ON REGULAR HARMONICS OF ONE QUATERNIONIC VARIABLE

A. PEROTTI

Abstract

We prove some results about the Fueter-regular homogeneous polynomials, which appear as components in the power series of any quaternionic regular function. We obtain a differential condition that characterizes the homogeneous polynomials whose trace on the unit sphere extends as a regular polynomial. We apply this result to define an injective linear operator from the space of complex spherical harmonics to the module of regular homogeneous polynomials of a fixed degree k.

1. Introduction

Let \mathbb{H} be the algebra of quaternions. Let B denote the unit ball in $\mathbb{C}^{2} \simeq \mathbb{H}$ and $S=\partial B$ the group of unit quaternions. In $\S 3.1$ we obtain a differential condition that characterizes the homogeneous polynomials whose restriction to S coincides with the restriction of a regular polynomial. This result generalizes a similar characterization for holomorphic extensions of polynomials proved by Kytmanov (cf. [2] and [3]).

In $\S 3.2$ we show how to define an injective linear operator $R: \mathcal{H}_{k}(S) \rightarrow U_{k}^{\psi}$ from the space $\mathcal{H}_{k}(S)$ of complex-valued spherical harmonics of degree k to the \mathbb{H}-module U_{k}^{ψ} of ψ-regular homogeneous polynomials of the same degree (cf. $\S 2.1$ and $\S 3.2$ for precise definitions). As an application, we show how to construct bases of the module of regular homogeneous polynomials of a fixed degree starting from any choice of \mathbb{C}-bases of the spaces of complex harmonic homogeneous polynomials.

2. Notations and definitions

2.1. Let $\Omega=\left\{z \in \mathbb{C}^{2}: \rho(z)<0\right\}$ be a bounded domain in \mathbb{C}^{2} with smooth boundary. Let ν denote the outer unit normal to $\partial \Omega$ and $\tau=i \nu$. For every $F \in C^{1}(\bar{\Omega})$, let $\bar{\partial}_{n} F=\frac{1}{2}\left(\frac{\partial F}{\partial \nu}+i \frac{\partial F}{\partial \tau}\right)$ be the normal component of $\bar{\partial} F$ (see for example Kytmanov [2]§§3.3 and 14.2). It can be expressed by means of the Hodge $*$-operator and the Lebesgue surface measure as $\bar{\partial}_{n} f d \sigma=* \bar{\partial} f_{\mid \partial \Omega}$. In a neighbourhood of $\partial \Omega$ we have the decomposition of $\bar{\partial} F$ in the tangential

1991 Mathematics Subject Classification. 32A30, 30G35, 32V10, 32W05.
Key words and phrases. Quaternionic regular functions, spherical harmonics.
and the normal parts: $\bar{\partial} F=\bar{\partial}_{b} F+\bar{\partial}_{n} F \frac{\bar{\partial} \rho}{|\bar{\partial} \rho|}$. We denote by L the tangential Cauchy-Riemann operator $L=\frac{1}{|\bar{\partial} \rho|}\left(\frac{\partial \rho}{\partial \bar{z}_{2}} \frac{\partial}{\partial \bar{z}_{1}}-\frac{\partial \rho}{\partial \bar{z}_{1}} \frac{\partial}{\partial \bar{z}_{2}}\right)$.

Let \mathbb{H} be the algebra of quaternions $q=x_{0}+i x_{1}+j x_{2}+k x_{3}$, where $x_{0}, x_{1}, x_{2}, x_{3}$ are real numbers and i, j, k denote the basic quaternions. We identify the space \mathbb{C}^{2} with \mathbb{H} by means of the mapping that associates the quaternion $q=z_{1}+z_{2} j$ with the element $\left(z_{1}, z_{2}\right)=\left(x_{0}+i x_{1}, x_{2}+i x_{3}\right)$. We refer to Sudbery [8] for the basic facts of quaternionic analysis. We will denote by \mathcal{D} the left Cauchy-Riemann-Fueter operator

$$
\mathcal{D}=\frac{\partial}{\partial x_{0}}+i \frac{\partial}{\partial x_{1}}+j \frac{\partial}{\partial x_{2}}+k \frac{\partial}{\partial x_{3}} .
$$

A quaternionic C^{1} function $f=f_{1}+f_{2} j$, is (left-)regular on a domain $\Omega \subseteq \mathbb{H}$ if $\mathcal{D} f=0$ on Ω. We prefer to work with another class of regular functions, which is more explicitely connected with the hyperkähler structure of \mathbb{H}. It is defined by the Cauchy-Riemann-Fueter operator associated with the structural vector $\psi=\{1, i, j,-k\}$:

$$
\mathcal{D}^{\prime}=\frac{\partial}{\partial x_{0}}+i \frac{\partial}{\partial x_{1}}+j \frac{\partial}{\partial x_{2}}-k \frac{\partial}{\partial x_{3}}=2\left(\frac{\partial}{\partial \bar{z}_{1}}+j \frac{\partial}{\partial \bar{z}_{2}}\right) .
$$

A quaternionic C^{1} function $f=f_{1}+f_{2} j$, is called (left-) ψ-regular on a domain Ω, if $\mathcal{D}^{\prime} f=0$ on Ω. This condition is equivalent to the following system of complex differential equations:

$$
\frac{\partial f_{1}}{\partial \bar{z}_{1}}=\frac{\partial \overline{f_{2}}}{\partial z_{2}}, \quad \frac{\partial f_{1}}{\partial \bar{z}_{2}}=-\frac{\partial \overline{f_{2}}}{\partial z_{1}}
$$

The identity mapping is ψ-regular, and any holomorphic mapping $\left(f_{1}, f_{2}\right)$ on Ω defines a ψ-regular function $f=f_{1}+f_{2} j$. This is no more true if we replace ψ-regularity with regularity. Moreover, the complex components of a ψ-regular function are either both holomorphic or both non-holomorphic (cf. Vasilevski [9], Mitelman et al [4] and Perotti [5]). Let γ be the transformation of \mathbb{C}^{2} defined by $\gamma\left(z_{1}, z_{2}\right)=\left(z_{1}, \bar{z}_{2}\right)$. Then a C^{1} function f is regular on the domain Ω if, and only if, $f \circ \gamma$ is ψ-regular on $\gamma^{-1}(\Omega)$.
2.2. The two-dimensional Bochner-Martinelli form $U(\zeta, z)$ is the first complex component of the Cauchy-Fueter kernel $G^{\prime}(p-q)$ associated with ψ-regular functions (cf. Fueter [1], Vasilevski [9], Mitelman et al [4]). Let $q=z_{1}+z_{2} j$, $p=\zeta_{1}+\zeta_{2} j, \sigma(q)=d x[0]-i d x[1]+j d x[2]+k d x[3]$, where $d x[k]$ denotes the product of $d x_{0}, d x_{1}, d x_{2}, d x_{3}$ with $d x_{k}$ deleted. Then $G^{\prime}(p-q) \sigma(p)=$ $U(\zeta, z)+\omega(\zeta, z) j$, where $\omega(\zeta, z)$ is the complex (1,2)-form

$$
\omega(\zeta, z)=-\frac{1}{4 \pi^{2}}|\zeta-z|^{-4}\left(\left(\bar{\zeta}_{1}-\bar{z}_{1}\right) d \zeta_{1}+\left(\bar{\zeta}_{2}-\bar{z}_{2}\right) d \zeta_{2}\right) \wedge \overline{d \zeta}
$$

Here $\overline{d \zeta}=\overline{d \zeta_{1}} \wedge \overline{d \zeta_{2}}$ and we choose the orientation of \mathbb{C}^{2} given by the volume form $\frac{1}{4} d z_{1} \wedge d z_{2} \wedge \overline{d z_{1}} \wedge \overline{d z_{2}}$. Given $g(\zeta, z)=\frac{1}{4 \pi^{2}}|\zeta-z|^{-2}$, we can also write $U(\zeta, z)=-2 * \partial_{\zeta} g(\zeta, z)$ and $\omega(\zeta, z)=-\partial_{\zeta}(g(\zeta, z) \overline{d \zeta})$.

3. Regular polynomials

3.1. In this section we will obtain a differential condition that characterizes the homogeneous polynomials whose restrictions to the unit sphere extend regularly or ψ-regularly. We will use a computation made by Kytmanov in [3] (cf. also [2] Corollary 23.4), where the analogous result for holomorphic extensions is proved.

Let Ω be the unit ball B in $\mathbb{C}^{2}, S=\partial B$ the unit sphere. In this case the operators $\bar{\partial}_{n}$ and L have the following forms:

$$
\bar{\partial}_{n}=\bar{z}_{1} \frac{\partial}{\partial \bar{z}_{1}}+\bar{z}_{2} \frac{\partial}{\partial \bar{z}_{2}}, \quad L=z_{2} \frac{\partial}{\partial \bar{z}_{1}}-z_{1} \frac{\partial}{\partial \bar{z}_{2}}
$$

and they preserve harmonicity. Let $\Delta=\frac{\partial^{2}}{\partial z_{1} \partial \bar{z}_{1}}+\frac{\partial^{2}}{\partial z_{2} \partial \bar{z}_{2}}$ be the Laplacian in \mathbb{C}^{2} and D_{k} the differential operator

$$
D_{k}=\sum_{0 \leq l \leq k / 2-1} \frac{(k-2 l-1)!(2 l-1)!!}{k!(l+1)!} 2^{l} \Delta^{l+1} .
$$

Theorem 1. Let $f=f_{1}+f_{2} j$ be a \mathbb{H}-valued, homogeneous polynomial of degree k. Then its restriction to S extends as a ψ-regular function into B if, and only if,

$$
\left(\bar{\partial}_{n}-D_{k}\right) f_{1}+\overline{L\left(f_{2}\right)}=0 \quad \text { on } S
$$

Proof. In the first part we can proceed as in [3]. The harmonic extension \tilde{f}_{1} of $f_{1 \mid S}$ into B is given by Gauss's formula: $\tilde{f}_{1}=\sum_{s \geq 0} g_{k-2 s}$, where $g_{k-2 s}$ is the homogeneous harmonic polynomial of degree $k-\overline{2} s$ defined by

$$
\begin{equation*}
g_{k-2 s}=\frac{k-2 s+1}{s!(k-s+1)!} \sum_{j \geq 0} \frac{(-1)^{j}(k-j-2 s)!}{j!}|z|^{2 j} \Delta^{j+s} f_{1} . \tag{*}
\end{equation*}
$$

Then $\bar{\partial}_{n} \tilde{f}_{1}=\bar{\partial}_{n} f_{1}-D_{k} f_{1}$ on S (cf. [2] §23). Let \tilde{f}_{2} be the harmonic extension of f_{2} into B and $\tilde{f}=\tilde{f}_{1}+\tilde{f}_{2} j$. Then $\left(\bar{\partial}_{n}-D_{k}\right) f_{1}+\overline{L\left(f_{2}\right)}=0$ on S is equivalent to $\bar{\partial}_{n} \tilde{f}_{1}+\overline{L\left(f_{2}\right)}=0$ on S. We now show that this implies the ψ-regularity of \tilde{f}. Let F^{+}and F^{-}be the ψ-regular functions defined respectively on B and on $\mathbb{C}^{2} \backslash \bar{B}$ by the Cauchy-Fueter integral of \tilde{f} :

$$
F^{ \pm}(z)=\int_{S} U(\zeta, z) \tilde{f}(\zeta)+\int_{S} \omega(\zeta, z) j \tilde{f}(\zeta)
$$

From the equalities $U(\zeta, z)=-2 * \partial_{\zeta} g(\zeta, z), \omega(\zeta, z)=-\partial_{\zeta}(g(\zeta, z) d \bar{\zeta})$, we get that

$$
F^{-}(z)=-2 \int_{S}\left(\tilde{f}_{1}(\zeta)+f_{2}(\zeta) j\right) * \partial_{\zeta} g(\zeta, z)-\int_{S} \partial_{\zeta}(g(\zeta, z) \overline{d \zeta})\left(\overline{\tilde{f}_{1}} j-\overline{\tilde{f}_{2}}\right)
$$

for every $z \notin \bar{B}$. From the complex Green formula and Stokes' Theorem and from the equality $\bar{\partial} \tilde{f}_{2} \wedge d \zeta_{\mid S}=2 L\left(f_{2}\right) d \sigma$ on S, we get that the first complex
component of $F^{-}(z)$ is

$$
\begin{gathered}
-2 \int_{S} \tilde{f}_{1} \partial_{n} g d \sigma+\int_{S} \tilde{f}_{2} \partial_{\zeta} g \wedge \overline{d \zeta}=-2 \int_{S} g \bar{\partial}_{n} \tilde{f}_{1} d \sigma-\int_{S} g \partial_{\zeta} \tilde{f}_{2} \wedge \overline{d \zeta} \\
=-2 \int_{S} g\left(\bar{\partial}_{n} \tilde{f}_{1}+\overline{L\left(f_{2}\right)}\right) d \sigma
\end{gathered}
$$

and then it vanishes on $\mathbb{C}^{2} \backslash \bar{B}$. Therefore, $F^{-}=F_{2} j$, with F_{2} a holomorphic function that can be holomorphically continued to the whole space. Let $\tilde{F}^{-}=$ $\tilde{F}_{2} j$ be such extension. Then $F=F^{+}-\tilde{F}_{\mid B}^{-}$is a ψ-regular function on B (indeed a polynomial of the same degree k), continuous on \bar{B}, such that $F_{\mid S}=f_{\mid S}$. The converse is immediate from the equations of ψ-regularity.

Let N and T be the differential operators

$$
N=\bar{z}_{1} \frac{\partial}{\partial \bar{z}_{1}}+z_{2} \frac{\partial}{\partial z_{2}}, \quad T=\bar{z}_{2} \frac{\partial}{\partial \bar{z}_{1}}-z_{1} \frac{\partial}{\partial z_{2}} .
$$

T is a tangential operator w.r.t. S, while N is non-tangential, such that $N(\rho)=|\bar{\partial} \rho|^{2}, \operatorname{Re}(N)=|\bar{\partial} \rho| \operatorname{Re}\left(\bar{\partial}_{n}\right)$, where $\rho=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-1$. Let γ be the reflection introduced at the end of $\S 2.1$. The operator D_{k} is γ-invariant, i.e. $D_{k}(f \circ \gamma)=D_{k}(f) \circ \gamma$, since Δ is invariant. It follows a criterion for regularity of homogeneous polynomials.

Corollary 2. Let $f=f_{1}+f_{2} j$ be a \mathbb{H}-valued, homogeneous polynomial of degree k. Then its restriction to S extends as a regular function into B if, and only if,

$$
\left(N-D_{k}\right) f_{1}+\overline{T\left(f_{2}\right)}=0 \quad \text { on } S .
$$

Let $g=\sum_{k} g^{k}$ be the homogeneous decomposition of a polynomial g. After replacing $D_{k} g$ by $\sum_{k} D_{k} g^{k}$, we can extend the preceding results also to nonhomogeneous polynomials.
3.2. Let \mathcal{P}_{k} denote the space of homogeneous complex-valued polynomials of degree k on \mathbb{C}^{2}, and \mathcal{H}_{k} the space of harmonic polynomials in \mathcal{P}_{k}. The space \mathcal{H}_{k} is the sum of the pairwise $L^{2}(S)$-orthogonal spaces $\mathcal{H}_{p, q}(p+q=k)$, whose elements are the harmonic homogeneous polynomials of degree p in z_{1}, z_{2} and q in \bar{z}_{1}, \bar{z}_{2} (cf. for example Rudin [7]§12.2). The spaces \mathcal{H}_{k} and $\mathcal{H}_{p, q}$ can be identified with the spaces of the restrictions of their elements to S (spherical harmonics). These spaces will be denoted by $\mathcal{H}_{k}(S)$ and $\mathcal{H}_{p, q}(S)$ respectively.

Let U_{k}^{ψ} be the right \mathbb{H}-module of (left) ψ-regular homogeneous polynomials of degree k. The elements of the modules U_{k}^{ψ} can be identified with their restrictions to S, which we will call regular harmonics.

Theorem 3. For every $f_{1} \in \mathcal{P}_{k}$, there exists $f_{2} \in \mathcal{P}_{k}$ such that the trace of $f=f_{1}+f_{2} j$ on S extends as a ψ-regular polynomial of degree at most k on \mathbb{H}. If $f_{1} \in \mathcal{H}_{k}$, then $f_{2} \in \mathcal{H}_{k}$ and $f=f_{1}+f_{2} j \in U_{k}^{\psi}$.

Proof. We can suppose that f_{1} has degree p in z and q in $\bar{z}, p+q=k$, and then extend by linearity. Let $\tilde{f}_{1}=\sum_{s \geq 0} g_{p-s, q-s}$ be the harmonic extension of f_{1} into B, where $g_{p-s, q-s} \in \mathcal{H}_{p-s, q-s}$ is given by formula $\left(^{*}\right)$. Then $\bar{\partial}_{n} \overline{L\left(g_{p-s, q-s}\right)}=(p-s+1) \overline{L\left(g_{p-s, q-s}\right)}$. We set

$$
\tilde{f}_{2}=\sum_{s \geq 0} \frac{1}{p-s+1} \overline{L\left(g_{p-s, q-s}\right)} \in \bigoplus_{s \geq 0} \mathcal{H}_{k-2 s} .
$$

Then $\bar{\partial}_{n} \tilde{f}_{2}=\overline{L\left(f_{1}\right)}$ on S and we can conclude as in the proof of Theorem 1 that $\tilde{f}=\tilde{f}_{1}+\tilde{f}_{2} j$ is a ψ-regular polynomial of degree at most k. Now it suffices to define

$$
f_{2}=\sum_{s \geq 0} \frac{|z|^{2 s}}{p-s+1} \overline{L\left(g_{p-s, q-s}\right)} \in \mathcal{P}_{k}
$$

to get a homogeneous polynomial $f=f_{1}+f_{2} j$, of degree k, that has the same restriction to S as \tilde{f}. If $f_{1} \in \mathcal{H}_{k}$, then $\tilde{f}_{1}=f_{1}, \tilde{f}_{2}=f_{2}$ and therefore $f \in U_{k}^{\psi}$.

Let $C: U_{k}^{\psi} \rightarrow \mathcal{H}_{k}(S)$ be the complex-linear operator that associates to $f=f_{1}+f_{2} j$ the restriction to S of its first complex component f_{1}. The function \tilde{f} in the preceding proof gives a right inverse $R: \mathcal{H}_{k}(S) \rightarrow U_{k}^{\psi}$ of the operator C. The function $R\left(f_{1}\right)$ is uniquely determined by the orthogonality condition with respect to the functions holomorphic on a neighbourhood of \bar{B} :

$$
\int_{S}\left(R\left(f_{1}\right)-f_{1}\right) \bar{h} d \sigma=0 \quad \forall h \in \mathcal{O}(\bar{B}) .
$$

Corollary 4. (i) The restriction operator C defined on U_{k}^{ψ} induces isomorphisms of real vector spaces

$$
\frac{U_{k}^{\psi}}{\mathcal{H}_{k, 0} j} \simeq \mathcal{H}_{k}(S), \quad \frac{U_{k}^{\psi}}{\mathcal{H}_{k, 0}+\mathcal{H}_{k, 0} j} \simeq \frac{\mathcal{H}_{k}(S)}{\mathcal{H}_{k, 0}(S)}
$$

(ii) U_{k}^{ψ} has dimension $\frac{1}{2}(k+1)(k+2)$ over \mathbb{H}.

Proof. The first part follows from $\operatorname{ker} C=\left\{f=f_{1}+f_{2} j \in U_{k}^{\psi} \quad: \quad f_{1}=\right.$ 0 on $S\}=\mathcal{H}_{k, 0} j$. Part (ii) can be obtained from any of the above isomorphisms, since $\mathcal{H}_{k, 0}$ (as every space $\mathcal{H}_{p, q}, p+q=k$) and $\mathcal{H}_{k}(S)$ have real dimensions respectively $2(k+1)$ and $2(k+1)^{2}$.

As an application of Corollary 2, we have another proof of the known result (cf. Sudbery [8] Theorem 7) that the right \mathbb{H}-module U_{k} of left-regular homogeneous polynomials of degree k has dimension $\frac{1}{2}(k+1)(k+2)$ over \mathbb{H}.
3.3. The operator $R: \mathcal{H}_{k}(S)=\bigoplus_{p+q=k} \mathcal{H}_{p, q}(S) \rightarrow U_{k}^{\psi}$ can also be used to obtain \mathbb{H}-bases for U_{k}^{ψ} starting from bases of the complex spaces $\mathcal{H}_{p, q}(S)$. On $\mathcal{H}_{p, q}(S), R$ acts in the following way:

$$
R(h)=h+M(h) j, \quad \text { where } M(h)=\frac{1}{p+1} \overline{L(h)} \in \mathcal{H}_{q-1, p+1} \quad\left(h \in \mathcal{H}_{p, q}\right)
$$

Note that $M \equiv 0$ on $\mathcal{H}_{k, 0}(S)$. If $q>0, M^{2}=-I d$ on $\mathcal{H}_{p, q}(S)$, since $q h=$ $\bar{\partial}_{n} h=-\overline{L(M(h))}$ on S, and therefore

$$
h=-\frac{1}{q} \overline{L(M(h))}=-\frac{1}{q(p+1)} \bar{L} L(h)=-M^{2}(h)
$$

If $k=2 m+1$ is odd, then M is a complex conjugate isomorphism of $\mathcal{H}_{m, m+1}(S)$. Then M induces a quaternionic structure on this space, which has real dimension $4(m+1)$. We can find complex bases of $\mathcal{H}_{m, m+1}(S)$ of the form

$$
\left\{h_{1}, M\left(h_{1}\right), \ldots, h_{m+1}, M\left(h_{m+1}\right)\right\} .
$$

Theorem 5. Let $\mathcal{B}_{p, q}$ denote a complex base of the space $\mathcal{H}_{p, q}(S)(p+q=$ $k)$. Then:
(i) if $k=2 m$ is even, a basis of U_{k}^{ψ} over \mathbb{H} is given by the set

$$
\mathcal{B}_{k}=\left\{R(h): h \in \mathcal{B}_{p, q}, p+q=k, 0 \leq q \leq p \leq k\right\} .
$$

(ii) if $k=2 m+1$ is odd, a basis of U_{k}^{ψ} over \mathbb{H} is given by

$$
\mathcal{B}_{k}=\left\{R(h): h \in \mathcal{B}_{p, q}, p+q=k, 0 \leq q<p \leq k\right\} \cup\left\{R\left(h_{1}\right), \ldots, R\left(h_{m+1}\right)\right\},
$$

where h_{1}, \ldots, h_{m+1} are chosen such that the set

$$
\left\{h_{1}, M\left(h_{1}\right), \ldots, h_{m+1}, M\left(h_{m+1}\right)\right\}
$$

forms a complex basis of $\mathcal{H}_{m, m+1}(S)$.
If the bases $\mathcal{B}_{p, q}$ are orthogonal in $L^{2}(S)$ and $h_{1}, \ldots, h_{m+1} \in \mathcal{H}_{m, m+1}(S)$ are mutually orthogonal, then \mathcal{B}_{k} is orthogonal, with norms

$$
\|R(h)\|_{L^{2}(S, \mathbb{H})}=\left(\frac{p+q+1}{p+1}\right)^{1 / 2}\|h\|_{L^{2}(S)} \quad\left(h \in \mathcal{B}_{p, q}\right)
$$

w.r.t. the scalar product of $L^{2}(S, \mathbb{H})$.

Proof. From dimension count, it suffices to prove that the sets \mathcal{B}_{k} are linearly independent. When $q \leq p, q^{\prime} \leq p^{\prime}, p+q=p^{\prime}+q^{\prime}=k$, the spaces $\mathcal{H}_{p, q}$ and $\mathcal{H}_{q^{\prime}-1, p^{\prime}+1}$ are distinct. Since $R(h)=h+M(h) j \in \mathcal{H}_{p, q} \oplus \mathcal{H}_{q-1, p+1} j$, this implies the independence over \mathbb{H} of the images $\left\{R(h): h \in \mathcal{B}_{p, q}\right\}$. It remains to consider the case when $k=2 m+1$ is odd. If $h \in \mathcal{H}_{m, m+1}(S)$, the complex components h and $M(h)$ of $R(h)$ belong to the same space. The independence of $\left\{R\left(h_{1}\right), \ldots, R\left(h_{m+1}\right)\right\}$ over \mathbb{H} follows from the particular form of the complex basis chosen in $\mathcal{H}_{m, m+1}(S)$.

The scalar product of $L(h)$ and $L\left(h^{\prime}\right)$ in $\mathcal{H}_{p, q}(S)$ is

$$
\left(L(h), L\left(h^{\prime}\right)\right)=\left(h, L^{*} L\left(h^{\prime}\right)\right)=-\left(h, \bar{L} L\left(h^{\prime}\right)\right)=q(p+1)\left(h, h^{\prime}\right)
$$

since the adjoint L^{*} is equal to $-\bar{L}(c f .[7] \S 18.2 .2)$ and $\bar{L} L=q(p+1) M^{2}=$ $-q(p+1) I d$. Therefore, if h, h^{\prime} are orthogonal, $M(h)$ and $M\left(h^{\prime}\right)$ are orthogonal in $\mathcal{H}_{q-1, p+1}$ and then also $R(h)$ and $R\left(h^{\prime}\right)$. Finally, the norm of $R(h), h \in$ $\mathcal{H}_{p, q}(S)$, is

$$
\|R(h)\|^{2}=\|h\|^{2}+\|M(h)\|^{2}=\|h\|^{2}+\frac{1}{(p+1)^{2}}\|L(h)\|^{2}=\frac{p+q+1}{p+1}\|h\|^{2}
$$

and this concludes the proof.
From Theorem 5 it is immediate to obtain also bases of the right \mathbb{H}-module U_{k} of left-regular homogeneous polynomials of degree k.

Examples. (i) The case $k=2$. Starting from the orthogonal bases $\mathcal{B}_{2,0}=$ $\left\{z_{1}^{2}, 2 z_{1} z_{2}, z_{2}^{2}\right\}$ of $\mathcal{H}_{2,0}$ and $\mathcal{B}_{1,1}=\left\{z_{1} \bar{z}_{2},\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}, z_{2} \bar{z}_{1}\right\}$ of $\mathcal{H}_{1,1}$ we get the orthogonal basis of regular harmonics

$$
\mathcal{B}_{2}=\left\{z_{1}^{2}, 2 z_{1} z_{2}, z_{2}^{2}, z_{1} \bar{z}_{2}-\frac{1}{2} \bar{z}_{1}^{2} j,\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}+\bar{z}_{1} \bar{z}_{2} j, z_{2} \bar{z}_{1}+\frac{1}{2} \bar{z}_{2}^{2} j\right\}
$$

of the six-dimensional right \mathbb{H}-module U_{2}^{ψ}.
(ii) The case $k=3$. From the orthogonal bases
$\mathcal{B}_{3,0}=\left\{z_{1}^{3}, 3 z_{1}^{2} z_{2}, 3 z_{1} z_{2}^{2}, z_{2}^{3}\right\}, \quad \mathcal{B}_{2,1}=\left\{z_{1}^{2} \bar{z}_{2}, 2 z_{1}\left|z_{2}\right|^{2}-z_{1}\left|z_{1}\right|^{2}, 2 z_{2}\left|z_{1}\right|^{2}-z_{2}\left|z_{2}\right|^{2}, z_{2}^{2} \bar{z}_{1}\right\}$,
$\mathcal{B}_{1,2}=\left\{h_{1}=z_{1} \bar{z}_{2}^{2}, M\left(h_{1}\right)=-z_{2} \bar{z}_{1}^{2}, h_{2}=-2 \bar{z}_{2}\left|z_{1}\right|^{2}+\bar{z}_{2}\left|z_{2}\right|^{2}, M\left(h_{2}\right)=-2 \bar{z}_{1}\left|z_{2}\right|^{2}+\bar{z}_{1}\left|z_{1}\right|^{2}\right\}$, we get the orthogonal basis of regular harmonics

$$
\begin{gathered}
\mathcal{B}_{3}=\left\{z_{1}^{3}, 3 z_{1}^{2} z_{2}, 3 z_{1} z_{2}^{2}, z_{2}^{3}, z_{1}^{2} \bar{z}_{2}-\frac{1}{3} \bar{z}_{1}^{3} j, 2 z_{1}\left|z_{2}\right|^{2}-z_{1}\left|z_{1}\right|^{2}-\bar{z}_{1}^{2} \bar{z}_{2} j, 2 z_{2}\left|z_{1}\right|^{2}-z_{2}\left|z_{2}\right|^{2}+\bar{z}_{1} \bar{z}_{2}^{2} j,\right. \\
\left.z_{2}^{2} \bar{z}_{1}+\frac{1}{3} \bar{z}_{2}^{3} j, z_{1} \bar{z}_{2}^{2}-z_{2} \bar{z}_{1}^{2} j,-2 \bar{z}_{2}\left|z_{1}\right|^{2}+\bar{z}_{2}\left|z_{2}\right|^{2}+\left(\bar{z}_{1}\left|z_{1}\right|^{2}-2 \bar{z}_{1}\left|z_{2}\right|^{2}+\right) j\right\}
\end{gathered}
$$

of the ten-dimensional right \mathbb{H}-module U_{3}^{ψ}.
In general, for any k, an orthogonal basis of $\mathcal{H}_{p, q}(p+q=k)$ is given by the polynomials $\left\{P_{q, l}^{k}\right\}_{l=0, \ldots, k}$ defined by formula (6.14) in Sudbery [8]. The basis of U_{k} obtained from these bases by means of Theorem 5 and applying the reflection γ is essentially the same given in Proposition 8 of Sudbery [8].

Another spanning set of the space $\mathcal{H}_{p, q}$ is given by the functions

$$
g_{\alpha}^{p, q}\left(z_{1}, z_{2}\right)=\left(z_{1}+\alpha z_{2}\right)^{p}\left(\bar{z}_{2}-\alpha \bar{z}_{1}\right)^{q} \quad(\alpha \in \mathbb{C})
$$

(cf. Rudin [7]§12.5.1). Since $M\left(g_{\alpha}^{p, q}\right)=\frac{(-1)^{q} q \bar{\alpha}^{p+q}}{p+1} g_{-1 / \bar{\alpha}}^{q-1, p+1}$ for $\alpha \neq 0$ and $M\left(g_{0}^{p, q}\right)=-\frac{q}{p+1} z_{2}^{q-1} \bar{z}_{1}^{p+1}$, where we set $g_{\alpha}^{p, q} \equiv 0$ if $p<0$, from Theorem 5 we get that U_{k}^{ψ} is spanned over \mathbb{H} by the polynomials

$$
R\left(g_{\alpha}^{p, q}\right)=\left\{\begin{array}{l}
g_{\alpha}^{p, q}+\frac{(-1)^{q} q \bar{\alpha}^{p+q}}{p+1} g_{-1 / \bar{\alpha}}^{q-1, p+1} j \quad \text { for } \alpha \neq 0 \\
z_{1}^{p} \bar{z}_{2}^{q}-\frac{q}{p+1} z_{2}^{q-1} \bar{z}_{1}^{p+1} j \text { for } \alpha=0
\end{array} \quad(\alpha \in \mathbb{C}, p+q=k)\right.
$$

Any choice of $k+1$ distinct numbers $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}$ gives rise to a basis of U_{k}^{ψ}.
The results obtained in this paper enabled the writing of a Mathematica package [6], named RegularHarmonics, which implements efficient computations with regular and ψ-regular functions and with harmonic and holomorphic functions of two complex variables.

Acknowledgements

This work was partially supported by MIUR (Project "Proprietà geometriche delle varietà reali e complesse") and GNSAGA of INdAM.

References

[1] R. Fueter, Über einen Hartogs'schen Satz in der Theorie der analytischen Funktionen von n komplexen Variablen, Comment. Math. Helv., 14 (1942), 394-400.
[2] A.M. Kytmanov, The Bochner-Martinelli integral and its applications, Birkhäuser Verlag, Basel, Boston, Berlin (1995).
[3] A.M. Kytmanov, Some differential criteria for the holomorphy of functions in \mathbb{C}^{n}, In: Some problems of multidimensional complex analysis, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Fiz., Krasnoyarsk (1980), 51-64, 263-264.
[4] I.M. Mitelman and M.V. Shapiro, Differentiation of the Martinelli-Bochner integrals and the notion of hyperderivability, Math. Nachr., 172 (1995), 211-238.
[5] A. Perotti, A differential criterium for regularity of quaternionic functions, C. R. Acad. Sci. Paris, Ser. I Math., 337 no. 2 (2003), 89-92.
[6] A. Perotti, RegularHarmonics - a package for Mathematica 4.2 for computations with regular quaternionic functions
(available at http://www.science.unitn.it/~perotti/regular harmonics.htm).
[7] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Springer-Verlag, New York, Heidelberg, Berlin (1980).
[8] A. Sudbery, Quaternionic analysis, Mat. Proc. Camb. Phil. Soc., 85 (1979), 199-225.
[9] N.L. Vasilevski and M.V. Shapiro, Some questions of hypercomplex analysis, In: Complex analysis and applications '87 (Varna, 1987), Publ. House Bulgar. Acad. Sci., Sofia (1989), 523-531.

Department of Mathematics, University of Trento, Via Sommarive, 14, I-38050 Povo Trento ITALY

E-mail address: perotti@science.unitn.it

