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Abstract
The existence of a strict deformation quantization of Xk = S(Mk(C)), the state space
of the k × k matrices Mk(C) which is canonically a compact Poisson manifold (with
stratified boundary), has recently been proved by both authors and Landsman (Rev
Math Phys 32:2050031, 2020. https://doi.org/10.1142/S0129055X20500312). In fact,
since increasing tensor powers of the k × k matrices Mk(C) are known to give rise to
a continuous bundle of C∗-algebras over I = {0} ∪ 1/N ⊂ [0, 1] with fibers A1/N =
Mk(C)⊗N and A0 = C(Xk), we were able to define a strict deformation quantization
of Xk à la Rieffel, specified by quantization maps Q1/N : / Ã0 → A1/N , with Ã0 a
dense Poisson subalgebra of A0. A similar result is known for the symplectic manifold
S2 ⊂ R

3, for which in this case the fibers A′
1/N = MN+1(C) ∼= B(SymN (C2)) and

A′
0 = C(S2) form a continuous bundle ofC∗-algebras over the same base space I , and

where quantization is specified by (a priori different) quantizationmaps Q′
1/N : Ã′

0 →
A′
1/N . In this paper, we focus on the particular case X2 ∼= B3 (i.e., the unit three-ball in

R
3) and show that for any function f ∈ Ã0 one has limN→∞ ||(Q1/N ( f ))|SymN (C2) −

Q′
1/N ( f |

S2
)||N = 0, where SymN (C2) denotes the symmetric subspace of (C2)N⊗.

Finally, we give an application regarding the (quantum) Curie–Weiss model.
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1 Introduction

An important field of research within mathematical physics concerns the relation
between classical theories viewed as limits of quantum theories, for example, classi-
cal mechanics of a particle on the phase space R

2n versus quantum mechanics on the
Hilbert space L2(Rn), or classical thermodynamics of a spin system versus statistical
mechanics of a quantum spin system on a finite lattice [14]. In these examples, the
relation between both (different) theories can be described by a continuous bundle
of algebras of observables equipped with certain quantization maps. A modern way
establishing a link between both theories is based on the concept of strict deforma-
tion quantization, i.e., the mathematical formalism that describes the transition from
a classical theory to a quantum theory [13,22,23] in terms of deformations of (com-
mutative) Poisson algebras (representing the classical theory) into non-commutative
C∗ algebras characterizing the quantum theory.

1.1 Strict deformation quantizationmaps

Let us focus to the first known example starting from the familiar classical phase space
R
2n . For convenience, we only consider the Poisson algebra of smooth compactly

supported functions f ∈ C∞
c (R2n) where the Poisson structure is the one associated

with the natural symplectic form
∑n

j=1 dp j ∧ dq j [17]. In order to relate C∞
c (R2n)

to a quantum theory described on some Hilbert space, one needs to deform C∞
c (R2n)

into non-commutative C∗-algebras exploiting a family of quantization maps. Berezin
proposed the quantization maps [3]

Q� : C∞
c (R2n) → B0(L

2(Rn)); (1.1)

Q�( f ) =
∫

R2n

dn pdnq

(2π�)n
f (p, q)|φ(p,q)

�
〉〈φ(p,q)

�
|, (1.2)

where � ∈ (0, 1]; B0(H) is the C∗-algebra of compact operators on the Hilbert
space H = L2(Rn), and for each point (p, q) ∈ R

2n , the (projection) operator
|φ(p,q)

�
〉〈φ(p,q)

�
| : L2(Rn) → L2(Rn) is induced by the normalized wave functions,

where x ∈ R
n ,

φ
(p,q)

�
(x) = (π�)−n/4e−i pq/2�e−i px/�e−(x−q)2/2� , φ

(p,q)

�
∈ L2(Rn), (1.3)
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defining the well-known (Schrodinger) coherent states. Inspired by Dixmier’s concept
of a continuous bundle [7], Rieffel showed that [22,23]

1. The fibers A0 = C0(R
2n) and A� = B0(L2(Rn)), h ∈ (0, 1], can be combined

into a (locally non-trivial) continuous bundle A of C∗-algebras over I = [0, 1];
2. Ã0 = C∞

c (R2n) is a dense Poisson subalgebra of A0.
3. Each quantization map Q� : Ã0 → A� is linear, and if we also define Q0 : Ã0 ↪→

A0 as the inclusion map, then the ensuing family Q = (Q�)�∈I satisfies:

(a) Each map Q� is self-adjoint, i.e., Q�( f ) = Q�( f )∗ (where f ∗(x) = f (x)).
(b) For each f ∈ Ã0, the following cross section of the bundle is continuous:

0 → f ; (1.4)

� → Q�( f ) (� ∈ I\{0})). (1.5)

(c) Each pair f , g ∈ Ã0 satisfies the Dirac–Groenewold–Rieffel condition:

lim
�→0

∣
∣
∣
∣

∣
∣
∣
∣
i

�
[Q�( f ), Q�(g)] − Q�({ f , g})

∣
∣
∣
∣

∣
∣
∣
∣
�

= 0. (1.6)

This led to the general concept of a strict deformation of a Poisson manifold X [13,22],
which we here state in the case of interest to us in which X is compact, or more
generally in which X is a manifold with stratified boundary [15,19]. In that case, the
space I in which � takes values cannot be all of [0, 1], but should be a subspace
I ⊂ [0, 1] thereof that at least contains 0 as an accumulation point. This is assumed
in what follows. Furthermore, the Poisson bracket on X is denoted, as usual, by
{·, ·} : C∞(X) × C∞(X) → C∞(X) (where the smooth space C∞(X) is suitably
defined when X is a more complicated object than a compact smooth manifold as we
shall say shortly).

Definition 1.1 A strict deformation quantization (according to [14]1) of a compact
Poissonmanifold X consists of an index space I ⊂ [0, 1], including 0 as accumulation
point, for � as detailed above, as well as:

• A continuous bundle of unital C∗-algebras (A�)�∈I over I with A0 = C(X)

equipped with the standard commutative C∗-algebra structure with respect to the
norm ‖ · ‖∞;

• A ‖ · ‖∞-dense Poisson suabalgebra Ã0 ⊆ C∞(X) ⊂ A0 (on which {·, ·} is
defined);

• A family Q = (Q�)�∈I of linear maps Q� : Ã0 → A� indexed by � ∈ I (called
quantization maps) such that Q0 is the inclusion map Ã0 ↪→ A0, and the above
conditions (a)–(c) hold, as well as Q�(1X ) = 1A�

(the unit of A�).

1 We stress that the some authors adopt a different notion of strict (deformation) quantization. For example,
in Rieffel’s approach the same (quantum) algebra is used and the product, depending on �, is deformed
[22,23]. In this setting, the image of the quantizationmap lies in an algebra with a “new” product.We instead
follow the definitions introduced by Landsman [13,14] (who adapted Rieffel’s original ideas), where for
� > 0 he uses the non-commutative algebraswith their intrinsic product independent of �. The � dependence
in turn is put in the quantization map itself. The term “strict deformation quantization” we use in this paper
is therefore related to Landsman’s notion of quantization.
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It follows from the definition of a continuous bundle of C∗-algebras that two con-
tinuity properties hold

lim
�→0

‖Q�( f )‖� = ‖ f ‖∞ (1.7)

and

lim
�→0

‖Q�( f )Q�(g) − Q�( f g)‖� = 0 (1.8)

hold automatically [7,13,14].

1.2 Spin systems and generalizations

Mean-field quantum spin systems2 fit into this framework. There, the index set I is
given by (0 /∈ N := {1, 2, 3, . . .})

I = {1/N | N ∈ N} ∪ {0} ≡ (1/N) ∪ {0}, (1.9)

with the topology inherited from [0, 1]. That is, we put � = 1/N , where N ∈ N is
interpreted as the number of sites of the model; our interest is the limit N → ∞. In the
framework of C∗-algebraic quantization theory, the analogy between the “classical”
limit � → 0 in typical examples from mechanics (see, e.g., our first example [10])
and the “thermodynamic” limit N → ∞ in typical quantum spin systems (see, e.g.,
[15,16]) is developed in detail in [14]. We remark that the limit N → ∞ can be
taken in two entirely different ways, which depends on the class of observables one
considers, namely either quasi-local observables or macroscopic observables. The
former are the ones traditionally studied for quantum spin systems, but the latter relate
these systems to strict deformation quantization, since macroscopic observables are
precisely defined by (quasi-)symmetric sequences which form the continuous cross
sections of a continuous bundle ofC∗-algebras. This continuous bundle ofC∗-algebras
is defined over base space I given by (1.9) with fibers

A0 = C(S(Mk(C)) ≡ C(Xk); (1.10)

A1/N = Mk(C)⊗N ∼= MkN (C), (1.11)

and continuity structure specified by continuous cross sections which are thus given
by all quasi-symmetric sequences [15] [14, Ch.10].3 We refer to the appendix for
some useful definitions or to [15] for a more comprehensive explanation. The space
Xk = S(Mk(C)) ⊂ R

k2−1 has the structure of a compact Poisson manifold with

2 A typical example of a mean-field quantum spin system is the Curie–Weiss model (see, for example,
[1,6,11,25–27] and references therein).
3 The same result holds for an arbitary unital C∗-algebra B playing the role of the matrix algebra Mk (C)

in the above setting [14].
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stratified boundary. The space C∞(Xk) is here made of the restrictions to Xk of the
smooth functions in R

k2−1, and the Poisson bracket is the restriction x ∈ Xk

{ f , g}(x) =
k2−1∑

a,b,c=1

Cc
abxc

∂ f

∂xa

∂g

∂xb
, x ∈ R

k2−1 (1.12)

for f , g ∈ C∞(Rk2−1) and where Cc
ab are the structure constants of SU (k) (see Sect.

2.3 of [15] for details). In turn, the Poisson algebra Ã0 dense in A0 = C(Xk) is made
of the restrictions to Xk of the polynomials in the k2 − 1 coordinates of R

k2−1

Let us pass to describe Q1/N . Each polynomial p of degree L uniquely corresponds
to a polynomial of symmetric elementary tensors of the form b j1 ⊗s · · ·⊗s b jL , where
ib1, . . . , ibk2−1 form a basis of the Lie algebra of SU (k). That is the image of p
according to Q1/N . More precisely, if

pL(x1, . . . , xk2−1) = x j1 · · · x jL where j1, . . . , jL ∈ {1, 2, . . . , k2 − 1},

the quantization maps Q1/N : Ã0 → Mk(C)N act as (see the appendix for SL,N )

Q1/N (pL) =
{
SL,N (b j1 ⊗s · · · ⊗s b jL ), if N ≥ L

0, if N < L,
(1.13)

Q1/N (1) = Ik ⊗ · · · ⊗ Ik︸ ︷︷ ︸
N times

., (1.14)

and more generally, they are defined as the unique continuous and linear extensions
of the written maps.

It has been shown in [15] that the quantization maps Q1/N satisfy all the axioms
of Definition 1.1.4 These data together imply the existence of a strict deformation
quantization of the Poisson manifold Xk = S(Mk(C)) (see [15, Theorem 3.4] for a
detailed proof).

We specialize these models to the case k = 2. One-dimensional quantum spin
systems arising in that way are widely studied in (condensed matter) physics, but also
in mathematical physics they form an important field of research, especially in view of
spontaneous symmetry breaking (SSB). One tries to calculate quantities like the free
energy, or the entropy of the system in question and considers their thermodynamic
limit as the number of sites N increase to infinity [16]. For this reason, the case k = 2
is already of huge interest, since each site of such a spin chain is exactly described by
the algebra of (2 × 2)-matrices. On the other hand, the Bloch sphere S2 acting as a
classical phase space which describes a physical system may be a spin system of total
spin j , but it can also be a collection of n two-level atoms [2] corresponding to a spin
chain of n sites, which is, for example, the case for the quantum Curie–Weiss model

4 In particular, the quantization maps define (quasi-)symmetric sequences and hence macroscopic observ-
ables.
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[15]. Inspired by that model, which admits a classical limit5 on S2 (i.e., the smooth
boundary of X2 = S(M2(C)) ∼= B3, where B3 denotes the closed unit ball in R

3),
we asked ourselves if the quantization maps Q1/N quantizing X2 could in general be
related to another well-known strict deformation quantization of S2 whose details are
explained in what follows.6

From the mathematical side, we observe that k = 2 is the unique case where Xk

admits a smooth boundary, as said X2 = B3 and ∂X2 = S2. Furthermore, S2 is a
Poisson submanifold of B3, when the latter is equipped with the Poisson structure
(1.16) specialized to k = 2, so that Ca

bc = εabc. This is because S2 (and also B3) is

invariant under the flow of the Hamilton vector fields of R
k2−1 constructed out of the

Poisson bracket (1.16). For k = 2, we precisely have

{ f , g}(B3)|S2 = { f |S2 , g|S2}(S
2) if f , g ∈ Ã0, (1.15)

with obvious notation. In particular,

{ f , g}(B3)(x) =
3∑

a,b,c=1

εabcxc
∂ f

∂xa

∂g

∂xb
, x ∈ B3. (1.16)

This paper only concerns the case k = 2. In a sense, we promote at quantum level
the illustrated interplay of the two symplectic structures of X2 = B3 and ∂B3 = S2.
As a matter of fact, we consider the quantization elements Q1/N ( f ) ∈ B((C2)N⊗)

under the maps (1.13)–(1.14) referred to the symplectic structure of B3. Next we
restrict the operators Q1/N ( f ) to a suitable common invariant subspace of (C2)N⊗.
It turns out that, for large N , these restricted operators correspond to the image of
another quantization map Q′

1/N acting on C(∂B3) and referring to the symplectic

structure of ∂B3.
The said invariant subspace7 is SymN (C2) ⊂ (C2)N⊗, for which the correspond-

ing algebras B(SymN (C2)) exactly correspond to the fibers (for N �= 0) of another
continuous bundle of C∗-algebras given by (1.17)–(1.18). It is a well-known fact that
these fibers together with quantization maps (1.21)–(1.22) below give rise to a strict
deformation quantization of S2 [5,13,18] according to Definition 1.1.

Indicating the algebra of bounded operators by B(SymN (C2)), it is known [14,
Theorem 8.1] that

A′
0 = C(S2); (1.17)

A′
1/N = MN+1(C) ∼= B(SymN (C2)), (1.18)

5 This means that 〈�(0)
N , Q1/N ( f )�(0)

N 〉 admits a limit as N → ∞ for any function f ∈ Ã0, and �
(0)
N the

ground state eigenvector of the quantum CW Hamiltonian (see [15, Theorem 4.1] for details).
6 Of course, one can always try to restrict Ã0 to Ã′

0, but in that case the same manifolds are quantized
which is not of particular new interest.
7 This space is clearly invariant under the maps (1.13)–(1.14).
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are the fibers of a continuous bundle of C∗-algebras over the same base space I as
in (1.9) whose continuous cross sections are given by all sequences (a1/N )N∈N ∈
�n∈NA′

1/N for which a0 ∈ C(S2) and a1/N ∈ MN+1(C) and such that the sequence
(a1/N )N∈N is asymptotically equivalent to (Q′

1/N (a0))N∈N, in the sense that

lim
N→∞ ||a1/N − Q′

1/N (a0)||N = 0. (1.19)

Here, the symbol Q′
1/N denotes the quantization maps

Q′
1/N : Ã′

0 → A′
1/N , (1.20)

where Ã′
0 ⊂ C∞(S2) ⊂ A′

0 is the dense Poisson subalgebra made of polynomials
in three real variables restricted the sphere S2. The maps Q′

1/N are defined by8 the
integral computed in weak sense

Q′
1/N (p) := N + 1

4π

∫

S2
p(	)|	〉〈	|Nd	 , (1.21)

where p denotes an arbitrary polynomial restricted to S2, d	 indicates the unique
SO(3)-invariant Haar measure on S2 with

∫
S2 d	 = 4π , and |	〉〈	|N ∈

B(SymN (C2)) are so-called N coherent spin states defined in “Appendix B.” In par-
ticular, if 1 is the constant function 1(	) = 1, (	 ∈ S2), and 1N is the identity on
A′
1/N = B(SymN (C2)), the previous definition implies

Q′
1/N (1) = 1N . (1.22)

Indeed, it can be shown that the quantization maps (1.21)–(1.22) satisfy the axioms of
Definition 1.1, which implies the existence of a strict deformation quantization of S2.9

These quantization maps, constructed from a family coherent states (as opposed to the
maps (1.13)–(1.14) which are defined in a complete different way), also define a so-
called Berezin quantization [13] for which (B.3) typically holds as well as positivity,
in that Q1/N ( f ) ≥ 0 if f ≥ 0 almost everywhere on S2.

The main result of this work is an asymptotic relation connecting the bulk and the
boundary quantization maps:

∣
∣
∣
∣
∣
∣Q1/N (p)|Sym(N )((C2)N⊗) − Q′

1/N (p|S2)
∣
∣
∣
∣
∣
∣
N

→ 0 for N → +∞ , p ∈ Ã0

established in Theorem 2.3. We stress that the validity of the Dirac–Groenewold–
Rieffel condition (1.6) for both maps is possible just thank to (1.15).

8 Equivalent definitions of these quantization maps are used in the literature, see, e.g., [14,18].
9 We remark that S2 is a special case of a regular integral coadjoint orbit in the dual of the Lie algebra
associated with SU (2), which can be identified with R

3. In fact, this theory can be generalized to arbitrary
compact connected Lie groups [13].
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Theplan of this paper is as follows. In section 2,we state andprove ourmain theorem
(Theorem2.3) establishing a connection between the strict deformation quantization of
X2 and the one of S2 defined above.We show that the quantization maps Q1/N defined
by (1.13)–(1.14) whose images are restricted to SymN (C2) satisfy the identity above
with respect to the other quantization map Q′

1/N . In section 3, we apply our theorem
to the Curie–Weiss model which links the corresponding quantum Hamiltonian to
its classical counterpart on the sphere. In the appendix, we provide a comprehensive
overview of useful definitions.

2 Interplay of bulk quantizationmapQ1/N and boundary
quantizationmapQ′

1/N

In order to arrive at the main theorem of this paper, we first introduce some vector
spaces. We let PN to be the complex vector space of polynomials in the variables
x, y, z ∈ R

3 of degree ≤ N where N ≥ 1, and let PN (S2) be the vector space made
of the restrictions to S2 of those polynomials.

2.1 Preparatory results onQ′
1/N and harmonic polynomials

Definition (1.21) can actually be stated replacing the polynomial p by a generic
f ∈ C(S2), though its meaning as a quantization map is valid for the domain of the
polynomials restricted to S2 as indicated in (1.21). The map associating f ∈ C(S2)
with

Q′
1/N ( f ) : SymN (C2) → SymN (C2); (2.1)

Q′
1/N ( f ) := N + 1

4π

∫

S2
f (	)|	〉〈	|Nd	, (2.2)

is well defined and it is surjective on B(SymN (C2)) since, for every A : SymN (C2) →
SymN (C2), there exists a function p ∈ PN (S2) such that A = Q′

1/N (p). Indeed, that
the function

p(	) := tr(A

(1)
N (	)) , (2.3)

where 	 ∈ S2 and 	 �→ 

(1)
N ∈ SymN (C2) is defined by Definition (2.6) in [12],

defines a polynomial on the sphere, i.e.,

tr(A

(1)
N ) ∈ PN (S2). (2.4)

In particular, we realize that the linear map (2.2) cannot be injective on the domain
C(S2) since this space is infinite-dimensional, whereas the co-domain is finite-
dimensional. Nevertheless, if restricting the domain to PN (S2), the said map turns
out to be bijective.
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Proposition 2.1 The map

PN (S2) � p �→ Q′
1/N (p) := N + 1

4π

∫

S2
p(	)|	〉〈	|Nd	 ∈ B(SymN (C2)) (2.5)

is a bijection for N > 1.

Proof The said map is obviously surjective, as already observed, because, by defining
p(	) := tr(A


(1)
N (	)) for A ∈ B(Sym(N )(C2)), we have A = Q′

1/N (p). Let us

prove injectivity. It is well known [21] that dim(PN (S2)) = (N + 1)2 if N > 1. On
the other hand, dim(B(Sym(N )(C2))) = (N + 1)2 as one immediately proves. As
dim(B(Sym(N )(C2))) = dim(PN (S2)) < +∞, surjectivity implies injectivity from
elementary results of linear algebra. ��

Going back to Weyl, let us recall a few results on the theory of SO(3) representa-
tions of polynomials restricted to the unit sphere. The group SO(3) admits a natural
representation on PN (S2) given by

SO(3) � R �→ ρR , (ρR p)(	) := p(R−1	) ∀p ∈ PN (S2) ,∀	 ∈ S2. (2.6)

In turn, the space PN (S2) admits a direct decomposition into invariant and irreducible
subspaces under the action of ρ, viz.

PN (S2) =
⊕

j=0,1,...,N

P( j)
N (S2).

Each subspace P( j)
N (S2) consists of the restrictions to S2 of the homogeneous poly-

nomials of order j that are also harmonic functions. P( j)
N (S2) has dimension 2 j + 1.

Example 2.2 If N = 2,

P2(S
2) = P(0)

2 (S2) ⊕ P(1)
2 (S2) ⊕ P(2)

2 (S2) .

In the right-hand side, the first subaspace is the span of the restriction to S2 of the
constant polynomial p(x, y, z) := 1, the second one is the span of the restrictions of
the three polynomials p j (x, y, z) := x j , j = 1, 2, 3 where x1 = x, x2 = y, x3 = z,
and the third one is the span of the restrictions to S2 of five elements suitably chosen10

of the six polynomials pi j (x, y, z) := xi x j − 1
3δi j (x

2 + y2 + z2) for i, j ∈ {1, 2, 3}.

If ρ
( j)
R is the restriction of ρR to P( j)

N (S2) and {p( j)
m }m=− j,− j+1,..., j−1, j is a basis

of P( j)
N (S2), we find

ρ
( j)
R p( j)

m =
j∑

m′=− j

D( j)
mm′(R−1)p( j)

m′ . (2.7)

10 The restrictions to S2 of these six polynomials and the one of the above p form a linearly dependent set.
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2950 V. Moretti, C. J. F. van de Ven

Each class of matrices {D( j)(R)}R∈SO(3) defines an irreducible representation of
SO(3) in C

2 j+1. These representations are completely fixed by their dimension, i.e.,
by j , up to equivalence given by similarity transformations, and different j correspond
to similarity inequivalent representations. Every irreducible representation of SO(3)
is unitarily equivalent to one of the D( j).

2.2 Themain theorem

Before arriving at the main theorem of this paper, we recall that by construction the
space Ã0 is the complex vector space of polynomials in three variables on the closed
unit ball B3 which, in particular, contains all polynomials of PM (M ∈ N) restricted
to B3 [15]. In the proof of the theorem, we occasionally use the space Ã0 as well as
PN , where the former is the domain of the quantization maps Q1/N , whereas the latter
is used to underline the degree of the polynomial in question.

Theorem 2.3 If p ∈ Ã0, then

∣
∣
∣
∣
∣
∣Q1/N (p)|Sym(N )((C2)N⊗) − Q′

1/N (p|S2)
∣
∣
∣
∣
∣
∣
N

→ 0 for N → +∞ ,

the (operator) norm being the one on B(SymN (C2)).

Remark 2.4 We stress that the result does not automatically imply that the cross sec-
tions (1.13)–(1.14)whose images are restricted to SymN (C2) are also continuous cross
sections of the fibers defined in (1.17)–(1.18), since f ∈ A0 = C(B3) does not imply
that f ∈ A′

0 = C(S2).

Proof We start the proof by discussing the interplay between the action of SO(3)
and the quantization maps Q1/N , defined in (1.13). We first focus on a homogeneous
polynomial of order M < N .11 If k1, . . . , kM are taken in {1, 2, 3} and

pk1···kM (x, y, z) := xk1 · · · xkM , (2.8)

the representation (2.6) implies that

(
ρR pk1···kM

)
(x, y, z) = (R−1

U )k1
j1 · · · (R−1

U )kM
jM pk1···kM (x, y, z) . (2.9)

We stress that when restricting to S2, every p( j)
m is a linear combination of the restric-

tions of the polynomials pk1···kM so that, by extending (2.9) by linearity and working

on p( j)
m , (2.9) must coincide with (2.7)

(
ρ

( j)
R p( j)

m

)
(x, y, z) =

j∑

m′=− j

D( j)
mm′(R−1)p( j)

m′ (x, y, z) , (x, y, z) ∈ S2 .

11 As we are dealing with a limit in N , we can safely take N such that M < N .
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Since both sides are restrictions of homogeneous polynomials of the same degree j ,
this identity is valid also removing the constraint (x, y, z) ∈ S2:

(
ρ

( j)
R p( j)

m

)
(x, y, z) =

j∑

m′=− j

D( j)
mm′(R−1)p( j)

m′ (x, y, z) , (x, y, z) ∈ R
3 , (2.10)

where now the p( j)
m are homogeneous polynomials in PM whose restrictions are the

basis elements of P( j)
M (S2)with the same name.We underline that for our quantization

maps Q1/N we need p( j)
m to be a polynomial in Ã0, rather than in PM . However, since

Ã0 contains all polynomials of PM restricted to B3 which has non-empty interior,
polynomials of PM are in one-to-one correspondence with those of Ã0. Therefore, in
view of (2.10) the same statement holds when we replace (x, y, z) ∈ R

3 by (x, y, z) ∈
B3. Now, by definition of the quantization maps Q1/N we know that

Q1/N (pk1···kM ) = SN ,M

⎛

⎝σk1 ⊗ · · · ⊗ σkM ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−M times

⎞

⎠ .

Let us indicate by RU ∈ SO(3) the image of U ∈ SU (2) through the universal
covering homomorphism � : SU (2) → SO(3). This covering homomorphism as is
well known satisfies (using the summation convention on repeated indices)

Uσ jU
∗ = (R−1

U ) j
k
σk . (2.11)

Remembering that SymN (C2) is invariant under the tensor representationU ⊗ · · · ⊗U︸ ︷︷ ︸
N times

,

we have

U ⊗ · · · ⊗U︸ ︷︷ ︸
N times

|SymN (C2) Q1/N (pk1···kM )|SymN (C2) U∗ ⊗ · · · ⊗U∗
︸ ︷︷ ︸

N times

|SymN (C2)

=
⎛

⎝U ⊗ · · · ⊗U︸ ︷︷ ︸
N times

Q1/N (pk1···kM )U∗ ⊗ · · · ⊗U∗
︸ ︷︷ ︸

N times

⎞

⎠ |SymN (C2)

= (R−1
U )k1

j1 · · · (R−1
U )kM

jM Q1/N (p j1... jM )|SymN (C2) .

Let us consider linear combinations p( j)
m of polynomials pk1···kM whose restriction to

S2 define the basis element, indicated with the same symbol, p( j)
m ∈ P( j)

M (S2). Since
the map Q1/N is linear, from (2.10) we have
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2952 V. Moretti, C. J. F. van de Ven

⎛

⎝U ⊗ · · · ⊗U︸ ︷︷ ︸
N times

Q1/N (p( j)
m )U∗ ⊗ · · · ⊗U∗

︸ ︷︷ ︸
N times

⎞

⎠ |SymN (C2)

=
∑

m′
D( j)
mm′(R−1)Q1/N (p( j)

m′ )|SymN (C2) . (2.12)

Let us now pass to the other quantization map Q′
1/N observing that (2.12) and Propo-

sition 2.1 entail

Q1/N (p( j)
m )|SymN (C2) = Q′

1/N (q( j)
m ) = N + 1

4π

∫

S2
q( j)
m (	)|	〉〈	|Nd	 (2.13)

for some q( j)
m ∈ PN (S2) (where N > M in general) is the unknown restriction to S2

of a polynomial in PN . Exploiting (2.12) and linearity, we find

U ⊗ · · · ⊗U︸ ︷︷ ︸
N times

|SymN (C2) Q1/N (p( j)
m )|SymN (C2) U∗ ⊗ · · · ⊗U∗

︸ ︷︷ ︸
N times

|SymN (C2)

= N + 1

4π

∫

S2

∑

m′
D( j)
m′ (R−1)q( j)

m′ (	)|	〉〈	|Nd	 . (2.14)

Again, from (2.2) we have the general relation

V A(N )
f V ∗ = N + 1

4π

∫

S2
f (	)V |	〉〈	|NV ∗d	 .

Specializing to V = U ⊗ · · · ⊗U︸ ︷︷ ︸
N times

|SymN (C2), we obtain (see Lemma 2.6)

V |	〉 = eiαU ,	 |RU	〉 (2.15)

where the phase is irrelevant as it disappears in view of later computations; hence,

V A(N )
f V ∗ = N + 1

4π

∫

S2
f (	)|RU	〉〈RU	|Nd	

= N + 1

4π

∫

S2
f (R−1

U 	)|RU R−1
U 	〉〈RU R−1

U 	|NdR−1
U 	,

namely

U ⊗ · · · ⊗U︸ ︷︷ ︸
N times

|SymN (C2) AU∗ ⊗ · · · ⊗U∗
︸ ︷︷ ︸

N times

|SymN (C2)

= N + 1

4π

∫

S2
f (R−1

U 	)|	〉〈	|Nd	 (2.16)
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where we took advantage of d	 = dR−1	 if R ∈ SO(3). To conclude, if A =
Q1/N (p( j)

m ), identity (2.14) yields

∫

S2

∑

m′
D( j)
mm′(R−1)q( j)

m′ (	)|	〉〈	|Nd	 =
∫

S2
q( j)
m (R−1

U 	)|	〉〈	|Nd	 .

Since the map (2.2) is bijective on PN (S2), it must be

q( j)
m (R−1	) =

∑

m′
D( j)
mm′(R−1)q( j)

m′ (	) , ∀	 ∈ S2 ,∀R ∈ SO(3) (2.17)

Linearity and bijectivity of the map (2.5) also imply that, varying m = − j,− j +
1, . . . , j − 1, j the functions q( j)

m form a basis of a 2 j + 1-dimensional subspace of
PN (S2). We can expand each of these functions over the basis of functions p( j)

m of
PN (S2):

q( j ′)
m′ =

N∑

j=0

j∑

m=− j

C ( j ′, j)
m′m p( j)

m , (2.18)

where both sides are now and henceforth evaluated on S2. Here, (2.7) and (2.17)
together imply

∑

j,m,κ

D( j)
m′κ(R)C ( j ′, j)

κm p( j)
m =

∑

j,m,�

C ( j ′, j)
m′m D( j)

m� (R)p( j)
� ,

that is,

∑

j,�,κ

D( j)
m′κ(R)C ( j ′, j)

κ� p( j)
� =

∑

j,m,�

C ( j ′, j)
m′m D( j)

m� (R)p( j)
� .

Since the set of the (restrictions of to the sphere of the) p( j) is a basis,

∑

m

D( j)
m′m(R)C ( j ′, j)

m� =
∑

m

C ( j ′, j)
m′m D( j)

m� (R) .

Since the representation D( j) is irreducible, Schur’s lemma implies that there are
complex numbers C ( j ′, j) such that

C ( j ′, j)
m� = C ( j ′, j)δm� .

In summary, (2.19) reduces to

q( j ′)
m =

M∑

j=0

C ( j ′, j) p( j)
m |S2 . (2.19)
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However, since the elements in the left-hand side are 2 j ′ + 1, whereas for every j in
the right-hand side we have 2 j + 1 elements and the spaces of these representations
transform separately, the only possibility is that C ( j ′, j) = 0 if j �= j ′. In other words,

q( j,N )
m = C ( j)

N p( j)
m |S2 for every given j = 0, 1, 2, . . . , M , (2.20)

where

(i) we have terminated j to M < N because the initial polynomial p( j)
m has been

chosen in P( j)
M (S2);

(ii) we have restored the presence of N , since C ( j)
N may depend on N .

Let us examine what happens toC ( j)
N at large N . First observe that (2.20) immediately

implies

Q1/N (p( j)
m )|SymN (C2) = C ( j)

N
N + 1

4π

∫

S2
p( j)
m (	)|	〉〈	|Nd	.

Taking the expectation value 〈	′| · |	′〉, we find

p( j)
m (	′) = C ( j)

N

∫

S2
p( j)
m (	)

N + 1

4π
|〈	′|	〉N |2d	 . (2.21)

In Lemma 2.5, we prove that limN→+∞ C ( j)
N exists and is finite. Hence,

p( j)
m (	′) =

(

lim
N→+∞C ( j)

N

)

p( j)
m (	′),

where we exploited Proposition 4.2 of [15], so that

lim
N→+∞C ( j)

N = 1.

This reasoning implies the claim for the considered special polynomials since, for
N → +∞,

∣
∣
∣
∣

∣
∣
∣
∣Q1/N (p( j)

m )|SymN (C2) − N + 1

4π

∫

S2
p( j)
m |S2(	)|	〉〈	|Nd	

∣
∣
∣
∣

∣
∣
∣
∣
N

= |CN − 1|
∣
∣
∣
∣

∣
∣
∣
∣
N + 1

4π

∫

S2
p( j)
m |S2(	)|	〉〈	|Nd	

∣
∣
∣
∣

∣
∣
∣
∣
N

≤ |CN − 1|||p( j)
m |S2 ||∞ → 0

(2.22)

The found result immediately extends to every polynomial of given degree M which
can be written as a linear combination of the p( j)

m viewed as polynomials. To pass to
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a generic polynomial in Ã0 (say of degree M), we observe that, as a consequence of
known results [21], the map

Ã0 � p �→ p|S2 ∈ PM (S2)

has a kernel made of all possible polynomials of the form q(x, y, z)(x2 + y2 + z2 −1)
with q ∈ PM−2. Furthermore, Proposition 2.7 proves that, for every q ∈ PM−2,

||Q1/N (q(x, y, z)(x2 + y2 + z2 − 1))|SymN (C2)||N → 0 as N → +∞. (2.23)

So, if p ∈ Ã0 is a polynomial of degree M , then we can write for a finite number of
coefficients C ( j,m) and some polynomial q ∈ PM−2,

p =
∑

j,m

C ( j,m) p( j)
m + q(x, y, z)(x2 + y2 + z2 − 1), (2.24)

where the p( j)
m and q are here interpreted as elements of PM and PM−2, respectively,

restricted to B3. Hence,

Q1/N (p)|SymN (C2) =
∑

j,m

C ( j,m)Q1/N (p( j)
m )|SymN (C2)

+Q1/N (q(x, y, z)(x2 + y2 + z2 − 1))|SymN (C2) .

The former term on the right-hand side tends to Q′
1/N (p|S2), and the latter vanishes

as N → +∞ proving the thesis.

2.3 Subsidiary technical results

Lemma 2.5 limN→+∞ C ( j)
N exists and is finite.

Proof Since the left-hand side of (2.21) does not depend on N and the integral in the
right-hand side tends to p( j)

m (	′), the only possibility that the limit limN→+∞ C ( j)
N

prevents from existing (or that makes it infinite) is p( j)
m (	′) = 0. This result should

be true for all 	′, since limN→+∞ CN is independent of 	′. However, the polynomial
p( j)
m (restricted to S2) is not the zero function since it is an element of a basis. ��

Lemma 2.6 Eq. (2.15) is true.

Proof As is well known (see [15] for a summary of those properties and technical
references),

	 · σ |	〉1 = |	〉1 .

Applying U to both sides gives

	 ·UσU∗U |	〉1 = U |	〉1.
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Namely, from (2.11) we obtain

	 · (R−1
U σ)U |	〉1 = U |	〉1,

that is,

(RU	) · σ Ur |	〉1 = U |	〉1 .

We also know that

(RU	) · σ |RU	〉1 = |RU	〉1 .

Since the eigenspace of (R−1	) · σ with eigenvalue 1 is one-dimensional, for some
real β	,U , we must have

U |	〉1 = eiβ	,U |RU	〉1 .

Taking advantage of |	〉N = |	〉1 ⊗ · · · ⊗ |	〉1︸ ︷︷ ︸
N times

and V = U ⊗ · · · ⊗U︸ ︷︷ ︸
N times

|SymN (C2),

we immediately achieve (2.15) with α	,U = Nβ	,U . ��

Proposition 2.7 Equations (2.23) is true.

Proof We use the canonical (Dicke) basis [15,18] |n, N − n〉 for SymN (C2) (n =
0, . . . , N ) and first show that the matrix elements with respect to this basis are zero:

〈n|Q1/N (q(x, y, z))Q1/N (x2 + y2 + z2 − 1)|k〉 = 0, (k, n = 0, . . . , N ). (2.25)

Consider now a basis vector |k, N − k〉. We first expand |k, N − k〉 in the standard
basis vectors βi (i = 1, . . . , 2N ) spanning the Hilbert space

⊗N
C
2. We denote by

Ok the orbit consisting of
(N
k

)
-basis vectors βi with the same number of occurrence

of the vectors e2 and e1, the two basis vectors of C
2. By convention, we take e1 such

that σ3e1 = e1, and σ3e2 = −e2. It is not difficult to show that [25,26]

|k, N − k〉 = 1
√(N

k

)

(Nk )∑

l=1

βk,l

where the subindex l in βk,l labels the basis vector βk,l ∈ β within the same orbit
Ok . Since we have

(N
k

)
such vectors per orbit, the sum in the above equation indeed is

from l = 1, . . . ,
(N
k

)
. By definition, Q1/N (x2i ) = S2,N (σi ⊗ σi ) for i = 1, 2, 3. Using

a combinatorial argument and the fact that all |k〉 are symmetric, it follows that
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S2,N (σ2 ⊗ σ2)|k〉 = 1
√(N

k

)

(Nk )∑

l=1

(σ2 ⊗ σ2 ⊗ 1 · · · ⊗1)βk,l

= 1
√(N

k

)

(

−
(
N − 2

k − 2

)

βk−2,l + 2

(
N − 2

k − 1

)

βk,l −
(
N − 2

k

)

βk+2,l .

Similarly,

S2,N (σ1 ⊗ σ1)|k〉
= 1

√(N
k

)

((
N − 2

k − 2

)

βk−2,l + 2

(
N − 2

k − 1

)

βk,l +
(
N − 2

k

)

βk+2,l;

and

S2,N (σ3 ⊗ σ3)|k〉
= 1

√(N
k

)

((
N − 2

k − 2

)

βk,l − 2

(
N − 2

k − 1

)

βk,l +
(
N − 2

k

)

βk,l .

In view of Definition 1.1 (property 3(b)), the cross section 0 → f and 1/N →
Q1/N ( f ) defines a continuous section of the bundle implying that the following con-
dition (see also the remark below Definition 1.1) is automatically satisfied:

lim
N→∞ ||Q1/N ( f )Q1/N ( f ) − Q1/N ( f g)||N = 0. (2.26)

We apply this with f = q(x, y, z) and g(x, y, z) = x2 + y2 + z2 − 1. We first show
that

〈n|Q1/N (q(x, y, z))Q1/N (x2 + y2 + z2 − 1))|k〉 = 0,

for all basis vectors |n〉 and |k〉 in SymN (C2). Indeed, using the above identities one
finds

〈n|Q1/N (q(x, y, z))Q1/N (x2 + y2 + z2 − 1)|k〉

= 1
√(N

n

)
1

√(N
k

)

(Nn )∑

l=1

(Nk )∑

r=1

〈βn,l , QN (q(x, y, z))

(

S2,N (σ1 ⊗ σ1) + S2,N (σ2 ⊗ σ2) + S2,N (σ3 ⊗ σ3)

)

βk,r 〉

− 1
√(N

n

)
1

√(N
k

)

(Nn )∑

l=1

(Nk )∑

r=1

〈βn,l , Q1/N (q(x, y, z))βk,r 〉

= 1
√(N

n

)
1

√(N
k

)

(Nn )∑

l=1

〈βn,l , QN (q(x, y, z))

((
N − 2

k − 2

)

+
(
N − 2

k

)

+ 2

(
N − 2

k − 1

)

−
(
N

k

))

βk,r 〉
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1
√(N

n

)
1

√(N
k

)

(Nn )∑

l=1

〈βn,l , QN (q(x, y, z))

((
N

k

)

−
(
N

k

))

βk,r 〉 = 0.

Since this holds for all basis vectors andSymN (C2) is invariant under Q1/N (q(x, y, z))
and Q1/N (x2 + y2 + z2 − 1), we conclude

(

Q1/N (q(x, y, z))Q1/N (x2 + y2 + z2 − 1)

)

|SymN (C2) = 0. (2.27)

Therefore, for any symmetric unit vector φ ∈ SymN (C2) we compute

||Q1/N (q(x, y, z)(x2 + y2 + z2 − 1))φ||N
=

∣
∣
∣
∣

∣
∣
∣
∣

(

Q1/N (q(x, y, z)(x2 + y2 + z2 − 1)) − Q1/N (q(x, y, z))Q1/N (x2 + y2 + z2 − 1)

)

φ

∣
∣
∣
∣

∣
∣
∣
∣
N

≤ ||Q1/N (q(x, y, z)(x2 + y2 + z2 − 1)) − Q1/N (q(x, y, z))Q1/N (x2 + y2 + z2 − 1)||N .

As a consequence of (2.26), for every ε > 0 there is Nε such that

||Q1/N (q(x, y, z)(x2 + y2 + z2 − 1))φ||N < ε if N > Nε

the crucial observation is that due to (2.26) the number Nε does not depend on the unit
vector φ ∈ SymN (C2). Therefore, the above bound is uniform, and

||Q1/N (q(x, y, z)(x2 + y2 + z2 − 1))|SymN (C2)||N
= sup

||φ||=1 ,φ∈SymN (C2)

||Q1/N (q(x, y, z)(x2 + y2 + z2 − 1))φ||N ≤ ε if N > Nε,

which means

lim
N→∞ ||Q1/N (q(x, y, z)(x2 + y2 + z2 − 1))|SymN (C2)||N = 0.

This closes the proof of the proposition. ��

3 Application to the quantum Curie–Weiss model

We apply the previous theorem to the (quantum) Curie–Weiss model12, which is an
exemplary quantum mean-field spin model. We recall that the quantum Curie Weiss

12 This model exists in both a classical and a quantum version and is a mean-field approximation to the
Ising model. See, e.g., [9] for a mathematically rigorous treatment of the classical version, and [6,11] for
the quantum version. For our approach, the papers [4,8,20] played an important role. See also [1] for a very
detailed discussion of the quantum Curie–Weiss model.
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defined on a lattice with N sites is

hCW
1/N : C2 ⊗ · · · ⊗ C

2
︸ ︷︷ ︸

N times

→ C
2 ⊗ · · · ⊗ C

2
︸ ︷︷ ︸

N times

; (3.1)

hCW
1/N = 1

N

⎛

⎝− J

2N

N∑

i, j=1

σ3(i)σ3( j) − B
N∑

j=1

σ1( j)

⎞

⎠ . (3.2)

Here, σk( j) stands for I2 ⊗ · · · ⊗ σk ⊗ · · · ⊗ I2, where σk occupies the j th slot, and
J , B ∈ R are given constants defining the strength of the spin–spin coupling and the
(transverse) external magnetic field, respectively. Note that

hCW
1/N ∈ Sym(M2(C)⊗N ), (3.3)

where Sym(M2(C)⊗N ) is the range of the symmetrizer. Our interest will lie in the
limit N → ∞. As such, we rewrite hCW

1/N as

hCW
1/N = − J

2N (N − 1)

N∑

i �= j, i, j=1

σ3(i)σ3( j) − B

N

N∑

j=1

σ1( j) + O(1/N ).

= Q1/N (hCW
0 ) + O(1/N ), (3.4)

where O(1/N ) is meant in norm (i.e., the operator norm on each space M2(C
2)⊗N ),

and the classical Curie–Weiss Hamiltonian is

hCW
0 : B3 �→ R; (3.5)

hCW
0 (x, y, z) = −

(
J

2
z2 + Bx

)

, x = (x, y, z) ∈ B3, (3.6)

where B3 = {x ∈ R
3 | ‖x‖ ≤ 1} is the closed unit ball in R

3.
Using these observations, we now show that the quantumCurie–Weiss Hamiltonian

restricted to the symmetric space is asymptotically norm-equivalent also to the other
quantization map Q′

1/N applied to hCW
0 |S2 .

Theorem 3.1 One has
∣
∣
∣
∣
∣
∣hCW

1/N |SymN (C2) − Q′
1/N (hCW

0 |S2)
∣
∣
∣
∣
∣
∣
N

→ 0 for N → ∞. (3.7)

Proof Using (3.4) and Theorem (2.3),

∣
∣
∣
∣
∣
∣hCW

1/N |SymN (C2) − Q′
1/N (hCW

0 |S2)
∣
∣
∣
∣
∣
∣
N

≤
∣
∣
∣
∣

∣
∣
∣
∣Q1/N (hCW

0 )|SymN (C2) + O(
1

N
)|SymN (C2) − Q′

1/N (hCW
0 |S2)

∣
∣
∣
∣

∣
∣
∣
∣
N
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≤
∣
∣
∣
∣
∣
∣Q1/N (hCW

0 )|SymN (C2) − Q′
1/N (hCW

0 |S2)
∣
∣
∣
∣
∣
∣
N

→ 0 (as N → ∞). (3.8)

��
This, in particular, establishes a link between the (compressed) quantum Curie–

Weiss spin Hamiltonian and its classical counterpart on the sphere.
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Appendix A: Continuous bundle of C∗-algebras

For any unital C∗-algebra B, the following fibers may be turned into a continuous
bundle of C∗-algebras over the base space I = {0} ∪ 1/N ⊂ [0, 1] (with relative
topology, so that (1/N ) → 0 as N → ∞):

A0 = C(S(B)); (A.1)

A1/N = B⊗N . (A.2)

Here, S(B) is the (algebraic) state space of B equipped with the weak∗-topology (in
which it is a compact convex set, e.g., the three-ball S(M2(C)) ∼= B3 ⊂ R

3), and
B⊗N is the N th tensor power of B also denoted by BN in what follows).13 As in the
case of vector bundles, the continuity structure of a bundle of C∗-algebras may be
defined (indirectly) by specifying what the continuous cross sections are. To do so for
(A.1)–(A.2), we need the symmetrization operator SN : BN → BN , defined as the
unique linear continuous extension of the following map on elementary tensors:

SN (a1 ⊗ · · · ⊗ aN ) := 1

N !
∑

σ∈P(N )

aσ(1) ⊗ · · · ⊗ aσ(N ). (A.3)

13 Although this is irrelevant for our main application B = Mk (C), for general C∗-algebras B, one should
equip BN with the minimal C∗-norm ‖ ‖N [14,24].
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Furthermore, for N ≥ M we need to generalize the definition of SN to give a bounded
operator SM,N : BM → BN , defined by linear and continuous extension of

SM,N (b) := SN (b ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−M times

), b ∈ B⊗M . (A.4)

We write cross sections a of (A.1)–(A.2) as sequences (a0, a1/N )N∈N, where a(0) =
a0, etc. Following [20], the part of the cross section (a1/N )N∈N away from zero (i.e.,
with a0 omitted) is called symmetric if there exist M ∈ N and a1/M ∈ B⊗M such
that

a1/N = SM,N (a1/M ) for all N ≥ M, (A.5)

and quasi-symmetric if a1/N = SN (a1/N ) if N ∈ N, and for every ε > 0, there is a
symmetric sequence (b1/N )N∈N as well as M ∈ N (both depending on ε) such that

‖a1/N − b1/N‖ < ε for all N > M . (A.6)

The continuous cross sections of the bundle (A.1) - (A.2), then, are the sequences
(a0, a1/N )N∈N for which the part (a1/N )N∈N away from zero is quasi-symmetric and

a0(ω) = lim
N→∞ ωN (a1/N ), (A.7)

whereω ∈ S(B), andωN = ω ⊗ · · · ⊗ ω︸ ︷︷ ︸
N times

∈ S(B⊗N ), is the unique (norm) continuous

linear extension of the following map that is defined on elementary tensors:

ωN (b1 ⊗ · · · ⊗ bN ) = ω(b1) · · · ω(bN ). (A.8)

The limit in (A.7) exists provided (a1/N )N∈N is quasi-symmetric (as we assume), and
by [14, Theorem 8.4], this choice of continuous cross sections uniquely defines (or
identifies) a continuous bundle of C∗-algebras over I in (1.9) with fibers (A.1)–(A.2).

Appendix B: Coherent spin states

If |↑〉, |↓〉 are the eigenvectors of σ3 in C
2, so that σ3|↑〉 = |↑〉 and σ3|↓〉 = −|↓〉,

and where 	 ∈ S2, with polar angles θ	 ∈ (0, π), φ	 ∈ (−π, π), we then define the
unit vector

|	〉1 = cos
θ	

2
|↑〉 + eiφ	 sin

θ	

2
|↓〉. (B.1)
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If N ∈ N, the associated N -coherent spin state |	〉N ∈ SymN (C2), equipped with
the usual scalar product 〈·, ·〉N inherited from (C2)N , is defined as follows [18]:

|	〉N = |	〉1 ⊗ · · · ⊗ |	〉1︸ ︷︷ ︸
N times

. (B.2)

An important property relevant for our computations was established in [15]

f (	′) = lim
N→∞

N + 1

4π

∫

S2
d	 f (	′)|〈	,	′〉N |2, ( f ∈ C(S2)) . (B.3)
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