UNIVERSITY
OF TRENTO

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’'INFORMAZIONE

38050 Povo — Trento (Italy), Via Sommarive 14
http://lwww.disi.unitn.it

Location-based Software Modeling and Analysis: Tropos-based
Approach

Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini

April 2008

Technical Report # DISI-08-019

Location-based Software Modeling and Analysis:
Tropos-based Approach

Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini

University of Trento - DISI, 38100, Povo, Trento, Italy.
{raian.ali, fabiano.dalpiaz, paolo.giorgini}@disi.unitn.it

Abstract. The continuous growth of interest in mobile applications
makes the concept of location essential to design and develop software
systems. Location-based software is supposed to be able to monitor the
location and choose accordingly the most appropriate behavior. In this
paper, we propose a novel conceptual framework to model and analyze
location-based software. We mainly focus on the social facets of locations
adopting concepts such as social actor, resource, and location-based be-
havior. Our approach is based on Tropos methodology and allows the
analyst to elicit and model software requirements according to the dif-
ferent locations where the software will operate. We propose an extension
of Tropos modeling and adapt its process to suit well with the develop-
ment of location-based software. The proposed framework also includes
automated analysis techniques to reason about the relation between lo-
cation and location-based behavior.

1 Introduction

Advances in computing, sensing and communication technology have recently
led to the growth of interest in software mobility. Mobility emphasizes several
concerns (space, time, personality, society, environment, and so on) often not
considered by traditional desktop systems [1,2]. Besides computing ubiquity,
the 21st century computing [3] is expected to have a core “mental” part: com-
puting systems act on behalf of humans executing tasks without prompting them
for and receiving their explicit requests, i.e. computing will realize the concept
of agency. Advances in technology do not necessarily imply the easiness of ex-
ploiting it, rather more challenges are introduced. Software systems can be given
more responsibility, and they can now actively support several decision making
processes. Appropriate software development methods and models need to be de-
veloped, or adapted, to cope with the new achievable innovative requirements.

Location-based software is characterized by its ability to reason about the
surrounding location, which includes the user itself, and adapt autonomously
a behavior that complies with the location settings. Consequently, we need to
model and analyze the variable locations that users can be part of, and define
how location influences software. To adopt one behavior, the software needs to
reason on what exists and what can be done, basing its choice on user preferences,
cost, time, priority, and so on.

In the area of context modeling, the relation between context and its use is
not clearly considered (e.g. [4], [5] and [6]). We believe in the tight complemen-
tary relation between variable behavior (both human and software ones) and
context. When the relation between context and its use is omitted, we cannot
answer questions like “ how do we decide the relevant context?”, “why do we
need context?” and “how does context influence variable behavior?”. Modeling
context information is not a standalone activity, rather context has be elicited
in conjunction with the analysis we do for discovering the alternative software
behaviors. Salifu et al. [7] investigate the use of problem descriptions to represent
and analyze variability in context-aware software; the work recognizes the link
between software requirements and context information as a basic step to design
a context aware system.

Software variability is a term commonly used to represent software provided
with different behaviors, whose variants can be produced guaranteeing low costs,
short time, and high quality [8]. Feature modeling is a well known modeling
technique exploited by product line engineering to derive a tailored product
from a family of possible products [9]. A mobile software is expected to select
autonomously among the different alternatives it supports depending on the lo-
cation settings. Lapouchnian et al. [10] propose techniques to design autonomic
software based on an extended goal modeling framework, but the relation with
the surrounding location is not focused on. A variant of this approach is pro-
posed by the same authors in [11], where the emphasis is on variability modeling
under the requirements engineering perspective, with a focus on the classifica-
tion of variability concerns. One of those concerns explicitly refers to location,
but it does not define location and how it can be integrated into other models
of software variability.

Goal models, mainly adopted by KAOS [12] and Tropos [13,14] method-
ologies, represent a paradigm shift from object orientation. While goal-oriented
analysis is more natural for the early stages of requirement analysis, object-
oriented analysis fits well to the later stages [15]. Goal models begin from a high
level goal and start a top-down analysis to discover the more specific sub-goals
and tasks for satisfying that goal. Goal models allow for different alternatives to
satisfy a goal, but do not specify in which cases each alternative can be adopted.
Alternative behaviors and location variability are complementary. Supporting
two alternative behaviors without specifying when to follow each of them rises
the question “why do we support two alternatives and not just one?”. Conversely,
considering location variability without supporting alternative behaviors rises
the question “what can we do if location changes?”.

In this paper, we propose location-based Tropos as a variant of Tropos con-
ceptual modeling framework [13, 14], for developing location-based software. We
deal with the social structure level of location, discuss how to model it and how
it influences the behavior adaptation of location-based software, i.e. the integra-
tion of location with software behavior. We introduce three automated analysis
techniques on the proposed models to check software against location and vice
versa.

The paper is structured as follows: Section 2 discusses location variability
and a variety of conceptual modeling challenges introduced by it, and classifies
the main features the location-based software in particular has to support. In
Section 3 we study Tropos conceptual modeling framework for location-based
software development. In Section 4 we introduce location-based Tropos, propos-
ing modifications on Tropos at both modeling and process levels. In Section 5
we show several kinds of analysis on the new models, and in Section 6 we draw
conclusions and present future work.

2 Location Variability and Location-based Software

One main concern of software mobility is the ability to perceive the location
where the user is, and then tailor a location-based bahavior to achieve user
objectives. Location-based software has not only to perceive the technical details
of computing environment (communication protocols, network roaming, data
interoperability, and so on), but also the social environment the user is part of.
The technical level will certainly be the base to handle the low level aspects of
software interoperability, related to the machine level. On the other hand, the
social level will be the base for tailoring human-oriented behaviors to achieve
user goals. In this work, we focus on modeling the social variability of location
and how it can influence software behavior.

Let us consider a passenger with the goal of buying a ticket in railway sta-
tion. Each specific railway station enables different ways to buy a ticket (e.g., a
passenger can buy a ticket through terminals, e-pay, offices, or through passen-
ger assistance clerks when passenger needs help). Each of these different ways
requires specific location properties. For example, buying through terminals re-
quires that a free terminal exists, supports one language the passenger knows,
and supports one of the passenger’s credit cards.

In order to satisfy user’s needs and goals, location-based software is supposed
to be able to select one appropriate behavior according to the location. The
behavior has to be compliant with the current state of the location, considering
the availability of resources and the existence of other users. Location may be
characterized by different dimensions, such as the degree of expertise each user
has (in using resources, and communicating with other users), the availability of
resources, and the rules that have to be used to coordinate the use of resources, or
regulate the interactions between users. In this vision, the conceptual modeling
of software system needs to deal with a variety of challenges, such as:

1. Modeling constructs: finding an appropriate set of modeling concepts that
can capture the relevant features of location.

2. Relevancy: to build a location model, we need a systematic way to decide
what has to be modeled, i.e. what is relevant in a location to the target soft-
ware. E.g. when we model a railway station location, do we need to include
passenger’s current position, or expertise in using PDAs, in the model? How
do we decide that?

3. Location tules: location, as a system, will impose rules for the interaction
among people and for the use of resources. Rules have to be integrated with
the location model and modeled using location constructs. E.g. a railway
station might impose the rule that only passengers who are foreigners or
over a certain age can ask for assistance, and passenger assistant must help
even if this implies stoping less priority activity the assistant is involved in.

4. Location-based behavior: for satisfying a user’s objective, the current location
state allows certain set of behaviors. Modeling the relation between location
state and possible behaviors is essential for location-based software. E.g.
buying a ticket through e-payment can be done only if the railway station
has a network and passenger is allowed to access it, and the passenger’s PDA
is able to connect to it.

5. Hierarchial behavior construction: modeling in a way to avoid “one location,
one behavior” enumeration, exploiting commonality of both locations and
behaviors fragments, and enabling hierarchial construction of location-based
behavior. E.g. getting passenger position is a shared software function that is
used to guide passengers in all stations where there are terminals or offices.

6. Behavior evaluation: based on some payoff functions, each behavior in each
location has to be evaluated. We need to model the criteria for evaluating
alternative behaviors in variable locations. E.g. when a railway station pro-
vides both terminals and e-pay, the software has to decide which one to
adopt, and consequently which tasks to do. We need modeling constructs for
representing the criteria on which such kind of decisions can be taken.

Location-based software is supposed to support mainly five features (hierar-
chically represented using feature model in Fig. 1):

— Location identification: representing what exists, where the mobile user is, ac-
cording to a pre-defined location model, i.e. instantiating the location model.
E.g. software will receive railway station description and instantiate a rail-
way station model, that reflects the current station, from a template railway
station model.

— Location-based behavior selection: having an objective, and knowing current
location, the software will reason and select a possible, and even recom-
mended, behavior through which the user can achieve his/her objectives.
Behaviors include operational tasks that are done by software, and non-
operational ones the software assists, or simply asks, user to do. The behavior
might include, but not limited to, one of the next three tasks.

— Location-based information processing:

1. Information request: software enables users to request location-based in-
formation explicitly, e.g. enabling passengers to ask for the train schedule
in the current railway station. Other information requests are implicitly
made when location changes, e.g. when train is not in the time, certain
information has to be presented to passenger.

2. Relevant information extraction: filtering what is relevant, and compos-
ing useful information. E.g. when a train is late, but it is not the pas-
senger’s train, the warning has not to be shown. Also, when a passenger

asks how to buy a ticket, and has only cash money that are not accepted
by railway station terminals, the location-based software will exclude
terminal from the possible ways of buying a ticket.

3. Information delivery: communicating information to the user in a right
way. E.g. notifying the passenger assistant has not to be done by voice
message when the assistant is using his/her PDA for a phone call. Also, a
demo about using terminals should be interactive, only when passengers
have good expertise in using PDAs.

— Act on behalf of user: location-based software will represent the user when
interacting with other location actors, both in requesting and answering re-
quests, and in using resources available in location. E.g. when passenger asks
for help, the help request will be prepared and sent on behalf of passenger,
including the information needed by passenger assistant to decide how to
accomplish the help.

— Personalization: software will behave differently with different users. Soft-
ware considers user personality as one location mobility dimension. E.g. when
both wireless and wired connections are available in a railway station, and
the passenger prefers reliable connection, the software will lead passenger to
wired connection terminal, and when passenger wants more fast connection,
the software will configure wireless one.

| Location-hased software

| Location identification | | Location-based behaviour selection |

| Location-based information processing |

O
Act on user behalf
Information request Information delivery

| Relevant Information Extraction |

Personalization

Fig. 1. Feature model for location-based Software

Our goal is to provide a framework that enables “one software, multiple
locations” development instead of “one location, one software” one. The relation
between variability of location and variability of software is complementary, and
both of them justifies each other. Modeling a software with multiple behaviors
without modeling the different locations where each behavior can be adopted,
will make the provision of behaviors redundant, since we can simply adopt a
priori behavior and support only it in the developed system. On the other hand,
modeling a variable location, without modeling different behaviors, will make
the location model unjustified, since location can not have any effect.

“What to start modeling first?” is another crucial question for location-based
software modeling. If we take an objective, and start modeling all the alternative
behaviors to satisfy it without considering specific location, we will end with a
huge number of behaviors. On the other hand, if we start by modeling the
location, without knowing how to decide what is relevant and what is not, we
will end with a huge model, and still we might miss relevant location assets.

In our approach, we suppose that a location-based software will operate on
one class of locations that has a large degree of commonality, e.g. airports, rail-
way stations, libraries, museums, and so on. The domain expert knows how
human objectives can be achieved in collaboration with location resources and
other actors. The software engineer will analyze how software can take its posi-
tion within this process, taking some responsibilities a location assistant usually
provides. In the next sections, we propose a process by which we start with a
rough location model, representing the main actors and resources, and then we
analyze the location-based alternative behaviors and refine, in conjunction with
this analysis, the initial location model.

3 Tropos for Location-based Software

Our approach is based on Tropos methodology [13,14], which offers an agent-
oriented conceptual framework for modeling both the social environment and the
system-to-be. Tropos starts its software development life cycle with the early re-
quirements phase. In this phase, the organization (location at the social level)
is modeled as a set of actors that strategically depend on each other for satis-
fying their objectives, then the rationale of satisfying each actor own objectives
is modeled. If we take the railway station scenario, the strategic dependency
between railway station actors with respect to the goal Ticket is Issued will be
as shown in Fig. 2. Tropos early requirement fits well to project the social struc-
ture of the location at a higher level as a set of actors and resources. Taking into
consideration a variable location, this phase will not be sufficiently enough and
we will need to adapt it to deal with points such as:

Ticket Issued

Ticket
Issuing
System

Trip Info

Passenger Credit Card Info

Assistant

Fig. 2. A strategic dependency model for the railway station scenario.

1. Tropos modeling supposes the existence of all modeled actors (terminal, e-
pay, offices, passenger assistant), and this assumption will not hold when we
consider a variable location, i.e. location structure is not static.

2. Tropos modeling has to consider actors and resources profiles to deal with
several location modeling difficulties:

(a) Tropos modeling is not able to differentiate between availability levels of
actors and resources. In such modeling, we can not differentiate between
two terminals, while a terminal that is close to the passenger is more
available than a terminal which is far away.

(b) Dependencies between actors are not required or achievable in every
location, and we can not specify this using the rigid form of describing
actors and resources in Tropos modeling. Credit card info can be required
when Ticket Issuing System enables payment through credit cards.

(¢) When more than one actor is available to satisfy one objective, there
is no way to differentiate between them, and consequently choosing the
best. If we consider Terminal and E-Pay as two Ticket Issuing Systems
without considering their profiles and matching it with passenger profile,
these two issuing ticket systems can not be differentiated.

3. Tropos proceeds, in the next step of early requirements phase, to analyze
the rationale of Issuing Ticket System to satisfy Ticket is Issued goal, and
that is not what we need. Ticket Issuing System already exists, and we do
not need to develop a software for it, rather for Passenger to deal with this
already functioning system.

In Tropos late requirements phase, the system-to-be is introduced as a new
actor that takes some responsibilities, already identified in the first phase, and
provides an automated solution. The rational of the system-to-be actor is repre-
sented by a goal model, starting with a high level goal and finding alternative sets
of behaviors that lead to the satisfaction of that goal. Considering location-based
software, the rationale of the system-to-be actor is to find suitable behavior for
each possible location. In our railway station scenario, the developed location-
based software will be for passengers, and passenger assistants as mobile actors.
It will work as an automated location expert that operates on a user’s computing
device, and knows both its user and location social structure.

In a way different from Tropos late requirements, the system-to-be actor is
not necessarily assigned an objective that is recognized in the first phase, and
is mainly developed to assist users in the already functioning system that is
modeled in the first phase. In our example, two system-to-be actors need to be
introduced, one for passenger and another for passengers assistant. The rationale
of these two location-based software actors is partially shown in Fig. 3. On this
goal-oriented rationale model, that represents well the alternative behaviors of
location-based software, we can also highlight several remarks:

1. The system-to-be has particular nature in two points:
(a) It is naturally decentralized, a location-based software will be assigned
for each mobile actor, and might deal with another location-based soft-

Railway
Web Site

Passenger

Telecom
Software

Company

Configure
Connection

ND AND

<>
By Map ...Step by Step
) N

Paasenger

Assistant
Software

Send
Automated

Fig. 3. System-to-be actors goal model for the railway station scenario.

ware assigned to other actors. In our example, we need two location-
based software actors, one for Passengers, and another for Passenger
Assistants.

(b) The responsibilities given to the system-to-be actors fall into the cate-
gories we have listed in Section 2, and the rationale analysis concerns
how to assist mobile users in already functioning system. For example,
passengers’ location-based software will choose the way that fits to them
and to railway station when they need to buy tickets, and it will interact
with passengers assistants on behalf of passengers to ask for help.

2. Tropos goal analysis supports different alternatives to satisfy the high level
goals. What we need is a kind of location-based goal analysis, that adds
location properties to each alternative specifying where it can be adopted.
For example, in Tropos goal analysis shown in Fig.3, we do not specify where
each of the possible alternatives for having a ticket can be adopted.

3. The contribution to softgoals can be location-based, and not always static.
The relation between contribution and location is omitted in the current
Tropos goal model. For example, the goal Wireless Connection contributes
better to the softgoal Reliable Connection when passenger is close to wireless
network access points, than it does when user is far from it.

4. The autonomous selection amongst alternatives, when more than one are
available, needs to be specified based on some criteria. For example, in a
railway station where offices are opened, terminals are available, and pas-
senger has the ability to adopt each of these alternatives, we need to specify
the decision to be taken. An initial work on this problem has been done in
[16], where the decision making is based on preferences that are expressed
using softgoals.

4 Location-based Tropos

In the previous section we have addressed the potential and the limitation of
Tropos with regards to location-based software development. Early requirements
conceptualization, that concerns modeling location, is not sufficiently enough to
model variable location and needs mainly to consider actors and resources pro-
files. We have shown the system-to-be, introduced in the late requirements, as
a set, of location-based software actors that assist mobile actors to satisfy their
needs in location. We have also addressed the gap between Tropos goal-oriented
rationale and location, since we need mainly to associate goal satisfaction alter-
natives with the location where they can be adopted.

When the analyst builds the goal model shown in Fig. 3, a specific assumption
about the location, where each of the alternatives can be adopted, could be
thought about but was not explicitly represented in the model. Here we discuss
five variability points on Tropos goal model that might need location properties
to take location-based decision:

1. Location-based Or-decomposition: Or-decomposition is the basic variability
construct; in current Tropos the choice of a specific Or-alternative is left
to actor intention, without considering location properties that can inhibit
some alternatives. E.g. the alternative By Terminal can be adopted when the
terminal is free, has one language in common with passenger, and supports
the cash money -in both type (coins, papers) and currency- or one credit
card the passenger has. The alternative F-Pay can be adopted when there
is a wireless network in railway station and passenger’s PDA supports WiFi,
or when there is wired network with cable-based connection terminals and
passenger’s PDA has cable connection capability.

2. Location-based contribution to soft-goals: the value of contributions to soft-
goals can vary from one location to another. E.g. the goal Interactive Demo
contributes positively to softgoal User Comfort when user has good ex-
pertise in using PDAs, and the used PDA has a touch screen, while the
contribution is negative in the opposite case. Also, the goal Wireless Con-
nection contribution to softgoal Reliable Connection depends on the distance
between passenger and WiFi access point to which passenger is connected.

3. Location-based dependency: in some locations, an actor might be unable to
satisfy a goal using its own alternatives. In such case, the actor might delegate
this goal to another actor that is able to satisfy it. E.g. delegation of the goal
Establish E-Pay to the actor Railway Website can be done when that web
site enables e-payment using one credit card in common with user’s credit
cards, and has a mobile device version.

4. Location-based goal activation: an actor, and depending on location settings,
might find necessary or possible triggering (or stopping) the desire of satis-
fying a goal. E.g. the goal Assistant Makes Decision is activated when the
assistant is not doing any particular activity, has one language in common
with requesting passenger, and close to that passenger.

5. Location-based And-decomposition: a sub-goal might (or might not) be needed
in certain location, that is some sub-goals are not always mandatory to fulfill
the top-level goal in And-decomposition. E.g. The goal Show Demo has to
be satisfied when the passenger is not familiar with using terminals.

The goal analysis of location-based Tropos associates location properties to
each location-based variability point. In addition, this analysis helps to refine the
initial location model represented in the first phase. If we consider the location
properties in the above examples, we can identify how the location model of Fig.
2 can be refined. The resulted location model of the railway station scenario,
with respect to the location properties above, is shown in Fig. 4. This model
adds mainly actors and resources profiles, and also introduces new resources and
actors that can influence tailoring location-based behavior.

There are two top-level classes in the location model: actors and resources
(Res in the figure). The actor Passenger is characterized by some attributes:
spoken Languages (we put it as attribute to simplify the diagram), Position in
the railway station, and Expertise in using PDAs. The passenger might have
three relevant resources: PDA, Credit Card, and Cash Money. The resource
PDA is characterized by an attribute Screen_Type, defining if the PDA has
a touch screen or not, and it has a Can_Connect association to the Network
it can connect to. A network can be specialized into Cable_NT and Wireless.
Cable_NT stands for wired networks, and it is composed of a set of network
terminals (NT_Terminals), characterized by a Status that can be free, busy,
under maintenance, out of service, and so on. Wireless network is composed of
several wireless access points (Access_Point); an Access_Point has the attributes
Position and Coverage_Range, used together to compute if a customer is covered
by an access point signal. The actor Assistant has a Current_Activity he/she
is performing, a Position in the railway station, and spoken Languages. The
assistant’s relevant resources include only the assistant’s used PDA. The actor
Railway Website has the attributes E_Pay_Supported, to indicate if e-payments
are supported, and Has_Mob_Device_Version, set to true when the website can
be browsed by PDAs. The Credit_Card resource class represents the types of
credit cards passenger might use, and terminals and railway station website
might support. The actor Terminal might support multiple Languages, be in a
variable Status, and support Credit Card or Cash Money payment.

Actor: Passenger Res: Credit Card Supparts Actor: Railway Website
Has
+Languages +Type +E_Pay_Supported
+Position +Has_Mob_Device_Wersion
+PDAExperise
Supports
Has Has
Res: PDA Res: Cash Money Actor: Terminal
+5creen_Type +Currency Supports +Languages
+Type +5kakus
Can Connect Res: Network
Has
Actor: Assistant Res: Cable_NT Res: Wireless
+Current_Activity
+Position “
+Languages
Res: NT_Terminal Res: Access_Point
~+5katus +Position
+Coverage_Range

Fig. 4. Location model for the railway station scenario

We describe now our proposed location-based Tropos process that leads to the
production of our proposed models. We start by (i) modeling the social struc-
ture of a location class, before introducing the system to-be, using a strategic
dependency diagram. In this step, we identify roughly the main location actors
and the strategic dependencies between them. Then (ii), this diagram is exam-
ined to determine a set of mobile actors, i.e. actors who need location-based
software to assist them in the considered class of locations. The next step is to
(iii) assign a system-to-be actor to each mobile actor, and to model the rationale
of these system-to-be actors, using goal analysis. While doing the goal analysis,
system analyst (iv) decides those location-based variability points, and specifies
the location properties at each of them to help selecting between alternatives.
Location properties refine the location model, that consists initially of the actors
and resources recognized in the first step. System analyst (v) will extract new
location model constructs (actors or resources properties and relations, new re-
sources or actors) that each location property at each location-based variability
point might contain, and keep updating the location model.

By following our proposed location-based Tropos process, we will have three
models: the first is the classical Tropos strategic dependencies model, the second
represents the location-based rationale of the system-to-be actors (Fig. 3 asso-
ciated with location properties at the location-based variability points), and the
third is the elicited location model (the model of Fig. 4). The metamodel of our
proposed extension of Tropos modeling is shown in Fig.5.

Dependency Depends For Dependum
Depends On TEBDEHEJS
Actor Has Profile Has Resource Goal Task

)I\ +Invaloves

+Involoves

Location Actor || Mobile Actor

Is_Assighed

Loc-based SW Actor | Rationdized_By | Loc-based Goal Model | CONtains | variability Point | SPecified_BY | Loc property

0..#*

Fig. 5. Metamodel shows the proposed extension of Tropos

5 Reasoning on Location-based Models

We propose various types of analysis for examining location-based software
against a specific location, and vice versa. A preliminary step consists of evaluat-
ing the validity of location properties at the variability points of the goal model
on the current location instance. This step can be done automatically using an
automated solver after formalizing the location and location-based goal models.
In [17], we used EER diagram to represent location, and we formalized it besides
the location properties using Datalog— [18]. We used DLV solver [19] to do the
reasoning. Here we discuss several kinds of automated analysis on our proposed
models:

— Location-based goal satisfiability: this kind of analysis is aimed to verify if a
goal is achievable through one alternative in the current location instance.
The analysis can be performed using the goal reasoning algorithm proposed
by Giorgini et al. [20] on the goal model restricted by the evaluation of the lo-
cation properties. A strategy for evaluating satisfiability follows a top-down
approach: starting from a top-level goal, we should check that all (at least
one) sub-goals in and- (or-) decompositions can be achieved, or that the top-
level goal can be achieved via a makes (+1.0) contribution from an achievable
goal. For example, in a railway station where there is no positioning system,
offices are closed because of vacation, there is a kind of network compat-
ible with passenger’s PDA connectivity, and the railway company website
supports one of passenger’s credit card for e-pay, the algorithm will mark
the root goal “Ticket is Issued” as a satisfiable goal. The algorithm finds

the alternative E-Pay satisfiable, because of the satisfiability of its two And-
decomposition subgoals. The alternative By Terminal can not be satisfied
due to the absence of positioning system, and therefore the unsatisfiability
of its and-decomposition subgoal Lead to Terminal that can not be satisfied
by any of its alternatives in its turn. The alternative By Offices can not be
adopted, because it requires a location property Offices are working, to be
satisfied.

Location properties satisfiability: this analysis checks if the current location
structure is compliant with the software goals. It is exploited to identify what
is missing in a particular location where some top-level goals have been iden-
tified as unsatisfiable by location-based goal satisfiability analysis. When a
goal can not be satisfied, the analysis will identify the denying conditions
and suggest ways for solving the problem. For example, in a railway station
while passengers have PDAs with only wired connectivity feature, while rail-
way station does not provide cable-based connection terminals, the previous
analysis will mark Configure Connection as unsatisfiable goal. The reason is
that location properties on each of the two connection modalities, wireless
and wired, are not satisfied. Location properties satisfiability will reason on
what is needed to satisfy the Configure Connection goal, i.e. what is needed
to satisfy location properties on its alternative behaviors.

Preferences analysis: this type of analysis requires the specification of pref-
erences over alternatives. As shown in [16], preferences can be specified using
soft-goals. This analysis is useful in cases like:

e When some locations allow for several alternatives to satisfy a goal: the
selection will be based on the contributions (possibly location-based) to
preferred softgoals. For example, in a railway station where both Wire-
less Connection and Wired Connection can be satisfied, location-based
software will adopt the one preferred by its users. User preferences can
be specified over softgoals: when user gives more importance to Reliable
Connection than Fast Connection, the Wired Connection alternative will
be adopted, while Wireless Connection is adopted when user cares Fast
Connection more than Reliable Connection.

e When certain location does not allow for any alternative to satisfy a
goal: the location properties satisfiability might provide several proposals
about the needed location modifications. The adopted modifications are
those leading to better satisfying preferences expressed over soft-goals.
For example, in one railway station where Configure Connection can
not be satisfied due to the absence of wireless network, or cable based
terminals, the railway adminstration has to decide between establishing
wireless or wired network. When railway station adminstration cares
more Reliable Connection, a wired network terminals has to be spread
over the station, while wireless access points will be installed when Fast
Connection is more preferred.

6 Conclusions and Future Work

In this paper, we have shown the particularity and importance of modeling
location variability for location-based software, and addressed some challenges
conceptual modeling faces with this regards. We classified several tasks location
based software in particular has to do. To develop location-based software we
relied on Tropos methodology, and have shown its potential and limitation for
developing such software. We have suggested to modify the conceptualization
and the process of Tropos to fit well with location-based software development.
By formalizing our proposed models, several kinds of automated analysis, on
the relation between location-based behavior and location, become possible. We
have shown three kinds of this automated analysis on our proposed location-
based models. In this work, we have modeled the social level of a location class
as a set of profiled actors and resources; our future work will be towards refining
this modeling by finding a set of common concepts that can construct more
specifically actors and resources profiles and relations. Consequently, we will
also need to find a formal language that is expressive enough for representing
the location-based models, and practical for the needed automated analysis.

References

1. Krogstie, J., Lyytinen, K., Opdahl, A., Pernici, B., Siau, K., Smolander, K.: Re-
search areas and challenges for mobile information systems. International Journal
of Mobile Communications 2(3) (2004) 220234

2. Pernici, B.: Mobile information systems: infrastructure and design for adaptivity
and flexibility. Springer (2006)

3. Weiser, M.: The computer for the twenty-first century. Scientific American 265(3)
(1991) 94-104

4. Yau, S., Liu, J.: Hierarchical situation modeling and reasoning for pervasive com-
puting. Proceedings of 3rd Workshop on Software Technologies for Future Embed-
ded and Ubiquitous Systems (SEUS) (2006) 5-10

5. Henricksen, K., Indulska, J.: A software engineering framework for context-aware
pervasive computing. PerCom (2004) 77-86

6. Wang, X.H., Zhang, D.Q., Gu, T., Pung, HK.: Ontology based context mod-
eling and reasoning using owl. In: PERCOMW ’04: Proceedings of the Second
IEEE Annual Conference on Pervasive Computing and Communications Work-
shops, Washington, DC, USA, IEEE Computer Society (2004) 18-22

7. Salifu, M., Nuseibeh, B., Rapanotti, L., Tun, T.: Using problem descriptions to
represent variability for context-aware applications. First International Workshop
on Variability Modelling of Software-intensive Systems (2007)

8. Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer (2005)

9. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented
reuse method with domain-specific reference architectures. Annals of Software
Engineering 5 (1998) 143-168

10. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design
of autonomic application software. Proceedings of the 2006 conference of the Center
for Advanced Studies on Collaborative research (2006)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On goal-based vari-
ability acquisition and analysis. Proc. 14th IEEE International Requirements En-
gineering Conference, Minneapolis, USA, Sep (2006) 11-15

Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisi-
tion. Selected Papers of the Sixth International Workshop on Software Specification
and Design table of contents (1993) 3-50

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems 8(3) (2004) 203-236

Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. Thesis,
University of Toronto (1995)

Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented require-
ments analysis. Commun. ACM 42(1) (1999) 31-37

Liaskos, S., Mcllraith, S., Mylopoulos, J.: Representing and reasoning with pref-
erence requirements using goals. Technical report, Dept. of Computer Science,
University of Toronto (2006) ftp://ftp.cs.toronto.edu/pub/reports/csrg/542.

Ali, R., Dalpiaz, F., Giorgini, P.: Location-based variability for mobile in-
formation systems. Technical Report DISI-08-008, DISI, University of Trento,
http://eprints.biblio.unitn.it /archive/00001351/

Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Transactions on
Database Systems (TODS) 22(3) (1997) 364-418

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The dlv system for knowledge representation and reasoning. ACM Transactions
on Computational Logic (TOCL) 7(3) (2006) 499-562

Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal
models. Conceptual Modeling-ER 2002: 21st International Conference on Concep-
tual Modeling, Tampere, Finland, October 2002: Proceedings (2002)

	int008.doc
	OF TRENTO
	DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

	E-R 2008.pdf

