UNIVERSITY
OF TRENTO

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL'INFORMAZIONE

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.disi.unitn.it

An Architecture for Requirements-driven Self-reconfiguration

Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos

February 2009

Technical Report # DISI-09-010

An Architecture for Requirements-driven
Self-reconfiguration

Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos

University of Trento - DISI, 38100, Povo, Trento, Italy.
{fabiano.dalpiaz, paolo.giorgini, jp@disi.unitn.it

Abstract. Self-reconfiguration is the capability of a system to autooosly
switch from one configuration to a better one in responseitoréaor context
change. There is growing demand for software systems alseltoeconfigure,
and specifically systems that can fulfill their requirementslynamic environ-
ments. We propose a conceptual architecture that provigiierss with self-
reconfiguration capabilities, enacting a model-basedtatlap process based on
requirements models. We describe the logical view on ouritature for self-
reconfiguration, then we detail the main mechanisms to raofitr and diag-
nose failures. We present a case study where a self-recanfiggystem assists
a patient perform daily tasks, such as getting breakfaghinvher home. The
challenge for the system is to fulfill its mission regardle$she context, also
to compensate for failures caused by patient inaction cgratimissions in the
environment of the system.

1 Introduction

There is growing demand for software systems that can fthi&ir requirements in very
different operational environments and are able to cope efiange and evolution. This
calls for a novel paradigm for software design where moiritprdiagnosis and com-
pensation functions are integral components of systemitaothre. These functions
can be exploited at runtime to monitor for and diagnose ffaitur under-performance,
also to compensate through re-configuration to an altenahavior that can better
cope with the situation on-hand. Self-reconfiguration tisean essential functionality
for software systems of the future in that it enables thenvtdve and adapt to open,
dynamic environments so that they can continue to fulfilirthreended purpose.

Traditionally, self-reconfiguration mechanisms are endeeldin applications and
their analysis and reuse are hard. An alternative appresetiérnalized adaptation [1],
where system models are used at runtime by an external ca@nptindetect and ad-
dress problems in the system. This approach — also known dslrhased adaptation
— consists of monitoring the running software, analyzirg dlathered data against the
system models, selecting and applying repair strategiesspponse to violations.

We analyze here the usage of a special type of system moegisrements models.
Deviations of system behavior from requirements specifinathave been discussed
in [2], where the authors suggest an architecture (and da@went process) to recon-
cile requirements with system behavior. Reconciliatiogriacted by anticipating devia-
tions at specification time and solving unpredicted circiamses at runtime. The under-
lying model is based on the goal-driven requirements emging approach KAOS [3].

In this paper, we propose a conceptual architecture thahedpasis of requirements
models, adds self-reconfiguration capabilities to a systdra architecture is structured
as a set of interacting components connected through a bteiagnose-Compensate
(MDC) cycle. Its main application area is systems compo$aéveral interacting sys-
tems, such as Socio-Technical Systems [4] (STSs) and Arnibieiigence (Aml) sce-
narios. We have chosen to use Tropos [5] goal models as afbasigressing require-
ments, since they suit well for modeling social dependertogween stakeholders. We
enrich Tropos models adding activation events to triggetgyaontext-dependent goal
decompositions, fine-grained modeling of tasks by meansned activity diagrams,
time limits within which the system should commit to carryt@oals, and domain
assumptions that need to be monitored regardless of cigoais.

We adopt the BDI paradigm [6] to define how the system is exguettt reason and
act. The system is running correctly if its behavior is caeu with the BDI model:
when a goal is activated, the system commits to it by selgetiplan to achieve it. The
architecture we propose monitors system execution andslémkalternatives when
detecting no progress or inconsistent behaviour.

The closest approach to our work is Wang et al. [7], which ps&s a goal-oriented
approach for self-reconfiguration. Our architecture déffeom hers in the details of the
model we use to monitor for failures and violations. Thedaitkeallow us to support a
wider class of failures and changes, also to compensathdar.t

This paper is structured as follows: Section 2 presentsdlelme of our approach,
Section 3 describes our proposed architecture for setfafiguration, whereas Sec-
tion 4 explains how to use it. Section 5 details the main naoimy and diagnosis
mechanisms the architecture components use, while S&&gbows how the architec-
ture can be applied to a case study concerning smart-horesoi$ 7 presents related
work and compares our approach to it. Finally, Section 8udises the approach and
draws conclusions.

2 Baseline: Requirements Models

A requirements-driven architecture for model-based sitnfiguration needs a set of
models to support full modeling of requirements. A well bsithed framework in Re-
quirements Engineering (RE) is goal-oriented modeling {&jere software require-
ments are modelled as goals the system should achieve (sgitstance from external
agents). Among existing frameworks for requirements nmydee have chosen Tro-
pos [5], for it allows to describe systems made up of sevea@hdly interacting actors
depending on each other for the fulfillment of their own goRlscently, Jureta et al. [8]
have revisited the so-called “requirements problem” — whateans to successfully
complete RE — showing the need for requirements modelingdweorks richer than
existing ones. The core ontology they propose is based oodheepts of goal, soft-
goal, quality constraint, plan, and domain assumptiore®iconsequence of this result
is that goal models alone are insufficient to completely egprsystem requirements,
and in our framework we support some of the suggested ingméslio express require-
ments.

We adopt an enriched version of Tropos, which contains efdit information to
make it suitable for runtime usage: (i) activation evenfingevhen goals are triggered;
(i) commitment conditions express a time limit within whian agent should commit
to a goal; (iii) contexts express when certain alternataresapplicable (like in Ali et
al. [9]); (iv) preconditions for taks (similarly to Wang €l &1). In Fig. 1, two agents
(Patientand Supermarkgtinteract by means of a dependency for gBabvide Gro-
cery. The top-level goal of patientHave lunch- is activated when it's 12AM, and the
patient should commit to its achievement within one houesiactivation. Two alterna-
tives are available to achieve the goal, thaiepare luncrandGet lunch preparedn
this scenario, the former option is applicable only in cahté, that is when patient is
autonomous, whereas the latter option is applicable whepdtient is not autonomous
(c2). GoalPrepare lunchis and-decomposed to sub-go@lst needed ingredientsd
Cook lunch The former goal is a leaf-level one, and there are two tasasare al-
ternative means to achieve it (means-efddke ingredients from cupboashdOrder
food by phoneThe latter task starts the dependency for geralvide groceryon agent
supermarket.

ACTIVATION EVENT:

“Have lunch™: it's 12AM
COMMITMENT CONDITION:

“Have lunch”: 1 hour since activation

CONTEXTS:
c1: patient is autonomous
c2: patient is not autonomous

TASK PRECONDITIONS:

ingredients from “Order food by phone”: Patient.house.hasPhone = true

\\\ cupboard

Fig. 1. Enriched Tropos goal model used by our architecture.

A shared language to express information about domain &lgl@eeded. This lan-
guage is used to formally express contexts, preconditidmsiain assumptions, and
any relation between domain and requirements. We exploitcdgect diagram (as
in [9]), where context entities are objects, their promartire attributes, and relations
between entities are association links. For instance, theopdition for taskOrder
food by phone- Pat i ent . house. hasPhone = true — can be expressed in an
object model with classeBatient and House, where Patient is linked to House by
an aggregation calletdouse, and House has a boolean attribéites Phone. Domain
assumptions are conditions that should always hold, anthe@xpressed as rules. For
example, a domain assumption for our small example is that patient has exactly
one house; this assumption should hold regardless of ducostexts and goals. Fi-
nally, we use a fine grained definition of tasks, in which eadk tis a workflow of
monitorable activities to be carried out within time coagtts. The completion of each
activity is associated to the detection of an associatedtewsich is expressed over
the context model. We provide further details about thigtalism in Section 5.

3 System Architecture

In this section we propose our conceptual architecturetfactiring systems able to
self-reconfigure. We present the architecture logical viewig.2, exploiting an UML
2.0 component diagram to show the components and the cammeemong them.
Component diagrams depict not only the structure of a sydtetalso the data flow
between components (through provided and required irtesja

<<component>> {l
<<component>> $] O Self-reconfiguration
Context sensor ot <<component>> 8]
<<component>> & Monitor
2 Event Normalized
]< normalizer events
<<component>>@ o
Monitored system Log . '//
2|/ 1t
,/ Dependency Context monitor Task execution
monitor monitor
.
.| Dependencies é Current é Task execution (5
status >\/ context (.)\ slatus/Q,{

<<component>> g
Support system

<<component>>

log <<component>> gl

<<component>> gl
Contextual goal

Domain assumption

model manager verifier
Goals/tasks
applicability Violated domail
assumptions
<<componem>>gl <<component> <<componen|>>$]
D i Goal i

Task

Uncommitted

6 Failed 6
Failed tasks/goals goals
dependencies
<<component>> gu <<componem>>$]
Failure di Policy manager
Failure Tolerance
diagnosis)\ policies Priomy

olicies

<<component>>

<<component>> gl Task <<componen|>>$:]
Task assigner ioriti . b

Task (\: }77777>O;

assignments ATaSk C
assignments
<<component>> -
O—LF-1-->0O—| _<component>g] (©—| Reaction strategy gl ted
S System pushing selector _e ec e.
System ystem Push system Di
pushes pushes reconfigurations

<<component>> | < _1--3>0 <<component>> & C
Context actuator : T " Actuator manager Actuate

Fig. 2. Logical view on the proposed architecture for self-recantigion.

3.1 External components

Our architecture supports systems characterized by dedieati and non-monolithic
structure, such as Socio-Technical Systems (STSs) andekxtbitelligence (Aml) sce-
narios, which require quick and effective reconfigurationesponse to context change

or failure. A set of external components interacts with thié-geconfiguration compo-
nent, providing inputs and enacting reconfigurations.

The componenttontext sensaepresents any system providing up-to-date informa-
tion about the context where the system is running. In Antlrggd, sensors are spread
throughout the environment and collect data such as teryerdight level, noise,
presence. Also desktop applications have several congesioss that provide useful
values such as free memory, CPU utilization, mainboard &atpre, and list of active
processes. The component context sensor provides chantiesdontext through the
interfaceEvents Possible events are changes in the light level, detecfibnmans in
front of the door, identification of loud noise in the bathmoo

Monitored systenis the system the self-reconfiguration component asshsts,ig
the stakeholder whose requirements are monitored to désgared compensate failures.
This system need not necessarily be software or hardwatreabibe — and often is —
a human or an organization. Examples of monitored systemsrai-virus software,
patients living in smart-homes, firemen in crisis managersetiings. This component
provides all available information concerning the currgiatus of the system through
the interfacd_og, and requires from the interfa&ystem pusheslvice on what should
be done (whiclgoals)and how it should act (whictaskg. A patient can be reminded
to take her medicine by sending an SMS to her mobile phonésfsysushes interface).

Support systemepresents any system connected to the monitored system-by r
quirements level links by goal, task, or resource deperidsifiom the monitored sys-
tem. For example, anti-virus software may depend on updts for the resource
“updated virus definition file”, while patients may depend smtial workers for the
goal “prepare breakfast”. The provided interfdogeraction logcontains information
about the status of dependencies with the monitored sysitemequired interfac@ask
assignmentprovides the tasks or goals for which the monitored systepends on
support systems. If the patient should prepare breakfasiidunot commit to it, the
self-reconfiguration component can order breakfast fromatarig service (the sup-
port system), enacting a dependency from the patient toatexing service for goal
“prepare breakfast”.

Context actuatordentifies any actuator in the environment which can recedra-
mands to act on the context. Examples of actuators in Amlai@nare sirens, door
openers, automated windows, and remote light switchescdmponent gets from the
required interfacéctuationghe commands to enact.

3.2 Self-reconfiguration component

The self-reconfiguration capabilities of our architectame provided by the component
self-reconfigurationWe identified three major sub-components in the reconftgura
process, each enacting a phase in a Monitor-Diagnose-QmafgecycleMonitor is
in charge of collecting, filtering, and normalizing eventsidogs;Diagnoseridentifies
failures and discovers root caus&gconfiguratoselects, plans and deploys compen-
sation actions in response to failures.

The monitoring phase starts with the comporenent normalizerwhich depends
on the interfaces events, log, and interaction log throyggi@priate ports (graphically
represented as small squares on the sides of componentsgorhponent gathers the

current status of the monitored system, of the context, dlgecinteraction with sup-
port systems, then it normalizes the collected data to afspfarmat. The normaliza-
tion process requires the definition of a translation schimeach source data format.
This topic is an explored one: for instance, XSLT [10] is a W&t&ndard to define trans-
formations between XML schemas. The event normalizer pies/the translated data
through the interfac&ormalized eventsThis interface is required by three different
components, each handling a specific type of events and cimghiew events with the
previous status of the systeependency monitasomputes the status of existing de-
pendencies and exposes it through the providedendencies statusterface Context
sensoris in charge of updating the interfa€urrent contextprocessing the normal-
ized events related to changes in the context. For instédntes house door is closed
(door.status = closed) and we just received an event suchogsn(door, time;), the
status of the door will change to opetiogr.status = open). The componentask
execution monitohandles events concerning the execution of tasks and et
interfaceTask execution statuBor example, if the patient is executing the task “Open
door” and evenpressed(patient, button, time;) is received, the status of task “Open
door” will turn to success.

The diagnosis phase — responsibility of the compoBagnoser— is essentially
a verification of the current status against requirementdaiso Models specify what
should happen and hold: which goals should / can / cannot lbiead, which tasks
can / cannot be executed, the domain assumptions that shotilde violated. The
richer the requirements model is, the more accurate thend&g will be. In contrast,
the granularity of detected events is bounded by technodbgind feasibility aspects.
Detecting if a patient is sitting on a sofa is reasonablyizable (e.g., using pressure
sensors), while detecting if she is handling a knife the \gramy is far more complex.

Contextual goal model managerquires the interface current context, analyzes the
goal model to identify goals and tasks that should / can / cabe achieved, and pro-
vides this output through the interfaGmals / Tasks applicabilityThe componenbo-
main assumption verifierequires the interface current context and compares itdo th
list of domain assumptions. Its goal is to identify violat®) which are then exposed
through the provided interfadéolated domain assumptions

Dependency diagnoseequires the interfaces dependencies status and goaks/ tas
applicability, and computes failed dependencies. Deperide fail not only if the de-
pendee cannot achieve the goal or perform the task (e.gautlse cannot support the
patient because she’s busy with another patient), but afemwhanges in the context
modify goal applicability and the dependency is not possiéslymore (e.g., the patient
exits her house and thus cannot depend on a catering senyic®ge). Task execution
diagnoserrequires the interfaces goals / tasks applicability ank éa®cution status,
and provides the interfadeailed tasks / goalsThe objective of this component is to
verify whether the current execution status of tasks is d@npwith task applicability.
For example, if the patient is preparing breakfast but dlyded breakfast, something
is going wrong and this failure should be diagnoggdal commitment diagnosés in
charge of detecting those goals that should be achievedbuttose fulfilment no
action has been taken. In our framework, each top-level lgasla commitment time,
a timeout within which a commitment to achieve the goal stidnd taken (i.e., an ad-

equate task should begin). For example, the patient sha@vd hreakfast within two
hours since waking up. This component requires the intesfgoals / tasks applicabil-
ity and task execution status, and provides the intetfhoeommitted goals

The componenkailure diagnoserequires the interfaces containing the identified
failures (failed dependencies, failed tasks / goals, umsitted goals) and the inter-
face Tolerance policieprovided by componeriRolicy managerThe policy manager
— handling policies set by system administrators — speaiftesn failures do not lead
to reconfiguration actions. For example, lack of commitnfentvashing dishes can be
tolerated if the patient’s vital signs are good (she may vehishes after next meal). The
provided interfacé-ailure diagnosiscontains the diagnoses to be compensated.

The reconfiguration phase — carried out by compoRetionfigurator should de-
fine compensation / reconfiguration strategies in respamsay kind of failure. Its
effectiveness depends on several factors: number of thaksdn be automated, avail-
able compensation strategies, extent to which the monj&giem accepts suggestions
and reminders. In our architecture we propose general mésrha, but the actual suc-
cess of compensation strategies is scenario-dependeniffiodit to assess. Suppose
a patient suddenly feels bad: if she lives in a smart-homeighed with a door opener,
the door can be automatically opened to the rescue teantwitlee the rescue team
should wait for somebody to bring the door keys.

The componerrioritize diagnosigequires the interfaces failure diagnosis and pri-
ority policies; it selects a subset of failures accordinthtr priority level and provides
them through the interfacgelected Diagnosi€ommon criteria to define priority are
failure severity, urgency of taking a countermeasure, passed since failure diagnosis.
Selected diagnoses are then taken as input by the com®eadtion strategy selector
which is in charge of choosing a reaction to compensate thuedaThis component acts
as a planner: given a failure, it looks for appropriate réicumations, and selects one
of them. Three different types of reconfigurations are sugpoloby our architecture,
each manifested in a specific interface. The interfeagk reassignment reconfigura-
tions contains reconfigurations that involve the automated ematt dependencies on
support systems. For example, if the patient didn't haveldest and the commitment
time for the goal is expired, the system could automaticedlly the catering service.
The interfacePush system reconfiguratiomgludes strategies that push the monitored
system to achieve its goals (reminding goals or suggestisks). A push strategy for
the patient that hasn't had breakfast so far is sending an 8M&r mobile phone. The
interfaceActuate reconfigurationsonsists of compensations that will be enacted by
context actuators. For instance, if the patient feels ba@dbor can be automatically
opened by activating the door opener.

Three components use the interfaces provided by reactiategy selectorTask
assigner System pushingndActuator managerTheir role is to enact the reconfigura-
tions that have been selected, and each component provipesiic interface.

4 Creating the architecture for an existing system

In this section we describe how the architecture can be usedaictice to add self-
reconfiguration capabilities to a distributed socio-tecahsystem. The required input

is a set of interacting sub-systems — sensors and effectbes eompose the distributed
system. The following steps should be carried out: (i) deforeext model (ii) define re-
quirements models; (iii) establish traceability links foonitoring; (iv) select tolerance
policies for diagnosis; and (v) choose reconfiguration ardmensation mechanisms.

Steps (i) and (ii) output the models we presented in Sectjdhat is the context
model, the Tropos goal model, timed activity diagrams fek$a and domain assump-
tions. Step (iii) defines what to monitor for at runtime, bynoecting requirements to
code. Traceability is ensured by associating events — jpeatlny sensors — tactivities
that are part of a task, tiask preconditionsto contexts and toactivation conditions
for top-level goals. Events should also be normalized atingrto the context model
defined in step (i).

Step (iv) is carried out to specify tolerance policies falufies. Indeed, some fail-
ures have to be addressed through reconfiguration, whevess gthers can be toler-
ated. In step (v) the reaction mechanisms enacting setfafeguration are defined. Two
sub-steps should be carried out: (i) definition afanpensation plato revert the ef-
fects of the failed strategies, and (ii) identification akaonfiguration strategyo retry
goal achievement. Both steps exploit the actuation caitiabibf the distributed sys-
tem, i.e. reconfigurations consist of giving commands teatffrs (execute a task, enact
a dependency, issue a reminder).

5 Monitoring and diagnosis mechanisms

We detail now monitoring and diagnosis mechanisms includedir architecture. Ef-
ficient and sound algorithms need to be defined for succégsfialgnosing problems
in the running system. Failures are identified by companiegitored behavioof the
system to theexpected and allowed behavioFailures occur when (a) the monitored
behavior is not allowed or (b) an expected behavior has nairoed.

Table 1 defines expected and allowed goals and tasks. We stserfier logic rules
for clarity, but our prototype implementation is based osjutictive Datalog [11]. We
suppose that each goal instance differs from other instaofcéhe same goal class for
actual parameters; for example, a patient’s gdale breakfastan be repeated every
day, but with different values for the paramedey.

Rule (i) defines when a top-level goal should be achieveds fhppens if7 is a
goal with parameter sdt, the goal instance has not been achieved so far, the acotivati
event has occurred before the current time, @nd a top-level goal (there is no other
goalG, and/or-decomposed int@). Rule (ii) is a general axiom saying that whenever a
goal instance should be achieved, it is also allowed. Riilgar{d (iv) define when tasks
and decomposed goals are allowed, respectively. A goarinsety with parameter set
P can be achieved if it has not been done so far and exists aevatifé goals,, with
parameter$’, thatis decomposed int@, the context condition on the decomposition is
true, and the actual parametergbare compatible with the actual parameter&gf A
similar condition holds for means-end tasks, with two maffecences: tasks are also
characterized by a precondition — which should hold to mhkdask executable — and
are connected to goals through means-end (rather than byratetomposition).

Expected and allowed goals and tasks identified by ruleg (siused by Algo-
rithm 1 to diagnose goals and tasks failures, comparing theitored behavior to ex-
pected and allowed behaviors. The parameters@fi@UTEFAILURES are the moni-
tored system, the examined goal instance and the set ofdailinitially empty). The
algorithm should be invoked for each top-level goal of thenitaved system, and ex-
plores the goal tree recursively. In the following algomithwe represent goals as ob-
jects instead of using predicates as in Table 1; all parasate passed by reference.

goal(G) A goal_parameters(G,P) N —done(G,P) A activation_evt(G, P,T)
AT < current_time A 3 Gp s.t.
goal(Gp) N decomposed(Gp, G)

should.do(G,P)

@

should_do(G, P)
cando(G,P)

(ii)

goal(G) A goal_parameters(G,P) A —done(G, P)
AT Gy s.t.
goal(Gp) N goal_parameters(Gy, Pp) A decomposed(Gy, G, Dec)
A can-do(Gp, Pp) N context_cond(Dec)
AV pe Pst. (Ipp € Py s.t. name(p,n) A name(pp,n)),
value(p,v) A value(pp,v)

cando(G,P)

(iii)

task(T) A task_parameters(T,P) A pre_cond(T,P) N —done(T, P)
AJG st
goal(G) A goal_parameters(Gp, P,) A means_end(G,T, Dec)
A context_cond(Dec) A can_do(G, Pp)
AV pe Pst. (Ipp € Py s.t. name(p,n) A name(pp,n)),
value(p,v) A value(pp,v)

can.do(T,P)

(iv)

Table 1.First-order logic rules to define expected and allowed gaatbtasks.

Algorithm 1 starts with an initialization phase (lines 1) status of goal is set to
unconmi t t ed, since no information is initially available, and the vénimeansend
is set to false. Lines 3-10 define the recursive structur@@ftgorithm. If the goal is
and/or decomposed (line 3), the getcontains all the sub-goals gf(line 4), and the
function CoMPUTEFAILURES is recursively called for each sub-goal (lines 5-6). If all
the status of all the sub-goalsisiccess the status 0§ is also set tesuccess (lines
7-8). If the goal is means-end decomposed (lines 9-@@ontains the set of tasks that
are means to achieve the epcand the variableneansendis set to true.

If g is still uncommitted (line 11) each sub-goal (or means-eswbchposed task) is
examined (lines 12-39). ij is and-decomposed (lines 13-23), two sub-cases are possi-
ble: (a) if the sub-goa; is not allowed but its status is different frammconmi t t ed,
and the status of is still unconmi t t ed, the status of is set tofail and the cycle is
broken, for the worst case — failure — has been detected (lif€l 7); (b) if the status of

giisfail (lines 18-23), the status gfis set tof ai | in turn, and the cycle is broken
(lines 19-21); ifg; is in progress, the status gfis set toi n_pr ogr ess.

Algorithm 1 Identification of goal and task failures.

COMPUTEFAILURES(S : System g: Goal F : Failure[])
g.status— uncommi t t ed
meansend < false
if 391 € s.goals s.t. decomposed(g, g1, dec)
then G — {g; € s.goals s.t. decomposed(g, g, dec)}
for eachg; in G
do COMPUTEFAILURES (Sg:,F)
if Vg; in G, g;.status= success
then g.status— success
else G — {t € s.tasks s.t. means_end(g,t,dec)}
meand_end « true
if g.status= uncommi tted
12 thenfor eachg; in G

B
POOWO~NOUNAWNER

13 do if and_decomposed(g, gi, dec)

14 then if g;.can_do = false andg;.status# unconmni t t ed
15 and g.status= uncommi t t ed

16 then g.status— f ai |

17 break

18 else switch

19 caseg;.status=f ai | :

20 g.status— f ai |

21 break

22 caseg;.status= i n_pr ogr ess :
23 g.status— i n_progr ess
24 else ifmeans_end = true

25 then g;.status— MONITORSTATUS (g;,0)
26 if g;.can_do = false andg;.status# unconmni tt ed
27 then F — FUg;

28 if g.status= uncomi tted

29 then g.status— f ai |

30 else switch

31 caseg;.status= success :

32 g.status— success

33 break

34 caseg;.status=i n_pr ogr ess :
35 g.status— i n_pr ogr ess
36 caseg;.status=f ai | :

37 F—FUg

38 if g.status=uncomi tt ed
39 then g.status— f ai |

40 if g.should_do = true and g.status= unconmi t t ed and g.comm_cond = true
41 theng.status— f ai |

42 if g.status=f ai |

43 thenF — FUg

If g is or-decomposed or means-end (lines 24-39), it succeexddafst one sub-
goal (or task) succeeds.dfis means-end decomposed, the algorithm calls the function
MONITORSTATUS, which diagnoses the execution status of a task (lines 24H25;
is not allowed and its status is different framconmi t t ed, g; is added to the set of
failures (line 27), and if is not committed its status is setftai | (lines 28-29). Ifg; is
allowed or its status ignconmi t t ed (line 30), three sub-cases are possible: (a) if the
status ofyg; is success, the status of is set tosuccess and the cycle is terminated
(lines 31-33); (b) ifg; is in progress, the status gfis set toi n_pr ogr ess and the
loop is continued (lines 34-35); (c) if the statusgefis f ai | , g; is added to the set of
failures, and ifg is still uncommitted its status is settai | .

If g is atop-level goal that should be achieved, its statusitsormi t t ed, and the
commitment condition is true, then the statug;a$ set tof ai | because no commit-
ment has been taken (lines 40-41). If the statug &ff ai | , it is added to the list of
failures (lines 42-43).

Algorithm 2 Checking for task commitment.

MONITORSTATUS(t : Task g: Goal)

1 starttime« GETACTIVATION TIME(Q)

2 (activity, timelimit) < t. GETCOMMITMENT CONDITION()
3 if 3tm : Time s.t. happened(activity, tm)

4 thenif tm > starttime+ timelimit

5 then return f ai |

6 else returnunconmi tt ed

7 (nextnode, timelimit) «— act GETNEXT()

8 return CHECKNODE(nextnode, timelimit, tm)

Algorithms 2 and 3 describe how to diagnose task failureg géneral idea is
to describe a task as a workflow of activities each occurriitgimwell-defined time
limits (we refer to this formalism with the term “timed adtiv diagram”). Successful
completion of an activity: is associated to the happening of an evefitappens{)—
success()). Activities can be connected sequentially, in paraldgifork and join nodes),
and conditionally (through branch and merge nodes). A dcaplbxample of this for-
malism is given in Fig.4. The allowed branch of a decisiompis defined by a branch
condition. At any instant, a well-formed model has exactig allowed branch.

Algorithm 2 is invoked by Algorithm 1 to check the status ofarticular task; its
parameters are a taskand a goaly linked through means-end. Line 1 sets variable
starttimeto the time whery was activated; line 2 sets tlaetivity that should be ex-
ecuted within a certaitime limit since the activation of (the commitment time). If
activity happened at timémn but beyond the commitment time, the algorithm returns
task failure (lines 3-5). If this activity did not happengttask is uncommitted (line
6). If no failure or uncommittment has been identified, thgpathm retrieves the next
node (and its time limit) from task specification (line 7)datihe recursive function
CHECKNODE is called to check ihextnodeoccurred withintm+timelimit (line 8).
Supported node types are activity, branch and merge, fatkan, end.

The behavior of Algorithm 3 depends on node type. If the ngdmiactivity (lines
2-10), it checks if the event for that activity happened wittne time limit.

Algorithm 3 Diagnosis task execution.
CHECKNoODE(node: Node timelimit : Time, starttime: Time)

1 switch

2 casenode.type = activity :

3 if 3t : Time s.t. happened(node, }

4 then if ¢ > starttime+ time.limit
5 then return f ai |
6
7
8
9

(nextnode, timelimit) < nodeGETNEXT()
return CHECKNODE(nextnode, timelimit, t)
else ifstarttime+ timelimit < GETCURRENTTIME()

then return f ai |

10 else returni n_pr ogr ess

11 casenode.type = fork :

12 for each (in_node;, in_limit;) € node. GETFORKS()
13 do InState; + CHECKNODE(in-node;, in_limit;, starttime)
14 if Istatec InStates.t. state=f ai |

15 then return f ai |

16 if Vstatee InStates.t. state=j oi ned

17 then (out.node,outlimit) < nodeGETOUTNODE()
18 t «— nodeGETMAXENDTIME()

19 return CHECKNODE(outnode, outlimit, t)

20 else returni n_pr ogr ess

21 casenode.type = join : return j oi ned
22 casenode.type = end: return success
23 casenode.type = branch :

24 for each (opt_node;, opt_limit;, cond;) € node. GETOPTIONS()
25 do if EVAL (cond;) = true

26 then OptState; < CHECKNODE(opt_node;, opt_limit;, start_time)
27 if OptState; = merged

28 thenidx «— 4

29 else if3t: Times.t. happened(opt_node;, t)

30 then OptState; « fai |

31 else OptState; <— uncommi tted

32 if Istatec OptStates.t. state=f ai |

33 then return f ai |

34 if idx #£ NIL

35 thent «— nodeGETBRANCHENDTIME (idX)

36 (out.node,outlimit) « node GETOUTNODE()

37 return CHECKNODE(outnode, outlimit, t)

38 else returni n_pr ogr ess

39 casenode.type = merge: return nmer ged

If it happened after time limit, it returns failure (line 3)the event happened within
time limit, the algorithm recursively checks the next notiees 6-7). If the event for
that activity hasn't happened so far: (a) if time limit hapiegd failure is returned
(line 9); (b) if the activity is still within its time limiti n_pr ogr ess is returned (line
10). When examining a fork, @=CcKNODE is recursively called for all the forks (lines

12-13). If any fork failed & ai | value is returned (line 15). If all the forks joined
(line 16) a recursive check is performed on the node thabvialthe join (lines 17-
19), with time limit starting from the last joined fork. Otivéise, the algorithm returns
i n_progr ess (line 20). When a join is met, the special statei ned is returned
(line 21). The end of the model returesiccess (line 22). If a branch is found (line
23), all its branches should be checked. If the conditiorafepecific branch evaluates
to true (line 25) that branch is recursively checked (ling #&he branch mergeddx

is set to the branch index that merged (lines 27-28). If tlenbin condition is false,
the first node of the branch is checked: if it happened, theritkgn returnd ai | (line
30), otherwisaunconmi t t ed (line 31). In lines 32-33, if any failure in the branches
has been detected, failure is returnedidt is not null (line 34) a recursive check
on the node following the merge is performed (lines 35-37)4 is null the algorithm
returns n_pr ogr ess (line 38). When a merge node is met, the special vatueged

is returned.

6 Case study: smart homes

We show now a promising application for our architecturepkasizing how require-
ments models are used to define and check allowed and exgeteasliors, and how
the architecture performs the MDC cycle. Our case study@mscsmart homes: a pa-
tient lives in a smart home, a socio-technical system sujgpthe patient in everyday
activities (such as eating, sleeping, taking medicineydpentertained, visiting doctor).
Both smart home and patient are equipped with Aml devicasiher data (e.g., pa-
tient’s health status, temperature in the house) and epagbensations (e.g., open the
door). The partial goal model in Fig.3 represents the requénts of the patient; due to
space limitations, we present here only the top-level gbale breakfast”.

Goalg1 is activated when the patient wakes up (activation everramitment to
achieveg1 should be taken (either by the patient or by other agent$linvitvo hours
since goal activation. Four different contexts charazeetiie scenario: inl the patient
is autonomous, ir2 the patient is not autonomous, ¢ the patient is at home, it
the patient is not at home. If the patient is autonometishplds) g1 is decomposed
into the subtree of goal “Eat alonejd); if ¢2 holdsg1 is decomposed into the subtree
of goal “Get eating assistance22). In the former caseg3 enables the subtree of
goal “Eat at home” ¢3), whereas:4 enables the subtree of goal “Eat outsideT)
When eating at home, the patient has to prepare fod)d éat breakfasty©), and clean
up (¢96). Goal g4 is means-end to two alternative tasks: “Prepare autonolyioysl)
and “Order catering food"i2). The latter task requires interaction with the external
actor “Catering service”, which should fulfill goal “Provedood” in order to execute
successfullyp2. The other subtrees of Fig.3 are structured in a similar way we
don’t detail them here.

Ourrequirements models characterize each task with apdéam (possibly empty)
that, if false, inhibits the execution of the task. If a taslekecuted but its precondition
is false, a failure occurs (see rule (iv) in Table 1). Foranse, a possible precondition
for task “Prepare autonomously” is that in the house theeebath bread and milk; a

precondition for task “Order catering food” is that the heisprovided with a landline
phone or the patient has a mobile phone.

Fig.4 is a timed activity diagram for tagki. The activity diagram starts with the
activation of the goal “Prepare food”. When the patient entiee kitchen¢1), there is
evidence that she is going to prepare food. If this doesippka within 45 minutes after
the goal activation the task fails. After, a fork node creates two parallel execution
processes. In the first fork, the patient should open thgérid2) and put the milk on
stove @4); in the second fork, the bread cupboard should be operydd bread has
to be put on the table:f). The forks are then merged, and the next activity is to turn o
the stove ¢6) within a minute since the last completed activity. Seqiadigt the task
requires the stove to be turned off within 5 minute¥)(and the milk to be poured into
the cup @R).

g1: Have
breakfast

925: Get
cooking

breakfast at
bar table

[
breakfast
at table

p1: Prepare > g breakfast at
autonomousl| i eighbour’

- N a
CONTEXTS: Daughter
c1: patient is autonomous ACTIVATION EVENT :
c2: patient is not autonomous g1: patient wakes up

¢3: patient is at home COMMITMENT CONDITION:
c4: patient is not at home g1: 2 hours since activation event

Fig. 3. Contextual goal model describing the patient health cazaasio.

We conclude this section with a description of a possibleméguration process.
Let’s suppose that patient Mike wakes up at 8.00 am. Mike israamous ¢1) and at
home ¢3); the goalg1 is expected, and the subtreeg is the only allowed one (see

rules (i) and (ii) in Table 1). At 8.20 am Mike enters the kiéch checking the activity
diagram forp1 against this event (see Algorithm 2) changes the statueajadhlg4 to

i n_progr ess. In turn, this status is propagated bottom-updill (see Algorithm 1).
At 8.25 Mike hasn’t neither opened the fridge nor opened tleadh cupboard. This
violates the specification @fl (Fig. 4). The reconfiguration strategy selector component
selects to push the system, and the system pushing commameista notification to the
patient through an SMS message (and the time limit withircivieixecuting:2 anda3
should be reset). This changes the mind of Mike, which opgem&idge ¢2), opens the
bread cupboard:$3), and puts bread on tableX). These events are compliant with the
task specification of Fig. 4, thus the task is evaluatddapr ogr ess by Algorithm 3.
Anyhow, Mike does not put milk on stove4) within one minute since2, therefore

a new failure is diagnosed. The compensation to addrestathige is to automatg2,
and the task assigner component assigns it to a caterinigesefwn alternative scenario
evolution is that Mike exits house (the contettis true,c3 is not valid anymore). This
would change the tasks that can happen: the subtrg& bécomes the only possible
one, and this influences all its sub-goals (rule (iii) in Eaf) and the tasks linked to
leaf-level goals (rule (iv) in Table 1).

Goal “Prepare
food” activation

az:
Open fridge

a3: Open bread ab: Put bread
cupboard on table

a6: Turn on'\ </ a7: Turn off\ {_/"a8: Pour milk
stove stove into cup

Fig. 4. Timed activity diagram for monitoring the task “Preparecagmously”.

a4: Put milk on
stove

atl:
Enter kitchen

g

=]

7 Related work

Self-adaptive software has been introduced by Oreizy ¢t2].as an architectural ap-
proach to support systems that modify their behaviour ipagase to changes in the
operating environment. This class of systems performsreetinfiguration according
to the criteria specified at development time, such as unéiet wonditions reconfig-
uring, open/closed adaptation, degree of autonomy. THdibgiunits for self-adaptive
software should be components and connectors. Comparadr twavk, the solution
proposed in [12] is generic and flexible to many reconfigoratiriteria, whereas we
suggest particular types of models, that is requirementsatso

Rainbow [1] is an architecture-based framework that ersad#éf-adaptation on the
basis of (i) an externalized approach and (ii) softwareiggcture models. The authors
of Rainbow consider architecture models as the most seitabtraction level to ab-
stract away unneccessary details of the system. Moredweigage of architectural
models both at design- and at run-time promotes the reusgapitation mechanisms.
Our proposal shares many features with Rainbow, but difiecsause we use higher
level models to support the ultimate goal of any softwardesys that is to meet its

requirements. The main drawback of our choice is that dstaby traceability links
between requirements and code is more complex.

Sykes et al. [13] propose a three-layer architecture fdrrmahaged software [14]
that combines the notion of goal with software componertigs @pproach is based on
a sense-plan-act architecture made up of three lageed: managemerayer defines
system goalsshange managemelayer executes plans and assembles a configuration
of software componentspmponentayer handles reactive control concerns of the com-
ponents. Our proposal exploits a more elaborate goal reptatson framework, follows
different planning (predifined plans instead of plan conifgms), and enacts different
reconfiguration processes.

Wang's architecture for self-repairing software [7] useg goal model as a soft-
ware requirements model, and exploits SAT solvers to chieelctirrent execution log
against the model to diagnose task failures. We proposeadbr@approach, adopting
part of the complete Requirements Engineering framewarg@sed by Jureta et al. [8].
We use more expressive goal models, provide an accuratdication of tasks based
on timed activity diagrams, allow for specifying multiplertexts that modify expected
behavior, and support dependencies on other actors / system

Feather et al. [2] propose an approach addressing systesmibahdeviations from
requirements specifications; they introduce an archite¢and a development process)
to reconcile requirements with behaviour. This recontdia process is enacted by
jointly anticipating deviations at specification time amaving unpredicted situations
at runtime, and examine the latter option using the requéréeimonitoring framework
FLEA [15]. FLEA is used in conjunction with the goal-drivepexification methodol-
ogy KAOS [3]. Our architecture differs in the usage of difet requirements models
(Tropos rather than KAOS), support to a wider set of failf2kis focused on obstacle
analysis), and applicability to scenarios composed of iplalinteracting actors (such
as Ambient Intelligence ones).

Robinson’s RegMon [16] is a requirements monitoring framewfor specific us-
age in enterprise systems. ReqMon integrates technigaesrequirements analysis
(KAOS) and software execution monitoring, and providesgom support the develop-
ment of requirements monitors. Although RegMon'’s archiite covers all the recon-
figuration process, accurate exploration is provided ootyttie monitoring and analy-
sis phases. Our approach has broader applicability, cgmadsz a larger set of failure
types, and supports more reconfigurations mechanisms;endhtrary, RegMon is
particularly suitable for enterprise systems.

8 Discussion and conclusion

We have proposed a novel architecture for self-configursgesns founded on princi-
ples adopted from Goal-Oriented Requirements Enginegeixtgrnalized adaptation,
and BDI paradigm. Our approach adds self-reconfiguratipalaiities to a wide variety
of system, among which Ambient Intelligence scenarios asaddsTechnical Systems.
The architecture is a model-based one, with requirementielraised to specify what
can, should, and should not happen. We have detailed themeghanisms for mon-
itoring and diagnosis, which describe how requirementseatwdre checked against

monitored information. We also introduced a case study —tshaenes — to show how
a realization of the architecture works in practice.

Several aspects will be addressed in future work. Firsty,need a complete im-
plementation of our architecture, as well as further experitation on the smart-home
case study. We also want to extend our framework so thatlis cétn a broader class of
monitored phenomena, including attacks and failures chhgdalse doamin assump-
tions. Finally, we propose to introduce mechanisms thrauigich a system can extend
its variability space through collaboration with exteragénts.

References

1. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., StestakP.: Rainbow: architecture-
based self-adaptation with reusable infrastructure. Gaer@7(10) (Oct. 2004) 46-54
2. Feather, M., Fickas, S., Van Lamsweerde, A., PonsardR€xonciling system requirements
and runtime behavior. IWSSD '98 (1998) 50-59
3. Dardenne, A., Lamsweerde, A., Fickas, S.: Goal-diregdirements acquisition. Science
of computer Programming (1993) 3-50
4. Emery, F.: Characteristics of socio-technical systdmsdon: Tavistock (1959)
5. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. JAAMZS) (2004) 203—-236
6. Rao, A., Georgeff, M.: An abstract architecture for ratibagents. Proceedings of Knowl-
edge Representation and Reasoning (KR&R-92) (1992) 43044
7. Wang, Y., Mcllraith, S., Yu, Y., Mylopoulos, J.: An autoted approach to monitoring and
diagnosing requirements. ASE '07 (2007) 293-302
8. Jureta, 1.J., Mylopoulos, J., Faulkner, S.: Revisiting tore ontology and problem in re-
quirements engineering. In: RE 08, Barcelona (2008)
9. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based sofie modeling and analysis: Tropos-
based approach. ER 2008 (2008) 169-182
10. Clark, J., etal.: Xsl transformations (xslt) versiod.MvV3C Recommendatiabt(11) (1999)
11. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datglo ACM Transactions on Database
Systems (TODS22(3) (1997) 364—-418
12. Oreizy, P., Medvidovic, N., Taylor, R.: Architecturaded runtime software evolution. ICSE
1998 (1998) 177-186
13. Sykes, D., Heaven, W., Magee, J., Kramer, J.: From goatsmponents: a combined ap-
proach to self-management. SEAMS 2008 (2008) 1-8
14. Kramer, J., Magee, J.: Self-managed systems: an artthidéchallenge. ICSE 2007 (2007)
259-268
15. Fickas, S., Feather, M.: Requirements monitoring iredyic environments. RE 95 (1995)
140
16. Robinson, W.: A requirements monitoring framework fotegprise systems. Requirements
Engineeringl1(1) (2006) 17-41

	OF TRENTO
	DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

