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Multi-Channel Attention Selection GANs for
Guided Image-to-Image Translation

Hao Tang, Philip H.S. Torr, Nicu Sebe

Abstract—We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for

guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance.

The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input

image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse

results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling & channel selection module

and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to

guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation

tasks (face, hand, body, and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the

state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other

generation tasks such as semantic image synthesis. The code is available at https://github.com/Ha0Tang/SelectionGAN.

Index Terms—GANs, Deep Attention Selection, Cascade Generation, Guided Image-to-Image Translation.

✦

1 INTRODUCTION

GUIDED image-to-image translation is aiming at synthe-
sizing new images from an input image and several

external semantic guidance, as shown in Fig. 1. This task
received a lot interest especially from the computer vision
community, and has been widely investigated in recent
years. Due to different forms of semantic guidance, e.g.,
segmentation maps, hand skeletons, facial landmarks, etc.,
most existing methods are tailored toward specific appli-
cations, i.e., they need to specifically design the network
architectures and training objectives according to different
generation tasks. For example, Ma et al. propose PG2 [1],
which is a two-stage framework and uses the pose mask
loss for generating person images based on an image of
that person and human pose keypoints. Tang et al. propose
GestureGAN [2], which is a forward-backward consistency
architecture and adopt a novel color loss to generate novel
hand gesture images based on the input image and con-
ditional hand skeletons. Wang et al. propose the few-shot
Vid2Vid framework [3], which uses the carefully designed
weight generation module to synthesize videos that realis-
tically reflect the style of the input image and the layout of
conditional segmentation maps.

Different from previous works in guided image-to-
image translation, in this paper, we focus on developing a
framework that is application-independent. This makes our
framework and modules more widely applicable to many
generation tasks with different forms of semantic guidance.
To tackle this challenging problem, AlBahar and Huang [4]
recently propose a bi-directional feature transformation to
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better utilize the constraints of the semantic guidance. Al-
though this approach performs an interesting exploration,
we observe unsatisfactory aspects mainly in the generated
image layout and content details, which are due to three dif-
ferent reasons. First, since it is always costly to obtain man-
ually annotated semantic guidance, the semantic guidance
is usually produced from pre-trained models trained on
other large-scale datasets, e.g., pose skeletons are extracted
using OpenPose [5] and segmentation maps are extracted
using [6], [7], leading to insufficiently accurate predictions
for all the pixels, and thus misguiding the image generation
process. Second, we argue that the translation with a single
phase generation network is not able to capture the complex
image structural relationships between the source and target
domains, especially when source and target domains only
have little or even no overlap, e.g., person image generation
[1], [8], and cross-view image translation [9], [10]. Third, a
three-channel generation space may not be suitable enough
for learning a good mapping for this complex synthesis
problem. Given these problems, could we enlarge the gen-
eration space and learn an automatic selection mechanism
to synthesize more fine-grained generation results?

Based on these observations we propose a novel
Multi-Channel Attention Selection Generative Adversarial
Network (SelectionGAN), which contains two generation
stages. The overall framework of SelectionGAN is shown
in Fig. 2. In the first stage, we learn a cycled image-
guidance generation sub-network, which accepts a pair con-
sisting of an image and the conditional semantic guidance,
and generates target images, which are further fed into a
semantic guidance generation network to reconstruct the
input semantic guidance. This cycled guidance generation
adds stronger supervision between the image and guidance
domains, facilitating the optimization of the network.

The coarse outputs from the first generation network,
including the input image, together with the deep feature
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Fig. 1: SelectionGAN’s capabilities: (left) Guided image-to-image translation (including cross-view image translation, hand
gesture translation, facial expression generation, and person image generation): synthesizing images from a single input
image as well as semantic guidance (e.g., segmentation map, hand skeleton, facial landmark, and human pose skeleton).
(right) Semantic image synthesis: SelectionGAN simultaneously produces realistic images while respecting the spatial
semantic layout for both outdoor and indoor scenes.

maps from the last layer, are input into the second stage
networks. We first employ the proposed multi-scale spatial
pooling & channel selection module to enhance the multi-
scale features in both spatial and channel dimensions. Next,
several intermediate outputs are produced, and simulta-
neously we learn a set of multi-channel attention maps
with the same number as the intermediate generations.
These attention maps are used to spatially select from the
intermediate generations, and are combined to synthesize
a final output. Finally, to overcome the inaccurate seman-
tic guidance issue, the multi-channel attention maps are
further used to generate uncertainty maps to guide the
reconstruction loss. Through extensive experimental eval-
uations, we demonstrate that SelectionGAN produces re-
markably better results than the existing baselines on four
different guided image-to-image translation tasks, i.e., seg-
mentation map guided cross-view image translation, hand
skeleton guided gesture-to-gesture translation, facial land-
mark guided expression-to-expression translation, and pose
guided person image generation. Moreover, the proposed
framework and modules can be applied to other generation
tasks such as semantic image synthesis.

Overall, the contributions of this paper are as follows:

• A novel Multi-Channel Attention Selection GAN (Selec-
tionGAN) for guided image-to-image translation task is
presented. It explores cascaded semantic guidance with
a coarse-to-fine inference, and aims at producing a more
detailed synthesis from richer and more diverse multiple
intermediate generations.

• A novel multi-scale spatial pooling & channel selection
module is proposed, which is utilized to automatically
enhance the multi-scale feature representation in both
spatial and channel dimensions.

• A novel multi-channel attention selection module is pro-
posed, which is utilized to attentively select interested
intermediate generations and is able to significantly boost
the quality of the final output. The multi-channel attention
module also effectively learns uncertainty maps to guide
the pixel loss for more robust optimization.

• Extensive experiments clearly demonstrate the effective-

ness of the proposed SelectionGAN, and show state-of-
the-art results on four guided image-to-image translation
(including face, hand, body, and street view) tasks. More-
over, we show the proposed SelectionGAN is effective on
other generation tasks such as semantic image synthesis.

Part of the material presented here appeared in [9]. The
current paper extends [9] in several ways. (1) We present
a more detailed analysis of related works by including
recently published works dealing with guided image-to-
image translation. (2) We propose a novel module, i.e.,
multi-scale channel selection, to automatically enhance the
multi-scale feature representation in the feature channel
dimension. Equipped with this new module, our Selection-
GAN proposed in [9] is upgraded to SelectionGAN++. (3)
We extent the proposed framework to a more robust and
general framework for handling different guided image-to-
image translation tasks. (4) We extend the quantitative and
qualitative experiments by comparing our SelectionGAN
and SelectionGAN++ with the very recent works on four
guided image-to-image translation tasks and one semantic
image synthesis task with 11 public datasets.

2 RELATED WORK

Generative Adversarial Networks (GANs) [11] have shown
the capability of generating high-quality images [12]. A
vanilla GAN model [11] has two important components:
a generator G and a discriminator D. The goal of G is to
generate photo-realistic images from a noise vector, while D

is trying to distinguish between a real image and the image
generated by G. Although it is successfully used in gen-
erating images of high visual fidelity, there are still some
challenges, i.e., how to generate images in a conditional
setting. To generate domain-specific images, Conditional
GANs (CGANs) [13] have been proposed. One specific
application of CGANs is image-to-image translation [14].
Image-to-Image Translation frameworks learn a parametric
mapping between inputs and outputs. For example, Isola et
al. [14] propose Pix2pix, which is a supervised model and
uses a CGAN to learn a translation function from input to
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Fig. 2: Overview of the proposed SelectionGAN. Stage I presents a cycled semantic-guided generation sub-network which
accepts both the input image Ia and the conditional semantic guidance Sg , and simultaneously synthesizes the target image

I
′

g and reconstructs the semantic guidance S
′

g . Stage II takes the input image Ia, the coarse prediction I
′

g , and the learned
deep features (Fi and Fs) from stage I, and performs a fine-grained generation using the proposed multi-scale spatial
pooling & channel selection and the multi-channel attention selection modules. c© denotes channel-wise concatenation.

output image domains. Based on Pix2pix, Wang et al. [15]
propose Pix2pixHD, which can turn semantic maps into
photo-realistic images.

Our work builds upon the recent advances in image-to-
image translation, i.e., Pix2pix, and aims to extend it to a
broader set of guided image-to-image translation problem,
which provides users with more input. Moreover, the pro-
posed multi-scale spatial pooling & channel selection and
the multi-channel attention selection modules are network-
agnostic and can be plugged into any existing GAN-based
generation architectures.

Guided Image-to-Image Translation is a variant of image-
to-image translation problem aimed at translating an in-
put image to a target image while respecting certain con-
strains specified by some external guidance, such as class
labels [16], [17], [18], text descriptions [19], [20], [21], human
keypoint/skeleton [1], [2], [8], [22], [23], [24], segmentation
maps [3], [9], [10], [25], [26], [27], [28], [29], [30], [31], [32],
[33], and reference images [4], [34]. Given that different
generation tasks need different guidance information, ex-
isting works are tailored to a specific application, i.e., with
specifically designed network architectures and training
objectives. For example, Ma et al. propose PG2 [1], which
is a two-stage framework and uses the pose mask loss
for generating person images based on an image of that
person and human pose keypoints. Tang et al. propose
GestureGAN [2], which is a forward-backward consistency
architecture and adopt the proposed color loss to gener-
ate novel hand gesture images based on the input image
and conditional hand skeletons. Wang et al. propose the
few-shot Vid2Vid framework [3], which uses a carefully
designed weight generation module to synthesize videos
that realistically reflect the style of the input image and the
layout of conditional segmentation maps.

Compared to existing works in guided image-to-image
translation, we develop a unified and robust framework
that is application-independent. In this way, the proposed
framework can be widely applied to many generation tasks
with different forms of guidance such as scene segmentation
maps, hand skeletons, facial landmarks, and human body
skeleton (see Fig. 1).

Attention Learning in Image-to-Image Translation. Atten-
tion learning has been extensively exploited in computer

vision and natural language processing, e.g., [35], [36], [37],
[38], [39], [40]. To improve the image generation perfor-
mance, the attention mechanism has also been recently
investigated in GANs such as [41], [42], [43], [44]. For ex-
ample, Zhang et al. propose SAGAN [43], which introduces
a self-attention mechanism into convolutional GANs to help
with modeling long range, multi-level dependencies across
image regions.

Unlike existing attention methods, we aim at a more
effective network design and propose a novel Selection-
GAN, which allows to automatically select from multiple
diverse and rich intermediate generations, and thus signif-
icantly improving the generation quality. To the best of our
knowledge, our model is the first attempt to incorporate
a multi-channel attention selection module within a GAN
framework for image-to-image translation tasks.

3 SELECTIONGAN

In this section we present the details of the proposed multi-
channel attention selection GAN. An illustration of the over-
all network structure is depicted in Fig. 2. In the first stage,
we present a cascaded semantic-guided generation sub-
network, which utilizes the input image and the conditional
semantic guidance as inputs, and generate the target images
while respecting the semantic guidance.

These generated images are further input into a semantic
guidance generator to recover the input guidance forming
a generation cycle. In the second stage, the coarse synthesis
and the deep features from the first stage are combined,
and then are passed to the proposed multi-scale spatial
pooling & channel selection module to model the long-range
multi-scale dependencies between each channel of feature
representations. Thus the enhanced feature maps are fed
to the proposed multi-channel attention selection module,
which aims at producing more fine-grained synthesis from
a larger generation space and also at generating uncertainty
maps to jointly guide multiple optimization losses.

3.1 Cascade Semantic-Guided Generation

Semantic-Guided Generation. We target to translate an
input image to another while respecting the semantic guid-
ance. There are many strategies to incorporate the addi-
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Fig. 3: Overview of the proposed multi-scale spatial pooling & channel selection module. The multi-scale spatial pooling
pools features from different receptive fields in order to have a better generation of image details. The multi-scale channel
selection aims at automatically emphasizing interdependent channel maps by integrating associated features among all
multi-scale channel maps to improve deep feature representation. ⊕, ⊗, c©, s© and ↑© denote element-wise addition,
element-wise multiplication, channel-wise concatenation, softmax, and up-sampling operation, respectively.

tional semantic guidance into the image-to-image transla-
tion model [4], [8] and the most straight forward scheme
is input concatenation. Specifically, as shown in Fig. 2, we
concatenate the input image Ia and the semantic guidance
Sg , and feed them into the image generator Gi and synthe-

size the target image I
′

g as I
′

g=Gi(Ia, Sg). In this way, the
semantic guidance provides stronger supervision to guide
the image-to-image translation in the deep network.

Semantic-Guided Cycle. Existing guided image-to-image
translation methods [1], [4], [45] only use semantic guidance
as input to guide the image generation process, which
actually provide a weak guidance. Different from theirs,
we apply the semantic guidance not only as input but also
as part of the network’s output. Specifically, as shown in
Fig. 2, we propose a cycled semantic guidance generation
network to benefit more the semantic guidance information
in learning jointly. The conditional semantic guidance Sg

together with the input image Ia are input into the image

generator Gi, and produce the synthesized image I
′

g . Then

I
′

g is further fed into the semantic guidance generator Gs

which reconstructs a new semantic guidance S
′

g . We can

formalize the process as S
′

g=Gs(I
′

g)=Gs(Gi(Ia, Sg)). Then

the optimization objective is to make S
′

g as close as possible
to Sg , which naturally forms a semantic guidance generation

cycle, i.e., [Ia, Sg]
Gi→ I

′

g

Gs→ S
′

g≈Sg . The two generators are
explicitly connected by the ground-truth semantic guidance,
which in this way provides extra constraints on the gen-
erators to better learn the semantic structure consistency.
We observe that the simultaneous generation of both the
images and the semantic guidance improves the generation
performance in our experiments section.

Cascade Generation. Due to the complexity of the tasks
such as in pose guided person image generation [1], [8], [24],
input and output domains usually have little overlap, which
apparently leads to ambiguity issues in the generation pro-
cess. Moreover, we observe that the image generator Gi

outputs a coarse synthesis after the first stage, which yields
blurred image details and high pixel-level dissimilarity with
the target images. Both inspire us to explore a coarse-to-

fine generation strategy in order to boost the synthesis per-
formance based on the coarse predictions. Cascade models
have been used in several other computer vision tasks such
as object detection [46] and semantic segmentation [47], and
have shown great effectiveness. In this paper, we introduce
the cascade strategy to deal with the guided image-to-
image translation problems. In both stages we have a basic
cycled semantic guidance generation sub-network, while in
the second stage, we propose two novel multi-scale spatial
pooling & channel selection and multi-channel attention
selection modules to better utilize the coarse outputs from
the first stage and to produce fine-grained final outputs. We
observed significant improvement by using the proposed
cascade strategy, illustrated in the experimental part.

3.2 Multi-Scale Spatial Pooling & Channel Selection

An overview of the proposed multi-scale spatial pooling &
channel selection module is shown in Fig. 3. The module
consists of a multi-scale spatial pooling and a multi-scale
channel selection components. In this way, the proposed
module can learn multi-scale deep feature interdependen-
cies in both spatial and channel dimensions.
Multi-Scale Spatial Pooling. Since there exists a large ob-
ject/scene deformation between the source and the target
domains, a single-scale feature may not be able to capture all
the necessary spatial information for a fine-grained genera-
tion. Thus, we propose a multi-scale spatial pooling scheme,
which uses a set of different kernel sizes and strides to per-
form a global average pooling on the same input features.
By so doing, we obtain multi-scale features with different
receptive fields to perceive different spatial contexts. More
specifically, given the coarse inputs and the deep features
produced from the stage I, we first concatenate all of them
as new features denoted as Fc∈R

C×H×W for the stage II as:

Fc = concat(Ia, I
′

g, Fi, Fs), (1)

where concat(·) is a function for channel-wise concatenation
operation; Fi and Fs are features from the last convolution
layers of the generators Gi and Gs, respectively. H and W
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Fig. 4: Overview of the proposed multi-channel attention selection module. This module aims to automatically select from
a set of intermediate diverse generations in a larger generation space to improve the generation quality. Meanwhile, the
module also effectively learns uncertainty maps to guide the pixel loss for robust joint images and guidances optimization.
⊕, ⊗ and c© denote element-wise addition, element-wise multiplication, and channel-wise concatenation, respectively.

are width and height of the features, and C is the number
of channels. We apply a set of M spatial scales {si}

M
i=1

in
pooling, resulting in pooled features with different spatial
resolution. Different from the pooling scheme used in [48]
which directly combines all the features after pooling, we
first select each pooled feature via an element-wise multipli-
cation with the input feature. Since in our task the input fea-
tures are from different sources, highly correlated features
would preserve more useful information for the generation.
Let us denote pl ups(·) as pooling at a scale s followed by
an up-sampling operation to rescale the pooled feature at
the same resolution, and ⊗ as element-wise multiplication,
we can formalize the whole process as:

Fm ← concat
(

Fc,Fc ⊗ pl up1(Fc), . . . ,Fc ⊗ pl upM (Fc)),
(2)

which produces new multi-scale features Fm∈R
4C×H×W

(we set M=3 in our experiments.) for the use in the next
multi-scale channel selection module. By doing so, the
‘level’ of features can be enriched by combining multiple
scale feature maps.
Multi-Scale Channel Selection. Each channel map of Fm

can be now regarded as a scale-specific response, and differ-
ent scale feature maps should be associated with each other.
To exploit the interdependencies between each scale features
of Fm, we propose a multi-scale channel selection module
to explicitly model interdependencies between channels of
multi-scale feature Fm. The structure of multi-scale channel
selection module is illustrated in Fig. 3.

The channel attention map A can be obtained from the
multi-scale feature Fm. More specific, Fm is first reshaped
to R

4C×HW , and then a matrix multiplication is preformed
between Fm and the transpose of Fm. Next, we employ a
Softmax activation function to obtain the channel attention
map A∈R4C×4C . Each pixel Aji in A measures the ith

channel’s impact on the jth channel. In this way, the cor-
relation can be built between features from different scales.
Moreover, to reshape back to R

4C×H×W , we perform a
matrix multiplication between A and the transpose of Fm.
Then, the result is multiplied by a parameter α and added to

the original feature Fm to obtain the channel-wise enhanced

feature F
′

m
∈R4C×H×W ,

F
′

m
= α

4C
∑

i=1

(AjiFmi) + Fmj . (3)

By doing so, each channel in the final feature F
′

m
is a

weighted sum of all channels and it models the long-range
dependencies between multi-scale feature maps. Finally, the

enhanced feature F
′

m
is fed into a convolutional layer to ob-

tain F
′

c
∈RC×H×W , which has the same size as the original

one Fc. This design ensures that the proposed multi-scale
spatial pooling & channel selection module can be plugged
into existing computer vision architectures.

3.3 Multi-Channel Attention Selection

In previous image-to-image translation works, the image
was generated only in a three-channel RGB space. We argue
that this is not enough for the complex translation problem
we are dealing with, and thus we explore using a larger
generation space to have a richer synthesis via constructing
multiple intermediate generations. Accordingly, we design
a multi-channel attention mechanism to automatically per-
form spatial and temporal selection from the generations to
synthesize a fine-grained final output.

Given the enhanced multi-scale feature volume
F

′

c
∈RC×H×W , where H and W are width and height of

the features, and C is the number of channels, we consider
two directions as shown in Fig. 4. One is for the generation
of multiple intermediate image synthesis and the other is for
the generation of multi-channel attention maps. To produce
N different intermediate generations IG={I

i
G}

N
i=1

, a convo-
lution operation is performed with N convolutional filters
{W i

G, b
i
G}

N
i=1

followed by a tanh(·) non-linear activation
operation. For the generation of corresponding N attention
maps, the other group of filters {W i

A, b
i
A}

N
i=1

is applied.
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Then the intermediate generations and the attention maps
are calculated as follows:

IiG = tanh(F
′

c
W i

G + biG), for i = 1, . . . , N

IiA = Softmax(F
′

c
W i

A + biA), for i = 1, . . . , N
(4)

where Softmax(·) is a channel-wise softmax function used
for the normalization. Finally, the learned attention maps
are utilized to perform channel-wise selection from each
intermediate generation as follows:

I
′′

g = (I1A ⊗ I1G)⊕ · · · ⊕ (INA ⊗ ING ) (5)

where I
′′

g represents the final synthesized generation se-
lected from the multiple diverse results, and ⊕ denotes the
element-wise addition. We also generate a final semantic
guidance in the second stage as in the first stage, i.e.,

S
′′

g=Gs(I
′′

g ). Due to the same purpose of the two semantic
guidance generators, we use a single Gs twice by sharing the
parameters in both stages to reduce the network capacity.
Uncertainty-Guided Pixel Loss. As we discussed in the
introduction, the semantic guidance obtained from the pre-
trained model is not accurate for all the pixels, leading to
a wrong guidance during training. To tackle this issue, we
propose to learn uncertainty maps to control the optimiza-
tion loss as shown in Fig. 4. The uncertainty learning has
been investigated in [49] for multi-task learning, and here
we introduce it for solving the noisy semantic guidance
problem. Assume that we have K different loss maps which
need a guidance. The multiple generated attention maps
are first concatenated and passed to a convolution layer
with K filters {W i

u}
K
i=1

to produce a set of K uncertainty
maps. The reason for using the attention maps to generate
uncertainty maps is that the attention maps directly affect
the final generation leading to a close connection with the
loss. Let Li

p denote a pixel-level loss map and Ui denote the
i-th uncertainty map, we have:

Ui = σ
(

W
i
u(concat(I

1

A, . . . , I
N
A ) + b

i
u

)

Li
p ←

Li
p

Ui

+ logUi, for i = 1, . . . ,K
(6)

where σ(·) is a Sigmoid function for pixel-level normaliza-
tion. The uncertainty map is automatically learned and acts
as a weighting scheme to control the optimization loss.
Parameter-Sharing Discriminator. We extend the vanilla
discriminator in [14] to a parameter-sharing structure. In
the first stage, this structure takes the real image Ia and

the generated image I
′

g or the ground-truth image Ig as
input. The discriminator D learns to tell whether a pair of
images from different domains is associated with each other
or not. In the second stage, it accepts the real image Ia and

the generated image I
′′

g or the real image Ig as inputs. This
pairwise input encourages D to discriminate the diversity of
image structure and to capture the local-aware information.

3.4 Overall Optimization Objective

Adversarial Loss. In the first stage, the adversarial loss of D

for distinguishing synthesized image pairs [Ia, I
′

g] from real
image pairs [Ia, Ig] is formulated as follows:

LcGAN (Ia, I
′

g) =EIa,Ig [logD(Ia, Ig)] +

EIa,I
′

g

[

log(1−D(Ia, I
′

g))
]

.
(7)

In the second stage, the adversarial loss of D for distin-

guishing synthesized image pairs [Ia, I
′′

g ] from real image
pairs [Ia, Ig] is formulated as follows:

LcGAN (Ia, I
′′

g )=EIa,Ig [logD(Ia, Ig)] +

EIa,I
′′

g

[

log(1−D(Ia, I
′′

g ))
]

.
(8)

Both losses aim to preserve the local structure information
and produce visually pleasing synthesized images. Thus,
the adversarial loss of the proposed SelectionGAN is the
sum of Eq. (7) and (8),

LcGAN = LcGAN (Ia, I
′

g) + λLcGAN (Ia, I
′′

g ). (9)

Overall Loss. The total optimization loss is a weighted sum
of the above losses. Generators Gi, Gs, multi-scale spatial
pooling & channel selection module Gm, multi-channel
attention selection network Ga, and discriminator D are
trained in an end-to-end fashion optimizing the following
min-max function:

min
{Gi,Gs,Gm,Ga}

max
{D}
L =

4
∑

i=1

λiL
i
p + LcGAN + λtvLtv.

(10)
where Li

p uses the L1 reconstruction to separately calculate
the pixel loss between the generated four images/guidances

(i.e., I
′

g , S
′

g , I
′′

g , and S
′′

g ) and the corresponding real im-
ages/guidances. Ltv is the total variation regularization [50]

on the final synthesized image I
′′

g . λi and λtv are the trade-
off parameters to control the relative importance of different
objectives. The training is performed by solving the min-
max optimization problem.

3.5 Implementation Details

Network Architecture. For a fair comparison, we employ
U-Net [14] as our generator architectures Gi and Gs. U-
Net is a network with skip connections between a down-
sampling encoder and an up-sampling decoder. Such ar-
chitecture comprehensively retains contextual and textural
information, which is crucial for removing artifacts and
padding textures. Since our focus is on the image generation
task, Gi is more important than Gs. Thus we use a deeper
network for Gi and a shallow network for Gs. Specifically,
the filters in first convolutional layer of Gi and Gs are 64
and 4, respectively. For the network Ga, the kernel size of
convolutions for generating the intermediate images and
attention maps are 3×3 and 1×1, respectively. We adopt
PatchGAN [14] for the discriminator D.
Training Details. We mainly focus on four guided image-to-
image translation tasks in this paper. For cross-view image
translation, we follow [10] and use RefineNet [6] and [7] to
generate segmentation maps on Dayton, SVA, and Ego2Top
datasets as training data, respectively. For facial expression
generation, we follow [51] and use OpenFace [5] to extract
facial landmarks on Radboud Faces dataset as training data.
For both hand gesture generation and human pose genera-
tion tasks, we follow [1], [2] and employ OpenPose [52] as
pose joints detector and filter out images where no human
hand and body are detected in the associated datasets.

We follow the optimization method in [11] to optimize
the proposed SelectionGAN, i.e., one gradient descent step
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TABLE 1: Ablations study of the proposed SelectionGAN.

Baseline Setups of SelectionGAN SSIM ↑ PSNR ↑ SD ↑ FID ↓ Inception Score ↑
All Top-1 Top-5

A Ia
Gi→ I

′

g 0.4555 19.6574 18.8870 91.47 3.2359 2.1903 3.3110

B Sg
Gi→ I

′

g 0.5223 22.4961 19.2648 87.51 3.4849 2.2544 3.4217

C [Ia, Sg]
Gi→ I

′

g 0.5374 22.8345 19.2075 84.10 3.4478 2.2616 3.4668

D [Ia, Sg]
Gi→ I

′

g

Gs→ S
′

g 0.5438 22.9773 19.4568 82.81 3.1655 2.2561 3.2401
E D + Uncertainty-Guided Pixel Loss 0.5522 23.0317 19.5127 79.84 3.2741 2.2687 3.3063
F E + Multi-Channel Attention Selection 0.5989 23.7562 20.0000 75.57 3.3365 2.2749 3.4664
G F + Total Variation Regularization 0.6047 23.7956 20.0830 74.11 3.3172 2.1397 3.3509
H G + Multi-Scale Spatial Pooling 0.6167 23.9310 20.1214 72.23 3.4978 2.1880 3.4786

on discriminator and generators alternately. We first train
Gi, Gs, Gm, Ga with D fixed, and then train D with Gi,
Gs, Gm, Ga fixed. The proposed SelectionGAN is trained
and optimized in an end-to-end fashion. We employ Adam
[53] with momentum terms β1=0.5 and β2=0.999 as our
solver. In our experiments, we set λtv=1e−6, λ1=100, λ2=1,
λ3=200 and λ4=2 in Eq. (10), and λ=4 in Eq. (9). The
number of attention channels N in Eq. (4) is set to 10.

4 EXPERIMENTS

We conduct extensive experiments on a variety of guided
image-to-image translation tasks such as segmentation
map guided cross-view image translation, facial landmark
guided expression-to-expression translation, hand skeleton
guided gesture-to-gesture translation, and pose skeleton
guided person image generation. Moreover, to explore the
generality of the proposed SelectionGAN on other gener-
ation tasks, we conduct experiments on the challenging
semantic image synthesis task.

4.1 Results on Cross-View Image Translation

Datasets. We follow [9], [10], [54] and perform experi-
ments on four public cross-view image translation datasets:
1) The Dayton dataset [55] contains 76,048 images and
the train/test split is 55,000/21,048. The images in the
original dataset have 354×354 resolution. We resize them
to 256×256. 2) The CVUSA dataset [56] consists of
35,532/8,884 image pairs in train/test split. Following [10],
[57], the aerial images are center-cropped to 224×224 and
resized to 256×256. For the ground level images and cor-
responding segmentation maps, we take the first quarter
of both and resize them to 256×256. 3) The Surround
Vehicle Awareness (SVA) dataset [58] is a synthetic dataset
collected from Grand Theft Auto V (GTAV) video game.
Following [54], we select every tenth frame to remove
redundancy in this dataset since the consecutive frames in
each set are very similar to each other. Thus, we collect
46,030/22,254 image pairs for training and testing, respec-
tively. 4) The Ego2Top dataset [59] is more challenging and
contains different indoor and outdoor conditions. Each case
contains one top-view video and several egocentric videos
captured by the people visible in the top-view camera. This
dataset has more than 230,000 frames. For training data, we
follow [9] and randomly select 386,357 pairs and each pair
is composed of two images of the same scene but different
viewpoints. We randomly select 25,600 pairs for evaluation.

Parameter Settings. For a fair comparison, we adopt the
same training setup as in [10], [14]. All images are scaled to
256×256, and we enabled image flipping and random crops
for data augmentation. Similar to [10], the experiments for
Dayton are trained for 35 epochs with a batch size of 4. For
CVUSA, we follow the same setup as in [10], [57], and train
our network for 30 epochs with batch size of 4. For SVA, all
models are trained with 20 epoch using batch size 4.
Evaluation Metrics. Similar to [9], [10], we employ In-
ception Score [60], top-k prediction accuracy, KL score,
and Fréchet Inception Distance (FID) [61] for the quanti-
tative analysis. These metrics evaluate the generated images
from a high-level feature space. We also employ pixel-level
similarity metrics to evaluate our method, i.e., Structural-
Similarity (SSIM) [62], Peak Signal-to-Noise Ratio (PSNR),
and Sharpness Difference (SD).
Baseline Models. We first conduct an ablation study on
Dayton to evaluate the components of the proposed Se-
lectionGAN. To reduce the training time, we randomly
select 1/3 samples from the whole 55,000/21,048 samples,
i.e., around 18,334 samples for training and 7,017 samples
for testing. The proposed SelectionGAN considers eight
baselines (A, B, C, D, E, F, G, H) as shown in Table 1.
Baseline A uses a Pix2pix structure [14] and generates I

′

g

using a single image Ia. Baseline B uses the same Pix2pix

model and generates I
′

g using the corresponding semantic
guidance Sg . Baseline C also uses the Pix2pix structure, and
inputs the combination of a conditional image Ia and the
semantic guidance Sg to the generator Gi. Baseline D uses
the proposed cycled semantic guidance generation upon
Baseline C. Baseline E represents the pixel loss guided by
the learned uncertainty maps. Baseline F employs the pro-
posed multi-channel attention selection module to generate
multiple intermediate generations, and to make the neural
network attentively select which part is more important
for generating the target image. Baseline G adds the total

variation regularization on the final result I
′′

g . Baseline H
employs the proposed multi-scale spatial pooling module
to refine the features Fc from stage I. All the baseline
models are trained and tested on the same data using the
configuration.
Ablation Analysis. The results of the ablation study are
shown in Table 1. Note that Baseline B is better than A since
Sg contains more structural information than Ia. When com-
paring Baselines A and C, the semantic-guided generation
improves SSIM, PSNR and SD by 8.19, 3.1771 and 0.3205, re-
spectively, confirming the importance of the conditional se-
mantic guidance information. By using the proposed cycled
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Fig. 5: Results of cross-view image translation generated by
the proposed SelectionGAN on different datasets.

TABLE 2: Quantitative results of coarse-to-fine generation.

# Stage I Stage II SSIM PSNR SD

F
√

0.5551 23.1919 19.6311
F

√
0.5989 23.7562 20.0000

G
√

0.5680 23.2574 19.7371
G

√
0.6047 23.7956 20.0830

H
√

0.5567 23.1545 19.6034
H

√
0.6167 23.9310 20.1214

semantic guidance generation, Baseline D further improves
over C, meaning that the proposed semantic guidance cycle
structure indeed utilizes the semantic guidance information
in a more effective way, confirming our design motivation.
Baseline E outperforms D showing the importance of using
the uncertainty maps to guide the pixel loss map which
contains an inaccurate reconstruction loss due to the wrong
semantic guidance produced from the pre-trained models.
Baseline F significantly outperforms E with around 4.67
points gain on the SSIM metric, clearly demonstrating the
effectiveness of the proposed multi-channel attention se-
lection scheme. We can also observe from Table 1 that, by
adding the proposed multi-scale spatial pool scheme and
the TV regularization, the overall performance is further
boosted. Finally, we demonstrate the advantage of the pro-
posed two-stage strategy over the one-stage method. The
results are shown in Fig. 5, 13, and Table 2. It is obvious
that the coarse-to-fine generation model is able to generate
sharper results and contains more details than the one-stage
model, which further confirms our motivations.

Comparisons with SENet [63]. The proposed multi-scale
spatial pooling shares a similar intuition with SENet [63]
which amplifies the channels via attention based on pooling.
Unlike SENet that employs positive attention via the Sig-
moid function, the proposed multi-scale spatial pooling se-
lects each pooled feature via an element-wise multiplication
with the original feature. Since in our task the input features
are from different sources, highly correlated features would
preserve more useful information for the generation. We
also conduct experiments to compare the proposed method
with SENet on Dayton. Specifically, we use the SE layer
proposed in [63] to replace our multi-scale spatial pooling

Fig. 6: Comparison results of SENet and the proposed Selec-
tionGAN on Dayton.

TABLE 3: Influence of the number of attention channels N .

N SSIM PSNR SD

0 0.5438 22.9773 19.4568
1 0.5522 23.0317 19.5127
5 0.5901 23.8068 20.0033
10 0.5986 23.7336 19.9993
32 0.5950 23.8265 19.9086

module, obtaining the following results in terms of SSIM,
PSNR, and SD: 0.5912, 23.3857, and 19.8061, respectively. We
can see that our method (see the Baseline H in Table 1) still
significantly outperforms [63]. Moreover, we provide the
visualization results in Fig. 6 (note that our method achieves
better results than SENet).
Influence of the Number of Attention Channels. We inves-
tigate the influence of the number of attention channel N in
Eq. (4). The results are shown in Table 3. We observe that
the performance tends to be stable after N=10. Thus, taking
both performance and training speed into consideration, we
set N=10 in all our experiments.
State-of-the-Art Comparisons. We compare our Selection-
GAN with several recently proposed state-of-the-art meth-
ods, which are Pix2pix [14], Zhai et al. [57], X-Fork [10],
X-Seq [10] and X-SO [54]. Moreover, to study the effec-
tiveness of SelectionGAN, we introduce five strong base-
lines which use both segmentation map and RGB image as
inputs, including Pix2pix++ [14], X-Fork++ [10], X-Seq++
[10], Pix2pixHD [15], and GauGAN [64]. The comparison
results are shown in Table 4, 5, and 6. We can observe that
SelectionGAN consistently outperforms existing methods
on most metrics. Qualitative results compared with the
leading baselines are shown in Fig. 7 and 8. We can see that
our method generates more clear details on objects/scenes
such as road, tress, clouds, car than the other comparison
methods. Moreover, the results generated by our method
are closer to the ground truths in layout and structure.
Visualization of Learned Uncertainty Maps. In Fig. 5 and 9,
we show some samples of the generated uncertainty maps.
We can see that the generated uncertainty maps learn the
layout and structure of the target images. Note that most
textured regions are similar in our generation images, while
the junction/edge of different regions is uncertain, and thus
the model learns to highlight these parts.
Generated Semantic Guidances. Since the proposed meth-
ods can reconstruct the semantic guidance (here, the seg-
mentation maps), we also compare the generated semantic
guidance with X-Fork [10] and X-Seq [10] on Dayton. Fol-
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Fig. 7: Results of cross-view image translation on CVUSA.

Fig. 8: Results of cross-view image translation on Dayton in a2g direction.

TABLE 4: Quantitative results of cross-view image translation on CVUSA. (∗) Inception Score for real (ground truth) data
is 4.8741, 3.2959 and 4.9943 for all, top-1 and top-5 setups, respectively.

Method
Accuracy (%) ↑ Inception Score∗ ↑

SSIM ↑ PSNR ↑ SD ↑ KL ↓
Top-1 Top-5 All Top-1 Top-5

Zhai et al. [57] 13.97 14.03 42.09 52.29 1.8434 1.5171 1.8666 0.4147 17.4886 16.6184 27.43 ± 1.63
Pix2pix [14] 7.33 9.25 25.81 32.67 3.2771 2.2219 3.4312 0.3923 17.6578 18.5239 59.81 ± 2.12
X-SO [54] 0.29 0.21 6.14 9.08 1.7575 1.4145 1.7791 0.3451 17.6201 16.9919 414.25 ± 2.37
X-Fork [10] 20.58 31.24 50.51 63.66 3.4432 2.5447 3.5567 0.4356 19.0509 18.6706 11.71 ± 1.55
X-Seq [10] 15.98 24.14 42.91 54.41 3.8151 2.6738 4.0077 0.4231 18.8067 18.4378 15.52 ± 1.73
Pix2pix++ [14] 26.45 41.87 57.26 72.87 3.2592 2.4175 3.5078 0.4617 21.5739 18.9044 9.47 ± 1.69
X-Fork++ [10] 31.03 49.65 64.47 81.16 3.3758 2.5375 3.5711 0.4769 21.6504 18.9856 7.18 ± 1.56
X-Seq++ [10] 34.69 54.61 67.12 83.46 3.3919 2.5474 3.4858 0.4740 21.6733 18.9907 5.19 ± 1.31
SelectionGAN 41.52 65.51 74.32 89.66 3.8074 2.7181 3.9197 0.5323 23.1466 19.6100 2.96 ± 0.97
SelectionGAN++ 43.27 68.36 77.15 91.74 3.8296 2.8977 4.0238 0.5355 22.8532 19.7672 2.76 ± 0.96

TABLE 5: Quantitative results of cross-view image translation on Dayton in a2g direction. (∗) Inception Score for real
(ground truth) data is 3.8319, 2.5753 and 3.9222 for all, top-1 and top-5 setups, respectively.

Method
Accuracy (%) ↑ Inception Score∗ ↑

SSIM ↑ PSNR ↑ SD ↑ KL ↓
Top-1 Top-5 All Top-1 Top-5

Pix2pix [14] 6.80 9.15 23.55 27.00 2.8515 1.9342 2.9083 0.4180 17.6291 19.2821 38.26 ± 1.88
X-SO [54] 27.56 41.15 57.96 73.20 2.9459 2.0963 2.9980 0.4772 19.6203 19.2939 7.20 ± 1.37
X-Fork [10] 30.00 48.68 61.57 78.84 3.0720 2.2402 3.0932 0.4963 19.8928 19.4533 6.00 ± 1.28
X-Seq [10] 30.16 49.85 62.59 80.70 2.7384 2.1304 2.7674 0.5031 20.2803 19.5258 5.93 ± 1.32
Pix2pix++ [14] 32.06 54.70 63.19 81.01 3.1709 2.1200 3.2001 0.4871 21.6675 18.8504 5.49 ± 1.25
X-Fork++ [10] 34.67 59.14 66.37 84.70 3.0737 2.1508 3.0893 0.4982 21.7260 18.9402 4.59 ± 1.16
X-Seq++ [10] 31.58 51.67 65.21 82.48 3.1703 2.2185 3.2444 0.4912 21.7659 18.9265 4.94 ± 1.18
SelectionGAN 42.11 68.12 77.74 92.89 3.0613 2.2707 3.1336 0.5938 23.8874 20.0174 2.74 ± 0.86
SelectionGAN++ 47.01 73.54 80.19 94.97 3.2315 2.3367 3.3245 0.5786 23.5385 19.8729 2.45 ± 0.83

lowing [10], we compute the per-class accuracy and mean
IOU for the most common classes in this dataset (see Table
7). We see that our SelectionGAN and SelectionGAN++
achieve better results than X-Fork [10] and X-Seq [10] on
both metrics.

Controllable Cross-View Image Translation. We further
adopt Ego2Top to conduct the controllable cross-view image
translation experiments. The results are shown in Fig. 9.
Given a single input image and some novel segmentation
maps, SelectionGAN is able to generate the same scene
but with different viewpoints in both indoor and outdoor
environments.

SelectionGAN vs. SelectionGAN++. We also provide com-
parison results of SelectionGAN [9] and SelectionGAN++
in Table 4, 5, and 6. SelectionGAN++ achieves better re-
sults on most metrics, meaning that the proposed multi-
scale channel selection module indeed enhances the feature
representation, and thus is improving the generation per-
formance. Note that SelectionGAN++ generates sharper and
more realistic images than SelectionGAN, but SelectionGAN
has higher pixel-wise similarity scores (i.e., SSIM, PSNR,
and SD). This is also observed in other image generation
[1], super-resolution [50], and human perceptual judgment
[65] tasks. From the visualization results in Fig. 7, 8, and 10,
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Fig. 9: Results of controllable cross-view image translation for both indoor (left) and outdoor (right) scenes.

TABLE 6: Quantitative results of cross-view image translation on SVA. (∗) Inception Score for real (ground truth) data is
3.1282, 2.4932 and 3.4646 for all, top-1 and top-5 setups, respectively.

Method
Accuracy (%) ↑ Inception Score∗ ↑

SSIM ↑ PSNR ↑ SD ↑ KL ↓ FID ↓
Top-1 Top-5 All Top-1 Top-5

X-Pix2pix [14] 8.5961 30.3288 9.0260 29.9102 2.0131 1.7221 2.2370 0.3206 17.9944 17.0254 19.5533 859.66
X-SO [54] 7.5146 30.9507 10.3905 38.9822 2.4951 1.8940 2.6634 0.4552 21.5312 17.5285 12.0906 443.79
X-Fork [10] 17.3794 53.4725 23.8315 63.5045 2.1888 1.9776 2.3664 0.4235 21.2400 16.9371 4.1925 129.16
X-Seq [10] 19.5056 57.1010 25.8807 65.3005 2.2232 1.9842 2.4344 0.4638 22.3411 17.4138 3.7585 118.70
H-Pix2pix [54] 18.0706 54.8068 23.4400 62.3072 2.1906 1.9507 2.4069 0.4327 21.6860 16.9468 4.2894 117.13
H-SO [54] 5.2444 26.4697 5.2544 31.9527 2.3202 1.9410 2.7340 0.4457 21.7709 17.3876 12.8761 1452.88
H-Fork [54] 18.0182 51.0756 26.6747 62.8166 2.3202 1.9525 2.3918 0.4240 21.6327 16.8653 4.7246 109.43
H-Seq [54] 20.7391 57.5378 28.5517 67.4649 2.2394 1.9892 2.4385 0.4249 21.4770 17.5616 4.4260 95.12
H-Regions [54] 15.4803 48.0767 21.8225 56.8994 2.6328 2.0732 2.8347 0.4044 20.9848 17.6858 6.0638 88.78
Pix2pix++ [14] 8.8687 34.5434 9.2713 35.7490 2.5625 2.0879 2.7961 0.3664 17.6549 18.4015 13.1153 220.23
X-Fork++ [10] 10.2658 37.8405 11.4138 38.7976 2.4280 2.0387 2.7630 0.3406 17.3937 18.2153 10.1403 166.33
X-Seq++ [10] 11.2580 36.8018 11.9838 36.9231 2.6849 2.1325 2.9397 0.3617 17.4893 18.4122 11.8560 154.80
Pix2pixHD [15] 35.0018 72.9430 52.2181 85.6375 2.5820 2.1436 2.8730 0.5437 23.1823 18.9723 2.6322 32.79
GauGAN [64] 34.6740 71.4061 50.1152 81.4900 2.6462 2.2112 2.9550 0.5195 22.0174 18.7762 2.6714 27.93
SelectionGAN 33.9055 71.8779 50.8878 85.0019 2.6576 2.1279 2.9267 0.5752 24.7136 19.7302 2.6183 26.09
SelectionGAN++ 35.9008 73.3249 52.5346 86.9432 2.7370 2.1914 3.0271 0.5481 24.2886 19.2001 2.5788 37.17

TABLE 7: Per-class accuracy and mean IOU for the gener-
ated segmentation maps on Dayton.

Method Per-class Acc. ↑ mIOU ↑
X-Fork [10] 0.6262 0.4163
X-Seq [10] 0.4783 0.3187
SelectionGAN 0.6415 0.5455
SelectionGAN++ 0.6619 0.5741

we see that SelectionGAN++ generates more photo-realistic
images with fewer visual artifacts than SelectionGAN on
both tasks. For example, SelectionGAN generates road lines
in the first and second rows of Fig. 10, but there are no road
lines in the corresponding ground truths.

4.2 Results on Facial Expression Generation

Datasets. We follow C2GAN [51] and conduct facial ex-
pression generation experiments on the Radboud Faces
dataset [66]. This dataset contains over 8,000 face im-
ages with eight different emotional expressions. We follow
C2GAN and all the images are resized to 256×256 without
any pre-processing. Then, we adopt OpenFace [5] to extract
facial landmarks as the semantic guidance. Consequently,
we collect 5,628 training image pairs and 1,407 testing pairs.
Parameter Settings. Following C2GAN [51], the experi-
ments on Radboud Faces are trained for 200 epochs with
batch size of 4.
Evaluation Metrics. We follow C2GAN [51] and employ
Structural Similarity (SSIM) [62] and Peak Signal-to-Noise

Fig. 10: Comparison results of SelectionGAN and Selection-
GAN++ on SVA.

Ratio (PSNR) to evaluate the quantitative quality of gen-
erated images. Moreover, we adopt Amazon Mechanical
Turk (AMT) perceptual studies to evaluate the quality of
the generated images. Specifically, participants were shown
a sequence of pairs of images, one a real image and one fake
image, and asked to click on the image they thought was
real. The same exact images are presented to the workers
for all baselines for fair comparisons. Finally, we also use
a neural network based metric LPIPS [65] to evaluate the
proposed method.

State-of-the-Art Comparisons. We compare the pro-
posed SelectionGAN with several state-of-the-art methods,
i.e., StarGAN [16], Pix2pix [14], GPGAN [67], PG2 [1],
Pix2pixHD [15], GauGAN [64], and C2GAN [51]. Quanti-
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Fig. 11: Results of facial expression generation on Radboud Faces.

Fig. 12: Results of hand gesture-to-gesture translation on NTU Hand Digit (top two rows) and Senz3D (bottom two rows).

TABLE 8: Quantitative results of facial expression genera-
tion on Radboud Faces.

Method AMT ↑ SSIM ↑ PSNR ↑ LPIPS ↓
StarGAN [16] 24.7 0.8345 19.6451 -
Pix2pix [14] 13.4 0.8217 19.9971 0.1334
GPGAN [67] 0.3 0.8185 18.7211 0.2531
PG2 [1] 28.4 0.8462 20.1462 0.1130
Pix2pixHD [15] 20.5 0.8269 24.5621 0.1228
GauGAN [64] 10.7 0.7528 20.8430 0.2170
C2GAN [51] 34.2 0.8618 21.9192 0.0934
SelectionGAN 37.5 0.8760 27.5671 0.0917
SelectionGAN++ 39.1 0.8761 27.5158 0.0905

tative results of the SSIM, PSNR, LPIPS, and AMT metrics
are show in Table 8. We can see that the proposed Selection-
GAN and SelectionGAN++ achieve better results than the
existing methods on all metrics, validating the effectiveness
of our methods. Note that GauGAN achieves unsatisfactory
results in this task since it is proposed to use segmentation
maps as input. However, this task uses facial landmarks
as guidances, which is quite different from segmentation
maps. On the contrary, our methods achieve good results
in this task, which further proves the generalizability of
our proposed methods. Qualitative results are shown in
Fig. 11. Clearly, the image generated by our SelectionGAN
and SelectionGAN++ are more sharper and contains more
image details compared to other leading methods.

Visualization of Learned Uncertainty Maps. We also show
the learned uncertainty maps in Fig. 11. We observe that the

proposed SelectionGAN can generate different uncertainty
maps according to different facial expressions, which means
the proposed model can learn the difference between differ-
ent expression domains.
Efficiency. We also compared the proposed methods with
existing methods on facial expression generation. Our pro-
posed SelectionGAN and SelectionGAN++ takes about 24
and 27 hours to finish the training on a single NVIDIA
DGX1 V100 GPU, while C2GAN, GauGAN, Pix2pixHD, and
PG2 takes around 27, 32, 36, and 30 hours, respectively. This
also validates that the proposed methods are efficient.
SelectionGAN vs. SelectionGAN++. We also provide com-
parison results of SelectionGAN [9] and SelectionGAN++
in Table 8. SelectionGAN++ achieves better results than
SelectionGAN on most metrics, i.e., AMT, SSIM, and LPIPS.
Meanwhile, SelectionGAN++ generates more realistic de-
tails (e.g., eyes and month) than SelectionGAN (see Fig. 11).

4.3 Results on Hand Gesture Translation

Datasets. We follow GestureGAN [2] and conduct exper-
iments on both NTU Hand Digit [70] and Senz3D [71]
datasets. NTU Hand Digit dataset contains 75,036 and 9,600
image pairs for training and testing sets, each of which is
comprised of two images of the same person but different
gestures. For Senz3D, which contains 135,504 pairs and
12,800 pairs for training and testing.
Parameter Settings. Images on both datasets are resized
to 256×256, and we enabled image flipping and random
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TABLE 9: Quantitative results of hand gesture-to-gesture translation on NTU Hand Digit and Senz3D.

Method
NTU Hand Digit Senz3D

PSNR ↑ IS ↑ AMT ↑ FID ↓ FRD ↓ PSNR ↑ IS ↑ AMT ↑ FID ↓ FRD ↓
PG2 [1] 28.2403 2.4152 3.5 24.2093 2.6319 26.5138 3.3699 2.8 31.7333 3.0933
SAMG [68] 28.0185 2.4919 2.6 31.2841 2.7453 26.9545 3.3285 2.3 38.1758 3.1006
DPIG [69] 30.6487 2.4547 7.1 6.7661 2.6184 26.9451 3.3874 6.9 26.2713 3.0846
PoseGAN [45] 29.5471 2.4017 9.3 9.6725 2.5846 27.3014 3.2147 8.6 24.6712 3.0467
Pix2pixHD [15] 38.1295 2.2358 21.3 8.4003 1.1475 - - - - -
GauGAN [64] 32.2218 2.6210 13.2 18.4373 1.8229 - - - - -
GestureGAN [2] 32.6091 2.5532 26.1 7.5860 2.5223 27.9749 3.4107 22.6 18.4595 2.9836
SelectionGAN 30.6465 2.4472 15.8 16.2159 2.1560 30.4036 2.4595 14.1 30.9775 2.7014
SelectionGAN++ 31.4580 2.5197 20.9 12.4843 2.0221 31.1875 2.8194 18.7 23.6390 2.6711

Fig. 13: Results of controllable hand gesture translation.

crops for data augmentation. Following GestureGAN [2],
the experiments on both datasets are trained for 20 epochs
with batch size of 4.

Evaluation Metrics. We follow [2] and employ Peak Signal-
to-Noise Ratio (PSNR), Inception score (IS) [60], Fréchet
Inception Distance (FID) [61], and Fréchet ResNet Distance
(FRD) [2] to evaluate the generated images. Moreover, we
follow the same settings as in [2], [14] to conduct the
Amazon Mechanical Turk (AMT) perceptual studies.

State-of-the-Art Comparisons. We compare the proposed
methods with the leading hand gesture translation meth-
ods, i.e., PG2 [1], SAMG [68], DPIG [69], PoseGAN [45],
Pix2pixHD [15], GauGAN [64], and GestureGAN [2]. Com-
parison results are shown in Table 9. We can see that our
SelectionGAN and SelectionGAN++ achieve competitive
results on both datasets. Note that GestureGAN achieves
better results than the proposed methods. The reason is
that GestureGAN is carefully tailored and designed for
this task, meaning that GestureGAN is fine-turned to this
task with the network structure, loss objective, and hyper-
parameter selection. However, the proposed methods are
novel and unified GAN models, which can be used to han-
dle various settings of guided image-to-image translation
without modifying the network structure, the loss objective,
and hyper-parameters. Qualitative results compared with
existing methods are shown in Fig. 12. We can see that our

SelectionGAN and SelectionGAN++ also generate photo-
realistic results on this challenging task. Moreover, we show
the learned uncertainty maps in Fig. 13.

Controllable Hand Gesture Translation. In Fig. 13, we
provide results of controllable hand gesture translation. We
can see that the proposed SelectionGAN can translate a
single input image into several output images while each
one respecting the constraints specified in the provided
hand skeleton.

SelectionGAN vs. SelectionGAN++. We also provide com-
parison results of SelectionGAN [9] and SelectionGAN++.
The results of hand gesture translation are shown in Table 9.
We can see that SelectionGAN++ achieves better results than
SelectionGAN on all metrics. Meanwhile, SelectionGAN++
generates more photo-realistic results than SelectionGAN,
as shown in Fig. 13.

4.4 Results on Person Image Generation

Datasets. We follow PATN [73] and conduct person image
generation experiments on both Market-1501 [74] and Deep-
Fashion [75] datasets. Following [73], we collect 263,632 and
12,000 pairs for training and testing on Market-1501. For
DeepFashion, 101,966 and 8,570 pairs are randomly selected
for training and testing.

Parameter Settings. Following PATN [73], images are re-
scaled to 128×64 and 256×256 on Market-1501 and Deep-
Fashion datasets, respectively. Moreover, the experiments
on both datasets are trained for around 90k iteration with
batch size of 32 and 12 on Market-1501 and DeepFashion,
respectively.

Evaluation Metrics. We follow previous works [1], [45], [45],
[51], [73] and adopt Structure Similarity (SSIM) [62], Incep-
tion score (IS) [60] and their corresponding masked versions,
i.e., M-SSIM and M-IS, as our evaluation metrics. We also
recruit 30 volunteers to conduct a user study. Specifically,
given six results (four generated by existing methods, two
generated by our proposed SelectionGAN and Selection-
GAN++), each participant needs to answer two questions:
‘Q1: Which generated image is more realistic regardless of
the target image?’ and ‘Q2: Which generated image matches
the conditioning image better (e.g., clothes)?’.

State-of-the-Art Comparisons. We compare the proposed
SelectionGAN and SelectionGAN++ with several lead-
ing person image generation methods, i.e., PG2 [1],
DPIG [69], PoseGAN [45], VUNet [72], C2GAN [51], BTF [4],
Pix2pixHD [15], GauGAN [64], and PATN [73]. Quanti-
tative results of the SSIM, IS, M-SSIM, and M-IS metrics
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Fig. 14: Results of person image generation on Market-1501 (left) and DeepFashion (right). Key differences in DeepFashion
are highlighted by colored boxes.

TABLE 10: (left) Quantitative results of person image generation on Market-1501 and DeepFashion. (∗) denotes the results
tested on our test set. (right) User study (%) of person image generation. For each comparison, the participant is asked to
answer two questions, i.e., ‘Q1: Which generated image is more realistic regardless of the target image?’, and ‘Q2: Which
generated image matches the conditioning image better (e.g., clothes)?’.

Method
Market-1501 DeepFashion

SSIM ↑ IS ↑ M-SSIM ↑ M-IS ↑ SSIM ↑ IS ↑
PG2 [1] 0.253 3.460 0.792 3.435 0.762 3.090
DPIG [69] 0.099 3.483 0.614 3.491 0.614 3.228
PoseGAN [45] 0.290 3.185 0.805 3.502 0.756 3.439
C2GAN [51] 0.282 3.349 0.811 3.510 - -
BTF [4] - - - - 0.767 3.220

PG2∗ [1] 0.261 3.495 0.782 3.367 0.773 3.163
PoseGAN∗ [45] 0.291 3.230 0.807 3.502 0.760 3.362
Pix2pixHD∗ [15] - - - - 0.762 3.224
GauGAN∗ [64] - - - - 0.754 3.165
VUNet∗ [72] 0.266 2.965 0.793 3.549 0.763 3.440
PATN∗ [73] 0.311 3.323 0.811 3.773 0.773 3.209
SelectionGAN 0.331 3.449 0.816 3.376 0.776 3.341
SelectionGAN++ 0.333 3.512 0.818 3.651 0.778 3.445

Real Data 1.000 3.890 1.000 3.706 1.000 4.053

Method
Market-1501 DeepFashion

Q1 ↑ Q2 ↑ Q1 ↑ Q2 ↑
PG2 [1] 4.2 3.1 6.3 6.5
PoseGAN [45] 8.3 6.7 10.5 8.2
C2GAN [51] 16.1 17.6 - -
PATN [73] 20.3 19.9 22.9 23.1
SelectionGAN 23.7 24.2 28.1 29.3
SelectionGAN++ 27.4 28.5 32.2 32.9

are show in Table 10(left). We see that the proposed Se-
lectionGAN and SelectionGAN++ achieve competitive per-
formance compared with the carefully designed methods
on this task such as PATN [73] and PoseGAN [45]. More-
over, we show the user study results in Table 10(right). We
observe that our methods achieve better results over [1],
[45], [51], [73] in terms of both image realism and style
consistency, further validating that our generated images
are more photo-realistic. Qualitative results are shown in
Fig. 14. The images generated by our SelectionGAN and
SelectionGAN++ are more realistic and sharp compared
with other leading methods. Moreover, the person layouts
of the generated images by our methods are closer to the
target skeletons.

SelectionGAN vs. SelectionGAN++. We also provide com-
parison results of SelectionGAN [9] and SelectionGAN++
in Table 10. We see that SelectionGAN++ achieves better
results than SelectionGAN on all metrics. Moreover, the
results of the user study indicate that SelectionGAN++ gen-
erates much better results than SelectionGAN. Meanwhile,
SelectionGAN++ generates more photo-realistic results (es-
pecially in DeepFashion) than SelectionGAN (see Fig. 14). In
order to better prove that SelectionGAN++ produces more
realistic images than SelectionGAN, we provide the com-

parison in a zoomed-in manner on the DeepFashion dataset
in Fig. 14. For example, in the last row, SelectionGAN++
generates better hair, face, and feet than SelectionGAN.

4.5 Results on Semantic Image Synthesis

To explore the generality of SelectionGAN and Selection-
GAN++ on other generation tasks, we also conduct exper-
iments on the semantic image synthesis task. Specifically,
we adopt GauGAN [64] as our backbone network in this
task and we combine it with the proposed multi-channel
attention selection module to form our final model.
Datasets. We follow GauGAN [64] and conduct semantic
image synthesis experiments on two challenging datasets,
i.e., Cityscapes [78] and ADE20K [7]. The training and
testing set sizes of Cityscapes are 2,975 and 500, respectively.
For ADE20K, which contains 150 semantic classes, and has
20,210 training and 2,000 validation images.
Parameter Settings. Images are re-scaled to 512×256 and
256×256 on Cityscapes and ADE20K datasets, respectively.
Following GauGAN [64], the experiments on both datasets
are trained for 200 epochs with batch size of 32.
Evaluation Metrics. We Follow [64] and employ the mean
Intersection-over-Union (mIoU) and pixel accuracy (Acc) to
measure the segmentation accuracy. Specifically, we adopt
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Fig. 15: Results of semantic image synthesis on Cityscapes (top two rows) and ADE20K (bottom three rows).

TABLE 11: (left) Quantitative results of semantic image synthesis on Cityscapes and ADE20K. (right) User preference study
of semantic image synthesis on Cityscapes and ADE20K. The numbers indicate the percentage of users who favor the
results of the proposed SelectionGAN++ over the competing method.

Method
Cityscapes ADE20K

mIoU ↑ Acc ↑ FID ↓ mIoU ↑ Acc ↑ FID ↓
CRN [76] 52.4 77.1 104.7 22.4 68.8 73.3
SIMS [77] 47.2 75.5 49.7 - - -
Pix2pixHD [15] 58.3 81.4 95.0 20.3 69.2 81.8
GauGAN [64] 62.3 81.9 71.8 38.5 79.9 33.9
SelectionGAN 63.8 82.4 65.2 40.1 81.2 33.1
SelectionGAN++ 64.5 82.7 63.4 41.7 81.5 32.2

AMT ↑ Cityscapes ADE20K

Ours vs. CRN [76] 65.80 72.15
Ours vs. Pix2pixHD [15] 60.93 80.61
Ours vs. SIMS [77] 56.78 -
Ours vs. GauGAN [64] 55.22 57.54
Ours vs. SelectionGAN 53.17 55.75

the state-of-the-art segmentation networks to evaluate the
generated images, i.e., DRN-D-105 [79] for Cityscapes and
UperNet101 [80] for ADE20K. We also employ the Fréchet
Inception Distance (FID) [61] to measure the distance be-
tween the distribution of generated samples and the dis-
tribution of real samples. Finally, we follow GauGAN and
employ Amazon Mechanical Turk (AMT) to measure the
perceived visual fidelity of the generated images.

State-of-the-Art Comparisons. We adopt several leading
semantic image synthesis methods as our baselines, i.e.,
Pix2pixHD [15], CRN [76], SIMS [77], and GauGAN [64].
The results of mIoU, Acc, and FID are show in Ta-
ble 11(left). We note that our SelectionGAN and Selection-
GAN++ achieve better results than the existing compet-
ing methods on both mIoU and Acc metrics. For FID,
SelectionGAN and SelectionGAN++ are only worse than
SIMS on Cityscapes. However, SIMS has poor segmentation
results. Moreover, we follow GauGAN and provide AMT
results in Table 11(right). We observe that users favor our
translated images on both datasets compared with existing
leading methods. Qualitative results compared with the
exiting methods are shown in Fig. 15. We observe that
SelectionGAN and SelectionGAN++ produce much better
results with fewer visual artifacts than exiting methods.

Visualization of Generated Segmentation Maps. We follow
GauGAN and apply pre-trained segmentation networks on
the generated images to produce segmentation maps. The
intuition behind this is that if the generated images are real-
istic, a well-trained semantic segmentation model should be
able to predict the ground truth label. The results compared
with the state-of-the-art method GauGAN are shown in

Fig. 16: Generated segmentation maps on Cityscapes (top
two rows) and ADE20K (bottom two rows).

Fig. 16. We observe that the proposed SelectionGAN gener-
ates better semantic maps than GauGAN on both datasets.
SelectionGAN vs. SelectionGAN++. We also provide com-
parison results of SelectionGAN [9] and SelectionGAN++ in
Table 11. SelectionGAN++ achieves better results than Selec-
tionGAN on all metrics, i.e., mIoU, Acc, and FID. Moreover,
the results of the user study indicate that SelectionGAN++
generates more photo-realistic results than SelectionGAN.
We also note that SelectionGAN++ generates better results
than SelectionGAN on both datasets (see Fig. 15).

5 CONCLUSION

We propose SelectionGAN to address a novel image syn-
thesis task by conditioning on an input image and several
conditional semantic guidances. In particular, we adopt a
cascade strategy to divide the generation procedure into two
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stages. Stage I aims to capture the semantic structure of the
target image and Stage II focuses on more appearance de-
tails via the proposed multi-scale spatial pooling & channel
selection and the multi-channel attention selection modules.
We also propose an uncertainty map guided pixel loss
to solve the inaccurate semantic guidance issue for better
optimization. Extensive experimental results on four guided
image-to-image translation and semantic image synthesis
tasks with 11 public datasets show that our method obtains
much better results than the state-of-the-art models.
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