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Abstract

Beta-binders is a recent process calculus developed for modelling
and simulating biological systems. As usual for process calculi, the
semantic definition heavily relies on a structural congruence. The
treatment of the structural congruence is essential for implementation.
We present a subset of the calculus for which the structural congruence
is decidable and a subset for which it is also efficiently solvable. The
obtained results are a first step towards implementations.

1 Introduction

Systems Biology studies the behaviour and relationships of the elements com-
posing a particular biological system. Recently, some authors [1] argued that
concurrency theory and process calculi [2, 3] are useful to specify and simu-
late the behaviour of living matter. As a consequence, a number of process
calculi have been adapted or newly developed for applications in systems
biology [4, 5, 6, 7]. Moreover, there is an increasing interest in new and
correct implementation techniques for this kind of process calculi, in order
to allow their execution. In particular, the definition of new computational
models for stochastic process calculi allows to define new methodologies for
the implementation of efficient stochastic simulators for biological processes.

Most of these process calculi are provided with stochastic extensions (i.e.
quantitative information about speed of actions is provided with systems
specifications) and rely on Gillespie’s stochastic simulation [8, 9] for analysis,
an exact stochastic simulation algorithm for homogeneous, well-mixed chem-
ical reaction systems. An example is the Biochemical stochastic π-calculus
[4] and its stochastic simulators BioSpi [4] and SPiM [10].

In these implementations each biological entity, composing the system, is
seen as a distinct π-calculus process. For example, if we simulate a biological
system composed of 10.000 molecules of the species A and 10.000 molecules
of the species B, these simulators instantiates 20.000 distinct processes.

The interpretation of each biological entity as a single and distinct process
is not the most efficient solution to implement the Gillespie approach [8]. In-
deed, each simulation step of the Gillespie’s algorithm is computed using the
actual propensities of reactions, which are calculated from the reactions rate
constants and the multiplicities of the involved species (see [9] for details).
As a consequence, the one-to-one correspondence between biological entities
and processes causes an explosion of processes due to their multiplicities and
not to their semantics. In other words, we will have many copies of the same
process to represent the instances of the same biological entities in a given
volume.
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To overcome the multiple copies problem, it makes sense to instantiate
objects that represent species and to maintain for each of this object the
information about its multiplicity. We obviously need to establish what a
species is and to define an efficient procedure for determining whether or not
a biological entity belongs to a species.

This paper focuses on Beta-binders [7], a process calculus thought from
the beginning for biology and introduced to represent biological interaction
mechanisms. In the stochastic extension of Beta-binders, a species is defined
as a class of structural congruent beta-processes. For this reason, with the
idea of developing a computational model for Beta-binders that considers
the species, we decided first to develop on the structural congruence of the
calculus, in order to establish a subset for which the structural congruence is
decidable and a subset for which its evaluation is also efficiently solvable. For
a more detailed description of how to realize a stochastic abstract machine
for Beta-binders using this kind of technique, we refer the reader to [11].

The remainder of the paper is structured as follows. In Sect. 2 a short
introduction to Beta-binders is reported, along with the description of some
particular normal forms and an overview of the decidability of the structural
congruence for the π-calculus. In Sect. 3 and Sect. 4 the proof of the decid-
ability of the structural congruence for Beta-binders is presented. In Sect. 5
a generalization of the proof is given and in Sect. 6 a subset of Beta-binders
with efficiently solvable structural congruence is presented.

All the proofs omitted in this paper can be found in [12].

2 Preliminaries

In this section we briefly review Beta-binders and the most important results
regarding the decidability of the structural congruence for the π-calculus.

2.1 Beta-binders

Beta-binders [7, 13] is a process algebra developed for representing the in-
teractions between biological entities. The main idea is to encapsulate π-
calculus processes into boxes with interaction capabilities, also called beta-
processes. Like the π-calculus also Beta-binders is based on the notion of
naming. Thus, we assume the existence of a countably infinite set N of
names (ranged over by lower-case letter). The processes wrapped into boxes,
also called pi-processes, are given by the following context free grammar:
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fn(nil) = fn(τ) = ∅ fn(x(y).P ) = (fn(P ) ∪ {x}) \ {y}
fn(P |Q) = fn(P ) ∪ fn(Q) fn(x〈y〉.P ) = fn(P ) ∪ {x, y}
fn((νy)P ) = fn(P ) \ {y} fn(hide(x).P ) = fn(unhide(x).P ) = fn(P ) ∪ {x}
fn(!P ) = fn(P ) fn(expose(x,Γ).P ) = fn(P ) \ {x}

Table 1: Free names of pi-processes.

P ::= nil | π.P | P |P | (νy)P | !P
π ::= x〈y〉 | x(y) | τ | expose(x, Γ) | hide(x) | unhide(x)

The syntax of the π-calculus is enriched by the last three options for π to
manipulate the interactions sites of the boxes. Beta-processes are defined as
pi-processes prefixed by specialised binders that represent interaction capa-
bilities. An elementary beta binder has the form β(x, Γ) (active) or βh(x, Γ)
(hidden) where the name x is the subject of the beta binder and Γ represents

the type of x. With β̂ we denote either β or βh. A well-formed beta binder
(ranged over by B, B1, B′, · · · ) is a non-empty string of elementary beta
binders where subjects are all distinct. The function sub(B) returns the set
of all the beta binder subjects in B. Moreover, B∗ denote either a well-
formed beta binder or the empty string. The usual definitions of free names
(denoted by fn(−)) is extended in Tab. 1 by stipulating that expose(x, Γ).P
is a binder for x in P . The definitions of bound names (denoted by bn(−))
and of name substitution are extended consequently.

Beta-processes (ranged over by B, B1, B′, · · · ) are generated by the
following context free grammar:

B ::= Nil | B[P ] | B || B

The system is either the deadlock beta-process Nil or a parallel compo-
sition of boxes B[P ]. We denote by P and BB, the pi-processes and the
beta-processes generated by the grammar, respectively. Moreover, we de-
note by T the set of all the Beta-binders types. Free and bound names for
beta-processes are defined by specifying fn(B[P ]) = fn(P ) \ sub(B).

The structural congruence for Beta-binders is defined through a structural
congruence over pi-processes and a structural congruence over beta-processes.

Definition 2.1. The structural congruence over pi-processes, denoted by ≡,
is the smallest relation which satisfies the laws in Fig. 1 (group a) and the
structural congruence over beta-processes, denoted by ≡, is the smallest rela-
tion which satisfies the laws in Fig. 1 (group b).
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Group a - pi-processes Group b - beta-processes
a.1) P1 ≡ P2 b.1) B[P1] ≡ B[P2] if P1 ≡ P2

if P1 and P2 are α-equivalent
a.2) P1 | (P2 | P3) ≡ (P1 | P2) | P3 b.2) B1 || (B2 || B3) ≡ (B1 || B2) || B3

a.3) P1 | P2 ≡ P2 | P1 b.3) B1 || B2 ≡ B2 || B1

a.4) P | nil ≡ P b.4) B || Nil ≡ B
a.5) (νz)(νw)P ≡ (νw)(νz)P b.5) B1B2[P ] ≡ B2B1[P ]

a.6) (νz)P ≡ P if x 6∈ fn(P ) b.6) B∗β̂(x : Γ)[P ] ≡ B∗β̂(y : Γ)[P{y/x}]
a.7) (νz)(P1 | P2) ≡ P1 | (νz)P2 with y fresh in P and y 6∈ sub(B∗)

if z 6∈ fn(P1)
a.8) !P ≡ P | !P

Figure 1: Structural laws for Beta-binders.

Notice that the same symbol is used to denote both congruences. The
intended relation is disambiguated by the context of application. Moreover,
as usual two pi-processes P and Q are α-equivalent if Q can be obtained from
P by renaming one or more bound names in P , and vice versa.

In the stochastic extension of Beta-binders [14] the syntax is enriched in
order to allow a Gillespie’s stochastic simulation algorithm implementation.
The prefix π.P is replaced by (π, r).P , where r is the single parameter defining
an exponential distribution that drives the stochastic behaviour of the action
corresponding to the prefix π.1 Moreover, the classical replication !P is
replaced by the so called guarded replication !π.P . In order to manage this
type of replication, the structural law !P ≡ P | !P is replaced by the law
!(π, r).P ≡ (π, r).(P |!(π, r).P ).

Notice that for the purpose of this paper we are not interested in the
semantic of the language. We refer the reader to [7, 13, 14] for a more detailed
description of both the qualitative and quantitative version of Beta-binders.

2.2 Normal forms

In [15] two normal forms for π-calculus processes, called webform and super
webform, are introduced.

With fn(−) and bn(−) we indicate the usual definitions of free and bound
names of π-calculus processes, with guard we indicate an action not prefixed
by other actions and with P ≡α Q we indicate α-equivalent processes.

A process P is fresh if x 6∈ fn(P ) whenever (νx) is not in the scope of
any guard or replication (called outer restriction) in P , and every restriction
(νx) occurs at most once as outer restriction in P . For each process P there

1An exponential distribution with rate r is a function F (t) = 1 − e−rt , where t is the
time parameter. The parameter r determines the shape of the curve. The greater the r
parameter, the faster F (t) approaches its asymptotic value. The probability of performing
an action with parameter r within time t is F (t) = 1 − e−rt, so r determines the time t
needed to obtain a probability near to 1. The exponential density function is f(t) = re−rt.
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exists a fresh process P ′ such that P ′ ≡α P . Let P be a fresh process.
Let os(P ), the outer subterms of P , be the set of occurrences of subterm
π.Q and !Q of P that are not in the scope of any guard or replication. Let
or(P ), the outer restrictions of P , be the set of names x such that (νx) is
not in the scope of any guard or replication in P and such that x occurs free
in some outer subterm of P . Finally, let og(P ), the outer graph of P , be
the undirected bipartite graph with nodes os(P ) ∪ or(P ) and with an edge
between R ∈ os(P ) and x ∈ or(P ) if x ∈ fn(R). Consider the fresh process
P = (νx)(νy)((x〈y〉|!y〈v〉)|(νz)z〈x〉). The graph og(P ) is shown in Fig. 2.
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!y〈v〉 x〈y〉 z〈x〉

Figure 2: Bipartite graph os(P ) of the process P =
(νx)(νy)((x〈y〉|!y〈v〉)|(νz)z〈x〉).

A process P = (νx1)...(νxk)(P1 | · · · | Pm) with k ≥ 0 and m ≥ 1 is a
web if: (1) every process Pi is a replication !Q or a guarded process π.Q; (2)
x1, ..., xk are all distinct (P is fresh); (3) for each xj there exists a process
Pi such that xj ∈ fn(Pi); (4) og(P ) is connected. Every replication !P and
every guarded process π.P is a web (with k = 0 and m = 1). No web is
congruent to the inactive process nil. A web should be denoted with the
set {x1, ..., xk, P1, ..., Pm} which lists the names of the outer restrictions and
the outer subterms. A webform of a fresh process P , denoted with wf(P ),
is the composition of all the webs (νx1)...(νxk)(P1 | · · · | Pm) such that
{x1, ..., xk, P1, ..., Pm} is a connected component of og(P ). If og(P ) is the
empty graph, then wf(P ) = nil. In [15](Lemma 3.8) an inductive decidable
computation of wf(P ) is presented and here reported in Fig.3.

The super webform of a fresh process P , denoted with swf(P ), is in-
ductively defined in the following way: swf(P ) = wf(subwf(P )) where, by
definition, subwf(P ) is obtained from P by replacing every outer subterm
π.Q of P with π.swf(Q) and every outer subterm !Q with !swf(Q). See [15]
for a more detailed description.
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(1) wf(nil) = nil, wf(π.P ) = π.P , wf(!P ) =!P ;
(2) if wf(P ) = P1 | ... | Pm e wf(Q) = Q1 | ... | Qn with Pi and Qj web,

then wf(P | Q) ≡min P1 | ... | Pm | Q1 | ... | Qn;
(3) if x 6∈ fn(P ), then wf((νx)P ) ≡min wf(P );
(4) if x ∈ fn(P ), then wf((νx)P ) ≡min Q | R1 | ... | Rn where,

(a) wf(P ) = Q1 | ... | Qm | R1 | ... | Rn with Qi and Rj web
e (νx)(Q1 | ... | Qm) fresh;
(b) x ∈ fn(Qi) for all i, and x 6∈ fn(Rj) for all j;
(c) Q is a web with Q ≡!fr (νx)(Q1 | ... | Qm) and precisely,
if Qi = (νxi,1)...(νxi,li )(Qi,1 | ... | Qi,ni

),
then Q = (νx)(νxi,1)...(νxi,li )(Q1,1 | ... | Qm,nm

)

Figure 3: Inductive computation of the webform.

2.3 The decidability of the structural congruence for
the π-calculus

The most important results for the decidability of the structural congruence
for the π-calculus are those presented by J. Engelfriet in [16] and by J. En-
gelfriet and T.E. Gelsema in [17, 18, 19, 15]. They consider the syntax of the
small π-calculus (presented in [20]) and the congruences over the set of pro-
cesses generated by a subcollection of the structural laws presented in Fig. 4
(where, for our purpose, we add the congruence ≡min). The standard struc-
tural congruence, defined in [16, 17] and denoted with ≡std, is determined by
the laws (α), (1.1), (1.2), (1.3), (2.1), (2.2), (2.3) and (3.1). In [18], the mid-
dle congruence, denoted with ≡md, was introduced to give a different view
of the treatment of replication. The decidability of the middle congruence
was shown in [19]. They reduce it to the decidability of extended structural
congruence, denoted with ≡ext, that was shown in [17]. In [15], instead, was
shown the decidability of the replication free congruence, denoted with ≡!fr,
and the decidability of the standard congruence for the subclass of replica-
tion restricted processes. Formally, a process P is replication restricted if for
every subterm !R of P and every (νx) that covers !R in P , if x ∈ fn(R),
then x ∈ fn(S) for every component S of R where with component we mean
a web. The decidability of the structural congruence for this subclass of pro-
cesses is reduced to the problem of solving certain systems of linear equations
with coefficients in N.

3 Structural congruence over beta-processes

The structural laws for Beta-binders, presented in Fig. 1, are divided in two
groups: the laws for pi-processes (group a) and the laws for beta-processes
(group b). From law b.1 it turns out that the decidability of the structural
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rule ≡min ≡νfr ≡!fr ≡std ≡md ≡ext

(α) P1 ≡ P2 if P1 and P2 are α-equivalent + + + + + +
(1.1) P | nil ≡ P + + + + +
(1.2) P1 | P2 ≡ P2 | P1 + + + + + +
(1.3) P1 | (P2 | P3) ≡ (P1 | P2) | P3) + + + + + +
(2.1) (νz)(νw)P ≡ (νw)(νz)P + + + + + +
(2.2) (νz)P ≡ P + + + +

if x 6∈ fn(P )
(2.3) (νz)(P1 | P2) ≡ P1 | (νz)P2 + + + +

if z 6∈ fn(P1)
(3.1) !P ≡ P | !P + + (+) +

(3.6) !(P | Q) ≡!( P | Q) | P + (+)
(3.2) !(P | Q) ≡!P | !Q +
(3.3) !!P ≡!P +
(3.4) !nil ≡ nil +
(2.4) (νx)π.P ≡ π.(νx)P +

if x 6∈ n(π) +

Figure 4: Structural laws for the π-calculus.

congruence over pi-processes is a necessary condition for the decidability of
the structural congruence over beta-processes.

The congruences that we consider in this paper are ≡min
bb and ≡std

bb . Con-
gruence ≡min

bb is generated by the structural laws of group a and the laws b.1,
b.5 and b.6. Congruence ≡std

bb is generated by all the structural laws of group
a and group b.

First, we prove the decidability of the congruence ≡min
bb making some as-

sumptions: (1) we restrict the well-formedness definition by assuming that
a well-formed beta binder (ranged over by B, B1, B′, · · · ) is a non-empty
string of elementary beta binders where subjects and types are all distinct;
(2) we assume that the structural congruence over pi-processes is decidable,
and therefore we assume that there exists a function PIstd : P × P →
{true, false} that accepts two pi-processes as parameters and returns true if
the pi-processes are structural congruent, and returns false otherwise; (3) we
assume that the types of the beta binders are defined over algebraic struc-
tures with decidable and efficiently solvable equality relation, and therefore
we assume that there exists a function Equal : Γ × ∆ → {true, false} that
accepts two types as parameters and returns true if the types are equal, and
returns false otherwise. We then prove the decidability of the congruence
≡std

bb always under the previous assumptions. Finally, we will analyze in
detail the decidability of the structural congruence over pi-processes.

We consider two beta-processes B[P ] and B′[P ′]. We notice that the laws
of group b related to the congruence ≡min

bb only refers to the structure of the
beta binders lists B and B′. In fact, the two lists are considered congruent
only if they are equal (law b.1), or if B is a permutation of B′ that satisfies
the laws b.5 and b.6.
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BBmin(ǫ[P ], ǫ[P ′]) = PIstd(P, P ′)

BBmin(ǫ[P ],B′[P ′]) = BBmin(B[P ], ǫ[P ′]) = false

BBmin(β̂(x : Γ)B∗[P ],B′[P ′]) =






BBmin(B∗[P{z/x}],B∗

1B
∗

2[P
′{z/y}]) if (1)

BBmin(B∗[P ],B∗

1B
∗

2[P
′]) if (2)

false o.w.

(1) B′ = B∗

1β̂(y : ∆)B∗

2 with (Equal(Γ,∆) = true) and (x 6= y)
and z 6∈ (fn(P ) ∪ fn(P ′) ∪ sub(B∗) ∪ sub(B∗

1B
∗

2))

(2) B′ = B∗

1β̂(x : ∆)B∗

2 with Equal(Γ,∆) = true

Table 2: Definition of function BBmin.

For this reason the decidability of the congruence ≡min
bb can be described

through a function BBmin : B[P ] ×B[P ] → {true, false} defined by induc-
tion on the structure of beta-processes (Tab. 2).

If the lists B and B′ are not empty, then there are three different cases: (1)

if a type correspondence between the first beta binders β̂(x : Γ) of B and one

beta binder β̂(y : ∆) of B′ such that (x 6= y) exists, then the function BBmin

is recursively invoked on the beta-processes B1[P{z/x}] and B2[P
′{z/y}],

where z 6∈ fn(P )∪fn(P ′)∪sub(B1)∪sub(B2), B1 is obtained from B deleting

the beta binder β̂(x : Γ) and B2 is obtained from B′ deleting the beta binder

β̂(y : ∆); (2) if the first beta binder of the list B is equal to one beta binder
of the list B′, then the function BBmin is recursively invoked on the beta-
processes B1[P ] and B2[P

′], where B1 and B2 are respectively obtained from
B and B′ deleting the equal beta binders; (3) if no correspondence between
the first beta binder of B and one beta binder of B′ exists, then the function
returns false.

If only one of the beta binders lists B and B′ is empty, then the function
returns false.

If both B and B′ are empty, then the function PIstd is invoked on the
pi-processes P and P ′. In this case the function BBmin returns the result of
PIstd(P, P ′).

We notice that the decidability of the structural congruence over pi-
processes is not only necessary condition but also sufficient condition for
the decidability of the congruence ≡min

bb .
Now we analyze the congruence ≡std

bb . The law b.2 regards parallelization
with the inactive beta-process Nil and the laws b.3 and b.4 are associativity
and commutativity rules. The decidability of the congruence ≡std

bb can be de-
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BBstd(Nil,B′) =

{
false if (1)
true o.w.

BBstd(B1[P1], B
′) =

{
BBstd(Nil,Remove(B′′[P ′′], B′)) if (2)
false o.w.

BBstd(B1[P1] || B,B′) =

{
BBstd(B,Remove(B′′[P ′′], B′)) if (2)
false o.w.

BBstd(Nil || B,B′) = BBstd(B,B′)

(1) ∃ j, n ∈ N
+ with (B′ = B1|| · · · ||Bn) and (j ≤ n) and (Bj = B′′[P ′′])

(2) ∃ j, n ∈ N
+ with (B′ = B1|| · · · ||Bn) and (j ≤ n) and (Bj = B′′[P ′′])

and (BBmin(B1[P1],B
′′[P ′′]) = true)

Table 3: Definition of function BBstd.

scribed through a function BBstd : B ×B → {true, false} defined by induc-
tion on the structure of beta-processes in Tab. 3, where if B′ = B1|| · · · ||Bn

and n = 1 then B′ is a box or the inactive beta-process Nil. The function
Remove : B[P ] × B → B is defined in Tab. 4.

If B and B′ are composed of a different number of boxes, then they are
not congruent and the function BBstd returns false. If there exists a bijection
between the boxes Bi[Pi] of B and the boxes B′

j[P
′
j ] of B′ such that for each

correspondence it is Bi[Pi] ≡min
bb B′

j[P
′
j ], then the two beta-processes are

congruent and the function returns true. Otherwise the function returns
false.

Lemma 3.0.1. The decidability of the structural congruence over pi-processes
is a necessary and sufficient condition for the decidability of the structural
congruence over beta-processes.

4 Structural congruence over pi-processes

The results on which we base part of our work are those obtained from
J. Engelfriet and T.E. Gelsema in [15] and reported in Sect. 2.3. In fact,
the decidability of the structural congruence over beta-processes strongly
depends on the structural congruence over pi-processes. Moreover, the pi-
processes are small pi-Calculus processes with an extended set of actions,
and the structural laws for the structural congruence over pi-processes are
the same ones for the structural congruence over small pi-Calculus processes.
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Remove(B[P ], Nil) = Nil

Remove(B[P ],B′[P ′]) =

{
Nil if B′[P ′] = B[P ]
B′[P ′] o.w.

Remove(B[P ], B1||B
′) =

{
B′ if (1)
B1 || Remove(B[P ], B′) o.w.

(1) (B1 = B′′[P ′′]) and (B′′[P ′′] = B[P ])

Table 4: Definition of function Remove.

Thereafter, the results presented in [15] for the standard congruence ≡std

and the replication free congruence ≡!fr can also be used in this context
because they do not depend on the specific types of actions contained in the
processes.

Lemma 4.0.2. The congruences ≡std
bb and ≡min

bb are decidable for the subclass
of beta-processes with replication restricted pi-processes.

We notice that this result is valid for the qualitative version of Beta-
binders. Now consider the stochastic extension of Beta-binders. The classical
replication is replaced with the guarded replication and hence the syntax and
the structural laws for pi-processes are modified substituting respectively !P
with !π.P and !P ≡ P | !P with !π.P ≡ π.(P | !π.P )2. The Fig. 5 shows
the congruences over guarded replication pi-processes that we will consider
in the remainder of the paper.

rule ≡min ≡!fr ≡std

(α) P1 ≡ P2 if P1 and P2 are α-equivalent + + +
(1.1) P | nil ≡ P + +
(1.2) P1 | P2 ≡ P2 | P1 + + +
(1.3) P1 | (P2 | P3) ≡ (P1 | P2) | P3 + + +
(2.1) (νz)(νw)P ≡ (νw)(νz)P + + +
(2.2) (νz)P ≡ P + +

if x 6∈ fn(P )
(2.3) (νz)(P1 | P2) ≡ P1 | (νz)P2 + +

if z 6∈ fn(P1)
(3.1) !π.P ≡ π.(P | !π.P ) +

Figure 5: Structural laws for the small π-calculus with guarded replication.

A process that only uses guarded replication is, by definition, replica-
tion restricted. Therefore, the standard structural congruence over guarded

2For simplicity in the remainder of the paper we omit the rate r in the prefixes because
not important for our purpose.
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replication pi-processes is decidable. More precisely, this result is valid if
we consider the replication structural law !P ≡ P | !P , whereas it must be
proved if we consider the replication structural law !π.P ≡ π.(P | !π.P ).

In this paper we want to face the problem of decidability of structural
congruence for guarded replication pi-processes from another point of view.
In particular, we will consider the structure of pi-processes that only use
guarded replication. In [15], the main difficulty in showing the decidability
of ≡std for replication restricted processes is the treatment of replication,
which allows a process to grow indefinitely and without particular structure
in its number of subterms. A process that uses guarded replication, instead,
allows a process to grow indefinitely in its number of subterms maintaining
structure.
Given a generic pi-process P , this characteristic allows us to define a function
that recognizes and eliminates all the expanded replication in P .

This function, that we call Impl, is defined by induction in Tab.5, where
if Impl(P ′) = P1 | · · · | Pn and n = 1 then Impl(P ′) is in the form nil, π.R,
!π.R, or (νx)R. The function RemovePI : P × P → P is defined in Tab. 6.
Since the processes have finite length the function Impl ends.

Let P be a pi-process. Impl(P) propagates Impl recursively to all the sub-
terms of P . For each subterm of the form π.P ′, the function controls if the
recursive invocation Impl(P ′) results in a pi-process of the form P1 | · · · | Pn

such that there exists j ∈ {1, ..., n} where Pj =!π′.R, Q = RemovePI(Pj, Impl(P ′))
and π.Q ≡!fr π′.R. If it is the case, this means that the subterm π.P ′ corre-
sponds to a replication expansion and hence π.P ′ can be substituted with the
imploded pi-process π.Q. Obviously, the complexity of the control depends
on the number of parallel components of Impl(P’) and on the complexity
of ≡!fr

e . In particular, note that if the congruence ≡!fr
e is efficiently solv-

able, then also the function Impl is efficiently solvable, i.e., the complexity
is polynomial in the size of the passed pi-process.

An example of how the function Impl works is presented in Fig.6. In
particular, given the process (Fig.6a)

P = x(a).(z(d).nil|!x(a).(!y(b).nil|z(c).nil)|y(b).!y(e).nil),

the function recognizes that the subprocess y(b).!y(e).nil is a one level
expansion of the pi-process !y(e).nil and compresses it. Then, the function
recognizes that the whole pi-process is a one level expansion of the pi-process
!x(a).(!y(b).nil|z(c).nil) and returns this final pi-process (Fig.6b), that does
not contain expanded guarded replication.

Lemma 4.0.3. Let P be a pi-process that only uses guarded replication. Then
Impl(P ) ≡std P .
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Impl(nil) = nil Impl(P0|P1) = Impl(P0) | Impl(P1)

Impl(!π.P ′) =!Impl(π.P ′) Impl(π.P ′) =

{
!π.Q if (1)
π.Impl(P ′) o.w.

Impl((νx)P ′) = (νx)Impl(P ′)

(1) ∃ j, n ∈ N
+ s.t. Impl(P ′) = P1 | · · · | Pn and 1 ≤ j ≤ n and Pj =!π′.R

and Q = RemovePI(Pj , Impl(P ′)) and π.Q ≡!fr π′.R

Table 5: Definition of function Impl.

RemovePI(P, P ′) =






P1 if (P ′ = P0 | P1) ∧ (P0 = P )
P0 | RemovePI(P, P1) if (P ′ = P0 | P1) ∧ (P0 6= P )
nil if (1)
P ′ o.w.

(1) ((P ′ = nil) or (P ′ = π.R) or (P ′ =!π.R) or (P ′ = (νx)R)) and (P = P ′)

Table 6: Definition of function RemovePI.

Now consider the subclass of guarded replication pi-processes that does
not contain expanded replications. We call this subclass Prp.

Lemma 4.0.4. Let P and Q be pi-processes belonging to Prp. Then P ≡std Q
iff P ≡!fr Q.

Lemma 4.0.5. Let P and Q be guarded replication pi-processes. Then P ≡std

Q iff Impl(P ) ≡!fr Impl(Q).

We notice that the function Impl is intrinsically based on the congruence
relation ≡!fr. So, we can assert that there exists a procedure that allows to
verify the standard congruence over guarded replication pi-processes using
only the laws of the replication free congruence. Therefore, this procedure is
effectively decidable only if the replication free congruence is decidable. In
[15] (Theorem 3.10) Engelfriet proves that

P ≡!fr Q ⇐⇒ swf(P ) ≡α swf(Q)

where, due to some initial conventions, with ≡α he means ≡min. For
showing in a more intuitive way that ≡!fr is decidable, we prove that the
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Figure 6: Example of application of the function Impl: a) Syntax tree of
a pi-process P = x(a).(z(d).nil|!x(a).(!y(b).nil|z(c).nil)|y(b).!y(e).nil); (b)
Syntax tree of the pi-process Impl(P ).

problem P ≡min Q is equivalent to an isomorphism problem over labelled
directed acyclic graphs (lDAGs), that we know to be a decidable problem.

Let P be a pi-process. We define a procedure that permits to construct
the lDAG, denoted with GS(P ), that we will use in the next proof.

Definition 4.1. Let P be a pi-process. The graph GS(P ) is built from the
syntax tree of P applying the following transformations:

1) the multiple composition of binary parallels are replaced with a unique
n-ary parallel (Fig. 7);

2) the restriction sequences are transformed as shown in Fig. 8;

3) the output nodes, that have label x〈n〉, are replaced with a sequence
of two nodes where the first has label x and the second has label 〈n〉
(Fig. 9);

4) An edge is added from each node that contains a binding occurrence for
a name to all the nodes that contain names bound to this occurrence
(Fig. 10);
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5) Every name that binds something is replaced with 0 and every bound
name is replaced with 1.

Without loss of generality we assume that 0 and 1 do not belong to the set
of names N .
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Figure 7: Binary parallel composition transformation.
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Figure 9: Output node transformation.

The GS graph can be built in polynomial time and is essential for the
treatment of the α-conversion and the commutativity of restrictions. Let P =
(νx)(νy)(a(x).nil | y(z).b〈z〉.x〈m〉.nil). Fig. 11 shows the building procedure
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Figure 11: Transformation of the syntax tree of the pi-process P =
(νx)(νy)(a(x).nil | y(z).b〈z〉.x〈m〉.nil) in GS(P ). In a) it is shown the syn-
tax tree of P . In b) it is shown the application of the transformations 1,2,3
and 4. In c) the transformation is completed.

of the graph GS(P ). With ∼= with denote the classical isomorphism relation
between lDAGs, where the isomorphism is a bijection of nodes that maintains
labels and adjacency properties.

Lemma 4.1.1. Let P and Q be pi-processes. Then P ≡min Q iff GS(P ) ∼=
GS(Q).
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Proof. Let R be a pi-process. Then the nodes of the graph GS(R) = (VR, ER)
are enumerated with a pre-order starting from the root of the cover tree of
the graph, without considering the added edges (Fig. 12). (⇒) We assume
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Figure 12: Example of graph node enumeration. The double lined arrows
show the cover tree of the graph. The dotted arrows represent the added
edges that we do not consider.

by hypothesis that P ≡min Q. This means that P is obtainable from Q (and
vice versa) by applying, in Q, a sequence r1, ..., rn of structural laws. We
denote with Qi the pi-processes obtained from Q = Q0 by applying the rules
r1, ..., ri. Moreover, we assume that ri supplies the information about where
to apply the law in Qi−1. The construction of an isomorphism φi between
GS(Qi−1) and GS(Qi) depends on the structural law ri applied. We have
three cases: (1) Suppose that Qi is obtained from Qi−1 by applying the
law (2.1) on a subterm (νx)(νy)Q′ of Qi−1. Therefore, the only difference
between Qi−1 and Qi is that in Qi the subterm (νx)(νy)Q′ appears in the
form (νy)(νx)Q′. Let n1 and n2 be the nodes in GS(Qi−1) that represent the
restrictions (νx) and (νy), respectively, of the subterm (νx)(νy)Q′. In the
graph Qi the representation is inverted. In fact, n1 represents (νy) while n2

represents (νx). Let φi be the mapping between the nodes of GS(Qi−1) and
GS(Qi) such that for each node n ∈ VQi−1

with n 6∈ {n1, n2} is φi(n) = n
and such that φi(n1) = n2 and φi(n2) = n1. φi is an isomorphism because,
for the GS construction, the nodes n ∈ VQi−1

and φi(n) ∈ VQi
have the same

labels and for each edge (n, n′) ∈ EQi−1
it is (φi(n), φi(n

′)) ∈ EQi
.

(2) Suppose that Qi is obtained from Qi−1 by applying the law (1.2) on a
subterm Q′|Q′′ of Qi−1. Thereafter, the only difference between Qi−1 and
Qi is that in Qi the subterm Q′|Q′′ appears in the form Q′′|Q′. Let n0 and
n1 be the nodes in GS(Qi−1) that represent the root node of the subgraph
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GS(Q′) and the root node of the subgraph GS(Q′′), respectively. In GS(Qi)
the representation is inverted. In fact, n1 represents the root node of the
subgraph GS(Q′′) while n2 represents the root node of the subgraph GS(Q′).
Let φi be the mapping between the nodes of GS(Qi−1) and GS(Qi) such that
for each node n ∈ VQi−1

, with n 6∈ {GS(Q′), GS(Q′′)}, it is φi(n) = n and
such that for each node n1 + k, with k ≥ 0 and n1 + k ∈ GS(Q′), and for
each node n2 + j, with j ≥ 0 and n2 + j ∈ GS(Q′′), it is φi(n1 + k) = n2 + k
and φi(n2 + j) = n1 + j. Also in this case φi is an isomorphism because, for
the GS construction, the nodes n ∈ VQi−1

and φi(n) ∈ VQi
have the same

labels and for each edge (n, n′) ∈ EQi−1
it is (φi(n), φi(n

′)) ∈ EQi
.

(3) If Qi is obtained from Qi−1 by applying α-conversion or the law (1.3)
then the isomorphism φi is the identity id because, for the GS construction,
the graphs GS(Qi−1) and GS(Qi) are equal.

The composition φ1 ◦ · · · ◦φn is an isomorphism because the isomorphism
relation is closed under composition and precisely it is the isomorphism be-
tween GS(Q) and GS(P ) we wanted.
(⇐) Let P and Q pi-processes such that GS(P ) ∼= GS(Q). We prove the
implication by contradiction assuming that P 6≡min Q. The proof is by
induction on the structure of the processes P and Q.

(Induction base) Let P = nil. Since P 6≡min Q then Q 6= nil and
obviously GS(P ) 6∼= GS(Q). (Case P = x(y).R) if Q 6= x(y).S then
GS(P ) 6∼= GS(Q) because in Q, by the graph GS construction, does not
exists a node with the label and adjacency properties of the node that rep-
resent x(y) in P . Otherwise, if Q = x(y).S we have that R 6≡min S. By
inductive hypothesis we obtain that GS(R) 6∼= GS(S) and since for each iso-
morphism the node that represents x(y) in P should be mapped into the node
that represents x(y) in Q, it turns out that a total mapping does not exists
and hence GS(P ) 6∼= GS(Q). (Case P = x〈y〉.R and P =!π.R) Similar to
the previous case. (Case P = R1 | · · · | Rn) Let P = R1 | · · · | Rn (we
intend all the processes in a form like (· · · ((R1 | R2) | R3) | · · · | Rn)) such
that Ri is not a parallel composition. If Q 6= S1 | · · · | Sn (with Si be not a
parallel composition) then, by the graph GS construction, GS(P ) 6∼= GS(Q).
Otherwise, we have that ∃Ri such that ∀Sj it is Ri 6≡

min Sj and therefore,
by inductive hypothesis, ∀Sj it is GS(Ri) 6∼= GS(Sj). Since all the subgraphs
Ri in P and Sj in Q are disjunct we obtain that GS(P ) 6∼= GS(Q). (Case
P = (νx1) · · · (νxn)R) Let P = (νx1) · · · (νxn)R (with R not in the form
(νx)R′). if Q 6= (νy1) · · · (νyn)S (with S not in the form (νy)S ′) then, by
the graph GS construction, GS(P ) 6∼= GS(Q). Otherwise, we have that
for each permutation of restrictions (νy1) · · · (νyn) and α-conversion it is
Q = (νx1) · · · (νxn)T with T 6≡min R and thus, by inductive hypothesis,
GS(R) 6∼= GS(T ). Since, by the graph GS construction, the nodes that
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represent (νx1) · · · (νxn) should be mapped into the nodes that represent
(νy1) · · · (νyn) we have that GS(P ) 6∼= GS(Q).

This contradict the assumption that GS(P ) ∼= GS(Q) and therefore the
implication is valid.

The lDAG isomorphism problem [21, 22] is placed in the complexity class GI,
which contains all the problems equivalent to the general graph isomorphism
problem. The class GI is a particular complexity class. In fact, no polyno-
mially resolution algorithm for the problems in GI has been still found and
it is not known if they are or not NP-complete. However, the congruence
≡min is decidable.

Theorem 4.1.1. Let P and Q be guarded replication pi-processes. Then the
evaluation of P ≡std Q is decidable.

Proof. Using the Lemma 4.0.5, the Theorem 3.10 in [15] and the Lemma
4.1.1 we have that

P ≡std Q
⇐⇒

Impl(P ) ≡!fr Impl(Q)
⇐⇒

swf(Impl(P )) ≡min swf(Impl(Q))
⇐⇒

GS(swf(Impl(P ))) ∼= GS(swf(Impl(Q)))

and therefore, for transitivity, we can conclude that

P ≡std Q ⇐⇒ GS(swf(Impl(P ))) ∼= GS(swf(Impl(Q)))

where GS(swf(Impl(P ))) ∼= GS(swf(Impl(Q))) is a decidable problem.

Corollary 4.1.1. Let B[P ] and B′[P ′] be boxes where P and P ′ are guarded
replication pi-processes. Then the evaluation of B[P ] ≡min

bb B′[P ] is decidable.

Corollary 4.1.2. Let B and B′ be beta-processes composed by boxes with
guarded replication pi-processes. Then the evaluation of B ≡std

bb B′ is decid-
able.

5 Generalization

Although we think that the restricted beta binder well-formedness definition,
presented in Sec.3, gives enough expressive power, in this section we briefly
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show that the congruence ≡min
bb for the stochastic semantics of Beta-binders

is decidable also considering the classical well-formedness definition, given in
Sect.2.

Let B[P ] and B′[P ′] be boxes where P and P ′ are guarded replication
pi-processes. Moreover, let L be the set of the possible labels generated by
the GS construction. We assume the existence of an injective, decidable and
polynomial function J K : β̂ × T → S where S is a set of strings such that
0 6∈ S and S∩L = ∅. For deciding B[P ] ≡min

bb B′[P ′] we construct the lDAGs
GS(Q) and GS(Q′), where Q = swf(Impl(P )) and Q′ = swf(Impl(P ′)), we
interpret the beta binders lists B and B′ as a set of top level restrictions and
we put them on the top of the constructed lDAGs, modifying the bound nodes
as described in Def.4.1. The only difference is that a node that represents
an elementary beta binder β̂(x : Γ) is labelled with the result of the function

Jβ̂, ΓK instead of 0. We call the obtained graphs GS(B[Q]) and GS(B′[Q′]).
In Fig.13 an example is given.

The GS graphs can be built in polynomial time and since the graphs
GS(B[Q]) and GS(B′[Q′]) differ from GS(Q) and GS(Q′) only in the number
and labels of nodes that represent restrictions, the Lemma 4.1.1 continues to
hold and thus we have that:

Corollary 5.0.3. Let B[P ] and B′[P ′] be boxes where P and P ′ are guarded
replication pi-processes. Then B[P ] ≡min

bb B′[P ′] iff GS(B[Q]) ∼= GS(B′[Q′]),
where Q = swf(Impl(P )) and Q′ = swf(Impl(P ′)).

The function BBstd and the Corollaries 4.1.1 and 4.1.2 can be simply
redefined considering the graph GS construction.

6 An efficient subset of the calculus

In this section we introduce a subset of Beta-binders, that we call BBe, for
which the structural congruence is not only decidable, but also efficiently
solvable. In general, this subset is obtained by removing the restriction
operator and considering the well-formedness definition for beta binder lists
introduced in Sec.3.

The syntax of BBe is given by the following context-free grammar:

P ::= nil | π.P | P |P | !π.P
π ::= x〈y〉 | x(y) | τ | expose(x, Γ) | hide(x) | unhide(x)
B ::= β(x : ∆) | βh(x : ∆) | β(x : ∆)B | βh(x : ∆)B
B ::= Nil | B||B | B[P ]
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Figure 13: lDAG GS for the box β(x : Γ)βh(y :
∆)[(νz)(x(a).z(a).nil | y(b).b〈m〉.nil)].

We denote with Pe the subset of pi-processes generated by this grammar.
Obviously Pe ⊂ P.

Definition 6.1. The structural congruence over pi-processes in Pe, denoted
by ≡, is the smallest relation which satisfies the laws in Fig. 1 (group a) and
the structural congruence over beta-processes in BBe, denoted by ≡, is the
smallest relation which satisfies the laws in Fig. 1 (group b).

We denote with ≡std
bbe the congruence relation generated by all the struc-

tural laws reported in Fig. 14 and with ≡min
bbe the one generated by the the

laws of the group a and the laws (b.1), (b.5) and (b.6). Moreover, we de-
note with ≡std

e the congruence relation generated by the structural laws of
the group a, with ≡!fr

e the one generated by the structural laws (a.1), (a.2),
(a.3) and (a.4), and with ≡min

e the one generated by the laws (a.2) and (a.3).

group a - pi-processes group b - beta-processes
a.1) P1 ≡ P2 if P1 and P2 are α-equivalent b.1) B[P1] ≡ B[P2] if P1 ≡ P2

a.2) P1 | (P2 | P3) ≡ (P1 | P2) | P3 b.2) B1 || (B2 || B3) ≡ (B1 || B2) || B3

a.3) P1 | P2 ≡ P2 | P1 b.3) B1 || B2 ≡ B2 || B1

a.4) P | nil ≡ P b.4) B || Nil ≡ B
a.5) !π.P ≡ π.(P | !π.P ) b.5) B1B2[P ] ≡ B2B1[P ]

b.6) B∗β̂(x : Γ)[P ] ≡ B∗β̂(y : Γ)[P{y/x}]
with y fresh in P and y 6∈ sub(B∗)

Figure 14: Structural laws for BBe.

Since BBe ⊂ BB, we can use all the functions and results presented in
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nl(nil, n) = nil nl(x(z).P, n) = x(n).nl(P{n/z}, n + 1)

nl(!x〈z〉.P, n) =!x〈z〉.nl(P, n) nl(P0 | P1, n) = nl(P0, n) | nl(P1, n)

nl(x〈z〉.P, n) = x〈z〉.nl(P, n) nl(!x(z).P, n) =!x(n).nl(P{n/z}, n + 1)

nl(nil | P, n) = nl(P, n) nl(hide(x).P, n) = hide(x).nl(P, n)

nl(τ.P, n) = τ.nl(P, n) nl(expose(x).P, n) = expose(n).nl(P{n/x}, n + 1)

nl(P | nil, n) = nl(P, n) nl(unhide(x).P, n) = unhide(x).nl(P, n)

Table 7: Definition of function nl.

Sec.3 and Sec.4. To avoid confusion, when we consider a function previously
defined, we modify it by substituting all the used congruence relations with
the current corresponding one (i.e. ≡!fr is substituted with ≡!fr

e ). Thus, by
using the results obtained in Sec.3 and Sec.4 we have that:

Lemma 6.1.1. The decidability of the structural congruence over pi-processes
in Pe is a necessary and sufficient condition for the decidability of the struc-
tural congruence over beta-processes in BBe.

Lemma 6.1.2. Let P and Q be pi-processes in Pe. Then P ≡std
e Q if and

only if Impl(P ) ≡!fr
e Impl(Q).

To show that ≡std
e for beta-processes in BBe is efficiently solvable, we

have only to show that ≡std
e for pi-processes in Pe is efficiently solvable. For

doing this, we prove that the problem P ≡std
e Q could be reduced to an

isomorphism problem over labeled trees, that we know to be a decidable and
efficiently solvable problem [21].

Let P be a pi-process in Pe. We first define a function nl : P × N → P ,
based on the De Bruijs indices approach [23], that receives as parameters
a pi-process P and a natural number n and returns a pi-process where all
the bound names are substituted with an in-deep indexing starting from n,
and where all the parallelizations with nil pi-processes are eliminated. The
function is defined by induction on the structure of pi-processes in Tab. 7.

In Fig.15 an example is given. The function nl has linear complexity in
the length of the passed pi-process and it is easy to see that nl(P, n) ≡!fr

e P
and that P ≡α Q implies nl(P, n) = n(Q,n) and nl(P, n) ≡α n(Q,m), where
n,m ∈ N and n 6= m.

Lemma 6.1.3. Let P and Q be pi-processes in Pe. Then P ≡!fr
e Q if and

only if nl(P, n) ≡min
e nl(Q,n).
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Proof. (⇒) Since nl(P, n) ≡!fr
e P ≡!fr

e Q ≡!fr
e nl(Q,n) we obtain that nl(P, n) ≡!fr

nl(Q,n). To show this implication we prove that in nl(P, n) ≡!fr nl(Q,n)
the laws (a.1) and (a.2) are never used. Assume that nl(P, n) is obtainable
from nl(Q,n) by applying, for some subterm of nl(Q,n), one of the follow-
ing laws: (a.2) This means that one of the two processes has a subterm in
the form R | nil. But this is a contradiction, because by definition of the
function nl this subterm in nl(P, n) or nl(Q,n) does not exists; (a.1) This
means that nl(P, n) 6= nl(Q,n) and, precisely, that they differ in a subset
of their bound names. Since P ≡α nl(P, n) and Q ≡α nl(Q,n), we have by
transitivity that P ≡α Q. But this implies nl(P, n) = nl(Q,n), and thus we
have a contradiction.

For these reasons, the laws (a.1) and (a.2) are never used and the impli-
cation is true.

(⇐) Since the structural laws of congruence ≡min
e are a subset of the

structural laws of congruence ≡!fr
e , by transitivity P ≡!fr

e nl(P, n) ≡min
e

nl(Q,n) ≡!fr
e Q implies P ≡!fr

e Q.
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Figure 15: Example of application of the function nl: a) Syntax tree of
a pi-process P = x(a).(z(d).nil|!x(a).(!y(b).nil|z(c).nil)|y(b).!y(e).nil); (b)
Syntax tree of the pi-process nl(P, 0).

We now define a polynomial procedure that constructs a class of trees
that we will use in the next proof.

Definition 6.2. Let P be a pi-process. The tree TS(P ) is built from the
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syntax tree of P by replacing the multiple composition of binary parallels
with a unique n-ary parallel (Fig.7).

With ⋍ we denote the classical isomorphism relation between labeled
trees, where the isomorphism is a bijection of nodes that maintains label and
adjacency properties.

Lemma 6.2.1. Let P and Q be pi-processes in Pe. Then P ≡min
e Q if and

only if TS(P ) ⋍ TS(Q).

Proof. Let R be a pi-process in Pe. The nodes of the tree TS(R) are enu-
merated with a pre-order.

(⇒) We assume by hypothesis that P ≡min
e Q. This means that P is

obtainable from Q (and vice versa) by applying, in Q, a sequence r1, ..., rn of
structural laws. Like in Sec.4, we denote with Qi the pi-processes obtained
from Q = Q0 by applying the rules r1, ..., ri and we assume that ri supplies
the information about where to apply the law in Qi−1. The construction of
an isomorphism φi between GS(Qi−1) and GS(Qi) depends on the structural
law ri applied.

Here we have two cases: (1) Suppose that Qi is obtained from Qi−1 by
applying the law (a.2) on a subterm Q′|Q′′ of Qi−1. The proof of this case
is equal to the proof of the case 2 in Lemma 4.1.1. (2) If Qi is obtained
from Qi−1 by applying α-conversion or the law (a.3) then the isomorphism
φi is the identity id because, for the TS construction, the trees TS(Qi−1)
and TS(Qi) are equal.

Also in this case the composition φ1 ◦ · · · ◦φn is the isomorphism between
TS(Q) and TS(P ) we wanted.

(⇐) Let P and Q pi-processes such that TS(P ) ⋍ TS(Q). We prove
the implication by contradiction assuming that P 6≡min

e Q. The proof is by
induction on the structure of the processes P and Q and is equal to the one
reported in Lemma 4.1.1.

Since the tree isomorphism problem is efficiently solvable [21], by com-
bining Lemma 6.1.3 and Lemma 6.2.1 we obtain that the congruence ≡!fr

e is
efficiently solvable, and hence that for the considered subset of Beta-binders
the function Impl works in polynomial time (see Sec. 4).

Now, combining all the obtained results, we can show that the standard
congruence for BBe is efficiently solvable.

Theorem 6.2.1. Let P and Q be pi-processes in Pe. Then the evaluation of
P ≡std

e Q is efficiently solvable.
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Proof. Using the Lemma 6.1.2, Lemma 6.1.3 and Lemma 6.2.1 we have that

P ≡std
e Q

⇐⇒
Impl(P ) ≡!fr

e Impl(Q)
⇐⇒

nl(Impl(P ), n) ≡min
e nl(Impl(Q), n)

⇐⇒
TS(nl(Impl(P ), n)) ⋍ TS(nl(Impl(Q), n))

with n ∈ N. Therefore, by transitivity, we can conclude that

P ≡std
e Q ⇐⇒ TS(nl(Impl(P ), n)) ∼= TS(nl(Impl(Q), n))

where TS(nl(Impl(P ), n)) ⋍ TS(nl(Impl(Q), n)) is an efficiently solvable
problem.

Corollary 6.2.1. Let B[P ] and B′[P ′] be boxes in BBe. Then the evaluation
of B[P ] ≡min

bbe B′[P ] is decidable and efficiently solvable.

Proof. Immediate from the definition of the function BBmin and the Theo-
rem 6.2.1.

Corollary 6.2.2. Let B and B′ be beta-processes in BBe. Then the evalua-
tion of B ≡std

bbe B′ is decidable and efficiently solvable.

Proof. Immediate from the definition of the function BBstd and the Corol-
lay 6.2.1.

7 Conclusions

We proved the decidability of the structural congruence used in [14] to define
the stochastic semantics of Beta-binders. Moreover, we introduced a subset
of Beta-binders, called BBe, for which the structural congruence is not only
decidable, but also efficiently solvable. The proofs are constructive so that
we have suggestions for possible implementations.

The subset BBe has been used as a basis for the definition and implemen-
tation of the Beta Workbench3, a framework for modelling and simulating
biological processes [24]. In particular, the results here obtained for the
structural congruence of BBe allowed us to consider species instead of sin-
gle instances of biological entities and consequently to implement a modified

3available at the url http://www.cosbi.eu/Rpty Soft BetaWB.php
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version of the Gillespie’s stochastic selection algorithm [9] similar to the Next
Reaction Method [25].

Although BBe imposes restrictions on the definition of beta-processes in-
teraction sites, the effectiveness of the subset is demonstrated by its ability of
being used for modelling complex biological processes like the NF-κB path-
way [26, 27], the MAPK cascade [28, 29] and the cell cycle control mechanism
[30].

Moreover, the implementation shows a consistent improvement in the
stochastic simulation time efficiency. We can save up to an order of magni-
tude with respect to standard implementations.
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[21] J. Köbler, U. Schöning, J. Torán, The Graph Isomorphism Problem: its
structural complexity, Birkhäuser, 1993.
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