
���������	

�������

���������	�
�����	���	�������
���	���������	�
�����
	�


����������������������������������  ������!∀
#��∃%&&∋∋∋()�∗�(+����(��

���������	��
�	�����
	�
��	�	��������	���	����	������
������

������������������������������������� ����!∀����
���

�	��
��∀�#∃∃%

&	��������
	�����∋��(�(�∃%�∃)∃



�



An Architecture for Requirements-driven
Self-reconfiguration

Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos

University of Trento - DISI, 38100, Povo, Trento, Italy.
{fabiano.dalpiaz, paolo.giorgini, jm}@disi.unitn.it

Abstract. Self-reconfiguration is the capability of a system to autonomously
switch from one configuration to a better one in response to failure or context
change. There is growing demand for software systems able toself-reconfigure,
and specifically systems that can fulfill their requirementsin dynamic environ-
ments. We propose a conceptual architecture that provides systems with self-
reconfiguration capabilities, enacting a model-based adaptation process based on
requirements models. We describe the logical view on our architecture for self-
reconfiguration, then we detail the main mechanisms to monitor for and diag-
nose failures. We present a case study where a self-reconfiguring system assists
a patient perform daily tasks, such as getting breakfast, within her home. The
challenge for the system is to fulfill its mission regardlessof the context, also
to compensate for failures caused by patient inaction or other omissions in the
environment of the system.

1 Introduction

There is growing demand for software systems that can fulfilltheir requirements in very
different operational environments and are able to cope with change and evolution. This
calls for a novel paradigm for software design where monitoring, diagnosis and com-
pensation functions are integral components of system architecture. These functions
can be exploited at runtime to monitor for and diagnose failure or under-performance,
also to compensate through re-configuration to an alternative behavior that can better
cope with the situation on-hand. Self-reconfiguration thenis an essential functionality
for software systems of the future in that it enables them to evolve and adapt to open,
dynamic environments so that they can continue to fulfill their intended purpose.

Traditionally, self-reconfiguration mechanisms are embedded in applications and
their analysis and reuse are hard. An alternative approach is externalized adaptation [1],
where system models are used at runtime by an external component to detect and ad-
dress problems in the system. This approach – also known as model-based adaptation
– consists of monitoring the running software, analyzing the gathered data against the
system models, selecting and applying repair strategies inresponse to violations.

We analyze here the usage of a special type of system models: requirements models.
Deviations of system behavior from requirements specifications have been discussed
in [2], where the authors suggest an architecture (and a development process) to recon-
cile requirements with system behavior. Reconciliation isenacted by anticipating devia-
tions at specification time and solving unpredicted circumstances at runtime. The under-
lying model is based on the goal-driven requirements engineering approach KAOS [3].



In this paper, we propose a conceptual architecture that, onthe basis of requirements
models, adds self-reconfiguration capabilities to a system. The architecture is structured
as a set of interacting components connected through a Monitor-Diagnose-Compensate
(MDC) cycle. Its main application area is systems composed of several interacting sys-
tems, such as Socio-Technical Systems [4] (STSs) and Ambient Intelligence (AmI) sce-
narios. We have chosen to use Tropos [5] goal models as a basisfor expressing require-
ments, since they suit well for modeling social dependencies between stakeholders. We
enrich Tropos models adding activation events to trigger goals, context-dependent goal
decompositions, fine-grained modeling of tasks by means of timed activity diagrams,
time limits within which the system should commit to carry out goals, and domain
assumptions that need to be monitored regardless of currentgoals.

We adopt the BDI paradigm [6] to define how the system is expected to reason and
act. The system is running correctly if its behavior is compliant with the BDI model:
when a goal is activated, the system commits to it by selecting a plan to achieve it. The
architecture we propose monitors system execution and looks for alternatives when
detecting no progress or inconsistent behaviour.

The closest approach to our work is Wang et al. [7], which proposes a goal-oriented
approach for self-reconfiguration. Our architecture differs from hers in the details of the
model we use to monitor for failures and violations. These details allow us to support a
wider class of failures and changes, also to compensate for them.

This paper is structured as follows: Section 2 presents the baseline of our approach,
Section 3 describes our proposed architecture for self-reconfiguration, whereas Sec-
tion 4 explains how to use it. Section 5 details the main monitoring and diagnosis
mechanisms the architecture components use, while Section6 shows how the architec-
ture can be applied to a case study concerning smart-homes. Section 7 presents related
work and compares our approach to it. Finally, Section 8 discusses the approach and
draws conclusions.

2 Baseline: Requirements Models

A requirements-driven architecture for model-based self-reconfiguration needs a set of
models to support full modeling of requirements. A well established framework in Re-
quirements Engineering (RE) is goal-oriented modeling [3], where software require-
ments are modelled as goals the system should achieve (with assistance from external
agents). Among existing frameworks for requirements models, we have chosen Tro-
pos [5], for it allows to describe systems made up of several socially interacting actors
depending on each other for the fulfillment of their own goals. Recently, Jureta et al. [8]
have revisited the so-called “requirements problem” – whatit means to successfully
complete RE – showing the need for requirements modeling frameworks richer than
existing ones. The core ontology they propose is based on theconcepts of goal, soft-
goal, quality constraint, plan, and domain assumption. Direct consequence of this result
is that goal models alone are insufficient to completely express system requirements,
and in our framework we support some of the suggested ingredients to express require-
ments.



We adopt an enriched version of Tropos, which contains additional information to
make it suitable for runtime usage: (i) activation events define when goals are triggered;
(ii) commitment conditions express a time limit within which an agent should commit
to a goal; (iii) contexts express when certain alternativesare applicable (like in Ali et
al. [9]); (iv) preconditions for taks (similarly to Wang et al. [7]). In Fig. 1, two agents
(PatientandSupermarket) interact by means of a dependency for goalProvide Gro-
cery. The top-level goal of patient –Have lunch– is activated when it’s 12AM, and the
patient should commit to its achievement within one hour since activation. Two alterna-
tives are available to achieve the goal, that isPrepare lunchandGet lunch prepared. In
this scenario, the former option is applicable only in context c1, that is when patient is
autonomous, whereas the latter option is applicable when the patient is not autonomous
(c2). GoalPrepare lunchis and-decomposed to sub-goalsGet needed ingredientsand
Cook lunch. The former goal is a leaf-level one, and there are two tasks that are al-
ternative means to achieve it (means-end):Take ingredients from cupboardandOrder
food by phone. The latter task starts the dependency for goalProvide groceryon agent
supermarket.

Fig. 1.Enriched Tropos goal model used by our architecture.

A shared language to express information about domain is clearly needed. This lan-
guage is used to formally express contexts, preconditions,domain assumptions, and
any relation between domain and requirements. We exploit aan object diagram (as
in [9]), where context entities are objects, their properties are attributes, and relations
between entities are association links. For instance, the precondition for taskOrder
food by phone– Patient.house.hasPhone = true – can be expressed in an
object model with classesPatient andHouse, where Patient is linked to House by
an aggregation calledhouse, and House has a boolean attributehasPhone. Domain
assumptions are conditions that should always hold, and canbe expressed as rules. For
example, a domain assumption for our small example is that each patient has exactly
one house; this assumption should hold regardless of current contexts and goals. Fi-
nally, we use a fine grained definition of tasks, in which each task is a workflow of
monitorable activities to be carried out within time constraints. The completion of each
activity is associated to the detection of an associated event, which is expressed over
the context model. We provide further details about this formalism in Section 5.



3 System Architecture

In this section we propose our conceptual architecture for structuring systems able to
self-reconfigure. We present the architecture logical viewin Fig.2, exploiting an UML
2.0 component diagram to show the components and the connections among them.
Component diagrams depict not only the structure of a system, but also the data flow
between components (through provided and required interfaces).

Fig. 2. Logical view on the proposed architecture for self-reconfiguration.

3.1 External components

Our architecture supports systems characterized by decentralized and non-monolithic
structure, such as Socio-Technical Systems (STSs) and Ambient Intelligence (AmI) sce-
narios, which require quick and effective reconfiguration in response to context change



or failure. A set of external components interacts with the self-reconfiguration compo-
nent, providing inputs and enacting reconfigurations.

The componentContext sensorrepresents any system providing up-to-date informa-
tion about the context where the system is running. In AmI settings, sensors are spread
throughout the environment and collect data such as temperature, light level, noise,
presence. Also desktop applications have several context sensors that provide useful
values such as free memory, CPU utilization, mainboard temperature, and list of active
processes. The component context sensor provides changes in the context through the
interfaceEvents. Possible events are changes in the light level, detection of humans in
front of the door, identification of loud noise in the bathroom.

Monitored systemis the system the self-reconfiguration component assists, that is
the stakeholder whose requirements are monitored to diagnose and compensate failures.
This system need not necessarily be software or hardware, but can be – and often is –
a human or an organization. Examples of monitored systems are anti-virus software,
patients living in smart-homes, firemen in crisis management settings. This component
provides all available information concerning the currentstatus of the system through
the interfaceLog, and requires from the interfaceSystem pushesadvice on what should
be done (whichgoals)and how it should act (whichtasks). A patient can be reminded
to take her medicine by sending an SMS to her mobile phone (system pushes interface).

Support systemrepresents any system connected to the monitored system by re-
quirements level links by goal, task, or resource dependencies from the monitored sys-
tem. For example, anti-virus software may depend on update sites for the resource
“updated virus definition file”, while patients may depend onsocial workers for the
goal “prepare breakfast”. The provided interfaceInteraction logcontains information
about the status of dependencies with the monitored system;the required interfaceTask
assignmentsprovides the tasks or goals for which the monitored system depends on
support systems. If the patient should prepare breakfast but did not commit to it, the
self-reconfiguration component can order breakfast from a catering service (the sup-
port system), enacting a dependency from the patient to the catering service for goal
“prepare breakfast”.

Context actuatoridentifies any actuator in the environment which can receivecom-
mands to act on the context. Examples of actuators in AmI scenarios are sirens, door
openers, automated windows, and remote light switches. Thecomponent gets from the
required interfaceActuationsthe commands to enact.

3.2 Self-reconfiguration component

The self-reconfiguration capabilities of our architectureare provided by the component
self-reconfiguration. We identified three major sub-components in the reconfiguration
process, each enacting a phase in a Monitor-Diagnose-Compensate cycle.Monitor is
in charge of collecting, filtering, and normalizing events and logs;Diagnoseridentifies
failures and discovers root causes;Reconfiguratorselects, plans and deploys compen-
sation actions in response to failures.

The monitoring phase starts with the componentEvent normalizer, which depends
on the interfaces events, log, and interaction log through appropriate ports (graphically
represented as small squares on the sides of components). This component gathers the



current status of the monitored system, of the context, and of the interaction with sup-
port systems, then it normalizes the collected data to a specific format. The normaliza-
tion process requires the definition of a translation schemafor each source data format.
This topic is an explored one: for instance, XSLT [10] is a W3Cstandard to define trans-
formations between XML schemas. The event normalizer provides the translated data
through the interfaceNormalized events. This interface is required by three different
components, each handling a specific type of events and combining new events with the
previous status of the system.Dependency monitorcomputes the status of existing de-
pendencies and exposes it through the providedDependencies statusinterface.Context
sensoris in charge of updating the interfaceCurrent context, processing the normal-
ized events related to changes in the context. For instance,if the house door is closed
(door.status = closed) and we just received an event such asopen(door, timei), the
status of the door will change to open (door.status = open). The componentTask
execution monitorhandles events concerning the execution of tasks and provides the
interfaceTask execution status. For example, if the patient is executing the task “Open
door” and eventpressed(patient, button, timej) is received, the status of task “Open
door” will turn to success.

The diagnosis phase – responsibility of the componentDiagnoser– is essentially
a verification of the current status against requirements models. Models specify what
should happen and hold: which goals should / can / cannot be achieved, which tasks
can / cannot be executed, the domain assumptions that shouldnot be violated. The
richer the requirements model is, the more accurate the diagnosis will be. In contrast,
the granularity of detected events is bounded by technological and feasibility aspects.
Detecting if a patient is sitting on a sofa is reasonably realizable (e.g., using pressure
sensors), while detecting if she is handling a knife the wrong way is far more complex.

Contextual goal model managerrequires the interface current context, analyzes the
goal model to identify goals and tasks that should / can / cannot be achieved, and pro-
vides this output through the interfaceGoals / Tasks applicability. The componentDo-
main assumption verifierrequires the interface current context and compares it to the
list of domain assumptions. Its goal is to identify violations, which are then exposed
through the provided interfaceViolated domain assumptions.

Dependency diagnoserrequires the interfaces dependencies status and goals / tasks
applicability, and computes failed dependencies. Dependencies fail not only if the de-
pendee cannot achieve the goal or perform the task (e.g., thenurse cannot support the
patient because she’s busy with another patient), but also when changes in the context
modify goal applicability and the dependency is not possible anymore (e.g., the patient
exits her house and thus cannot depend on a catering service anymore).Task execution
diagnoserrequires the interfaces goals / tasks applicability and task execution status,
and provides the interfaceFailed tasks / goals. The objective of this component is to
verify whether the current execution status of tasks is compliant with task applicability.
For example, if the patient is preparing breakfast but already had breakfast, something
is going wrong and this failure should be diagnosed.Goal commitment diagnoseris in
charge of detecting those goals that should be achieved but for whose fulfillment no
action has been taken. In our framework, each top-level goalhas a commitment time,
a timeout within which a commitment to achieve the goal should be taken (i.e., an ad-



equate task should begin). For example, the patient should have breakfast within two
hours since waking up. This component requires the interfaces goals / tasks applicabil-
ity and task execution status, and provides the interfaceUncommitted goals.

The componentFailure diagnoserrequires the interfaces containing the identified
failures (failed dependencies, failed tasks / goals, uncommitted goals) and the inter-
faceTolerance policiesprovided by componentPolicy manager. The policy manager
– handling policies set by system administrators – specifieswhen failures do not lead
to reconfiguration actions. For example, lack of commitmentfor washing dishes can be
tolerated if the patient’s vital signs are good (she may washdishes after next meal). The
provided interfaceFailure diagnosiscontains the diagnoses to be compensated.

The reconfiguration phase – carried out by componentReconfigurator– should de-
fine compensation / reconfiguration strategies in response to any kind of failure. Its
effectiveness depends on several factors: number of tasks that can be automated, avail-
able compensation strategies, extent to which the monitor system accepts suggestions
and reminders. In our architecture we propose general mechanisms, but the actual suc-
cess of compensation strategies is scenario-dependent anddifficult to assess. Suppose
a patient suddenly feels bad: if she lives in a smart-home provided with a door opener,
the door can be automatically opened to the rescue team; otherwise, the rescue team
should wait for somebody to bring the door keys.

The componentPrioritize diagnosisrequires the interfaces failure diagnosis and pri-
ority policies; it selects a subset of failures according totheir priority level and provides
them through the interfaceSelected Diagnosis. Common criteria to define priority are
failure severity, urgency of taking a countermeasure, timepassed since failure diagnosis.
Selected diagnoses are then taken as input by the componentReaction strategy selector,
which is in charge of choosing a reaction to compensate the failure. This component acts
as a planner: given a failure, it looks for appropriate reconfigurations, and selects one
of them. Three different types of reconfigurations are supported by our architecture,
each manifested in a specific interface. The interfaceTask reassignment reconfigura-
tionscontains reconfigurations that involve the automated enactment dependencies on
support systems. For example, if the patient didn’t have breakfast and the commitment
time for the goal is expired, the system could automaticallycall the catering service.
The interfacePush system reconfigurationsincludes strategies that push the monitored
system to achieve its goals (reminding goals or suggesting tasks). A push strategy for
the patient that hasn’t had breakfast so far is sending an SMSto her mobile phone. The
interfaceActuate reconfigurationsconsists of compensations that will be enacted by
context actuators. For instance, if the patient feels bad, the door can be automatically
opened by activating the door opener.

Three components use the interfaces provided by reaction strategy selector:Task
assigner, System pushing, andActuator manager. Their role is to enact the reconfigura-
tions that have been selected, and each component provides aspecific interface.

4 Creating the architecture for an existing system

In this section we describe how the architecture can be used in practice to add self-
reconfiguration capabilities to a distributed socio-technical system. The required input



is a set of interacting sub-systems – sensors and effectors –that compose the distributed
system. The following steps should be carried out: (i) definecontext model (ii) define re-
quirements models; (iii) establish traceability links formonitoring; (iv) select tolerance
policies for diagnosis; and (v) choose reconfiguration and compensation mechanisms.

Steps (i) and (ii) output the models we presented in Section 2, that is the context
model, the Tropos goal model, timed activity diagrams for tasks, and domain assump-
tions. Step (iii) defines what to monitor for at runtime, by connecting requirements to
code. Traceability is ensured by associating events – produced by sensors – toactivities
that are part of a task, totask preconditions, to contexts, and toactivation conditions
for top-level goals. Events should also be normalized according to the context model
defined in step (i).

Step (iv) is carried out to specify tolerance policies for failures. Indeed, some fail-
ures have to be addressed through reconfiguration, whereas some others can be toler-
ated. In step (v) the reaction mechanisms enacting self-reconfiguration are defined. Two
sub-steps should be carried out: (i) definition of acompensation planto revert the ef-
fects of the failed strategies, and (ii) identification of areconfiguration strategyto retry
goal achievement. Both steps exploit the actuation capabilities of the distributed sys-
tem, i.e. reconfigurations consist of giving commands to effectors (execute a task, enact
a dependency, issue a reminder).

5 Monitoring and diagnosis mechanisms

We detail now monitoring and diagnosis mechanisms includedin our architecture. Ef-
ficient and sound algorithms need to be defined for successfully diagnosing problems
in the running system. Failures are identified by comparingmonitored behaviorof the
system to theexpected and allowed behaviors. Failures occur when (a) the monitored
behavior is not allowed or (b) an expected behavior has not occurred.

Table 1 defines expected and allowed goals and tasks. We use first-order logic rules
for clarity, but our prototype implementation is based on disjunctive Datalog [11]. We
suppose that each goal instance differs from other instances of the same goal class for
actual parameters; for example, a patient’s goalHave breakfastcan be repeated every
day, but with different values for the parameterday.

Rule (i) defines when a top-level goal should be achieved. This happens ifG is a
goal with parameter setP , the goal instance has not been achieved so far, the activation
event has occurred before the current time, andG is a top-level goal (there is no other
goalGp and/or-decomposed intoG). Rule (ii) is a general axiom saying that whenever a
goal instance should be achieved, it is also allowed. Rules (iii) and (iv) define when tasks
and decomposed goals are allowed, respectively. A goal instanceG with parameter set
P can be achieved if it has not been done so far and exists an achievable goalGp with
parametersPp that is decomposed intoG, the context condition on the decomposition is
true, and the actual parameters ofG are compatible with the actual parameters ofGp. A
similar condition holds for means-end tasks, with two main differences: tasks are also
characterized by a precondition – which should hold to make the task executable – and
are connected to goals through means-end (rather than by and/or decomposition).



Expected and allowed goals and tasks identified by rules (i-iv) is used by Algo-
rithm 1 to diagnose goals and tasks failures, comparing the monitored behavior to ex-
pected and allowed behaviors. The parameters of COMPUTEFAILURES are the moni-
tored system, the examined goal instance and the set of failures (initially empty). The
algorithm should be invoked for each top-level goal of the monitored system, and ex-
plores the goal tree recursively. In the following algorithms we represent goals as ob-
jects instead of using predicates as in Table 1; all parameters are passed by reference.

goal(G) ∧ goal parameters(G,P ) ∧ ¬done(G, P ) ∧ activation evt(G, P, T )
∧ T ≤ current time ∧ ∄ Gp s.t.

goal(Gp) ∧ decomposed(Gp, G)
(i)

should do(G,P)

should do(G, P )
(ii)

can do(G,P)

goal(G) ∧ goal parameters(G,P ) ∧ ¬done(G, P )
∧ ∃ Gp s.t.

goal(Gp) ∧ goal parameters(Gp, Pp) ∧ decomposed(Gp, G, Dec)
∧ can do(Gp, Pp) ∧ context cond(Dec)
∧ ∀ p ∈ P s.t. (∃ pp ∈ Pp s.t. name(p, n) ∧ name(pp, n)),

value(p, v) ∧ value(pp, v)
(iii)

can do(G,P)

task(T ) ∧ task parameters(T,P ) ∧ pre cond(T, P ) ∧ ¬done(T, P )
∧ ∃ G s.t.

goal(G) ∧ goal parameters(Gp, Pp) ∧ means end(G,T, Dec)
∧ context cond(Dec) ∧ can do(G, Pp)
∧ ∀ p ∈ P s.t. (∃ pp ∈ Pp s.t. name(p, n) ∧ name(pp, n)),

value(p, v) ∧ value(pp, v)
(iv)

can do(T,P)

Table 1.First-order logic rules to define expected and allowed goalsand tasks.

Algorithm 1 starts with an initialization phase (lines 1-2): the status of goalg is set to
uncommitted, since no information is initially available, and the variablemeansend
is set to false. Lines 3-10 define the recursive structure of the algorithm. If the goal is
and/or decomposed (line 3), the setG contains all the sub-goals ofg (line 4), and the
function COMPUTEFAILURES is recursively called for each sub-goal (lines 5-6). If all
the status of all the sub-goals issuccess the status ofg is also set tosuccess (lines
7-8). If the goal is means-end decomposed (lines 9-10),G contains the set of tasks that
are means to achieve the endg, and the variablemeansendis set to true.

If g is still uncommitted (line 11) each sub-goal (or means-end decomposed task) is
examined (lines 12-39). Ifg is and-decomposed (lines 13-23), two sub-cases are possi-
ble: (a) if the sub-goalgi is not allowed but its status is different fromuncommitted,
and the status ofg is still uncommitted, the status ofg is set tofail and the cycle is
broken, for the worst case – failure – has been detected (lines 14-17); (b) if the status of



gi is fail (lines 18-23), the status ofg is set tofail in turn, and the cycle is broken
(lines 19-21); ifgi is in progress, the status ofg is set toin progress.

Algorithm 1 Identification of goal and task failures.
COMPUTEFAILURES(s : System, g : Goal, F : Failure[ ])

1 g.status← uncommitted
2 meansend← false
3 if ∃g1 ∈ s.goals s.t. decomposed(g, g1, dec)
4 then G← {gi ∈ s.goals s.t. decomposed(g, gi, dec)}
5 for eachgi in G

6 do COMPUTEFAILURES (s,gi,F)
7 if ∀gi in G, gi.status= success
8 then g.status← success
9 else G← {t ∈ s.tasks s.t. means end(g, t, dec)}

10 meand end← true
11 if g.status= uncommitted
12 then for eachgi in G

13 do if and decomposed(g, gi, dec)
14 then if gi.can do = false andgi.status6= uncommitted
15 and g.status= uncommitted
16 then g.status← fail
17 break
18 else switch
19 casegi.status= fail :
20 g.status← fail
21 break
22 casegi.status= in progress :
23 g.status← in progress
24 else ifmeans end = true
25 then gi.status← MONITORSTATUS (gi,g)
26 if gi.can do = false andgi.status6= uncommitted
27 then F ← F ∪ gi

28 if g.status= uncommitted
29 then g.status← fail
30 else switch
31 casegi.status= success :
32 g.status← success
33 break
34 casegi.status= in progress :
35 g.status← in progress
36 casegi.status= fail :
37 F ← F ∪ gi

38 if g.status= uncommitted
39 then g.status← fail
40 if g.should do = true and g.status= uncommitted and g.comm cond = true
41 then g.status← fail
42 if g.status= fail
43 then F ← F ∪ g



If g is or-decomposed or means-end (lines 24-39), it succeeds ifat least one sub-
goal (or task) succeeds. Ifg is means-end decomposed, the algorithm calls the function
MONITORSTATUS, which diagnoses the execution status of a task (lines 24-25). If gi

is not allowed and its status is different fromuncommitted, gi is added to the set of
failures (line 27), and ifg is not committed its status is set tofail (lines 28-29). Ifgi is
allowed or its status isuncommitted (line 30), three sub-cases are possible: (a) if the
status ofgi is success, the status ofg is set tosuccess and the cycle is terminated
(lines 31-33); (b) ifgi is in progress, the status ofg is set toin progress and the
loop is continued (lines 34-35); (c) if the status ofgi is fail, gi is added to the set of
failures, and ifg is still uncommitted its status is set tofail.

If g is a top-level goal that should be achieved, its status isuncommitted, and the
commitment condition is true, then the status ofg is set tofail because no commit-
ment has been taken (lines 40-41). If the status ofg is fail, it is added to the list of
failures (lines 42-43).

Algorithm 2 Checking for task commitment.
MONITORSTATUS(t : Task, g : Goal)
1 start time← GETACTIVATION TIME (g)
2 〈activity, timelimit〉 ← t.GETCOMMITMENT CONDITION()
3 if ∃tm : Times.t. happened(activity, tm)
4 then if tm > start time+ time limit
5 then return fail
6 else returnuncommitted
7 〈next node, timelimit〉 ← act.GETNEXT()
8 return CHECKNODE(nextnode, timelimit, tm)

Algorithms 2 and 3 describe how to diagnose task failures. The general idea is
to describe a task as a workflow of activities each occurring within well-defined time
limits (we refer to this formalism with the term “timed activity diagram”). Successful
completion of an activitya is associated to the happening of an evente (happens(e)→
success(a)). Activities can be connected sequentially, in parallel (by fork and join nodes),
and conditionally (through branch and merge nodes). A graphical example of this for-
malism is given in Fig.4. The allowed branch of a decision point is defined by a branch
condition. At any instant, a well-formed model has exactly one allowed branch.

Algorithm 2 is invoked by Algorithm 1 to check the status of a particular task; its
parameters are a taskt and a goalg linked through means-end. Line 1 sets variable
start time to the time wheng was activated; line 2 sets theactivity that should be ex-
ecuted within a certaintime limit since the activation ofg (the commitment time). If
activity happened at timetm but beyond the commitment time, the algorithm returns
task failure (lines 3-5). If this activity did not happen, the task is uncommitted (line
6). If no failure or uncommittment has been identified, the algorithm retrieves the next
node (and its time limit) from task specification (line 7), and the recursive function
CHECKNODE is called to check ifnextnodeoccurred withintm+time limit (line 8).
Supported node types are activity, branch and merge, fork and join, end.

The behavior of Algorithm 3 depends on node type. If the node is an activity (lines
2-10), it checks if the event for that activity happened within the time limit.



Algorithm 3 Diagnosis task execution.
CHECKNODE(node: Node, time limit : Time, start time : Time)

1 switch
2 casenode.type = activity :
3 if ∃t : Times.t. happened(node, t)
4 then if t > start time+ time limit
5 then return fail
6 〈next node, timelimit〉 ← node.GETNEXT()
7 return CHECKNODE(nextnode, timelimit, t)
8 else ifstart time+ time limit < GETCURRENTTIME()
9 then return fail

10 else returnin progress
11 casenode.type = fork :
12 for each 〈in nodei, in limiti〉 ∈ node.GETFORKS()
13 do InStatei ← CHECKNODE(in nodei, in limiti, start time)
14 if ∃state∈ InStates.t. state= fail
15 then return fail
16 if ∀state∈ InStates.t. state= joined
17 then 〈out node,outlimit〉 ← node.GETOUTNODE()
18 t← node.GETMAX ENDTIME ()
19 return CHECKNODE(out node, outlimit, t)
20 else returnin progress
21 casenode.type = join : return joined
22 casenode.type = end : return success
23 casenode.type = branch :
24 for each 〈opt nodei, opt limiti, condi〉 ∈ node.GETOPTIONS()
25 do if EVAL (condi) = true
26 then OptStatei ← CHECKNODE(opt nodei, opt limiti, start time)
27 if OptStatei = merged

28 then idx← i

29 else if∃t : Times.t. happened(opt nodei, t)
30 then OptStatei ← fail
31 else OptStatei ← uncommitted
32 if ∃state∈ OptStates.t. state= fail
33 then return fail
34 if idx 6= NIL

35 then t← node.GETBRANCHENDTIME (idx)
36 〈out node,outlimit〉 ← node.GETOUTNODE()
37 return CHECKNODE(out node, outlimit, t)
38 else returnin progress
39 casenode.type = merge : return merged

If it happened after time limit, it returns failure (line 5).If the event happened within
time limit, the algorithm recursively checks the next node (lines 6-7). If the event for
that activity hasn’t happened so far: (a) if time limit has expired failure is returned
(line 9); (b) if the activity is still within its time limitin progress is returned (line
10). When examining a fork, CHECKNODE is recursively called for all the forks (lines



12-13). If any fork failed afail value is returned (line 15). If all the forks joined
(line 16) a recursive check is performed on the node that follows the join (lines 17-
19), with time limit starting from the last joined fork. Otherwise, the algorithm returns
in progress (line 20). When a join is met, the special statejoined is returned
(line 21). The end of the model returnssuccess (line 22). If a branch is found (line
23), all its branches should be checked. If the condition fora specific branch evaluates
to true (line 25) that branch is recursively checked (line 26). If the branch merged,idx

is set to the branch index that merged (lines 27-28). If the branch condition is false,
the first node of the branch is checked: if it happened, the algorithm returnsfail (line
30), otherwiseuncommitted (line 31). In lines 32-33, if any failure in the branches
has been detected, failure is returned. Ifidx is not null (line 34) a recursive check
on the node following the merge is performed (lines 35-37); if idx is null the algorithm
returnsin progress (line 38). When a merge node is met, the special valuemerged
is returned.

6 Case study: smart homes

We show now a promising application for our architecture, emphasizing how require-
ments models are used to define and check allowed and expectedbehaviors, and how
the architecture performs the MDC cycle. Our case study concerns smart homes: a pa-
tient lives in a smart home, a socio-technical system supporting the patient in everyday
activities (such as eating, sleeping, taking medicine, being entertained, visiting doctor).
Both smart home and patient are equipped with AmI devices that gather data (e.g., pa-
tient’s health status, temperature in the house) and enact compensations (e.g., open the
door). The partial goal model in Fig.3 represents the requirements of the patient; due to
space limitations, we present here only the top-level goal “Have breakfast”.

Goalg1 is activated when the patient wakes up (activation event); acommitment to
achieveg1 should be taken (either by the patient or by other agents) within two hours
since goal activation. Four different contexts characterize the scenario: inc1 the patient
is autonomous, inc2 the patient is not autonomous, inc3 the patient is at home, inc4
the patient is not at home. If the patient is autonomous (c1 holds)g1 is decomposed
into the subtree of goal “Eat alone” (g2); if c2 holdsg1 is decomposed into the subtree
of goal “Get eating assistance” (g22). In the former case,c3 enables the subtree of
goal “Eat at home” (g3), whereasc4 enables the subtree of goal “Eat outside” (g7).
When eating at home, the patient has to prepare food (g4), eat breakfast (g5), and clean
up (g6). Goalg4 is means-end to two alternative tasks: “Prepare autonomously” ( p1)
and “Order catering food” (p2). The latter task requires interaction with the external
actor “Catering service”, which should fulfill goal “Provide food” in order to execute
successfullyp2. The other subtrees of Fig.3 are structured in a similar way,thus we
don’t detail them here.

Our requirements models characterize each task with a precondition (possibly empty)
that, if false, inhibits the execution of the task. If a task is executed but its precondition
is false, a failure occurs (see rule (iv) in Table 1). For instance, a possible precondition
for task “Prepare autonomously” is that in the house there are both bread and milk; a



precondition for task “Order catering food” is that the house is provided with a landline
phone or the patient has a mobile phone.

Fig.4 is a timed activity diagram for taskp1. The activity diagram starts with the
activation of the goal “Prepare food”. When the patient enters the kitchen (a1), there is
evidence that she is going to prepare food. If this doesn’t happen within 45 minutes after
the goal activation the task fails. Aftera1, a fork node creates two parallel execution
processes. In the first fork, the patient should open the fridge (a2) and put the milk on
stove (a4); in the second fork, the bread cupboard should be opened (a3) and bread has
to be put on the table (a5). The forks are then merged, and the next activity is to turn on
the stove (a6) within a minute since the last completed activity. Sequentially, the task
requires the stove to be turned off within 5 minutes (a7) and the milk to be poured into
the cup (a8).

Fig. 3. Contextual goal model describing the patient health care scenario.

We conclude this section with a description of a possible reconfiguration process.
Let’s suppose that patient Mike wakes up at 8.00 am. Mike is autonomous (c1) and at
home (c3); the goalg1 is expected, and the subtree ofg3 is the only allowed one (see



rules (i) and (ii) in Table 1). At 8.20 am Mike enters the kitchen: checking the activity
diagram forp1 against this event (see Algorithm 2) changes the status of the goalg4 to
in progress. In turn, this status is propagated bottom-up tillg1 (see Algorithm 1).
At 8.25 Mike hasn’t neither opened the fridge nor opened the bread cupboard. This
violates the specification ofp1 (Fig. 4). The reconfiguration strategy selector component
selects to push the system, and the system pushing componentsends a notification to the
patient through an SMS message (and the time limit within which executinga2 anda3
should be reset). This changes the mind of Mike, which opens the fridge (a2), opens the
bread cupboard (a3), and puts bread on table (a5). These events are compliant with the
task specification of Fig. 4, thus the task is evaluated asin progress by Algorithm 3.
Anyhow, Mike does not put milk on stove (a4) within one minute sincea2, therefore
a new failure is diagnosed. The compensation to address thisfailure is to automatep2,
and the task assigner component assigns it to a catering service. An alternative scenario
evolution is that Mike exits house (the contextc4 is true,c3 is not valid anymore). This
would change the tasks that can happen: the subtree ofg7 becomes the only possible
one, and this influences all its sub-goals (rule (iii) in Table 1) and the tasks linked to
leaf-level goals (rule (iv) in Table 1).

Fig. 4. Timed activity diagram for monitoring the task “Prepare autonomously”.

7 Related work

Self-adaptive software has been introduced by Oreizy et al.[12] as an architectural ap-
proach to support systems that modify their behaviour in response to changes in the
operating environment. This class of systems performs self-reconfiguration according
to the criteria specified at development time, such as under what conditions reconfig-
uring, open/closed adaptation, degree of autonomy. The building units for self-adaptive
software should be components and connectors. Compared to our work, the solution
proposed in [12] is generic and flexible to many reconfiguration criteria, whereas we
suggest particular types of models, that is requirements models.

Rainbow [1] is an architecture-based framework that enables self-adaptation on the
basis of (i) an externalized approach and (ii) software architecture models. The authors
of Rainbow consider architecture models as the most suitable abstraction level to ab-
stract away unneccessary details of the system. Moreover, the usage of architectural
models both at design- and at run-time promotes the reuse of adaptation mechanisms.
Our proposal shares many features with Rainbow, but differsbecause we use higher
level models to support the ultimate goal of any software system, that is to meet its



requirements. The main drawback of our choice is that establishing traceability links
between requirements and code is more complex.

Sykes et al. [13] propose a three-layer architecture for self-managed software [14]
that combines the notion of goal with software components. This approach is based on
a sense-plan-act architecture made up of three layers:goal managementlayer defines
system goals,change managementlayer executes plans and assembles a configuration
of software components,componentlayer handles reactive control concerns of the com-
ponents. Our proposal exploits a more elaborate goal representation framework, follows
different planning (predifined plans instead of plan composition), and enacts different
reconfiguration processes.

Wang’s architecture for self-repairing software [7] uses one goal model as a soft-
ware requirements model, and exploits SAT solvers to check the current execution log
against the model to diagnose task failures. We propose a broader approach, adopting
part of the complete Requirements Engineering framework proposed by Jureta et al. [8].
We use more expressive goal models, provide an accurate specification of tasks based
on timed activity diagrams, allow for specifying multiple contexts that modify expected
behavior, and support dependencies on other actors / systems.

Feather et al. [2] propose an approach addressing system behaviour deviations from
requirements specifications; they introduce an architecture (and a development process)
to reconcile requirements with behaviour. This reconciliation process is enacted by
jointly anticipating deviations at specification time and solving unpredicted situations
at runtime, and examine the latter option using the requirements monitoring framework
FLEA [15]. FLEA is used in conjunction with the goal-driven specification methodol-
ogy KAOS [3]. Our architecture differs in the usage of different requirements models
(Tropos rather than KAOS), support to a wider set of failures([2] is focused on obstacle
analysis), and applicability to scenarios composed of multiple interacting actors (such
as Ambient Intelligence ones).

Robinson’s ReqMon [16] is a requirements monitoring framework for specific us-
age in enterprise systems. ReqMon integrates techniques from requirements analysis
(KAOS) and software execution monitoring, and provides tools to support the develop-
ment of requirements monitors. Although ReqMon’s architecture covers all the recon-
figuration process, accurate exploration is provided only for the monitoring and analy-
sis phases. Our approach has broader applicability, can diagnose a larger set of failure
types, and supports more reconfigurations mechanisms; on the contrary, ReqMon is
particularly suitable for enterprise systems.

8 Discussion and conclusion

We have proposed a novel architecture for self-configuring systems founded on princi-
ples adopted from Goal-Oriented Requirements Engineering, externalized adaptation,
and BDI paradigm. Our approach adds self-reconfiguration capabilities to a wide variety
of system, among which Ambient Intelligence scenarios and Socio-Technical Systems.
The architecture is a model-based one, with requirements models used to specify what
can, should, and should not happen. We have detailed the mainmechanisms for mon-
itoring and diagnosis, which describe how requirements models are checked against



monitored information. We also introduced a case study – smart homes – to show how
a realization of the architecture works in practice.

Several aspects will be addressed in future work. Firstly, we need a complete im-
plementation of our architecture, as well as further experimentation on the smart-home
case study. We also want to extend our framework so that it deals with a broader class of
monitored phenomena, including attacks and failures caused by false doamin assump-
tions. Finally, we propose to introduce mechanisms throughwhich a system can extend
its variability space through collaboration with externalagents.

References

1. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: architecture-
based self-adaptation with reusable infrastructure. Computer37(10) (Oct. 2004) 46–54

2. Feather, M., Fickas, S., Van Lamsweerde, A., Ponsard, C.:Reconciling system requirements
and runtime behavior. IWSSD ’98 (1998) 50–59

3. Dardenne, A., Lamsweerde, A., Fickas, S.: Goal-directedrequirements acquisition. Science
of computer Programming (1993) 3–50

4. Emery, F.: Characteristics of socio-technical systems.London: Tavistock (1959)
5. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-

oriented software development methodology. JAAMAS8(3) (2004) 203–236
6. Rao, A., Georgeff, M.: An abstract architecture for rational agents. Proceedings of Knowl-

edge Representation and Reasoning (KR&R-92) (1992) 439–449
7. Wang, Y., McIlraith, S., Yu, Y., Mylopoulos, J.: An automated approach to monitoring and

diagnosing requirements. ASE ’07 (2007) 293–302
8. Jureta, I.J., Mylopoulos, J., Faulkner, S.: Revisiting the core ontology and problem in re-

quirements engineering. In: RE 08, Barcelona (2008)
9. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based software modeling and analysis: Tropos-

based approach. ER 2008 (2008) 169–182
10. Clark, J., et al.: Xsl transformations (xslt) version 1.0. W3C Recommendation16(11) (1999)
11. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Transactions on Database

Systems (TODS)22(3) (1997) 364–418
12. Oreizy, P., Medvidovic, N., Taylor, R.: Architecture-based runtime software evolution. ICSE

1998 (1998) 177–186
13. Sykes, D., Heaven, W., Magee, J., Kramer, J.: From goals to components: a combined ap-

proach to self-management. SEAMS 2008 (2008) 1–8
14. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. ICSE 2007 (2007)

259–268
15. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. RE ’95 (1995)

140
16. Robinson, W.: A requirements monitoring framework for enterprise systems. Requirements

Engineering11(1) (2006) 17–41


	OF TRENTO
	DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE


