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Abstract: Early observations with the James Webb Space Telescope (JWST) have revealed
the existence of an unexpectedly large abundance of extremely massive galaxies at redshifts
z ≳ 5: these are in tension with the predictions not only of the standard ΛCDM cosmology,
but also with those of a wide class of dynamical dark energy (DE) models, and are generally
in better agreement with models characterized by a phantom behaviour. Here we consider a
model, inspired by string theory and the ubiquity of anti-de Sitter vacua therein, featuring
an evolving DE component with positive energy density on top of a negative cosmological
constant, argued in an earlier exploratory analysis to potentially be able to explain the
JWST observations. We perform a robust comparison of this model against JWST data,
considering both photometric observations from the CEERS program, and spectroscopic
observations from the FRESCO survey. We show that the model is able to accommodate the
JWST observations, with a consistency probability of up to 98%, even in the presence of an
evolving component with a quintessence-like behaviour (easier to accommodate theoretically
compared to phantom DE), while remaining consistent with standard low-redshift probes.
Our results showcase the potential of measurements of high-redshift galaxy abundances in
tests of fundamental physics, and their complementarity with standard cosmological probes.
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1 Introduction

The concordance ΛCDM cosmological model constitutes at present one of the simplest
frameworks to describe the evolution of our Universe, and owes its success to its ability to
describe a wide range of cosmological and astrophysical observations. One of the cornerstones
of current cosmology is dark energy (DE) [1–3], a component with negative pressure and
positive energy density driving the late-time acceleration of the Universe, whose discovery
in 1998 led to one of the biggest paradigm shifts in physics [4, 5]: within ΛCDM, DE takes
the form of a positive cosmological constant (CC) Λ [6]. Over the past two and a half
decades, the nature of DE has to a large extent been investigated by means of three classes
of cosmological observations: low-redshift (z ≲ 2) probes based on Type Ia Supernovae
(SNeIa) and Baryon Acoustic Oscillations (BAO), the latter observed in the clustering of
various tracers of the large-scale structure, such as galaxies; and high-redshift (z ∼ 1100)
probes based on the Cosmic Microwave Background (CMB): see ref. [7] for a recent review
on observational probes of DE.1 By virtue of the significant efforts devoted to the study of
observations, underlying theory, and systematics associated to these probes, CMB, BAO,
and SNeIa are generally referred to as standard cosmological probes and enjoy a (rightly
deserved) privileged status for what concerns cosmological tests of the expansion of the
Universe and of fundamental physics, with particular regard to the nature of DE. However,
a series of growing cosmological tensions which appear to challenge the ΛCDM model [9],
and the fact that some of these probes are close to being systematics-limited, are making it
imperative to start looking for new independent probes, whose complementarity and synergy
with the standard CMB+BAO+SNeIa can greatly enrich the landscape of methods to study

1Nevertheless, it is worth emphasizing that the sensitivity of the CMB to (late-time) DE is indirectly
mostly a low-redshift (geometrical) one, through the effect of DE on the distance to the CMB itself (see e.g.
the recent discussion in ref. [8]), whereas the sensitivity of the CMB to DE perturbations and the dynamics
thereof is quite limited, except possibly in the case of models which deviate substantially from the positive CC
Λ, which are however ruled out by observations.
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the Universe: in this sense, a number of so-called “emerging” cosmological probes are rapidly
gaining momentum, as beautifully summarized in the recent review of ref. [10].2

In this context, the long-awaited recent observations of massive, distant galaxies delivered
by the James Webb Space Telescope (JWST) [27] have opened a remarkable window not
only onto astrophysics and the process of galaxy formation, but also onto novel cosmological
tests of the contents of our Universe and more generally fundamental physics [28–30]. This is
possible because the abundance of galactic haloes of dark matter (DM) mass M at redshifts
z ≈ 5–10 is predicted to be exponentially sensitive to the growth factor of perturbations
D(z), while also being a strongly decreasing function of redshift, and one which depends
crucially on the (model-dependent) time-redshift relation [31].3 On the other hand, if we
denote by Ωb and Ωm the cosmic density parameters for baryons and the total matter
component respectively (and with fb ≡ Ωb/Ωm), the stellar mass of a galaxy M⋆ cannot
exceed the maximal allowed baryonic content of the host halo fbM . This implies that
comparing the theoretically predicted cumulative comoving stellar number density of massive
(M⋆ ≈ 1010–1011 M⊙) galaxies, n(> M⋆, z), with the observed abundance of galaxies of given
stellar mass at redshifts z ≈ 5–10, can potentially provide strong constraints on the expansion
history and growth of cosmological perturbations, and therefore also on the nature of DE, in a
way which is completely independent of the complex baryonic physics involved in the formation
of galaxies. Needless to say, such constraints would be extremely valuable in light of their
high complementarity to state-of-the-art determinations from CMB, BAO, and SNeIa, both
in terms of range of redshifts/cosmic times probed, as well as potential systematics involved.

As hinted to earlier, the possibility of testing the expansion history of the Universe
at such intermediate redshifts is particularly valuable in view of the tension between local
and high-redshift determinations of the Hubble constant H0 (see e.g. refs. [39–48] for recent
reviews). At a significance of ≳ 5σ, the Hubble tension poses what is probably one of the most
serious observational challenges to ΛCDM, and can potentially lead us to completely rethink
the nature of DE.4 Thus, probing the expansion history of the Universe at intermediate
redshifts z ≈ 6–10 constitutes a key opportunity to study the validity of ΛCDM model in an
independent manner, and in an epoch which is otherwise extremely difficult to access (see
also refs. [86, 87] for recents work which highlighted the relevance of intermediate-redshift
DE dynamics in the context of the Hubble tension).

Among the various aspects of fundamental physics which can be put to test through
measurements of the abundance of massive galaxies at very high redshift, of particular interest
to the present work are the properties of DE. In particular, as explicitly demonstrated by
one of us in ref. [88] using data from the CANDELS survey, the abundances of massive, high-

2Of course tests of DE are not limited to cosmological scales. Various tests of DE on astrophysical,
astronomical, and even local scales, have been considered over the past decades, see refs. [11–26] for examples
in this sense.

3Distant galaxies are also useful as a test of cosmological models through their ages, which of course cannot
exceed the age of the Universe: see for instance refs. [32–38] for recent works exploring the important of stellar
and galactic ages as a test of cosmological models.

4With no claims as to completeness, see refs. [49–75] for examples of works exploring the implications of
the Hubble tension for the nature of DE. The possibility of a more speculative “early dark energy” component,
operative at very high redshift, is also a particularly interesting possibility in this context (see e.g. refs. [76–85]).
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redshift galaxies can provide key constraints on the DE equation of state (EoS) w. The reason
is that w controls the large-scale behaviour of DE at both background and perturbation level,
thereby dramatically affecting the growth of density perturbations and the formation of cosmic
structures. In this context, a number of recent works (see e.g. refs. [89–93]) have demonstrated
how initial JWST imaging data from NIRCam observations of the Cosmic Evolution Early
Release Science (CEERS) program, which uncovered evidence of a surprisingly abundant
population of very massive galaxies at extremely high redshifts 7 ≲ z ≲ 10, could severely
challenge the ΛCDM scenario. Specializing to the implications for DE, it was argued by one
of us in ref. [94] that these observations in fact exclude a significant portion of dynamical
DE parameter space (including the point corresponding to ΛCDM), and favor models whose
equation of state takes values w < −1 at some point after recombination, i.e. phantom
models [95], see also ref. [96] for further discussions.5 Although such results are still affected
by uncertainties related to the assumed initial mass function (IMF) of the stellar populations
(see e.g. ref. [126]) and to the broadband selection criteria (especially for double-break sources,
see for example, see ref. [127]), it is worth highlighting that recent spectroscopic observations
in the redshift range 5 ≲ z ≲ 6 and 8 ≲ z ≲ 10 [29, 30] from the JWST First Reionization
Epoch Spectroscopically Complete Observations (FRESCO) and CEERS surveys corroborate
the above conclusions, while also placing them on a much stronger footing.

The implications of the early JWST results for phantom DE are particularly interesting
in view of the Hubble tension. It is now well understood that consistency with measurements
of the acoustic angular scale at low redshifts from BAO requires that the sound horizon be
lowered in the presence of a higher Hubble constant [128–137]. This implies that phantom
DE, an inherently late-time component which does not affect the sound horizon, cannot on
its own completely solve the Hubble tension. Nevertheless, within the limits imposed by
low-redshift data, phantom DE can at least partially alleviate the Hubble tension, in light of
its ability to accommodate a higher Hubble constant while keeping the distance to the CMB,
and thereby the acoustic angular scale observed in the CMB θs, fixed (given that the sound
horizon is unaffected, see ref. [138] for a recent explicit discussion of parameter degeneracies
in the presence of phantom DE). For this and other reasons, the possibility of phantom DE
playing some role in the context of the Hubble tension is one which has been give serious
consideration in the literature (see e.g. refs. [139–153] for recent discussions on the subject).

Our discussions so far have been data-driven. However, theory considerations have a lot
to offer to the discussion on viable DE models. Firstly, the tiny value of the positive CC
Λ required to explain observations is at severe odds with the value expected from theory
considerations, when interpreted in terms of zero-point vacuum energy density of quantum
fields: this is the well-known CC problem [154, 155]. Moving on to the simplest “quintessence”
models for DE, based on a single, minimally coupled scalar field in the absence of higher
derivative operators, and with canonical kinetic term [156–160], it is well known that these
predict w > −1, and cannot therefore give rise to phantom DE, which instead requires a

5For examples of other works showcasing the enormous potential of the early JWST observations in
constraining various aspects of fundamental physics, see refs. [91, 96–119]. Taking a step aside from new
fundamental physics, a very important possibility of course is that the JWST results may call for a better
understanding of galaxy formation, as discussed in a number of recent works [120–125].
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violation of the null energy condition [161–165]. It is also worth noting that, in the absence
of additional ingredients, these “vanilla” quintessence models also worsen the Hubble tension,
and one could therefore argue that they are observationally disfavored if the Hubble tension
is to be taken seriously [166–170].

Although most quintessence scalar field models feature a ground state with positive energy
density, corresponding to a de Sitter (dS) vacuum, such a scenario has proven extremely
difficult to construct in a controlled setting within string theory. In fact, it has been
conjectured that string theory may be unable to accommodate dS vacua [171], as advocated
by the swampland program [172–174], whose cosmological implications, particularly for
inflation and DE, are far-reaching to say the least (see e.g. refs. [175–184]).6 On the other
hand, anti-dS (AdS) vacua, which correspond to a negative CC (nCC), appear ubiquitously
within string theory, and are among the best understood quantum gravity backgrounds by
virtue of the AdS/CFT correspondence [187]. Of course, a nCC Λ < 0 with energy density
ρΛ < 0 is unable, on its own, to give rise to cosmic acceleration. However, an evolving DE
component with positive energy density ρx > 0 on top of a nCC can be consistent with
the observed late-time acceleration, provided ρx + ρΛ is positive around the present time,
and amounts to about 70% of the total energy budget. Such a scenario, which could be
interpreted in terms of a quintessence field whose potential features a negative minimum (AdS
vacuum), is of great theoretical interest in light of the previous string-driven considerations.
In fact, a number of recent works have explored similar scenarios in light of standard CMB,
BAO, and SNeIa observations (see e.g. refs. [188–197]), finding that these models perform
equally well as ΛCDM, or are even potentially statistically preferred.7 The strong theoretical
motivation behind such models, as well as their consistency with standard cosmological
probes, strongly motivates further studies thereof, and in particular a comparison against
other available observations, potentially in different redshift ranges, where the deviations
from ΛCDM can be substantially more pronounced.

In ref. [209], it was shown by some of us that a DE sector featuring an evolving component
on top of a nCC can, within regions of parameter space consistent with standard cosmological
observations, drastically alter the growth of structure at high redshifts with respect to
ΛCDM to the point of potentially restoring concordance with the (photometric) JWST
CEERS observations. We stress the word “potentially” as this earlier analysis was merely an
exploratory one: in fact, besides only having explored a few benchmark points in parameter
space, a careful treatment of corrections required for an accurate comparison to the JWST
observations was lacking, as well as a more complete assessment of the complementarity with
standard cosmological probes (the last two points were, in fact, both explicitly mentioned as
motivation for a more detailed follow-up work in the closing paragraph of ref. [209]). Given
the enormous promise shown by a model featuring an evolving DE component on top of a
nCC, it is our goal in the present work to revisit the model and go beyond the exploratory
analysis of ref. [209], by providing a full comparison of such a model against the JWST

6Two possible counterexamples to these conjectures are the KKLT [185] and Large Volume Compactifica-
tion [186] scenarios, although there is still no complete consensus on whether the resulting uplifted (meta)stable
dS vacua are sufficiently long-lived to be able to agree with observations.

7Another related very interesting possibility which has been explored in the literature involves an AdS
phase around recombination, as in the case of so-called AdS-early dark energy models [198–208].
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CEERS observations, while also including information from standard cosmological probes. To
place our results on a much more solid footing from the observational point of view, we also
consider spectroscopic data from the JWST FRESCO survey [29]. Overall, our work confirms
and reinforces the extremely promising conclusions reached earlier in ref. [209], and provides
further motivation for exploring dark sectors featuring components with negative energy
densities, while also highlighting once more the enormous potential held by observations of
the abundance of massive galaxies at very high redshift in testing fundamental physics.

The rest of this paper is then organized as follows. In section 2 we briefly review
the DE models considered in the rest of the work. Our analysis methods, including the
adopted datasets, are discussed in section 3. The results of our analysis, and in particular
the resulting limits in dynamical DE parameter space, are presented in section 4. Finally,
in section 5 we draw concluding remarks and outline a number of potentially interesting
avenues for follow-up work.

2 Dark energy models

Following the earlier work of ref. [209], we consider a DE sector consisting of a cosmological
constant Λ ≷ 0 which in principle can take either sign (with positive or negative signs
corresponding to a dS or AdS vacuum respectively), and with associated energy density
ρΛ = Λ/8πG of the same sign. On top of this dS or AdS vacuum we place an evolving DE
component with strictly positive energy density ρx(z) > 0. Rather than committing to a
specific microphysical model for the evolving DE component, we assume that this is described
by a time-evolving EoS wx(z) of the Chevallier-Polarski-Linder (CPL) form [210, 211]:

wx(z) = w0 + wa
z

1 + z
. (2.1)

There are various reasons why we adopt the widely used CPL parametrization, ranging
from its highly manageable 2-dimensional nature, to its direct connection to several physical
DE models (including several quintessence DE models, see e.g. refs. [211–215]) and, last
but not least, for ease of comparison to the earlier work of ref. [209].8 We refer to the
evolving component being quintessence-like (phantom) at a given epoch if, at the redshift in
question, w(z) > −1 (< −1). While w0 controls the current (quintessence-like or phantom)
nature of DE, whether or not this can change in the past is determined by the value of wa,
given that at asymptotically early times (z → ∞) the DE EoS tends to the value w0 + wa.
Finally, we note that models crossing which can cross between the two regimes are typically
referred to as “quintom” models, and have been widely studied in the literature [228–237],
see ref. [238] for a review.

If we denote by ρ
(0)
crit the current critical energy density, by ρ

(0)
x the current energy density

of the evolving DE component, and by Ωx ≡ ρ
(0)
x /ρ

(0)
crit its density parameter, the energy

8See ref. [216] for a recent discussion on potential shortcomings of the CPL parametrization. For complete-
ness, we note that a number of other parametrizations for the EoS of dynamical DE components have been
proposed in the literature, see e.g. refs. [217–226], see also ref. [227] for discussions on the theoretical viability
of these parametrizations.
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density of the evolving DE component as a function of redshift is given by the following:

ρx(z) = Ωxρ
(0)
crit(1 + z)3(1+w0+wa) exp

(
−3wa

z

1 + z

)
. (2.2)

We work under the assumption of a spatially flat Friedmann-Lemaître-Robertson-Walker
Universe filled, besides the evolving DE component described previously, by the cosmological
constant Λ ≷ 0, alongside the usual matter and radiation fluids (with density parameters
Ωm and Ωr respectively).9 Under these assumptions, and defining the density parameter
of the cosmological constant ΩΛ ≡ Λ/3, the evolution of the Hubble rate is governed by
the following equation:

H2(z)
H2

0
= Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ

+ Ωx(1 + z)3(1+w0+wa) exp
(

−3wa
z

1 + z

)
, (2.3)

where the density parameters satisfy Ωr + Ωm + ΩΛ + Ωx = 1. Finally, as noted in ref. [209],
it is natural to identify the combination of the evolving CPL component and the cosmological
constant Λ as comprising the combined DE sector, whose total density parameter is ΩDE ≡
Ωx + ΩΛ. The important thing to note is that, although Λ itself and therefore ΩΛ can be
negative, the total DE density and therefore ΩDE have to be positive in order to be able to
drive cosmic acceleration and maintain agreement with cosmological observations. Roughly
speaking, such a DE sector can in principle be compatible with cosmological observations
provided ΩDE ≈ 0.7, which of course is possible even if ΩΛ < 0, as noted in several recent
works [190, 191, 195, 239, 240]. We note that, in order to agree with observations, a more
negative ΩΛ needs to be compensated by more negative values of wx, moving towards the
phantom regime. These considerations lead to comparatively weak, order unity upper limits
on |ΩΛ|, as discussed for instance in refs. [191, 195], whereas different combinations of wx,
Ωx, and ΩΛ (the latter two summing to the same value of ΩDE) can lead to a very rich
phenomenology, discussed in detail in ref. [194] (see also ref. [241] for discussions on the
expected sensitivity to a nCC from future 21-cm observations).

From a theoretical standpoint, such a phenomenological model has been argued to loosely
carry string motivation in the case where Λ < 0 [191, 195, 209]. While AdS vacua appear
ubiquitously in string theory, the evolving DE component on top can, broadly speaking,
be justified on the grounds that string compactifications typically predict the existence
of a plethora of ultralight (pseudo)scalar particles. This usually goes under the name of
“string axiverse” (see for example refs. [242–246]), with the axion-like particles arising from
Kaluza-Klein reduction of higher-dimensional form fields on the topological cycles of the
compactification space. The topology of the compactification manifold fixes the number of
particles, typically of order hundreds or more, and with masses spread over a huge number of
decades, with the rough expectation that the distribution of the logarithms of the masses
should be approximately uniform [247–249], see also refs. [192, 250] for related studies. The
important thing to note is that the effective EoS of multiple interacting scalar fields can be

9We neglect neutrinos for simplicity, given their very limited impact at the cosmological epochs of interest.
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phantom [161, 162, 251–253]: this motivates the possibility of a component with positive
energy density, but with EoS wx(z) potentially crossing −1 [as in eq. (2.1) for suitable choices
of w0, wa], sitting on top of a nCC.

Concerning the AdS vacuum itself, the exploratory results of ref. [209] which our work
seeks to confirm show that the relevant region of parameter space is one where |ΩΛ| ∼ O(1),
i.e. where the nCC is of the same order of the dS vacuum energy in ΛCDM (see also
refs. [190, 191, 195]). Therefore, the magnitude of the nCC is expected to be ≲ 10−123 in Planck
units, and one could legitimately worry that this would introduce a (negative) cosmological
constant problem. Intriguingly, recent work in string theory [254, 255] has led to the explicit
construction of supersymmetric AdS4 vacua of the right magnitude. This has been achieved
within the context of type IIB string theory in compactifications on orientifolds of Calabi-Yau
threefold hypersurfaces, with the resulting solution preserving N = 1 supersymmetry, and
with the key point of the construction being the perfect cancellation of all perturbative terms
in the superpotential. Such a construction explicitly shows that it is possible to obtain an
exponentially small nCC within string compactifications, thereby providing further string
motivation for the region of parameter space we shall explore in this work.

Before moving on we note that, once the combination of evolving CPL component and
Λ is identified as making up the combined DE sector, a natural quantity characterizing the
latter is the effective equation of state weff(z), which can be determined through the twice
contracted Bianchi identity, and is given by (see ref. [209] for the full calculation):

weff(z) =
Ωx(1 + z)2+3w0+3wa [w0 + (w0 + wa)z] exp

(
−3wa

z

1 + z

)
− ΩΛ

Ωx(1 + z)3(1+w0+wa) exp
(
−3wa

z
1+z

)
+ ΩΛ

,

for which in general weff(z = 0) ̸= w0 unless ΩΛ = 0. It is also worth noting that if the values
of Ωx, ΩΛ, w0, and wa are such that the total DE energy density goes through zero and
therefore switches sign at a certain redshift, the associated effective EoS given by eq. (2.4)
necessarily goes through a pole at the same redshift. This has been discussed in detail in
refs. [209, 256], and does not in itself signal a pathology given that weff(z) is not associated
to the dynamics of a single microscopical degree of freedom — however, this does highlight
the importance of focusing on the total DE energy density rather than the effective EoS.

3 Methods

For what concerns the properties of high-redshift galaxies, and more generally the formation
of structures, the predictions of our model are controlled by seven parameters: the matter
density parameter Ωm, the baryon density parameter Ωb (as it controls the maximal baryonic,
and therefore stellar, content of a given host DM halo), the density parameter of the (positive
or negative) cosmological constant ΩΛ, the Hubble constant H0, the present-day linear theory
amplitude of matter fluctuations averaged in spheres of radius 8 h−1Mpc σ8, and finally the
parameters characterizing the evolving DE component with positive energy density, w0 and wa.
We note that the radiation density parameter Ωr is essentially fixed by extremely high-precision
measurements of the CMB temperature monopole (and is in any case negligible), from which
it follows that the density parameter of the evolving DE component Ωx > 0 is fixed by the
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closure relation Ωr +Ωm +ΩΛ +Ωx = 1 (which basically reduces to ΩDE = Ωx +ΩΛ ≈ 1−Ωm),
and cannot therefore be treated as a free parameter.

For each set of cosmological parameters discussed above, following ref. [257] and as
reported in refs. [88, 94, 209], we compute the evolution of the matter density contrast δ,
from which we obtain the linear growth factor of density perturbations D(z). We note that
the evolution of D(z) can differ significantly from that within ΛCDM. The reason is that the
equation for the evolution of δ (see e.g. ref. [209]) depends on both the normalized expansion
rate E(z) ≡ H(z)/H0 and its first derivative: a different background expansion therefore
directly impacts the growth of structure, which within the model at hand can be either
suppressed or enhanced depending on the choice of cosmological parameters, with the value
of ΩΛ playing an important role (see ref. [209] for more detailed discussions on this point).

The next step is to compute the predicted maximal abundance of galaxies with stellar
mass M⋆. More precisely, the relevant quantities are the comoving cumulative number or mass
(stellar mass or DM halo mass) densities, which quantify the number or mass density of halos
above a given threshold, or the number or stellar mass density of stars contained in galaxies
more massive than a given threshold. Here we proceed as in refs. [88, 94] and just recall the
basic steps to compute these quantities, while encouraging the reader to consult the above
papers for further details (see also see also eqs. (3.7–3.10) of ref. [209] for explicit expressions
of the four quantities discussed above). For a given set of the seven cosmological parameters
we compute the DM halo mass function dn(M, z)/dM , which quantifies the number of DM
haloes of mass M per unit mass per unit comoving volume in the mass range [M ; M + dM ]
at a given redshift. We do so following the prescription of ref. [258], itself an extension of
the Press-Schechter formalism [259] accounting for ellipsoidal collapse.

From the DM halo mass function we can obtain the maximal comoving number density
of galaxies with stellar mass in the range [M⋆; M⋆ + dM⋆], dn⋆(M⋆, z)/dM⋆. This is given
by dn⋆(M⋆, z)/dM⋆ = fbdn(M, z)/dM , where fb ≡ Ωb/Ωm is the cosmic baryon fraction.
We stress that this is the maximal density because it is computed under the extremely
optimistic assumption that the entire available baryonic reservoir ends up being converted
into stars. This assumption is of course unrealistic, as in reality the efficiency of converting
gas into stars, typically denoted by ϵ, is of order ϵ ≲ 0.2 or less, with a moderate redshift
dependence [260–262]. However, this assumption is extremely conservative for the purposes
of our study: given that galaxies cannot outnumber their DM haloes, one can exclude those
cosmological models for which even when ϵ = 1 the predicted number density of galaxies
of given stellar mass at a certain redshift falls short of the observed abundance of galaxies
within the same range of redshift and stellar mass. To put it differently, a galaxy of stellar
mass M⋆ can only form if a DM halo of mass M⋆/ϵfb has formed first. Finally, we can
compute the corresponding cumulative comoving maximal number and stellar mass densities
of galaxies with stellar masses larger than a given observational threshold M⋆. These are
obtained by integrating dn(M, z)/dM and fbMdn(M, z)/dM respectively, where the lower
limit of the integration range is given by the threshold DM halo mass M⋆/fb,10 and averaging
over the cosmic volume V (z1, z2) enclosed between the redshift range zmin − zmax covered by

10The upper limit of the integration range is formally ∞, although the integrand drops exponentially quickly
for sufficiently large DM halo mass.
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the observations (the average is performed within the integral, again see eqs. (3.7–3.10) of
ref. [209] for explicit expressions of these quantities). Two further corrections are required
before the computed cumulative comoving stellar mass density of galaxies, ρ⋆(> M⋆, z), can
be compared against the JWST observations, as we will discuss shortly.

Our goal is now to compute ρ⋆(> M⋆, z) as a function of various choices of cosmological
parameters, while ensuring that the latter are in agreement with standard cosmological
probes. This will allow us to discuss the complementarity between the latter, and the
observed abundance of high-redshift galaxies from JWST. Operationally, we therefore
proceed as follows. The cosmological datasets we consider are given below:11

• CMB data: measurements of CMB temperature anisotropy and polarization power
spectra, their cross-spectra, and CMB lensing power spectrum reconstructed from the
temperature 4-point correlation function, from the Planck 2018 legacy release. This
combination is usually referred to as TTTEEE+lowl+lowE+lensing, and we analyse it
making use of the official Planck likelihood [265–267].

• BAO data: isotropic and anisotropic distance and expansion rate measurements from
the SDSS-MGS, 6dFGS, and BOSS DR12 collaborations [268–270].

• SNeIa data: distance moduli measurements from the Pantheon SNeIa sample within
the redshift range 0.01 < z < 2.3 [271].

• SH0ES prior : a prior on the Hubble constant H0 = (73.30 ± 1.04) km/s/Mpc, as
determined by the SH0ES team [272].

Considering the combination of the above datasets, we derive constraints on our set of
cosmological parameters by making use of Markov Chain Monte Carlo (MCMC) methods, with
predictions for the cosmological observables in question derived using the publicly available
Boltzmann solver CLASS [273, 274]. We make use of the publicly available cosmological MCMC
sampler MontePython 3.3 [275, 276]. We monitor the convergence of the generated MCMC
chains through the Gelman-Rubin parameter R−1 [277], requiring R−1 < 0.02 for our chains
to be considered converged, and analyze them using the GetDist package [278]. For a full
discussion of the methodology and the resulting constraints, we refer the reader to ref. [195].

In the next stage of the analysis, we introduce the JWST observations, in particular the
inferred/observed comoving cumulative stellar mass density ρobs(> M⋆). More specifically,
we consider the value of ρobs(> M⋆) inferred from two different classes of observations:

• the six most massive, intrinsically red galaxies in the redshift range 9 ≲ z ≲ 11,
identified in the first NIRCam observations of the JWST CEERS program, as reported
in ref. [28], and which we treat as a measurement of ρobs(> M⋆) at zeff = 10;

11While more recent datasets are available for some of the measurements below (especially for what concerns
BAO and SNeIa data), the reason why we chose these datasets was for consistency with the work of ref. [195],
in order to make use of the chains which were produced therein. Nevertheless, we expect very minimal
quantitative changes were we to use the most up-to-date eBOSS BAO data [263] and PantheonPlus SNeIa
data [264], and no qualitative changes, given that our conclusions are almost entirely driven by the JWST
observations. We therefore expect them to be robust against the use of slightly more update BAO and
SNeIa data.
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• the three most massive, optically dark (dust-obscured) galaxies with robust spectroscopic
redshifts, in the redshift range 5 ≲ z ≲ 6, identified within the JWST FRESCO
NIRCam/grism survey, as reported in ref. [29], and which we treat as a measurement
of ρobs(> M⋆) at zeff = 5.5.

From the two above observations the inferred stellar mass density is of the order of ≳
106 M⊙Mpc−3 and ≳ 105 M⊙Mpc−3 respectively.

From the MCMC chains described above, we then select only those points which are
consistent within 2σ with the standard cosmological probes discussed earlier. We stress
that in our MCMC analysis we have allowed for ΩΛ ≷ 0, i.e. either a dS or AdS vacuum
energy component. Each of the models consistent within 2σ with the standard cosmological
observations is then compared against the inferred values of ρobs(> M⋆) from the JWST
CEERS and FRESCO observations described above. However, in order to properly carry
out this comparison, we need to account (and correct) for the fact that both the values of
ρobs(> M⋆) reported by ref. [28] and ref. [29] have been obtained assuming a certain fiducial
cosmology, in this case ΛCDM with a given choice of parameters. Let us refer to the vector
of fiducial cosmology parameters as f , whereas we denote by θ the vector of cosmological
parameters for each point in our MCMC chain. As discussed in detail in ref. [94], one then
needs to apply two different corrections:

• the inferred ρobs(> M⋆) has to be corrected by a “volume factor” fvol ≡ Vf /Vθ to
appropriately rescale the volume density, where V is the cosmic volume computed for
the specific model and choice of cosmological parameters in question, at the effective
redshift zeff;

• similarly, the measured masses have to be corrected by a “luminosity factor” flum ≡
dL,f /dL,θ to account for the fact that the stellar masses have been inferred from the
observed luminosities within the assumption of the given fiducial cosmology, where dL

is the luminosity distance computed for the specific model and choice of cosmological
parameters in question, once more at the effective redshift zeff.

The cosmology-corrected maximal comoving cumulative stellar mass densities can then be
directly compared to the JWST observations described above.

We consider a given cosmological model (which, we recall, is already ensured to be
consistent within 2σ with the standard cosmological probes) to be excluded if the maximal
predicted stellar mass density of galaxies at the given effective redshift is lower than the value
inferred from JWST CEERS or FRESCO observations. From this we can then compute the
exclusion probability P for a given model, or conversely the probability of consistency with
the JWST observations Q (obviously P + Q = 1). This is performed using the procedure
described in ref. [94], through a Monte Carlo procedure which also accounts for uncertainties
in the observational estimates of masses — in particular potential systematics related to
the spectral energy distribution (SED) fitting procedure — and statistical errors in the
observational number densities.

More in detail, for each set of cosmological parameters which are consistent with the
standard cosmological probes after running our MCMC, we simulate the dispersion of the
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observed number density n(M⋆) due to both systematics affecting M⋆ and statistical errors
affecting n(M⋆). For the former, we conservatively assign an uncertainty of 0.5 dex to the
stellar masses M⋆ reported by CEERS. This uncertainty budget accounts rather generously
for systematic uncertainties related to the SED fitting procedure (see e.g. refs. [94, 279]),
particularly for what concerns the ages of stellar populations, dust extinction, metallicity, and
assumed shapes of the star formation histories. When simulating the uncertainties associated
to the CEERS values of M∗ in our Monte Carlo procedure, the limit stellar mass M∗ is
extracted from such an interval following an uniform distribution to simulate systematic
uncertainties. For what concerns the spectroscopic FRESCO observations, the uncertainties
in the estimated stellar masses are simulated in our Monte Carlo procedure by extracting an
uncertainty ∆M∗ following a Gaussian distribution with variance given by the uncertainties
reported in ref. [29]. The observed number densities of galaxies associated to stellar masses
M⋆ extracted as described above are compared to the theoretical expectations for the number
density of DM haloes with mass M = M∗/fb, and we estimate upper and lower Poisson
confidence limits using the statistical method presented in ref. [280], which presents improved
numerical approximations to assess the statistical significance (Poissonian confidence limits)
of an observed small number of events, which is precisely the case at play here. This allows
us to derive a confidence level P for the probability that the observed number densities are
below the theoretical predictions. Notice that the value fb is not taken to be a free parameter,
but is computed from the ratio fb ≡ Ωb/Ωm where Ωb and Ωm are taken from the chains
of cosmological parameters discussed above.

4 Results

We begin by comparing our theoretical predictions against the stellar mass density inferred
from the most massive objects identified by NIRCam observations of the JWST CEERS
program, as reported in ref. [28]. In particular, these observations refer to the redshift range
zmin = 9 ≲ z ≲ zmax = 11, which we treat at an effective redshift zeff = 10, focusing on
the most massive bin considered in ref. [28], corresponding to M⋆ ≥ M⋆ = 1010.5M⊙. As
discussed in section 3, from the MCMC chains we extract cosmological parameter vectors
consistent within 2σ with the standard CMB, BAO, and SNeIa cosmological probes, predict
the corresponding maximal comoving cumulative stellar mass density, which we then correct
for the assumed fiducial cosmology, and then compare this against the JWST CEERS
observations. For each model, we derive the exclusion probability P , or conversely the
probability of consistency with the JWST observations, Q = 1 − P .

The results of our analysis are reported in terms of consistency probability contour
plots as a function of the evolving DE parameters w0 and wa in figure 1, where each of
the four quadrants refers to different regimes for the vacuum energy density parameter
ΩΛ: dS vacuum ΩΛ > 0 (lower right quadrant), AdS vacuum with −1 < ΩΛ < 0 (lower
left quadrant), AdS vacuum with even more negative ΩΛ < −1 (upper right panel), and
finally any value of ΩΛ (upper left quadrant). Superimposed on the same plots are 2σ

and 3σ joint confidence intervals in the w0-wa plane obtained from a combination of CMB,
BAO, and SNeIa measurements (black contours, as reported in ref. [281]), as well as from
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the combined Hubble diagram of SNeIa and quasars (QSOs, blue contours, as reported in
ref. [282]), reaching up to redshift z ∼ 5.5.

The first noteworthy result is that the existence of a region of w0-wa parameter space
featuring a DE component with an AdS vacuum which is consistent with all the standard
cosmological probes and the abundance of high-redshift galaxies inferred from JWST. This
can be contrasted to the earlier results of ref. [94] which only considered a dS vacuum, finding
that a major portion of the w0-wa parameter space favored by the standard cosmological
probes is excluded at significance > 2σ by the JWST observations. This result on its own,
therefore, represents a solid quantitative confirmation of the earlier exploratory results of
ref. [209], and confirms that the presence of a nCC in the DE sector can help accelerate
structure formation, thereby aiding the formation of very massive objects at very high redshift
beyond what is possible within ΛCDM (for more detailed explanations of why this occurs,
we refer the reader to ref. [209]).

It is also interesting to note that the favored region in w0-wa parameter space is not
far from (w0, wa)=(−1, 0), while lying slightly within the phantom regime, in qualitative
agreement with ref. [209]. Within this region, we are able to achieve a consistency probability
with the JWST measurements of up to 47%. Moreover, this same region is also consistent
within ≈ 2σ with the region favored by SNeIa+QSOs. As ΩΛ is increased, and we therefore
move from the upper right quadrant to the two lower quadrants, we see a gradual shift in
the required properties of the evolving DE component: this progressively shifts from being
characterized by mostly quintessence-like behaviour (potentially crossing the phantom divide
in the past, in agreement with the results of ref. [209]), to a quintessence-like behaviour
at present but a phantom behaviour in the past, i.e. moving towards the lower right part
of the w0-wa plane. The latter point is in excellent agreement with the earlier findings of
ref. [94], which indeed focused precisely on this regime, and showed that therein most of
the wa > 0 region is excluded, unless w0 is deep in the phantom regime. Either way, it is
clear that as ΩΛ is increased, the point (w0, wa)=(−1, 0) is progressively disfavored, with a
probability of consistency of < 10% in the ΩΛ > 0 case (lower right quadrant), in agreement
with ref. [94]. In the latter case, one should pay attention to the fact that figure 2 in ref. [94]
plots the exclusion probability, whereas here we are plotting the probability for consistency:
when one accounts for this, it is easy to see that the results are consistent with those of
ref. [94]. On the other hand, an AdS vacuum plus evolving DE component scenario displays
a good consistency with the JWST measurements (see especially the upper right quadrant):
the reason is that the presence of the nCC helps accelerate structure formation, thereby
reducing the need for phantom DE, which also happens to be theoretically much harder to
accommodate with respect to a quintessence-like component.

While the above conclusions are robust on the theoretical side, critical issues may affect
the measurements of ref. [28] we are comparing against. In first place, potential uncertainties
may affect the calibration of the JWST photometric data used therein. A second issue may
concern the Chabrier IMF adopted by ref. [28] to derive stellar masses. While we do not expect
that assuming other universal forms for the IMF based on low-redshift conditions would
change (or even strengthen) the constraints we have derived, the star formation process can be
significantly different at redshifts as high as the ones we are concerned with (see e.g. ref. [283]).
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Figure 1. Contours in the w0-wa plane colored by the probability of consistency with the stellar
mass density inferred from the six most massive galaxies identified in the first NIRCam observations
of the JWST CEERS program, in the redshift range 9 ≲ z ≲ 11, as reported in ref. [28]. The contours
are reported considering the dynamical DE model discussed in section 2, featuring an evolving DE
component with positive energy density, sitting on top of a vacuum energy component with density
parameter ΩΛ ≷ 0. The four different quadrants correspond to different regimes for the value of
ΩΛ: all values ΩΛ ≷ 0 (upper left quadrant), ΩΛ < −1 (upper right quadrant), −1 < ΩΛ < 0 (lower
left quadrant), and ΩΛ > 0 (lower right quadrant). As discussed in section 3, we only consider
combinations of cosmological parameters consistent within 2σ with the standard CMB+BAO+SNeIa
cosmological probes. Our contours are compared to the 2σ and 3σ contours allowed by the latest
CMB+BAO+SNeIa measurements (black contours) as reported in ref. [281], and the combined Hubble
diagram of SNeIa and quasars (QSOs, blue contours) reported in ref. [282]. The green dot corresponds
to the ΛCDM case (w0 = −1, wa = 0).

For such reasons, it is important to perform an independent test against spectroscopic data
in a different redshift range. With this in mind, we then proceed to carry out a comparison
against the stellar mass density inferred from the three most massive, optically dark (dust-
obscured) galaxies with robust spectroscopic redshifts from the JWST FRESCO survey [29].
Note that here as well the stellar masses have been conservatively inferred using a Chabrier
IMF. We expect that assuming other universal forms for the IMF (e.g. Salpeter, Kennicut)
would yield similar or even larger values of M⋆, and therefore our results can be interpreted
as being conservative in this sense. As in our previous comparison, we conservatively consider
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Figure 2. Same as in figure 1, but considering the three most massive, optically dark (dust-obscured)
galaxies with robust spectroscopic redshifts identified within the JWST FRESCO survey, in the
redshift range 5 ≲ z ≲ 6, as reported in ref. [29].

for the measured value M⋆ the one corresponding to the lower tip of the uncertainty provided
by ref. [29]. As for the uncertainties in the number density, the confidence levels thereon are
derived using the statistical method presented in ref. [280], as discussed in ref. [94].

The results of such a comparison are shown in figure 2, with the same quadrant structure
as in figure 1. We see that the results are completely consistent, and very similar, to those
obtained comparing against the photometric sample at higher redshift of ref. [28]. The only
quantitative difference is that overall we are able to achieve higher levels of consistency with
the JWST FRESCO data, as high as 98%. Moreover, just as observed earlier, we see that
the fraction of evolving DE models with phantom behaviour increases with increasing values
of ΩΛ, confirming the trend seen with the photometric sample: in other words, introducing a
nCC helps accelerate structure formation and reduce the need for a phantom DE component,
a welcome reduction from the theory point of view.

We stress that the CEERS and FRESCO datasets adopted are not the only JWST-based
measurements of the abundance of high-redshift galaxies. The reason why we have adopted
these and not others, however, is that at present they constitute the most constraining
datasets, and are therefore best suited for the scope of the present work. For instance,
NIRCam observations of the GLASS-ERS 1324 program reported in ref. [284] involve galaxies
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at comparable redshifts but with much lower stellar masses (log M⋆/M⊙ ≲ 9.5), and are
therefore not expected to significantly tighten existing cosmological constraints. On the other
hand, JWST observations of the Hubble Ultra Deep Field (HUDF) and UKIDSS Ultra Deep
Survey field reported in ref. [285] extend to lower redshifts (z ≲ 8) compared to ones we
considered. Indeed, the measurements reported in ref. [285] yield number densities which
are comparable to, or even lower than, those reported in ref. [286] for the CANDELS/UDS,
GOODS-South, and HUDF fields. The cosmological implications of the measurements
reported in ref. [286] were analyzed by one of us in ref. [88], finding much weaker constraints
on dynamical DE compared to the ones obtained in ref. [94] based on JWST CEERS data,
and in the present work. Therefore, we do not expect that the measurements presented
in refs. [284, 285] would add much constraining power to constraints on dark energy from
standard cosmological probes, although a study thereof could be interesting for follow-up
works. The CEERS and FRESCO measurements we consider in the present work provide at
present an unprecedented combination of high redshifts, large masses, and large abundances
which make them uniquely suited for our study.

For completeness, in figure 3 we display the associated contours in the h-S8 ≡ σ8
√

Ωm/0.3
parameter space, where h ≡ H0/(100 km/s/Mpc) is the reduced Hubble constant, and S8
controls the overall strength of matter clustering in the late Universe. While the contours
we obtain are, by construction, consistent with the standard cosmological observables we
considered, they display some tension with weak lensing (and, to some extent, galaxy
clustering) measurements, which favour lower values of S8 (see e.g. refs. [287–289]). This
is of course not unexpected.

Before closing, a comment is in order regarding our treatment of the cosmic baryon
fraction fb. As explained earlier, we have not treated fb as a free parameter, but as a derived
parameter which is self-consistently computed from the values of ωb, Ωm, and H0 at each
point in the MCMC chains. This approach differs from a number of other studies on the
cosmological implications of the JWST measurements, where fb is either fixed to the best-fit
value inferred within ΛCDM from the Planck 2018 measurements, or freely varied within
some prior range. We believe our approach is somewhat more robust as it ensures that
fb is self-consistently constrained by the other probes at play, varying consistently with
the same parameters which control our predictions for the growth of structure and thereby
the stellar mass density. Of course, it is worth noting that the inferred values of fb are
model-dependent, and can be affected by the choice of both pre- and post-recombination
models. Indeed, it is known that the assumed pre-recombination model can affect the inferred
value of Ωmh2, a fact which has been appreciated in the context of the Hubble tension [290],
whereas Ωbh

2 is essentially fixed by considerations on Big Bang Nucleosynthesis and the
relative height of the odd versus even acoustic peaks in the CMB. We note that higher
(lower) values of fb would lead to proportionally higher (lower) values of the cumulative
comoving number and stellar mass densities of galaxies (as both scale linearly with fb),
thereby slightly weakening (strengthening) our existing constraints. Nevertheless, within
the range of allowed model-dependent values of fb, the effect is expected to be small, and
changes to the growth history associated to a different dark energy model are expected
to be much larger.
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Figure 3. Contours of probability of consistency with the same observations considered in figure 2,
and with the same color coding, in the plane of the reduced Hubble constant h ≡ H0/(100 km/s/Mpc)
and the clustering parameter S8 ≡ σ8

√
Ωm/0.3.

5 Conclusions

The puzzling abundance of extremely massive galaxies at very high redshift unveiled by
the early JWST observations has the potential to upturn the current concordance ΛCDM
model, itself already plagued by other observational tensions. At the same time, the JWST
observations can be used to test alternative cosmological models, and can potentially rule
out those models which do not allow for a sufficiently fast growth of structure required
to explain the formation of the galaxies observed by JWST. As argued by various earlier
works [88, 94, 209], observations of the abundance of high-redshift galaxies can place strong
constraints on dynamical DE models, in a way which is highly complementary to standard
CMB, BAO, and SNeIa cosmological probes at low redshifts. In the earlier exploratory work
of ref. [209] some of us argued that a DE sector featuring a negative cosmological constant
(AdS vacuum) with an evolving DE component on top, which carries strong motivation from
string theory given the ubiquity of AdS vacua therein, can lead to a more efficient growth
of structure at early times, potentially explaining the JWST observations. Our goal in this
work has been that of going beyond this exploratory analysis, by a) performing a more
careful comparison of such a model against JWST data, while also b) better assessing the
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complementarity with standard cosmological probes, and c) considering also spectroscopic
data from the JWST FRESCO survey [29] in order to place the results on a more solid footing.

Our results, which qualitatively confirm the exploratory findings of ref. [209], can be
summarized as follows:

• a DE sector featuring an evolving component with positive energy density on top of
a negative cosmological constant with density parameter ΩΛ < 0 can indeed improve
consistency with photometric JWST observations at redshifts 9 ≲ z ≲ 11 (in agreement
with the findings of ref. [209]), with consistency of up to 47%;

• as ΩΛ is increased, the behaviour evolving DE component progressively shifts towards
a more phantom behaviour — to put it differently, introducing a negative cosmological
constant allows for better agreement with the JWST observations with a decreased
need for phantom behaviour, which is more problematic compared to a quintessence-like
behaviour from a theoretical point of view;

• for ΩΛ > 0, the JWST observations favor dynamical DE models which cross the
phantom divide, in agreement with the findings of ref. [94];

• these findings remain intact when considering spectroscopic observations from the
JWST FRESCO survey at 5 ≲ z ≲ 6, placing all the earlier conclusions on a much
more robust footing from the observational point of view;

• the JWST observations, and more generally observations of the abundance of high-
redshift galaxies, are highly complementary to standard cosmological probes from CMB,
BAO, and SNeIa, as well as observations of high-redshift QSOs.

In short, we have shown that DE sectors featuring a negative cosmological constant are
extremely interesting from the perspective of the high-redshift galaxies observed by JWST.
Moreover, this class of models, and more generally models featuring negative energy densities
in the DE sector, also have the potential to partially (albeit not completely) alleviate the
Hubble tension (see e.g. refs. [191, 193, 195, 197, 291–296]). This therefore confirms that such
models are interesting from all three the observational, phenomenological, and also theoretical
perspective, in the latter case in light of their strong motivation from string theory.

Overall, our results further strengthen the case for illuminating the nature of DE, and
more generally testing new fundamental physics, using observations of high-redshift galaxies,
in a redshift range which cannot be reached by standard cosmological probes. We believe
such observations have the potential to become an important “emergent probe” (see e.g.
ref. [10]) in coming years, especially with the achievable higher spatial resolution and improved
sensitivity from future ALMA/NOEMA and deep JWST spectroscopic observations, whose
complementarity with upcoming CMB measurements [297, 298] it would be interesting
to explore. From the theory side, it could be interesting to extend our analysis to one
implementing a fundamental string scenario from first principles, along the lines of refs. [192,
299, 300]). The early JWST observations have the potential to shake modern cosmology and
shed new light onto the nature of the dark sector components. Our work represents a small
step in the latter direction, and we cannot wait to see what lies in store for cosmology as
our long-awaited space telescope keeps gathering data.
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