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It is common to compare life with machines.
Both consume fuel and release waste to run. In
biology, the engine that drives the living system
is referred to as metabolism. However, attempts at
deciphering the origins of metabolism do not focus
on this energetic relationship that sustains life but
rather concentrate on nonenzymatic reactions that
produce all the intermediates of an extant metabolic
pathway. Such an approach is akin to studying
the molecules produced from the burning of coal
instead of deciphering how the released energy
drives the movement of pistons and ultimately
the train when investigating the mechanisms
behind locomotion. Theories that do explicitly
invoke geological chemical gradients to drive
metabolism most frequently feature hydrothermal
vent conditions, but hydrothermal vents are not
the only regions of the early Earth that could have
provided the fuel necessary to sustain the Earth’s first
(proto)cells. Here, we give examples of prior reports
on protometabolism and highlight how more recent
investigations of out-of-equilibrium systems may
point to alternative scenarios more consistent with
the majority of prebiotic chemistry data accumulated
thus far.
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1. Protometabolism
What makes chemistry metabolic is the ability to sustain a living cell, which means that
chemistry prior to the emergence of life cannot be described as metabolic. Nevertheless, extant
metabolic chemistry must have had progenitors, and it is this set of chemical reactions that
existed before the transition to biology that is frequently referred to as protometabolism.
However, the term has been used loosely, and we would argue in a way that clouds our
understanding of the emergence of life. The chemistry that sustains life is complex with many
pathways and components integrated together within a highly organized compartment that
defies thermodynamic equilibrium. Narrow investigations of individual synthetic pathways in
isolation and in absence of a compartment will likely be less informative than, as Ruiz-Mirazo
et al. [1,2] argue, systems level approaches that search for commonalities and synergies between
chemistries and phases that could help to explain why life is as it is today.

Extant metabolism consists of both catabolic and anabolic reactions, i.e. the breakdown and
synthesis of molecules, respectively. The exergonic chemistry of catabolism drives the endergonic
reactions of anabolism that are needed to sustain the cell. But, this is not a one-way process
where anabolism relies on catabolism alone. The products of anabolism are needed to mediate
and regulate catabolism. The current search for separate prebiotic analogues of extant anabolic
and catabolic chemistries largely does not address this critical feature of biology, which is how
prebiotic systems chemistry gave rise to a mixture of reactions that tie together in a way that defies
equilibrium. Such primordial reaction networks that join endergonic with exergonic pathways,
ideally through common currencies, as discussed below, would in our estimation be better
described as protometabolic in comparison to narrower investigations of nonenzymatic mimics
of extant catabolism or anabolism in isolation.

2. Prebiotic analogues of anabolism
Much effort has centred on prebiotic mimics of anabolism whereby plausible routes towards
the synthesis of the building blocks of life are deciphered. What has been more contentious
is whether these prebiotic reaction pathways resembled modern-day metabolism or were often
distinct, reflecting the different constraints imposed by an ancient, prebiotic environment [3–6].
Both arguments invoke the ability of enzymes to facilitate but not invent chemistry, and both tend
to rely on laboratory approximations of reactions under thermodynamic, as opposed to kinetic,
control. Proponents of prebiotic chemistry unconstrained by extant biology find it unsurprising
that biological reactions can be run nonenzymatically, particularly when subjected to extremes
in temperature or pH. Activation energy barriers can be traversed without enzymes, so it would
be more surprising if the reaction could not proceed at all. Therefore, observing an uncontrolled
nonenzymatic analogue of extant metabolism may tell us little about the role of such chemistry
in the origins of life, particularly if metabolism requires regulatory processes that are not easily
obtainable without enzymes. Conversely, if a reaction can run nonenzymatically, why would it
not? A functioning reaction cycle from which the building blocks of life can be derived is attractive
as the emergence of modern-day metabolism could be envisaged to proceed by the stepwise
addition of enzymes [7,8]. As with most arguments, reality likely does not fit cleanly into a single
category. Just as the RNA world hypothesis gives the most compelling explanation for the rise
of Darwinian evolution, it is naive to think that life began with RNA alone. Similarly, while the
abundance of biological molecules that can be synthesized from cyanide prebiotically [9] cannot
be ignored, it stands to reason that at least some prebiotic reactions were similar to contemporary
biological analogues [10].

Although differences in opinion are healthy, particularly when subjected to experimental
evaluation, opinions that lead to the imposition of poorly supported rigid constraints are
unhelpful. Since we do not know the conditions that gave rise to life, we are left with the
realities of chemical reactivity and geological plausibility. A path between nonenzymatic prebiotic
chemistry that resembles extant biological pathways and the last universal common ancestor
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(LUCA) is easy to imagine, which leads many to confidently extrapolate back in time from our
best guesses as to what LUCA looked like [11]. However, if such an approach is taken at the
exclusion of a broader investigation of what prebiotically plausible molecules give rise to, then
we are likely to be led astray. As others have argued before, the early steps leading to life may have
been erased by time and thus cannot be easily perceived from extant artefacts [4,9]. Phylogeny can
tell us much about the early evolution of life, but it is not logical to allow the genetics of a highly
complex organism with 300–400 genes [12,13] dictate how chemistry prior to genetics must have
proceeded. Ultimately, a thorough testing of different chemical scenarios congruent with geology
is needed so that experimental data and hypotheses can be compared and evaluated [14].

Regardless of the vantage point, what works on prebiotic analogues of anabolism have
in common is an attempt to understand how larger biological molecules could have been
synthesized prebiotically from smaller, abundant chemical resources. Although there were early,
important studies on the prebiotic synthesis of biological molecules [15,16], modern work applies
knowledge of synthetic organic chemistry to reactions in water or at the air–water interface [17],
under prebiotically plausible conditions. As CO2 was more abundant on the prebiotic Earth,
and as the Wood–Ljungdahl pathway (or the reductive acetyl-coenzyme A pathway) has been
hypothesized to have been exploited by LUCA, CO2 often features as a carbon source for the
synthesis of more complex molecules. Metallic iron or precipitates of metal ions under a variety of
conditions have been found to reduce CO2 to formate, methanol, methane, acetate and pyruvate
[18–21]. Metal ions are further invoked for the catalysis of several steps of an abiotic reductive
citric acid cycle, which can be coupled to the synthesis of alanine [22]. Alternatively, glycolate can
be synthesized from CO2 and in the presence of UV light and sulfite without the participation
of metals [23]. Further irradiation of the glycolate with sulfite produces several components of
the citric acid cycle, including citrate, malate and succinate [23]. Metal-free reactions between
pyruvate and glyoxylate can also lead to a prebiotic analogue of the reductive citric acid cycle
and produce amino acids via transamination with glycine [24]. Conversely, if one considers the
rich chemistry of the planetary abundant cyanide [25–27], particularly in the presence of UV light,
metal ions and reductants such as sulfite, then over half of the 20 amino acids [28,29], pyrimidine
and purine ribonucleotides [30–33] and precursors to lipids [29] can all be built by photoreductive
homologation pathways orthogonal to that of extant biology. Although we favour the robust non-
biological-like routes to the synthesis of the building blocks of life, and it is important to directly
compare published data from different perspectives [3], the intent here is not to promote or
diminish one perspective but to highlight that several paths have been published for the synthesis
of the building blocks and that these pathways often give rise to and consume pyruvate and other
α-ketoacids.

3. Prebiotic analogues of catabolism
Surprisingly, less effort has been expended in investigating prebiotic mimics of catabolism.
Metabolic intermediates, such as glucose-6-phosphate, have been shown to break down to
pyruvate in the presence of Fe2+ at elevated temperatures in a manner reminiscent of glycolysis
[34]. Similar conditions lead to both the synthesis and degradation of the intermediates of
the citric acid cycle when starting from pyruvate and glyoxylate [35]. The reaction pathway
can be exploited to synthesize amino acids if hydroxylamine and metallic iron are added
[35]. Non-metal-dependent catabolic-like pathways have also been described. An analogue of
glycolysis starting from the simple sugar glyceraldehyde gives rise to a series of reactions
that generate phosphoenolpyruvate and pyruvate when fed with cyanide, the phosphorylating
agent diamidophosphate [36] and glycoaldehyde [37]. Additionally, two interconnecting reaction
networks, referred to as the 4-hydroxy-2-ketoglutarate and malonate cycles, that function as
a type of prebiotic analogue of the citric acid cycle are sustained by feeding with pyruvate,
glyoxylate and hydrogen peroxide [38]. Here, reaction intermediates can be syphoned off to
synthesize aspartate in the presence of ammonia [38]. As with the prebiotic analogues of anabolic

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 M

ay
 2

02
2 



4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20200423

...............................................................

degradation

H+ gradients

Na+ gradients

ATP
fu

el
 s

ou
rc

es

ce
llu

la
r 

in
fr

as
tr

uc
tu

re

catabolism common currencies anabolism

synthesis

reductionoxidation

Figure 1. Extant metabolism works, in part, by funnelling the energy released from the oxidative degradation of varied fuel
sources into common currencies, which are then used to drive the energetically costly reductive synthetic processes needed to
sustain the cell.

reactions, the published prebiotic analogues of catabolic networks frequently feature pyruvate
and other α-ketoacids.

The aforementioned work demonstrates what types of reactions and molecules were
potentially chemically accessible on the prebiotic Earth. Such research is critically important,
because knowing what was present addresses what types of protocells could have formed.
However, the ingredients of life alone are not enough to make a living cell. If that were so,
then we would be able to take apart and put back together a living cell. Further, metabolism
is more dissimilar to laboratory-based synthesis than is often appreciated. Scientists are skilled at
manipulating thermodynamics and reactivity to push reactions forward, but metabolism does
not solely rely on such direct manipulations of chemistry. Instead, metabolism elegantly ties
the two branches (i.e. anabolic and catabolic) together through an intermediary process that
deposits, stores and spends energy to sustain a vast array of endergonic chemistry (figure 1).
That is, life-as-we-know-it plugs into a fuel source with a wire of molecules that consecutively
transfers electrons [39]. The molecules that engage in electron transfer most commonly include
metallocofactors, ribodinucleotides and quinones. The fuel can be reduced organic molecules,
such as sugars and lipids, or inorganic molecules, such as molecular hydrogen, hydrogen sulfide
and ferrous ions. The thermodynamically favourable flux of electrons through the cell is coupled
to processes that store the released energy into common currencies. This is a key invention of
biology [39] and is distinct from the more direct coupling that is typically used in prebiotic
chemical studies. In biology, the common currencies consist of H+ gradients, Na+ gradients and
adenosine triphosphate, which are used by the cell to pay for the costly work of manufacturing
and repairing cellular infrastructure [39]. What is unclear is whether such regulated fluxes of
energy that are used to keep cellular systems out-of-equilibrium emerged early or were a later
invention.

The concept of life being a by-product of dissipating energy gradients is not new [40]. Others
have eloquently discussed the potential chemiosmotic [41] origins of life, and how geological
gradients could have given rise to the Earth’s first cells [42]. Broadly speaking, such hypotheses
tend to place the origins of life at hydrothermal vents, which is in contrast to more genetic centric
work, such as the RNA world hypothesis, which has favoured surface conditions. Although
both perspectives may focus on syntheses starting from different carbon sources (carbon dioxide
versus hydrogen cyanide) and with a bigger or smaller role of metal ions, in a narrow sense,
there is commonality in that both frequently seek to delineate how the building blocks of life
were made. The deeper difference between the two perspectives concerns the placement of
metabolism within a timeline encompassing the emergence of the Earth’s first cells (figure 2).
In other words, were the building blocks of life synthesized by a protometabolic system prior
to the emergence of a protocell (figure 2a) or did the building blocks accumulate by distinct
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(a)

(b)

Figure 2. Comparing timelines of early life innovations. (a) A generic representation of hydrothermal vent scenarios where a
constant influx of energy and matter through porous rock sustains prebiotic analogues of metabolism. Over time, the system
evolves, generating biopolymers and other molecular machinery before an escape event that leads to encapsulation within a
lipid vesicle. (b) A generic representation of the surface of the early Earth where building blocks assemble preferentially within
lipid vesicles. This spatial isolation imposes a selective pressure that gives rise to protocells supported by an internal chemistry.
(Online version in colour.)

chemistry before the advent of protometabolism (figure 2b)? Thus far, much more experimental
work has been carried out on chemistry congruent with surface conditions where the building
blocks could have accumulated [3,43–45]; however, studies have recently begun to investigate the
plausibility of hydrothermal vent scenarios guided by the presumption of an earlier appearance
of protometabolism [20,46,47]. While we appreciate some aspects of the hydrothermal vent
theories, such as the role of metal ions, including iron-sulfur clusters [48,49], and the emphasis
on energetics, hydrothermal vents are not the only places capable of providing an energy source.

4. Non-hydrothermal vent, out-of-equilibrium processes
Living cells are out-of-equilibrium chemical systems that harness the dissipation of fuel sources
to maintain their highly ordered state (figure 3). The persistence of these metastable, out-of-
equilibrium arrangements is also known as dynamic kinetic stability [50–52], which is at times
additionally referred to as dynamic self-assembly when describing chemical systems without
biological components [53]. Attempts to construct chemical systems that imitate features of life
tend to focus on mimicking three different facets of life-as-we-know-it as opposed to building
an integrated protocell, including (i) error-prone replication capable of Darwinian evolution,
(ii) metabolic-like chemistry that sustains an overall dissipative system with a fuel source and
(iii) compartmentalization to separate the chemical system from the environment. Although the
assimilation of all three within a protocell is presumably needed to generate a highly adaptable
system capable of surviving environmental fluctuations, more narrow investigations have already
begun to reveal how mechanisms, such as autocatalysis, can give rise to characteristics that
imitate some features of life. Importantly, these studies directly link thermodynamics, kinetics,
competition and selection in a way that is absent in discussions of the energetic fluxes present at
hydrothermal vents.

What these studies typically have in common is either the presence of autocatalysis or
dependence on reactions that proceed along different paths in the forward and reverse directions.
Autocatalysis is simply when the product of a reaction catalyses its own formation [54,55] and
represents an efficient means of funnelling reactions down a restricted path towards a common
product. A well-known example is the ability of the Soai reaction to resolve a nearly racemic
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Figure 3. Living systems use metabolism to exploit the free energy released from the degradation of fuel to maintain their
out-of-equilibrium state. As life is a chemical unit capable of catalysing the degradation of fuel and is capable of proliferation,
a feedback loop is established between the fuel containing environment and the living organism. (Online version in colour.)

mixture to enantiopurity, perhaps revealing the types of mechanisms that led to life being largely
dependent on homochirality [55]. However, the examples typically encountered in origins of life
research are more complex, rely on a phase transition of some type and focus on replication.
For example, Luisi and co-workers [56] demonstrated how the hydrolysis of ethyl caprylate
produces ethanol and the fatty acid caprylate. When sufficient fatty acid is produced, the caprylate
assembles into micelles that then catalyse the formation of more fatty acid [56], although later
computational work suggests that the mechanism is more complex [54,57,58]. Here, it is not
solely the formation of a molecule, the fatty acid, that is critical, but that this molecule is able
to self-assemble into a higher order aggregate structure that then pulls the system away from
equilibrium in addition to acting as a catalyst for the synthesis of more fatty acid. This type of
A + B � C → D, where D is an aggregate, or new phase, composed of C is common.

More recent examples [59] with modified peptides instead of fatty acids exploit the ability of
some of the intermediate products to aggregate into fibres (figure 4a). In one example, peptides
are modified with a benzenedithiol group that upon oxidation forms an array of disulfide
macrocycles in which one specific type, the hexameric form, assembles into fibres [60,61]. In
this case, the fibres represent the newly formed phase similar to the micelle example above.
If none of the disulfide macrocycles formed were capable of phase separation, then the final
pool of molecules would reflect the free energy of the products and their placement within
the free energy landscape [62]. Conversely, when one molecule is capable of self-assembly, the
gained free energy favours the accumulation of the self-assembled state at the expense of the
non-assembling competitors [60,63]. The dynamics of similar systems has been studied [64],
including systems with aggregates composed of prebiotic precursors of RNA [65,66]. However,
the described peptide version can also be mechanically broken, leading to a form of replication
whereby the fibre fragments seed the growth of more fibres in a way similar to that seen with
crushed crystals [61].

The key to ensuring a continuous out-of-equilibrium state is the coupling of the system to its
energy source. Therefore, the building blocks cannot be completely consumed and the final self-
assembled state itself should not inhibit exponential self-replication [67]. Serial transfer, whereby
a portion of the self-replicating set is introduced to a new environment with replenished fuel
sources, can be used to overcome equilibrium [68]. Perhaps more elegantly, the mechanically
induced breakage of fibres described above additionally helps to avoid reaching equilibrium,

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 M

ay
 2

02
2 



7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20200423

...............................................................

(a)

(b)

1 4

3 S-S S-S

S-S

S-SS-
S

S-
S

HS SH

2

5

2 4

3

1

cofactor

oxidizer

fuel

H2O

3

O

R O–

O O

R RO

6

4

Figure 4. Self-assembly pulls systems out-of-equilibrium. (a) Autocatalysis. Building blocks (1), e.g. thiol containing peptides,
react with a fuel molecule or oxidant (2) to form a dynamic combinatorial library (3). One molecular member of the library
can self-assemble (4), thus pulling the system out-of-equilibrium. The self-assembled state (4) itself, or after mechanical
breakage, can catalyse the formation of more of the self-assembled state. Further, new properties of the self-assembled state,
either intrinsically or by uptake of cofactors from the environment, may emerge which facilitate the productive consumption of
buildingblocks (5). (b) Differential formation anddegradationpathways. Amixture of soluble buildingblocks (1), e.g. fatty acids,
react with fuelmolecules (2), such as a carbodiimide, to generate products of decreased solubility (3) that can be degraded back
to the building block through hydrolysis. The self-assembly of a subset of products (4) inhibits the back reaction, thereby pulling
the system away from equilibrium and sustaining an assembly of unstable molecules over time. (Online version in colour.)

because the broken fibres increase the number of available self-replicating template sites [61].
That is, the change in copy number of the self-replicator further pulls the system towards dynamic
kinetic stability instead of thermodynamic equilibrium [50–52]. One objective of those working
on such systems is to allow for open-ended evolution in a way similar but not limited to Red
Queen coevolution [69,70] whereby a self-replicating entity partially, or wholly, displaces the free
energy landscape of a system. As a consequence, other self-replicating entities present within
the ecosystem must engage in reciprocal adaptive interactions. The resulting ecosystem has the
potential to overcome Eigen’s paradox, which relates the complexity of the system to copying
fidelity [71], because interconnected catalytic hypercycles can function as a dynamic community
ensuring accuracy in self-replication, in a way similar to Eigen’s quasi-species model [72].
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The goal in research on self-replicators is often to identify replicators that acquire metabolism
by catalysing chemical reactions within the environment in a way that promotes their own
replication. In impressive work by Otto and co-workers [73], peptide fibres were found to recruit
chromophore cofactors from the environment, which led to the photooxidation of the building
blocks. As oxidation of the building blocks is necessary to form the disulfide linked macrocycles
necessary for subsequent self-assembly into fibres, a positive feedback loop emerged from the
chemical system that allowed the self-replicator to better harness the surrounding environment.
Significantly, such feedback loops can also emerge from the intrinsic properties of the fibres
themselves through interactions with the environment without the need of cofactors [74].

5. Non-autocatalytic out-of-equilibria
It is additionally possible to maintain the existence of a thermodynamically unfavourable state
without autocatalysis if the product of the pathway is formed and degraded by different
paths [75]. In this case, the depletion of the fuel leads to the disassembly of the non-
kinetically trapped aggregate. Such examples typically exploit phase separation, with the
formation of actin filaments and microtubules representing biological examples [75]. An
instructive case is that of the carbodiimide mediated formation of fatty acid anhydrides
that then phase separate into oil droplets that are more resistant to hydrolysis back to the
fatty acid building block [76] (figure 4b). If the starting pool of building blocks consists of
fatty acids of different lengths, then the fatty anhydrides of the longer chain fatty acids
preferentially form oil droplets, meaning that the major products consist of the longer chain
fatty anhydrides. As expected, the preferential formation of one subset of fatty anhydrides
is accentuated by repeated refuelling, particularly when performed in batch additions as
opposed to continuous feeding. Therefore, even without autocatalysis, competition can emerge
between different chemical systems, with one, out-of-equilibrium subset persisting and out-
competing competitors over time [76]. It is interesting to note that older examples of chemical
systems persisting in the presence of separate chemical reactions that feed and degrade fatty
acid vesicles were reported in support of the importance of autopoiesis in the origins of
life [77].

6. Conclusion
We have not attempted to go through all the examples but rather to point out that dissipative
systems that mimic some critical features of life can emerge in scenarios that do not depend on
hydrothermal vent conditions [78–81]. Energy is not a unique property of hydrothermal vents.
The Sun is a clear example of a prebiotic energy source that would have been inaccessible
in the deep sea [3,17,44], and chemical energy sources, e.g. isonitriles, likely drove prebiotic
chemistry forward [82]. Work on non-hydrothermal, out-of-equilibrium systems thus far has
made impressive progress, but none of these previous studies attempted to work within
prebiotically plausible conditions and rarely made use of molecules that were clearly on a path
from prebiotic chemistry to life-as-we-know-it, with a possible exception being the formose
reaction [83], although not universally accepted [84]. If prebiotically plausible dissipative systems
were experimentally demonstrated that clearly tied into a protocellular architecture in a way
that helped explain extant biology, then the case for one prebiotic scenario over another would
be strengthened. Such a system may look quite different from the directly coupled examples
developed thus far, because the way in which biology exploits the dissipation of a fuel source
to drive cellular organization and function is considerably more complex. It is, therefore, fair to
ask if extant metabolic-like chemistry emerged early or was a later invention.

To help gain insight into this problem, we believe that more work is needed that integrates
multiple components and pathways together into protocellular compartments. That is, we should
take what has been learned from out-of-equilibrium, dissipative chemical systems and apply
these principles to the construction of fuel-driven, prebiotically plausible protocells. The lack of
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use of vesicles in studies on protometabolism is surprising, as the simple presence of a membrane
alters chemistry, facilitating peptide synthesis [85,86], competition [86,87] and provides for ways
to tie chemistry to the survivability of the protocell [88]. There are already some clues regarding
how catabolic and anabolic chemistry could have been coupled. The prebiotic synthesis of iron–
sulfur clusters has been demonstrated [89], and iron–sulfur peptides can engage in electron
transfer reactions that lead to the generation of a proton gradient across diacyl phospholipid
membranes [90]. Further, prebiotic fuel sources, such as α-ketoacids, can initiate electron transfer
reactions in a way that resembles what is found in biology [91]. It seems that several pieces of the
puzzle are there, ready to be put in place, with the striking exception of nucleic acids. Although
the challenge is great, we suspect that many critical insights will come from a more concerted
effort to investigate how prebiotically plausible chemistry could have fuelled early protocells.
Regardless of the outcome, the data will likely help settle some of the ongoing debates regarding
the role of (proto)metabolism in the origins of life.
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