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A B S T R A C T

A homogeneous elastic solid, bounded by a flat surface in its unstressed configuration,
undergoes a finite strain when in frictionless contact against a rigid and rectilinear constraint,
ending with a rounded or sharp corner, in a two-dimensional formulation. With a strong analogy
to fracture mechanics, it is shown that (i.) a path-independent 𝐽–integral can be defined for
frictionless contact problems, (ii.) which is equal to the energy release rate 𝐺 associated with
an infinitesimal growth in the size of the frictionless constraint, and thus gives the value of the
configurational force component along the sliding direction. Furthermore, it is found that (iii.)
such a configurational sliding force is the Newtonian force component exerted by the elastic
solid on the constraint at the frictionless contact. Assuming the kinematics of an Euler–Bernoulli
rod for an elastic body of rectangular shape, the results (i.)–(iii.) lead to a new interpretation
from a nonlinear solid mechanics perspective of the configurational forces recently disclosed for
one-dimensional structures of variable length. Finally, approximate but closed-form solutions
(validated with finite element simulations) are exploited to provide further insight into the
effect of configurational forces. In particular, two applications are presented which show that a
transverse compression can lead to Eulerian buckling or to longitudinal dynamic motion, both
realizing novel examples of soft actuation mechanisms. As an application to biology, our results
may provide a mechanical explanation for the observed phenomenon of negative durotaxis,
where cells migrate from stiffer to softer environments.

. Introduction

Initiated by Eshelby (1951, 1956, 1975), configurational mechanics provides a groundbreaking insight into problems where a
efect can change its position or increase in size and release energy, which is associated to a force, called ‘configurational’, acting
n the defect and causing its movement. In the specific case of a rectilinear crack in a linear elastic material, the energy release rate

associated with a crack advancement was found by Cherepanov (1967) and Rice (1968a,b) to be given by a path-independent
ntegral, the so-called 𝐽–integral. The latter author involved the energy–momentum tensor 𝐏 introduced by Eshelby (1951), so that
crack driving force can be related to fracture growth.

Historically, configurational forces were assumed to be different in nature from Newtonian forces, which enter the equations of
otion of a solid (Gurtin, 1999; Kienzler and Herrmann, 2000). However, a number of elastic structures with variable length has been

ecently investigated to show that a special class of configurational forces are Newtonian forces and, as such, can even be determined
xperimentally. These structures include a rod with one end sliding inside a frictionless sleeve (in both quasi-static (Bigoni et al.,
015; Liakou and Detournay, 2018) and dynamic (Armanini et al., 2019; Wang and Detournay, 2022; Koutsogiannakis et al., 2023)
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Fig. 1. An elastic solid of rectangular shape (green) of initial height ℎ0 is deformed through a transverse compression (of nominal stretch 𝜆2 < 1) against
a flat, rigid, and frictionless punch (brown) ending with a sharp corner. Rollers denote bilateral, while brown elements unilateral, frictionless contact. The
transverse compression generates a horizontal reaction force 𝑅1, shown in this article to be coincident with the negative of the 𝐽–integral, which in turn defines
a configurational force, eqn (1), which can be evaluated with an excellent approximation through eqn (2).

settings), a rod subjected to torsion (Bigoni et al., 2014) and a rod moving inside a frictionless, rigid and curved channel (Dal Corso
et al., 2017). Remarkably, a common feature of these structures is the possibility of a free movement in a certain direction, to which
the configurational force becomes energetically conjugate.

Inspired by these results in structural mechanics, Ballarini and Royer-Carfagni proposed an interpretation of configurational
forces as resultants of Newtonian contact forces acting on defects, through the solution of simplified models, representative of a
solid containing an edge dislocation or a crack (Ballarini and Royer-Carfagni, 2016).

Along the same research line, the frictionless contact is addressed in the present article of a homogeneous elastic solid, bounded
with a planar surface and undergoing large deformations against a flat and rigid indenter, ending with a rounded or sharp corner.
In this situation, it is shown that a path-independent 𝐽–integral can be defined (so far restricted to small strain states (Ma and
Korsunsky, 2006, 2008; Xie et al., 2009)) and corresponds to the energy release rate 𝐺, also known as configurational force,
associated with the constraint growth. In turn, the configurational force is shown to coincide with the negative of the reaction
force 𝑅1 (parallel to the undeformed flat boundary of the solid) which the corner of the constraint transmits to the elastic solid, in
summary,

𝐺 = 𝐽 = −𝑅1. (1)

Two paradigmatic examples of generation of a horizontal configurational force are systematically referred throughout the article,
Fig. 1 (the rollers visualize bilateral smooth contact, while the brown element symbolizes unilateral contact), where an elastic solid
of undeformed rectangular shape of height ℎ0 is subjected to a nominal transverse stretch 𝜆2 < 1 on one of its end portions.

It is shown that in both cases the horizontal reaction force 𝑅1 at the corner is provided with an excellent approximation by

𝑅1 ≈
𝛷𝑙 ℎ0
𝜆𝑙1

, (2)

where 𝛷𝑙 is the strain energy density and 𝜆𝑙1 the stretch, both evaluated at the left edge 𝜕𝑙
0 of the elastic rectangular domain,

where these are assumed constant. The simple approximate expression (2) is obtained within a large deformation framework for
hyperelastic materials and is shown to remain valid for both rounded and sharp corners, as well as for both types of boundary
conditions (unilateral or bilateral frictionless contact) applied at the lower side of the rectangular domain.

With the purpose of connecting the present solid mechanics framework with the recent results obtained in configurational
structural mechanics (Bigoni et al., 2014, 2015; O’Reilly, 2015; Dal Corso et al., 2017; Liakou and Detournay, 2018), an elastic
solid is analyzed, on which the kinematics of an Euler–Bernoulli rod is enforced.

In this way, a novel derivation from a nonlinear solid mechanics perspective is obtained for the outward tangential reaction,
generated at the end of a sliding sleeve constraining an elastic rod, previously disclosed only through one-dimensional models.

The relevance of our results to the design of new soft actuation mechanisms is demonstrated by two applications, whose
approximate solution is obtained analytically and validated by finite element simulations. In particular, it is shown that the
configurational forces induced by a transverse compression may lead in one case to Eulerian buckling and in the other to the
longitudinal motion of an elastic layer. The latter result may introduce a mechanical explanation to the so-called negative durotaxis,
a biological process in which cells migrate from a stiffer to a softer environment (Isomursu et al., 2022; Benvenuti et al., 2023), an
unexpected response opposite to the more common durotaxis phenomena (Lo et al., 2000).

2. Prologue: non-accidental coincidences in contact mechanics at small strain

Linear elastic solutions available in the literature for contact problems (Johnson, 1985; Ciavarella et al., 1998, 2002; Ma and
Korsunsky, 2006; Barber, 2018) are used to show that a horizontal reaction force 𝑅1 is generated at each (smooth, but even sharp)
corner of a frictionless, rigid and flat punch, pressed with a vertical load 𝑃 against the horizontal surface of an elastic solid. The
horizontal reaction 𝑅1 is nonlinear in 𝑃 and its presence is particularly surprising because it can be evaluated within the context of
infinitesimal elasticity and even when the corner is sharp.
2
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Fig. 2. The planar contact of a flat punch with (left) sharp and (center) rounded corners. In both cases the contact with a linear elastic isotropic half space is
frictionless and provided by a vertical force 𝑃 . The vertical component 𝑝2 of the pressure along the contact surface (marked by the horizontal coordinate 𝑥1) is
reported below the sketches. Right: Horizontal component 𝑅1 of the contact force reaction present at each rounded corner (made dimensionless through division
by (1 − 𝜈2)𝑃 2∕(2𝜋𝑎𝐸) and obtained from Ciavarella et al. (1998)), as a function of the parameter 𝑏∕𝑎 ≥ 1, describing the ratio between the width of the contact
region, 2𝑏, and the width of its flat portion, 2𝑎.

More specifically, with reference to the indentation of an elastic half space, it is shown that the horizontal reaction force 𝑅1 acting
at each corner of the punch is quadratic in the external vertical load 𝑃 and coincides with the negative of the path-independent
𝐽–integral evaluation at the corresponding corner, which in turn is equal to the energy release rate 𝐺 associated with an infinitesimal
growth of an edge of the punch, namely,

𝑅1 =
(1 − 𝜈2)𝑃 2

2𝜋𝑎𝐸
= −𝐽 = −𝐺, (3)

where 𝑎 is the punch half-width, while 𝐸 and 𝜈 are the Young’s modulus and the Poisson’s ratio of the indented half-space,
respectively. The coincidence of the horizontal reaction 𝑅1 with the negative of the 𝐽–integral finds an explanation in the use
of the energy–momentum tensor for frictionless contact problem, as shown in Section 3. Moreover, the interpretation of 𝐽 as the
energy release rate 𝐺 in a configurational mechanics framework is shown in Section 4.

2.1. 𝐽–Integral and energy release rate 𝐺 for the indentation of a linear elastic material with a frictionless, rigid, flat punch with sharp
corners

The two-dimensional (plane strain) problem is considered in the 𝑥1–𝑥2 plane for a frictionless, rigid, and flat punch indenting a
linear elastic isotropic solid on its surface, straight in the undeformed configuration and defined by 𝑥2 = 0.

Restricting the attention to the right corner of the indenter (located at coordinate 𝑥1 = 𝑎, 𝑥2 = 0), the leading-order term in the
asymptotic expansion at this point for the components of the Cauchy stress tensor 𝐓 in polar coordinates [𝜌 > 0, 𝜃 ∈ (0, 𝜋), so that
𝑥1 = 𝑎 − 𝜌 cos 𝜃, 𝑥2 = 𝜌 sin 𝜃, Fig. 2, left] is given by Giannakopoulos et al. (1998), Xie and Hills (2003), Barber (2018)

⎧
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⎨

⎪

⎩

𝑇𝜌𝜌(𝜌, 𝜃)

𝑇𝜃𝜃(𝜌, 𝜃)

𝑇𝜌𝜃(𝜌, 𝜃)

⎫

⎪

⎬

⎪

⎭

=
𝐾𝐼

√

2𝜋𝜌

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cos 𝜃
2

(

1 + sin2 𝜃
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2

sin 𝜃
2
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2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (4)

where 𝐾𝐼 is the Stress Intensity Factor (SIF) representing the magnitude of the singular fields ‘condensing’ the boundary conditions
as

𝐾𝐼 = lim
𝜌→0

√

2𝜋𝜌 𝑇𝜃𝜃(𝜌, 𝜃 = 0). (5)

It is noted that the square root singular stress asymptotics (4) present at the sharp corner of a frictionless rigid punch coincides with
the analogue holding for a crack tip under Mode I loading conditions, when a proper linear transformation of the angular coordinate
is applied.

Moreover, the free surface ahead of the punch tip (𝜃 = 𝜋) displays the following first-order term for the normal displacement
𝑢𝜃 (Barber, 2018)

𝑢𝜃(𝜌, 𝜃 = 𝜋) = −
4(1 − 𝜈2)𝐾𝐼

𝐸

√

𝜌
2𝜋

, (6)

where 𝐸 > 0 and 𝜈 ∈ (−1, 1∕2] are the Young’s modulus and Poisson’s ratio, respectively.
3
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Introducing the elastic strain energy density 𝛷 and the displacement field 𝑢𝑖, the path-independent 𝐽–integral used in fracture
mechanics at small strains is defined as (Rice, 1968b)

𝐽 = ∫𝛤0

(

𝛷𝑛1 − 𝑇𝑖𝑗𝑛𝑗
𝜕𝑢𝑖
𝜕𝑥1

)

d𝛾0, 𝑖, 𝑗 = 1, 2, (7)

where 𝛤0 is a continuous counter-clockwise path with outward unit normal 𝑛𝑖. In the context of linear elasticity, the path-
independence of the 𝐽–integral, eqn (7), has been extended to flat punch problems by assuming the path 𝛤0 starting from beneath
the indenter and ending at the free surface (Ma and Korsunsky, 2006; Xie et al., 2009).

Reducing 𝛤0 to a semi-circular path of infinitesimal radius 𝑟 and centered at the right corner, the 𝐽–integral can be rewritten in
terms of polar components as

𝐽 = lim
𝑟→0∫

𝜋

0

[

𝛷(𝑟, 𝜃) cos 𝜃 − 𝑇𝑖𝜌(𝑟, 𝜃)
(

sin 𝜃
𝑟

𝜕𝑢𝑖(𝑟, 𝜃)
𝜕𝜃

− cos 𝜃
𝜕𝑢𝑖(𝑟, 𝜃)

𝜕𝑟

)]

𝑟d𝜃, 𝑖 = 𝜌, 𝜃. (8)

Considering the asymptotic expressions (4) and the linear constitutive relations, the 𝐽–integral (8) for the flat rigid indentation
problem results

𝐽 = −1 − 𝜈2

2𝐸
𝐾2

𝐼 < 0, (9)

hich differs by a factor −2 from the 𝐽–integral found for Mode I fracture. Similarly to rigid line inclusion problems (Bigoni et al.,
008; Goudarzi et al., 2021), the 𝐽–integral associated to the flat punch with sharp corners is always non-positive.

Following Rice (1968a), the energy release rate 𝐺, associated with a growth 𝛥𝜉 of the punch corner and defined as the negative
f the derivative of the potential energy  with respect to the configurational parameter 𝜉, can be evaluated as

𝐺 = −
d(𝜉)

d𝜉 = lim
𝛥𝜉→0

1
2𝛥𝜉 ∫

𝛥𝜉

0
𝑇𝜃𝜃(𝛥𝜉 − 𝑟, 0)𝑢𝜃(𝑟, 𝜋)d𝑟, (10)

which, considering the asymptotic expansions (4) and (6), equals the 𝐽–integral

𝐺 = 𝐽 < 0. (11)

Eq. (11) shows that a growth in the punch size leads to an increase of the total potential energy of the system, implying that the
process is not favorable, as in the stiffener problem, but opposite to crack growth where the energy release is always positive for
an advance of the tip.

It is noted that, although the path-independent 𝐽–integral, Eq. (7), was already known in flat punch problems of linear elasticity
it has never been related to the energy release rate 𝐺 associated with a flat punch growth. Indeed, the 𝐽–integral has been so
far used only in the investigation of failure mechanisms connected with crack initiation (Ma and Korsunsky, 2006) or dislocation
nucleation (Ma and Korsunsky, 2008) at the sharp corners of flat punches. Moreover, in Xie et al. (2009) the 𝐽–integral was found
to be null for a rigid-body sliding of the whole punch, a result which is correct, but trivial because the two opposite forces 𝑅1 cancel
each other (Fig. 2).

Indenting an elastic half space. The above results can be used to analyze a linear elastic isotropic half space (𝑥1 ∈ (−∞,∞), 𝑥2 > 0)
indented by a (frictionless, rigid, and flat) punch, with horizontal base of width 2𝑎 (and centered at 𝑥1 = 𝑥2 = 0). When the punch
is subjected to a given compressive normal force 𝑃 (Fig. 2, left), the pressure distribution 𝑝(𝑥1) (positive when compressive) at the
contact has only a vertical component (𝑝1(𝑥1) = 0, 𝑝2(𝑥1) > 0) given by Johnson (1985)

𝑝(𝑥1) = 𝑝2(𝑥1) =
𝑃

𝜋
√

𝑎2 − 𝑥21

, (12)

which approaches an infinite value at the two sharp corners (𝑥1 = ±𝑎) and leads to the following stress 𝑇𝑖𝑗 (𝑖, 𝑗 = 1, 2)
distribution (Sadd, 2020)
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√
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𝑥32 ∫

𝑎
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1
√
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[

(𝑥1 − 𝑠)2 + 𝑥22
]2

d𝑠

𝑥22 ∫

𝑎

−𝑎

𝑥1 − 𝑠
√

𝑎2 − 𝑠2
[

(𝑥1 − 𝑠)2 + 𝑥22
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d𝑠

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

. (13)

Considering the full-field representation (13) for the stress 𝐓, the Stress Intensity Factor (SIF) 𝐾𝐼 (5) for a flat punch of width 2𝑎
subject to a vertical load 𝑃 indenting an elastic half space results to be (Giannakopoulos et al., 1998; Xie and Hills, 2003)

𝐾𝐼 = − 𝑃
√

𝜋𝑎
, (14)

and the 𝐽–integral (9) reduces to

𝐽 = −1 − 𝜈2 𝑃 2 < 0. (15)
4
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Exploiting the path-independence of the 𝐽–integral and the null value of its integrand at the punch contact and at the free surface
namely, 𝑥2 = 0 and excluding the corner point) and at infinite (namely,

√

𝑥21 + 𝑥22 → ∞), the 𝐽–integral (15) can be evaluated as

𝐽 = −∫

∞

0

[

𝛷(𝑥1, 𝑥2) − 𝑇11(𝑥1, 𝑥2)
𝜕𝑢1(𝑥1, 𝑥2)

𝜕𝑥1

]

|

|

|

|

|𝑥1=0
d𝑥2. (16)

Within the context of configurational mechanics for an hyperelastic solid undergoing large deformations, the 𝐽–integral, eqn
7), is proven in Section 4 to equal the energy release 𝐺 associated with an increase in the size of the frictionless straight constraint
ith a corner and therefore to correspond to the horizontal force exerted by the elastic solid on the rigid constraint. This result is
nticipated below for the rigid flat punch, by showing that the negative of the 𝐽–integral (9) matches the horizontal reaction force
1 at its corner. To this purpose, an indenter with rounded corners is considered in Section 2.2, including the limit of vanishing
urvature radius.

.2. Horizontal contact reaction force 𝑅1 at the indenter with rounded corner in linear elasticity

A rigid punch with rounded corners is considered (Fig. 2, center), with a central flat portion of width 2𝑎, rounded at both ends
ith a parabola of radius of curvature 𝑅, described by 𝑥2 = ℎ(𝑥1). The latter function has the following derivative

ℎ′(𝑥1) =

⎧

⎪

⎨

⎪

⎩

0, if 𝑥1 ∈ [−𝑎, 𝑎],

−
𝑥1 ∓ 𝑎
𝑅

, if 𝑥1 ∈ [±𝑎,±𝑏],
(17)

where 2𝑏 ≥ 2𝑎 defines the unknown contact width, measured as the projection of the contact zone onto 𝑥1. On introduction of a
mapping for the horizontal coordinate 𝑥1 ∈ [−𝑏, 𝑏] in terms of the angle 𝜙 ∈ [−𝜋∕2, 𝜋∕2] as

𝑥1(𝜙) =
sin𝜙
sin𝜙0

𝑎, with 𝑏 = 𝑎
sin𝜙0

, (18)

the component 𝑝2(𝑥1) of the pressure distribution 𝑝 at the contact is evaluated for an applied vertical force 𝑃 as (Ciavarella et al.,
1998, 2002; Kim, 2023)

𝑝2(𝜙) =
2𝑃

𝜋(𝜋 − 2𝜙0 − sin 2𝜙0)𝑏

{

(𝜋 − 2𝜙0) cos𝜙 + ln

[
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|

|

|
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2
tan
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2

|

|

|

|

sin𝜙0
]}

. (19)

The unknown angle 𝜙0 ∈ (0, 𝜋∕2] (and therefore the corresponding detachment semi-distance 𝑏 ≥ 𝑎) can be evaluated as the
olution of the following nonlinear equation

(1 − 𝜈2)𝑃𝑅
𝑎2𝐸

=
𝜋 − 2𝜙0

4 sin2 𝜙0
−

cot 𝜙0
2

. (20)

Note that the pressure distribution 𝑝2(𝑥1), Eq. (19), has never been exploited to evaluate the horizontal resultant force 𝑅1 of the
ontact pressure at each rounded corner, where the two forces have opposite directions and thus satisfy equilibrium. Such horizontal
esultant 𝑅1 can be calculated as the following positive quantity

𝑅1 = −∫

𝑏

𝑎
𝑝2(𝑥1)ℎ′(𝑥1)d𝑥1 =

𝑎2

𝑅 sin𝜙0 ∫

𝜋
2

𝜙0
𝑝2(𝜙)

(

sin𝜙
sin𝜙0

− 1
)

cos𝜙d𝜙 > 0, (21)

onfirming that the horizontal reaction 𝑅1 has an outward direction at each rounded corner. Exploiting eqns (19) and (20), the
orizontal force 𝑅1(21) can be rewritten as

𝑅1 =
8(1 − 𝜈2)𝑃 2 sin𝜙0

𝜋𝑎𝐸
(
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)2 ∫

𝜋
2
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[

|

|

|

|

sin(𝜙 + 𝜙0)
sin(𝜙 − 𝜙0)

|

|

|

|

sin𝜙
|

|

|

|

tan
𝜙 + 𝜙0

2
tan

𝜙 − 𝜙0
2

|

|

|

|

sin𝜙0
]}

(

sin𝜙 − sin𝜙0
)

d𝜙.

(22)

The horizontal reaction force 𝑅1, present at each rounded corner, can be evaluated through a numerical integration of Eq. (22).
he result is reported in Fig. 2 (right), where the force is represented as a function of the ratio 𝑏∕𝑎 ≥ 1.

The expression for the horizontal force 𝑅1, Eq. (22), can be expanded by assuming a vanishing small contact region at the
ounded corner (𝜙0 → 𝜋−∕2, 𝑏 → 𝑎+) as follows

𝑅1 (𝑏∕𝑎) =
(1 − 𝜈2)𝑃 2

2𝜋𝑎𝐸

[

1 − 3
5

( 𝑏
𝑎
− 1

)]

+ 𝑜(𝑏∕𝑎 − 1), (23)

which shows that the horizontal reaction attains a non-null finite value in the case of non-rounded, and therefore sharp, corner
(𝑏 → 𝑎+),

lim 𝑅 (𝑏∕𝑎) =
(1 − 𝜈2)𝑃 2

. (24)
5

𝑏→𝑎+ 1 2𝜋𝑎𝐸



Journal of the Mechanics and Physics of Solids 188 (2024) 105673F. Dal Corso et al.

T

Fig. 3. Undeformed (left) and deformed (right) configurations for an elastic solid (green) having its initially flat boundary in frictionless contact with a rigid
constraint (brown) with smooth boundary. The contact reaction force 𝑅1 associated with the contact region 𝜕tou

0 can be evaluated through the 𝐽–integral,
whose path-independence is restricted to all paths 𝛤0 (𝛤 𝐼

0 and 𝛤 𝐼𝐼
0 in the reference configuration, 𝛤 𝐼 and 𝛤 𝐼𝐼 in the current one) emanating from the same

initial point (𝐴0 in the reference configuration and 𝐴 in the current) and terminating at the same final (𝐵0 and 𝐵) point.

he above equation confirms the presence of a non-null horizontal reaction force 𝑅1 at each sharp corner of a frictionless rigid
indenter, which is quadratic in 𝑃 , similarly to the configurational force acting on an inextensible rod constrained with a sliding
sleeve (Bigoni et al., 2015; O’Reilly, 2015; Dal Corso et al., 2017; Armanini et al., 2019). Interestingly, the limit value of the
horizontal reaction 𝑅1, eqn (24), equals the negative of the 𝐽–integral and the energy release rate 𝐺, evaluated for the flat punch
problem, Eqs. (9) and (11), namely

lim
𝑏→𝑎+

𝑅1 (𝑏∕𝑎) = −𝐽 = −𝐺. (25)

The coincidence of the reaction force component 𝑅1 with the negative of the 𝐽–integral is proven in the next Section within a finite
elasticity framework, where both cases of contact with a sharp corner or a rounded surface are addressed. Moreover, through the
evaluation of energy variation for an increase of the frictionless rigid surface of a flat indenter, the 𝐽–integral is found in Section 4
to coincide with the energy release rate 𝐺 and therefore representative of a configurational force component (called 𝐹 𝑐

1 ).

3. Frictionless contact reaction component 𝑹𝟏 through energy–momentum tensor(s) and 𝑱–integral

It is shown that the reaction component force 𝑅1 acting at the contact between a frictionless constraint and an elastic solid
coincide with the negative of the 𝐽–integral, even when large deformations occur and the end of the constraint is both a smooth or
sharp corner. To this purpose, the definition (7) for the 𝐽–integral is extended as follows

𝐽 = ∫𝛤0

(

𝛷𝑛01 − 𝑆𝑖𝑗𝑛
0
𝑗
𝜕𝑢𝑖
𝜕𝑥01

)

d𝛾0, 𝑖, 𝑗 = 1, 2, (26)

where 𝐒 is the first Piola–Kirchhoff stress tensor, 𝛤0 is a counter-clockwise path with initial and final points selected on the boundary
in contact, and the superscript 0 stands for quantities evaluated in the undeformed configuration.

After recalling concepts of finite elasticity, frictionless contact, and energy momentum tensors, the 𝐽–integral is shown to provide
the reaction force component 𝑅1 acting on a generic portion of a smooth contact region 𝜕 tou

0 of an elastic solid defined as the
undeformed domain 0, namely,

𝑅1
(

𝜕 tou
0

)

= −𝐽
(

𝛤0 ≡ 𝜕0∖𝜕 tou
0

)

, ∀0 ∈ 0, (27)

and therefore the path independence of 𝐽 holds only for every path 𝛤0 emanating from a selected point (𝐴0 in Fig. 3) and ending
to another fixed point (𝐵0 in Fig. 3). Points 𝐴0 and 𝐵0 enclose a given portion of the boundary 𝜕 tou

0 .
Assuming proper regularity conditions, Eq. (27) holds true even for a flat indenter with a sharp corner, where point 𝐴0 is located

in the contact region, while point 𝐵0 on the right of the corner, on a free boundary. Therefore, the reaction force 𝑅1 at the sharp
corner can be evaluated as the negative of the 𝐽–integral,

𝑅1 = −𝐽
(

𝛤0
)

, ∀𝛤0, (28)

where 𝛤0 is any contour enclosing the corner, so that 𝐽 is path-independent with regards to every pair of points 𝐴0 and 𝐵0.
Anticipating results obtained at the end of this Section, it can be pointed out that the application of eqn (27) to rectangular

elastic solids with edges subject to uniform loading conditions, as sketched in both parts of Fig. 1, provides the estimation of the
reaction force component 𝑅 at both sharp and rounded corner as given by eqn (2).
6
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3.1. A premise on finite elasticity

A solid undergoing large deformations is considered, in which the point 𝐱0 in the reference configuration 0 is transformed into
he point 𝐱 = 𝐠(𝐱0) in the current configuration , through the deformation function 𝐠. The displacement field 𝐮 and the deformation
radient 𝐅 follow as

𝐮 = 𝐱 − 𝐱0, 𝐅 = ∇𝐠 = 𝐈 + ∇𝐮, (29)

here the gradient ∇ is evaluated with respect to 𝐱0. The unit vectors 𝐧0 and 𝐭0, normal and tangential to a surface, are transformed
nto the corresponding unit vectors 𝐧 and 𝐭 as

𝐧 =
𝐅−𝑇 𝐧0
|

|

𝐅−𝑇 𝐧0||
, 𝐭 =

𝐅 𝐭0
|

|

𝐅 𝐭0||
, (30)

so that 𝐧0 ⋅ 𝐭0 = 𝐧 ⋅ 𝐭 = 0. By assuming a hyperelastic response and introducing the strain energy density 𝛷 for a unit volume in the
reference state 0, the first Piola–Kirchhoff stress tensor 𝐒 can be derived as

𝐒 =
𝜕𝛷(𝐅)
𝜕𝐅

. (31)

The first Piola–Kirchhoff stress tensor 𝐒, eqn (31), is related to the Cauchy stress tensor 𝐓 through

𝐒 = 𝐓𝐅−𝑇 , (32)

here  = det 𝐅 (thus  = 1 for incompressible materials) and the superscript 𝑇 denotes the transpose operator, so that the resultant
orce acting on an infinitesimal area d𝑎0 in the reference configuration is equal to the force acting on the area element d𝑎 in the
urrent state

𝐒𝐧0d𝑎0 = 𝐓𝐧d𝑎, (33)

here 𝐧0 and 𝐧 are the unit vectors orthogonal to the two area elements.
In the absence of body forces, equilibrium can be written in terms of first Piola–Kirchhoff stress tensor as

Div𝐒 = 𝟎, (34)

here the divergence operator Div is evaluated with respect to 𝐱0. Assuming continuity of 𝐒 and therefore excluding the presence of
oncentrated forces within the generic volume 0 ⊆ 0 described by its boundary 𝜕0, the divergence theorem yields

∫𝜕0

𝐒𝐧0 = 𝟎, (35)

showing that the first Piola–Kirchhoff stress tensor 𝐒 is solenoidal.

3.2. Frictionless contact problem: target and contactor

The boundary of a rigid and frictionless constraint, called ‘target’, is described by the implicit surface (assumed here smooth for
simplicity, Fig. 4)

𝛴(𝐱) = 0, (36)

so that the points 𝐱 in the current configuration can be divided in three disjoint sets as:

𝛴(𝐱) ∶
⎧

⎪

⎨

⎪

⎩

< 0, points 𝐱 inside the constraint,
= 0, points 𝐱 on the constraint boundary,
> 0, points 𝐱 outside the constraint.

(37)

The ‘contactor’ body, in its reference configuration 0, assumed undeformed, is transformed through a sufficiently regular
eformation function 𝐠(𝐱0), to become in frictionless contact with the target, thus reaching a deformed configuration  under the
ction of prescribed dead tractions on 𝜕𝜎 and displacements on 𝜕𝑢

0. Therefore, points of boundary 𝐱 = 𝐠(𝐱0) ∈ 𝜕, transformed of
he corresponding points in the reference configuration 𝐱0 ∈ 𝜕0, can be classified as:

• Points 𝐱 (equivalently, 𝐱0) belonging to 𝜕sep (𝜕sep
0 ) separated from the constraint, when 𝐱 = 𝐠(𝐱0) are outside the constraint,

set (37)3;
• Points 𝐱 (equivalently, 𝐱0) belonging to 𝜕tou (𝜕tou

0 ) touching the constraint, when 𝐱 = 𝐠(𝐱0) is on the boundary of the
constraint, set (37)2.

The subset of separated points 𝜕sep
0 , and equivalently 𝜕sep, can be partitioned as subject to prescribed loading (assumed dead

or simplicity) or displacement
sep 𝑢 𝜎 sep 𝑢 𝜎
7

𝜕0 ≡ 𝜕0 ∪ 𝜕0 , and equivalently 𝜕 ≡ 𝜕 ∪ 𝜕 . (38)
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Fig. 4. The contact problem between a ‘contactor’ elastic body (green) and a rigid and frictionless ‘target’ (brown). Left: The point 𝐱0 on the boundary of the
ody in the reference configuration has unit outward normal 𝐧0 and unit tangent 𝐭0. Right: The deformation transforms these quantities to 𝐱 on the contact
urface and to 𝐧 and 𝐭, which become the unit normal (inward the target, outward the contactor) and the tangent to the target, respectively. The contact is
ketched as the result of an imposed displacement 𝐮 on 𝜕0.

t is assumed that a portion of the boundary outside 𝜕tou and bordering with it at its two edges exists, where tractions are null, so
hat the ends of the constraint can be moved on a free portion of the boundary of the elastic body.

The subset of touching points 𝜕tou
0 can be subdivided into a subtle partition, with reference to the Cauchy stress 𝐓 and its spatial

ounterpart of the first Piola–Kirchhoff stress 𝐒, eqn (31), as

Grazing 𝜕𝐺 ∶= { 𝐱 ∈ 𝜕tou
|

|

𝐓𝐧 = 𝟎}, and equivalently 𝜕𝐺
0 ∶= {𝐱0 ∈ 𝜕tou

0
|

|

|

𝐒𝐧0 = 𝟎},

Full contact 𝜕𝐶 ∶= {𝐱 ∈ 𝜕tou
|

|

𝐧 ⋅ 𝐓𝐧 < 0}, and equivalently 𝜕𝐶
0 ∶= { 𝐱0 ∈ 𝜕tou

0
|

|

|

𝐧0 ⋅ 𝐅−1𝐒𝐧0 < 0},
(39)

o that

𝜕tou
0 ≡ 𝜕𝐺

0 ∪ 𝜕𝐶
0 , and equivalently 𝜕tou ≡ 𝜕𝐺 ∪ 𝜕𝐶 . (40)

In both the above cases along the touching boundary, the frictionless contact condition holds

(𝐈 − 𝐧⊗ 𝐧)𝐓𝐧 = 𝟎 on 𝜕tou, and equivalently (𝐈 − 𝐅−𝑇 𝐧0 ⊗ 𝐅−𝑇 𝐧0)𝐒𝐧0 = 𝟎 on 𝜕tou
0 , (41)

hich can also be rewritten with reference to every tangent vectors 𝐭0 and 𝐭 (see eqn (30)) as

𝐭 ⋅𝐓𝐧 = 0 on 𝜕tou, and equivalently 𝐭0 ⋅𝐅𝑇 𝐒𝐧0 = 0 on 𝜕tou
0 . (42)

nterestingly, eqn (29)2 shows that the eqn (42)2 implies the validity of the following identity at every point of the frictionless
ontact surface in the undeformed configuration

𝐭0 ⋅ 𝐒𝐧0 = −𝐭0 ⋅ (∇𝐮)𝑇 𝐒𝐧0, on 𝜕tou
0 . (43)

An application of the virtual work principle to the mechanics of sliding contact is provided for completeness in Appendix.

.3. Two energy–momentum tensors

Two different definitions of the energy–momentum tensor for solids subject to large deformation can be found in the literature.
n particular, Eshelby (1951) introduced the energy–momentum tensor 𝐏 as

𝐏 = 𝛷 𝐈 − (∇𝐮)𝑇 𝐒, (44)

hile Gurtin (1999) defined a different energy–momentum tensor 𝐂 as1

𝐂 = 𝛷 𝐈 − 𝐅𝑇 𝐒, (45)

1 The divergence operator here used is, in Cartesian rectangular coordinates, (Div 𝐂)𝑖 = 𝜕𝐶𝑖𝑗∕𝜕𝑥0𝑗 . If the definition of divergence is changed, so that the first
index is repeated, the transpose of 𝐂 is accordingly used, as in Chadwick (1975). A further definition of energy–momentum tensor has been introduced by
8

Maugin (1995).
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where the two tensors can easily be related using the definition (29)2 of the deformation gradient 𝐅 as

𝐂 = 𝐏 − 𝐒. (46)

It is noted that the 𝐽–integral (26) involves the energy–momentum tensor 𝐏, because it can be rewritten as

𝐽 = 𝐞1 ⋅ ∫𝛤0
𝐏𝐧0 d𝛾0. (47)

The divergence of the energy–momentum tensor 𝐂 (45) can be evaluated as
𝜕𝐶𝑖𝑗

𝜕𝑥0𝑗
= 𝜕𝛷

𝜕𝑥0𝑖
−

𝜕𝐹𝑘𝑖

𝜕𝑥0𝑗
𝑆𝑘𝑗 − 𝐹𝑘𝑖

𝜕𝑆𝑘𝑗

𝜕𝑥0𝑗
, (48)

hich, recalling the constitutive relation (31), simplifies to
𝜕𝐶𝑖𝑗

𝜕𝑥0𝑗
= 𝑆ℎ𝑘

𝜕𝐹ℎ𝑘

𝜕𝑥0𝑖
−

𝜕𝐹𝑘𝑖

𝜕𝑥0𝑗
𝑆𝑘𝑗 − 𝐹𝑘𝑖

𝜕𝑆𝑘𝑗

𝜕𝑥0𝑗
. (49)

Considering again the definition (29)2 of the deformation gradient 𝐅, the application of the Schwarz theorem implies

𝑆ℎ𝑘
𝜕𝐹ℎ𝑘

𝜕𝑥0𝑖
−

𝜕𝐹𝑘𝑖

𝜕𝑥0𝑗
𝑆𝑘𝑗 = 𝑆ℎ𝑘

𝜕2𝑥ℎ
𝜕𝑥0𝑘𝜕𝑥

0
𝑖

−
𝜕2𝑥𝑘

𝜕𝑥0𝑖 𝜕𝑥
0
𝑗

𝑆𝑘𝑗 = 0, (50)

o that eqn (49) further simplifies as
𝜕𝐶𝑖𝑗

𝜕𝑥0𝑗
= −𝐹𝑘𝑖

𝜕𝑆𝑘𝑗

𝜕𝑥𝑗
. (51)

Due to equilibrium Eq. (34), eqn (51) implies the null divergence of both the energy momentum tensors 𝐂 and 𝐏,

Div𝐂 = 𝟎, Div𝐏 = 𝟎. (52)

Assuming continuity of the fields and therefore excluding material discontinuities and stress singularities within the generic volume
0 ⊆ 0 described by its boundary 𝜕0, the divergence theorem yields

∫𝜕0

𝐂𝐧0 = 𝟎, ∫𝜕0

𝐏𝐧0 = 𝟎, (53)

howing that both the energy momentum tensors 𝐂 and 𝐏 are solenoidal, as the first Piola–Kirchhoff stress tensor 𝐒, eqn (35), is.
The solenoidal property is now used to solve the equilibrium condition of a solid loaded through a generic pressure loading 𝑝(𝐱)

on its boundary 𝜕, so that the static boundary condition is

𝐓𝐧 = −𝑝𝐧, on 𝜕, (54)

which, by considering the traction equivalence (33), implies

𝐒𝐧0 = −𝑝 𝐅−𝑇 𝐧0 = −𝑝 d𝑎
d𝑎0

𝐧, on 𝜕0 and 𝜕, (55)

and therefore

𝐅𝑇 𝐒𝐧0 = −𝑝 𝐧0, on 𝜕0. (56)

It follows that under the pressure loading of (54), the solenoidal property (53) for the energy–momentum tensor 𝐂 can be expressed
for 𝜕0 ≡ 𝜕0 as

∫𝜕0

(𝛷 + 𝑝 )𝐧0 = 𝟎. (57)

Eq. (57) applies to any (non-singular) solid boundary 𝜕0 and any non-uniform distribution of the pressure 𝑝. Eq. (57) relates
the elastic energy to the pressure (multiplied by  ) on the boundary and is trivially satisfied when 𝛷 and 𝑝 are uniform. It is noted
that the pressure loading 𝑝(𝐱) on the boundary can be realized through the contact with both a unilateral or a bilateral frictionless
constraint. While 𝑝 ≥ 0 for unilateral contact, 𝑝 may have any sign when the contact becomes bilateral. The latter contact condition
will be visualized in the following as obtained with rollers.

If the boundary 𝜕0 is subjected to a pressure 𝑝 only on its portion 𝜕𝑝
0 ⊂ 𝜕0, Eq. (57) changes into

∫𝜕𝑝
0

(𝛷 + 𝑝 )𝐧0 + ∫𝜕0∖𝜕
𝑝
0

𝐂𝐧0 = 𝟎, (58)

where the appropriate boundary conditions have to be imposed on 𝜕0∖𝜕
𝑝
0. In terms of tensor 𝐏, an equivalent of Eq. (58) is

obtained as

∫ 𝑝

[

𝛷𝐈 + 𝑝 (𝐈 − 𝐅−𝑇 )
]

𝐧0 + ∫ 𝑝
𝐏𝐧0 = 𝟎. (59)
9

𝜕0 𝜕0∖𝜕0
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Fig. 5. Left: An elastic solid of undeformed rectangular shape 𝜕0 with the image of a pressure loading distribution 𝑝, symmetric with respect to 𝐞1, on the
boundary portions 𝜕𝑙

0, 𝜕𝑎
0, and 𝜕𝑟

0. Right: Deformed configuration. Exploiting the concept of energy–momentum tensor 𝐂, the resultant of the unknown
loading pressure 𝑝𝑙 , enforcing equilibrium, can be evaluated with an excellent approximation through eqn (2).

3.4. Different energy–momentum tensors in the solution of rectangular elastic domains under pressure loading

Attention is now restricted to plane problems of solids with an undeformed rectangular domain 0, having sides parallel and
orthogonal to the two unit vectors 𝐞1 and 𝐞2 defining the Cartesian reference system. Thus the domain is described as

0 ∶=
{

𝑥01 ∈ [0,𝓁0], 𝑥02 ∈ [ℎ0∕2,−ℎ0∕2]
}

, (60)

where 𝓁0 and ℎ0 are respectively the length of the sides parallel to 𝐞1 and 𝐞2. The boundary 𝜕0 is given by the union of the four
rectangle sides 𝜕0 ≡ 𝜕𝑙

0 ∪ 𝜕𝑎
0 ∪ 𝜕𝑟

0 ∪ 𝜕𝑏
0, with corresponding outward unit normal 𝐧0 respectively equal to −𝐞1, 𝐞2, 𝐞1, and −𝐞2,

Fig. 5. A pressure loading condition 𝑝 is considered on the boundary portions 𝜕𝑎
0 and 𝜕𝑏

0, constraining the traction vector to

𝐓𝐧 = −𝑝𝐧, on 𝜕𝑎
0 ∪ 𝜕𝑏

0. (61)

3.4.1. Reaction forces 𝑅𝑎
1 + 𝑅𝑏

1 and 𝑅1(𝜕 tou
0 ) from the energy momentum tensor 𝐏

The projection along 𝐞1 of the solenoidal property of 𝐏, eqn (53)2, implies that

𝐞1 ⋅ ∫𝜕𝑎
0∪𝜕

𝑏
0

𝐏𝐧0 = −𝐞1 ⋅ ∫𝜕𝑙
0∪𝜕

𝑟
0

𝐏𝐧0, (62)

where the left hand side, because of the applied pressure loading (61) and the related property (43), can be rewritten as

𝐞1 ⋅ ∫𝜕𝑎
0∪𝜕

𝑏
0

𝐏𝐧0 = 𝐞1 ⋅ ∫𝜕𝑎
0∪𝜕

𝑏
0

𝐒𝐧0. (63)

Introducing the contact force components 𝑅𝑎
1 and 𝑅𝑏

1 along 𝐞1 on the two respective boundary portions 𝜕𝑎
0 and 𝜕𝑏

0 as

𝑅𝑎
1 = 𝐞1 ⋅ ∫𝜕𝑎

0

𝐒𝐧0, 𝑅𝑏
1 = 𝐞1 ⋅ ∫𝜕𝑏

0

𝐒𝐧0, (64)

and considering the equilibrium Eq. (35) and eqn (63), leads to

𝑅𝑎
1 + 𝑅𝑏

1 = −𝐞1 ⋅ ∫𝜕𝑙
0∪𝜕

𝑟
0

𝐏𝐧0. (65)

A generalization of eqn (65) can be obtained for any arbitrary surface 𝜕0 having a non-null portion in contact 𝜕 tou
0 ∈ 𝜕0

with outward normal 𝐧0 = ±𝐞2. The component 𝑅1(𝜕 tou
0 ) of the resultant force of the pressure distribution acting on 𝜕 tou

0 can be
computed using any line integral with initial and ending point coincident with the limit points of the contact region for which the
reaction force is evaluated

𝑅1
(

𝜕 tou
0

)

= 𝐞1 ⋅ ∫𝜕tou
0

𝐒𝐧0 = 𝐞1 ⋅ ∫𝜕tou
0

𝐏𝐧0 = −𝐞1 ⋅ ∫𝜕0∖𝜕tou
0

𝐏𝐧0. (66)

From eqn (66) it can be concluded that, even in the case of smooth constraints, the contact reaction force component 𝑅1 transmitted
to the body from the contact region 𝜕 tou

0 coincides with the negative of the 𝐽–integral (26), evaluated for a path 𝛤0 ≡ 𝜕0∖𝜕 tou
0

as expressed by eqn (66). It follows that the 𝐽–integral path-independence is preserved only for all paths with the same initial
10
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and final points, because the reaction force 𝑅1 depends on the extension of the specific contact region, Fig. 3. In the case of a flat
constraint ending with a sharp corner, the initial and final points of 𝛤0 can be chosen on the left and on the right of the discontinuity
in curvature, respectively, in the contact and in the traction-free surface. Thus, assuming a sufficiently regular behavior, Eq. (66)
becomes Eq. (27) and a path-independence of the 𝐽–integral is found.

.4.2. Reaction force 𝑅𝑎
1 + 𝑅𝑏

1 from the energy momentum tensor 𝐂
It is now interesting to readdress the equilibrium of an elastic rectangular undeformed domain subject to either a pressure loading

𝑝 on 𝜕𝑎
0 and 𝜕𝑏

0, by exploiting the solenoidal property of 𝐂. Considering the normal direction 𝐧0 = ±𝐞2 and the property (42)2, it
ollows that

𝐞1 ⋅𝐂𝐧0 = 0, on 𝜕𝑎
0 ∪ 𝜕𝑏

0, (67)

and therefore taking the scalar product with 𝐞1, the solenoidal property of 𝐂 reduces to

∫𝜕𝑙
0

(

𝛷 − 𝐅𝐞1 ⋅𝐒𝐞1
)

− ∫𝜕𝑟
0

(

𝛷 − 𝐅𝐞1 ⋅𝐒𝐞1
)

= 0. (68)

If either a pressure 𝑝 or a dead loading 𝐒𝐧0 is applied on the boundary portions 𝜕𝑙
0 and 𝜕𝑟

0, eqn (68) simplifies as

∫𝜕𝑙
0

(

𝛷−
{ −𝑝

𝑆11𝐹11 + 𝑆21𝐹21

)

−∫𝜕𝑟
0

(

𝛷−
{ −𝑝

𝑆11𝐹11 + 𝑆21𝐹21

)

= 0. (69)

Introducing the further assumption of homogeneous deformation gradient 𝐅 in the neighborhood of the two boundaries 𝜕𝑙
0 and

𝑟
0, as sketched in Fig. 5, the integrals in Eq. (69) can be trivially solved to yield

𝛷𝑙−
{ −𝑝𝑙 𝑙

𝑆𝑙
11𝐹

𝑙
11 + 𝑆𝑙

21𝐹
𝑙
21

−𝛷𝑟+
{ −𝑝𝑟 𝑟

𝑆𝑟
11𝐹

𝑟
11 + 𝑆𝑟

21𝐹
𝑟
21

= 0, (70)

here the superscripts 𝑙 and 𝑟 respectively identify the relevant (constant) quantity evaluated on the boundaries 𝜕𝑙
0 and 𝜕𝑟

0.
nterestingly, the expression obtained by restricting eqn (70) to only the terms in 𝑝,

𝛷𝑙 + 𝑝𝑙 𝑙 = 𝛷𝑟 + 𝑝𝑟 𝑟, (71)

hares some similarities with Bernoulli’s equation for stationary flow in fluid mechanics.
It should be noted that 𝛷𝑗 ,  𝑗 , 𝐹 𝑗

11, and 𝐹 𝑗
21 (𝑗 = 𝑙, 𝑟) in eqns (70) are all functions of: (i.) the contact (pressure) distribution 𝑝

n the boundaries 𝜕𝑎
0 and 𝜕𝑏

0, not explicitly appearing in eqns (68)–(70) and (ii.) the pressure distribution 𝑝 or the dead loading
𝐧0 on the boundaries 𝜕𝑙

0 and 𝜕𝑟
0, as in Figs. 1 and 5. Except for trivial cases, the pressure or dead load (ii.) cannot easily be

elated to the pressure distribution (i.), because equilibrium has to be satisfied, therefore eqns (70) contain more than one unknown.
owever, assuming 𝑆𝑙

21 = 𝑆𝑟
21 = 0 and that the lateral load (ii.) is applied only on the boundary 𝜕𝑗

0 (𝑗 = 𝑙 or 𝑟) while the boundary
𝑖
0 (𝑖 = 𝑙 or 𝑟, with 𝑖 ≠ 𝑗) remains unloaded, Eqs. (70) can be used to define the unknown loading, either 𝑝𝑗 or 𝑆𝑗

11. In particular,
qns (70) lead to

𝑝𝑗 𝑗

−𝑆𝑗
11𝐹

𝑗
11

}

= 𝛷𝑖 −𝛷𝑗 , 𝑖, 𝑗 = 𝑙, 𝑟, with 𝑖 ≠ 𝑗, (72)

o that, when the load (i.) (the pressure distribution 𝑝 on the boundaries 𝜕𝑎
0 and 𝜕𝑏

0) is prescribed, the relevant equation becomes
nonlinear implicit equation in the variable representing the load (ii.), applied on the boundary 𝜕𝑗

0, either 𝑝𝑗 or 𝑆𝑗
11 (𝑗 = 𝑙, 𝑟). The

um of the two components 𝑅𝑎
1 +𝑅𝑏

1 of the resultant force along 𝐞1 of the pressure 𝑝 applied on the boundaries 𝜕𝑎
0 and 𝜕𝑏

0 can be
btained from equilibrium for the two loading cases as

𝑅𝑎
1 + 𝑅𝑏

1 =
{ −𝑝𝑙ℎ𝑙 ,

𝑆𝑙
11ℎ0,

and 𝑅𝑎
1 + 𝑅𝑏

1 =
{ 𝑝𝑟ℎ𝑟,

−𝑆𝑟
11ℎ0.

(73)

ssuming now 𝐹 𝑗
21 = 0, so that 𝜆𝑗1 = 𝐹 𝑗

11, 𝜆
𝑗
2 = 𝐹 𝑗

22, and ℎ𝑗 = 𝜆𝑗2ℎ0 on the loaded boundary 𝜕𝑗
0 (𝑗 = 𝑙 or 𝑟), Eq. (72) implies

𝑅𝑎
1 + 𝑅𝑏

1 =
𝛷𝑙 −𝛷𝑟

𝜆𝑗1
ℎ0, with 𝑗 = 𝑙 or 𝑟, (74)

n expression that can alternatively be derived from eqn (65) by recalling from eqn (29) that 𝜆1 = 1+ 𝑢1,1. Eq. (74) shows that only
a non-null difference in the strain energy 𝛷 at the two boundaries 𝜕𝑙

0 and 𝜕𝑟
0 induces a force 𝑅1 = 𝑅𝑎

1 + 𝑅𝑏
1 and reduces to eqn

(2) when the right edge is unloaded, 𝛷𝑟 = 0, as is the case of the loading conditions sketched in Fig. 1.

4. Energy release rate 𝑮 and the configurational nature of the frictionless contact force component 𝑹𝟏

A rigid, frictionless, and flat constraint ending with a rounded or sharp corner is in contact against the boundary of a hyperelastic
ody with a flat surface in its reference configuration. The frictionless constraint is assumed to be capable of altering its extension
f contact by increasing the size of its flat surface through an horizontal growth of the position of its, say right, corner. Analogously
11
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Fig. 6. An elastic solid (green) with a planar surface is pressed against a flat, rigid, and frictionless constraint (brown). Left (Right): The constraint has a corner
touching the elastic body at point 𝐲0 (at point 𝐲) in the reference (the current) configuration 0 (). In a setting which follows Eshelby, the corner of the
frictionless constraint is assumed to grow of an amount 𝛿𝜉0 𝐞1 in the reference configuration. Two identical regions 0 and  ′

0 are assumed in the reference
configuration differing in a rigid horizontal shift −𝛿𝜉0 𝐞1, both enclosing 𝐲0. The two regions are transformed by the deformation into the regions  and  ′, both
enclosing the corner of the constraint at point 𝐲.

to the concept of configurational force on defects or inhomogeneities introduced by Eshelby (1975), the idea of a configurational
force acting on the corner of frictionless and rigid constraints can be introduced.

For a growth 𝛿𝜉0 in the size of the frictionless constraint along 𝐞1, defined with respect to the undeformed configuration of a
hyperelastic solid, the configurational force component 𝐹 𝑐

1 parallel to the growth direction can be defined as an energy release rate
𝐺

𝐹 𝑐
1 = 𝐺 = − 𝜕

𝜕𝜉0
, (75)

where  is the total potential energy of the mechanical system at equilibrium. For both cases of sharp or rounded corner, it is shown
that the configurational force component 𝐹 𝑐

1 equals the 𝐽–integral,

𝐹 𝑐
1 = 𝐽 . (76)

The treatment is restricted for simplicity to two-dimensions, where surfaces are curves and planes straight lines. Final applications
re referred to a rectangular undeformed shape 0 of the contactor, as described by eqn (60). As a generalization of the results
resented in Section 2, it is shown that a frictionless punch ending with a sharp corner can generate a horizontal configurational
orce even when in contact with a planar surface of an elastic solid.

.1. Variation in the length of a flat, frictionless, and rigid constraint ending with a sharp corner

The contactor has an initially flat boundary 𝜕𝑎
0 having unit normal 𝐧0 = 𝐞2, while the target has a rectilinear surface (with

utward unit normal −𝐞2) ending with a corner, located at point 𝐲, Fig. 6. The frictionless constraint is in contact with the elastic
ody on the portion of the boundary 𝜕𝑎,𝐶

0 . The contact is assumed to be ‘full’, so that grazing does not occur and all the points on the
ouching surface 𝐱 ∈ 𝜕𝑎,tou

0 belong to 𝜕𝑎,𝐶
0 = 𝜕𝑎,tou

0 , including the corner point 𝐲. On the solid, the latter point is back-transformed
n the reference configuration into 𝐲0. The latter point is perturbed by postulating a small growth, parallel to the rectilinear contact
urface of the constraint, to a neighboring point 𝐲0 + 𝛿𝜉0𝐞1. It is therefore possible to strictly follow Eshelby (1975), thus defining
surface 𝜕0 enclosing a region 0 which contains the corner 𝐲0 in the reference configuration 0, called ‘original surface’ and

ntroducing a ‘replica’ region equal to 0, but translated to the region  ′
0 with surface 𝜕 ′

0, obtained by applying a rigid displacement
ector −𝛿𝜉0𝐞1 to 0. Note that the surfaces 𝜕0 and 𝜕 ′

0 are punctured at the singular point 𝐲0. The steps below are followed.

(i.) In the reference configuration 0, the material in the region 0 is cut out and kept aside. Both the latter and the rest of the
body are considered to still be subject to the nominal tractions that were exchanged across the surface cut out of the body,
in addition, the cut out piece is also assumed to be subjected to the surface forces transmitted by the constraint.

(ii.) Consider the material in the replica region, inside of  ′
0, and apply on its surface 𝜕 ′

0 the nominal tractions transmitted by
the rest of the deformable body and by the constraint. Comparing the energies inside  ′

0 and 0 and taking the limit of
vanishing 𝛿𝝃0, the Leibniz integral rule for a closed curve 𝜕0 in a two-dimensional domain, rigidly shifted inside 0, is
obtained (Flanders, 1973)

d
d𝜉0 ∫0(𝜉0)

𝛷 = −∫𝜕0
𝛷 𝐧0 ⋅ 𝐞1, (77)

where 𝐧0 is outward unit normal to 𝜕0, so that the surface on the horizontal edge of 𝜕0 does not contribute. Eq. (77)
may be understood in a generalized sense, depending on the kind of possible singularity present at the end of the target,
and provides the differentiation of the elastic energy corresponding to an infinitesimal translation of 0, equivalent to an
12

infinitesimal increase in the length of the target.
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(iii.) Due to the deformation, the deformed replica  ′ (transformed of  ′
0) does not fit into the hole left by the ‘excision’ of 

(transformed of 0). In particular, any point 𝐫0 inside the region of the replica equals a corresponding point 𝐱0 inside 0, plus
the shift −𝛿𝜉0𝐞1. Therefore the displacement of 𝐫0 is 𝐮(𝐫0) = 𝐮(𝐱0 − 𝛿𝜉0𝐞1), so that at first-order

𝐮(𝐫0) = 𝐮(𝐱0) − 𝛿𝜉0∇𝐮(𝐱0)𝐞1. (78)

It follows from Eq. (78) that, in addition to a rigid-body translation 𝛿𝜉0𝐞1 (which does not produce any work), to fit the
deformed  ′ into the deformed hole left by , an additional displacement has to be added to the displacement 𝐮(𝐱0) on the
surface 𝜕0 of the hole left in 0. In differential terms, the latter displacement satisfies

𝜕𝐮
𝜕𝜉0

= −(∇𝐮)𝐞1, (79)

so that the amount of work done by the tractions on the surface of the hole 𝜕0 is equal to

𝜕𝑊
𝜕𝜉0

= ∫𝜕0
𝐞1 ⋅ ∇𝐮𝑇 𝐒𝐧0, (80)

where again 𝐧0 is the outward unit normal to 𝜕0.
(iv.) The change in the total potential energy  is the sum of Eqs. (77) and (80),

𝜕
𝜕𝜉0

= 𝜕𝑊
𝜕𝜉0

+ d
d𝜉0 ∫0(𝜉0)

𝛷, (81)

which, using Eqs. (77) and (80), yields to the energy release rate 𝐺 as

𝐺 = − 𝜕
𝜕𝜉0

= ∫𝜕0
𝐞1 ⋅

(

𝛷𝐈 − ∇𝐮𝑇 𝐒
)

𝐧0. (82)

Note that the surface 𝜕0 comprises only the part inside the solid, while contributions on the flat boundary vanish. This
statement is trivial for the term 𝛷 because 𝐧0 is orthogonal to 𝐞1 on the flat contact edge of the elastic solid. Regarding the
term ∇𝐮𝑇 𝐒𝐧0, it may be observed that 𝐒𝐧0 = 𝟎 on the flat boundary outside the constraint, while inside the constraint Eq. (29)
together with the frictionless condition (41) and the fact that 𝐅𝐞1 is parallel to 𝐞1 along the contact allow to conclude.

(v.) Now  ′ fits the hole left by  in the original body and can be welded in it. The nominal tractions on both sides of the surface
𝜕0 differ on a force distribution which gives higher-order effects and can be neglected. We are now left with the system as it
was to begin with, except that the end of the constraint is shifted of an amount 𝛿𝜉0𝐞1 with respect to its initial position defined in the
reference configuration.

The operations (i.)–(iii.) involved in the Eshelby proof are summarized in Fig. 7.
Eq. (82) can be viewed as the work done by the configurational force 𝐅𝑐 for a unit displacement in the direction 𝐞1, and therefore

y the configurational force component 𝐹 𝑐
1 = 𝐅𝑐 ⋅ 𝐞1

𝐹 𝑐
1 = 𝐺 = 𝐞1 ⋅ ∫𝜕0

(

𝛷𝐈 − ∇𝐮𝑇 𝐒
)

𝐧0. (83)

Note that the configurational force 𝐅𝑐 remains determined only in its component 𝐹 𝑐
1 along 𝐞1, because the translation of 0 is

ot arbitrary, differently from the original treatment by Eshelby, but prescribed parallel to the direction 𝐞1.
Finally, recalling the energy–momentum tensor 𝐏, eqn (44), Eq. (83) becomes

𝐹 𝑐
1 = 𝐞1 ⋅ ∫𝜕0

𝐏𝐧0, (84)

where the integrand is null on the upper flat portion of the boundary, except possibly at the point 𝐲0 where the corner of the
constraint is present. The surface 𝜕0 can be shrunk up to the limit of that point, without changing the value of the integral. This
eads to the path-independent 𝐽–integral, when the target is flat and ends with a corner,

𝐽 = 𝐹 𝑐
1 , (85)

so that the configurational force in the direction 𝐞1 is equal to the horizontal resultant of the force acting on the solid with reversed
ign

𝐹 𝑐
1 = −𝑅1. (86)

pplication to rectangular elastic domains. It is interesting to note that, when a rectangular undeformed elastic solid is considered,
he region 0 can be assumed as illustrated in Fig. 7(a), namely, rectangular with boundary 𝜕 𝑙

0 ∪ 𝜕𝑏
0 ∪ 𝜕𝑟

0, so that, assuming the
rictionless condition on 𝜕𝑏

0 ⊆ 𝜕𝑏
0, the configurational force component 𝐹 𝑐

1 reduces to

𝐹 𝑐
1 = ∫𝜕𝑟

[

𝛷 − 𝑢1,1𝑆11 − 𝑢2,1𝑆21
]

− ∫𝜕 𝑙

[

𝛷 − 𝑢1,1𝑆11 − 𝑢2,1𝑆21
]

, (87)
13
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Fig. 7. Sequence of operations in the Eshelby scheme for the deformation of an elastic body against a rigid and frictionless constraint, which increases its length
of an amount 𝛿𝜉0 in the reference configuration. Reference (current) configurations are shown on the left (on the right). (a) The referential regions 0 and  ′

0
(the latter is the image of the former obtained through a shift of amount −𝛿𝜉0) enclose the end of the constraint and are transformed by the deformation into
 and  ′ in the current configuration. (b1) The region 0 and its transformed counterpart  are ideally ‘excised’ from the original body. (b2) The region  ′

0
and its transformed counterpart  ′ are ideally ‘excised’ from a ‘replica’ version of the original body. The elastic energies contained within 0 and  ′

0 differ only
in the crescent-shaped regions obtained by superposition of 0 and  ′

0, so that the derivative of the elastic energy with respect to the configurational parameter
is given by eqn (77). The deformed ‘replica’ region  ′ does not fit the hole left in the original region by the excision of , so that displacements have to be
applied on the boundary of the hole, producing the increment of work expressed by eqn (80). (c) The replica finally fits the hole in the original body and the
corner of the rigid constraint is advanced of an amount 𝛿𝜉0 with respect to the original reference configuration. The remaining mismatch in the traction vector
at the boundary of the region is higher-order and can be neglected.

which is equivalent to eqns (65) and (68) (respectively obtained through the solenoidal property of the energy–momentum tensors
𝐏 and 𝐂 in the absence of singularities) because equilibrium implies

𝑅1 = ∫ 𝑟
𝑆11 − ∫ 𝑙

𝑆11. (88)
14
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Fig. 8. Left: The kinematic assumptions, usually introduced for a rod, eqn (89), are imposed to an elastic solid of rectangular shape in its undeformed
configuration, constrained between two rigid and frictionless constraints. Right: the rod’s model, representing an extensible version of the variable-length elastica
subject to end loads.

4.2. Variation in the length of the constraint with a rounded corner

The presence of a smooth-end is now addressed. Analogously to the treatment of the growth of a flat surface notch in a two-
dimensional deformation field given by Rice (1968a), the right end of the frictionless and straight constraint is considered to have
a smooth ‘cap’, along which the contact with the elastic body is lost.

The end of the constraint is assumed to be able to rigidly translate in the direction 𝐞1, parallel to the constraint before the
initiation of the smooth cap. The treatment developed in the previous Section still holds under the caution that 𝜕0 has to contain
all the zone contacting with the smooth ‘movable’ cap. A repetition of the calculations developed in the previous Section leads now
again to Eq. (84), where now 𝜕0 is any surface enclosing all the zone in contact with the smooth ‘movable’ cap. Consequently,
Eq. (85) is again obtained, in agreement with the evaluation of 𝑅1 provided by eqn (66), following from the solenoidal property of
the energy–momentum tensor 𝐏.

5. Connection with the configurational sliding force acting on an unshearable rod constrained by a sliding sleeve

The introduced theoretical framework, disclosing the development of configurational sliding forces at the (sharp or rounded)
corner of a frictionless, rigid, and flat surface acting on an elastic body, is now used to throw light on the akin problem of
elastic rods partially constrained with a sliding sleeve. The presence of configurational forces at the end of a sliding sleeve was
disclosed by analyzing one-dimensional flexible structures through a variational approach (Bigoni et al., 2015; Armanini et al.,
2019; Koutsogiannakis et al., 2023) or by imposing jump conditions in the material momentum balance law (O’Reilly, 2007, 2017;
Hanna et al., 2018). This result is confirmed here through the application of the framework developed in the previous Sections to
an elastic solid of rectangular shape in its undeformed configuration 0, as defined by eqn (60), in contact with two frictionless
rigid surfaces realizing a sliding sleeve constraint.

5.1. Rod’s kinematics

According to the kinematic assumptions usually made in rod mechanics (Magnusson et al., 2001), the deformation for an elastic
solid of rectangular shape is prescribed to provide null transverse strain and to be described by the following expressions, linearized
in the variable 𝑥02 (Fig. 8, left),

{

𝑥1
(

𝑥01, 𝑥
0
2
)

= 𝑥01 + 𝑢
(

𝑥01
)

− 𝑥02 sin 𝜃
(

𝑥01
)

,

𝑥2
(

𝑥01, 𝑥
0
2
)

= 𝑣
(

𝑥01
)

+ 𝑥02 cos 𝜃
(

𝑥01
)

,
in0 ∶=

{

𝑥01 ∈ [0,𝓁0], 𝑥02 ∈
[

ℎ0
2
,−

ℎ0
2

]}

, (89)

here 𝑢(𝑥01), 𝑣(𝑥
0
1), and 𝜃(𝑥01) are the three kinematic fields describing the deformed configuration of the solid, respectively, the

isplacement components along 𝐞1 and 𝐞2, and the inclination angle of the rod’s axis with respect to the direction 𝐞1, corresponding
o the undeformed tangent. Only two among the three kinematic descriptors 𝑢, 𝑣, and 𝜃 are independent, since the Euler–Bernoulli
ssumption implies

tan 𝜃
(

𝑥01
)

=
𝑣′
(

𝑥01
)

1 + 𝑢′
(

𝑥01
)
, (90)

where a prime denotes differentiation with respect to the axial coordinate 𝑥01, while impenetrability imposes the constraint 𝑢′
(

𝑥01
)

>
−1 on the displacement.

The two primary kinematic fields measuring the deformed state of the extensible elastica are the generalized curvature 𝜃′
(

𝑥01
)

and the rod’s axis axial deformation 𝜂
(

𝑥01
)

(which satisfies 𝜂
(

𝑥01
)

> −1 because of the impenetrability constraint)

( 0)
√

[

1 + 𝑢′
( 0)]2 [

′
( 0)]2
15

𝜂 𝑥1 = 𝑥1 + 𝑣 𝑥1 − 1, (91)
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through which the following geometrical relations can be derived

sin 𝜃
(

𝑥01
)

=
𝑣′
(

𝑥01
)

1 + 𝜂
(

𝑥01
)
, cos 𝜃

(

𝑥01
)

=
1 + 𝑢′

(

𝑥01
)

1 + 𝜂
(

𝑥01
)
. (92)

The resultant force components 𝑁1 and 𝑁2, respectively aligned parallel to 𝐞1 and 𝐞2, and the moment 𝑀 are given from the
equilibrium equivalence, imposed for the cross section at the generic coordinate 𝑥01, as

𝑁1
(

𝑥01
)

= ∫

ℎ0
2

− ℎ0
2

𝑆11d𝑥02, 𝑁2
(

𝑥01
)

= ∫

ℎ0
2

− ℎ0
2

𝑆21d𝑥02, 𝑀
(

𝑥01
)

= −∫

ℎ0
2

− ℎ0
2

[

𝑆11 cos 𝜃 + 𝑆21 sin 𝜃
]

𝑥02d𝑥
0
2, (93)

here the first two components can be composed to evaluate the axial and shear forces 𝑁 and 𝑇

𝑁
(

𝑥01
)

= 𝑁1
(

𝑥01
)

cos 𝜃
(

𝑥01
)

+𝑁2
(

𝑥01
)

sin 𝜃
(

𝑥01
)

, 𝑇
(

𝑥01
)

= −𝑁1
(

𝑥01
)

sin 𝜃
(

𝑥01
)

+𝑁2
(

𝑥01
)

cos 𝜃
(

𝑥01
)

. (94)

5.2. Sliding sleeve constraint and the evaluation of the configurational force component 𝐹 𝑐
1

The elastic rectangular solid under consideration is assumed in partial contact with two symmetric straight, frictionless, and rigid
constraints, realizing a sliding sleeve with sliding direction parallel to 𝐞1, in a setting similar to that reported in Fig. 8 (left). The
sliding sleeve is assumed to have its exit point located at the cross section marked by the coordinate 𝑥01 = 𝓁0

𝑖𝑛 (with 𝓁0
𝑖𝑛 ∈ [0,𝓁0]),

referred to the undeformed rod. Thus, the following constraints apply

𝜃
(

𝑥01
)

= 𝑣
(

𝑥01
)

= 0, for 𝑥01 ∈
[

0,𝓁0
𝑖𝑛
]

, (95)

which, considering the origin of the reference system 𝑥1–𝑥2 coincident with the sliding sleeve exit,

𝑥1
(

𝑥01 = 𝓁0
𝑖𝑛, 𝑥

0
2
)

= 0, (96)

imply the validity of the following relation

𝑢1
(

𝑥01 = 𝓁0
𝑖𝑛
)

= −𝓁0
𝑖𝑛. (97)

From the deformation field, Eqs. (89), the components of the displacement gradient ∇𝐮, relevant for the application of the
expression (87), provides the configurational force component 𝐹 𝑐

1 as

𝑢1,1
(

𝑥01, 𝑥
0
2
)

= 𝑢′
(

𝑥01
)

− 𝑥02 𝜃
′ (𝑥01

)

cos 𝜃
(

𝑥01
)

,

𝑢2,1
(

𝑥01, 𝑥
0
2
)

= 𝑣′
(

𝑥01
)

− 𝑥02 𝜃
′ (𝑥01

)

sin 𝜃
(

𝑥01
)

.
(98)

By considering the boundaries 𝜕𝑟
0 and 𝜕 𝑙

0 coincident with the cross sections respectively located at 𝑥[𝑟]01 and 𝑥[𝑙]01 , the expression
(87) for the configurational force component 𝐹 𝑐

1 reduces to

𝐹 𝑐
1 = 𝛹

(

𝑥[𝑟]01

)

− 𝛹
(

𝑥[𝑙]01

)

−
[

𝑁1 𝑢
′ +𝑁2 𝑣

′ +𝑀 𝜃′
]

|

|

|𝑥[𝑟]01
+

[

𝑁1 𝑢
′ +𝑁2 𝑣

′ +𝑀 𝜃′
]

|

|

|𝑥[𝑙]01
, (99)

where 𝛹 is the rod’s elastic energy density, evaluated as

𝛹
(

𝑥01
)

= ∫

ℎ0
2

− ℎ0
2

𝛷 d𝑥02. (100)

ssuming that the two cross sections 𝜕𝑟
0 and 𝜕 𝑙

0 are the cross sections respectively ‘just after’ and ‘just before’ the coordinate
0
𝑖𝑛, where the sliding sleeve exit is back transformed in the reference configuration, the configurational force component 𝐹 𝑐

1 (99)
implifies to

𝐹 𝑐
1 = [[𝛹

(

𝓁0
𝑖𝑛
)

]] − [[𝑁
(

𝓁0
𝑖𝑛
)

𝜂
(

𝓁0
𝑖𝑛
)

]] −𝑀
(

𝓁0+
𝑖𝑛
)

𝜃′
(

𝓁0+
𝑖𝑛
)

, (101)

where the brackets [[⋅]] denote the jump of the relevant quantity at the sliding sleeve exit,

[[𝑓
(

𝓁0
𝑖𝑛
)

]] = 𝑓
(

𝓁0+
𝑖𝑛
)

− 𝑓
(

𝓁0−
𝑖𝑛
)

, (102)

and, because of the constraint (95), the following identities at the left and right limit points of the sliding sleeve exit hold

𝜂
(

𝓁0±
𝑖𝑛

)

= 𝑢′
(

𝓁0±
𝑖𝑛

)

, 𝑁
(

𝓁0±
𝑖𝑛

)

= 𝑁1

(

𝓁0±
𝑖𝑛

)

, 𝑣′
(

𝓁0±
𝑖𝑛

)

= 0. (103)

It is highlighted that 𝑁 , 𝑀 , 𝜂, 𝜃′, and 𝛹 may display a jump in their value at the coordinate 𝓁0
𝑖𝑛.

Eq. (101) provides the expression for the configurational force 𝐹 𝑐
1 acting on the variable-length Euler elastica by including axial

deformability and a generic (possibly non-quadratic) rod’s energy density 𝛹 . This equation reduces to that obtained in Bigoni et al.
(2015) when axial inextensibility and quadratic energy in the curvature, 𝜃′, are assumed.

It is finally observed that Eq. (101) can be interpreted as a jump condition for the material momentum balance law, which was
introduced in the forerunning contribution by O’Reilly (2007), who established a novel frontier in the configurational mechanics of
16
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structures, by enhancing a previous formulation by Kienzler and Herrmann (2000). More specifically, by introducing the concept
of material force 𝖢(𝑥01),

𝖢
(

𝑥01
)

= 𝛹
(

𝑥01
)

−𝑁
(

𝑥01
)

𝜂
(

𝑥01
)

−𝑀
(

𝑥01
)

𝜃′
(

𝑥01
)

, (104)

the jump condition at the singularity point 𝑥01 = 𝓁0
𝑖𝑛 is given by

[[𝖢
(

𝓁0
𝑖𝑛
)

]] = 𝐹 𝑐
1 , (105)

which is coincident with eqn (101), by recalling that 𝜃′
(

𝓁0−
𝑖𝑛
)

= 0, due to the presence of the sliding sleeve. Interestingly, the material
force 𝖢(𝑥01), eqn (104), for the one-dimensional model can be obtained as the integral of the energy–momentum tensor component
𝑃11 = 𝐞1 ⋅𝐏𝐞1 [expressed in a linearized kinematics (89)], calculated on the cross section of the rod

𝖢
(

𝑥01
)

= ∫

ℎ0
2

− ℎ0
2

𝑃11
(

𝑥01, 𝑥
0
2
)

d𝑥02 = ∫

ℎ0
2

− ℎ0
2

[

𝛷 − 𝑢1,1𝑆11 − 𝑢2,1𝑆21
]

d𝑥02. (106)

In conclusion, the presence of the configurational force 𝐹 𝑐
1 at the sliding sleeve exit so far obtained for rod models (O’Reilly, 2007;

Bigoni et al., 2015; O’Reilly, 2017; Hanna et al., 2018; Armanini et al., 2019; Koutsogiannakis et al., 2023) is confirmed from a
solid mechanics point of view.

5.3. Configurational force via a variational approach

Expression (101) for the configurational force component 𝐹 𝑐
1 is now derived through a variational approach. Attention is

restricted to a specific loading condition, corresponding to dead loads at the two rod’s ends, in particular a load −𝐻 𝑙𝐞1 is assumed
to be applied at 𝑥01 = 0, while a load −𝐻𝑟𝐞1 − 𝑃 𝐞2 at 𝑥01 = 𝓁0 (Fig. 8, bottom right). The total potential energy  is given by the
difference of strain energy stored within the rod and the work done by the dead loadings,

 = ∫

𝓁0−𝑖𝑛

0
𝛹 (𝜂, 𝜃′)d𝑥01 + ∫

𝓁0

𝓁0+𝑖𝑛

𝛹 (𝜂, 𝜃′)d𝑥01 +𝐻 𝑙𝑥1(0, 0) +𝐻𝑟𝑥1(𝓁0, 0) + 𝑃𝑥2(𝓁0, 0). (107)

Recalling eqns (92), (95), and (96), the following kinematic relations hold

𝑥1(0, 0) = −∫

𝓁0−𝑖𝑛

0
(1 + 𝜂)d𝑥01, 𝑥1(𝓁0, 0) = ∫

𝓁0

𝓁0+𝑖𝑛

(1 + 𝜂) cos 𝜃d𝑥01, 𝑥2(𝓁0, 0) = ∫

𝓁0

𝓁0+𝑖𝑛

(1 + 𝜂) sin 𝜃d𝑥01, (108)

and the total potential energy  , eqn (107), can be rewritten as


(

𝜂, 𝜃,𝓁0
𝑖𝑛
)

= ∫
𝓁0−𝑖𝑛
0 𝛹 (𝜂, 𝜃′)d𝑥01 + ∫ 𝓁0

𝓁0+𝑖𝑛
𝛹 (𝜂, 𝜃′)d𝑥01 −𝐻 𝑙 ∫

𝓁0−𝑖𝑛
0 (1 + 𝜂)d𝑥01 +𝐻𝑟 ∫ 𝓁0

𝓁0+𝑖𝑛
(1 + 𝜂) cos 𝜃d𝑥01 + 𝑃 ∫ 𝓁0

𝓁0+𝑖𝑛
(1 + 𝜂) sin 𝜃d𝑥01.

(109)

A variation in the configuration defined by the fields 𝜂(𝑥01) and 𝜃(𝑥01) and the configurational parameter 𝓁0
𝑖𝑛 is considered, through

he small positive parameter 𝜀, as

𝜂
(

𝑥01
)

→ 𝜂
(

𝑥01
)

+ 𝜀 𝛿𝜂
(

𝑥01
)

, 𝜃
(

𝑥01
)

→ 𝜃
(

𝑥01
)

+ 𝜀 𝛿𝜃
(

𝑥01
)

, 𝓁0
𝑖𝑛 → 𝓁0

𝑖𝑛 + 𝜀 𝛿𝓁0
𝑖𝑛, (110)

where, from the sliding sleeve constraint (95), the perturbations 𝛿𝓁0
𝑖𝑛 and 𝛿𝜃

(

𝑥01
)

satisfy the following compatibility equation

𝛿𝜃
(

𝓁0
𝑖𝑛
)

= −𝜃′
(

𝓁0
𝑖𝑛
)

𝛿𝓁0
𝑖𝑛. (111)

Keeping into account that the axial force 𝑁 and the bending moment 𝑀 are work-conjugate to the axial deformation 𝜂 and the
generalized curvature 𝜃′, the following constitutive equations can be assumed

𝑁 = 𝜕𝛹
𝜕𝜂

, 𝑀 = 𝜕𝛹
𝜕𝜃′

, (112)

so that, integration by parts, the sliding sleeve constraint conditions (95), and the compatibility condition (111), allow to evaluate
the first variation 𝛿 of the total potential energy as

𝛿
(

𝜂, 𝜃,𝓁0
𝑖𝑛, 𝛿𝜂, 𝛿𝜃, 𝛿𝓁

0
𝑖𝑛
)

= ∫

𝓁0−𝑖𝑛

0
𝑁𝛿𝜂d𝑥01 + ∫

𝓁0

𝓁0+𝑖𝑛

𝑁𝛿𝜂d𝑥01 − ∫

𝓁0

𝓁0+𝑖𝑛

𝑀 ′𝛿𝜃d𝑥01 −𝐻 𝑙
∫

𝓁0−𝑖𝑛

0
𝛿𝜂d𝑥01 +𝐻𝑟

∫

𝓁0

𝓁0+𝑖𝑛

𝛿𝜂 cos 𝜃d𝑥01

−𝐻𝑟
∫

𝓁0

𝓁0+𝑖𝑛

(1 + 𝜂) sin 𝜃𝛿𝜃d𝑥01 − 𝑃 ∫

𝓁0

𝓁0+𝑖𝑛

𝛿𝜂 sin 𝜃d𝑥01 − 𝑃 ∫

𝓁0

𝓁0+𝑖𝑛

(1 + 𝜂) cos 𝜃𝛿𝜃d𝑥01

+
{

−𝐻𝑟 [1 + 𝜂
(

𝓁0+
𝑖𝑛
)]

−𝐻 𝑙 [1 + 𝜂
(

𝓁0−
𝑖𝑛
)]

+𝑀
(

𝓁0+
𝑖𝑛
)

𝜃′
(

𝓁0+
𝑖𝑛
)

− [[𝛹 (𝓁0
𝑖𝑛)]]

}

𝛿𝓁0
𝑖𝑛.

(113)

he annihilation of the first variation 𝛿 for every compatible perturbations 𝛿𝜂
(

𝑥01
)

, 𝛿𝜃
(

𝑥01
)

, and 𝛿𝓁0
𝑖𝑛 provides the following

quilibrium equations for the portion of the rod respectively outside
{

𝑀 ′ (𝑥01
)

+𝐻𝑟 [1 + 𝜂
(

𝑥01
)]

sin 𝜃
(

𝑥01
)

+ 𝑃
[

1 + 𝜂
(

𝑥01
)]

cos 𝜃
(

𝑥01
)

= 0,
( 0) ( 0) 𝑟 ( 0) 𝑥01 ∈

(

𝓁0
𝑖𝑛,𝓁0

]

, (114)
17
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and inside

𝑁
(

𝑥01
)

= 𝐻 𝑙 , 𝑥01 ∈
[

0,𝓁0
𝑖𝑛
)

, (115)

the sliding sleeve, together with the interface condition at the sliding sleeve end

𝐻𝑟 [1 + 𝜂
(

𝓁0+
𝑖𝑛
)]

+𝐻 𝑙 [1 + 𝜂
(

𝓁0−
𝑖𝑛
)]

−𝑀
(

𝓁0+
𝑖𝑛
)

𝜃′
(

𝓁0+
𝑖𝑛
)

+ [[𝛹 (𝓁0
𝑖𝑛)]] = 0. (116)

From eqns (114)2 and (115) it follows that the axial force 𝑁(𝑥01) at the left and right limit points of the sliding sleeve exit are given
by

𝑁
(

𝓁0−
𝑖𝑛
)

= 𝐻 𝑙 , 𝑁
(

𝓁0+
𝑖𝑛
)

= −𝐻𝑟, (117)

so that the jump in the normal force at the sliding sleeve end is provided by the reaction force component 𝑅1, which remains
determined from equilibrium as

𝑅1 = 𝐻 𝑙 +𝐻𝑟. (118)

On account of Eqs. (117) and (118), a comparison between the axial equilibrium at the sliding sleeve exit, eqn (116), and expression
(101), derived for the configurational force component 𝐹 𝑐

1 , implies the validity of Eq. (86), obtained with reference to the frictionless
contact conditions.

5.4. Application to rods characterized by a quadratic elastic energy density

Assuming the usual quadratic expression for the elastic energy density of the rod,

𝛹
(

𝑥01
)

=
𝐵
[

𝜃′
(

𝑥01
)]2

2
+

𝐾
[

𝜂
(

𝑥01
)]2

2
, (119)

with 𝐵 and 𝐾 representing the (constant and positive) bending and axial stiffnesses, respectively, the application of Eq. (112)
provides the constitutive relation

𝑁
(

𝑥01
)

= 𝐾 𝜂
(

𝑥01
)

, 𝑀
(

𝑥01
)

= 𝐵 𝜃′
(

𝑥01
)

, (120)

so that the configurational force component 𝐹 𝑐
1 , eqn (101), reduces to

𝐹 𝑐
1 = −

𝐵
[

𝜃′
(

𝓁0+
𝑖𝑛
)]2

2
−

𝐾[[𝜂
(

𝓁0
𝑖𝑛
)2]]

2
. (121)

Consequently the concentrated reaction force 𝑅1 becomes

𝑅1 =
𝐵
[

𝜃′
(

𝓁0+
𝑖𝑛
)]2

2
+

𝐾[[𝜂
(

𝓁0
𝑖𝑛
)2]]

2
. (122)

As a consequence of the assumed linear elastic axial behavior, eqn (120), the jump in the axial deformation 𝜂 at the sliding
leeve exit satisfies the following identity

𝐾
[

𝜂
(

𝓁0+
𝑖𝑛
)

− 𝜂
(

𝓁0−
𝑖𝑛
)]

= −𝑅1. (123)

ntroducing the average axial deformation ⟨𝜂
(

𝓁0
𝑖𝑛
)

⟩ at the sliding sleeve exit

⟨𝜂
(

𝓁0
𝑖𝑛
)

⟩ =
𝜂
(

𝓁0+
𝑖𝑛
)

+ 𝜂
(

𝓁0−
𝑖𝑛
)

2
, (124)

he concentrated reaction 𝑅1, eqn (122), can finally be obtained as

𝑅1 =
𝐵
[

𝜃′
(

𝓁0+
𝑖𝑛
)]2

2
[

1 + ⟨𝜂
(

𝓁0
𝑖𝑛
)

⟩

]
, (125)

which approaches, in the limit of vanishing axial deformation 𝜂
(

𝓁0
𝑖𝑛
)

at the end of the sliding sleeve, the value for inextensible rods

lim
𝜂
(

𝓁0𝑖𝑛

)

→0
𝑅1 =

𝐵
[

𝜃′
(

𝓁0+
𝑖𝑛
)]2

2
, (126)

btained in Bigoni et al. (2015).
18
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6. Reaction force 𝑹𝟏, Eulerian buckling, and dynamic ejection from a frictionless, rigid, flat punch partially compressing
n elastic rectangular block

The plane strain problem of symmetric (frictionless, flat, and rigid) punches indenting an elastic solid of rectangular shape is
urther addressed. The purpose is to provide insight into the significance of the framework introduced in the previous Sections in
erms of both reliability of the obtained expressions and applicability of the results to the design of novel soft mechanisms.

In particular, the high reliability of the expression (74) for the contact reaction component 𝑅1 (obtained under the approximate
assumption of uniform state at both the lateral edges of the rectangular domain) is assessed, through a comparison with results
from Finite Element (FE) analyses at variable geometric parameters. Moreover, actuation mechanisms from Eulerian buckling and
longitudinal dynamic ejection of the elastic solid due to transverse compression are presented, highlighting effects related to the
presence of the reaction force 𝑅1.

onstitutive hyperelastic material models. A specific hyperelastic material response is defined through the introduction of a specific
train energy density 𝛷 as a function of the principal stretches 𝜆𝑖 (𝑖 = I, II, III, so that  = 𝜆I𝜆II𝜆III). It is assumed that plane

strain prevails, so that the out-of-plane principal stretch assumes a unit value, 𝜆III = 𝜆3 = 1. The following two material models are
analyzed.

• A compressible and initially isotropic material, obtained retaining only the first term (𝑁 = 1) in the summation characterizing
the strain energy density of the Storåkers model (Storåkers, 1986),

‘First-term’ Storåkers model: 𝛷(𝜆I, 𝜆II) =
2𝜇
𝛼2

[

𝜆𝛼I + 𝜆𝛼II − 2 + 1
𝛽
(

 −𝛼𝛽 − 1
)

]

, (127)

where 𝜇 > 0 is the ground-state shear modulus, 𝛼 ≠ 0 is a parameter affecting the nonlinear response, and 𝛽 > −1∕3 is another
parameter, related to the value of the ground-state Poisson’s ratio 𝜈 ∈ (−1, 1∕2) as

𝛽 = 𝜈
1 − 2𝜈

. (128)

The principal components of the first Piola–Kirchhoff stress tensor 𝐒 can be obtained from eqn (31) as

𝑆𝑖 = 2𝜇
𝜆𝛼𝑖 − (𝜆𝑖𝜆𝑗 )−𝛼𝛽

𝛼𝜆𝑖
, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = I, II. (129)

By assuming 𝛼 = 2, the strain energy density 𝛷 (127) reduces to that recently proposed by Pence and Gou (2015) as a
compressible version of the neo-Hookean material model,

Pence and Gou model ∶ 𝛷(𝜆I, 𝜆II) =
𝜇
2

[

𝜆2I + 𝜆2II − 2 + 1
𝛽
(

 −2𝛽 − 1
)

]

. (130)

• The incompressible and isotropic neo-Hookean material model (Bigoni, 2012):

neo-Hookean model: 𝛷(𝜆I, 𝜆II) =
𝜇
2
(

𝜆2I + 𝜆2II − 2
)

, 𝜆I𝜆II = 1, (131)

where 𝜇 > 0 is the ground-state shear modulus. In the case of incompressible materials, the constitutive relation, eqn (31),
becomes

𝑆𝑖 = −𝛱
𝜆𝑖

+ 𝜕𝛷
𝜕𝜆𝑖

, (132)

where 𝛱 is the Lagrangian multiplier associated to the incompressibility constraint. Eq. (132) leads to the principal components

𝑆𝑖 = −𝛱
𝜆𝑖

+ 𝜇𝜆𝑖, 𝑖 = I, II. (133)

It is noted that, assuming 𝛼 = 2, the compressible model (130) approaches the incompressible one (131) in the limit 𝛽 → ∞
(corresponding to 𝜈 → 1∕2).

ommon details of FE simulations. FE simulations are performed through the commercial code Abaqus 2023. The rectangular elastic
omain is modeled in both of the two compressible and incompressible versions, eqs (130) and (131). The elastic domain is meshed
ith bi-quadratic plane strain elements (CPE8) when the material is compressible, otherwise, a hybrid formulation is used (CPE8H).
he boundary conditions prescribed on the sides of the rectangle are: (i.) free from tractions and constrained frictionless (ii.) bilateral
visualized with rollers) or (iii.) unilateral contact with a flat undeformable surface. In the numerical simulations the corner of the
igid constraint is smoothed with a quarter-of-circle arc of radius 𝑟.

Where the rigid surface is present, it is meshed with a linear rigid link (R2D2). To prevent interpenetration, the mesh size of the
elastic body (the slave, defined on nodes) is chosen to be finer than the mesh size of the rigid constraint (the master, defined on
segments). The adopted solver implements nonlinear geometry, enhanced through the introduction of a moderate energy dissipation
19

when dynamic conditions prevail, to overcome ill-posedness at contact.
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6.1. The horizontal reaction force 𝑅1 at the corner of a frictionless flat punch

Two boundary value problems are considered for an elastic material occupying a rectangular domain in its undeformed
configuration, 0, eqn (60). The sides of the domain have lengths ℎ0 and 𝓁0, Fig. 5 (left). In both problems the lower boundary
𝜕𝑏

0 is entirely constrained by a horizontal bilateral frictionless constraint (a condition indicated with applied rollers) along a flat
surface with unit normal 𝐞2. The upper boundary of the elastic solid, 𝜕𝑎

0, is partially constrained on its left part by a (frictionless,
flat, and rigid) punch, defined by the outward unit normal −𝐞2. The punch pushes the elastic solid remaining aligned parallel to 𝐞2,
until a thickness ℎ = 𝜆2ℎ0 is reached, corresponding to a nominal transverse stretch 𝜆2 < 1.

The two analyzed boundary value problems, called BVP1 and BVP2, differ in the boundary conditions provided on the lateral
sides 𝜕𝑙 (with normal 𝐧𝑙0 = −𝐞1) and 𝜕𝑟 (with normal 𝐧𝑟0 = 𝐞1) as follows.

- For BVP1: the boundary 𝜕𝑙
0 is loaded through the application of a normal dead traction, 𝐒𝑙𝐧𝑙0 = −𝑆𝑙

11𝐞1, while the boundary
𝜕𝑟

0 is left traction-free, 𝐒𝑟𝐧𝑟0 = 𝟎. Equilibrium imposes the reaction force 𝑅1 to be the negative of the resultant of the applied
tractions

𝑅1 = 𝑆𝑙
11ℎ0. (134)

- For BVP2: the boundary 𝜕𝑙
0 is left traction-free, 𝐒𝑙𝐧𝑙0 = 𝟎, while the boundary 𝜕𝑟

0 is loaded through a normal dead traction,
𝐒𝑟𝐧𝑟0 = 𝑆𝑟

11𝐞1. Equilibrium imposes the reaction force 𝑅1 to be the negative of the resultant of the applied tractions

𝑅1 = −𝑆𝑟
11ℎ0. (135)

The end point of the flat punch (corresponding to either a sharp corner or the initial point of a rounded corner) is located at the
back-transformed point 𝐲0 =

(

𝓁0
𝑖𝑛, ℎ0∕2

)

, belonging to 𝑎
0, at a distance 𝓁0

𝑖𝑛 ∈ [0,𝓁0].
The assumptions

𝓁0∕ℎ0 > 2 and ℎ0 < 𝓁0
𝑖𝑛 < 𝓁0 − ℎ0, (136)

llow to neglect the perturbation introduced by the end (sharp or smooth) of the punch on the two lateral boundaries 𝜕𝑙
0 and 𝜕𝑟

0,
here the deformed state is approximated as uniform and therefore independent of 𝑥02. Under this approximation, eqn (70) can be
sed to obtain the horizontal force 𝑅1 in the two following cases.

- For BVP1: the part of the boundary 𝜕𝑎
0 outside the constraint and 𝜕𝑟

0 are traction-free; moreover, 𝜕𝑟
0 is unloaded,

𝜆𝑟1 = 𝜆𝑟2 = 1 and 𝛷𝑟 = 0. Thus, the reaction force 𝑅1, eqn (74), becomes

𝑅1 =
𝛷𝑙

(

𝜆𝑙1, 𝜆
𝑙
2 = 𝜆2

)

𝜆𝑙1
ℎ0, (137)

an equation showing that the force is always positive. The two unknowns 𝑅1 and 𝜆𝑙1 (the latter enforced to be coincident to
1
/

𝜆2 in the incompressible case) can be evaluated by solving eqns (134) and (137), together with the constitutive Eq. (129)
[or eqn (132) in the incompressible case]. The result comes in a closed form for the incompressible case as

𝑅1 =

(

𝜆
2
2 − 1

)2

𝜆2

𝜇 ℎ0
2

. (138)

Although not expressible in a closed form, in the compressible case, for a small strain 𝜀2 < 0 defining 𝜆2 = 1+𝜀2, the following
series expansions, truncated at the fourth-order can be obtained

𝑅1 =
[

1 −
(3 − 𝛼)(1 − 2𝜈)

3(1 − 𝜈)
𝜀2 +

(𝛼(3𝛼 − 20) + 35)𝜈2 + 𝛼(22 − 3𝛼)𝜈 + (𝛼 − 6)𝛼 − 34𝜈 + 8
12(1 − 𝜈)2

𝜀 2
2

]

𝜇ℎ0
1 − 𝜈

𝜀 2
2 + o

(

𝜀 4
2

)

,

𝜆𝑙1 = 1 +

[

−1 +
𝜀2
2𝜈

−
3 + 𝛼

(

2𝜈2 + 𝜈 − 1
)

− 𝜈(4 + 𝜈)
6(1 − 𝜈)2𝜈

𝜀 2
2

+
17𝛼2

(

2𝜈3 + 𝜈2 + 𝜈 − 1
)

− 𝛼(𝜈(4𝜈(𝜈 + 2) − 23) + 9) + 4𝜈(𝜈(𝜈 + 6) − 11)
24𝜈(1 − 𝜈)3

𝜀 3
2

]

𝜈𝜀2
1 − 𝜈

+ o
(

𝜀 4
2

)

;

(139)

- For BVP2: the reaction force 𝑅1 is given by eqn (74) as

𝑅1 =
𝛷𝑙

(

𝜆𝑙1, 𝜆
𝑙
2 = 𝜆2

)

−𝛷𝑟 (𝜆𝑟1, 𝜆
𝑟
2
)

𝜆𝑟1
ℎ0. (140)

The four unknowns 𝑅1, 𝜆𝑟2, 𝜆
𝑙
1 and 𝜆𝑟1 (the last two enforced to be coincident to 1

/

𝜆2 and to 1/𝜆𝑟2 in the incompressible case)
can be evaluated by solving eqns (135) and (140), together with the constitutive Eq. (129) [or eqn (132) in the incompressible
20
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Fig. 9. Normalized reaction force 𝑅1∕(𝜇ℎ0) as a function of the imposed nominal stretch 𝜆2 (left, for the neo-Hookean material ‘nH’ and for the Pence-Gou
material) and of the ground-state Poisson’s ratio 𝜈 (right) (for the Pence-Gou material). The continuous and dashed lines respectively correspond to the solution
of BVP1 and BVP2, eqns (138) and (141) for the neo-Hookean material and the numerical solution of eqns (134), (137), and (129), and eqns (135) (140), and
(129) for the Pence-Gou material.

case]. Similarly to BVP1, the result is provided in a closed form for the incompressible case as

𝑅1 =
1 − 10𝜆

4
2 + 𝜆

8
2 +

(

1 + 𝜆
4
2

)

√

1 + 14𝜆
4
2 + 𝜆

8
2

𝜆
3
2

√

1 + 𝜆
4
2 +

√

1 + 14𝜆
4
2 + 𝜆

8
2

𝜇 ℎ0
3
√

6
, 𝜆𝑟2 =

√

1 + 𝜆
4
2 +

√

1 + 14𝜆
4
2 + 𝜆

8
2

√

6𝜆2
, (141)

and as the following expansions in 𝜀2 truncated at the fourth-order for the compressible case

𝑅1 =
[

1 +
𝛼(1 − 2𝜈) − 3(1 − 𝜈)

3(1 − 𝜈)
𝜀2 +

𝛼2(3(𝜈 − 1)𝜈 + 1) − 6𝛼(𝜈 − 1)(2𝜈 − 1) + 14(𝜈 − 1)2

12(1 − 𝜈)2
𝜀 2
2

]

𝜇ℎ0
1 − 𝜈

𝜀 2
2 + o

(

𝜀 4
2

)

,

𝜆𝑟2 = 1 +
[

1 +
𝛼(1 − 2𝜈) − 3(1 − 𝜈)

3(1 − 𝜈)
𝜀2 +

(3(𝛼 − 2)𝛼 + 5)𝜈2 − 3(𝛼 − 3)𝛼𝜈 + (𝛼 − 3)𝛼 − 13𝜈 + 8
12(1 − 𝜈)2

𝜀 2
2

]

𝜈
2(1 − 𝜈)

𝜀 2
2 + o

(

𝜀 4
2

)

,

𝜆𝑙1 = 1 −
[

1 − 1
2(1 − 𝜈)

𝜀2 +
(2 − 𝜈)
6(1 − 𝜈)2

𝜀 2
2 −

(2 − 𝜈)(3 − 2𝜈)
24(1 − 𝜈)3

𝜀 3
2

]

𝜈
1 − 𝜈

𝜀2 + o
(

𝜀 4
2

)

,

𝜆𝑟1 = 1 −
[

1 +
𝛼(1 − 2𝜈) − 3(1 − 𝜈)

3(1 − 𝜈)
𝜀2 +

(3(𝛼 − 2)𝛼 + 5)𝜈2 − 3(𝛼 − 3)𝛼𝜈 + (𝛼 − 3)𝛼 − 10𝜈 + 5
12(1 − 𝜈)2

𝜀 2
2

] 𝜀 2
2
2

+ o
(

𝜀 4
2

)

.

(142)

It is noted that the reaction force 𝑅1 and the stretches solving BVP1 and BVP2 are both characterized by the same structure of
their expansions,

⎧

⎪

⎨

⎪

⎩

𝑅1
𝜆𝑟1 − 1
𝜆𝑟2 − 1

⎫

⎪

⎬

⎪

⎭

= ⋯ 𝜀 2
2 +⋯ 𝜀 3

2 +⋯ 𝜀 4
2 , 𝜆𝑙1 − 1 = ⋯ 𝜀 2 +⋯ 𝜀 2

2 +⋯ 𝜀 3
2 +⋯ 𝜀 4

2 . (143)

The value of the reaction force component 𝑅1, obtained as the numerical solution of the system of nonlinear equations eqns
(134), (137), and (129) [or eqn (132) in the incompressible case] for BVP1 (continuous lines) and eqns (135) (140), and (129) [or
eqn (132) in the incompressible case] for BVP2 (dashed lines), is reported as a function of the imposed stretch 𝜆2 in Fig. 9 on the
left (for different values of the ground-state Poisson’s ratio 𝜈) and as a function of the ground-state Poisson’s ratio 𝜈 (for different
values of the imposed nominal stretch 𝜆2) on the right. Note that both neo-Hookean and Pence and Gou models are reported in the
figure on the left, while the former model corresponds to the limit of 𝜈 = 0.5 on the right.

Reliability of the uniform state assumption at the boundaries 𝜕𝑙
0 and 𝜕𝑟

0. The curves describing the reaction force 𝑅1 in Fig. 9 are
obtained by considering the uniformity of the stretches, and therefore of the strain energy, along each of the two lateral boundaries
𝜕𝑙

0 and 𝜕𝑟
0. The reliability of this assumption is assessed by comparing 𝑅1 with the corresponding value 𝑅FE

1 numerically evaluated
through finite element simulations, where both the neo-Hookean and the ‘first-term’ Storåkers models are available.

The map of relative difference
(

𝑅FE
1 − 𝑅1

)

∕𝑅FE
1 is reported for a neo-Hookean material with 𝓁0∕ℎ0 = 20, under an imposed

nominal stretch 𝜆2 = 0.7 in Fig. 10 (lower part, on the left) for BVP1, for different ratios 𝓁𝑖𝑛∕𝓁0 ∈ [0, 1] and 𝑟∕ℎ0 ∈ [0.1, 0.5],
being 𝑟 the radius of the rounded corner of the constraint (Fig. 10, upper part, right). The map shows that the relative difference
(

𝑅FE
1 − 𝑅1

)

∕𝑅FE
1 is confined to positive and very low values (less than 3 ⋅10−2) for 𝓁𝑖𝑛∕𝓁0 ∈ [0.005, 0.98] (Fig. 10, bottom left), a

minimum negative value (approximately −0.12) is attained for {𝓁𝑖𝑛∕𝓁0, 𝑟∕ℎ0} = {0, 0.1} (Fig. 10, above left), while a steep gradient
arises and large (infinite in the limit case) values occur for 𝓁 ∕𝓁 ≈ 1 since 𝑅FE vanishes when 𝓁 ∕𝓁 = 1 (Fig. 10, bottom right).
21
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Fig. 10. (Lower part, on the left) Map of relative difference
(

𝑅1 − 𝑅FE
1

)

∕𝑅FE
1 , for different ratios 𝓁𝑖𝑛∕𝓁0 and 𝑟∕ℎ0 for a neo-Hookean elastic material with

𝓁0∕ℎ0 = 20 at an imposed nominal stretch 𝜆2 = 0.7 for BVP1 (Upper part, on the right). Magnified map for small (upper part, on the left) and large (lower part,
on the right) values of 𝓁𝑖𝑛∕𝓁0, respectively showing the possibility of negative values and very large positive values for the relative difference.

Therefore, the map confirms the reliability of evaluating the reaction force 𝑅1 through eqn (74), based on the approximation of
homogeneity for the strain at each lateral sides of the elastic solid, except when one of the two sides 𝜕𝑙 or 𝜕𝑟 is located very close
to the punch corner. Note that the results from FE are not included in Fig. 9, because they are simply superimposed to the curves.

6.2. Eulerian buckling induced by transverse compression

The rectangular elastic body 0, eqn (60), is partially subject to a symmetric transverse compression at its edges, corresponding
to a nominal transverse stretch 𝜆2 < 1, imposed by two parallel pairs of mirrored punches, spaced at a fixed distance 𝑑 from each
other, Fig. 11 (right). Horizontal reaction forces are acting at the corners of each of the punches,

{

𝑅𝑎𝑙
1 ,−𝑅

𝑎𝑟
1 , 𝑅𝑏𝑙

1 ,−𝑅
𝑏𝑟
1
}

𝐞1. Assuming
a symmetric response with respect to the vertical direction at 𝑥01 = 𝓁0∕2, a symmetry in the forces follows

𝑅𝑎𝑙
1 = 𝑅𝑎𝑟

1 , 𝑅𝑏𝑙
1 = 𝑅𝑏𝑟

1 , (144)

introducing a compressive state in the central part of the elastic body. The nominal transverse stretch 𝜆2 can be decreased starting
from the undeformed state (𝜆2 = 1), until a critical value 𝜆

𝑐𝑟
2 is reached, for which the buckling of the elastic body occurs. This

occurrence is always possible before a surface instability when the elastic body is sufficiently slender.
The buckling condition is investigated through the reduced model of the extensible elastica with varying domain, as sketched in

the inset of Fig. 11 (left) and described in Section 5. Under the mentioned symmetry condition, the internal force component along
𝐞2 vanishes (𝑁2(𝑥01) = 0) and, by further restricting the treatment to a quadratic strain energy density, eqn (119), for the rod, the
equilibrium Eqs. (114) reduce to

{

𝐵𝜃′′
(

𝑥01
)

+ 𝑅1
[

1 + 𝜂
(

𝑥01
)]

sin 𝜃
(

𝑥01
)

= 0,
( 0) ( 0) 𝑥01 ∈

(

𝓁0
𝑖𝑛,𝓁0 − 𝓁0

𝑖𝑛
)

, (145)
22

𝐾𝜂 𝑥1 = −𝑅1 cos 𝜃 𝑥1 ,
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Fig. 11. Eulerian buckling from transverse compression exerted by two pairs of symmetric (frictionless, flat, and rigid) punches. Left: Critical value of the nominal
transverse stretch 𝜆

𝑐𝑟
2 for a Pence and Gou elastic material with 𝜈 = 0.25 as a function of the slenderness parameter 𝑑∕ℎ0. Semi-analytical prediction (blue curve)

from the extensible elastica of varying-length (sketched in the inset) vs FE results (red dots). Right: Deformed shape evolution at decreasing transverse stretch
𝜆2 for an elastic rectangular solid with 𝑑∕ℎ0 = 5. Unstable ejection occurs at the critical stretch 𝜆

𝑐𝑟
2 ≈ 0.65. Symmetry with respect to the central vertical axis

has been enforced.

where 𝓁0
𝑖𝑛 defines the undeformed coordinate 𝑥01 corresponding to the sliding sleeve exit, in the deformed configuration. The

equilibrium Eqs. (145) are complemented by the following boundary conditions and isoperimetric constraints

𝜃
(

𝓁0
𝑖𝑛
)

= 𝜃
(

𝓁0 − 𝓁0
𝑖𝑛
)

= 0, ∫

𝓁0−𝓁0𝑖𝑛

𝓁0𝑖𝑛

[

1 + 𝜂
(

𝑥01
)]

cos 𝜃
(

𝑥01
)

d𝑥01 = 𝑑, ∫

𝓁0−𝓁0𝑖𝑛

𝓁0𝑖𝑛

[

1 + 𝜂
(

𝑥01
)]

sin 𝜃
(

𝑥01
)

d𝑥01 = 0. (146)

In the equilibrium Eqs. (145), 𝑅1 is the resultant reaction force aligned parallel to 𝐞1 and exerted by each pair of sliding sleeves on
the elastic solid, 𝑅1 = 𝑅𝑎𝑙

1 + 𝑅𝑏𝑙
1 .

The buckling condition can be investigated by analyzing small perturbations 𝛿𝜃
(

𝑥01
)

and 𝛿𝜂
(

𝑥01
)

in the rotation and axial
deformation fields around the trivial straight configuration defined by

𝜃𝑒𝑞
(

𝑥01
)

= 0, 𝜂𝑒𝑞
(

𝑥01
)

= −
𝑅1
𝐾

, 𝑥01 ∈
(

𝓁0
𝑖𝑛,𝓁0 − 𝓁0

𝑖𝑛
)

, (147)

for which a linearization of the equilibrium Eqs. (145) leads to

⎧

⎪

⎨

⎪

⎩

𝐵𝛿𝜃′′
(

𝑥01
)

+ 𝑅1

[

1 −
𝑅1
𝐾

]

𝛿𝜃
(

𝑥01
)

= 0,

𝛿𝜂
(

𝑥01
)

= 0,
𝑥01 ∈

(

𝓁0
𝑖𝑛,𝓁0 − 𝓁0

𝑖𝑛
)

, (148)

while a linearization of the isoperimetric constraints to
[

1 −
𝑅1
𝐾

]

(

𝓁0 − 2𝓁0
𝑖𝑛
)

= 𝑑, ∫

𝓁0−𝓁0𝑖𝑛

𝓁0𝑖𝑛

𝛿𝜃
(

𝑥01
)

d𝑥01 = 0. (149)

A non-trivial equilibrium configuration can be found for the critical reaction force 𝑅𝑐𝑟
1 and the corresponding critical rotation

field 𝛿𝜃𝑐𝑟
(

𝑥01
)

, which can be evaluated as

𝑅𝑐𝑟
1 = 4𝜋2𝐵

𝑑2 + 4𝜋2𝐵
𝐾

, 𝛿𝜃𝑐𝑟
(

𝑥01
)

= 𝜃 cos

[

2𝜋
(

𝑥01 − 𝓁0
𝑖𝑛
)

𝓁0 − 2𝓁0
𝑖𝑛

]

, 𝑥01 ∈
(

𝓁0
𝑖𝑛,𝓁0 − 𝓁0

𝑖𝑛
)

, (150)

where 𝜃 represents a small amplitude, which remains arbitrary within the limits of a linear perturbation analysis.
By assuming 𝐵 = 𝐸ℎ30∕12 and 𝐾 = 𝐸ℎ0, with 𝐸 = 2𝜇∕(1 − 𝜈) being the ground-state Young modulus under plane strain for the

Pence and Gou model (130), the critical reaction force 𝑅𝑐𝑟
1 (150) reduces to

𝑅𝑐𝑟
1 =

𝜋2ℎ20
3 𝑑2 + 𝜋2ℎ20

2𝜇ℎ0
1 − 𝜈

. (151)

The critical force 𝑅𝑐𝑟
1 is reached for the straight configuration of the extensible elastica, 𝜃(𝑠) = 0, equivalent to a ‘trivial’

configuration of the elastic body of rectangular shape, satisfying vertical symmetry at 𝑥02. The four tangential reactions at the punch
corners have all the same values,

𝑅𝑎𝑙 = 𝑅𝑎𝑟 = 𝑅𝑏𝑙 = 𝑅𝑏𝑟, (152)
23
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so that the elastic rectangular domain can be reduced to its quarter, loaded as for BVP2.
The critical force 𝑅𝑐𝑟

1 can be evaluated using eqn. (151), but has to be expressed in terms of a critical transverse stretch 𝜆
𝑐𝑟
2 ,

through the 𝐽–integral, which can in turn be approximated as the solution of nonlinear Eq. (140). The corresponding ‘semi-analytical’
critical stretch 𝜆

𝑐𝑟
2 is reported as a continuous curve in Fig. 11 (left) for a Pence and Gou material with 𝜈 = 0.25, as a function of

the slenderness parameter 𝑑∕ℎ0.
As a complement to the above, the second-order expansion of the reaction force 𝑅1 for BVP2, eqn (142)1, leads to an

approximation for the critical stretch 𝜆
𝑐𝑟
2 referred to a ‘first-term’ Storåkers material, obtained for large values of 𝑑∕ℎ0 as

𝜆
𝑐𝑟
2 = 1 − 𝜋

√

2
3
ℎ0
𝑑

+ 𝜋2 3(1 − 𝜈) − 𝛼(1 − 2𝜈)
9(1 − 𝜈)

ℎ20
𝑑2

+ 𝜋3 𝛼
2[11(1 − 𝜈)𝜈 − 2] + 12𝛼(1 − 𝜈)(1 − 2𝜈) + 15(1 − 𝜈)2

54
√

6(1 − 𝜈)2

ℎ30
𝑑3

−𝜋4
[3(1 − 𝜈) − 𝛼(1 − 2𝜈)]

{

𝛼2[1 + 5𝜈(1 − 𝜈)] − 6𝛼(1 − 𝜈)(1 − 2𝜈) + 72(1 − 𝜈)2
}

486(1 − 𝜈)3
ℎ40
𝑑4

+ 𝑜(ℎ40∕𝑑
4),

(153)

hich reduces to a mere geometric relation when the approximation is truncated at first-order.

ritical stretch 𝜆
𝑐𝑟
2 for buckling from FE simulations. The FE model described in the previous Section is here adopted by considering

that the punches end with a rounded corner, rounded with 𝑟 = 𝑑∕50. Symmetry is imposed with respect to the vertical direction at
0
1 = 𝓁0∕2. A symmetric imperfection is introduced in the initial undeformed geometry to trigger the bifurcation in the numerical
nalysis. In particular, instead of rectangular shape, the central portion of the elastic domain, 𝑥01 ∈

[

(𝓁0 − 𝑑)∕2, (𝓁0 + 𝑑)∕2
]

, has been
implemented as a parallelogram with internal angles very close to 𝜋∕2, namely, equal to 𝜋∕2±𝜋∕104. Results are reported in Fig. 11
left) for the Pence and Gou model, characterized by 𝜈 = 0.25 (for which surface instability is estimated to occur for 𝜆

𝑠𝑖
2 ≈ 0.473), for

a constant ratio 𝓁0∕𝑑 = 3 and for different slenderness 𝑑∕ℎ0. The critical transverse stretches 𝜆
𝑐𝑟
2 , numerically evaluated through a

Riks analysis, are reported as dots. The numerical results are in excellent agreement with the ‘semi-analytical’ predictions obtained
from the extensible elastica model. The evolution of the deformed shape is reported in Fig. 11 (right) for a rectangular elastic domain
of initial slenderness 𝑑∕ℎ0 = 5, at three decreasing levels of transverse stretch, 𝜆2 = {1, 0.7, 0.65}. The smallest of the reported stretch
corresponds to the critical value 𝜆

𝑐𝑟
2 , for which the system buckles following an unstable branch and therefore suffers a spontaneous

nd uncontrolled ejection from the compressing constraints. This is similar to the response of other structural systems constrained
y sliding sleeves investigated in Bosi et al. (2015) and Cazzolli and Dal Corso (2024).

.3. Dynamic longitudinal ejection of incompressible solids through transverse compression

Equilibrium has been so far enforced, as a consequence of the constraint applied on 𝜕𝑙 in BVP1 or on 𝜕𝑟 in BVP2. When such
constraint is removed after imposing 𝜆2 < 1, the punch reaction 𝑅1 is unbalanced. As a consequence, the elastic solid is pushed

by the reaction component 𝑅1(𝑡) away from the constraint, thus producing its complete ejection. The Newton’s second law can be
xpressed by Truesdell and Toupin (1960)

𝑅1(𝑡) = 𝜌0𝓁0ℎ0�̈�
𝑐
1(𝑡), (154)

here 𝜌0 is the mass density of the elastic solid in the undeformed state, 𝑥𝑐1(𝑡) is the horizontal coordinate of the center of mass,
nd a superimposed dot represents the derivative with respect to time 𝑡.

While the extension of the 𝐽–integral measure to dynamics and the analysis of the influence of inertia are left to future
nvestigation, the ejection process of the elastic body is simply analyzed, assuming that the constraint on 𝜕𝑙 in BVP1 is
nstantaneously removed, after transverse loading, 𝜆2 < 1. A neo-Hookean material is assumed and a simplified approach is
eveloped, based on the following two assumptions.

(1) The reaction force 𝑅1(𝑡) maintains the constant value 𝑅1 evaluated during a quasi-static transverse compression, eqn (137),
in which 𝜆𝑙1 = 1

/

𝜆2 .

(2) The coordinate of the center of mass 𝑥𝑐1(𝑡) of the deformed elastic body is approximated with the center of mass of an
equivalent domain realized as the discontinuous union of two rectangular solids, one with the thickness of the space between
the constraints (so that 𝜆1 = 1∕𝜆2 = 1

/

𝜆2 ) and the other with the height of the unloaded elastic solid (so that 𝜆1 = 𝜆2 = 1).
Under the above assumptions, the position of the center of mass is approximated as

𝑥𝑐1 (𝑡) =
𝓁0
2

−
𝜆2𝓁𝑖𝑛 (𝑡)

[

2𝓁0 −
(

1 + 𝜆2
)

𝓁𝑖𝑛 (𝑡)
]

2𝓁0
, (155)

and the Newton’s second law (154) can be rewritten as a nonlinear second-order differential equation,

𝜌0
[(

1 − 𝜆2
)

𝓁𝑖𝑛 (𝑡) + 𝓁0
]

𝓁𝑖𝑛 (𝑡) + 𝜌0
(

1 − 𝜆2
)

�̇�2
𝑖𝑛 (𝑡) +𝛷𝑙

(

𝜆2
)

= 0, (156)

where 𝓁𝑖𝑛 (𝑡) is the portion of elastic solid inside the constraint at time 𝑡.
Under the initial conditions

𝓁 0 = 𝓁 , �̇� 0 = 0, (157)
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Fig. 12. Left: Dimensionless representation of the instantaneous length 𝓁𝑖𝑛(𝑡) of material inside the constraint as a function of time, for different nominal transverse
stretch 𝜆2, applied to a neo-Hookean material with 𝓁𝑖𝑛 = 0.9𝓁0. Results from the estimation (160)1 (continuous lines) are compared with FE simulations (dots).
Right: Relative error in the time for complete ejection, where 𝑡𝑒𝑗𝑒 is given by the estimate (160)2, while 𝑡FE

𝑒𝑗𝑒 by the FE simulations.

the evolution in time of 𝓁𝑖𝑛 (𝑡) is obtained as the solution of the nonlinear ordinary differential Eq. (156) as

𝓁𝑖𝑛 (𝑡) =

√

√

√

√

√

(

𝓁0

1 − 𝜆2
+ 𝓁𝑖𝑛

)2

−
𝛷𝑙

(

𝜆2
)

𝑡2

𝜌0(1 − 𝜆2)
−

𝓁0

1 − 𝜆2
. (158)

The time 𝑡𝑒𝑗𝑒 for which the complete ejection is predicted, 𝓁𝑖𝑛
(

𝑡𝑒𝑗𝑒
)

= 0, follows as

𝑡𝑒𝑗𝑒 =

√

√

√

√

√

√

𝜌0𝓁𝑖𝑛

[

2𝓁0 +
(

1 − 𝜆2
)

𝓁𝑖𝑛

]

𝛷𝑙
(

𝜆2
) . (159)

For a neo-Hookean material (131), the evolution in time of 𝓁𝑖𝑛(𝑡), eqn (158), and the corresponding ejection time 𝑡𝑒𝑗𝑒, eqn (159),
simplify as

𝓁𝑖𝑛 (𝑡) =

√

√

√

√

√

(

𝓁0

1 − 𝜆2
+ 𝓁𝑖𝑛

)2

−
𝜇 𝑡2(1 + 𝜆2)2(1 − 𝜆2)

2𝜌0𝜆
2
2

−
𝓁0

1 − 𝜆2
, 𝑡𝑒𝑗𝑒 =

𝜆2𝓁𝑖𝑛

1 − 𝜆2

√

√

√

√

2𝜌0
𝜇

(

2𝓁0
𝓁𝑖𝑛

+ 1 − 𝜆2

)

. (160)

Dynamic ejection from FE simulations. The previously described FE model is exploited below to analyze the dynamic ejection problem
for a neo-Hookean material, subject to a transverse stretch larger than that corresponding to surface instability, 𝜆2 < 𝜆𝑠𝑖2 ≈ 0.544.
The simulations are carried out in two steps, the first is the static analysis already presented for BVP1, while in the second step
the elastic solid is instantaneously released and the motion analyzed. The first step is performed to start from 𝓁𝑖𝑛 = 0.9𝓁0, for an
undeformed geometry of the material defined by 𝓁0∕ℎ0 = 20. The corner of the punch is modeled as rounded with 𝑟 = ℎ0∕10.

The evolution in time of 𝓁𝑖𝑛(𝑡) is reported in Fig. 12 (left), with a continuous line for the approximate solution (160)1 and with
dots for the FE simulations. Different initial stretches 𝜆2 are investigated. The agreement is excellent, as can also be observed from
the curve on the right, reporting the relative difference in the ejection time (𝑡FE

𝑒𝑗𝑒 − 𝑡𝑒𝑗𝑒)∕𝑡FE
𝑒𝑗𝑒 as a function of 𝜆2.

Four snapshots of representative configurations at different instants of time (including the configuration at the release time 𝑡 = 0)
are reported in Fig. 13. The contour plots reported inside the deformed elastic solid depict the kinetic energy density 𝜏 (in the upper
half-part of the solid) and elastic strain energy density 𝛷 (in the lower half-part). At the release time (𝑡 = 0), the kinetic energy
density 𝜏 is null over the whole solid (blue region), while the strain energy density 𝛷 is almost piecewise uniform, because the
elastic body is slender and the corners of the rigid constraints introduce only a small perturbation. As shown by the three snapshots
taken after the release time, the spatial piecewise uniformity is essentially maintained for both kinetic and strain energy densities
throughout the ejection process, during which a continuous transfer of elastic to kinetic energy occurs.

7. Conclusions

Concepts developed within the framework of defect mechanics, involving use of energy–momentum tensor and leading to path
independent 𝐽–integral to be equal to the energy release rate for defect movement, have been extended to the mechanics of
frictionless contact between an elastic solid and a rigid, flat punch. Within a quasi-static setting, it has been shown that a sharp or
smooth corner, present at the end of a frictionless punch indenting a planar surface of an elastic solid, produces a (concentrated,
for sharp corner) Newtonian force aligned parallel to the surface and coincident with the configurational force in that direction.
This force component, so far passed unnoticed, may influence failure of material at contact or may induce Eulerian buckling or
movement in a transversely compressed elastic slab. The investigated deformation mechanisms can be used for soft actuation or to
explain migration of soft matter from stiffer to more compliant constrained environment.
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Fig. 13. Four snapshots (obtained with a FE analysis) of representative configurations of a neo-Hookean solid (of undeformed aspect ratio 𝓁0∕ℎ0 = 20), during
its ejection from a rigid frictionless constraint as the effect of a nominal transverse stretch 𝜆2 = 0.7. Different instants of time 𝑡 are considered, including the
release time 𝑡 = 0, where the kinetic energy is null. Inside the solid, contour plots are reported of the kinetic energy density 𝜏 (on the upper half-part of the
solid) and of the elastic strain energy density 𝛷 (on the lower half-part), both divided by the value of the latter at the left edge of the elastic domain, 𝛷𝑙 .
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Appendix. Reaction force at a frictionless contact from the principle of virtual works

With reference to Fig. 4, a body subject to (referential) dead volume force 𝐛0, under prescribed displacement on 𝜕𝑢
0, dead

loading 𝝈0 on 𝜕𝜎
0 , and in frictionless contact with the smooth and rigid constraint on 𝜕tou

0 , is assumed to be in equilibrium with
the displacement field 𝐮∗, deformation gradient 𝐅∗, first Piola–Kirchhoff stress 𝐒∗. The total potential energy  of the system at
equilibrium is given by

(𝐅∗,𝐮∗,𝝈0,𝐛0) = ∫0

𝛷(𝐅∗) − ∫𝜕𝜎
0

𝝈0 ⋅ 𝐮∗ − ∫0

𝐛𝟎 ⋅ 𝐮∗. (A.1)

A rigid-body displacement vector 𝛿𝝃 is applied to the rigid constraint, so that as a consequence, all the fields in the elastic solid
are perturbed and, in particular, the displacement and its gradient as follows

𝐮(𝛿𝝃) = 𝐮∗ + 𝛿𝐮(𝛿𝝃), 𝐅(𝛿𝝃) = 𝐅∗ + 𝛿𝐅(𝛿𝝃). (A.2)
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N

Accordingly, the total potential energy of the system at equilibrium after the rigid-body perturbation of the frictionless constraint
becomes

(𝐅(𝛿𝝃),𝐮(𝛿𝝃),𝝈0,𝐛0) = ∫0

𝛷(𝐅∗ + 𝛿𝐅(𝛿𝝃)) − ∫𝜕𝜎
0

𝝈0 ⋅ (𝐮∗ + 𝛿𝐮(𝛿𝝃)) − ∫0

𝐛0 ⋅ (𝐮∗ + 𝛿𝐮(𝛿𝝃)). (A.3)

The change in the total potential energy 𝛿 between the configurations is given by

𝛿(𝐅∗,𝐮∗,𝝈0,𝐛0, 𝛿𝝃) = (𝐅(𝛿𝝃),𝐮(𝛿𝝃),𝝈0,𝐛0) − (𝐅∗,𝐮∗,𝝈0,𝐛0). (A.4)

Under the assumption that the perturbation 𝛿𝝃 is small, implying that 𝛿𝐮 and 𝛿𝐅 are of the same order, the change in the total
potential energy 𝛿 can be approximated at first-order as

𝛿(𝐅∗,𝐮∗,𝝈0,𝐛0, 𝛿𝝃) = ∫0

𝐒∗ ⋅ 𝜹𝐅(𝛿𝝃) − ∫𝜕𝜎
0

𝝈0 ⋅ 𝛿𝐮(𝛿𝝃) − ∫0

𝐛0 ⋅ 𝛿𝐮(𝛿𝝃), (A.5)

where, from eqn (31),

𝐒∗ =
𝜕𝛷(𝐅)
𝜕𝐅

|

|

|

|𝐅∗
. (A.6)

The virtual work principle, expressed with reference to the unperturbed static fields and to the perturbed kinematic fields, yields

∫𝜕tou
0

𝛿𝐮(𝛿𝝃) ⋅ 𝐒∗𝐧0 = ∫0

𝐒∗ ⋅ 𝛿𝐅(𝛿𝝃) − ∫𝜕𝜎
0

𝝈0 ⋅ 𝛿𝐮(𝛿𝝃) − ∫0

𝐛0 ⋅ 𝛿𝐮(𝛿𝝃). (A.7)

ote that the detaching from the contact can only occur from the grazing zone, where 𝐒∗𝐧0 = 𝟎, Eq. (39), so that

∫𝜕tou
0

𝛿𝐮(𝛿𝝃) ⋅ 𝐒∗𝐧0 = ∫𝜕𝐶
0

𝛿𝐮(𝛿𝝃) ⋅ 𝐒∗𝐧0, (A.8)

proving that detaching does not affect the integral.
A comparison with Eq. (A.5) leads to

𝛿(𝐅∗,𝐮∗,𝝈0,𝐛0, 𝛿𝝃) = ∫𝜕𝐶
0

𝛿𝐮(𝛿𝝃) ⋅ 𝐒∗𝐧0. (A.9)

It is noted that in general the perturbed displacement 𝛿𝐮(𝛿𝝃) does not coincide with 𝛿𝝃 along 𝜕𝐶
0 , because the elastic body may

slip along the boundary in contact. However, the contact condition

𝛴(𝐱∗ − 𝛿𝝃) = 0, (A.10)

for small perturbations provides

𝐪(𝒙∗) ⋅ (𝛿𝐮(𝛿𝝃) − 𝛿𝝃) = 0, (A.11)

where 𝐪(𝒙∗) is the normal vector to 𝛴 at 𝒙∗

𝐪(𝒙∗) = 𝜕𝛴(𝐱)
𝜕𝒙

|

|

|

|𝐱∗
, (A.12)

which is parallel to 𝐒∗𝐧𝟎 because of the frictionless contact condition, Eq. (41). Therefore, Eq. (A.9) can be rewritten as

𝛿(𝐅∗,𝐮∗,𝝈0,𝐛0, 𝛿𝝃) = 𝛿𝝃 ⋅ ∫𝜕𝐶
0

𝐒∗𝐧0, (A.13)

because vector 𝛿𝝃 is constant.
Eq. (A.13) shows that the total potential energy variation due to a small perturbation 𝛿𝝃 in the position of the frictionless

constraint is the negative of the scalar product between 𝛿𝝃 and the resultant of the force 𝐑𝑐 that the constraint applies to the body,

𝐑𝑐 = ∫𝜕𝐶
0

𝐒∗𝐧0, (A.14)

namely,

𝛿 = 𝐑𝑐 ⋅ 𝛿𝝃. (A.15)

Finally, noticing that

𝛿 = 𝜕
𝜕𝝃

⋅ 𝛿𝝃, (A.16)

due to the arbitrariness of 𝛿𝝃, the reaction force transmitted by frictionless constraint to the solid is obtained

𝐑𝑐 = 𝜕 . (A.17)
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