of cases, due to the vast spectrum of conceivable

state configurations (McQuarrie, 1967). On the other hand, from the master

equations, one can derive the conditional expectation and variance of the

rate of changes of the system. These are given, respectively, by

E[Y(t+ dt)−Y(t) |Y(t)]

dt
= V λ(Y (t);β), (3.4)

V[Y(t+ dt)−Y(t) |Y(t)]

dt
= V diag(λ(Y (t);β))V T .
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These two moments form the basis of the LLA solution to the master equa-

tions via a generalised least-squares approach (Pellin et al., 2019). Alterna-

tive approximations based on the van Kampen expansion have been proposed

within a Bayesian inferential approach (Capistrán et al., 2012).

3.2.3 Latent event history model

The two characterizations described above are now merged into one joint

model based on realizations of the process at discrete time points. Let then

Yi = Y(ti), i = 0, . . . , N , be the state of the process at N + 1, not neces-

sarily equispaced, time points. Under the non-homogeneous Poisson process

described in Section 3.2.1 and assuming that the hazard rates remain con-

stant within the N time intervals, the increments of event counts follow a

Poisson distribution, conditional on the history of the process. In particular,

∆Nij = Nj(ti)−Nj(ti−1) | Fti−1
∼ Poisson(µij(Yi−1;β)), j = 1, . . . , r,

(3.5)

where

µij(Yi−1;β) = (ti − ti−1)λj(Yi−1;β), (3.6)

with λj(Yi−1;β) defined as in Equation (3.2). For the rest of the manuscript,

∆Ni and µi denote the vectors of reaction counts ∆Nij and rates µij(Yi−1;β),

respectively, in the interval (ti−1, ti] across the r reactions.

It is clear how knowledge of the increments ∆Ni would allow for perfect

prediction of the state of the system at time ti, since Yi − Yi−1 = V∆Ni.

Combined with (3.5), this implies that Yi −Yi−1 is a linear combination of

Poisson random variables, conditional on the history of the process. However,

this linear combination does not have an explicit distribution in itself, and,

more importantly, the increments for different particle types are not indepen-

dent, leading to a further complication in the likelihood. For this reason, an

approximate state-space formulation of the process that circumvents a direct

full likelihood approach is proposed.

To this end, an approximation of the Poisson distribution of ∆Ni with

a continuous distribution is proposed. In particular, a Gamma distribution

with a mean and variance matching that of ∆Ni, and with a similar skewness,
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is considered. In this way, the process can be rewritten as a Gaussian state

space model. More in detail, the discrete increments ∆Nij in Equation (3.5)

are associated to the continuous random variable Xij = F−1
ij (Φij(Zij)), where

Fij is the CDF of a Gamma distribution with scale parameter 1 and shape

parameter µij(Yi−1;β) from Equation (3.6), and Φij is the CDF of a Gaussian

distribution with mean and variance both equal to µij(Yi−1;β). So Zij is

the Gaussian random variable that is uniquely associated to the Gamma

distributed random variable Xij, and with the same conditional mean and

variance as the original ∆Nij variable. In the remaining of the paper, Zi will

denote the r-dimensional vector of Gaussian random variables associated

to the event counts in the interval (ti−1, ti], Xi the corresponding Gamma

random variables and G the function that transforms Zi into Xi, namely

Xi = G(Zi) =
(
F−1
i1 (Φi1(Zi1)), . . . , F−1

ir (Φir(Zir))
)
.

With the latent event counts ∆Ni approximated by Xi, it follows that,

approximately, Yi−Yi−1 = VXi = V G(Zi). In the following, the state space

model will be formulated more generally, so as to account also for possible

measurement error in the observations Yi, which may be relevant in some

applied settings. In particular, the following latent event history model is

proposed:{
Zi = µi + εi, εi ∼N

(
0, diag(µi)

)
,

Yi = Yi−1 + V G(Zi) +ψi, ψi ∼N (0,Σ), i = 1, . . . , N,
(3.7)

where ψi is a Gaussian noise vector with mean zero and variance-covariance

Σ = diag(σ2
1, . . . , σ

2
p). The case of no measurement error in Yi, which will be

considered in the simulations, will correspond to the special case of σ2
l = 0,

l = 1, . . . , p. Figure 3.1 summarizes the dependence structure associated to

the proposed model.
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Latent Gaussian “event counts”: Z1 . . . ZN

Latent Gamma “event counts”: X1 . . . XN

Gaussian observed states: Y0 Y1 · · · YN

G G

FIG. 3.1 Latent event history model DAG. The state of the system at time
ti, Yi, depends on the previous state, Yi−1, and on the number of reactions Xi

that occur in the interval (ti−1, ti]. The latent Xi is approximated with a Gamma
distribution and connected deterministically with a Gaussian random vector Zi,
via a marginal transformation G. Notice how Zi is independent of future states,
Y(i+1):N , conditional on current and past states, Y0:i.

3.3 Inference

This section discusses statistical inference of the latent event history model

(3.7). Denoting with Y the (N + 1)× p matrix of observations at the N + 1

time points and Z the (N + 1) × r matrix of latent variables, estimation of

β and Σ requires the optimization of the marginal log-likelihood

`Y(β,Σ) = log

∫
Z

LZ,Y(β,Σ)dZ. (3.8)

As common in the presence of latent variables, an Expectation-Maximisation

(EM) algorithm for parameter estimation is derived (Dempster et al., 1977).

To this end, the complete log-likelihood, conditional on the initial state Y0

and assuming some measurement error in Yi (Σ 6= 0), can be factorized into

`Z,Y(β,Σ) =
N∑
i=1

[
`Zi|Yi−1

(β) + `Yi|Zi,Yi−1
(Σ)
]
, (3.9)
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where

`Zi|Yi−1
(β) = −1

2

{
r log(2π)+log(|diag(µi)|)+

[
Zi−µi

]T
(diag(µi))

−1
[
Zi−µi

]}
and

`Yi|Zi,Yi−1
(Σ) =− 1

2

{
p log(2π) + log(|Σ|)

+
[
Yi −Yi−1 − V G(Zi)

]T
Σ−1

[
Yi −Yi−1 − V G(Zi)

]}
.

The EM algorithm will then consist in the following two steps, which are

iterated until convergence:

• E-step: Setting β and Σ to the current estimate of the parameters, β∗

and Σ∗, respectively, compute the expected value of the complete log-

likelihood (3.9) with respect to the distribution of the latent variables

given the observations:

Q(β,Σ|β∗,Σ∗) = EZ|Y,β∗,Σ∗ [`Z,Y(β,Σ)]. (3.10)

• M-step: Find the optimal β and Σ by maximising the objective function

(3.10) with respect to β and Σ.

In the next two sections, the computational aspects associated to the two

steps, respectively, are discussed in detail.

3.3.1 E-step: Extended Kalman filtering

With the complete log-likelihood written as in (3.9), the Q-function (3.10)

with slight abuse of notation is given by

Q(β,Σ|β∗,Σ∗) = E[`Z|Y(β)|Y0:N ] + E[`Y|ZY(Σ)|Y0:N ], (3.11)
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where Y0:N denotes the data across all time points. Under model (3.7), the

first term involves the following expectation

E[`Z|Y(β)|Y0:N ] =E
[
− 1

2

N∑
i=1

{
r log(2π) + log(|diag(µi)|)

+
[
Zi − µi

]T
diag(µi)

−1
[
Zi − µi

]}
|Y0:N

]
∝− 1

2

N∑
i=1

{
E
[
ZT
i |Y0:N

]
diag(µi)

−1E
[
Zi|Y0:N

]
+ Tr

[
diag(µi)

−1V[Zi|Y0:N ]
]
− 2E

[
ZT
i |Y0:N

]
·1 + µTi ·1

}
,

while expectation of the second term results in

E[`Y|ZY(Σ)|Y0:N ] =E
[
− 1

2

N∑
i=1

{
p log(2π) + log(|Σ|)

+
[
∆Yi − V G(Zi)

]T
Σ−1

[
∆Yi − V G(Zi)

]}
|Y0:N

]
∝− 1

2

N∑
i=1

{
−2∆YT

i Σ−1V E
[
G(Zi)|Y0:N

]
+ E

[
G(Zi)

T |Y0:N

]
V TΣ−1V E

[
G(Zi) | Y0:N

]
+ Tr(Σ−1V V

[
G(Zi)|Y0:N

]
V T )

}
,

with ∆Yi = Yi −Yi−1 and keeping only the terms dependent on the latent

variables.

In particular, the calculation of the Q-function requires the evaluation of

the following first and second moments: E[Zi|Y0:N ], V[Zi|Y0:N ], E[G(Zi)|Y0:N ],

and V[G(Zi)|Y0:N ]. To this end, a Kalman filter approach is considered.
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Firstly, notice how the dependences implied by model (3.7) are such that

E[Zi|Y0:N ] = E[Zi|Y0:i],

V[Zi|Y0:N ] = V[Zi|Y0:i],

E[G(Zi)|Y0:N ] = E[G(Zi)|Y0:i],

V[G(Zi)|Y0:N ] = V[G(Zi)|Y0:i],

since Zi is independent of future states, Y(i+1):N , conditional on current

and past states, Y0:i (Figure 3.1). In the following, the first two quantities

are denoted with ẑi|i and Vi|i, respectively. This means that the smoothing

step of a traditional Kalman filtering procedure is not needed, and only the

prediction and update steps are. Secondly, the non-linearity in Zi induced by

the marginal transformation G means that a standard Kalman filter approach

is not applicable. Thus, in order to calculate the first and second moments

of G(Zi), an extended Kalman filter is considered, where the function G is

approximated with a second order Taylor expansion.

According to the derivations in A.1, the first two expectations are given

by

ẑi|i = E [Zi | Y0:i] = ẑi|i−1 +Ki

[
Yi −Yi−1 − V

(
gi|i−1 +

1

2
vect(Vi|i−1Hi|i−1)

)]
,

Vi|i = E
[(

Zi − ẑi|i
) (

Zi − ẑi|i
)T | Y0:i

]
=
(
Ir −KiV Ji|i−1

)
Vi|i−1,

where

Ki = (V Vi|i−1Ji|i−1)T (V Ji|i−1Vi|i−1J
T
i|i−1V

T + Σ)−1,

and where the various quantities predicted from data up to time ti−1, which

are formally defined in A.1, are dependent on a current estimate of parame-

ters β∗ and Σ∗. As for the moments of G(Zi), these are approximated by

E
[
G(Zi)|Y0:i

]
≈ gi|i +

1

2
vect(Vi|iHi|i),

V
[
G(Zi)|Y0:i

]
≈ Ji|iVi|iJ

T
i|i,
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Algorithm 2 Extended Kalman Filter (E-step)

Require: Y,β∗,Σ∗, V
for i = 1, . . . , N do

1. Prediction step

ẑi|i−1 = µi

Vi|i−1 = diag(µi)

2. Update step

ẑi|i = ẑi|i−1 +Ki

[
Yi −Yi−1 − V

(
gi|i−1 + 1

2
vect(Vi|i−1Hi|i−1)

)]
Vi|i =

(
I−KiV Ji|i−1

)
Vi|i−1

with

Ki = (V Vi|i−1Ji|i−1)T (V Ji|i−1Vi|i−1J
T
i|i−1V

T + Σ)−1

µij = exp(βj)
∏p

l=1

(Ylti−1

klj

)
(ti − ti−1) j = 1, . . . , r

end for

with

gi|i = G(Z)|ẑi|i , Ji|i =
∂G(Z)

∂Z
|ẑi|i , Hi|i =

∂2G(Z)

∂Z2 |ẑi|i .

In particular, note how these moments depend on the moments of Zi derived

above, i.e., ẑi|i and Vi|i, so the latter are the main quantities that need to be

calculated at the E-step.

Algorithm 2 summarizes the calculations required for the Kalman filter

at the E-step of the algorithm, based on a current estimate of parameters,

β∗ and Σ∗. The Kalman filter predictions of the latent states are used in the

evaluation of Q(β,Σ|β∗,Σ∗) = E[`Z|Y(β)|Y0:N ] + E[`Y|ZY(Σ)|Y0:N ], with

E[`Z|Y(β)|Y0:N ] =− 1

2
Nr log(2π)− 1

2

N∑
i=1

{
log(|diag(µi)|)

+ ẑTi|idiag(µi)
−1ẑi|i

+ Tr
[
diag(µi)

−1 · Vi|i
]
− 2ẑTi|i · 1 + µTi · 1

}
, (3.12)
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E[`Y|ZY(Σ)|Y0:N ] =− 1

2
N log

(
(2π)p

p∏
l=1

σ2
l

)

− 1

2

N∑
i=1

{
∆YT

i Σ−1∆Yi − 2∆YT
i Σ−1V

(
gi|i +

1

2
vect(Vi|iHi|i)

)
+ (gi|i +

1

2
vect(Vi|iHi|i)

)T
V TΣ−1V (gi|i +

1

2
vect(Vi|iHi|i)

)
+ Tr

(
Σ−1V Ji|iVi|iJ

TV T
)}

, (3.13)

and β∗ and Σ∗ the current values of the parameters used for the Kalman

filter quantities ẑi|i and Vi|i.

3.3.2 M-step

The M-step maximizes the conditional expectation of the complete log-likelihood

with respect to the parameters. Thus, the M-step involves the maximisation

of the Q-function (3.11) with respect to β and Σ. Since the first term (3.12)

does not depend on Σ, while the second term (3.13) does not depend directly

on β, the M-step results in the optimization of the first term (3.12) for the

estimation of β and of the second term for the estimation of Σ. The latter

is in fact available in closed form and is given by

Σ̂ =
1

N
E
[ N∑
i=1

(∆Yi − V G(Zi))(∆Yi − V G(Zi))
T

∣∣∣∣Y0:N

]

=
1

N

N∑
i=1

{
∆YiY

T
i − 2∆Yi(gi|i +

1

2
Vi|iHi|i)

TV T

+ V (gi|i +
1

2
Vi|iHi|i)(gi|i +

1

2
Vi|iHi|i)

TV T + V Ji|iVi|iJ
T
i|iV

T

}
. (3.14)

The optimal values of β and Σ from the M-step are used as the new

β∗ and Σ∗, respectively, for computing a new expected log-likelihood at the

E-step. This iterative procedure is repeated until convergence, e.g., until

the estimates of β do not change significantly. Algorithm 3 summarizes the

proposed EM algorithm.
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Algorithm 3 EM algorithm

Require: Y, V,βini,Σini, σ
2, tol,maxit

while err ≥ tol & it < maxit do
for i = 1, . . . , N do

1. E-step:

Extended Kalman Filter : calculate ẑi|i, Vi|i from Y, V , βold Σold

2. M-step:

βnew,Σnew ← arg maxβ,ΣQ(β,Σ|βold,Σold, ẑi|i, Vi|i)
err ← max ||βnew − βold||11
βold ← βnew
Σold ← Σnew

it← it+ 1.
end for

end while

3.3.3 Computational cost

The computational cost of the proposed EM algorithm is the combination

of the computational cost of the E- and M-steps. At the E-step, the latent

variables Zi across the N time intervals are of dimension r, with r the number

of reactions, and their covariance Vi|i requires the inversion of a p×p matrix,

where p is the number of substrates. Thus, the total complexity of the E-

step is O(Nrp3). On the other hand, the M-step concerns the optimization

of an r-dimensional vector of parameters β and involves N inversions of

an r × r matrix for the calculation of the objective function. Thus, the

total complexity of the M-step is O(Nr3p). This results in a computational

cost of the full algorithm of the order O(Nr3p3), although this may vary

depending on the speed of convergence of the numerical algorithm used for

the optimization of the Q-function at the M-step.

3.3.4 Standard errors of reaction rates

Estimates of the reaction rates θ = exp(β) are the main output of the EM

inference. Uncertainties on these point estimates can be summarised by

their standard errors. Since the marginal log-likelihood in (3.8) is not a

direct result of the EM algorithm, the standard errors are calculated from
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the Fisher information matrix associated to the Q-function, evaluated at the

point estimates of θ and Σ (Oakes, 1999). In particular, this is given by

I(θ̂) = − ∂2

∂θ2
Q(θ|θ̂, Σ̂)

∣∣
θ=θ̂

. (3.15)

The variance of θ̂j is then given by (I(θ̂)−1)jj.

If necessary, standard errors can be constructed also on β. In partic-

ular, using the Delta method (Dorfman, 1938), the variances of β can be

approximated by

V(β̂j) =
2∑N

i=1

(2(ẑ2
i|i,j + Vi|i,j)

µ̂ij
− 1
) ,

with µ̂ij and ẑi|i,j denoting the j-th elements of the vectors µ̂i and ẑi|i, re-

spectively, and Vi|i,j the diagonal entry of Vi|i, all evaluated at the optimal

point estimates of the parameters.

3.3.5 Model selection

In empirical settings, one may be interested in comparing different quasi-

reaction systems of possibly varying complexity. Similarly to the derivation

of the standard errors, a modified version of standard model selection criteria

is considered, where the log-likelihood is replaced by the Q-function, which

is instead a direct output of the EM algorithm (Ibrahim et al., 2008). In par-

ticular, the optimal model is taken as the one that minimizes the information

criterion

IC = −2Q(β̂, Σ̂|β̂, Σ̂) + P (β̂), (3.16)

with Q(β̂, Σ̂|β̂, Σ̂) the Q-function (3.11) evaluated upon convergence of the

EM algorithm and P (β̂) a term penalizing model complexity. In the real

application, the Bayesian Information Criterion (BIC) will be considered,

where P (β̂) = r log(N), with r the number of reaction rates in the model

and N the number of time intervals.
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3.4 Simulation Study

In this section, a simulation study is provided to evaluate the performance of

the proposed method under different settings and to highlight those where it

is particularly advantageous compared to the existing LLA approaches. For

the simulation, a dynamic system with a low number of particles (p = 4) and

reactions (r = 6) is considered, in order to mimic a setting that is common in

many applications, such as the cell differentiation process studied by Pellin

et al. (2023). In the specifics, the 6 reactions contain one duplication, two

death and three differentiation reactions. Figure 3.2a provides a graphical

representation of the system, while Figure 3.2b reports the 6 reactions. These

corresponds to the net effect matrix

V =


1 −1 0 −1 0 0

0 0 0 2 −1 −1

0 0 0 0 2 0

0 0 −1 0 0 2

 .

The parameters are set to

βtrue = log(θtrue) = (5.30, 1.10,−0.11,−0.22,−0.22,−1.61)T ,

and no measurement error is considered (Σ = 0). Starting with initial particle

counts set to y0 = (50, 100, 100, 200), a Gillespie algorithm is used to generate

the stochastic process over time (Gillespie, 1977). Figure 3.2c reports one

run of the algorithm, while Figure 3.2d shows how the reaction counts Ni

are close to those based on the Gamma approximation Xi of ∆Ni, with the

Gamma distribution defined using the true parameters β.

Improvement over local linear approximation approach In the first

simulation study, the performance of the algorithm is compared against the

existing LLA approach in terms of parameter estimation. Given the moti-

vation behind the proposed methodology, one would expect an improvement

when the interval between consecutive observations is particularly small, as

this generates a strong temporal correlation among the particle counts. More-
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FIG. 3.2 Specifications of the cell differentiation process used in the
simulation study. (a) Structure of the process with p = 4 particles. Each sub-
strate is represented by a coloured node, whereas birth, death and differentiation
reactions are denoted by full, dotted and dashed edges, respectively. (b) The corre-
sponding quasi-reaction system. (c) An example of trajectories generated by means
of a Gillespie algorithm. (d) Cumulative counts of the reactions increments ∆Ni

(full lines) and of their Gamma approximations Xi (dotted lines).

over, one would expect the difference to be more pronounced at low sample

sizes, i.e., a small number of time points, as this will make statistical inference

more challenging in general and may amplify the effect of strong temporal
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correlations.

In order to test these hypotheses, a subset of the trajectories generated by

the Gillespie algorithm is considered. In particular, observations are retained

at every 10, 15, 20, 25 and 30 time points out of the originally sampled

trajectories. These are referred to as jumps. The larger the jump is, the

larger the gap between consecutive time points where the process is observed.

This will generally translate into a large number of reactions that may have

occurred between one time point and the next, although this will depend

also on the dynamics of the process at the specific time interval. In order to

test also the effect of sample size, in each of the settings, two scenarios are

considered: one where the first N = 5 time intervals are considered and a

second one where the first N = 50 time intervals are considered, generated

as above.

Parameter estimation is conducted for each of the datasets using LLA

and the proposed EM algorithm. LLA uses the moments in (3.4) as the

basis of a generalised least-squares approach given the particle count data

Y. For the EM algorithm described in Algorithm 3, the LLA solution is set

as starting value for β (βini), Σ = 0, the net effect matrix is set to V defined

as above, the tolerance for convergence to tol = 0.002 and the maximum

number of iterations to maxit = 300. Upon convergence, the quality of

the estimation is evaluated by calculating the Kullback-Leibler divergence

between the estimated and the true parameters. In particular, this is defined

by

KL(β̂,βtrue) = Ey+ [log p(y+|βtrue)− log p(y+|β̂)],

where y+ indicates an additional dataset with the same characteristics as

the one used for inference, and generated from the same underling process

defined by βtrue. The lower this value is, the closer the inferred process is to

the true one.

Figure 3.3 reports the results in the form of boxplots across the 100 sim-

ulations for each of the settings.The results show how parameter estimation

with the proposed EM algorithm is better than with the existing LLA ap-

proach, both in terms of the KL divergence (left panel) and estimation of one

of the parameters (β1, right panel). All plots show how the effects are more
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FIG. 3.3 Comparison between EM and LLA methods. On the left, the KL
measure, in the log scale, shows that parameter estimation with the EM algorithm
is closer to the true parameters than with the LLA approach. On the right, the
plots show how, for one of the parameters (β1), estimates are more accurate with
the EM than with the LLA approach. The true value is indicated by the horizontal
red line. All plots show how the effects are more pronounced with N = 5 (3.3a,
3.3b) than with N = 50 (3.3c, 3.3d) time intervals. The boxplots are obtained
across 100 simulations.

pronounced with small sample sizes (N = 5, Figure 3.3a and 3.3b) than with

larger sample sizes (N = 50, Figures 3.3c and 3.3d). Finally, Figure 3.3d

in particular shows how the two approaches tend to converge to a similar
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FIG. 3.4 Computational cost of EM algorithm. Average computational time
(in seconds) of one iteration of the EM algorithm in terms of (a) the number of
time intervals (N), (b) the number of particles (p), (c) the number of reactions
(r). Median, first and third quartiles are shown across 100 simulations.

performance for larger time intervals (i.e., a large jump). This is to be ex-

pected, since temporal correlation will become less strong the larger the time

interval. At the same time, the reconstruction of the reactions that have

taken place within that time interval will also be less accurate. However,

Figure 3.3d shows how, even in this case, estimation from the EM algorithm

appears to be less biased and more accurate than with the LLA approach.

Computational cost in terms of number of time points, reactions,

particles A second simulation study explores how the computational cost

of the algorithm varies with respect to the number of time points (N), the

number of reactions (r) and the number of particles (p). The results are

shown in Figure 3.4. The first scenario (Figure 3.4a) considers the same

generative process as before, fixing jump = 30 and letting the number of

time intervals vary in N = 5, 10, 15, 20, 25, 30, 40. The plot shows how the

average computational time of the EM algorithm is approximately linear in

N .

The second scenario (Figure 3.4b) evaluates how the computational time

varies with respect to the number of particles p. The three systems in Ta-

ble 3.1 of A.2 are considered, with jump = 40 and N = 10. The systems are

characterized by the same number of reactions as before (r = 6), but an in-

creasing number of particles, namely p = 6, 12, 18, respectively. Figure 3.4b
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does not show the cubic dependence in p, that was anticipated. Given that

the computational time is the combined time from the E- and the M-steps,

this suggests a much slower M-step.

Finally, the third scenario (Figure 3.4c) evaluates how the computational

time varies with respect to the number of reactions r. As before the param-

eters are set to jump = 40 and N = 10, but the three systems in Table 3.2

of A.2 are now considered. These are characterized by the same number of

particles as before (p = 6), but an increasing number of reactions, namely

r = 6, 12, 18, respectively. The plot shows a super-linear dependence in r.

3.5 Illustration on Italian COVID-19 data

This section provides a real data illustration focusing on the COVID-19 pan-

demic. Worldwide, more than 700 million infections and almost 7 million

deaths were recorded as of August 16, 2023 (WHO, 2020). As a result,

significant efforts have been made in order to understand the phenomenon

and find strategies to control the spreading of the disease. Italy has been

one of the countries of interest during the pandemic, being the first Euro-

pean country to experience a significant outbreak of the disease (Liao et al.,

2020). The first case was confirmed on 31 January 2020. Since then, for more

than two years, data were collected daily. The sufficiently close interval be-

tween observations is ideal for the application of the method, as it generates

strong temporal correlations. The following analysis focusses on daily data

within three specific time intervals, characterized by three different levels of

contagion:

• Phase 1: 9thMarch - 4thMay, 2020. Strong restrictions on travel

throughout the country, banning all forms of gathering in private and

public places (Conte, 2020c);

• Phase 2: 4thMay - 7thOctober, 2020. Containment measures were

relaxed, allowing the travelling for visits to relatives (within a region)

and the restart of several production activities (Conte, 2020b);

• Phase 3: 8thOctober, 2020 - 14thJanuary, 2021. Wearing of masks



73 3.5. Illustration on Italian COVID-19 data

became compulsory both outdoor and indoor, and assemblages were

restricted (Conte, 2020a).

Within each of the three phases and using data from all 21 Italian regions,

the proposed EM algorithm is used to fit the parameters of the following two

dynamic systems:

Model A Model B

Ik
θ1k−−→ 2Ik Ik

θ1k−−→ 2Ik

Ik
θ2−→ Rk Ik

θ2k−−→ Rk

Ik
θ3−→ Dk Ik

θ3k−−→ Dk

The systems correspond to simple SIR compartmental models, where I is the

number of infectious individuals, R the number of recovered individuals and

D the number of deceased individuals (Simon, 2020). In particular, the first

reaction models the creation of one infectious individual once a susceptible

individual meets an infectious one. Note how the number of susceptible

individuals S has been omitted, as it is almost constant throughout the

observation period. The second and third reactions correspond to the cases

of an infectious individual recovering and dying, respectively. The index k

denotes the region. Thus, model B is characterized by region-specific rates

for all three reactions. This results in a system with p = 63 particles and

r = 63 rates. On the other hand, model A hypothesizes a simpler model

where the recovery and death rates are assumed to be the same across Italy,

under an assumption that these depend primarily on the specifics of the virus

and are not as affected by the level of contagion in the population.

The proposed EM algorithm is used, with a tolerance tol = 10−5, for the

estimation of the reaction rates θ and of the noise Σ. Using Equation (3.16)

with a BIC penalty term, model A and model B result in 9.66·105 and 2.64·105

BIC values, respectively. This leads to the choice of the more complex model

B, with region-specific recovery and death reaction rates. Since the BIC

tends to select sparser models compared to other model selection criteria,

this suggests that other model selection criteria would have led to the same

conclusion. As for the parameter estimates, the error variances were generally
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FIG. 3.5 Visualization of the estimated R0 values in Italy. On the left,
the system of kinetic reactions for the k-th region. On the right, a visualization
of the estimated values of the basic reproductive numbers for each Italian region,
in the 3 phases of interest, categorised according to the colour coding used by the
Italian government. An additional shade of dark red has been added to highlight
the regions with the most critical R0 values.

far from zero, suggesting that some of the recorded cases were subject to a

measurement error.

Figure 3.5 visualises the results in terms of the basic reproduction num-

ber R0, which is the number of new infections that each infected individual

produces on average (Wood and Wit, 2021). This can be estimated from the

fitted models by calculating θ1k/(θ2k + θ3k) In Figure 3.5, these values are

categorized according to the colour coding used by the Italian government

to evaluate the severity of the disease spread. In particular, values below

the boundary of R0 = 1 are associated to a long-term decrease of the epi-

demic, while values above 1 indicate a long-term increase of the epidemic,

with larger values (darker colours) associated to progressively more severe

scenarios. The estimated R0 values are in line with those from other studies

(Giordano et al., 2020; Remuzzi and Remuzzi, 2020; Mingliang et al., 2022).

The results in Figure 3.5 show how during Phase 2 the infection was lim-

ited, as a consequence of the containment measures implemented in Phase

1. During Phase 3, a revival of the disease spread is observed, in particular

in the southern regions of Italy. The standard errors of R0, calculated using

the Delta method from the standard errors of the estimated reaction rates θ

given by (3.15), show significant differences in R0 values between two con-

secutive phases at a 95% significance level, with the only exception of the
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Autonomous Province of Bolzano between phase 1 and phase 2, and Molise

and Sicily between phase 2 and phase 3. Moreover, although not assumed

by the model, the R0 estimates show some geographical clustering, which

is to be expected given the movements of individuals between neighbouring

regions.

3.6 Conclusions

A novel procedure for the statistical inference of quasi-reaction systems has

been proposed. Local linear approximation methods tend to perform poorly

when the system is observed at fine time intervals. This is due to numerical

instability caused by strong correlations in the observations from one time

point to the next. The proposed method focuses instead on reconstructing

the underlying process of latent reactions. To this end, a latent event history

model of the observed count process driven by a latent process of reactions is

developed. A computationally efficient EM algorithm for parameter estima-

tion is proposed, incorporating an extended Kalman filtering procedure for

predicting the latent states. A simulation study demostrates how the pro-

posed method performs better than the existing LLA approach, particularly

when the time intervals between consecutive observations are small and the

number of time points is low.

The method is illustrated by an application on the Italian Covid 19 data

during the critical phase of the pandemic, between March 2020 and January

2021. The basic reproduction number R0 of the 21 Italian regions estimated

by the method in three consecutive phases of the pandemic shows higher

values at the beginning and at the end of the time period. This is to be

expected given the evolution of the disease and the societal restrictions that

were imposed by the Italian government during this period.

The simple epidemic model considered is clearly a simplification of the

pandemic process. The model does not consider inter-regional infections,

nor effects from outside Italy or heterogeneity in the population. Most likely,

ignoring this type of effects means that R0 has been over-estimated by the

models (Gomes et al., 2022). Future work will consider applying the same

methodology to fit more complex models, such as the compartmental model
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of Wood and Wit (2021), which includes hospital infections and other types

of interactions.

Data availability

The data used in this paper are available from the Dipartimento della Pro-

tezione Civile and the Istituto Nazionale di Statistica (ISTAT) via the web-

page of the department (http://dati.istat.it/Index.aspx?QueryId=18460)

and a Github repository (https://github.com/pcm-dpc/COVID-19).

http://dati.istat.it/Index.aspx?QueryId=18460
https://github.com/pcm-dpc/COVID-19
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APPENDIX

A.1 Kalman filtering (E-step)

This section discusses the extended Kalman filtering procedure that was

developed for the evaluation of E[Zi|Y0:i], V[Zi|Y0:i], E[G(Zi)|Y0:i], and

V[G(Zi)|Y0:i].

Prediction Step The prediction step calculates the first and second mo-

ments of Zi conditional on Y0:i−1. According to model (3.7), these are in fact

the conditional moments of Zi given the state of the system at the previous

time point, Yi−1. Thus

ẑi|i−1 = E [Zi | Yi−1] = µi,

Vi|i−1 = V [Zi | Yi−1] = diag(µi). (3.17)

Update Step Following from the prediction step, the update step refines

these predictions by comparing them to the observed values at time i. In

particular, the conditional distribution of Zi is updated from the past with

the information coming from Yi by first deriving the joint distribution of Yi

and Zi conditional on Y0:i−1. According to model (3.7), this is a multivariate

Gaussian distribution, which can be written generically as

Zi

Yi

∣∣∣∣Y0:i−1 ∼ N

([
m1

m2

]
,

[
S11 S12

S21 S22

])
. (3.18)



Chapter 3. Latent Event History Models for Quasi-Reaction Systems 78

From the prediction step (3.17), m1 and S11 are already known. As regards

to the other elements of the mean and covariance,

m2 = E[Yi|Y0:i−1] = E[Yi−1 + V G(Zi) +ψi|Y0:i−1]

= Yi−1 + V E[G(Zi)|Y0:i−1],

S12 = Cov[Zi,Yi|Y0:i−1]

= Cov[Zi,Yi−1 + V G(Zi) +ψi|Y0:i−1] = V Cov[Zi, G(Zi)|Y0:i−1]V T ,

S22 = V[Yi|Y0:i−1] = V[Yi−1 + V G(Zi) +ψi|Y0:i−1]

= V V
[
G(Zi)|Y0:i−1

]
V T + Σ. (3.19)

In order to calculate the first and second moments of G(Zi), the non-linear

function G is approximated with its Taylor expansion of order 2 centered at

ẑi|i−1, i.e.,

G(Zi) ≈ gi|i−1 + Ji|i−1(Zi − ẑi|i−1) +
1

2
diag(Zi − ẑi|i−1)Hi|i−1(Zi − ẑi|i−1).

The first term of the expansion is the deterministic vector of size r

gi|i−1 = G(ẑi|i−1).

The other terms have a simplified form due to the fact that the j-th element

of the function G is a function only of the j-th element of Zi. Thus, the r×r
matrix of first derivatives is a diagonal matrix, with (j, j) element given by

[
Ji|i−1

]
jj

=
[∂G(Z)

∂Z
|ẑi|i
]
jj

=
∂Gj

∂zij

∣∣∣∣
ẑij|i−1

=
∂(F−1

ij (Φij(Zij))

∂zij

∣∣∣∣
ẑij|i−1

=

(
∂Fij
∂xij

∣∣∣∣
G(ẑij|i−1)

)−1
∂Φij

∂zij

∣∣∣∣
ẑij|i−1

,

where, using the functional form of the Normal and Gamma CDFs

∂Φij

∂zij
(z) =

e
−

(z−E[Zij ])
2

2V[Zij ]√
2πV[Zij]

,
∂Fij
∂xij

(x) =
e−xxE[Xij ]−1

Γ(E[Xij])
1[x>0].

Similarly, the r × r × r Hessian matrix, can be written as an r × r diagonal
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matrix with second derivatives on the diagonal, namely

[
Hi|i−1

]
jj

=
∂

∂zij

[(
∂Fij
∂xij

∣∣
G(ẑij|i−1)

)−1
∂Φij

∂zij

∣∣∣∣
ẑij|i−1

]

=

− ∂2Fij

(∂xij)2

∣∣∣∣
G(ẑij|i−1)

∂Gj

∂zij

∣∣∣∣
ẑij|i−1

∂Φij

∂zij

∣∣∣∣
ẑij|i−1

+
∂Fij

∂xij

∣∣∣∣
G(ẑij|i−1)

∂2Φij

(∂zij)2

∣∣∣∣
ẑij|i−1(

∂Fij

∂xij

∣∣∣∣
G(ẑij|i−1)

)2 ,

where

∂2Φij

∂z2
ij

(z) =
(z − E[Zij])e

−
(z−E[Zij ])

2

2V[Zij ]

√
2πV[Zij]3/2

,
∂2Fij
∂x2

ij

(x) =
e−xxE[Xij ]−2(E[Xij]− x− 1)

Γ(E[Xij])
1[x>0].

Going back to (3.19), the Taylor approximation can now be used to cal-

culate the required conditional expectations. In particular,

E
[
G(Zi)|Y0:i−1

]
≈E
[
gi|i−1 + Ji|i−1(Zi − ẑi|i−1)

+
1

2
diag(Zi − ẑi|i−1)Hi|i−1(Zi − ẑi|i−1)|Y0:i−1

]
=gi|i−1 + Ji|i−1E

[
Zi − ẑi|i−1|Y0:i−1

]
+

1

2
E
[
diag(Zi − ẑi|i−1)Hi|i−1(Zi − ẑi|i−1)|Y0:i−1

]
=gi|i−1 +

1

2
vect(Vi|i−1Hi|i−1),
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Cov[Zi, G(Zi)|Y0:i−1] ≈Cov
[
Zi,gi|i−1|Y0:i−1

]
+ Cov

[
Zi, Ji|i−1(Zi − ẑi|i−1)|Y0:i−1

]
+ Cov

[
Zi,

1

2
diag(Zi − ẑi|i−1)Hi|i−1(Zi − ẑi|i−1)|Y0:i−1

]
=Cov

[
Zi, Ji|i−1(Zi − ẑi|i−1)|Y0:i−1

]
=Var[Zi|Y0:i−1]Ji|i−1 = Vi|i−1Ji|i−1,

V
[
G(Zi)|Y0:i−1

]
≈ V

[
gi|i−1 + Ji|i−1(Zi − ẑi|i−1)|Y0:i−1

]
= Ji|i−1V

[
Zi − ẑi|i−1|Y0:i−1

]
JTi|i−1 = Ji|i−1Vi|i−1J

T
i|i−1.

Finally, plugging these expressions into (3.17), it follows that

m2 ≈ Yi−1 + V

[
gi|i−1 +

1

2
vect(Vi|i−1Hi|i−1)

]
,

S22 ≈ V [Ji|i−1Vi|i−1J
T
i|i−1]V T + Σ,

S12 ≈ V Vi|i−1Ji|i−1,

which, together with m1 and S11 derived previously, define the joint distribu-

tion (3.18) of Zi and Yi conditional on Yi−1. From this, using the formulae

for the conditional distributions from a jointly Gaussian random vector, it

follows that Zi, conditional on Y0:i, has a multivariate Gaussian distribution,

with mean and covariance given, respectively, by

ẑi|i = E [Zi | Y0:i] = ẑi|i−1 +Ki

[
Yi −Yi−1 − V

(
gi|i−1 +

1

2
vect(Vi|i−1Hi|i−1)

)]
,

Vi|i = E
[(

Zi − ẑi|i
) (

Zi − ẑi|i
)T | Y0:i

]
=
(
Ir −KiV Ji|i−1

)
Vi|i−1,

where

Ki = (V Vi|i−1Ji|i−1)T (V Ji|i−1Vi|i−1J
T
i|i−1V

T + Σ)−1.

Note how the update step refines the conditional expectation found in the
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prediction step in proportion to the difference between the actual and es-

timated observations, i.e., the prediction error. Moreover, this is directly

proportional to the magnitude of the Kalman gain matrix Ki, which cap-

tures the linear relationship between the noise and the variance of the latent

variable (Kim and Bang, 2018).

Similarly to the earlier derivations,

E
[
G(Zi)|Y0:i

]
≈ gi|i +

1

2
vect(Vi|iHi|i),

V
[
G(Zi)|Y0:i

]
≈ Ji|iVi|iJ

T
i|i,

with

gi|i = G|ẑi|i , Ji|i =
∂G(Z)

∂Z
|ẑi|i , Hi|i =

∂2G(Z)

∂Z2 |ẑi|i .

A.2 Dynamic systems used for the simulation

study

This section reports the systems of reactions that were used in Section 3.4 for

evaluating the computational complexity of the algorithm with respect to the

number of particles p (Table 3.1) and the number of reactions r (Table 3.2).
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p = 6



Y1
θ1−−→ Y2

Y1
θ2−−→ Y3

Y2
θ3−−→ Y4

Y1
θ4−−→ Y4

Y4
θ5−−→ Y6

Y5
θ6−−→ Y5

p = 12



Y1 + Y7
θ1−−→ Y2 + Y8

Y1 + Y7
θ2−−→ Y3 + Y9

Y2 + Y8
θ3−−→ Y4 + Y10

Y1 + Y7
θ4−−→ Y4 + Y10

Y4 + Y10
θ5−−→ Y6 + Y12

Y5 + Y11
θ6−−→ Y5 + Y11

p = 18



Y1 + Y7 + Y13
θ1−−→ Y2 + Y8 + Y14

Y1 + Y7 + Y13
θ2−−→ Y3 + Y9 + Y15

Y2 + Y8 + Y14
θ3−−→ Y4 + Y10 + Y16

Y1 + Y7 + Y13
θ4−−→ Y4 + Y10 + Y16

Y4 + Y10 + Y16
θ5−−→ Y6 + Y12 + Y18

Y5 + Y11 + Y17
θ6−−→ Y5 + Y11 + Y17

Table 3.1: Three dynamic systems with r = 6 reactions, and an increasing number
of particles (p = 6, 12, 18).

r = 6

R6 :



Y2
θ1−−→ Y1 + Y3

Y3
θ2−−→ Y2 + Y4

Y4
θ3−−→ Y3 + Y5

Y5
θ4−−→ Y4 + Y6

Y5
θ5−−→ Y6

Y6
θ6−−→ Y1

r = 12

R12 : R6 ∪



Y8
θ1−−→ Y7 + Y9

Y9
θ2−−→ Y8 + Y10

Y10
θ3−−→ Y9 + Y11

Y11
θ4−−→ Y10 + Y12

Y12
θ5−−→ Y11

Y7
θ6−−→ Y12

r = 18

R18 : R12 ∪



Y14
θ1−−→ Y13 + Y15

Y15
θ2−−→ Y14 + Y16

Y16
θ3−−→ Y15 + Y17

Y17
θ4−−→ Y16 + Y18

Y18
θ5−−→ Y17

Y13
θ6−−→ Y18

Table 3.2: Three dynamic systems with p = 6 particles, and an increasing number
of reactions (r = 6, 12, 18).
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4.1 Introduction

An increasing number of natural phenomena, such as infectious disease spread-

ing (Britton et al., 2019), can be described by quasi-reaction systems of

stochastic differential equations. A common modelling assumption is to as-

sociate a constant rate to each reaction. However, this assumption is too

restrictive in many applications, leading to inferred dynamics that may be

far from the true ones. Indeed, it is reasonable to assume that rates may

vary dynamically or spatially, for example due to governmental imposed lock-

downs, variations in the dynamics of contagion between geographical regions

or between different groups of populations.

In the context of epidemic modelling, a certain level of heterogeneity can

be achieved by adding new compartments and new reactions to the system.

However, on the one hand, this is only a discrete approximation when the

exogenous covariates are of a continuous nature, and, on the other hand,

it may lead to overly complex models. As an alternative to this approach,

in this paper, we propose to capture heterogeneity in the system dynamics

by letting the rates of the quasi-reaction model depend directly on external

covariates. In particular, we propose an extension of a recently developed

latent event history model (Framba et al., 2024), by allowing log-reaction

rates to be linearly dependent on a vector of covariates. In this way, the model

is able to quantify the effect of covariates on the system dynamics. We adapt

the Expectation-Maximization (EM) algorithm developed by Framba et al.

(2024) to this new setting, and evaluate the effectiveness of this approach on

simulated data and in the context of epidemic modelling.

The paper is organized as follows: Section 4.2 formalizes the proposed

latent event history modelling approach. Section 4.3 evaluates the proce-

dure on a simple SIR (Susceptible, Infected and Recovered) system, whose

dynamics are affected by the start of a lockdown period. In Section 4.4, we

show an illustration on COVID19 data from Italy, where the approach is able

to assess the effect of environmental factors and public health interventions

on the transmission and severity of the disease. Finally, in Section 4.5, we

draw some conclusions.
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4.2 Latent event history model

Consider a closed system in which p substrates, or compartments, interact via

r reactions. Let klj be the stoichiometric coefficient, indicating the amount of

substrate l needed for reaction j to occur, and let Y(t) = (Y1(t), . . . , Yp(t))

be the state of the system at time t. The hazard of reaction j occurring

instantaneously at time t is given by

λj(t) = θj

p∏
l=1

(
Yl(t− 1)

klj

)
1Yl(t−1)>klj ,

with θj the non-negative rate associated to reaction j, for j = 1, . . . , r. These

rates are typically assumed constant for each reaction (Framba et al., 2024).

In contrast to this, in this paper, we propose to link the reaction rates to

external covariates. In particular, given a vector of possibly time-dependent

covariates x ∈ Rq, we assume

θj = exp(xtβj),

with βj a q-dimensional vector of reaction-specific regression coefficients. In

the following, we denote with β the vector of coefficients across all reactions.

These are the parameters to be estimated.

The firing of reactions induces a change in the states of the system. In

particular, if Yi, i = 0, . . . , N , is the state of the process at N + 1, not

necessarily equispaced, time points, then Yi−Yi−1 = VNi, with V the p× r
net-effect matrix , indicating the variation of the lth substrate due to the

occurrence of the jth reaction, and Ni the number of each reaction occurring

in the interval (ti−1, ti]. Since the number of reactions is not observed, we

follow Framba et al. (2024) and propose to infer the dynamics of the system

via the following state-space model{
Zi = µi + εi, εi ∼N

(
0, diag(µi)

)
,

Yi = Yi−1 + V G(Zi) +ψi, ψi ∼N (0, σ2
i · Ip), i = 1, . . . , N,

where ψi is a Gaussian measurement error, µi = (ti−ti−1)λ(ti;β) and G(Zi),
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formally defined in Framba et al. (2024), is a continuous approximation to

Ni.

For the estimation of the parameters β, we adapt the EM algorithm of

Framba et al. (2024) to the presence of external covariates, making use of

the extended Kalman filter for the prediction of the latent state variables at

the E-step.

4.3 Simulation study: SIR system under lock-

down

We evaluate the performance of the method on a simple SIR epidemiological

model, consisting of p = 3 substrates (Susceptible, Infected, Recovered), and

r = 2 reactions, given by

S + I
θ1−→ 2I

I
θ2−→ R

The first reaction represents the contagion from an infected person to a sus-

ceptible individual, while the second reaction denotes the recovery of an

infected individual.

We introduce a binary covariate x to represent the impact of a lockdown.

The covariate is initially set to 0 to signify a non-serious pandemic situation

and changes to 1 when the susceptible-to-infected ratio exceeds a critical

threshold, indicating the necessity of implementing lockdown measures to

reduce the spread. The lockdown will have an impact on the reaction rates.

In particular, letting θj = exp(β0j + β1jx), we expect the infection rate θ1

to reduce after the lockdown, so we set β11 = −2.303, while we expect the

recovery rate θ2 to not be affected by lockdown measures, so we set β12 = 0.

For the other two parameters, we set β01 = −4.094 and β02 = −0.693,

respectively. Figure 4.1a represents a trajectory simulated from this system

and indeed shows how the curve of infection counts shifts from increasing to

decreasing at the start of lockdown, represented by a vertical line.

We utilize the Gillespie algorithm to simulate 50 stochastic processes over
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Rates True Median SD

β01 -4.094 -4.424 0.096
β11 -2.303 -2.029 0.138
β02 -0.693 -0.611 0.256
β12 0.000 -0.227 0.252

(b)

FIG. 4.1 (a) A trajectory of a stochastic SIR process. The vertical line denotes
the beginning of lockdown, leading to a reduction in the infection rate; (b) Statistics
of parameters across 50 simulations.

time from this system, starting with an initial particle count configuration

of y0 = (400, 20, 80). Data are collected at intervals of 10 time points, se-

lected from the originally sampled trajectories, for a total of 41 observations.

The EM algorithm starts from β0 = (0, 0, 0, 0). We set no measurement

error, i.e., σ2
i = 0 for all i, the tolerance for convergence to 0.002, and the

maximum number of iterations to 100. Figure 4.1b reports the accuracy of

parameter estimates, by comparing the true values with their median across

the 50 simulations. Overall, the results indicate a close proximity between

the estimated and the true values for all parameters.

4.4 Epidemic modelling of COVID-19

Italy was hit hard by the COVID-19 pandemic caused by the coronavirus

SARS-CoV-2, and particularly so in the Lombardy region where the first

cases were reported. The impact of the pandemic remains significant to these

days: as of May 6th, 2024, the northern region has reported over 4.34 million

confirmed cases and nearly 48, 000 deaths (Guidotti and Ardia, 2020). From
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FIG. 4.2 Graphical illustration of the epidemic model for COVID-19 spreading:
arrows correspond to the 8 reactions, associated to different stages of the infection;
dependence of reaction rates on time covariates is represented with the following
colours: • Vaccination Rate, • Temperature, • % Time at Work, • GRI.

day one of the pandemic, the Italian Institute of Health has started gathering

a comprehensive dataset on the progression of the disease. In this section,

we look closely at the data collected daily during the year 2021 (Guidotti

and Ardia, 2020).

Figure 4.2 shows the system that we consider for modelling the dynamics

of COVID-19 progression. In particular, the total population is partitioned

into the following five compartments, which define the states of the dynamic

system: I, infected but not in serious condition (homebound); H, infected and

hospitalised; C, critically ill (requiring respiratory support); R, recovered (no

longer infected); E, extinct (dead). The arrows correspond to the 8 reactions

that define the system. It seems natural to assume that the implementation

of mass vaccination campaigns and rigorous public health measures that

were put in place to contain the pandemic had indeed an effect on the virus

progression and spread. From a modelling point of view, this results in

reaction rates that vary over time due to external time-dependent covariates.

For the analysis, we consider in particular the following covariates:

1. Vaccination Rate: cumulative sum of the vaccines delivered at time

t. SARS-CoV-2 vaccination is proven to protect against both infection

and manifestation of severe and fatal symptoms of the disease (Corrao
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et al., 2022), so the dependence on this covariate has been included for

all reactions.

2. Temperature: smoothed mean intensity of monthly temperatures re-

trieved from ARPA Lombardia (2022). Environmental factors have

been found to have an impact on the transmissibility, severity, and

mortality of COVID-19, so also this covariate has been considered for

all reactions. (Kifer et al., 2021).

3. % Time at Work: smoothed variation of the percentage of time spent

at work relative to its median value over the five weeks preceding the

pandemic (Guidotti and Ardia, 2020). Viral transmission is clearly

influenced by the time people spend at work, so this covariate has been

included only for modelling the rate of infection.

4. Government Response Index (GRI): a measure of the severity

of government policies to reduce interactions, accounting for school

and workplace closures, bans on public gatherings, suspension of pub-

lic transport, stay-at-home mandates, public information campaigns,

and international travel controls (Hale et al., 2020). Similarly to the

previous covariate, this index has been included only for the reaction

representing new infections.

All covariates are rescaled to zero mean and unit standard deviation.

We use the proposed EM algorithm to estimate the regression coefficients

associated to each reaction rate. As initial value, we run the method of

Framba et al. (2024) and set these estimated values as the intercepts to all

models, and zero for all the other regression parameters. We set the tolerance

for convergence to 10−5 and the maximum number of iterations to 200. The

variances σ2
i associated with the increments of the i-th state are estimated

offline. The results are presented in Table 4.1 in terms of estimated regression

coefficients and standard errors. Since the marginal log-likelihood is not a

direct output of the EM algorithm, we use the Fisher information matrix

associated with the Q-function for the calculation of the standard errors

(Oakes, 1999). The regression coefficients are all statistically significant and

of a positive sign. As the variables are scaled, we deduce that temperature
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Table 4.1: Estimated regression coefficients and standard errors for the COVID-19
model in Figure 4.2.

β̂ I → 2I I → H I → C H → C I → R H → R C → R C → E

Intercept -1.82 -2.15 -4.04 0.006 -4.65 0.657 1.547 1.378
(0.001) (0.001) (0.002) (0.001) (0.003) (0.001) (0.002) (0.002)

Vaccination Rate 0.657 0.473 1.296 1.690 1.201 0.605 1.232 1.443
(0.001) (0.001) (0.003) (0.002) (0.004) (0.001) (0.002) (0.003)

Temperature 0.725 0.824 1.354 1.018 1.628 0.905 0.673 1.370
(0.001) (0.001) (0.002) (0.002) (0.003) (0.001) (0.002) (0.002)

% Time at Work 0.003 - - - - - - -
(0.001) - - - - - - -

GRI 0.573 - - - - - - -
(0.001) - - - - - - -

and vaccination have the strongest effects on the system dynamics while

percentage of time at work has the smallest effect.

From the estimates of the reaction rates, it is possible to obtain the basic

reproduction number, expressing the number of new infections that each

infected individual produces on average. In particular, this is defined by

R0(t) =
θ1(t)

θ2(t) + θ3(t) + θ5(t)

and is shown in Figure 4.3. The values estimated by our model (solid line) fol-

low quite closely the ranges reported by the Italian government (Mattarella,

2021b), which are depicted with different colours. In particular, we correctly

detect the peak of infection in the spring of 2021 and the period of lowest

infection in the summer of 2021. In the winter of 2021, the results show how

the rates were decreasing already prior to the strict measures coming into

force (red column). This phenomenon was also observed in the very early

stages of the pandemic, as reported in Wood and Wit (2021).
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FIG. 4.3 Comparison of basic reproduction number estimated by the model (solid
line) and reported by the government (background colours) (Mattarella, 2021a).

4.5 Conclusion

In this paper, we have proposed an extension of existing quasi-reaction mod-

els to account for covariate-dependent reaction rates. We have evaluated the

effectiveness of the proposed approach in modelling the dynamics of disease

spreading and their changes due to environmental factors and governmental

and public health interventions.
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5.1 Introduction

Reaction networks are an efficient framework used to describe the popula-

tion evolution in many biological and biochemical phenomena. These systems

are typically modeled using stochastic differential equations, which effectively

capture the inherent uncertainty and randomness of the underlying biological

structure (Golightly and Wilkinson, 2005). Understanding the dynamics of a

process requires a thorough knowledge of the evolution of its moments, typ-

ically obtained through the chemical master equation (Schnakenberg, 1976).

The primary objective of many studies is to infer the parameters governing

these moments, often achieved using Local Linear Approximation (LLA) due

to its efficiency and ease of implementation. However, LLA methods have

been found to be inaccurate when data are obtained within very small time

intervals, due to collinearity, or across very large time intervals, due to non-

linearity. The former problem was recently addressed by means of a state

space formulation involving modelling latent reactions (Framba et al., 2024).

With respect to the latter problem, existing methods exhibit significant esti-

mation bias because of poor approximations (Shoji, 2013). This is a serious

problem, as large observation intervals are typical in many practical experi-

mental settings, such as gene therapy clonal studies, where blood sampling

occurs monthly so as to align with the months-long lifespan of blood cells

and their production cycle (Pellin et al., 2023).

To date, only few studies have explored the challenges of parameter in-

ference in quasi-reaction models for widely-spaced-data. Pellin et al. (2023)

and Milner et al. (2013) proposed moment-closure methods that numerically

solve the differential equations of the first and second moment of the process,

but this requires considerable computational effort especially for large pop-

ulation sizes. The Bayesian inference approach in Boys et al. (2008) works

well in data-poor scenarios, but is computationally inefficient. Mean-field

approximation techniques (Baccelli et al., 1992) offer a viable alternative by

providing explicit solutions for the first moments of state distributions while

maintaining the process’s nonlinearity. However, this approach is limited to

unitary systems, where each reaction involves the transformation of a single

element into one or more products. Such scenarios are rare, as real-world
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models are better characterized by nonlinear dynamics, which capture com-

plex behaviors like logistic growth (Tsoularis and Wallace, 2002), bifurca-

tions (Hale and Koçak, 2012), and limit cycles (Ye and Cai, 1986). Xu et al.

(2019) proposed a method-of-moments algorithm that matches second order

moments. However, due to the statistical instability of the second moment,

this approach fails in highly stochastic or nonlinear systems.

Various methods have employed Taylor approximations to solve kinetic

rate equations. Kennealy and Moore (1977) utilized the Taylor series ex-

pansion for numerical integration of chemical kinetics, leveraging the ease

of obtaining higher-order derivatives from the specific form and symmetries

of differential equations in chemical systems. However, the need for fre-

quent adjustments to the step size to ensure convergence remains a chal-

lenge. Córdoba-Torres et al. (1998) introduced a method for optimizing the

initial parameters of the Taylor integrator by controlling local errors. This

approach allows for larger step sizes without increasing computational com-

plexity significantly, yet it demands an accurate analytical expression for

the local errors, which can be difficult to obtain in complex systems. Lente

et al. (2022) developed an algorithm based on Taylor’s theorem for solving

kinetic differential equations, using polynomial expansions of concentration-

time functions. However, its applicability is limited by the requirement for

suitable time transformations to maintain the polynomial nature of the rate

equations, which may not always be feasible. In this paper, we propose an

efficient method that extends the mean-field approach using a Taylor ex-

pansion not in time, as the above methods proposed, but in concentration.

Starting from the chemical master equation and using the system of non-

linear equations describing the dynamics of the process mean, we obtain a

linear approximation of the rate function. This leads to an approximation of

the system of ordinary differential equations (ODEs) with an explicit solu-

tion. By combining our method with a nonlinear least-squares method, it is

possible to perform inference of the parameters governing the rate equations.

The paper is structured as follows. In section 5.2, we formalize the statis-

tical modelling of quasi-reaction systems and introduce the generic mean-field

approach. We define the proposed local mean-field approximation method

and illustrate it in an example. We then study its resistance to stiffness,
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by comparing the performance of our method against several numerical ap-

proaches. The nonlinear least-squares procedure for parameter estimation

is described in section 5.3, both from a methodological and computational

point of view. Section 5.4 is reserved for simulation studies. By compar-

ing the performance of the proposed algorithm with both the existing LLA

method and other state-of-the-art approaches, we show its improved perfor-

mance, particularly as the time interval between consecutive observations

increases. In section 5.5, we illustrate the method in the analysis of a cell

differentiation study by Wu et al. (2014). Via BIC model selection, we study

the pattern of cell differentiation of 5 major blood cells, and estimate the

parameters regulating the underlying reaction process.

5.2 Local Mean-field Approximation (LMA)

In this section, we describe the proposed method for estimation of parameters

in a quasi-reaction system. To this end, in section 5.2.1, we first describe con-

cisely a general quasi-reaction system, with the aim of deriving the general

ODE formulation of the conditional mean of this process. In section 5.2.2, we

show that this system of ODEs can be solved explicitly for unitary systems.

For generic systems, the solution does not exist. However, by using the solu-

tion from a unitary system, we derive in section 5.2.3 a generic approximation

for any quasi-reaction system.

5.2.1 Quasi-reaction models

Consider a closed system with p interacting species {Q1, . . . , Qp}. Every

interaction between the substrates is caused by the occurrence of a quasi-

reaction Rj, described as

k1jQ1 + ...+ kpjQp
θj−→ s1jQ1 + ...+ spjQp j ∈ 1, . . . , r. (5.1)

The occurrence of the j-th reaction leads to a change of vlj = slj − klj

substrates for particle type l. Let V denote the net effect matrix hav-

ing vlj as lj-th element, and K = {klj} the reactant matrix. Let Y (t) =
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(Y1(t), . . . , Yp(t))
T ∈ Np

0 denote the continuous time counting process, with

Yl(t) the number of l-th particles present in the system at time t ∈ [0, T ].

Under standard assumptions, the conditional rate for the j-th reaction in

such system is given as

λj(Y (t);θ) = θj

p∏
l=1

(
Yl(t)

klj

)
, (5.2)

with
(
Yl(t)
klj

)
= 0, for all Yl(t) < klj. The rate parameters θ ∈ Rr

+ govern

the process dynamics. Let Θ be a diagonal matrix with θ on the diagonal,

and κ(t) the vector with j-th element κj(t) =
∏p

l=1

(
Yl(t)
klj

)
. Thus, the hazard

function can be compactly written as λ(Y (t);θ) = Θκ(t).

The stochastic process Y (t) obeys the Markov property. Given an initial

condition y(t0), it is possible to determine the probability density pt(Y ) of

the system being in the state Y at time t. The temporal evolution of the

Markov process transition kernel is governed by the Kolmogorov’s forward

equations (Wilkinson, 2018). In the context of stochastic kinetic process,

these are commonly referred to as the chemical master equation, which is

given by

dpt(y)

dt
=

r∑
j=1

pt(y − v·j)λj(y − v·j; θj)− pt(y)λj(y; θj), ∀ y ∈ Np
0. (5.3)

Solving the above equation involves assessing the evolution of Pt(y) over the

entire range of possible configurations for the process. This approach clearly

does not offer a feasible solution for systems of realistic size and complex-

ity. Nevertheless, valuable insights regarding the dynamics of characteristic

statistical features of the system can be derived from (5.3).

In particular, one can obtain from the chemical master equation a set of

ODEs describing the temporal evolution of lineage population concentration

averages. To this end, let m(t + s|t) describe the evolution of E[Y (t +

s)|Y (t) = y(t)] =
∑
y ypt+s|t(y). By taking the derivative, the following

ODEs system describing the dynamics of the conditional mean of Y (t +
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s)|Y (t) can be obtained (Pellin et al., 2023):

dml(t+ s|t)
ds

=
r∑
j=1

vljE[λj(Y (t+ s);θ) | Y (t)], l = 1, . . . , p. (5.4)

There have been several proposals for solving (5.4) using approximation

methods. These, however, come with significant limitations. The system

size expansion method by Van Kampen (1992) tends to lose accuracy in

systems with small populations or complex dynamics. The moment closure

approximation (Grima, 2012) often loses information due to the arbitrary

truncation of higher moments, while the diffusion approximation method by

Golightly and Wilkinson (2005) can be unreliable in cases with low molecule

counts and highly nonlinear behaviour. In the next section, we show how an

explicit mean-field solution can be found for unitary systems, and how this

can then be used as the basis of a new approximation method.

5.2.2 Explicit mean-field solution for unitary systems

Unitary systems are quasi-reaction systems where each reaction needs at

most one particle from each reactant in order to occur. In such systems, the

hazard rate (5.2) is linear in y, so

E[λj(Y (t+ s;θ)) | Y (t) = y(t)] = λj(E[Y (t+ s) | Y (t) = y(t)];θ)

= λj(m(t+ s|t);θ).

By adding the initial condition m(t|t) = y(t), the system (5.4) is expressed

by the following first order Cauchy differential equation,
dm(t+ s|t)

ds
= Pθm(t+ s|t) + bθ

m(t|t) = y(t).

(5.5)

The coefficient matrix Pθ and the inhomogeneous term bθ are functions of

the vector θ. The former relates to the reactions that involve exactly one re-

actant, whereas the latter refers to spontaneous reactions that do not involve

any reactants. By employing the hazard function (5.2) and applying straight-
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forward algebraic manipulations, they can be explicitly expressed in terms of

the death and net effect matrices as Pθ = VΘKT and bθ,l =
∑

j Vljθj1{K.j=0}.

If the Pθ matrix is invertible, the system (5.5) has the explicit solution

m(t+ s|t) = exp
(
sPθ
)
y(t) + Pθ

−1

(
exp

(
sPθ
)
− Ip

)
bθ. (5.6)

Although this approach only works for unitary systems, it inspires our pro-

posal for generic quasi-reaction systems explained in the next section.

5.2.3 LMA: local mean-field approximation for generic

systems

Most biological quasi-reaction systems involve complex, higher order interac-

tions that make finding an analytical solution to (5.4) typically impossible.

Our idea is to linearise the hazard function with respect to the abundance

vector Y so that any quasi-reaction system can be approximated as a unitary

system, thus obtaining an explicit solution of the ODEs system of the form

(5.6). Omitting the dependence of the hazard function on the parameters

θ for the sake of readability, we perform a first order Taylor expansion of

λ(Y (t+ s)) around Y (t),

λ(Y (t+ s)) = λ(Y (t)) + Λ(Y (t+ s)− Y (t)) + η(t). (5.7)

Here, ηj is the approximation error for the j-th component, which, from

Taylor’s theorem, is of the form

ηj =
1

2

∂2λj(Ỹ )

∂Yl(t)∂Yk(t)
(Yl(t+s)−Yl(t))(Yk(t+s)−Yk(t)), l, k = 1, . . . , p (5.8)

with Ỹ ∈ (Y (t),Y (t+s)). The Jacobian matrix Λ =
∂λ

∂y
is explicitly defined

by the proposition below, whose proof can be found in A.1.

Proposition 3. Given the intensity function λj(Y (t);θ) = θj
∏p

l=1

(
Yl(t)
klj

)
,
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the jl-th element of the Jacobian matrix Λ(Y(t);θ) ∈ Rr×p is given by

Λjl = θj

p∏
i=1

(
Yi(t)

kij

)
(1− δil)

(
Yl(t)

kij

)(
ψ(Yl(t) + 1)− ψ(Yl(t)− klj + 1)

)
︸ ︷︷ ︸

Hjl

where ψ(x) =
d

dx
log(Γ(x)) is the digamma function, i.e., the logarithmic

derivative of the gamma function.

Using now approximation (5.7) in (5.4), we obtain the conditional mean

ODEs system:

d

ds
m(t+ s|t) = V E

[
λ(Y (t)) + Λ

(
Y (t+ s)− Y (t)

)
| Y (t) = y(t)

]
= V ΛE[λ(Y (t+ s))|Y (t) = y(t)] + V λ(y(t))− V Λy(t)

= V ΘH︸ ︷︷ ︸
Pθ

m(t+ s|t) + V Θ (κ(t)−H y(t))︸ ︷︷ ︸
bθ

= Pθm(t+ s|t) + bθ. (5.9)

If |Pθ| 6= 0, the explicit solution of the ODEs system above is defined as in

(5.6).

In terms of convergence to the solution of the original ODEs system (5.4),

the approximation does not depend on the time step but on the difference

between concentrations as indicated by the relation (5.8). Since we stop the

expansion at first order, and if we consider at most second-order reactions,

then the approximation error is determined by the norm of the Hessian matrix

of the hazard function.

5.2.4 Example: cyclic chemical reaction network

In this section, we consider the example of a cyclic chemical reaction network

involving three particle types (A,B,C) with abundances Y = (Y1, Y2, Y3).
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The reactions are given by

2A
θ1−→ 2B

A + B
θ2−→ 3C

2C
θ3−→ 2A.

In particular, this network is a closed loop where the products of one reaction

act as the reactants for another, creating a continuous cycle of chemical

transformations. Such cyclic networks are central in understanding metabolic

cycles and oscillatory behavior in biological systems (Gillespie, 2007). The

first reaction describes the conversion of two molecules of species A into

two molecules of species B and could be seen as a simple process where A

is transformed into B in the presence of a catalyst. The second reaction,

where A and B combine to form three molecules of species C, can be viewed

as a synthesis reaction often seen in polymerization processes. The final

reaction regenerates species A from C, completing the cycle and ensuring the

continuity of the process.

The reactant and net effect matrix associated to this system are given,

respectively, by

K =

2 1 0

0 1 0

0 0 2

 , V =

−2 −1 2

2 −1 0

0 3 −2

 .
The first is used in the definition of the hazard rates in (5.2), while the

second, together with the hazard function, define the dynamics of the first

moments of the concentrations in (5.4).

The quasi-reaction system is clearly non-unitary, as more than one par-

ticle type is used in each reaction. This leads to a hazard that is not lin-

ear in Y and to no analytical solution to the ODEs system in (5.4). The

local mean-field approximation method described in section 5.2.3 provides

an explicit approximate solution to the system. In order to show this, let

y = (y1, y2, y3) represent the observation of the continuous process at time t.
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The reaction events are associated with the hazard function

λ(y) := λ(Y (t);θ)
∣∣
Y (t)=y

=

θ1y1(y1 − 1)/2

θ2y1y2

θ3y3(y3 − 1)/2

 ,
for which we consider a Taylor expansion in y and then its first order ap-

proximation. In particular, the Jacobian matrix, evaluated at y, is given

by

Λ =
∂λ(Y (t);θ)

∂Y

∣∣
Y (t)=y

=

θ1(y1 − 0.5) 0 0

θ2y2 θ2y1 0

0 0 θ3(y3 − 0.5)

 .
We now plug in these quantities in (5.7), leading to the ODEs system

approximation (5.9) with

Pθ = V Λ =

−2 −1 2

2 −1 0

0 3 −2


θ1(y1 − 0.5) 0 0

θ2y2 θ2y1 0

0 0 θ3(y3 − 0.5)


=

−2θ1(y1 − 0.5)− θ2y2 −θ2y1 2θ3(y3 − 0.5)

2θ1(y1 − 0.5)− θ2y2 −θ2y1 0

3θ2y2 3θ2y1 −2θ3(y3 − 0.5)

 ,
bθ = V (λ(y)− Λy)

=

−2 −1 2

2 −1 0

0 3 −2

(
θ1y1(y1 − 1)/2

θ2y1y2

θ3y3(y3 − 1)/2

−
θ1(y1 − 0.5) 0 0

θ2y2 θ2y1 0

0 0 θ3(y3 − 0.5)


y1

y2

y3

)

=

θ1(y1)2 + θ2y1y2 − θ3(y3)2

−θ1(y1)2 + θ2y1y2

−3θ2y1y2 + θ3(y3)2

 .
By substituting the quantities above into equation (5.6), we obtain the

explicit form of the mean process values after a time interval s. These con-

stitute a nonlinear forward prediction of the system at time t+ s. It should

be noted that det(Pθ) = 12θ1θ2θ3(y1−0.5)y2(y3−0.5) is non-zero if and only
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if θ 6= 0 and y 6= (0.5, 0, 0.5).

5.2.5 Computational time and stiffness

The main advantage of the proposed method is that the ODEs system in

(5.9), used to approximate the orginal system in (5.4), has an explicit solu-

tion. As we will show in this section, classical numerical methods for solving

ODEs systems may be computationally more efficient than calculating this

analytical solution, but they are less stable in many scenarios.

A traditional numerical algorithm for solving ODEs systems, well known

for its simplicity of implementation, is the explicit Euler method. This has

a slow linear convergence with respect to the width of the time steps ∆t but

a linear computational cost with respect to the total number of subintervals

Tc = T/∆t, with t ∈ [0, T ]. A good alternative is the explicit fourth-order

Runge-Kutta method. This offers a fourth-order convergence, by evaluat-

ing the function at multiple points within each time step, but consequently

leading to a four times higher computational cost (Krijnen and Wit, 2022).

The balance between accuracy and computational cost makes Runge-Kutta

methods preferable for many practical applications where accuracy is a prior-

ity (Butcher, 2016). As for the proposed LMA, in order to solve the ordinary

differential equations (5.9) analytically, it is necessary to compute the expo-

nential of a p × p matrix. For this, we utilize the Pade approximation with

scaling and squaring method due to its efficiency with dense matrices. This

approach has a computational complexity of O(p3). Additionally, we need

to compute the inversion of the same matrix, which incurs a similar com-

putational cost. Consequently, the overall cost for calculating the analytical

solution in (5.9) using the LMA approach amounts to O(p3), which is higher

than both the Euler and Runge-Kutta methods.

Besides computational time, a further comparison between the methods

can be made in terms of performance in the presence of stiffness. It is well

known how the explicit Euler and Runge-Kutta methods struggle with prob-

lems that are classified as stiff. On the other hand, the availability of an

explicit solution makes the method robust also in the presence of stiffness.

A system is considered stiff in a given interval if, when applying a numerical
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FIG. 5.1 Mean absolute error between the numerical solution from each method
and the analytical LMA solution in (5.6), as ∆t increases: both Euler and Runge-
Kutta methods experience a significant degradation in accuracy as ∆t increases.

method with a finite region of absolute stability, the step length required

is excessively small relative to the smoothness of the exact solution (Lam-

bert, 1974). This definition emphasizes the difficulty of maintaining stability

with explicit methods, which may necessitate impractically small step sizes

to accurately obtain the solution.

In quasi-reaction chemical models, the phenomenon of stiffness arises in

situations where very slow and very fast reactions coexist. A well known ex-

ample of a stiff problem is the kinetics of an autocatalytic system (Robertson,

1966). However, as its associated net effect matrix is not full rank, Pθ = V Λ

is not invertible. Instead, we consider the cyclic chemical reaction system

described in section 5.2.4, with initial value y = (10, 20, 10) and reaction

rate θ = (2 · 10−6, 10−7, 2 · 10−1). After a first order Taylor approximation,

we consider the ODEs system (5.9) associated to this network. The ma-

trix associated to this system is invertible. Moreover, the eigenvalues of Pθ,

given by 7.6 · 10−7, −4.2 · 10−5, and −3.8 · 100, are different from each other

in magnitude, which is taken as an indication of stiffness (Butcher, 2016).

Intuitively, it is clear how the third reaction is much faster than the first two.

Figure 5.1 shows the robustness of the Euler and Runge-Kutta methods

when used to solve numerically the ODEs system (5.9) of this problem. The

error is defined as the average of the absolute difference of the solution ob-
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Method Computational Cost Convergence Stiffness

Explicit Euler O(pT ) O(∆t) Unsuitable
Runge-Kutta O(4pT ) O(∆t4) Unsuitable
LMA O(p3T ) O(1) Robust

Table 5.1: Comparison of computational costs, error convergence, and performance
in stiff problems for the explicit Euler, fourth-order Runge-Kutta, and the proposed
LMA method.

tained by the proposed method and the analytical LMA solution in (5.6),

when both solutions are evaluated at 5 time points. For very small time

intervals, the Euler and Runge Kutta methods are accurate. However, they

become unstable as ∆t increases. Table 5.1 summarises the comparison of the

various methods discussed in this section, in terms of computational costs,

convergence and robustness to stiffness. The proposed LMA approach pro-

vides a good compromise between computational efficiency and robustness

to stiffness.

5.3 Inference

Dynamic processes are often observed at discrete time points, and possibly

across several replicates. For example, in gene therapy studies (Del Core

et al., 2023), and in hematopoietic clonal dynamics (Pellin et al., 2023),

clones, i.e., genetically identical cells, are probed at times that are days or

even months apart.

5.3.1 Estimation of reaction rates

We consider a set of n replicates, whereby each replicate c is observed across

Tc time points. Let Y = {Yci = Yc(tci)}n,Tcc,i be the set of p-dimensional obser-

vations of realisations of particle counts subject to the quasi-reaction system.

The time intervals are not necessary equal, which means that the observation

times tci are also indexed by the replicate information. We define m(θ) =

[m1(θ), . . . ,mn(θ)] such that mci(θ) = E[Yci | Yc(tc,i−1) = yc(tc,i−1)] is the

solution of the ODEs system (5.9) with initial condition Yc,i−1 = yc,i−1. In
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other words, the solution of the system of ODEs projects each observation

yc,i−1 to the expected value at the next time point. The inference procedure

for the rates θ can then be reformulated as the following nonlinear regression

problem,

Yci = mci + εci, (5.10)

where εci is a p-dimensional vector of residuals such that E[εci] = 0. As

likelihood-based approaches are unfeasible due to the computational effort

involved in integrating over all possible states between the observation times,

we propose instead a least-squares algorithm to estimate the θ parameters.

The constrained solution is then given by

θ̂LMA = arg min
θ≥0

{
f(θ) =

n∑
c=1

Tc∑
i=1

[
Yci −mci(θ)

]T [
Yci −mci(θ)

]}
. (5.11)

To determine the optimum, we use an iterative approach which consists

of two steps. First, we solve analytically the approximation of the ODE solu-

tion (5.9). Then, we apply the limited-memory Broyden-Fletcher-Goldfarb-

Shanno algorithm with box-constraints to find the optimum. This is an

optimization scheme used to solve large-scale optimization problems with

simple bounds on the variables (Byrd et al., 1995). A pseudo-code of the

algorithm can be found in A.2. The iterative procedure requires initial es-

timates θ̂0. Considering the potentially large number of parameters in the

model, it is important to start the minimization of (5.11) with accurate initial

values. A practical starting value is provided by the local linear approxima-

tion approach, which will also be used in the comparative study. A detailed

description of the method can be found in A.3.

5.3.2 Standard error approximation

In the context of statistical modeling of quasi-reaction systems, it is impor-

tant to be able to evaluate the uncertainty associated with the estimated

rates θ̂. Only few studies provide explicit approximate formulations for this

(Framba et al., 2024; Tsugé, 2001). In this section, we do so for the pro-

posed method. Under certain regularity conditions the variance-covariance
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matrix of θ̂ is approximately the inverse of the observed Fisher information

matrix evaluated at θ̂. The latter is the negative of the Hessian matrix

H(θ̂) := ∂2f(θ)
∂θ2

∣∣
θ=θ̂

and can be approximated by

I(θ̂) =

(
∂

∂θ
f(θ̂)

)(
∂

∂θ
f(θ̂)

)T
. (5.12)

The derivative of the objective function f(θ) with respect to the rates

involves taking the derivative of the solution of the ODE system (5.9), i.e.,

the derivatives of

m(t+ s|t) = exp
(
sPθ
)
y(t) + Pθ

−1

(
exp

(
sPθ
)
− Ip

)
bθ (5.13)

with respect to θ. For ease of notation, we consider a single-replicate scenario.

We start by taking the derivatives of Pθ and bθ defined in (5.9). This gives

∂Pθ
∂θj

= V ejH,
∂bθ
∂θj

= V ejκ(t)− V ejHy(t),

where ej is a r-dimensional vector with a 1 in the j-th position and 0 else-

where. Using the matrix exponential derivative property and the chain rule,

∂ exp(sPθ)

∂θj
=

∫ 1

0

exp((1− u)sPθ)
∂(sPθ)

∂θj
exp(usPθ) du.

Using the chain rule, we also obtain the derivative of the second term in

(5.13),

∂

∂θj

(
P−1
θ (exp(sPθ)− Ip) bθ

)
=
∂P−1

θ

∂θj
(exp(sPθ)− Ip) bθ

+ P−1
θ

∂

∂θj
(exp(sPθ)− Ip) bθ

+ P−1
θ (exp(sPθ)− Ip)

∂bθ
∂θj

.

Combining everything together and using
∂P−1

θ

∂θj
= −P−1

θ

∂Pθ
∂θj

P−1
θ , the partial
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derivative of the conditional predicted values is

∂m(t+ s | t)
∂θj

=

(
s

∫ 1

0

exp((1− u)sPθ)V ejH exp(usPθ) du

)
y(t)

− P−1
θ V ejHP

−1
θ (exp(sPθ)− Ip) bθ

+ P−1
θ s

(
s

∫ 1

0

exp((1− u)sPθ)V ejH exp(usPθ) du

)
bθ

+ P−1
θ (exp(sPθ)− Ip) (V ejκ(t)− V ejHy(t)) . (5.14)

Taking into account that the minimization problem relies on Tc observations

for each of n clone-type scenario, we define the p × r-dimensional matrix

ξci such that the j-th column is the evaluation of (5.14) at (tci,Yci). The

gradient of the objective function with respect to θj is the r-dimensional

vector
∂fci(θ)

∂θj
= −

[
Yci −mci

]T
ξcij.

Using this expression, the variances of the estimated rates θ̂, which we

approximate with the diagonal of I(θ̂) in (5.12), are given by

V[θ̂] = diag

( n∑
c=1

Tc∑
i=1

(ξci)
T
[
Yci −mci

][
Yci −mci

]T
ξci

)−1∣∣∣∣
θ=θ̂

.

The derivations are checked numerically in A.4.

5.4 Simulation study

In this section, we present several simulation studies to assess the perfor-

mance of the proposed method. The experimental setup, based on the system

described in section 5.2.4, reflects conditions typical of numerous biological

applications. In section 5.4.1, we evaluate the proposed method by vary-

ing the width between the observations ∆t and the number of time points

T . We compare the results with an alternative local linear approximation

method. For short time steps, we expect the local linearization to be a seri-

ous competitor, whereas for large time steps the nonlinearity of the system

will make our inferential scheme preferable. In section 5.4.2, we study how
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FIG. 5.2 A trajectory generated using the Gillespie algorithm for the model de-
scribed in section 5.2.4. The symbols indicate the T = 20 observations between
every 100 simulated states (average ∆t ≈ 0.012).

accuracy and computational time vary by increasing the number of nodes

and reactions. Finally, in section 5.4.3 we compare our approach with a

method-of-moments formulation introduced by Xu et al. (2019), which relies

on matching model-derived and empirical correlations in cell type dynamics.

5.4.1 Performance as function of ∆t and T

In this section, we compare the performance of the LMA inferential procedure

across different time steps ∆t and number of time points T . We use the

Gillespie algorithm to simulate trajectories from the cyclic reaction system

defined in section 5.2.4 with rates θ = (0.2, 0.1, 0.2) and initial concentration

y0 = (100, 100, 100). Figure 5.2 shows an example of trajectories for one of

the simulations.

In order to evaluate the dependence of the results on ∆t, we extract

measurements from the simulated trajectories. In order to get, on average,

increasing ∆t values, we consider 5 different cases where we retain every 10,

30 50, 70, 100 values, respectively, from each trajectory for a total of T = 20

measurements. See Figure 5.2 for an example of the last case. This leads to

5 different values for the average time steps (0.003, 0.007, 0.009, .010, 0.012).
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FIG. 5.3 Distributions of the estimated rates from the local linear approximation
(LLA, red) and local mean-field approximation (LMA, green) methods across 100
simulations. Top: Keeping T = 20 fixed, as the time step ∆t increases, the LLA
estimates, unlike LMA, show increased bias. Bottom: Keeping ∆t = 0.012 fixed,
increasing the number of time points T shrinks the standard error of the LMA
method in a square-root fashion.

In a second simulation, we fix the case ∆t = 0.012 and consider 5 different

values for the overall number of time points T . The simulations are repeated

100 times.

Figure 5.3 shows the estimated parameters θ = (θ1, θ2, θ2) for both the

proposed LMA method (green) and the alternative LLA method (red). The

results show that the performance of the two methods is comparable for

small time intervals. However, as ∆t increases, the LLA approach shows an

increasing bias, which is not observed for the LMA method. Furthermore,

the standard error of the LMA method shrinks in a roughly 1/
√
T fashion,

as the number of time points increases.
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5.4.2 Accuracy and computational time varying r and

p

In this section, we examine the impact of varying the number of reactions p

and the number of particle types p on the estimation accuracy and computa-

tional time required to estimate the parameters θ̂. This analysis is conducted

using the same experimental setup of section 5.4.1, fixing T = 20. The sim-

ulations are repeated 200 times.

The time complexity is shown with the median time across all simula-

tions, along with the 25th and 75th percentiles. In terms of accuracy of

parameter estimation, since the parameter values vary significantly in mag-

nitude, we consider the Wasserstein 1-distance (Duy and Takeuchi, 2023)

between the distribution of an estimated parameter and the corresponding

true parameter. In particular, this is given by

W1(θ, θ̂) =
r∑
j=1

∣∣∣Fθj − Fθ̂j ∣∣∣ ,
where Fθ̂j is the empirical cumulative distribution of θ̂j from the 200 simu-

lations, while Fθj is the degenerate distribution on the true value θj. The

median and interquantiles of this measure are calculated by considering 1000

bootstrap versions of the 200 datasets and calculating the Wasserstein 1-

distance from each of these.

In a first simulation, we vary the number of particle types p ∈ {3, 6, 9}.
For p = 3, we consider the cyclic reaction system in section 5.2.4. In order to

still have a Pθ invertible, we generate the settings with a higher p by simply

repeating the same system a number of times, as shown in Figure 5.9 of A.5.

The results of the simulations are shown in Figure 5.4. The top-left panel

shows a super-linear dependence of computational time on p. The bottom-

left panel shows that the accuracy of the estimates decreases linearly with

respect to the number of p states.

In a second simulation, we fix the number of particles at p = 3 while pro-

gressively varying the number of reactions r ∈ {3, 6, 9, 12, 15}. We generate

the different systems with varying r by following the scheme in Figure 5.10
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FIG. 5.4 Median computational time (top) and Wasserstein 1-distance (bottom)
of the LMA algorithm, as a function of the number of reactions (r, right) and states
(p, left). The shaded area represents the interquartile range across 200 simulations.

of A.5. The top-right panel of Figure 5.4 shows a quasi-cubic dependence

of computational time on r, which aligns with the theoretical predictions

discussed in section 5.2.5. The bottom right plot shows how the overall ac-

curacy of the estimates improves approximately linearly with the increase in

the number of reactions.

5.4.3 Comparison with M-estimator by Xu et al. (2019)

Finally, we present a simulation study comparing our proposed method with

an alternative method proposed by Xu et al. (2019). The authors considered
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the empirical correlation between the dynamics of the particle types with

the theoretical one defined by the chemical master equation. They applied

their method to a human cell differentiation system involving hematopoietic

stem cells (HSCs), two progenitors, and five mature cell types. The system

is described in Figure 5.5. To obtain an analytical solution for the evolu-

tion of the moments, the authors assumed linear propensity functions with

respect to the state concentrations. This concept is strongly restrictive in

the description of cell dynamics as it implies only exponential growth and

extinction of the cells, as also noted by Pellin et al. (2023). However, in order

to properly compare the two methods, we have kept the same assumption.

Note that no changes to the method are necessary as it is a generalization of

the case of linear hazard functions.

As HSCs and progenitor cells are latent in the reference method, we only

identify the dataset with mature cells after generating the complete data, in

order to maintain the same original setting. In terms of reaction rates, we

multiply the original values defined in Xu et al. (2019) by 1000. This merely

constitutes a time unit change. We set the HSC duplication parameter to

λ = 2850, and the differentiation in progenitors a-type to νa = 1400, and

b-type to νb = 700, respectively. Such cells have death rates of µa = 50

and µb = 40. The type-a progenitor can differentiate into Granulocytes

with rate ν1 = 3600 and into Monocytes with rate ν2 = 1800. The type-b

progenitor differentiates into T-cells with rate ν3 = 1000, into B-cells with

rate ν4 = 2000 and finally into Natural-Killer (NK) cells with rate ν5 = 1200.

The death rates of the 5 mature cells are given by µ1 = 26, µ2 = 13, µ3 =

11, µ4 = 16, µ5 = 9, respectively. Each simulation starts from one HSC and

no other cell types. From this, n = 100 replicates or clones, are simulated in

T = 5 time steps each. The observation times are stochastically defined, but

in order to maintain the biological significance of blood sampling at defined

times, the indexed mean time is defined for all clones, resulting in a data

span t = (0.00, 0.08, 0.11, 0.14, 0.17). We apply our proposed LMA approach

and the method of Xu et al. (2019) to these simulated data. As in Xu et al.

(2019), the death rates are kept fixed, as these values are taken from the

biology and immunology literature, while all other parameters are estimated

from data. Given that the Xu et al. (2019) algorithm relies on an initial value,
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FIG. 5.5 Comparison with Xu et al. (2019) correlation-based M-estimator: a)
Blood cell differentiation scheme. b) Cell types multi-modal steady-state distribu-
tion calculated using 100 clones. c) Boxplots of the estimated parameter distribu-
tions from 100 simulations. The 10 unknown rates are shown, the true values are
indicated by a horizontal dashed red line. The proposed method is unbiased and
more accurate than the M-estimator by Xu et al. (2019).

we perform a sensitivity checking by restarting the inference procedure 100

times for each simulation. The solution corresponding to the minimum cost

function among the others is then selected as the final value.

The results of the simulation study, the steady-state distribution process
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and the parameter distributions with 300 simulations are shown in Figure 5.5.

The proposed LMA approach outperforms Xu et al. (2019) in several

aspects. Firstly, most of the LMA parameter estimates, with the possible

exception of ν̂1 and ν̂2, are unbiased, in contrast to the estimates obtained

with the Xu et al. (2019) method. Secondly, the precision of the LMA es-

timates is significantly higher than that of the Xu et al. (2019) estimates.

The reason for these improvements is that the method in Xu et al. (2019) is

based on matching second order moments, which are inherently less stable

than first order methods.

5.5 Cell lineage barcoding in rhesus macaques

Clonal tracing modeling is commonly used in genetic studies to enhance our

understanding of blood cell formation, also known as hematopoiesis. The

hematopoietic process is represented as a tree structure with a self-renewing

hematopoietic stem cell at its origin. This cell evolves from a pluripotent

state into mature blood cells through several intermediate progenitor stages.

The regulation of the number of circulating cells in the blood is maintained

through the rates of birth, death, and differentiation. An important chal-

lenge in studying this system in living organisms is that only mature cells

are observable and can be accessed through blood sampling. To gain further

insights, recent research has analysed cell production in non-human primates,

which closely mirrors human physiology due to the similar lifespan and fre-

quencies of hematopoietic stem progenitor cells (HSPCs) (Kim et al., 2000).

In this article, we considered an in-vivo clonal tracking dataset on Rhesus

Macaques (Wu et al., 2014) and aim to recover the rates of birth, death, and

differentiation from these data.

Hematopoietic stem cell gene therapy In the (Wu et al., 2014) gene

therapy clonal study, unique DNA barcodes IDs were first introduced into

autologous CD34+ HSPCs utilising a high-diversity lentiviral barcode li-

brary. Then, such cells were reinfused into the three myeloableted animals

(Shepherd et al., 2007). Once reinfused, the genetically modified HSPCs

home to the bone marrow, where they engraft and begin to repopulate the
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FIG. 5.6 Average concentration over time of each Rhesus Macaque specimen fol-
lowing transplantation. The p = 5 cell types are reported with different colours and
line styles.

haematopoietic system. These barcoded HSPCs proliferate and differentiate

into various blood cell lineages, allowing the tracking of individual clones

over time. The integrated barcodes remain stable within the genome of the

progeny cells, enabling the detailed monitoring of clonal dynamics, lineage

contribution, and the longevity of specific clones across different haematopoi-

etic compartments. In the Wu et al. (2014) study, samples from peripheral

blood, bone marrow, and lymph nodes for the three monkeys were collected

monthly, enabling the identification of unique clonal patterns and contribu-

tions to different cell types, such Granulocytes (G), Monocytes (M), T, B,

Natural-Killer (NK) cells. The entire observation time varies from subject

to subject and corresponds to 4.5 months for monkey ZG66, 6.5 months for

monkey ZH17, and 9.5 months for monkey ZH33. Each barcoded lineage Y (t)

is assumed to be an independent realization of the hematopoietic stochastic

model.

The data were imported from the Karen library (Del Core et al., 2022).

The dataset contains many missing sampling events. As a pre-processing

step, we exclude the time points when no barcodes were detected as well as

all clones with less than 3 temporal observations. This leads to a total of

555 unique barcodes IDs, which are split between 434, 50, and 19 different

clone-types in specimen ZG66, ZH17 and ZH33, respectively.
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Hematopoietic reaction network selection Figure 5.6 shows the av-

erage differentiation trajectories for each specimen. We posit that the dy-

namics of cell differentiation are universal and thus independent of individual

subjects. Consequently, we assume that the differentiation process in each

subject is governed by the same rate parameters. Following the same ap-

proach as in Pellin et al. (2023), we define the death reaction hazard rates

as a quadratic function of the underlying abundances, representing a natural

saturation effect.

Using the proposed LMA approach, we compare competing models of

hematopoiesis from the available experimental data. To this end, we define

the net matrix of the full model consisting of 30 reactions, of which 10 are

birth and death reactions and 20 are all possible differentiations from one cell

to another. We initialize the reaction rates with the local linear approxima-

tion estimates. Although previous similar studies fix the death parameters

according to established chemical regimes (Hellerstein et al., 1999; Xu et al.,

2019), we keep such rates variable. We then search through the space of pos-

sible models, going from an initial model m1 consisting of only one reaction

out of the 30 possible ones to the full saturated model. For each model, we

estimate the parameters using the LMA approach, i.e., by solving the opti-

misation problem (5.11). At each step of a stepwise procedure, we iteratively

add and subtract the reaction that most reduces the Bayesian Information

Criterion (BIC). This methodology leads to a sequence of models with in-

creased complexity. The results are shown in Figure 5.7 (right). For each

degree of complexity, the lowest BIC of the optimal model is shown in red,

while the BIC values of the unselected models are shown in gray.

The optimal model and complexity level, i.e., the model corresponding

to the lowest overall BIC, contains 10 reactions. Table 5.2 reports the reac-

tions that define this model, the corresponding reaction rates estimated by

the proposed LMA method, together with the standard errors calculated as

described in section 5.3.2. Due to the quadratic nature of the death rates

and to particle counts in the order of 103 (Figure 5.6), we can see how reac-

tions involving M and B tend to be the slowest (with rates in the order of

10 days), reactions involving G and T occurr at a rate of 1 day, while death

rates occur at the fastest rate of 10−1 days. Standard errors are small with
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respect to the size of the parameters, suggesting small uncertainty on the

estimates.

reaction reaction rate estimate Standard errors
G→ ∅ 3.054 · 10−7 2.405× 10−9

NK → ∅ 1.759 · 10−7 3.236× 10−10

M → G 1.340 · 10−2 3.593× 10−4

B →M 1.183 · 10−2 4.916× 10−4

M → B 1.180 · 10−2 3.69× 10−4

G→ NK 2.339 · 10−3 1.935× 10−4

G→M 5.876 · 10−3 4.123× 10−4

B → G 7.048 · 10−3 4.690× 10−4

G→ T 6.413 · 10−3 4.846× 10−4

T → B 9.469 · 10−3 1.950× 10−4

Table 5.2: Estimated rates, and corresponding standard errors, from Rhesus
Macaques gene therapy trial data, based on the optimal model of cell differen-
tiation.

In the search of all models, each reaction may be included in a number of

models of varying complexity. As a way of obtaining a measure pj of overall

relevance of each reaction, we determine the evidence that a specific reaction

is included by summing the weights of all models that include this reaction.

Formally, pj =
∑

i∈Mj
wi, whereMj is the set of all models that contain the

parameter θj, and wj is the rescaled BIC-based weight. This is defined by

wj =
exp{−1

2
(BICj −BICmin)}∑r

h=1 exp{−1
2
(BICh −BICmin)}

, (5.15)

where BICmin is the minimum BIC value among all the models considered.

The cell differentiation network in Figure 5.7 (left) has edges whose thickness

is proportional to the pj value. From this we can see, how, although each

element appears both as a reactant and a product in the optimal model (Table

5.2), NK cells do not tend to differentiate into other cell types. Moreover,

the figure shows how the less frequent edges form a loop connecting nodes

B, T, and G cells, while the reaction events that appear most relevant for

explaining the count trajectories involve monocytes.
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5.6 Conclusion

In this study, we have developed and assessed a novel methodology for param-

eter inference in quasi-reaction systems, with a particular focus on situations

where observations are made at large time intervals. Traditional local linear

approximation methods, while computationally efficient, often fail to capture

the complex nonlinear dynamics inherent in biological systems, especially

when data is sparse or irregularly spaced. Our proposed approach, which

extends mean-field approximation techniques, addresses these limitations by

providing an explicit solution for the first moments of the state distributions

under a generic quasi-reaction system.

The performance of the proposed local mean-field approximation method

is evaluated through an extensive simulation study and compared against

other methods. The results demonstrate that our method significantly out-

performs local linear approximation, particularly as the time interval between

observations increases. Thanks to the availability of an explicit solution, the
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proposed method is shown to be robust to stiffness, a common occurrence

in biological systems where processes operate at vastly different time scales.

In addition, we illustrate the approach for the study of cell differentiation

from gene therapy clonal tracking data. The approach returns an estimate

of the cell populations dynamics and provides meaningful insights into the

underlying biological processes.

This work advances the inference of quasi-reaction systems by providing

a versatile and reliable tool, which is suited to any generic quasi-reaction

system and which can be particularly valuable for applications in compart-

mental studies and multi-type branching models, where traditional methods

may be inadequate or computationally prohibitive.
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APPENDIX

A.1 Jacobian of the hazard function

Proposition 4. Given the intensity function λj(Y (t);θ) = θj
∏p

l=1

(
Yl(t)
klj

)
,

the jl-th element of the Jacobian matrix Λ(Y (t);θ) ∈ Rr×p is given by

Λjl = θj

p∏
i=1

(
Yi(t)

kij

)
(1− δil)

(
Yl(t)

klj

)(
ψ(Yl(t) + 1)− ψ(Yl(t)− klj + 1)

)
.

Proof. First, we define the jl-th element of the Jacobian matrix Λ(Y (t);θ)

as
∂

∂Yl
λj(Y (t);θ) =

∂

∂Yl
θj

p∏
i=1

(
Yi(t)

kij

)
.

By applying the chain rule, we get

∂

∂Yl

p∏
i=1

(
Yi(t)

kij

)
=

( p∏
i=1

(
Yi(t)

kij

)
(1− δil)

)
∂

∂Yl

(
Yl(t)

klj

)
,

with δil an indicator function. Next, recalling the digamma function ψ(x) =
d

dx
log(Γ(x)), we differentiate the logarithm of the binomial coefficient:

∂

∂Yl
log

(
Yl(t)

klj

)
=

∂

∂Yl
[log Γ(Yl(t) + 1)− log Γ(klj + 1)− log Γ(Yl(t)− klj + 1)]

= ψ(Yl(t) + 1)− ψ(Yl(t)− klj + 1).

Applying logarithmic differentiation, we have:

∂

∂Yl

(
Yl(t)

klj

)
=

(
Yl(t)

klj

)(
ψ(Yl(t) + 1)− ψ(Yl(t)− klj + 1)

)
.

Therefore, the jl-th element of the Jacobian matrix Λ(Y(t);θ) is:

Λjl = θj

p∏
i=1

(
Yi(t)

kij

)
(1− δil)

(
Yl(t)

klj

)(
ψ(Yl(t) + 1)− ψ(Yl(t)− klj + 1)

)
.
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A.2 LMA algorithm

Algorithm 4 gives the pseudo-code of the proposed nonlinear local mean-field

(LMA) algorithm for parameter estimation in a quasi-reaction model.

Algorithm 4 Nonlinear local mean-field (LMA) algorithm

Data: Y , K, V
Initialization: θ̂0, toll, maxIter, k = 0, H0 = Ir
Define f(θ) =

∑Tc
i

∑C
c (Yci −mci)

T (Yci −mci)
while ‖∇f(θk)‖ > ε and k < maxIter do
dk = −Hk∇f(θk)
αk = arg minα f(θk + αdk)
θk+1 = θk + αkdk . update m according to (5.6)
sk = θk+1 − θk
gk = ∇f(θk+1)−∇f(θk)

Hk+1 =
(
Ir −

skg
T
k

gTk sk

)
Hk

(
Ir −

gks
T
k

gTk sk

)
+

sks
T
k

gTk sk

k = k + 1
end while
θ̂LMA = θk

A.3 Local Linear Approximation

In this section, we describe the Local Linear Approximation (LLA) approach

for estimation of the rates θ. The LLA estimates are used in the comparative

study in section 5.4.1 and as initial values for Algorithm 4 that iteratively

solves the optimization problem (5.11).

The local linear approximation approach applies Euler’s method to ap-

proximate the moments of the process at time t conditional on the history of

the process up to time t. Using the expression of the conditional moments

derived from the chemical master equation (5.3), and assuming constant

hazard rates between consecutive time points, the conditional moments are
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approximated as follows:

E[Yci | Yc,i−1] ' Yc,i−1 +
r∑
j=1

vljλj(Yc,i−1;θ)∆ti (5.16)

E[Yc,i,lYc,i,k | Yc,i−1] ' Yc,i−1,lYc,i−1,k +
r∑
j=1

vljYc,i−1,kλj(Yc,i−1;θ)∆ti

+
r∑
j=1

vkjYc,i−1,lλj(Yc,i−1;θ)∆ti +
r∑
j=1

vljvkjλj(Yc,i−1;θ)∆ti.

(5.17)

Since the hazard function λj(Yc,i−1;θ) is linear in θ, the regression model

(5.10) can be rewritten as:

∆Yci = Mciθ + εci, εci ∼ N (0,Ωci),

where ∆Yci = Yci − Yc,i−1 is the vector of concentration changes between

consecutive time points. The matrix Mciθ = V diag(λci(Yc,i−1;θ))∆ti and

Ωci = V diag(λci(Yc,i−1;θ))V T∆ti represent the discretized drift function

and the dispersion matrix of the concentration differentiation process, re-

spectively.

The local linear estimate θ̂LLA is then obtained by solving the following

constrained generalized least-squares problem:

θ̂LLA = arg min
θ≥0r

Tc∑
i=1

n∑
c=1

(∆Yci −Mciθ)T Ω−1
ci (∆Yci −Mciθ) .

A.4 Standard error approximation

In this section, we aim to validate the derivation of the standard error de-

scribed in section 5.3.2. As explained in that section, under a maximum-

likelihood estimation framework, the variance-covariance matrix of θ̂ is asymp-

totically approximated by the inverse of the observed Fisher information ma-

trix, for which we derive an explicit approximate formulation. We validate

this derivation using the same model of section 5.2.4. In particular, we gen-
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FIG. 5.8 Violin plots showing the distribution across 50 simulations of the di-
agonal elements of the inverse of the observed Fisher information matrix for the
3 reaction rates of the system in section 5.2.4. The horizontal line represents the
empirical variance of the estimates. The figure shows a good agreement between the
theoretically and empirically derived standard errors of the estimated parameters.

erate data from this model with 100 replicates for each of the 50 simulated

datasets. Figure 5.8 presents violin plots corresponding to the diagonal el-

ements of the inverse of the observed Fisher information matrix elements.

The horizontal lines denote the observed variance of the estimates across the

50 simulations. The figure shows a good agreement between the theoretically

and empirically derived standard errors of the estimated parameters.

A.5 Reaction systems used in the simulation

study in section 5.4.2

This paragraph outlines the reaction systems used in section 5.4.2 to evaluate

the computational complexity of the algorithm. Concerning the number of

particles (p), for ease of notation the possible states are indicated only by the

first three letters. When multiple of the three states are present, we denote

these with a subscript.



Chapter 5. Inferring the dynamics of quasi-reaction systems via non-linear
local mean-field approximations 124

p = 3

R3 :


2A1

0.2−→ 2B1

A1 + B1
0.1−→ 3C1

2C1
0.2−→ 2A1

p = 6

R6 : R3 ∪


2A2

0.2−→ 2B2

A2 + B2
0.1−→ 3C2

2C2
0.2−→ 2A2

p = 9

R9 : R6 ∪


2A3

0.2−→ 2B3

A3 + B3
0.1−→ 3C3

2C3
0.2−→ 2A3

FIG. 5.9 Dynamic systems with an increasing number of particles (p = 3, 6, 9).
Rates are reported above each reaction.

R1 : 2A
0.2−→ 2B

R2 : A + B
0.1−→ 3C

R3 : 2C
0.2−→ 2A

R4 : 2A
0.01−−→ ∅

R5 : C
0.02−−→ ∅

R6 : 2C
0.03−−→ ∅

R7 : 2A
0.1−→ 3B

R8 : C
0.06−−→ B

R9 : C
0.05−−→ 2A

R10 : A
0.1−→ C

R11 : B + C
0.09−−→ A

R12 : B
0.08−−→ 2A + C

R13 : ∅ 50−→ A

R14 : ∅ 50−→ B

R15 : ∅ 50−→ C

FIG. 5.10 Five dynamic systems are illustrated, with the first scenario including
{R1, R2, R3} reactions. Each subsequent scenario adds 3 additional reactions to
the previous one, culminating in a final system with 15 reactions. Reaction rates
are reported above each reaction.





Chapter 6

Conclusion

Quasi-reaction systems are widely used in many natural science studies due

to their simplicity in modelling complex reaction networks and their broad

applicability across multiple disciplines. The observation times of various

natural phenomena modelled by these frameworks can vary considerably,

with intervals ranging from frequent measurements, such as in daily COVID-

19 monitoring, to more extended periods, as in hematopoietic clonal tracking

studies. This variability can pose significant challenges to the accurate esti-

mation of the parameters governing the stochastic differential equation that

describe the system’s dynamics. Our work introduces new inference algo-

rithms that efficiently estimate reaction rates in such scenarios.

In the third chapter, we introduced a novel inferential approach based

on event history models. This is particularly suited to systems with closely

spaced observations. The method utilizes an EM algorithm that incorporates

an extended Kalman filter for estimating latent reactions. Our approach

is able to handle strong temporal correlations arising from dense data ef-

fectively, by providing accurate parameter estimates even when traditional

methods encounter numerical instability. Furthermore, the proposed method

offers a versatile framework that can be used in a wide range of applications

involving discrete latent states. However, the approach has some limitations.

Firstly, the Gamma distribution used to approximate Poisson-distributed

events can be inaccurate for small means and may not match the skew-

ness and kurtosis of the count variable. One potential solution is to employ
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mixtures of Gamma distributions so that higher-order moments can also

be matched (Lindsay et al., 2000). Furthermore, the approximation errors

introduced by the extended Kalman filter might impact the accuracy of la-

tent event reconstruction, especially when large discrepancies arise between

the estimated state trajectory and the nominal one. A more robust strat-

egy involves incorporating additional input terms that account for higher-

order effects while simultaneously minimizing the norm of the gain matrix,

as suggested by Einicke and White (1999). Additionally, while comparisons

with the LLA represent the typical approach in the context of quasi-reaction

systems, future research could build on this by evaluating its performance

against alternative Bayesian methods for state-space models, such as iterated

filtering (Ionides et al., 2015) and stochastic approximation EM algorithms

combined with particle methods (Lindsten, 2013), which may provide bet-

ter uncertainty quantification and easier handling of missing values at the

expense.

In the fourth chapter, we augment the latent event history model by in-

tegrating time-varying covariates in the modelling of the reaction rates. This

modification offers several benefits. First, it increases flexibility in modelling

dynamic reaction rates that may change in response to external influences.

Second, it achieves this without adding unnecessary complications: unlike

approaches that introduce additional compartments for each source of vari-

ability, our method efficiently incorporates covariates into the rate dynamics,

making it applicable across a range of applications. Nonetheless, some limi-

tations suggest opportunities for further refinement. One notable challenge is

the potential misalignment between covariate effects and the observed data,

particularly when covariate information is incomplete or imprecise. Address-

ing this could involve techniques like data imputation (Van Buuren, 2018).

Additionally, we defined covariates as time-dependent functions, but they

could also depend on spatial factors or be modelled as stochastic processes,

as in (Zhang et al., 2022). Moreover, future work could focus on incorporat-

ing uncertainty quantification of the estimated basic reproduction number:

this could be achieved by propagating the uncertainty from the covariate-

dependent parameters, as done in the third chapter, or by employing stan-

dard approaches such as the bootstrap method (Tibshirani and Efron, 1993).
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In the fifth chapter, we addressed the challenge of parameter estimation

in quasi-reaction systems with sparsely observed data. We have developed

a local mean-field approximation method that linearizes the nonlinear rate

function using a first-order Taylor expansion. This method essentially sim-

plifies the system to a unitary form, allowing for the explicit solution of the

mean process of ordinary differential equations. One of the key advantages

of this method is the higher accuracy of parameter estimation compared to

state-of-the-art techniques. In addition, it has a low computational cost, as

it is based on explicit solutions, which avoids the need for iterative numer-

ical solvers. This characteristic also makes the method inherently resistant

to stiffness, a common issue in natural processes. However, two main as-

sumptions—the use of a first-order Taylor expansion and constant reaction

rates over extended intervals—could be refined by adopting higher-order ap-

proximations, as demonstrated in (Lente et al., 2022), and by incorporating

time-varying covariates, as introduced in Chapter 4. Additionally, to further

improve the estimation of the parameters, the method could incorporate the

variance-covariance matrix of the observations into the regression framework,

similar to the approach of Pellin et al. (2023).
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Ionides, E. L., D. Nguyen, Y. Atchadé, S. Stoev, and A. A. King (2015). Inference
for dynamic and latent variable models via iterated, perturbed bayes maps.
Proceedings of the National Academy of Sciences 112 (3), 719–724.

Kalman, R. (1960). A new approach to linear filtering and prediction problems.
Journal of Basic Engineering 82 (1), 35–45.

https://www.google.com/covid19/mobility/ 
https://www.google.com/covid19/mobility/ 


Kennealy, J. P. and W. M. Moore (1977). A numerical method for chemical
kinetics modeling based on the taylor series expansion. The Journal of Physical
Chemistry 81 (25), 2413–2419.

Kifer, D., D. Bugada, J. Villar-Garcia, I. Gudelj, C. Menni, et al. (2021). Effects
of environmental factors on severity and mortality of COVID-19. Frontiers in
Medicine 7, 607786.

Kim, H. J., J. F. Tisdale, T. Wu, M. Takatoku, S. E. Sellers, P. Zickler, M. E.
Metzger, B. A. Agricola, J. D. Malley, I. Kato, et al. (2000). Many multipoten-
tial gene-marked progenitor or stem cell clones contribute to hematopoiesis in
nonhuman primates. Blood, The Journal of the American Society of Hematol-
ogy 96 (1), 1–8.

Kim, Y. and H. Bang (2018). Introduction to Kalman filter and its applications.
Introduction and Implementations of the Kalman Filter 1, 1–16.

Komorowski, M., B. Finkenstadt, D. Rand, C. Gillespie, and D. Wilkinson (2011).
Sensitivity, robustness, and identifiability in stochastic chemical kinetics models.
Proceedings of the National Academy of Sciences 108 (21), 8645–8650.

Krijnen, W. P. and E. C. Wit (2022). Computational and statistical methods for
chemical engineering. Chapman and Hall/CRC.

Lambert, J. (1974). Two unconventional classes of methods for stiff systems. Stiff
Differential Systems, 171–186.

Lente, G., A. Fursenko, and R. Szabo (2022). Use of the taylor theorem to predict
kinetic curves in an arbitrary mechanism. Chemical Engineering Journal 445,
136676.

Liao, Z., P. Lan, Z. Liao, Y. Zhang, and S. Liu (2020). TW-SIR: time-window
based SIR for COVID-19 forecasts. Scientific Reports 10 (1), 22454.

Lindsay, B. G., R. S. Pilla, and P. Basak (2000). Moment-based approximations of
distributions using mixtures: Theory and applications. Annals of the Institute
of Statistical Mathematics 52, 215–230.

Lindsten, F. (2013). An efficient stochastic approximation em algorithm using
conditional particle filters. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 6274–6278. IEEE.

Lotka, A. (1925). Elements of physical biology. Williams and Wilkins.

Mattarella, S. (2021a). Decreto del presidente del consiglio dei ministri 14 gennaio
2021. https://www.gazzettaufficiale.it/eli/id/2021/01/15/21A00221/

sg.

https://www.gazzettaufficiale.it/eli/id/2021/01/15/21A00221/sg
https://www.gazzettaufficiale.it/eli/id/2021/01/15/21A00221/sg


Mattarella, S. (2021b). Decreto legge 23 luglio 2021, n. 105. https://www.

gazzettaufficiale.it/eli/id/2021/07/23/21G00117/sg.

McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. Journal of
Applied Probability 4 (3), 413–478.

Milner, P., C. S. Gillespie, and D. J. Wilkinson (2011). Moment closure approx-
imations for stochastic kinetic models with rational rate laws. Mathematical
Biosciences 231 (2), 99–104.

Milner, P., C. S. Gillespie, and D. J. Wilkinson (2013). Moment closure based
parameter inference of stochastic kinetic models. Statistics and Computing 23,
287–295.

Mingliang, Z., T. E. Simos, and C. Tsitouras (2022). R0 estimation for COVID-
19 pandemic through exponential fit. Mathematical Methods in the Applied
Sciences 45 (3), 1632–1639.

Ministry of Health (2021). Covid-19. https://github.com/pcm-dpc/COVID-19.

Mortimer, R. G. (2000). Physical chemistry. Academic Press.

Oakes, D. (1999). Direct calculation of the information matrix via the EM algo-
rithm. Journal of the Royal Statistical Society Series B: Statistical Methodol-
ogy 61 (2), 479–482.

Pellin, D., L. Biasco, A. Aiuti, C. Di Serio, and E. Wit (2019). Penalized inference
of the hematopoietic cell differentiation network via high-dimensional clonal
tracking. Applied Network Science 4 (115).

Pellin, D., L. Biasco, S. Scala, C. Di Serio, and E. C. Wit (2023). Tracking
hematopoietic stem cell evolution in a wiskott–aldrich clinical trial. The Annals
of Applied Statistics 17 (3), 1841–1860.

Privitera, G. (2020). First in, last out: Why lombardy is still italy’s coronavirus
hotspot. Politico.

Remuzzi, A. and G. Remuzzi (2020). COVID-19 and Italy: what next? The
Lancet 395 (10231), 1225–1228.

Robertson, H. (1966). The solution of a set of reaction rate equations. Numerical
Analysis: an Introduction, 178–182.

Schnakenberg, J. (1976). Network theory of microscopic and macroscopic behavior
of master equation systems. Reviews of Modern Physics 48 (4), 571–585.

Shanno, D. F. (1970). Conditioning of quasi-newton methods for function mini-
mization. Mathematics of Computation 24 (111), 647–656.

https://www.gazzettaufficiale.it/eli/id/2021/07/23/21G00117/sg
https://www.gazzettaufficiale.it/eli/id/2021/07/23/21G00117/sg
https://github.com/pcm-dpc/COVID-19


Shepherd, B. E., H.-P. Kiem, P. M. Lansdorp, C. E. Dunbar, G. Aubert,
A. LaRochelle, R. Seggewiss, P. Guttorp, and J. L. Abkowitz (2007). Hematopoi-
etic stem-cell behavior in nonhuman primates. Blood, The Journal of the Amer-
ican Society of Hematology 110 (6), 1806–1813.

Shoji, I. (2013). Nonparametric estimation of nonlinear dynamics by metric-based
local linear approximation. Statistical Methods & Applications 22, 341–353.

Shoji, I. and T. Ozaki (1998). Estimation for nonlinear stochastic differential
equations by a local linearization method. Stochastic Analysis and Applica-
tions 16 (4), 733–752.

Shumway, R. and D. Stoffer (1982). An approach to time series smoothing and
forecasting using the EM algorithm. Journal of Time Series Analysis 3 (4),
253–264.

Signorelli, C. (2019). Forty years (1978-2018) of vaccination policies in italy. Acta
bio-medica: Atenei Parmensis 90 (1), 127–133.

Simon, C. M. (2020). The SIR dynamic model of infectious disease transmission
and its analogy with chemical kinetics. PeerJ Physical Chemistry 2, e14.
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