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Backing up the intermediate results of hardware-accelerated deep inference is crucial to ensure the progress of execution on batteryless
computing platforms. However, hardware accelerators in low-power AI platforms only support the one-shot atomic execution of
one neural network inference without any backups. This paper introduces a new toolchain for MAX78000, which is a brand-new
microcontroller with a hardware-based convolutional neural network (CNN) accelerator. Our toolchain converts any MAX78000-
compatible neural network into an intermittently executable form. The toolchain enables finer checkpoint granularity on theMAX78000
CNN accelerator, allowing for backups of any intermediate neural network layer output. Based on the layer-by-layer CNN execution,
we propose a new backup technique that performs only necessary (urgent) checkpoints. The method involves the batteryless system
switching to ultra-low-power mode while charging, saving intermediate results only when input power is lower than ultra-low-power
mode energy consumption. By avoiding unnecessary memory transfer, the proposed solution increases the inference throughput by
1.9× for simulation and by 1.2× for real-world setup compared to the coarse-grained baseline execution.
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1 INTRODUCTION

Intermittent computing is a paradigm in which resource-constrained devices operate without batteries and execute
programs during active periods interleaved with frequent power outages. In this paradigm, devices utilize energy
harvesters to charge their short-term energy storage, such as capacitors, by harnessing environmental power, which
may vary rapidly over time. When a device is powered on and actively computing, its energy storage frequently depletes,
resulting in power failures that shut down the device and clear the volatile computational state, including the contents
of main memory and registers. The device can turn on again once the energy storage is fully recharged. Given the
intermittent nature of operation, it is essential to back up the computational state when a power failure is imminent to
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preserve computational progress. Embedded non-volatile memory (e.g., FRAM (Ferroelectric-RAM) [20]) in de facto
microcontrollers (MCUs) in intermittent computing platforms (e.g., TI MSP430FR series [21]) retains data after power
failures. It enables backup and recovery of computational state to ensure the progress of energy harvesting applications
running intermittently [6, 26, 40, 44, 45].

As the trend towards enabling ultra-low-power intelligence at the edge grows [13], standard intermittent computing
platforms become obsolete and inefficient to execute parallelizable and data-intensive machine learning loads on
batteryless edge devices [2, 16, 25, 28]. Meanwhile, several low-power MCU-based platforms facilitating AI at the edge
are emerging. Compared to the TI MSP series MCUs, these platforms offer more computational power and advanced
hardware acceleration, but they do not have embedded non-volatile memory. For example, MAX78000 [22] is a new
breed of microcontroller with two low-power cores (ARM Cortex-M4 and RISC-V) and a hardware-based convolutional
neural network (CNN) accelerator that consumes only micro-joules of energy for a single inference. The only way to
make this MCU suitable for intermittent computing is to use external non-volatile memory (e.g., SPI-based FRAM),
which allows backup and power-failure recovery during hardware-accelerated intermittent execution of complex
machine learning loads. However, this setting introduces extra overhead in terms of energy and time due to serial
communication during non-volatile memory access (i.e., SPI overhead).
Problem Statement. In addition to the volatile computational state of the MCU, the hardware accelerators in low-power
AI platforms also include volatile state elements that lose their computational state upon power failures. Moreover, their
energy consumption during inference depends on the neural network (NN) size, which is application dependent. For
example, the CNN accelerator on MAX78000 assumes a continuous input power and only supports the one-shot atomic
execution of one neural network inference without any backup. In this case, power failures might lead to a significant
amount of wasted energy due to repeated hardware reconfiguration, e.g., reloading weights from the non-volatile
memory into the volatile buffer of the accelerator. Moreover, if the size of the energy storage capacitor is not big enough
to execute the whole inference at once, power failures might lead to non-termination. Without backing up intermediate
results and recovering them after reboot, the hardware-accelerated deep inference might never be completed. On the
other hand, backup and recovery can also be costly due to the communication overhead of the external nonvolatile
memory, diminishing the efficiency of the hardware-accelerated deep inference.
Contributions. In this paper, we introduce a new toolchain called LbLTT1 (Layer-by-Layer Transient Toolchain) that
converts any neural network model for the CNN accelerator in MAX78000 platform into a layer-by-layer executable
form. The conversion makes the inference execution granularity finer, shrinking the atomically executed unit size
to the layer size of the neural network. This reduction allows for flexibility in matching the intermittent inference
execution to the limited energy capacity since it is possible to back up any intermediate layer output (weights, biases,
and feature maps) in external non-volatile memory. Using this toolchain, we transform various neural networks
into intermittently-executable forms and evaluate different backup strategies by considering their time, energy, and
memory costs. Furthermore, we propose a novel backup strategy that eliminates redundant checkpoints and reduces the
frequency of SPI-based non-volatile memory access, allowing more time and energy on computation. Our comparison
against state-of-the-art solutions shows that the proposed backup strategy improves the inference throughput by 1.9×.

The rest of this article is organized as follows. Section 2 presents background on intermittent computing and
hardware-accelerated and low-power deep inference. In Section 3 we present our approach to executing intermittently

1Available at https://git.iotn.it/lucacaronti/LbLTT
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Fig. 1. An example of intermittent computation. A batteryless edge device performs a series of computations and then stores the
result, alternating this process with periods of inactivity where the device shuts off and gathers energy to charge its energy storage.

hardware-accelerated convolutional neural networks in a layer-by-layer manner. Results and evaluation are then
discussed in Section 4. Finally, Section 5 concludes the paper with some final remarks and future works.

2 BACKGROUND AND RELATEDWORK

Energy harvesting batteryless embedded devices operate intermittently (see Figure 1) due to frequent power failures,
which occur since energy sources (e.g., sunlight, radio waves, or vibration) are transient and energy storage capacitors
can store a finite and small amount of energy. Each power failure resets the device and clears the contents of its volatile
hardware state elements, leading the program control flow to return back to the beginning of the application entry
point. To progress computation and keep memory consistent [12], prior works proposed various software solutions for
intermittent computing that mainly deal with when to backup and what to backup.

2.1 Intermittent Computing Approaches

Employing checkpoints and task-based programming are the two state-of-the-art intermittent computing solutions [15].
Checkpoints back up the current computational state into non-volatile memory only at the source code locations
specified by the programmer or compiler [2, 6, 9, 14, 26, 31, 45]. At a power restore, the computation continues from
the last successfully performed checkpoint. The just-in-time checkpoints [11, 32] require additional dedicated hardware
that monitors the capacitor voltage level to signal when the voltage level drops below a predefined voltage threshold.
At this point, the program must back up the current computational state, turn off the system, and wait for charging. In
task-based approaches, programmers split the application into idempotent atomic subtasks that can fit into the capacitor
and define a task-based execution flow [5, 12, 42, 44]. The backup operations are performed only at task boundaries. If a
power failure happens in the middle of a task execution, the intermediate results are discarded, and the computation
re-starts from the beginning of the interrupted task. In this work, we consider checkpoint-based backup approaches
since they do not require programmer intervention and are simpler to employ.

2.2 Machine Learning on Intermittent Power

With the increasing number of IoT devices, the amount of sensed data from the environment is growing at an exponential
rate. This data is collected by cloud servers, where advanced machine learning (ML) techniques are employed for
processing, and the relevant information is then sent back. However, in many cases, these remote servers are located
quite far from the sensing device, resulting in increased latency and communication expenses. Besides, some of
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the data contain redundant and not very useful information, which wastes communication bandwidth and energy.
For energy-harvesting devices, the energy required for communication is significantly higher compared to local
sensing and computation. Hence, it is more reasonable to shift ML inference to an edge device or to a sensor itself.
Recent work has proposed solutions to enable and enhance inference on resource-constrained embedded systems,
e.g., [1, 3, 24, 33, 36], and especially on intermittent computing systems by various means: software frameworks [16],
hardware accelerators [25, 27], new architectures [17], and even emerging technologies [39]. As an example, Sonic [16]
is the first framework that demonstrated deep inference on TI MSP series MCUs by also exploiting its low-energy
accelerator (LEA) to perform vector-based operations efficiently, such as matrix-vector multiplication.

2.3 Hardware-accelerated Deep Inference on Low-power

Several brand-new ultra-low-power MCUs with advanced hardware accelerators are appearing in the market. One
notable example is Syntiant’s Tiny Machine Learning Development Board [43], which features a low-power ML
accelerator. The board is equipped with the ultra-low-power NDP101 Neural Decision Processor and packs native neural
network computation in the lowest power envelope. NDP101 achieves higher performance by exploiting inherent
deep learning parallelism and computing only at the required numerical precision. Another noteworthy product is the
MAX78000 [35], which belongs to a new line of ultra-low-power microcontrollers. This microcontroller incorporates
a low-power CNN accelerator designed to facilitate machine learning tasks. Remarkably, it can execute inference
operations while consuming merely micro-joules of energy, making it an ideal choice for batteryless edge devices.

These MCUs have not yet been adapted to intermittent computing, as there is currently a lack of strategies to
support the backup of computational tasks executed on these advanced accelerators. An example of this is evident in
the MAX78000’s CNN accelerator. The issue is that, depending on the NN model, distinct NN layers have different
energy and computational requirements. To execute inference on the MAX78000’s CNN accelerator intermittently,
it becomes essential to understand the energy requirements of each layer and to enable more fine-grained backups
(e.g., layer-by-layer). To the best of our knowledge, when, what, and how to back up during hardware-accelerated
intermittent inference remains unexplored, which makes these issues the focus of this article.

FPGAs (Field-Programmable Gate Arrays) are also highly promising technologies for accelerating inference on
edge devices. Furthermore, several studies have been conducted to evaluate the utilization of FPGAs in intermittent
computing scenarios, specifically focusing on backup strategies [34, 37, 41] and the implementation of intermittent
computing [19, 46, 47]. Nevertheless, it is important to acknowledge that FPGAs do have certain limitations stemming
from their power consumption and the memory technology they utilize. Additionally, it is worth noting that non-volatile
FPGAs have not yet been widely adopted in commercial products, making FPGAs still not a very suitable technology
for intermittent computing. Therefore, in this article, we target resource-constrained MCUs equipped with neural
accelerators, in particular, the MAX78000.

3 LAYER-BY-LAYER ACCELERATED DEEP INFERENCE ON INTERMITTENT POWER

In this paper, we exploit MAX78000, a new AI microcontroller with an on-chip CNN accelerator that enables battery-
powered applications to execute AI inferences while consuming only micro-joules of energy. MAX78000 supports a wide
variety of both CNN and DNN models, has a comprehensive Software Development Kit (SDK) and active development
community. It is equipped with two CPUs, one of which is an ultra-low-power RISC-V processor. The CNN accelerator
features 64 parallel processors split into four equal quadrants, as shown in Figure 2. The accelerator has dedicated
memory for corresponding weights (440KB), biases (2KB), and data (512KB). The accelerator also has a connection
Manuscript submitted to ACM
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Fig. 2. MAX78000 platform architecture.
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Fig. 3. Proposed MAX78000 extended toolchain for intermittently executable inference on the CNN accelerator.

to the multi-layer bus matrix shared with CPUs, platform memory, and other peripherals. All the internal memory
components of MAX78000 are volatile (blue blocks in Figure 2).

The MAX78000 SDK [23] eases training, synthesizing, and deploying NN models on the accelerator. As shown
in Figure 3, the training is performed with the help of the PyTorch library for machine learning, data loader, and
corresponding dataset. The synthesis and deployment stages are responsible for converting the trained NN model to
human-readable C code. Once the model is deployed on the device, the developer follows the steps shown in Figure 5
(left). First, the accelerator is initialized by setting the SRAM control bits and the number of CNN layers. Then, weights
and biases are loaded from the general-purpose SRAM to the dedicated memory. These steps are followed by the
CNN configuration, which sets the number of rows and columns for each acceleration quadrant (i.e., the group of 16
processors) and specifies corresponding memory pointers. Finally, input data is loaded into the accelerator memory,
and the inference starts.

3.1 Challenges of Intermittent Inference on MAX78000

Inference operation on MAX78000 CNN accelerator is a single atomic task, i.e., if the execution is interrupted by a
power failure, the inference loses all intermediate computational results, starting the computation from the initialization
phase. To exclude the occurrence of non-terminating execution of intermittent inference, the capacitor of a device must
be large enough to store at least the energy for restoration, single inference, and backup. However, enlarged energy
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storage increases the charging time as well as the size and weight of the device. Moreover, to ensure execution progress,
the platform requires an expensive SPI-based connection to external non-volatile memory (red block in Figure 2). With
frequent backups, such extraordinary memory access can annihilate the energy and performance efficiency of the CNN
accelerator.

3.2 Layer-by-Layer Transient Toolchain (LbLTT)

We address the mentioned challenges by developing a new toolchain, named Layer-by-Layer Transient Toolchain
(LbLTT). The toolchain extends the MAX78000 software stack, allowing developers to control inference execution layer-
by-layer. As shown in Figure 3, the proposed toolchain (pink dashed block) converts the neural network synthesized
into an intermittently executable form before deploying it to the network accelerator. This allows the platform to work
in an intermittent scenario, where the atomic tasks are represented by the evaluation of every single layer of the neural
network. It is then possible to eliminate the need for capacitors large enough to sustain the whole inference since
only the energy for restoration, single-layer evaluation, and checkpointing is needed. LbLTT workflow is organized in
three steps, presented in Figure 4. The process starts from the synthesized C code using the ai8xize.py Python script.
This step consists of the full neural network project generation. It converts the Pytorch NN model into C code. Two
output files are generated: cnn.c contains all the functions to load, start, and get the output of the NN; and weights.c

contains the NN weights. The second step generates each individual layer using LbLTT (it actually provides the
segmentation). Here, a standalone NN consisting of input, a layer, and output is created for each layer of the original
NN. This allows the generation of the configuration files used to configure the CNN accelerator at the beginning of the
computation of each layer. Finally, in the third step, all layers are merged and linked into one combined NN execution.
The previously generated neural networks are interpolated and linked together by adding a series of functions that
allow the intermediate output to be extracted, saved in the FRAM and reloaded when necessary. In this step also, the
intermittent functionalities – such as energy monitoring and checkpointing strategy – and the code for interfacing
the external FRAM are merged into the project. The resulting C code is then ready to be deployed on the MAX78000
CNN accelerator, supporting intermittent execution. To ease this process, a Python script automates all the steps in
one command line. The command takes as an argument a single configuration file in JSON format, which contains
parameters such as the number of layers to split, the location of the original neural network to be converted, and the
threshold for the checkpointing mechanism. Figure 5 presents the CNN execution flowchart on runtime. On the left,
Manuscript submitted to ACM
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layer-by-layer evaluation (blue square) and energy monitoring (orange square). The backup operation is executed only one time after
the end of a layer if the remaining energy is too low for evaluating the next layer.

the classic (i.e., the whole network) implementation is presented, while the proposed LbLTT implementation is on
the right. After the CNN initialization, input data for the first layer is loaded into the accelerator memory. Then, the
biases for the first layer are loaded, and the accelerator is configured and started. These steps are repeated for each layer
of the original NN model. This loop makes the inference execution fine-grained and opens access to the inter-layer
computational results that can be backed up in the external FRAM in case of a power failure. Notice that the weights
of the network are loaded all together at the beginning of the execution, while the biases are loaded on a per-layer
basis. This was possible thanks to configuring the parameters of the original ai8xize.py script that allows specifying a
memory offset for the biases. This is necessary because each single layer is considered as a standalone neural network
by the Maxim toolchain, leading to a memory overwrite problem. In fact, the original script maps all the NNs starting
from a fixed address (e.g., 0x0000). However, the script does not provide the option to specify a memory offset where to
store weights, thus the need to load them all at once. Anyhow, it is worth noting that the weights’ magnitude is smaller
than the biases, so reloading weights at each layer does not add any significant overhead.

3.3 LbLTT Backup Policies

Without LbLTT, the only option for intermittent computing on the CNN accelerator is backing up the final result of the
entire inference. As shown in Figure 6a, such coarse-grained checkpoint policy requires a relatively large energy buffer
to ensure computational progress and suffers from a significant amount of wasted time and energy if a power failure
interrupts the inference.

Applying LbLTT enables two other backup policies used in modern intermittent systems. (i) The first one is a
brute-force (BFCh, Figure 6b) solution, when the checkpoint is performed at the end of each layer’s computation,
avoiding the necessity of additional hardware for voltage level monitoring and execution profiling. Furthermore, this
policy can guarantee execution progress with a smaller capacitor. However, the cost of this backup strategy is redundant
memory access and lost computational results if a power outage occurs during the layer execution. (ii) The second
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Fig. 6. Overview of backup policies. We refer to CAP size as the energy-wise dimension of the energy storage used.

solution for backups is setting a voltage threshold for checkpoints (THCh, Figure 6c). This strategy involves using
dedicated hardware for incoming voltage monitoring at layer borders. If at the end of any layer execution, the incoming
voltage reaches a specified threshold, the system backs up the intermediate result. Some unnecessary checkpoints are
eliminated with such backups, but the system still loses computational results at mid-layer power failures. Moreover,
voltage monitoring circuitry requires additional energy and area resources.

3.4 Eliminating Redundant Backups

The adoption of THCh still requires checkpoints unused by recovery, i.e., those after which no power failure appeared.
These checkpoints happen in two cases when at the end of the layer execution, the capacitor voltage reaches a single
specified threshold: (i) the input ambient power is strong enough to maintain the computation of the next layer; (ii) the
energy currently stored in the capacitor is sufficient to continue the computation of the next layer without interrupts. We
propose an optimized backup policy for intermittent layer-by-layer execution (CMPCh) by extending the functionality
of the voltage monitoring circuitry of THCh. The proposed policy tries to keep an intermittent system alive, performing
only inevitable checkpoints and eliminating unnecessary expensive external memory transfers. The energy monitoring
circuit is composed of two main parts: (i) the internal voltage comparator of the MAX78000 MCU, and (ii) an analog
Manuscript submitted to ACM
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Table 1. Backup policies and corresponding states of the art.

Backup policy Related state of the art
Baseline Protean [4]
BFCh Mementos [38], DINO [29], Alpaca [30], InK [44],
THCh Hibernus [7], Hibernus++ [6], Samoyed [32], AdaMICA [2]
CMPCh This work

frontend connected to the energy storage. The measured power contribution of the Low-Power Voltage comparators of
the MCU is equal to around 15 nW, and thus considered negligible during the evaluation. On the other hand, the analog
frontend, used to generate the voltages to be applied to comparators, comprises a voltage divider, a digital switch, and
an operational amplifier. Thanks to the use of nano-power components, the overall power overhead of the analog front
end is equal to 0.66 nW when the digital switch is off and to around 5 µW when the whole circuit is powered. This
energy overhead was considered during the evaluation.

Figure 6d shows that at the end of each layer, CMPCh monitors the energy left in the capacitor and decides on
checkpoints depending on the comparison against the energy consumed by the upcoming layer execution. The
computation is continued with no checkpoint if the energy currently stored in the capacitor is enough to compute the
next layer. Otherwise, the system transitions to an ultra-low-power (µW) mode retaining volatile memory content.
While staying in µWmode, the system continues to charge the energy buffer. With input power equal to or greater
than the µW mode power consumption, the CMPCh strategy allows a batteryless system to stay alive, maintaining
the capacitor energy persistent or increasing, respectively. The system performs a checkpoint only when the voltage
threshold reaches the lower value and resumes when the upper voltage threshold is reached. This strategy gains
additional benefits from having voltage monitoring circuitry, reducing the number of checkpoints. Additionally, the
CMPCh backup policy eliminates any power failures during computation and avoids data loss. Preliminary profiling of
execution is necessary since the system must know in advance the energy consumption of each layer. This profiling
introduces insignificant burdens with the proposed LbLTT. Multiple options for the backup strategy with LbLTT give
flexibility to the developers of machine learning applications on the emerging MAX78000 device.

Table 1 compares the backup techniques described above to several states of the art. Protean [4] is the only work that
proposes an intermittent multisensor platform based on MAX78000. The platform is decoupled with adaptive runtime
that implements task-based intermittent computing. Only the entire inference in Protean’s CNN accelerator can be
treated as an atomic task with no intermediate results checkpoint. We consider this approach as a baseline. Once a CNN
model is split into layers, any task-based checkpointing technique (e.g., Alpaca [30], InK [44]) can be applied to wrap
the layers execution into separate atomic tasks. Another option is to manually define the checkpoint locations with the
help of, for example, Mementos [38] or DINO [29] and explicitly back up at each layer complete. These approaches
correspond to the BFCh policy. Finally, in Hibernus [7], Hibernus++ [6], Samoyed [32], and AdaMICA [2], the authors
use a voltage monitoring mechanism similar to that of the THCh policy. In the preceding sections, our proposed backup
policy, CMPCh, is compared against all others in the table.

4 EVALUATION AND RESULTS

We evaluated and characterized the proposed LbLTT toolchain by using three different CNN models provided by
Maxim Integrated [23]: the AI85Net5 NN model trained onMNIST dataset; the AI85Net20 NN model trained on KWS
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(Key Word Spotting) dataset; and the ai85simplenetwide2x NN model trained on the CIFAR-100 dataset. We have
developed custom inference routines to evaluate the LbLTT policies presented in Section 3. To this end, since the
MAX78000 platform does not integrate an internal non-volatile FRAM for checkpointing, we used a 4 Mbit external
FRAM connected through an SPI communication working at 20 Mbit/s.

4.1 Neural Inference Execution Time Evaluation

We evaluate the execution time of the two primary tasks, namely Inference and Backup using the CIFAR-100,KWS, and
MNIST models. Table 2 shows the execution and backup time for each layer. Furthermore, for the sake of comparison
of the execution time, the time breakdown for the MNIST model is also presented in Figure 7. Notice that the overhead
introduced by the external FRAM dominates the execution time. External memory access can takes up to 27× more
time than computation (e.g., Layer 0 in Figure 7), making the entire inference unreasonably long. Thus, we have decided
to evaluate the backup time in the case the MAX78000 would have a theoretical internal FRAM. To this end, we timed
the FRAM access in an MSP430FR5994 microcontroller [21] – one of the few MCUs with integrated FRAM – operating
at 1 MHz, and then interpolated it to the 100 MHz, to match the operation frequency of the MAX78000 ARM core. The
measurements are presented in the last column of Table 2, showing that internal FRAM access requires on average 4×
less time than inference.

4.2 Power Consumption Evaluation

We analyzed the average current consumption of the MAX78000 operating in various states to assess the energy
consumption of the proposed method. Table 3 presents the current consumption for the four main states: 1) Idle;
2) Normal-NN (uninterrupted inference); 3) LbL-NN (layer-by-layer inference); and 4) External FRAM data backup.
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Fig. 7. Task time breakdown for the MNIST dataset. The first column presents per-layer inference time. The second column shows
the time associated with the SPI FRAM operation. The third column is the calculated backup time in the case of internal FRAM.
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Table 2. Tasks execution time breakdown for the thee CNN models evaluated. The last column on the right presents the backup time
in the case of internal FRAM

Network Layer
Inf. Time

[µs]

Backup time [µs]
External FRAM Internal FRAM

(theoretical)SPI TX Overhead TOT
K
W

S

Conv 1697 5120 10081 15201 160
Conv 541 4838 9486 14324 151

Conv + Pool 216 1612 3206 4818 50
Conv 106 1171 2344 3515 36

Conv + Pool 87 768 1559 2327 24
Conv 101 1075 2146 3221 33

Conv + Pool 107 560 1146 1706 17
Conv + Pool 60 102 256 358 3

C
IF
A
R
10

0

Conv 853 9830 9830 19660 307
Conv 759 13107 13107 26214 409
Conv 759 13107 13107 26214 409
Conv 759 13107 13107 26214 409

Conv + Pool 248 3276 3276 6552 102
Conv 323 3276 3276 6552 102
Conv 404 6553 6553 13106 204

Conv + Pool 156 1638 1638 3276 51
Conv 149 1638 1638 3276 51

Conv + Pool 126 819 819 1638 25
Conv + Pool 267 819 307 1126 25

Conv 224 307 76 383 9
Conv + Pool 112 76 76 152 2

M
N
IS
T

Conv 1070 18816 10023 28839 940
Conv 377 6144 3321 9465 307
Conv 122 1433 827 2260 71
Conv 49 76 101 177 3

Table 3. Current consumption for the four main tasks

Idle Normal-NN LbL-NN FRAM Backup
Current [mA] 12.11 22.27 21.13 16.11

Notably, the current consumption of LbL-NN is lower than that of Normal-NN. The reason for this reduction is two-fold:
(i) the interruptions between layers pause the energy consumption of the CNN accelerator for inter-layer management,
and (ii) for different layers, a varying number of the processors of the CNN accelerator is activated.

4.3 Backup Policy Evaluation

The energy consumption profiles are also evaluated using the LbLTT backup techniques outlined in Section 3. As a
baseline, we consider the entire inference process (i.e., the evaluation of all layers without interruption) with checkpoints
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Table 4. Comparison between baseline and the proposed LbLTT policies. Experiments are based on the night power trace from [18]
evaluating the MNIST model.

Baseline BFCh THCh CMPCh
Number of resets 37386 37130 37345 2351
Number of restores 0 5582 2818 115

Table 5. Comparison between executed inferences and number of executed backups for the MNIST model using the night power trace
from [18]. In the last two lines, we present the normalized number of inferences and the normalized number of backups w.r.t baseline.

Baseline BFCh THCh CMPCh
Number of Inferences 79254 47809 75077 147802
Number of Backups 79254 239045 104430 342306

Normalized Inferences 1 0.65 0.94 1.86
Normalized #Backups 1 5 1.39 2.31

only executed at the end of each inference (Figure 6a). Three distinct and realistic power traces [18] are used to assess
the platform under varying input power levels: car ride (primarily high power), daylight activity (alternating between
high, medium, and low power), and night (primarily low power).

4.3.1 Simulation Results. To perform a controllable and repeatable evaluation of an intermittent CNN accelerator, we
developed a simulator of the target device, using the parameters presented in Sections 4.1 and 4.2. We fix the capacitor
size to 250 µF so that the energy stored is enough to execute one complete inference (including input load, computation,
and results storing) for the MNIST dataset.

As discussed in Section 3, the THCh and CMPCh policies exploit voltage thresholds to trigger specific operations. In
the case of the THCh policy, the threshold is used to determine whether to back up the result of a layer. In the simulation,
this threshold is set to 2.1V and the layer is backed up if the energy storage voltage falls below this value at the end
of the inference, regardless of its layer size. The CMPCh policy uses two different thresholds: one for triggering the
inference on a layer and another for determining whether to perform a backup. For the backup threshold, we also set
2.1V, while using a dynamic threshold (depending on the layer size) for the beginning of different layers. By considering
the size and the expected energy consumption of each layer and the remaining energy in the capacitor, the simulation
can calculate whether the inference can be completed. Furthermore, the energy for backup is also included in the budget
to ensure that no information is lost. This approach allows the device to remain in a low-power consumption mode
until the capacitor has been sufficiently charged to carry out the inference safely.

As can be noted in Table 4, the proposed CMPCh backup strategy reduces the number of system resets caused
by power failures. Compared to the other checkpoint policies, we can achieve up to 16× fewer resets. We have also
compared the number of inter-layer restores. The baseline solution presents no restoration operations. Power failures
in this case force the re-execution of the entire inference starting from the input layer. The highest number of restores
are executed with the BFCh solution, while the voltage monitoring mechanism in THCh helps to reduce this number
almost twice. Finally, the energy-aware CMPCh strategy further reduces the number of restores, achieving 48× fewer
restores than BFCh.
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Fig. 9. Time and energy overheads distribution for different backup policies.
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We have thus analyzed the number of checkpoints executed. Figure 8 presents the distribution of the checkpoints
among CNN layers for the MNIST model. Notice that the baseline policy only saves the result of the last layer due to the
uninterrupted inference. BFCh checkpoints at the end of each layer, while THCh skips some unnecessary checkpoints
thanks to the voltage monitoring mechanism. CMPCh totally avoids checkpoints for the first layer and only backs up
the intermediate results to avoid unnecessary backup operations. To further evaluate the proposed policies, Table 5
presents the total number of inferences achieved using the night power trace. The baseline policy performs only one
backup per inference, while BFCh performs 5× more checkpoints. THCh and CMPCh, on average, execute 1.4 and 2.3
backups per inference, respectively. Even if CMPCh executes one more backup per inference than that of THCh, the
throughput of the proposed CMPCh outperforms three others, achieving 1.9× more inferences. Compared to BFCh and
THCh, CMPCh executes 3.1× and 2× faster, respectively.

The improvement of the throughput introduced by the CMPCh strategy is due to the ability to exploit better the
available energy. As can be seen in Figure 9a that presents the time cost distribution for the main tasks, Baseline, BFCh,
and THCh spend most of the time for recharging and booting operations. Since we do not have a control mechanism for
the available energy, the platform cannot complete the booting phase when the harvested energy during the charging
phase is insufficient. On the contrary, CMPCh spends more time on recharging, waiting to have collected enough
energy before starting the operations. Comparing the energy contribution of the different working phases, presented in
Figure 9b, we can see that CMPCh allows the allocation of available energy better. More than half of the total energy is
used for inference, while 35% of energy is used for keeping the device in a low-power mode during the charging phase,
avoiding expensive booting and backup operations.

4.3.2 Real-world Implementation Results. We have replicated the simulation using real hardware to validate
the effectiveness of the proposed toolchain. Two different applications were implemented. Figure 10 presents the
experimental setup. It uses a MAX78000FTHR Evaluation Board, an external SPI FRAM, a supercapacitor used as an
energy storage, and an Analog Discovery 2 (AD2) used as a programmable source and measurement unit. The AD2 was
used to emulate the voltage traces presented in [18], to provide the energy storage status of charge to the MAX78000,
and to analyze and save the results. For both tests, we used the same amount of energy and time windows of the
simulation, respectively equal to 50 J and 60 minutes.
MNIST. In this experiment, we have characterized the platform by implementing theMNIST network.We used the power
traces of the simulations and the low-power comparator built into the MAX78000 to trigger the different operations.
The comparison between the different backup policies is presented in Figure 11. Notice that in this experiment, we
adopted the policy named CMPCh*. We used a fixed energy threshold to schedule the various operations because of the
implementation constraints of the evaluation board. This threshold was selected considering the worst-case scenario,
the energy needed for the biggest atomic operation. On the contrary, CMPCh dynamic policy adapts the threshold based
on the energy needed to complete the current task. This allows a better allocation of the available energy, leading to
more inferences. This approach makes CMPCh slightly more efficient. Nevertheless, the real test confirmed the validity
of the proposed CMPCh policy, achieving a 1.2× improvement in the number of inferences.
VISUAL SURVEILLANCE SYSTEM. In the second test, we implemented an autonomous visual sensing system trained
on the CIFAR100 dataset. Although the setup is the same already presented in Figure 10, we have also used images from
the integrated RGB camera of the MAX78000FTHR board. The system was configured to take a photo, downsample it
to 32×32 pixels and then process the information using the integrated neural accelerator. The result of this experiment
is presented in Figure 12. We highlight that the number of inferences is much lower than in the previous tests because
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of the energy consumption of the RGB sensor, which dominates the energy budget of the application. We have thus
less energy for computing tasks. Still, the proposed LbLTT can provide a 1.16× time improvement in the number of
inferences, proving the validity of the approach.

4.4 Discussion

For evaluating the proposed toolchain, three distinct real-world power traces were used. The traces are derived from [18],
a dataset of radiant light energy measurements collected by Columbia University’s EnHANTs (Energy Harvesting
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Fig. 12. Number of inferences comparison between the baseline (no LbLTT) and the proposed CMPCh*. ∗Indicates the policy with a
static threshold for backup and inferences.

Active Networked Tags) project. The authors conducted their study in New York City office buildings to assess energy
availability. During the study, they collected long-term measurements of irradiance in several indoor locations and a
set of shorter-term indoor/outdoor mobile device measurements. By using this dataset, it was possible to evaluate the
proposed toolchain using a real-world power trace. As can be noted from the simulation and the real-world evaluations,
the proposed toolchain can improve the number of achievable inferences by 1.16× to 1.9×. As highlighted by Figure 9,
this improvement is possible thanks to a better energy allocation for the different tasks executed by the platform. The
improvements are thus not limited to throughput increase. In fact, it allows the achievement of different goals that
would otherwise not be possible. Focusing on the transient and sustainable computing scenario, the throughput increase
can be traded with the following aspects:

• Sensor size. Allowing a higher number of inferences means that we can achieve the same results with a smaller
and more compact sensor that has a more compact harvesting subsystem (i.e., solar, thermal, or vibration). For
instance, in a solar-powered solution, the solar panel area and the size of the supercapacitor can be reduced,
making the whole device smaller and cheaper. Moreover, having a smaller energy storage element means a faster
cold start since we need to harvest less energy to reach the operating voltage level. This feature also opens the
ability to exploit nano-power energy sources that could not charge up big energy storage elements.

• Application Execution. In scenarios with severely limited energy budgets, the available energy may not be
sufficient to complete a single inference, as the mean harvested energy alone is typically inadequate to sustain
the entire computation. When relying solely on fluctuating power sources, it becomes crucial to effectively utilize
the typically short periods of relatively stable input power for computation. In this case, LbLTT enables the
complete and correct execution of the application, which is unfeasible with the other approaches.

To better highlight the improvements brought by LbLTT, Figure 13 presents a comparison between the number of
inferences using the baseline approach, and the proposed CMPCh backup strategy, for two different portions of power
traces from [18]. Note that LbLTT allows the completion of the inference when the baseline approach fails due to the
extremely low energy input.

Manuscript submitted to ACM



Fine-grained Hardware Acceleration for Efficient Batteryless Intermittent Inference on the Edge 17

0.00

0.25

0.50

0.75

1.00

1.25
Po

we
r [

m
W

]

mobile-nyt-nighttime.txt power trace

0

10

20

30

40

Po
we

r [
m

W
]

mobile-indoor-outdoor.txt power trace

0
5000

10000

# 
of

 in
f.

Baseline inferences distribution

0
5000

10000

# 
of

 in
f.

Baseline inferences distribution

0
5000

10000

# 
of

 in
f.

CMPCh inferences distribution

0
5000

10000

# 
of

 in
f.

CMPCh inferences distribution

0 500 1000 1500 2000 2500 3000 3500
Timestamp [s]

0
5000

10000

# 
of

 in
f.

CMPCh improvement w.r.t. baseline

baseline CMPCh improvement

0 500 1000 1500 2000 2500 3000 3500
Timestamp [s]

0
5000

10000
# 

of
 in

f.

CMPCh improvement w.r.t. baseline

baseline CMPCh improvement
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5 CONCLUSION AND FUTUREWORKS

In this paper, we presented LbLTT, a new toolchain for improving the intermittent execution of deep neural networks
on recent convolutional neural network accelerators. We introduced, explored, and evaluated by means of time, energy,
and implementation costs different layer-by-layer backup strategies in non-volatile memory to progress inference
despite power failures. The results showed that the proposed solution increases the inference throughput by 1.9× for
simulation and by 1.2× for real-world setup compared to the baseline execution.

In future research, we will focus on studying more complex deep neural networks to expand the scope of our
proposed technique, which should significantly increase the achievable number of inferences on intermittent platforms.
Additionally, we plan to enhance our toolchain by considering Hardware-Aware Neural Architecture Search (HA-
NAS) [8, 10]. Specifically, we aim to generalize and integrate LbLTT functionalities as parameters in state-of-the-art
HA-NAS approaches. Furthermore, we will investigate the integration of non-volatile memory and CNN accelerators to
speed up backup and recovery operations.
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