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Abstract

While Artificial Intelligence (AI) is making giant steps, it is also raising concerns about
its trustworthiness, due to the fact that widely-used black-box models cannot be exactly
understood by humans. One of the ways to improve humans’ trust towards AI is to use
interpretable AI models, i.e., models that can be thoroughly understood by humans, and
thus trusted. However, interpretable AI models are not typically used in practice, as they
are thought to be less performing than black-box models. This is more evident in Reinforce-
ment Learning, where relatively little work addresses the problem of performing Reinforce-
ment Learning with interpretable models. In this thesis, we address this gap, proposing
methods for Interpretable Reinforcement Learning. For this purpose, we optimize Decision
Trees by combining Reinforcement Learning with Evolutionary Computation techniques,
which allows us to overcome some of the challenges tied to optimizing Decision Trees in
Reinforcement Learning scenarios. The experimental results show that these approaches
are competitive with the state-of-the-art score while being extremely easier to interpret.
Finally, we show the practical importance of Interpretable AI by digging into the inner
working of the solutions obtained.
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Chapter 1

Introduction

In the last decade, the artificial intelligence (AI) field has seen a series of breakthroughs. In
fact, in such a small period, several milestones have been reached: the rise of convolutional
neural networks (CNNs) for computer vision (CV) [60, 131, 47, 29, 37], the astonishing
achievements in the field of Reinforcement Learning (RL) [85, 148, 93], the advances
in Natural Language Processing [14, 107], image-to-image and text-to-image generative
models [147, 109, 108, 113].

The vast majority of these breakthroughs are due to the progress made in the field of
artificial neural networks (NNs). NNs are computational models that (loosely) mimic the
functioning of biological neural networks, in that they are composed of artificial “neurons”
interconnected by synapses. While these models are extremely powerful and scalable, as
confirmed by the exciting results described above, they suffer from a fundamental issue
that can prevent their application in safety-critical and high-stakes scenarios: deep NNs
are tremendously hard to understand for a human. More concisely, we could say that NNs
are not interpretable. Interpretability is a structural property of a machine learning model
that depicts the ability of a model to be clearly and exactly understood by a human [6].

The last sentence of the previous paragraph begs the question: why is interpretability
so important in machine learning? In the next paragraphs, we will provide some answers
to this question.

Bias is currently one of the biggest issues in machine learning. In fact, bias heavily
depends on the statistical distribution of the training data.

In the past years, several events raised concerns about bias in machine learning. Some
of the most widely known incidents are shown below. An ML model produced by Amazon
for screening job applicants was found to be gender-biased, penalizing terms in a CV that
were related to women1. An image labeling model from Google photos mistakenly labeled

1https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
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CHAPTER 1. INTRODUCTION

several pictures of a black couple as “gorillas” 2. Similarly, a video-captioning model from
Facebook erroneously mislabeled footage of black people as “primates”3.

These issues are caused by the fact that it is very hard to verify the absence of biases
in a non-interpretable machine learning model.

Interpretable ML models, instead, can prevent this type of issue by enabling inspection
before the deployment, to assess that the knowledge learned by the model is not biased
in any way.

Debugging a model is important to avoid catastrophic outcomes when deploying a
model. When dealing with complex, non-interpretable models, testing all the possible
outcomes becomes unfeasible. However, when deploying a model in a safety-critical sce-
nario even a thoroughly tested non-interpretable model can behave differently from what
the testing phase showed.

One of the most shocking cases happened when Microsoft deployed an ML chatbot
on Twitter that could learn from its interactions with the users. However, the model’s
learning mechanism was exploited by a subset of the community to turn the chatbot into
a sexist and racist chatbot4. Another tragic type of event is when some malfunctioning
happens in ML models for autonomous driving56, which can easily lead to fatalities.
Finally, this type of incident also happened in the medical domain, where an AI built by
IBM was found to suggest fundamentally wrong treatments to patients7.

Discovery is what enables progress. Machine Learning can be a game-changing enabler
to the automated discovery field. However, using non-interpretable approaches to au-
tomated discovery may be short-sighted. To have a sustainable approach to ML-aided
research, there must be a symbiosis between human researchers and machine learning
algorithms: ideally, the researcher should tell the algorithm what problem they want to
solve, then the algorithm finds a solution and, most importantly, the researcher should
be able to understand the solution generated by the machine learning model so that the
solution can be improved and the discovery cycle can be re-iterated.

To face non-understandability issues in Machine Learning, in the last years the fields
of eXplainable AI (XAI) and Interpretable AI (IAI) have seen a growing interest. While
they may seem the same thing, there are some fundamental differences between them [6].

2https://www.bbc.com/news/technology-33347866
3https://www.nytimes.com/2021/09/03/technology/facebook-ai-race-primates.html
4https://www.bbc.com/news/technology-35902104
5https://www.nytimes.com/2021/04/18/business/tesla-fatal-crash-texas.html
6https://www.washingtonpost.com/technology/2022/06/15/tesla-autopilot-crashes/
7https://www.theverge.com/2018/7/26/17619382/ibms-watson-cancer-ai-healthcare-science
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As stated in [6], explainable models are a set of models whose behavior can be ex-
plained. Thus, explainability is a behavioral property of a model, that tells us that it is
possible, by observing the model’s inputs and outputs, to obtain some insights about its
inner functioning. On the other hand, interpretability is an intrinsic property of a model,
i.e., it can be easily understood (by humans) by inspecting its components.

This distinction is crucial: as an example, since we can analyze an explainable model
by using post-hoc techniques, we may be tempted to say that we fully understand why a
decision was taken. However, this reasoning is faulty: just because we have a (perhaps
convincing) explanation about the behavior of a model, we cannot be entirely sure that the
explanation was faithful to the model’s “reasoning”. Most widely-known XAI approaches
seek to characterize the behavior of a model by either:

1. Building local explanations [111, 74, 110, 112, 32, 55]

2. Approximating the behavior of a model [54, 53, 7, 8, 61]

While this may be satisfactory in some scenarios, it is important to note that XAI
approaches often approximate the model. This is a very important caveat: as approxima-
tions, they are by definition not exact, which may not be acceptable in safety-critical or
high-stakes scenarios. In this regard, several works show that explanations provided by
XAI approaches may be brittle, and not reflective of the internal state of the explained
model.

For instance, in [116], the authors explain a prediction of an image classifier using
saliency maps [130]. Then, after applying an adversarial perturbation to the image, they
show that the saliency map is practically unchanged, while the output of the classifier
is significantly different. Similarly, in [133], the authors show that it is possible to fool
popular XAI algorithms such as LIME [111] and SHAP [74] by explaining racist classifiers
with non-racist explanations. This last example emphatically shows that XAI approaches
are unsuitable in scenarios with potentially harmful outcomes to people, society, and the
economy.

Moreover, the importance of interpretability has been pointed out by both the Euro-
pean Union and UNESCO. The European Union, in a document8, proposed the AI Act9,
a set of requirements to be met by modern AI systems. In this act, the EU emphasizes
the need for the right to inspect and understand models, which is deemed one of the
most important rights in the AI Act. On the other hand, UNESCO released a set of
recommendations for ethics in AI10. In this document, they state that in order to avoid

8https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.
0001.02/DOC_1&format=PDF

9artificialintelligenceact.eu
10https://unesdoc.unesco.org/ark:/48223/pf0000380455/
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inequality, discrimination, and threats to diversity, AI models should be understandable
and transparent.

The reports released by these two institutions mark a new milestone in the field of
AI. In fact, while the usefulness of AI in modern society is not only recognized but
given for granted, they point out the pitfalls that come with AI, asking for transparent,
interpretable machine learning models.

While the field of interpretable AI is making a lot of progress, not all subfields are
growing equally. In [118], the authors list a number of challenges that, if solved, would
be game-changing for the field of Interpretable Machine Learning. One of the challenges
described in the paper is Interpretable Reinforcement Learning.

In fact, while the field of Interpretable Machine Learning is making good progress,
Interpretable Reinforcement Learning is left behind, as little research addresses the issues
appearing in Reinforcement Learning (RL) with interpretable models.

Reinforcement Learning is an ML paradigm in which there is an agent that has to learn
how to complete a task by interacting with an environment. The typical flow in an RL
setting is the following. The agent receives an observation of the state of the environment,
and it has to decide what is the most appropriate action to perform in response to the
observation. Once the action has been deployed in the environment, the agent receives a
reward that describes the quality of the action taken by the agent. Then, the agent can
leverage the reward provided by the environment to improve itself and increase its perfor-
mance. The RL paradigm can be useful to discover policies that allow to perform well in
tasks with unknown dynamic or where the dynamic of the environment can change (e.g.,
real-world physical systems may degrade over time, and thus slight changes of the policies
may be needed). Moreover, RL is very useful when the agent has to continually adapt to
new tasks. RL is the enabling technology behind several breakthrough in games [122, 93]
and it was recently used to improve conversational chatbots using human feedback [95].

In this thesis, we propose methods to cope with the issues arising in Interpretable
RL (IRL) and, in general, in Interpretable Machine Learning (IML). Regarding the IRL
problem, we will present methods for different scenarios: single- and multi-agent setups,
small and large input spaces, and their application to real-world problems.

This thesis is structured as follows. Chapter 2 makes a brief overview of related work
in the literature. In Chapter 3, we present methods that combine techniques from the evo-
lutionary optimization (and automatic program synthesis) and the reinforcement learning
fields to produce interpretable agents. Chapter 4 extends the previous chapter to produce
agents that can act in environments with continuous action spaces. In Chapter 5, we
describe a method that, exploiting co-evolutionary algorithms, can produce interpretable
agents for RL environments whose state is described through images. Chapter 6 proposes
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an extension of the method proposed in Chapter 3 to multi-agent scenarios. Then, Chap-
ter 7 shows the application of the methods proposed in the previous section to real-world
problems. Chapter 8 draws the conclusions and lists potential future directions for the
field.
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Chapter 2

Related Work

2.1 Decision Trees for Reinforcement Learning

A RL problem can be represented through a Markov Decision Process (MDP). An MDP is
a tuple < S,A,P ,R, γ,S0 >, where S is a set of states (a single state is defined as s ∈ S),
A is a set of actions that can be taken by the agent, P(s, a, ·) describes the probability
distribution over S when action a is taken in the state s. R(s, a, s′) is the reward function,
i.e., the function that associates a reward to each state transition. γ, instead, represents
a discount factor that is used to give a higher weight to immediate rewards and a smaller
weight to future rewards. Finally, S0 describes the set of initial states.

A Q function is a function that can be used to estimate the quality of each action-
state pair in the MDP. Once a Q function has been learned (i.e., its error has reached a
relatively small value), it can be used as a policy by choosing, for each input, the optimal
action (i.e, the action that maximizes the Q function):

a∗(s) = argmax
a

(Q(s, a))

Usually, Q functions are either encoded in tables (called Q tables) or approximated using
function approximators. Function approximators are used to cope with the high cardi-
nality of the set S: |S|. For instance, in Deep Q Learning [85], a Deep Neural Network
(DNN) is used to approximate a Q function [151].

The use of Decision Trees (DTs) to solve RL tasks has been explored in several previous
works. McCallum, in [79], proposes U-Trees: a kind of tree able to perform RL. Those are
created by dividing the RL problem into three sub-problems: choice of memories, selective
perception, and value function approximation. In [146], the authors extend U-Trees to
make them able to cope with environments with continuous state spaces. They propose
two novel tests that are used to create new conditions that split the state space. They
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test the proposed approach in two environments, a continuous one and an ordered-discrete
one, and their results show that their approach is competitive with other methods.

Pyeatt and Howe, in [104], propose a novel splitting criterion to build trees that can
perform value function approximation. In their experiments, they compare the perfor-
mance obtained by using their approach to the ones obtained using other splitting criteria,
a table-lookup approach, and a neural network. The results demonstrate that the pro-
posed approach often outperforms all other methodologies.

In [114], the authors propose a method that predicts the gain obtained by adding a
split (i.e., a condition) to the tree and selecting the best split to grow the tree. The
experimental results show that this method is more effective than the method proposed
in [104] on the tested environment.

The approaches described are capable of producing DTs with good interpretability
(due to the fact that the DTs produced use simple conditions). However, they suffer from
a major drawback: the curse of dimensionality. This means that these approaches do not
scale well with the number of inputs, making their optimization harder as the number of
inputs increases and thus hindering their application to challenging environments.

Silva et al. [129] propose an approach to interpretable RL that uses Proximal Policy
Optimization (PPO) [128] on differentiable DTs. The experimental results show that this
approach can produce competitive solutions in some of the tested tasks. However, it is
also shown that when the differentiable DTs are discretized into traditional (i.e., discrete)
DTs, their performance may heavily decrease. A continuous version of this approach has
been proposed in [96].

In [28], the authors use Evolutionary Algorithms (EAs) to evolve non-linear DTs. By
non-linear, the authors mean that each split does not define a linear hyperplane in the
feature space. The experimental results show that this approach can obtain competitive
performance w.r.t. a neural-network-based approach. A case study for this approach is
presented in [42]. While this approach is able to solve a variety of tasks, the type of splits
used make their interpretation hard, as they define potentially complex hyperplanes for
the conditions.

In [99], the authors use the Grammatical Evolution (GE) algorithm [120] to evolve
behavior trees (i.e., tree structures that allow more complex operations than a DT) for the
Mario AI competition. The proposed agent can perform basic actions or pre-determined
combinations of basic actions. Their solution achieved fourth place in the Mario AI
competition. However, the authors only evolve a controller, not exploiting the rewards
given by the environment to increase the performance of the agent.

Hallawa et al., in [44], use behavior trees as evolved “instinctive” behaviors that are
then combined with a learned behavior. While behavior trees are usually interpretable,
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the authors do not take explicitly into account the interpretability of the whole model,
which comprises both a behavior tree and either a neural network or a Q-learning table.

2.2 Nature-inspired methods for DTs

Several approaches have been proposed to build decision trees with nature-inspired tech-
niques. In [16] the authors replace the greedy algorithm in OC1 [89] by using simulated
annealing, a genetic algorithm, and evolution strategies. The results show that the pro-
posed variants are competitive w.r.t. the original version. Llora et al. [70, 71] use a
framework called “Genetic and Artificial Life Environment” (GALE) to induce decision
trees for classification. Their results show that their approach can obtain state-of-the-
art performance. Czajkowski et al., in [25], use a multi-objective evolutionary algorithm
(EA) to simultaneously optimize the performance of the decision trees and some of their
properties. The results show that, by using the proposed method, the authors achieve
competitive performance while obtaining simpler trees w.r.t. the state of the art. In [11]
the author applies genetic programming (GP) (as done also in [57]) to the induction of
decision trees for classification purposes. The results show that the obtained results are
comparable with those obtained in the OC1 induction algorithm while having slightly
worse performance than M5’ [39] and C5.0 [106]. In [59], the author defines a memetic
algorithm (i.e., an evolutionary algorithm combined with a local optimization algorithm)
that uses GP to induce decision trees. In [36], the authors present an approach to evolve
decision trees based on GP and cellular automata. The results show that this approach
has comparable (often better) performance w.r.t. C4.5. Heath et al. [48] propose an
approach to the induction of decision trees based on simulated annealing, obtaining trees
that are comparable in performance to the ID3 [105] algorithm while being smaller in size.

2.3 Interpretability

While several work approached the RL problem by using decision trees as function ap-
proximators, to our knowledge, none of them addressed the problem of measuring the
interpretability of the agents produced. Interpretability [6] is defined as an intrinsic
property of a system that tells us whether the system can be easily understood by hu-
mans. It must not be confused with explainability, which is a behavioral property of a
system, and tells us whether we are able to understand the decisions taken by the model
by using post hoc techniques.

While interpretability is defined as a qualitative metric [6, 2], two works tried to build
a quantitative metric to measure the interpretability of a model.
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In [149], the authors build a formula of interpretability by analyzing the results of a
survey and building a model. The model obtained from their survey is the following:

Mo = 79.1− 0.2l − 0.5no − 3.4nnao − 4.5nnaoc (2.1)

where:

• l is the size of the formula (i.e. sum of constants, variables and operations)

• no is the number of operations

• nnao is the number of non-arithmetical operations

• nnaoc is the number of consecutive compositions of non-arithmetical operations.

On the other hand, in [5], the authors suggest that there could be a relationship
between the computational complexity of a model and its interpretability.

Finally, in [66], the author warns that confounding transparency and interpretability
(from the definitions provided in [6]) may be harmful, as huge transparent models may
be as hard to interpret as black-box models.

2.4 Multi-Agent Reinforcement Learning

This section is a short summary of related work in the field of Multi-Agent Reinforcement
Learning (MARL). For a more complete review, we refer the reader to [15, 94, 137, 158].

In a preliminary work [137], the authors explained the advantages of adopting a multi-
agent approach instead of a single, complex agent approach. Several approaches have then
been proposed for MARL. In [123] the authors compared two function approximators in
the iterated prisoner’s dilemma: a table-based approach and a recurrent neural network
(RNN). The experiments showed that the agents based on the tabular approach were
more prone to cooperate than the ones trained using the RNN, indicating that the agents
trained by using the tabular approach had learned a better approximation of the Q func-
tion. Littman [67] presented a novel algorithm based on Q-learning and minimax, named
“minimax Q”. This algorithm, in the experimental results, proved to be able to learn poli-
cies that were more robust than the policies learned by Q-learning. In [46] the authors
made use of cooperative co-evolution with strongly-typed genetic programming (GP) to
evolve agents for a predator-prey game. The evolved strategies were more effective than
handcrafted policies.

Independent Q-learning (IQL) [141] is another convenient approach to MARL, as it
is scalable and decentralized. However, when using neural networks as function approxi-
mators for reinforcement learning, this method cannot be applied. In fact, the need for
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a replay buffer does not make this method suitable in settings with neural networks. To
mitigate this issue, several approaches have been proposed [65, 41, 92, 78, 140]. Other
approaches circumvent this problem by using instead the actor-critic model [19, 132, 76,
138, 156].
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Chapter 3

Hybrid approaches for Interpretable
Reinforcement Learning

Based on: Custode, Leonardo L., and Giovanni Iacca. “Evolutionary learning of inter-
pretable decision trees.” IEEE Access (2023).

3.1 Introduction

During the last decade, the Reinforcement Learning (RL) field saw various breakthroughs.
The prime examples of these achievements can be seen in AlphaStar [148], i.e., a system
that can beat professional StarCraft II players; OpenAI Five [93], which is a model that
was able to beat the Dota2 world champion; and MuZero [125], which is a system that,
by combining deep learning with Monte-Carlo Tree Search, was able to reach superhuman
performance in a wide variety of tasks.

While these accomplishments are remarkable, modern RL approaches suffer from a
critical issue: the lack of interpretability. Even though their performance surpassed hu-
man levels, their application in safety-critical, high-stakes real-world scenarios is limited.
Indeed, since these models are huge, it is very difficult to gain knowledge about them
by inspecting their inner functioning. This lack of interpretability also leads to a lack of
trustworthiness, which is essential for the real-world application of RL systems.

On the other hand, research in the Interpretable RL (IRL) field has received little
attention. For instance, methods that perform IRL using Decision Trees (DTs) do exist.
However, the approaches used for DT induction mostly use greedy algorithms, which
suffer from the curse of dimensionality.

In this chapter, we present a novel approach to DT induction for IRL, which combines
the advantages of Evolutionary Algorithms (EAs) with RL methods. Combining these
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two methodologies allows us to take the best of both worlds. In fact, EAs allow us to
optimize DTs in such a way that the computational cost can be controlled and thus it is
not related to the dimensionality of the input. On the other hand, RL allows the DTs
generated by the EA to learn in an online manner, increasing significantly the efficiency
of the search process. The experimental results confirm this hypothesis, showing that
this approach is comparable to or better than using an EA alone and that this method
allows us to outperform other IRL approaches. Moreover, by comparing these results with
the non-interpretable state of the art we observe that the widely-thought performance-
interpretability trade-off does not always hold.

This chapter is structured as follows. The next section makes an overview of the
related work. Section 3.2 explains the method used in this work and the experimental
setup. In Section 3.3 we present the experimental results, a comparison with the (in-
terpretable) state of the art, an ablation study, and the interpretation of the solutions.
Finally, Section 3.4 draws the conclusions of this chapter.

3.2 Method

Our goal is to solve an RL problem described by a Markov Decision Process (MDP) using
a DT as policy.

It is interesting to note that, by using a DNN to represent a Q function, we are using
a Q table that is infinitely large, i.e., it can potentially compute a different value for
each different state s ∈ Rd, where d is the number of variables composing an observation
s (please, note that s can be represented as a vector where each dimension accounts for
a distinct input. With a slight abuse of notation, we will indicate this vector s).

On the other hand, using DTs we aim to solve the problem in the opposite way: given
S, we want to find an optimal partitioning (thus, denoted by a star) S∗

p of the space
that allows us to find an optimal action for each partition p ∈ S∗

p . A partition of the
state space is a set of sets, each of which contains semantically similar states. Thus, the
following properties hold:

•
⋃

p∈Sp

(p) ≡ S

•
⋂

p∈Sp

(p) ≡ ∅

Note that these properties apply to any possible partitioning Sp of S, not just to the
optimal one (S∗

p ).
Thus, we can decompose the RL problem into two subproblems:

• RL1: the problem of finding the optimal partitioning S∗
p ,
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• RL2: the problem of finding the optimal action a∗p for each partition p ∈ S∗
p .

To the best of our knowledge, this is the first work that decomposes the RL problem in
this way.

In similar works, [79, 146, 104, 114] the authors build DTs for RL by using greedy
heuristics. However, this may not be the best choice, for the following reasons:

1. the DT induction problem has been proved to be NP-complete [51]. Thus, greedy
approaches may produce DTs that are suboptimal [79, 33]

2. the trees are expanded by using tests that suffer from the curse of the dimensionality
[79, 146], since the tests need to be performed on each of the input variables

To solve these issues, other approaches [70, 71, 59, 99, 25] make use of EAs to induce
DTs. However, since most of these works are not applied to RL problems (except for
[99]), these approaches cannot exploit the reward signals given by an RL environment to
improve their efficiency.

In this chapter, we propose a method that is specifically tailored to the optimization
of DTs for RL. This algorithm, in fact, is designed to optimize simultaneously the two
subproblems RL1 and RL2 discussed earlier. The way in which we approach this problem
is the following:

1. we use Grammatical Evolution (GE) [120] (an EA that can evolve solutions based on
a context-free grammar) to search for DT structures that perform a (not necessarily
optimal) partitioning Sp of the state space S,

2. all the solutions generated by GE undergo, in the fitness evaluation phase, an RL
process by using the Q-Learning algorithm [151], which allows them to learn from
the feedback received from the environment.

This can be seen as a two-level optimization algorithm, in which there is an outer loop
that optimizes the structure of the DT by using GE, and an inner loop that optimizes the
content of the leaves by means of Q-learning. The pseudocode for the GE algorithm is
shown in Algorithm 1, while the description of the fitness function is shown in Algorithm 3.
Figure 3.1 shows graphically the functioning of the proposed algorithm.

Note that, while the knowledge learned by the agent does not directly propagate to
its offspring, it has a huge impact on the search landscape. Thus, it can be classified as
a Baldwinian evolutionary approach.

The details of the algorithm are described below.
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Genotype Phenotype Environment

Initialization

SelectionCrossoverMutation

Replacement
Actions

States,
Rewards

Q-Learning

Figure 3.1: Block diagram of the functioning of the proposed algorithm. Blue blocks refer to
Grammatical Evolution, while orange blocks refer to Q-Learning.

Algorithm 1: Optimization of DTs by using GE and Q-Learning
Data: np, ng, px, pm, st, ne, α, γ

Result: T̂ ∗: the best DT found
1 pop← initializePop(np);
2 evaluate(pop);
3 best← getBest(pop);
4 for gen ∈ [1, ng] do
5 new_pop← select(pop, st);
6 new_pop← crossover(new_pop, px);
7 new_pop← mutate(new_pop, pm);
8 new_pop← evaluate(new_pop, ne, α, γ);
9 pop← replace(new_pop, pop);

10 best← getBest(pop);

11 end
12 return best;

Individual Encoding

In the GE algorithm, a genotype corresponds to a list of indices. These indices are then
used to build a phenotype (i.e., a solution) by querying the grammar. In fact, initially,
each phenotype is composed of a starting rule (usually represented by a string enclosed
in angle brackets). Then, for each of the codons (i.e., the elements of the list), the first
non-expanded rule is expanded. To expand a rule, we query the grammar to get the
production of that rule, which is a list of possible strings (that may contain other rules),
and choose one of them. Then, we use the indices contained on the list: at the i-th step,
we choose the index contained at the i-th location of the list that represents an individual.
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In some cases, the index contained in the list may exceed the length of the production.
To solve this issue, we use the modulo operator to ensure that we use valid indices.

Each individual is thus encoded as a list of si integers (a hyperparameter) gi ∈ [0,m],
where m is a number much greater than the maximum number of productions for the
grammar, to ensure uniform sampling probability of each production in the grammar.

Finally, we represent each DT as a Python program. This means that each solution
encodes a DT encoded as combinations of if-then-else statements.

The pseudocode of the genotype-to-phenotype mapping (i.e., how a list is transformed
in a solution) is shown in Algorithm 2.

Algorithm 2: Genotype-to-phenotype mapping
Data: individual, grammar

Result: sol: the corresponding Decision Tree encoded as a Python program
1 sol← “⟨start⟩”;
2 for codon ∈ individual do
3 rule← getF irstRule(sol);
4 production← grammar[rule];
5 nProductions← length(grammar[rule]);
6 value← production[codon mod nProductions];
7 sol← replaceF irstOccurrence(sol, rule, value);

8 end
9 return sol;

Selection

To decide which of the individuals must be chosen to produce new solutions (i.e., their
offspring), we use tournament selection. This means that, for a given population size np,
np tournaments are created, each of which contains st individuals (st is a hyperparame-
ter). For each of the tournaments, the best individual in the tournament is selected for
reproduction.

Crossover

In order to recombine two solutions, we use single-point crossover. This algorithm chooses
a random point in the genome and splits each genome into two parts. Then, it creates
two new individuals by mixing the parts of genomes created earlier.
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Mutation

To mutate the individuals, we use the random mutation operator. This operator mutates
the value of each codon with probability pc by assigning it a new random value in [0,m].

Replacement

In order to increase the exploitation capabilities of this approach, we do not replace a
population with its offspring. Instead, a parent is replaced if and only if at least one of
its offspring performs better than it.

3.2.1 Fitness Evaluation

Once the GE algorithm produces a DT T , this needs to be evaluated on the RL problem.
Thus, at each step, T computes the id i of the leaf that is responsible for the current

state. Then, the leaf li, which contains a list of Q values, decides what action to take
according to an ε-greedy Q-Learning policy:

a =

argmax
a∗

(li(a
∗)) with prob. (1− ε)

random with prob. ε
(3.1)

Then, after taking action a, T observes the reward r and the next state s′, which is
associated to a potentially different leaf j, and updates the values of leaf i by using the
Bellman equation:

li(a) = (1− α)li(a) + α[r + γ ·max
a′

(lj(a
′))] (3.2)

This can be rewritten in a form that is more similar to the original Q-Learning equation
by using T (s, ·) as a proxy for the corresponding leaves:

T (s, a) = (1− α)T (s, a) + α[r + γ ·max
a′

(T (s′, a′))] (3.3)

Thus, by using the rules shown above for choosing actions and learning their cor-
responding value, we simulate ne episodes with the current tree T . At the end of the
last episode, the mean score obtained by T is returned. The pseudocode for the fitness
evaluation function is shown in Algorithm 3.

Finally, if a genotype cannot be translated into a phenotype (e.g., because after the
expansion of the last codon, there are still non-expanded rules), it is assigned a fitness of
−103, i.e., a value much lower than the ones that a valid agent can obtain.
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Algorithm 3: Decision Tree evaluation using Q-Learning

1 Function evaluate(pop, ne, α, γ): fitnesses is
2 fitnesses← [];
3 for genotype ∈ pop do
4 T ← translateGenotypeIntoTree(genotype);
5 scores← [];
6 for i ∈ [1, ne] do
7 env, state← getEnvironment();
8 score← 0;
9 done← False;

10 while !done do
11 action← T (state);
12 reward, next_state, done← env.step(action);
13 T [state, action]← (1− α)T [state, action] + α(r + γmax(T [next_state]));
14 state← next_state;
15 score← score+ reward;

16 end
17 scores← scores+ [score];

18 end
19 fitnesses← fitnesses+ [mean(scores)];

20 end
21 return fitnesses;

22 end

3.2.2 Experimental setup

To assess the capabilities of the method proposed in this section, we test it in three widely-
used RL benchmarks, implemented in OpenAI Gym [12]: CartPole-v1, MountainCar-v0,
and LunarLander-v2.

Description of the environments

CartPole-v1 This task consists in balancing a pole that is located on top of a cart. The
agent has to move the cart either to the left or to the right to make the pole stand.

Observation space The variables describing the state of the cart-and-pole system
are the following:

• Cart position: x ∈ [−4.8, 4.8]m
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• Cart velocity: v ∈ ]−∞,∞[m/s

• Pole angle: θ ∈ [−0.418, 0.418] rad

• Pole angular velocity: ω ∈ ]−∞,∞[ rad/s

Action space The agent can balance the pole by either moving the cart:

• to the left, with a force of 10N (left)

• to the right, with a force of 10N (right)

Rewards The reward obtained by the agent for keeping the pole correctly balanced
is 1 point for each timestep.

Termination criterion The simulation terminates if:

• |x| > 2.4

• |θ| > 0.418rad

• Length of the simulation exceeds 500 steps

Resolution criterion An agent is said to solve this task if its mean return is R ≥ 475,
computed on 100 runs.

MountainCar-v0 This environment is composed of a valley (surrounded by two hills),
and a car. The car, driven by the agent, has to reach the top of the right hill. However,
the car’s engine cannot produce the torque needed to climb the hill, thus the agent has
to learn to swing between the two hills to build momentum and climb the right hill.

Observation space The inputs to the agent are:

• car’s position: x ∈ [−1.2, 0.6]m

• car’s velocity: v ∈ [−0.07, 0.07]m/s

Action space The agent can perform 3 actions:

1. Accelerate, with a force of 10−3N , to the left: left

2. Do not accelerate in any direction: nop

3. Accelerate, with a force of 10−3N , to the right: right

Rewards At each timestep, the agent receives a penalty of -1 point, which should
encourage the agent to solve the task as quickly as possible.

Termination criterion An episode has a length of 200 steps. No other event can
terminate the simulation earlier.

Resolution criterion To solve this task, an agent has to receive a mean return
R ≥ −110, computed on 100 runs.
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LunarLander-v2 In this environment, an agent has to pilot a rocket to make it land in
a pre-defined area of a planet’s surface.

Observation space The agent receives the following observations:

• Rocket’s position: px, py ∈ [−1.5, 1.5] m

• Rocket’s velocity: vx, vy ∈ [−5, 5] m/s

• Angle w.r.t. the vertical axis: θ ∈ [−π, π] rad

• Angular velocity: ω ∈ [−5, 5] rad/s

• Whether the left/right legs are touching the ground: cl, cr ∈ {0, 1}

Action space The agent can control the rocket by performing the following actions:

1. Do not fire any engine: nop

2. Fire the left engine: left

3. Fire the main engine: main

4. Fire the right engine: right

Rewards The agent receives a reward varying from 100 to 140 points for landing with
a final velocity of zero. If it crashes, instead, it receives a reward of −100 points. Finally,
firing each of the engines leads to a penalty: firing the side engines gives a penalty of
−0.03, while firing the main engine leads to a penalty of −0.3.

Termination criterion An episode is terminated in the following cases: the rocket
crashes, the duration exceeds 1000 timesteps or the rocket moves outside the bounds of
the environment.

Resolution criterion An agent is said to solve the task if its mean return R ≥ 200,
computed on 100 runs.

Metric of interpretability

Even though the proposed method only optimizes the score, when comparing our results
to the state of the art not only we will use the mean score as the metric, but also use a
“complexity of interpretability” metric derived from [149]. We define the “complexity of
interpretability” as:

M = −0.2 + 0.2l + 0.5no + 3.4nnao + 4.5nnaoc (3.4)

It is easy to observe that the proposed metric derived straightforwardly from the one
proposed in [149]. This is due to the fact that this metric was created for relatively
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small mathematical formulae, whereas we are interested in assessing the interpretability
of potentially large machine learning models. This is an issue with the original formula,
as it is meant to lie in [0, 100] and, with large formulae, it may exceed the bounds. Thus,
the main differences betweenM and the original formulation are:

• The signs are flipped: this makes the metric work as a complexity. Thus, from the
interpretability point of view, the lower the better,

• The initial constant is different: this allows the metric to be defined in [0,∞], so
that when an ML model is simply a constant, itsMconst = 0, while e.g., with infinite
parameters we will haveM∞ =∞.

Moreover, it is interesting to note that this formulation (and the one proposed in
[149]) is consistent with the formulation proposed by Barceló et al. [5], where the authors
propose the use of computational complexity to measure interpretability. This metric is
also consistent with the critics moved to the field of interpretable AI in [66], where the
author states that huge transparent machine learning models may not be interpretable.

Hyperparameters

The grammars used for the three environments are shown in Tables 3.1 to 3.3.
To better understand how grammar affects the outcome of the search process, we used

two different grammars. The first one, which we call “orthogonal grammar”, produces
orthogonal DTs; while the second one, called “oblique grammar”, produces oblique DTs.

An orthogonal DT is a DT that uses one variable for each condition (a condition is
also called “split”). Thus, each split of the tree draws a hyperplane in the input space
which is orthogonal to the axis of the variable being used in the split. On the other hand,
an oblique DT uses a linear combination of all the inputs, and thus draws a hyperplane
that is (potentially) oblique w.r.t. the axes of the input variables.

The hyperparameters used for GE and Q-Learning, instead, are shown in Tables 3.4
to 3.6.

All the hyperparameters and grammars were tuned empirically, starting from well-
known values.

Note that, for the LunarLander-v2 environment, we were not able to find any con-
figuration of hyperparameters that was able to reach satisfactory performance with the
orthogonal grammar (however, it is not clear whether such a set of hyperparameters does
exist). Thus, the results for orthogonal DTs on LunarLander-v2 will not be shown.

Please, note also that to evolve DTs in the LunarLander-v2 environment, we use 103

episodes with early stopping, which works as follows. Each ∆e episodes (except for the
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Table 3.1: Grammars used for the evolution of DTs in the CartPole-v1 environment. “|” indicates
the possible choices for a given rule. “comp_op” means “comparison operator”. “lt” and “gt” stand
for the “less than” and “greater than” operators. “< ·, · >” denotes the dot product operator.

Rule Production (Orthogonal) Production (Oblique)
start ⟨if⟩ ⟨if⟩

if if ⟨condition⟩ then ⟨action⟩ else ⟨action⟩ if ⟨condition⟩ then ⟨action⟩ else ⟨action⟩

condition

⟨comp_op⟩(x, ⟨constx⟩) | lt((< ⟨const⟩, input >, ⟨const⟩)
⟨comp_op⟩(v, ⟨constv⟩) |
⟨comp_op⟩(θ, ⟨constθ⟩) |
⟨comp_op⟩(ω, ⟨constω⟩)

action leaf | ⟨if⟩ leaf | ⟨if⟩
comp_op lt | gt
constx [-4.8, 4.8) with step 0.5
constv [-5, 5) with step 0.5
constθ [-0.418, 0.418) with step 0.01
constω [-0.836, 0.836) with step 0.01
const [-1, 1) with step 0.001

initial ∆e), the score on the last ∆e episodes is computed. Then, it is compared to the
previous mean (i.e., the one computed on the previous set of ∆e episodes, i.e., ([2∆e,∆e[).
If the current mean is lower, then we can assume that the performance of the agent
has (almost) converged to its optimal value (guaranteed by the fact that we are using a
dynamic learning rate of 1

v
, where v is the number of visits to each action of each leaf

[139]), and stop the evaluation.

Simplification of the DTs

To make our solutions even more interpretable, we introduce a simplification mechanism
that is executed on the final solutions. The simplification mechanism is the following.
First of all, we execute the given policy for 100 episodes in the test environment. Here,
we keep a counter for each node of the tree that is increased each time the node is visited.
Then, once this phase is finished, we remove all the nodes that have not been visited.
Finally, we iteratively search for nodes in the tree whose leaves correspond to the same
action. Each time such a node is found, it is replaced with a leaf that contains the
common. The iteration stops when the tree does not contain such nodes.

23



3.2. METHOD CHAPTER 3. HYBRID APPROACHES FOR IRL

Table 3.2: Grammars used for the evolution of DTs in the MountainCar-v0 environment. “|”
indicates the possible choices for a given rule. “comp_op” means “comparison operator”. “lt” and
“gt” stand for the “less than” and “greater than” operators. “< ·, · >” denotes the dot product
operator.

Rule Production (Orthogonal) Production (Oblique)
start ⟨if⟩ ⟨if⟩

if if ⟨condition⟩ then ⟨action⟩ else ⟨action⟩ if ⟨condition⟩ then ⟨action⟩ else ⟨action⟩

condition
⟨comp_op⟩(x, ⟨constx⟩) | lt((< ⟨const⟩, input >, ⟨const⟩)
⟨comp_op⟩(v, ⟨constv⟩)

action leaf | ⟨if⟩ leaf | ⟨if⟩
comp_op lt | gt
constx [-1.2, 0.6) with step 0.05
constv [-0.07, 0.07) with step 0.005
const [-1, 1) with step 0.001

Table 3.3: Grammar used to evolve oblique decision trees in the LunarLander-v2. The symbol
“|” denotes the possibility to choose between different symbols. “lt” refers to the “less than”
operator. “< ·, · >” denotes the dot product operator.

Rule Production
start ⟨if⟩

if if ⟨condition⟩ then ⟨action⟩ else ⟨action⟩
condition lt((< ⟨const⟩, inputi >, 0)

action leaf | ⟨if⟩
const [−1, 1] with step 10−3
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Table 3.4: Hyperparameters used to evolve
DTs in the CartPole-v1 environment. Q0 is
the interval used for the initialization of the
Q values through random sampling. U de-
notes the Uniform distribution.

Param. Value Value
(Orthogonal) (Oblique)

np 200 200
ng 100 50
si 1024 100
px 0 0
pm 1 1
pc 0.1 0.1
st 2 2
ε 0.05 0.05
Q0 U(−1, 1) U(−1, 1)
α 0.001 0.001
ne 10 10
γ 0.9 0.9

Table 3.5: Hyperparameters used to evolve
DTs in the MountainCar-v0 environment. Q0

is the interval used for the initialization of
the Q values through random sampling. U
denotes the Uniform distribution.

Param. Value Value
(Orthogonal) (Oblique)

np 200 200
ng 1000 2000
si 1024 100
px 0 0.1
pm 1 1
pc 0.05 0.05
st 2 2
ε 0.05 0.05
Q0 U(−1, 1) U(−1, 1)
α 0.001 0.001
ne 10 10
γ 0.9 0.9
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Table 3.6: Hyperparameters used to evolve DTs in the LunarLander-v2 environment. Q0 is the
interval used for the initialization of the Q values through random sampling. k stands for the
k-th sample seen by the agent, v stands for the v-th visit made to a leaf-action pair. “ES” refers
to “early stopping”.

Param. Value
(Oblique)

np 100
ng 100
si 100
px 0.1
pm 1
st 2
ε0 1
εk 0.99kε0

Q0 0

α 1/v

ne 1000 with ES
∆e 30

3.3 Results

The results obtained in the three environments are shown in Figures 3.2 to 3.7 and in
Table 3.7.

CartPole-v1

In the CartPole-v1 environment, both the orthogonal and the oblique grammar reach very
high scores, with the oblique one hitting the maximum more often than the orthogonal.
However, the oblique grammar is not able to solve the task in all the runs, as shown in
Table 3.7.

Moreover, Figure 3.5 shows that the oblique grammar was also able to achieve lower
M. This means that, according to the metric M, the oblique DTs obtained should be
easier to interpret than the obtained orthogonal DTs.

Figure 3.8 shows the fitness trends of our approach in this environment, with both
grammars. It can be observed that the oblique grammar converges faster than the or-
thogonal one. In fact, in most cases, the maximum fitness reaches the maximum value
(i.e., 500) in less than 20 generations.

The difference in performance between the orthogonal and oblique DTs may suggest
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Figure 3.2: Boxplot of training and test scores
for the CartPole-v1 environment. The red
dashed line denotes the lower bound for solv-
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Figure 3.3: Boxplot of training and test scores
for the MountainCar-v0 environment. The
red dashed line denotes the lower bound for
solving the task.

that oblique DTs are inherently more robust than orthogonal DTs in this task. To confirm
this hypothesis, we tested the best individuals obtained in each of the 10 runs on a longer
version of the CartPole-v1 environment to measure the stability of the solutions (as in
Lyapunov stability). The results obtained in this environment, which has a duration of
104 steps (and thus the maximum score is 104) are shown in Figure 3.11. Moreover,
Figure 3.12 shows the distance from the point of equilibrium (i.e, 0) at each step of the
simulation, using the two best policies obtained by using the orthogonal and the oblique
grammar. From the figure, it is clear that the best tree obtained with the oblique grammar
remains closer to the point of equilibrium, whereas the orthogonal tree can significantly
move away from it, supporting the hypothesis that oblique DTs are more stable than
orthogonal DTs in this task.

Furthermore, we tested the robustness of the agents w.r.t. noise on the inputs. Fig-
ure 3.13 shows how the performance of the two best agents vary with respect to additive
input noise (distributed as N (0, σ2)). The orthogonal tree was robust to noise with σ in
the order of twice the sampling step used for the constants in the grammar. On the other
hand, the oblique tree proved to be significantly more robust, being able to cope with
noises that have a σ about 50 times bigger than the sampling step used for the constants.

The best DTs obtained in this environment are shown in Figures 3.16 and 3.17.
Finally, in Table 3.8, we compare the best solutions (obtained with this method)

with state-of-the-art solutions found in the literature. The complexities computed for the
neural-network-based approaches are approximations, i.e., not all the details of the meth-
ods are taken into account (only the architecture of the model), resulting in complexities
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runs).

0 250 500 750 1000 1250 1500 1750 2000

Generation

−450

−400

−350

−300

−250

−200

−150

−100

V
al

u
e

Grammar

Orthogonal

Oblique

Metric

Mean

Max
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Table 3.7: Descriptive statistics (mean and std. dev. over the best solutions found in 10 inde-
pendent runs) on the three OpenAI environments considered in the experimentation. The results
obtained with the orthogonal grammar are not shown for the LunarLander-v2 environment since
we were not able to find a set of hyperparameters that led to solutions for this task.

Environment Type
Mean Std. dev. Mean Std. dev. % of

training training testing testing runs
score score score score solved

CartPole-v1
Orthogonal 499.75 0.55 497.34 5.19 100%

Oblique 500.00 0.00 495.66 12.27 90%

MountainCar-v0
Orthogonal -110.62 4.57 -108.16 6.20 70%

Oblique -107.90 3.09 -110.31 4.39 50%
LunarLander-v2 Oblique 255.58 14.58 213.09 18.73 100%
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Figure 3.11: Boxplot of the scores obtained
in the 104-steps-long version of CartPole-v1.
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Figure 3.13: Plot of the Test Score w.r.t. dif-
ferent noise levels σ in CartPole-v1.
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Figure 3.14: Plot of the Test Score w.r.t. dif-
ferent noise levels σ in MountainCar-v0.
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that are slightly smaller than the real values. For the purpose of this comparison, these
minor differences are negligible. The other solutions are available in the repository of the
project1.

From Table 3.8, it emerges that the proposed method is able to find solutions that
match state-of-the-art performance while having a significantly better degree of inter-
pretability.

ω < 0.074

θ < 0.022

left right

right

True False

True False

Figure 3.16: Best orthogonal decision tree
(w.r.t. score) evolved in the CartPole-v1.

−0.274x− 0.543v+

−0.904θ − 0.559ω

< −0.169

right left

True False

Figure 3.17: Best oblique decision tree (w.r.t.
score) evolved in the CartPole-v1 environ-
ment.

MountainCar

In this task, the orthogonal grammar performs significantly better, solving the task more
often and with better scores than the oblique grammar, as shown in Figure 3.3 and
Table 3.7. This suggests that this task is harder to solve with oblique grammars. While
this may seem counter-intuitive, since oblique trees are a generalization of orthogonal
trees, it may be because the oblique grammar used in these experiments makes it difficult
to obtain an orthogonal DT. On the other hand, also in this case, the oblique grammar
seems to yield more interpretable DTs according to the metricM.

The fitness trends for the evolutionary process are shown in Figure 3.9.
In Figure 3.14, we compare the robustness to input noise for both versions. In this case,

both approaches proved to be not so robust to noise. Surprisingly, it can be observed that
the orthogonal tree was not even robust to input noise that had σ < min

i
(stepi) where

stepi is the sampling step for the constants of the i-th variable.
1https://gitlab.com/leocus/ge_q_dts
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Table 3.8: Comparison of the solutions obtained by using the proposed approach with respect to
the state-of-the-art. The results from [80] are averaged over ten independent runs. The results
from [129] regard the discretized tree shown in Figure 3 - right in [129], tested on the same
episodes used for the evaluation of our solutions.
(*): Results obtained by using a revised version of the tree obtained through personal commu-
nication with the first author of the study. (**): The tree from (*) has been simplified by using
the technique used in this work.

Method Score M
Deep Q Network [80] 327.30 1157.20
Tree-Backup(λ) [80] 494.70 1157.20
Importance-Sampling [80] 498.70 1157.20
Qπ [80] 489.90 1157.20
Retrace(λ) [80] 461.10 1157.20
Watkins’s Q(λ) [80] 484.30 1157.20
Peng & Williams’s Q(λ) [80] 496.70 1157.20
General Q(λ) [80] 499.90 1157.20
Qualitatively measured policy discrepancy [80] 500.00 1157.20
Bayesian Deep Reinforcement Learning [154] 113.52 8090.40
Kronecker-Factored Approximate Curvature [10] 321.00 70786.20
Differentiable Decision Trees [129] 388.76 89.20
Differentiable Decision Trees [129] (*) 500.00 106.80
Differentiable Decision Trees [129] (**) 500.00 53.40
Ours – Orthogonal 500.00 35.60
Ours – Oblique 500.00 24.10
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Table 3.9 shows a comparison of the results obtained by the best trees obtained (Fig-
ures 3.18 and 3.19) w.r.t. the state of the art from the OpenAI Gym Leaderboard2.
From the table, it can be seen that the best DT outperforms all the approaches from the
leaderboard, setting a new state of the art, outperforming even Deep Neural Networks.
However, the best DT obtained is not able to reach the lowest M. In fact, the (pos-
sibly hand-crafted) closed-form policy from the leaderboard has higher interpretability
according toM.

Table 3.9: Comparison of the mean (testing) score of the solutions obtained by using the proposed
approach versus the state of the art on MountainCar-v0.

Source Method Score M
Zhiqing Xiao3 Closed-form policy -102.61 54.7
Keavnn4 Soft Q Networks [68] -104.58 31079.2
Harshit Singh5 Deep Q Network -108.85 984160.3
Colin M6 Double Deep Q Network -107.83 46681.6
Amit7 Tabular SARSA -105.99 381.5
Dhebar et al. [28] Nonlinear DT (Open loop) -128.87 66.8
Ours Orthogonal DT -101.72 106.80
Ours Oblique DT -106.02 46.80

LunarLander

Here, the oblique grammar was able to solve the task in 100% of the cases.
The boxplots of the scores and of the complexity of interpretability are shown in

Figures 3.4 and 3.7. These figures show that there is a small performance drop when
transferring from training to testing episodes. However, in all the cases, the agents’ scores
are well above the solving threshold.

The average fitness trend for these evolutionary processes is shown in Figure 3.10.
A comparison of the two best solutions (w.r.t score and interpretability) and the state

of the art is shown in Table 3.10. Even though these DTs do not achieve (in absolute) the
2https://github.com/openai/gym/wiki/Leaderboard
3github.com/ZhiqingXiao/OpenAIGymSolution, accessed: 11 dec 2020.
4github.com/StepNeverStop/RLs, accessed: 11 dec 2020.
5github.com/harshitandro/Deep-Q-Network, accessed: 11 dec 2020.
6github.com/CM-Data/Noisy-Dueling-Double-DQN-MountainCar, accessed: 11 dec 2020.
7github.com/amitkvikram/rl-agent, accessed: 11 dec 2020.
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Figure 3.18: Best orthogonal decision tree
(w.r.t. score) evolved in the MountainCar-v0
environment.
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Figure 3.19: Best oblique decision tree (w.r.t.
score) evolved in the MountainCar-v0 envi-
ronment.

wT
1 · x < t1

wT
2 · x < t2

T

left

T

wT
3 · x < t3

F

main

T

wT
4 · x < t4

F

nop

T

main

F

right

F

Figure 3.20: Best oblique decision tree (w.r.t. score) evolved in the LunarLander-v2 environment.
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best performance and the best M, they represent the best compromise between the two
metrics. However, the best solution w.r.t. score achieves a comparable performance w.r.t.
the best score of the state of the art, while having a substantially smaller complexity. Our
best solution is shown in Figure 3.20

Table 3.10: Comparison of the proposed solution with respect to the state of the art on the
LunarLander-v2 environment. The results from [98] are averaged on 5 runs. The results from
[153] and [77] are averaged on 10 runs.

Source Method Score M
Keavnn8 Soft Actor Critic 217.92 210733.2
Liu9 Soft Q Network 217.09 647691.1
Ash Bellet10 Deep Q Network 225.79 1295307.1
Sanket Thakur11 Deep Q Network 200.65 259285.8
Mahmood12 Deep Q Network 200.3 237079.7
Daniel Barbosa13 Proximal Policy Opt. 201.47 1673
XinlyYu14 Deep Q Network 278.23 518153
Ruslan15 Dueling Deep Q N. 200.22 30878.1
Ollie Graham16 Deep Q Network 201.46 30878.1
Nikhil Barhate17 Actor Critic 254.58 4337.3
Udacity18 Deep Q Network 201.46 30878.1
Sigve Rokenes19 Deep Q Network 266 1.21 · 108
Peng et al. [98] Advantage-weighting 229± 2 518153
Xu et al. [153] Value-difference 248.2± 21 632620.2
Malagon et al. [77] Shallow NN 258.8 77.6
Silva et al. [129] Rule List -78.4 89
Dhebar et al. [28] NLDT* – Depth 3 132.83 136.7
Ours – Best Score Oblique DT 272.14 118.9
Ours – BestM Oblique DT 262.18 86.9
Ours – Mean Oblique DT 246.05± 18.72 123.34± 39
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3.3.1 Comparison with other interpretable methods

In this section, we compare the interpretable solutions found in the literature, comparing
them to the presented method.

CartPole

Differentiable Decision Trees Silva et al. [129] propose an approach based on differen-
tiable decision trees, i.e., decision trees that replace hard splits with sigmoids. This means
that they refactor the conditions from variable > constant to σ(variable− constant). By
replacing hard splits with sigmoids, the decision of the tree can be seen as the sum of all the
leaves weighted by the product of the outputs of the sigmoids for that path (i.e., the prod-
uct of all the σ(variable−threshold) for the true branch and (1−σ)(variable−threshold)
for the false branch for each split encountered). They optimize the structure of the tree
and the actions taken by using PPO [128] and backpropagation. The DT is shown in
3.21.

Moreover, since the performance of this solution are not satisfactory, by communicating
with the first author we were able to obtain an improved version. This solution is shown
in Figure 3.22.

It is interesting to observe that their optimization process “selects” the same variables
that have been selected in our case by artificial evolution.

Moreover, the tree proposed by them is slightly more complex than the best tree found
with the method presented in this chapter. In fact, while our best tree has a maximum
depth of 2 nodes, their DT has a maximum depth of 3 nodes. This increase in complexity
is reflected by the difference in theM measure.

Since one may hypothesize that this increase in complexity may lead to more robust-
ness, a comparison of the robustness to noise of the trees shown in Figures 3.16 and 3.17

8github.com/StepNeverStop/RLs, accessed: 11 dec 2020.
9github.com/createamind/DRL, accessed: 11 dec 2020.

10github.com/nextgrid/deep-learning-labs-openAI, accessed: 11 dec 2020.
11github.com/sanketsans/openAIenv, accessed: 11 dec 2020.
12github.com/cpow-89/Extended-Deep-Q-Learning-For-Open-AI-Gym-Environments, accessed: 11 dec 2020.
13github.com/danielnbarbosa/angela, accessed: 11 dec 2020.
14github.com/XinliYu/Reinforcement_Learning-Projects, accessed: 11 dec 2020.
15github.com/RMiftakhov/LunarLander-v2-drlnd, accessed: 11 dec 2020.
16github.com/Cozmo25/openai-lunar-lander-v2, accessed: 11 dec 2020.
17github.com/nikhilbarhate99/Actor-Critic-PyTorch, accessed: 11 dec 2020.
18github.com/udacity/deep-reinforcement-learning, accessed: 11 dec 2020.
19evgiz.net/article/2019/02/02/, accessed: 11 dec 2020.
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Figure 3.21: DT proposed in [129].

and the two from [129] is shown in Figure 3.26. The figure shows that the orthogonal
trees obtained by Silva et al. have a robustness that is comparable to that of the best
DTs obtained by means of the approach presented here. This suggests that orthogonal
trees may be intrinsically less robust than oblique ones for this task.

MountainCar

Zhiqing Xiao The system proposed by this entry20 consists of a closed-form policy.
However, it is not clear whether the policy has been derived by a human or learned by a
machine.

Anyway, this solution achieves the best performance (not considering the solutions
proposed in this chapter) on this task while also having the best degree of interpretability
(according to our modification of the metric proposed in [149]). The policy is the following:

a = min(−0.09(x+ 0.25)2 + 0.03, 0.3(x+ 0.9)4 − 0.008)

b = −0.07(x+ 0.38)2 + 0.07

π(x, v) =

acc_right if a < v < b

acc_left else

20github.com/ZhiqingXiao/OpenAIGymSolution/tree/master/MountainCar-v0_close_form
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Figure 3.22: DT shared by the first author of [129]

While this policy has a smallerM than the best DT obtained in this chapter, it may
be a bit harder to interpret. We hypothesize that this is due to the fact that theM metric
has been proposed to evaluate the interpretability of general mathematical formulae, while
in this case it is applied to the interpretation of hyperplanes, whose interpretability may be
different. While hyperplanes are defined by mathematical formulae, the interpretability
of a hyperplane may also depend on the number of non-linear operations that are used to
determine the hyperplane.

Amit This entry21 uses SARSA to solve the task.
While tabular approaches like SARSA and Q-learning are transparent, their inter-

pretability depends heavily on the number of states and actions. Table 3.9 shows that,
even if this approach is transparent and easily interpretable, its interpretability is higher
than the DTs obtained in this chapter. This is due to the fact that using decision trees as
function approximators leads to the “grouping” of some states of the table used in tabular
approaches. This is especially useful when we want to extract knowledge. In fact, by
grouping some states, we take into account only the variables and the thresholds that
have an impact on the policy, discarding irrelevant details.

Dhebar et al. Dhebar et al., in [28], propose an approach to IRL that uses nonlinear
decision trees. They first approximate an oracle policy and then they fine-tune it by using
evolutionary algorithms. The policies obtained in these two phases are called “open-loop”
and “closed-loop” policies.

21github.com/amitkvikram/rl-agent/blob/master/mountainCar-v0-sarsa.ipynb
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In this case, we only had access to the open-loop policy for the MountainCar-v0
environment, which is shown in Figure 3.23.

| −0.22x̂ŷ+
0.28ŷ−1+

−0.63x̂−2+
0.96 | +
−0.36 ≤ 0

| −0.30ŷ2+
−0.28x̂2+
1.39 | +
−0.53 ≤ 0

True

right

True

nop

False

left

False

Figure 3.23: Tree representation of the solution proposed in [28] for the MountainCar-v0 envi-
ronment. The variables with a hat are normalized by using this way: 1 + x−xmin

xmax−xmin
.

Also in this case, whileM for this solution is better than our best solution (w.r.t. test
score), it seems harder to interpret, due to the nonlinearity of the hyperplanes. In fact, in
our solutionM is higher due to the higher number of splits in the tree, but that does not
take into account the fact that in our case the hyperplanes that divide the feature space
are simpler than the ones proposed in [28].

Finally, we perform a comparison of the robustness to input noise with the solutions
provided by “Zhiqing Xiao” and the one provided by Dhebar et al. Figure 3.27 shows how
performance varies by varying the standard deviation of the additive Gaussian noise. We
observe that there is no significant difference between the solutions, meaning that all of
them have high sensitivity to input noise.
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LunarLander-v2

Silva et al. In [129] the authors, besides regular trees, use also decision lists. A decision
list is a tree that is extremely unbalanced, i.e., il collapses to a list.

Figure 3.24 shows the solution obtained. However, as shown in Table 3.10, it does not
achieve satisfactory performance. This is due to the fact that, while the differentiable tree
is able to achieve good performance (even though not solving the task), its discretization
modifies the final distribution of the actions.

Malagon et al. In [77] the authors use the Univariate Marginal Distribution Algorithm
to evolve a neural network without hidden layers in the LunarLander-v2 domain. Since
the neural network has no hidden layers the whole system reduces to

a = argmax
i

(σ(wi
T · x+ bi))

where i refers to the output neurons.
This results in an easy-to-interpret system, according to both [66] and the metricM.

Dhebar et al. In [28] the authors propose a nonlinear decision tree that achieves a mean
testing score of 234.98 points. However, the rules associated with this tree are not shown,
and we only had access to the 3-level-deep NLDT.

The tree is shown in Figure 3.25. It is important to note that even if the solution
obtained is a tree, the interpretation is not easy, since the hyperplanes contained in each
split are not linear.

Also in this case, we performed a comparison on the robustness to input noise, shown in
Figure 3.28. However, for this comparison, we could not include the results from Malagon
et al. since the weights were not publicly accessible.

3.3.2 Ablation study

In order to assess whether our two-level optimization approach is convenient with respect
to a single-level optimization approach, we perform an ablation study in which we use
Grammatical Evolution alone to evolve DTs with fixed leaves (also optimized by GE).
Moreover, we perform statistical tests to test whether the differences are statistically
significant by fixing a threshold for the p-value of α = 0.05. To perform these experiments,
we used the same parameters shown in Tables 3.4 to 3.6. The numerical results are shown
in Table 3.11
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Figure 3.24: Tree representation of the solution proposed in [129] for the LunarLander-v2 envi-
ronment.

CartPole

For the orthogonal case, we observe that while in most cases evolution is able to evolve
agents that achieve a perfect training score, they have poor generalization capabilities. In
our opinion, this is akin to overfitting. In fact, in this case, the agents did not understand
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Figure 3.25: Tree representation of the solution proposed in [28] for the LunarLander-v2 envi-
ronment. The variables with a hat are normalized in the following way: 1 + x−xmin

xmax−xmin
.

the “value” of going in a certain state, but just learned a rule that worked in the tested
cases. Moreover, a two-tailed Mann-Whitney U-Test gives us a p-value of 9 · 10−3 that
allows us to reject the null hypothesis (i.e., that the mean testing score comes from the
same distribution) with threshold α = 0.05.

For the oblique grammar, instead, the results seem quite similar to those obtained
when using Q-Learning. In this case, we get a p-value of 0.73. Thus, we cannot reject the
null hypothesis with threshold α = 0.05. For this reason, we will assume that they come
from the same distribution.

This suggests that, since oblique trees seem to be both more robust to noise and more
stable than orthogonal trees, good oblique policies for this environment can be obtained
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Figure 3.26: Comparison of the robustness
w.r.t. the solutions from [129]. “Silva (*)”
refers to the DT shown in Figure 3.22.
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Figure 3.27: Comparison of the robustness to
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terpretable ones on the MountainCar-v0 en-
vironment.
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tions on the LunarLander-v2 environment.
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Table 3.11: Descriptive statistics (mean and std. dev. over the best solutions found in 10
independent runs) on the three OpenAI environments considered in the experimentation using
only Grammatical Evolution, without Q-Learning.

Environment Type
Mean Std. dev. Mean Std. dev. % of

training training testing testing runs
score score score score solved

CartPole-v1
Orthogonal 500.00 0.00 470.94 26.98 50.00%
Oblique 500.00 0.00 497.73 7.18 100.00%

MountainCar-v0
Orthogonal -109.36 7.80 -112.67 7.24 50.00%
Oblique -101.23 2.51 -108.35 1.75 80.00%

LunarLander-v2 Oblique 175.02 125.71 147.20 131.15 60.00%

even without Q-learning.

MountainCar

In both the orthogonal and the oblique cases, performance seems to be similar to that of
the combination of GE and Q-Learning. A Two-tailed Mann-Whitney U-Test confirms
that in both cases we cannot reject the null hypothesis.

Thus, in this environment, it seems that Q-Learning does not add any value. However,
this may also be due to the fact that ne is quite low for this environment, and it is pretty
hard to explore. Hence, with higher ne, the conclusions may be different.

LunarLander

We expect that in this task, since it is harder than the previous two (and ne is higher),
GE performs worse than our approach.

According to our expectations, this approach can solve the task only in 60% of the
cases. Moreover, the hypothesis is confirmed by a two-tailed Mann-Whitney U-Test,
which allows us to reject the null hypothesis.

We can thus hypothesize that the use of the two-level optimization technique gives us
a boost in performance in complex environments such as LunarLander-v2.

3.3.3 Interpretation of the solutions

In this subsection, we will look at the agents produced and try to interpret the policies.
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CartPole

Orthogonal tree The tree shown in Figure 3.16 is extremely easy to interpret. In fact,
this agent moves the cart to the left if

ω < 0.074 ∧ θ < 0.022 (3.5)

otherwise, it moves the cart to the right. Note that there is a case in which the pole
is falling to the right but the agent moves the cart to the left: θ ∈ [0, 0.022)rad ∧ ω ∈
[0, 0.074)rad/s. This is not a problem because when the agent moves the cart to the right,
it increases the velocity of the pole, resulting in a “right” action in the subsequent steps.

Oblique tree In this case, the interpretation of the policy is a bit harder. The condition
used by the agent to discriminate between the two states is:

−0.274xk − 0.543vk − 0.904θk − 0.559ωk < −0.169 (3.6)

where k refers to the current timestep. To simplify the process, we write Equation 3.6 as
the following:

−axk − bvk − cθk − dωk < t (3.7)

First of all, we want to analyze the role of the constant t in the policy. By testing it
with different values (i.e., t = −0.169, t = 0.169, t = −0.1, t = 0.1, t = 0) we observed
that it holds that the final point in which the pole is balanced can be obtained as follows:

xn ≈ −
t

a
(3.8)

where n is the index of the last timestep. For simplicity, let’s assume that xn = − t
a
. This

means that we can rewrite Equation 3.7 as follows:

−xk −
b

a
vk −

c

a
θk −

d

a
ωk <

t

a
= −xn (3.9)

We can then perform other steps and obtain:

−xk − b′vk − c′θk − d′ωk < −xn ⇒ (3.10)

−b′vk − c′θk − d′ωk < −xn + xk ⇒ (3.11)

−b′vk − c′θk − d′ωk < −xn + xn−1 − xn−1 + ...+ xk =
k+1∑
j=n

−xj + xj−1 (3.12)

Then, by noting that
xk − xk−1

τ
= vk (3.13)
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we can rewrite Equation 3.12 as:

−b′vk − c′θk − d′ωk < −
n∑

j=k+1

vjτ (3.14)

−c′θk − d′ωk < −
n∑

j=k

gjvjτ (3.15)

where

gj =

−b′

τ
if j == k

1 otherwise

Now, by observing that
θk − θk−1

τ
= ω (3.16)

we obtain

−c′θk − d′
θk − θk−1

τ
< −

n∑
j=k+1

gjvjτ (3.17)

−(d′ + τc′)θk + d′θk−1 < −τ 2
n∑

j=k+1

gjvj (3.18)

Finally, note that usually, in the first 50 timesteps of the simulations, the velocities are
high (max

k
| vk |< 1.5), and then the velocities become small (max

k
| vk |< 0.55) because

the pole is balanced, we can write that:

|
n∑

j=k+1

gjvj |⪅
b′

τ
· 1.5 + 49 · 1.5 + 450 · 0.55 = 420 (3.19)

where the approximate equality holds in the worst case (i.e., k = 0 and all the velocities
have the same sign). However, considering that in our observations the magnitude of the
velocities was usually significantly smaller than the maximum and that the summation
is multiplied by τ 2 (τ = 0.02 in this environment), we can safely consider only the term
with the highest magnitude, i.e., b′

τ
vk. Moreover, using only vk sets xn ≈ 0, which makes

the system easier to understand intuitively.
Then, we obtain

−(d′ + τc′)θk + d′θk−1 < τb′vk (3.20)

cθk > −(bvk + dωk) (3.21)
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Approximating the constants, we set b = 0.543 ≈ 0.5, c = 0.904 ≈ 1, d = 0.559 ≈ 0.5,
so the final policy is22:

π(x, v, θ, ω) =

right if θk > −1
2
(vk + ωk)

left otherwise

A dimensionally consistent policy is θk +
1
2
(vk/l + ω)ntsτ

τ
> 0, where l = 1 is the pole

length and nts is the number of steps that we are taking into consideration to balance
the pole (in our case nts = 1. This policy can be interpreted as follows. If the sum of
the current angle and the mean angle given by the two contributions (i.e., linear velocity
of the cart and angular velocity of the pole) are positive (it is a kind of “prediction” of
the future angle), then move the cart to the right, because it is going to fall to the right.
Otherwise, move the cart to the left.

MountainCar

Orthogonal tree The orthogonal tree (Figure 3.18) is easy to interpret. In fact, if
we look at the leaves, we see that the agent accelerates to the left only in two cases:
(v < 0 ∧ x > −0.9) ∨ (v ∈ [0, 0.035) ∧ x ∈ [−0.4,−0.3]). This means that the agent
accelerates to the left when:

• it is going towards the hill on the left to build momentum and it is far from the
border (x > −0.9), so it tries to maximize the potential energy of the car

• velocity is positive but not enough (v < 0.035) and it is near the valley

In all the other cases, the agent accelerates to the right.

Oblique trees In this case, the agent accelerates to the left when both conditions are
false. This means that we have to solve the following system of two inequalities:0.717x̂− 0.697v̂ ≥ −0.229

0.138x̂− 0.883v̂ ≥ −0.389

This means that the agent accelerates to the left when v ≤ 7.5799·10−2 ·x+6.6955∧v ≤
1.1516 · 10−2 · x+ 5.495 · 10−3. This corresponds to the decision regions shown in Figure
3.29.

It is important to note that the lack of robustness for this solution does not allow us
to further approximate the constants of the two hyperplanes.

22Implementing this policy by using the ω given by the environment may give slightly lower than perfect scores.
In our opinion, this is due to the error carried out by the integration method used by the simulator. On the other
hand, using ωk = (θk − θk−1)/τ gives the desired results.
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Figure 3.29: Decision regions for the best oblique tree evolved in the MountainCar-v0 environ-
ment.

LunarLander

In this case, since the oblique tree (Figure 3.20) has 4 conditions and 8 unknowns, it is a
bit harder to interpret.

The weights w1, . . . , w4 are the following:
w1 = 0.401,−0.104,+0.495,−0.055,−0.69,−0.845,−0.2,−0.597

w2 = 0.448,−0.366,+0.431,−0.462,−0.693,−0.821,+0.461,−0.132
w3 = −0.101,+0.133,−0.791,+0.653,−0.207,+0.731,+0.068,+0.525

w4 = 0.12,−0.044,−0.772,−0.136,−0.169,+0.821,−0.573,−0.251

First condition This condition, when it evaluates to False, turns on the right engine for
a timestep. So, we turn on the right engine when

apx − bpy + cvx − dvy − eθ − fω − gcl − hcr ≥ 0 (3.22)

where a, b, ..., h replace the constants of w1

To simplify the analysis, let’s assume cl = cr = 0, since they can assume only two
values: 0, 1. This simplification does not affect the generality of our analysis, since we are
only assuming that there is no contact with the ground. We can simply say that, when
contact with the ground happens, then the threshold is not 0 anymore, but it can take
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the following values: 0.2 (only right leg touches the ground), 0.597 (only right leg touches
the ground), 0.797 (both legs touch the ground).

So, we can rewrite condition 3.22 as follows:

apx + cvx − bpy − dvy − eθ − fω ≥ 0 (3.23)

By merging some terms we obtain:

a(px + vxc
′)− b(py − vyd

′)− e(θ − ωf ′) ≥ 0 (3.24)

We analyzed the terms in parenthesis and we discovered that they approximate the po-
sition (or the angle) in the following timestep. The constants c′ ≈ f ′ ≈ 1.23 lead to
an overestimation of the magnitude of the future position (or angle), while the constant
d′ ≈ 0.53 increases the precision of the approximation. By denoting the predictions of the
next position on x, y and θ with pk+1

x , pk+1
y , θk+1 respectively, we can write:

apk+1
x − bpk+1

y ≥ eθk+1 (3.25)

To understand how this condition works, let’s suppose that pk+1
x ≈ 0 (i.e., the lander is in

the center of the environment). Then, if pk+1
y ≈ 1 (i.e., near the starting point), we will fire

the right engine if θk+1 ≤ −b/e ≈ −0.15rad, i.e., the angle of the lander is going to fall to
the right. When pk+1

y ≈ 0 (i.e., near the landing pad), the agent will fire the right engine
if θk+1 ≤ 0, so we can say that the farther the lander is from the landing pad (vertically),
the more margin we have on the threshold of the angle. Let’s now suppose that pk+1

y = 0

to study the effect of pk+1
x on the policy. Then, we can say that the agent turns on the

right engine when θ ≤ a
e
pk+1
x so, when the agent is on the right part of the environment,

the agent uses a linear threshold to activate the engine in order to avoid both high angles
and high displacements from the landing pad location. Similarly, when pk+1

x is negative,
the threshold is negative so the agent tries both to compensate for negative angles (that
would move it farther on the left) and distance from the landing point.

Second condition The second condition, when evaluates to True, leads to the firing of
the left engine. Also in this case, let’s neglect the terms cl and cr. We can write the
condition as:

apx − bpy + cvx − dvy − eθ − fω < 0 (3.26)

Of course, in this case, the coefficients a, ..., f are different from the previous ones. By
grouping the terms as before we obtain

a(px + vxc
′)− b(py + vyd

′)− e(θ + ωf ′) < 0 (3.27)
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Also in this case, the constants seem to have the same role (i.e., some lead to an overes-
timation of the next position and some others to a better estimate) so we can write:

apk+1
x − bpk+1

y < eθk+1 (3.28)

This means that this condition is easy to understand given the previous one: it is the
opposite. This means that we can use the same reasoning used above to understand this
condition.

Third condition This condition handles the firing of the main engine. For this reason,
we expect it to work differently from the previous two. In fact, we can easily observe that
the signs of the terms in x and y are inverted. Moreover, the two angular terms do not
have the same sign. Also in this case, let’s use a, ..., f to rename the constants and ignore
cl and cr. This leads to:

−apx + bpy − cvx + dvy − eθ + fω < 0 (3.29)

By performing a grouping of the variables similar to the previous two conditions we
obtain:

−a(px + vx) + b(py + vy)− (c− a)vx + (d− b)vy − eθ + fω < 0 (3.30)

Then, by denoting with vk+1 and vk−1 the value of the variable v in the next and the
previous timestep respectively, we can write:

−apk+1
x + bpk+1

y − c′vx + d′vy − eθ + f
θ − θk−1

τ
< 0 (3.31)

Experimental measurement of the τ variable led us to set τ = 0.05. By multiplying all
the members by τ we obtain:

−τapk+1
x + τbpk+1

y − τc′vx + τd′vy − τeθ + f(θ − θk−1) < 0 (3.32)

Then, by noting that τa ≈ 5 · 10−3, τb ≈ 6.7 · 10−3, τc′ ≈ 3.5 · 10−2, τd′ ≈ 2.6 · 10−2 and
τe ≈ 10−2, we can decide to neglect the effects of the first two terms. So we have:

−τc′vx + τd′vy + (f − τe)θ − fθk−1 < 0 (3.33)

By merging the terms in θ and θk−1 we obtain:

−c′vx + d′vy + (f − τe)ω + τeθk−1 < 0 (3.34)

By moving all the terms except the one in ω to the second member we get:

ω <
1

f − τe
(c′vx − d′vy − τeθk−1) (3.35)
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Then, by noting that all the states that are tested in this condition have c′| vx | ≈ 5d′| vy |
and c′| vx | ≈ 120e| θk−1 | (where v is the mean value of the variable v), we can neglect
(as shown by experimental results) the effects of vy and θk−1. Finally, the rule used to
fire the main engine is:

ω < c′′vx (3.36)

While we expected the main engine to depend on py or vy, by analyzing the activation
of the condition in several episodes we found that this rule represents the landing phase.
In fact, the goal of this rule is to balance angular velocity and linear velocity to make the
agent gently stop on the landing pad.

Fourth condition This condition, when evaluates to True, does not fire any engine. On
the other hand, when it evaluates to False, it fires the main engine.

The condition is the following (also in this case we replace the constants with letters):

apx − bpy − cvx − dvy − eθ + fω < 0 (3.37)

By analyzing the mean values of the variables and their coefficients we obtain: a| px | ≈
8.5 · 103, b| py | ≈ 8.7 · 103, c| vx | ≈ 7 · 102, d| vy | ≈ 2.5 · 102, e| θ | ≈ 1.3 · 102, f | ω | ≈
4.7 · 102. This suggests that we can neglect the values of px, py, θ because their mean
value is low w.r.t. the maximum. The experiments confirmed that these variables have a
low impact on the performance of the agent.

So, the agent does not fire any engine when:

ω <
c

f
vx +

d

f
vy (3.38)

This seems an extension of what we obtained in the previous condition, where we also
have a dependency from vy. Moreover, it is important to note that this check is performed
only when the third condition is not true. Finally, from experiments, we observed that
this condition is true usually when the agent has successfully landed. In this case, the
terms in cl and cr can be seen as a further margin to the agent, so that when a leg touches
the ground the agent is more likely to not fire any engine.

In the opposite case, i.e., when ω ≥ c′vx + d′vy, the agent turns on the main engine to
balance the high angular velocity of the agent. Note, again, that if the angular velocity
is too low it is balanced by the previous condition.

Considerations

In this subsection, we interpreted the policy produced in various settings. We showed
that the decision trees produced are interpretable and give an understanding of how the
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agent works. It is important to note that in several cases we performed approximations to
ease the understanding process. However, this is not a limitation of the method, because
more exact interpretations can be obtained by not neglecting details. This is especially
important in high-stakes or safety-critical settings, where humans need to have a thorough
understanding to validate and trust the systems produced.

While some solutions may seem hard to interpret (i.e., oblique decision trees), it is
important to see them in a bigger context: while they may not be easy to interpret at a
first sight, their analysis is pretty straightforward (as shown earlier). On the other hand,
black-box models (such as deep neural networks) are way harder to inspect, due to the
significantly bigger number of operations performed in the decision-making process.

Moreover, it’s important to note that the simplification mechanism simplifies the in-
terpretation as it allows removing unnecessary nodes, significantly reducing the size of
the trees.

Finally, it is important to note that, while the approach presented in this paper is
competitive w.r.t. the state of the art on scores, its computational cost (in terms of
episodes) is often significantly higher.

3.4 Conclusions

In this chapter, we propose a two-level optimization method that allows inducing decision
trees that can perform reinforcement learning.

The results show that the proposed approach is able to generate decision trees that
are comparable to or even better than the non-interpretable state-of-the-art (from the
performance point of view) while having significantly better interpretability.

Moreover, we compare the solutions obtained to the state-of-the-art from the point
of view of interpretability. While the metric of interpretability does not perfectly suit
our purpose, we can easily observe the difference in complexity with respect to black-box
models. While we expect that changing the metric of interpretability does not significantly
affect the difference w.r.t. black-box models, we think that future work should focus on the
study of more tailored interpretability metrics (i.e., adapted to machine learning models).

Since it is important for practical applications, we also compare our solutions to the
interpretable (and publicly available) state-of-the-art w.r.t. robustness to input noise. The
results show that our approach is comparably or more robust than the other solutions.
While we expect that changing the metric of interpretability does not significantly affect
the difference w.r.t. black-box models, we think that future work should focus on the
study of more tailored interpretability metrics (i.e., adapted to machine learning models).
In fact, while we found that this metric is good ad differentiating between huge and
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small models, we also saw that it is not able to estimate interpretability with a fine
granularity. For instance, as shown in Section 3.3, this metric tends to say that a shallow
cascade of small, intuitive non-arithmetical operations such as orthogonal splits are less
interpretable than fewer larger combinations of non-linear splits, each of which describes a
complex hyperplane. Finally, we demonstrate that the produced agents can be interpreted,
practically showing the advantage of interpretable models w.r.t. black boxes.
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Chapter 4

Interpretable Reinforcement Learning
with continuous action spaces

Based on: Custode, Leonardo Lucio, and Giovanni Iacca. “A co-evolutionary approach
to interpretable reinforcement learning in environments with continuous action spaces.”
2021 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2021.

4.1 Introduction

While several approaches have been proposed to perform RL with interpretable models in
discrete action spaces, how to use them in the case of continuous action spaces is still an
open question. In fact, to our knowledge, none of the interpretable methodologies has been
applied to RL problems with continuous action spaces. The only exception is represented
by the approach presented in [129], which does allow to perform RL with continuous
actions, but it has a drawback. In fact, since it uses differentiable decision trees, these
need to be transformed into “traditional” decision trees in order to be interpreted properly.
To this end, the trees must be transformed by converting the “soft” splits (i.e., sigmoids)
into “hard” splits (i.e., binary conditions). This conversion process, as shown in their
paper, may introduce a significant loss in performance.

In this chapter, we extend the approach proposed in Chapter 3 by allowing it to
produce agents that can act in continuous action spaces. Here, we address the problem of
“choosing” a value from a continuous action space by dividing the problem into two parts.
The first one is identical to Chapter 3, and consists in obtaining a tree that has to choose an
action from a discrete action space. The second part consists in “translating” the discrete
action to a continuous one. We do so by adopting a cooperative co-evolutionary approach
[103]. Consequently, we evolve simultaneously two different populations: a population
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of decision trees and a population of sets of actions. We evolve the action sets with an
estimation of distribution algorithm, which allows us to perform continuous optimization.

The rest of the chapter is structured as follows. The next section makes a summary
of the background of this paper. Section 4.3 describes the proposed method. In Section
4.4 we will present the experimental results and, finally, in Section 4.5 we will draw the
conclusions of this chapter.

4.2 Background

Our method uses the following methodologies: cooperative co-evolution, grammatical
evolution, Q-Learning, and the UMDAG

c estimation of distribution algorithm. We are
not going to describe again grammatical evolution and Q-Learning as they have already
been presented in Chapter 3.

4.2.1 Cooperative co-evolution

Cooperative co-evolution [103] is an evolutionary approach to function optimization that
allows for the decomposition of the structure of the problem into sub-problems. It works by
combining multiple evolutionary processes, one for each sub-component of the problem. In
a cooperative co-evolutionary setting, all the populations adapt to each other to optimize
the fitness of the whole solution. Of note, each evolutionary process concurs in the
optimization of the fitness of the whole solution without any “knowledge” about the other
evolutionary processes, i.e., all the populations evolve independently.

4.2.2 UMDAG
c

The univariate marginal distribution algorithm for continuous domains [63] (UMDAc)
is an estimation of distribution algorithm [64] (EDA). It is the continuous extension of
the UMDA algorithm [88]. This algorithm uses the concept of rank-based evolutionary
algorithms, i.e., evolutionary algorithms in which the fitness is not meaningful when used
alone. Instead, it is helpful to sort the individuals by performance.

The algorithm works as follows. At each generation, n individuals are sampled from

the current joint probability density distribution f(x;θ) =
N∏
i=1

fi(xi; θi), where N is the

number of parameters to optimize. Then, the best k individuals are selected to produce the
following generation. The distribution for the next generation of individuals is computed
as follows. First, a hypothesis test is performed to get the best-fitting density distribution,
and then a maximum likelihood estimate is used to compute the parameters of said
distribution.
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By constraining the distributions to be normal, the hypothesis testing phase can be
avoided and the distribution’s parameters can be directly computed as:

µ̂i =
1

k

k∑
i=1

xi; σ̂i =

√√√√1

k

k∑
i=1

(xi − µ̂i)2

This variant is called UMDAG
c .

4.3 Method

4.3.1 Discrete-action RL with decision trees

In Chapter 3, we presented a method to perform discrete-action RL with decision trees,
which combines GE and Q-learning. Our method evolves the inner structure of the
decision tree by using GE and then, in the fitness evaluation phase, trains the leaves of the
tree by means of Q-learning. This approach uses GE to search for a “space-decomposition”
function, which decomposes the state space of the problem into groups of semantically
similar states; while it uses Q-learning to search for state-action functions, which map
(groups of) states to actions.

4.3.2 Continuous-action RL with decision trees

In order to obtain agents that can cope with continuous-action RL problems, here we use
a co-evolutionary approach similar to the one proposed in [103]. Our approach consists
in evolving two distinct populations. The first population is composed of decision trees.
The second population, instead, contains sets of continuous actions that the agent will
use. These two populations are needed to evolve the two components of the agent shown
in Fig. 4.1.

Agent

Environment

Decision
Making

Decision
Encoding

Perception

Action

Decision

Figure 4.1: Graphical representation of the agents being evolved.
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The decision trees encode discrete policies (as done in Chapter 3) that correspond
to the “Decision Making” module of Fig. 4.1. Furthermore, each set of actions contains
na · sa floating-point numbers, where na corresponds to the size of the “pool” of actions
and sa is the dimensionality of each action (e.g., the number of motors that the agent
must control). The translation from discrete action to continuous action is performed in
the “Decision Encoding” module of Fig. 4.1, where the discrete decision computed by the
“Decision Making” module is used as the index for the evolved list of actions.

In Fig. 4.2, the evaluation phase for the two populations is presented. As we can see,
we perform a pre-defined number of random pairings npairs between trees and action sets.
Subsequently, each pair is evaluated through the fitness function. After the evaluation
phase, each individual’s fitness (in both populations) is set to the mean score obtained
by all the pairs that contained such individual. If an individual does not appear in the
first npairs pairs, an extra pair is added by selecting a random individual from the other
population. The pseudo-code for the evaluation phase is shown in Algorithm 4. Note that,
to implement co-evolution, we use an ask-tell implementation for both GE and UMDAG

c ,
i.e., an implementation that returns the whole population when the ask method is called
and updates the population when the tell method (which takes as input the fitness values)
is called.

To evolve the population of decision trees, we use the same approach presented in
Chapter 3: in particular, we use a grammar that allows us to encode decision trees as
a series of if-then-else in Python, and Grammatical Evolution to evolve such trees.
When evaluating the decision tree, the action for each leaf is not fixed. Instead, the leaves
perform Q-learning to learn the proper mapping between states and actions.

On the other hand, to evolve the sets of actions, a continuous optimization algorithm
is used. Even though this method is general and can be used with other optimization
algorithms, in our experiments we use the UMDAG

c algorithm [64]. The advantage given
by UMDAG

c over other methods relies, in this case, on its selection mechanism: since
at each generation the subsequent distribution depends on the best individuals of the
current generation, in this co-evolutionary setting the population seems to stagnate faster
than other methods, e.g., CMA-ES [45]. While a quick stagnation is usually a problem,
in this case it may be necessary. In fact, while in the initial phase it is good to have
an exploration of the action space, in the next generations it might be useful to keep
the actions fixed (i.e., the action-sets do not vary significantly) so that the evolutionary
process that evolves the decision trees can “rely” on these actions. In other words, a small
mutation in the genotype of a decision tree will not cause a destructive change in its
behavior, thus preserving a “locality” principle for the mapping between genotypes and
phenotypes.
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Algorithm 4: Pseudo-code for the evaluation of the two populations.

input: ge: ask-tell implementation of GE;
umda: ask-tell implementation of UMDAG

c ;
npairs: minimum number of pairs to evaluate;

// Create pairs of individuals from the two populations

1 trees ← ge.ask() ; // get current population

2 actions ← umda.ask() ; // get current pop.

3 pairs ← make_pairs(trees, actions, npairs);
// Evaluate the fitness of the pairs

// Q-learning is performed in the fitness evaluation function

4 fitnesses ← compute_fitnesses(pairs);
// Compute the fitness of each individual

5 tree_fitnesses ← empty_list(trees.size);
6 act_fitnesses ← empty_list(actions.size);
7 foreach tree ∈ trees do
8 indices ← where_is(tree, pairs);
9 t_index ← get_index(tree, trees);

10 tree_fitnesses[t_index] ← mean(fitnesses[indices]);

11 end
12 foreach set ∈ actions do
13 indices ← where_is(set, pairs);
14 a_index ← get_index(set, actions);
15 act_fitnesses[a_index] ← mean(fitnesses[indices]);

16 end
17 ge.tell(tree_fitnesses);
18 umda.tell(tree_fitnesses);

Sets of
actions

Decision 
trees

Pairs Fitness
function

Mean per
individual

Fitness

Fitness

UMDAc
G

Grammatical
evolution

Figure 4.2: Evaluation phase for the two populations
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4.3.3 Experimental setup

To validate the effectiveness of the proposed approach, we test it in two well-known
continuous-action reinforcement learning benchmarks available in the OpenAI Gym frame-
work [12]:

• MountainCarContinuous-v0,

• LunarLanderContinuous-v2.

Both environments are the continuous-action counterpart of the environments used in
Chapter 3. In MountainCarContinuous-v0, the agent has to choose an acceleration value
(in [−1, 1]) at each step. The agent receives a penalty for accelerating, which is propor-
tional to the magnitude of the acceleration; and a reward of 100 for reaching the target
position. The environment is considered solved when the agent receives a mean return
higher than 90 points over 100 episodes.

In LunarLanderContinuous-v2, instead, the agent has to compute two different values
at each step (both in [−1, 1]), where the first value controls the main engine and the
second one controls a side engine that can push either to the left or to the right. The
penalties, also in this case, are proportional to the magnitude of the horizontal and vertical
accelerations, and the rewards are equal to the ones for LunarLander-v2. The environment
is considered solved when the mean return is higher than 200 points.

For the MountainCarContinuous-v0 environment, we use a grammar that can gener-
ate orthogonal decision trees (i.e., each hyperplane is orthogonal to the axis of the variable
used in the condition), shown in Table 4.1. On the other hand, for the LunarLanderContinuous-
v2 environment, we use a grammar that can generate oblique decision trees (i.e., linear
combinations of the variables used as conditions), also shown in Table 4.1. The reason
behind the use of oblique decision trees for the LunarLander-v2 environment relies on
the results shown in Chapter 3 and [129], which suggest that solving this task by using
orthogonal decision trees may be hard.

The parameters for the Grammatical Evolution, Q-learning, and UMDAG
c algorithms

(equal for all the environments) are shown in Table 4.2.
We set npairs = 200. For the UMDAG

c algorithm, we used as population size a number
of individuals such that each tree is evaluated once, while each set of actions is evaluated
more than once. The rationale behind this choice is the following: apart from the initial
generations, the sets of actions will slightly differ from each other. So, if the policy encoded
by the tree is effective, it should work well even with a non-perfect set of actions. For
this reason, we can evaluate each tree once, while we have to evaluate each set of actions
more than once. This trick allows us to assess the goodness of the set of actions in several
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Table 4.1: Grammar used for the production of decision trees. The different choices for each
rule are delimited by the “|” symbol. n denotes the number of input variables given by the
environment. The “lt” operator stands for “less than”.

Environment Rule Production

MountainCar

root ⟨if⟩
if if ⟨split⟩ then ⟨action⟩ else ⟨action⟩

split lt(vari, ⟨consti⟩), i ∈ [0, n]

action leaf | ⟨if⟩
const0 x ∈ [−1.2, 0.6] with step 0.1
const1 x ∈ [−0.07, 0.07] with step 0.01

LunarLander

root ⟨if⟩
if if ⟨split⟩ then ⟨action⟩ else ⟨action⟩

split lt(
n∑

i=0
vari · ⟨const⟩, 0), i ∈ [0, n]

action leaf | ⟨if⟩
const x ∈ [−1, 1] with step 10−3

policies. So, having a number of action sets much smaller than the number of trees allows
us to evolve the second population (i.e., the action sets) almost “for free”, meaning that
the number of individuals evaluated is approximately equal to the number of individuals
evaluated in the discrete-action case Chapter 3.

To statistically assess the repeatability of our results, we perform 10 independent
runs for each setting1. We choose to perform 10 runs because, given the results shown
in the next subsection, these yield a relative error on the empirical mean of r = 0.006

for the MountainCarContinuous-v0 environment and r = 0.019 for the LunarLander-v2
environment, which (given the characteristics of these two tasks) is acceptable to evaluate
if they are solved or not. These uncertainties have been computed by using the method
proposed in [20].

All the experiments have been performed on an HPC, using 4GB of RAM and 20 cores
per experiment (with parallel fitness evaluations) with a time limit of 6 hours.

4.4 Results

In Table 4.3, we show the descriptive statistics of the obtained trees, in terms of both
score and complexity. The thresholds for solving the two tasks are 90 and 200 for the
MountainCarContinuous-v0 and LunarLanderContinuous-v2 environments, respectively.

1https://gitlab.com/leocus/ge_q_dts_carl
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Table 4.2: Hyperparameters for the algorithms in all the environments. N denotes the normal
distribution and U denotes the uniform distribution.

Algorithm Parameter Value

Grammatical
Evolution

Population size 200
Generations 40
Time limit 6 h

Genotype length 100
Selection Tournament selection

Tournament size 3
Crossover probability 0
Mutation probability 1

pgene
0.05 (MountainCarContinuous-v0)
0.1 (LunarLanderContinuous-v2)

Q-learning

Algorithm ε-greedy with ε-decay
ε0 1

Decay multiplier 0.99
Learning rate 1/k, k: leaf visits counter.

Number of episodes 1000 with early stopping
Early stopping period 30

Initialization
U(−1, 1) (MountainCarContinuous-v0)

0 (LunarLanderContinuous-v2)

UMDAG
c

Initialization strategy N (0, 1)

Population size 100
Selection size 10

Number of actions 8

Table 4.3: Scores of the best agents evolved in the two settings over 10 independent evolutionary
runs in 100 episodes.

Metric Environment Mean Std Best Worst

Score
MountainCar 98.12 0.78 98.77 96.41
LunarLander 239.34 6.40 252.54 231.21

M MountainCar 39.16 16.36 17.8 71.2
LunarLander 154.55 63.78 63.2 252.2

As we can observe, the proposed method is able to solve the task with good performance
in 100% of the cases in both environments.

The best individuals found in the both environments (w.r.t. score) are shown in Fig.
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4.3 and 4.4, respectively. We show in Figures 4.5 and 4.6 a visual representation of the
sets of actions evolved through the course of the evolutionary process in the two cases.
This observation validates the stagnation hypothesis made in Section 4.3, i.e., that most
actions “converge” towards a fixed value in the first part of the evolutionary process.

A comparison of the proposed solutions (both in score and complexity) w.r.t. the
results found in the literature and in the OpenAI Gym’s leaderboard23 can be seen in
Table 4.4 and 4.5 for the MountainCarContinuous-v0 and the LunarLanderContinuous-v2
environments, respectively. Note that, for the based methods based on neural networks, an
approximation ofM based only on the architecture of the network is computed, without
taking into account the other details of the network. While this may not lead to exact
results, the difference is negligible for our comparison purposes.

v < 0.0

[-0.07]

True

[0.22]

False

Figure 4.3: Best agent evolved in the MountainCarContinuous-v0 environment.

⟨w0, si⟩ < 0

⟨w1, si⟩ < 0

True

⟨w2, si⟩ < 0

True

[-2.34, 1.29]

True

⟨w3, si⟩ < 0

False

⟨w4, si⟩ < 0

True

[-0.48, 0.36]

True

[0.06, -0.24]

False
[-1.07, -0.17]

False

[0.82, -0.32]

False
[-0.24, -0.79]

False

Figure 4.4: Best agent evolved in the LunarLander-v2 environment. ⟨a, b⟩ denotes the dot
product between a and b.

2https://github.com/openai/gym/wiki/Leaderboard
3Only the results for which M could be computed are shown, i.e., the ones that were publicly available.
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Table 4.4: Comparison of the results obtained by using our approach and the results from the
literature and the OpenAI Gym leaderboard on the MountainCarContinuous-v0 environment.

Source Method Score M
Zhiqing Xiao Closed-form policy 93.36 22.3
Ashioto Actor-critic 92.45 2161.2
Nextgrid.ai Soft actor-critic 92.38 248833.8
Keavnn Soft actor-critic 92.75 31881.8
Liventsev et al. [69] Neural program synthesis 91.57 71.2
Oller et al. [91] Random Weighted Guessing 96.1 209.7
Ours Decision tree 98.77 17.8

Table 4.5: Comparison of the results obtained by using our approach and the results from the
literature and the OpenAI Gym leaderboard on the LunarLanderContinuous-v2 environment.

Source Method Score M
Keavnn Soft actor-critic 276.15 20936
liu Soft actor-critic 241.92 60615.9
Nextgrid.ai Proximal policy optimization 239.59 36634.5
Jootten Advantage actor-critic 240 22369.4
Goecks et al. [43] Cycle-of-learning 261.8 236702
Goecks et al. [43] Cycle-of-learning 253.24 236702
Goecks et al. [43] Cycle-of-learning 245.24 236702
Ours Decision tree 252.54 94.7

4.4.1 Discussion

MountainCarContinuous-v0

We observe that our solution dominates (as in Pareto front’s domination) all the other
solutions since it achieves a better score and lowerM than all the other solutions. Inter-
estingly, our approach is also able to outperform (in both score and interpretability) the
closed-form policy that has been manually derived by Zhiqing Xiao.

LunarLanderContinuous-v2

Though our approach did not achieve the best score across all models in this case, it
attained the 4th highest score, solving the task with a considerable margin (the task is
considered solved when the score becomes greater than 200). However, its complexity is
dramatically lower than all the other approaches: sacrificing approximately 8.5% of the
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score (w.r.t. the best solution by Keavnn) for an average complexity that is 3 orders of
magnitude lower seems an extremely good trade-off.

4.4.2 Interpretation of the policies

In this subsection, we attempt to interpret the best policies found by the proposed method
for the two environments, to understand how they work.

MountainCarContinuous-v0

The best agent evolved for this environment can be seen in Fig. 4.3. In this case, the agent
is extremely easy to interpret: if velocity is negative, the agent builds potential energy by
accelerating to the left. Otherwise, it exploits the kinetic energy by accelerating to the
right.

LunarLanderContinuous-v2

In this case, the tree (shown in Fig. 4.4) is harder to interpret, due to its oblique splits.
The weights for the splits are the following:

w0 = [0.228, 0.336, 0.485, 0.603,−0.421,−0.905,−0.615,−0.704];
w1 = [0.442,−0.175, 0.411,−0.482,−0.578,−0.735,−0.993, 0.390];
w2 = [0.950,−0.493,−0.213, 0.308,−0.661, 0.444, 0.945, 0.199];
w3 = [0.534,−0.406, 0.534, 0.704,−0.024,−0.378, 0.106,−0.759];
w4 = [0.281, 0.571, 0.999,−0.982, 0.214, 0.847,−0.927, 0.301].

So, to interpret the behavior of the agent, we have to analyze the behavior of the splits
in different conditions. This environment gives as input to the agent 8 variables: px, the
position on the x-axis; py, the position on the y-axis; vx, the velocity on the x-axis; vy,
the velocity on the y-axis; θ, the angle w.r.t. the x-axis; ω, the angular velocity w.r.t. the
y axis; cl, the contact sensor input for the left leg; cr, the contact sensor input for the
right leg. The actions work as follows:

• The first action corresponds to the acceleration on the y axis. When it is less than
0.5, no acceleration is given. On the other hand, when it is in [0.5, 1] an acceleration
is supplied with power ranging from 50% to 100%.

• The second action corresponds to the acceleration on the x axis. When it is less
than -0.5, the engine accelerates towards the left (negative x), and when it is greater
than 0.5, the engine accelerates towards the right (positive x).
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Since cl and cr can only assume a value of either 0 or 1, they can be seen as a variation
of the threshold for the split, i.e., the condition becomes:

a · px + b · py + c · vx + d · vy + e · θ + f · ω < −g · cl − h · cr (4.1)

where a . . . h are the components of the vector wk.
For simplicity, we set −g · cl − h · cr = t, such that the conditions that we want to

analyze take the following form:

a · px + b · py + c · vx + d · vy + e · θ + f · ω < t (4.2)

where t is a dynamic threshold (i.e., it changes when contact with the ground happens).
Starting from the root of the tree (i.e., the uppermost node) shown in Fig. 4.4, let us

analyze each condition and its actions.
First condition: By writing the first condition as done in Eq. 4.2, and grouping the

terms in x, y, and θ, we obtain:

a(px +
c

a
vx) + b(py +

d

b
vy)− e(θ +

f

e
ω) < t (4.3)

Now, by noting that c
a
≈ d

b
≈ f

e
≈ 2, we can approximate Eq. 4.3 as:

a(px + 2vx) + b(py + 2vy) < e(θ + 2ω) + t (4.4)

This policy can be interpreted as follows: if the weighted sum of the two components
of the expected position in the next two time steps (if the agent does not fire any engine,
and supposing that friction is negligible) is smaller than the expected angle, then check
the other conditions, otherwise accelerate to the left. For instance, when the expected
angle is negative and the predicted positions are positive, the agent accelerates the lander
to the left, to avoid overturning.

Second condition: This condition can be formulated as:

a(px +
c

a
vx)− b(py +

d

b
vy)− e(θ +

f

e
ω) < t (4.5)

which can be refactored as:

a(px +
c

a
vx)− e(θ +

f

e
ω) < b(py +

d

b
vy) + t (4.6)

The condition can be interpreted as follows: if the weighted sum of the predicted next
position and predicted next angle is smaller than the predicted position on the y-axis, then
check another condition, otherwise fire the main engine. Basically, this condition checks
whether the lander is unbalanced towards the left. In fact, since the agent knows (from
the previous condition) that the lander is not falling on the right, when this condition is
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false (i.e., it is not going to fall on the left) the agent fires the main engine to soften the
landing.

Third condition: This condition cannot be analyzed as the previous ones. For this
reason, we analyze the mean value (and standard deviation) of each term and obtain:

a · px ≈ −10−2 ± 8.5 · 10−2; b · py ≈ 1.5 · 10−1 ± 2.4 · 10−1

c · vx ≈ −2 · 10−3 ± 4 · 10−2; d · vy ≈ −4 · 10−2 ± 5 · 10−2

e · θ ≈ 3 · 10−2 ± 8 · 10−2; f · ω ≈ 1.5 · 10−2 ± 5 · 10−2

g · cl ≈ 4 · 10−1 ± 5 · 10−1;h · cr ≈ 9 · 10−2 ± 10−1

(4.7)

this means that we can ignore all the variables except for py and cl (at the expense of a
negligible loss in performance). Then, this condition is simply:

−b · py + g · cl < 0 (4.8)

that, with g
b
≈ 2, can be rewritten as:

py >
g

b
cl (4.9)

Eq. 4.9 can be interpreted as follows. From the previous conditions, we know that
the lander is unbalanced towards the left. This condition checks that there is no contact
with the ground (max py = 1.5). When there is contact with the ground, the second term
is approximately 2, and then the condition evaluates to false. If there is no contact with
the ground, then the agent accelerates the lander to the right to balance it. Otherwise, it
keeps all the engines off (to minimize energy consumption).

Finally, in the last two conditions that are checked by following the right branch of
the third condition, all the actions that can be executed correspond to switching off both
engines.

4.5 Conclusions

In this chapter, we propose a method that allows us to obtain interpretable agents for
reinforcement learning tasks with continuous action spaces. We do so by combining co-
evolutionary approaches with reinforcement learning techniques such as Q-learning.

The proposed method proved to be able to solve with satisfactory performance two
well-known benchmarks. In these two tasks, the agents have performances that are compa-
rable (or even better) w.r.t. the state of the art (including non-interpretable approaches),
while having substantially smaller complexity.
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Figure 4.5: Evolution of action values
(solid: mean, shaded: std. dev.) in the
MountainCarContinuous-v0 environment.
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Figure 4.6: Evolution of action values
(solid: mean, shaded: std. dev.) in the
LunarLanderContinuous-v2 environment.
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However, this approach has some limitations: for example, the agents are not able to
perform actions that are proportional to input variables (e.g., to implement proportional
controllers).

Future work includes: the development of more sophisticated grammars that allow the
agents to select which variables to address in each condition, the use of more sophisticated
optimization techniques to tackle harder problems, the replacement of static actions (in
the “Decision Encoding” module) with linear models, to obtain more advanced control
systems.
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Chapter 5

Modular Interpretable Systems

Based on: Custode, Leonardo Lucio, and Giovanni Iacca. “Interpretable pipelines with
evolutionary optimized modules for reinforcement learning tasks with visual inputs.” Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion. 2022.

5.1 Introduction

The recent literature has proposed some seminal approaches for performing RL with inter-
pretable models [129, 28], e.g., based on evolutionary computation [23, 22] (See Chapters 3
and 4). So far, these interpretable reinforcement learning (IRL) approaches have been
mostly tested on relatively simple control RL tasks, such as those of the OpenAI gym
benchmark [13], on which they have obtained fairly good results. However, these methods
are not expected to work well in RL tasks with raw input data, as in these contexts each
variable alone (e.g., a pixel) may not be meaningful enough to take decisions.

In this chapter, we introduce the concept of interpretable pipelines for tackling RL
tasks with visual inputs. An interpretable pipeline is a multi-agent system where each
agent is an interpretable model with well-defined responsibilities, which communicates
with the other agents in the pipeline. We optimize such pipelines by means of a co-
evolutionary approach, in which different evolutionary algorithms (EAs) run in parallel,
each of which optimizes a single agent. We test our approach on three different Atari
games, where we observe that the proposed method is able to achieve satisfactory per-
formance in deterministic settings (i.e., without frame-skipping). On the other hand, our
approach is not able to achieve satisfactory performance in environments with stochastic
frame-skipping (yielding higher uncertainty about the future), which provides some hints
for future work.

This chapter is structured as follows. The next section makes a brief overview of the
related work. Section 5.2 explains the methodology used in our experiments. In Section
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5.3 we present the results and, finally, in Section 5.4 we draw the conclusions of this work.

5.2 Method

To evolve interpretable pipelines for image-based RL tasks, we build on some of the
aforementioned previous works from the literature [23, 22, 142]. In detail, our proposed
system is an interpretable pipeline composed of two parts:

• a vision module, that is meant to process the input to extract a pre-defined number
of features;

• a decision module, whose purpose is to decide which action to take, based on the
features extracted by the vision module.

It is important to note that in this chapter, features represent high-level visual in-
formation (position of relevant objects), while decisions are actions taken by a decision
tree (playing one of the Atari games considered in our experimentation). However, the
proposed pipelines can be extended to tackle classification problems.

A graphical representation of this kind of pipeline is shown in Figure 5.1. In the
following subsections, we will first explain the details of the two kinds of modules, and
then we will describe our co-evolutionary approach.

Vision module
(conv. kernels)

(xo, yo)

(xb, yb)

(xr, yr)

Decision module (DT) Output

Figure 5.1: An example of the proposed pipelines (note that the frames are taken from the Pong
environment).

5.2.1 Vision module

In [142], the authors used a simplified self-attention module that ranks the patches of
the image by importance. Then, the coordinates of the k most important patches are
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given in input to an LSTM network [49] that computes the decision to take, where k is
a predetermined parameter. Similarly, here we use a vision module, whose purpose is to
find the k most important patches in the image, returning their coordinates.

However, in order to have better interpretability, rather than a self-attention module,
in our vision module we employ k convolutional kernels, each of which is supposed to
detect a single entity of interest in the image.

Moreover, using k distinct kernels instead of a single self-attention module allows us
to have a fixed-order constraint on the input: e.g., given two kernels kA and kB which
respectively handle the detection of two distinct objects A and B, we are guaranteed that
the decision module will receive in input the position of the two entities always in the
same order. In contrast, when using a self-attention module as done in [142], we do not
have such guarantees, and thus the decision module has to handle such cases of inputs in
unpredictable order, thus requiring a more complex decision logic.

The pseudo-code that describes how the vision module works is shown in Algorithm
5. In the algorithm R : Rh′×w′ is the output of the convolution between the image
and the kernel, which results in a matrix of size h′ × w′, where h′ = himg − 2⌊hk

2
⌋ and

w′ = wimg − 2⌊wk

2
⌋, and himg is the height of the image, hk is the height of the kernel,

wimg is the width of the image, wk is the width of the kernel.

Algorithm 5: Computation performed by the vision module
Data: an image, X
Data: a list of kernels, k
Result: a list of coordinates, c

1 c← [];
2 for k ∈ k do
3 R← convolution(X, k); // apply kernel k to X
4 (x∗, y∗)← argmax

(x,y)
(R[y, x]); // (x, y) size of X

5 c← c + [(x∗, y∗)]; // concatenate c

6 end
7 return c;

5.2.2 Decision module

The goal of the decision module is to perform “reasoning” on the coordinates of the most
important patches of the input images and to take a decision on top of them.

To keep the interpretability of the pipelines high, we use an automatically synthesized
decision tree as a decision module. This decision tree takes as input the list of coordinates
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computed by the vision module, thus it does not use the raw data of the whole image.
This module then returns a discrete action that can be directly sent to the environment,

see the examples shown in Figure 5.6 and the corresponding analysis reported in Section
5.3.1.

5.2.3 Co-evolutionary process

To optimize the vision and decision modules adopted within the proposed pipelines, we
employ a co-evolutionary approach [102]. In particular, we combine Covariance Matrix
Adaptation Evolution Strategies (CMA-ES) [45] with Genetic Programming (GP) [58], as
shown in Figure 5.2. We use CMA-ES to evolve the parameters of the vision module, i.e.,
the weights of each kernel module. CMA-ES has been chosen for being one of the most
robust algorithms for derivative-free optimization. On the other hand, by using Genetic
Programming (more specifically, strongly typed Genetic Programming [87]), we evolve
decision trees, as described below.

While using pipelines there is the risk of having bad performance due to compounding
errors, we expect the decision tree, i.e., the one that is at the end of the pipeline, to learn
to be robust to the errors of the vision module. This is due to the fact that, since the
two populations are evolved simultaneously, the fitness obtained by the DTs implicitly
depends on their robustness to input noise.

Genetic Programming for evolving decision trees

To evolve decision trees, we use two types of nodes: condition nodes and leaf nodes. A
condition is represented as a node with three child nodes: a comparison node and two
nodes (either leaves or conditions).

A comparison node is composed of a node representing an operator (e.g., “less than”,
“equal to”, and “greater than”) that has two child nodes, encoding two expressions.

An expression node can be either a constant, a variable, or an arithmetical operation
between expression nodes.

Since the interpretability of a decision tree crucially depends on the complexity of the
conditions (i.e., more complex hyperplanes are hard to interpret, e.g., the ones presented
in [28]), not only do we use a constant to limit the size of the tree, but we also employ a
different constant to limit the depth of the conditions.

By doing so, we can control better the interpretability of the tree by allowing, for
instance, deeper trees with simple conditions.
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Fitness evaluation

In order to evaluate the quality of the individuals from both populations, we pair each
individual with all the individuals of the other population.

We evaluate the pair on e episodes, and we compute the average score (across episodes)
for the pair s̄i,j, where i is the index of the individual from the population of vision modules
and j is the index of the individual from the population of decision modules.

Then, we define the fitness of an individual as the maximum s̄ that that individual
obtained across all the pairings, i.e., fi = max

j
(s̄i,j) for vision modules and fj = max

i
(s̄i,j)

for decision modules.

While using a different operator such as the mean (across pairings) seems more mean-
ingful, from preliminary experiments we observed that using the mean leads to a stagna-
tion of the co-evolutionary process. We hypothesize that this is due to the fact that, by
using the mean, the fitnesses are affected by the randomness in the evaluation phase and
by the qualities of all the individuals of the other population, so that an individual that
obtains medium-low scores in all the pairings may have a higher fitness than an individual
that works very well combined with a specific individual of the other population but works
poorly with all the other individuals.

CMA-ES Kernels GP

Coupling

Fitness
evaluation

Figure 5.2: Scheme of the proposed co-evolutionary process.
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Reducing the number of evaluations

The computational cost (in terms of the number of evaluations, where a single evaluation
relates to an instance of the proposed pipelines) for the co-evolutionary process isO(nCMA

p ·
nGP
p · ng · ne), where nCMA

p is the population size for CMA-ES, nGP
p is the population size

for the Genetic Programming (assuming that each individual of one population is paired
with all the individuals of the other population), ng is the number of generations, and ne

is the number of episodes.
To reduce such cost, we propose a mechanism that evaluates the behavior (i.e., the

outputs in response to given inputs) of each individual in the two populations, and avoids
the evaluation of individuals whose behavior is too similar. At each generation, for both
the vision and decision modules in the current populations of the co-evolutionary process,
we give them in input a set of samples and we store their outputs. Then, for both
populations (separately), we cluster these outputs by means of the DBSCAN algorithm
[127]. More specifically, the samples used for clustering are calculated as follows.

• Vision modules – For these modules, we evaluate their behavior by giving them in
input a set of nvm images sampled randomly from an episode used at the beginning
of the evolutionary process. Then, we use the concatenation of all the outputs of
each module as input samples for the clustering process.

• Decision modules – For these modules, we evaluate their behavior by giving
them in input ndm randomly sampled coordinates from the vision modules’ out-
put space. Then, we perform a one-hot encoding of the decision modules’ outputs
and, by concatenating all the one-hot encoded outputs for each module, we obtain
the input samples for the clustering process. The reason underlying the one-hot
encoding is related to the “meaning” of the input samples for the clustering pro-
cess. In fact, if we used the raw outputs of the decision modules as input samples
for clustering, we would give an implicit “proximity” meaning such that an action
ai ∈ A = {a0, . . . , ai, ai+1, ai+2, . . . , aA} would be considered “closer” to action ai+1

than ai+2, while the meaning of such actions may not have such a “similarity” prin-
ciple. Instead, by performing a one-hot encoding, the distance between two different
actions (performed by different decision modules given the same input) is always
constant, thus removing the bias associated to the raw outputs.

Once clustering has been performed, we evaluate only the centroids of each cluster (and
the individuals not assigned to any cluster) and we assign, for each individual of the
cluster, the same fitness.

The reason underlying the choice of the DBSCAN algorithm is due to the fact that this
algorithm is based on the concept of density, so that we can intuitively set the thresholds
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for considering two points as “close”. Moreover, this algorithm does not require specifying
a pre-defined number of clusters, so this means that if we find a cluster, its points are
close enough to be considered similar. Finally, we do not use constant parameters for the
distance threshold ε. Instead, we use an initial ε0, which, at each step, is multiplied by
a scaling constant γ ∈ [0, 1). This scaling mechanism gives us the following properties.
At the beginning of the evolutionary process, since the diversity is high, we perform
a coarse-grained clustering of the individuals so that we can significantly speed up the
initial generations. On later generations, the thresholds become increasingly smaller, so
that even not-so-diverse individuals are evaluated separately: this, in turn, leads to a
greater number of simulations, which allows us to discriminate individuals in a more fine-
grained fashion. Finally, when the εi parameter (for the i-th generation) tends to zero,
we avoid evaluating only those individuals that are behaviorally identical. However, since
in the final generation the evolutionary process is expected to converge, the number of
evaluations decreases again.

5.2.4 Experimental setup

We test our approach in three environments from the Atari Learning Environment imple-
mented in OpenAI Gym [9, 75, 13]. In particular, we use the Pong-v4, Bowling-v4, and
Boxing-v4 environments, hereinafter simply referred to as Pong, Bowling, and Boxing,
respectively. Table 5.1 shows the parameters used for the evolution. The parameters have
been determined empirically, based on the knowledge gained in preliminary experiments.
The parameter setting is the same for the three environments. The only difference is in
the number of available actions for the decision module, that is 4, 4, and 6 respectively
for Pong, Bowling, and Boxing. It is important to note that the number of episodes is
quite low. This is due to the fact that in the fitness evaluation phase, there is no learning
involved (differently from Chapters 3 and 4), and thus the episodes are only used to evalu-
ate the pipelines on average. While a higher number of episodes would certainly increase
the precision of the estimate of the performance of the pipeline in unseen episodes, it
would significantly increase the computational cost of the search process. All the runs
were performed using an HPC that allocated 70 CPUs and 4GB of RAM for each run,
with a time limit of 6 hours. For each environment, we consider both the settings with
and without stochastic frame-skipping, the first one being harder than the second one.
Stochastic frame-skipping is harder because it is akin to a non-uniform sampling (while
environment without frame-skipping or with deterministic frame-skipping do a uniform
sampling). In fact, the time elapsed between two sensory inputs of the agents can vary,
and this introduces two problems: (1) it is harder for the agent to compute time-dependent
properties of the objects, such as velocities and accelerations; and (2) the agent cannot

77



5.2. METHOD CHAPTER 5. MODULAR INTERPRETABLE SYSTEMS

exactly know what is the outcome of an action, since it does not know how long the action
will be applied to the environment (i.e., the environment has “sticky actions”). For each
environment and setting, we perform 5 runs. This number of runs is enough to ensure
statistical significance since, given the results shown in Table 5.2, the confidence interval
(95%) is low enough to validate our conclusions (see the next section for the results). The
confidence interval has been computed as CI95% =

t{5−1,0.025}σ√
5

, where t is the critical value
from the Student’s t distribution, and σ is the standard deviation.

5.2.5 Image pre-processing

Before feeding an image to the vision module, we perform the following pre-processing
steps:

1. We remove the topmost 35 pixels: these pixels correspond to the part of the image
that describes the “status” of the game, thus we remove it to avoid that the evolved
pipelines use this information to take decisions.

2. We resize the image to 96×96: this operation speeds up the vision modules’ compu-
tations, without losing information about the entities present in the game.

3. We normalize the input in [0, 1] by performing a min-max normalization.

5.2.6 Environments

All the environments share the same type of observations, which consist in 210×160 RGB
images, where each pixel is encoded with three 8-bit integers (one for each channel).

Pong

The Pong environment (and its counterpart without frame-skipping, PongNoFrameskip)
is a game in which there are two agents (here intended as “players”, not to be confused with
the agents that compose our pipelines), who play the Pong game. Each agent controls
a racket (which can move on the y axis), and the goal of each agent is to send the ball
farther than the opponent’s x position.
Reward: Each point scored by the playing agent (i.e., the green racket) gives a reward
of 1 point. On the other hand, each point scored by the opponent agent gives a reward
of -1 point. In all the other cases, the reward given to the agent is 0.
Actions: The action space consists of 4 actions: two of them are NOP actions (i.e., they
do not move the racket), one moves the racket upwards, and another moves the racket
downwards.
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Termination criterion: The simulation ends when either the agent or the opponent
score 21 points or after 105 elapsed timesteps.

Bowling

The Bowling environment (and its counterpart BowlingNoFrameskip) consists in a bowling
game, where the agent has to throw a ball to hit some pins. Thus, differently from Pong,
this is a single-player game.
Reward: After each round (i.e., throwing twice the balls, or one in case of a strike), the
agent receives a reward equal to the number of pins that have been hit. Moreover, strikes
and spares provide extra points (also given at the end of the round). In all the other
cases, the reward given to the agent is 0.
Actions: The agent can perform 4 actions: a NOP action, an action that moves the
ball upwards, one that moves the ball downwards, and an action that allows the agent to
throw the ball.
Termination criterion: The simulation ends after 10 rounds or after 105 timesteps.
However, since an agent that does not know how to throw the ball will make the simulation
become extremely time-consuming, we reduced the number of maximum timesteps to
5×103 during the evolutionary process. Then, to obtain the results shown in Section 5.3,
we test the best pipelines evolved on the full task.

Boxing

In the Boxing (and its counterpart BoxingNoFrameskip) environment, there are two agents
that compete: the white boxer (played by the agent) and the black boxer (which is the
opponent).
Reward: When the agent hits the opponent, it can receive either 1 or 2 points, depending
on the distance between the agents (hitting the opponent from a closer position gives more
points). On the other hand, when the agent is hit by the opponent it receives a reward
that is the opposite of the one previously described. In all the other timesteps, the reward
given to the agent is 0.
Actions: The environment provides 18 actions, composed of: NOP, movements in the 4

cardinal directions, punching, and combinations of movements and punching (including
diagonals). However, here for simplicity, we reduce the set of actions to the non-composite
actions, i.e.: NOP, movements in the 4 directions, and punching.
Termination criterion: The simulation ends when either the agent or the opponent
scores 100 points or after 105 elapsed timesteps.
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Table 5.1: Hyperparameters used in the experimentation.

Parameter Value
CMA-ES Population size (nCMA

p ) 50
CMA-ES Initial mean 0
CMA-ES Initial σ 0.1
GP Population size (nGP

p ) 50
GP Crossover probability 0
GP Mutation probability 1
GP Tournament size 10
GP Elitism Yes (1 elite)
DBSCAN Number of samples (vision) (nvm) 100
DBSCAN Number of samples (decision) (ndm) 100
Number of generations (ng) 100
Maximum depth of decision tree 4
Maximum depth of condition 2
Number of convolutional kernels (k) 2
Size of convolutional kernels 5×5×3
Size of the images 96×96
Number of episodes (ne) 3
Time limit 6 hours
Number of runs 5

5.3 Results

The results obtained from the 5 runs for each environment and setting are shown in Ta-
ble 5.2. The results shown in the table have been obtained by testing the best-evolved
pipelines on 100 unseen episodes. We observe that our approach performs well in envi-
ronments without frame-skipping, but it performs poorly in settings with frame-skipping.
While state-of-the-art approaches are able to achieve very good performance even in
cases with frame-skipping, it is important to point out that these approaches are not
interpretable, thus they do not provide any information about their inner processes. On
the other hand, while our approaches do not perform well when trained in setups with
frame-skipping, they are completely transparent, potentially allowing an adaptation to
domains with frame-skipping. In fact, the non-interpretable approaches have M′ scores
in the order of 107, while ours are in the order of 102. This difference can be further ap-
preciated in Figure 5.4. These results encourage future research in IRL, as adding more
complexity to the pipelines would still yield a significant gain in interpretability w.r.t. the
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current non-interpretable state-of-the-art.
Figure 5.3 shows a comparison of the distribution of the scores of the best pipelines

evolved in 5 runs of each environment and setting (normalized w.r.t. the minimum and
maximum possible scores of the environments). Once again we observe that, in all the
cases, the settings without frame-skipping achieve very good performance (i.e., they are
closer to one), while in the cases where frame-skipping is applied, our algorithm is not
able to achieve good performance.

Table 5.2: Summary of the results of the best pipelines evolved in 5 runs of each setting for each
environment. Each pipeline has been tested on 100 unseen episodes. “FS” stands for the setting
with frame-skipping, “NoFS” indicates the setting without frame-skipping, “SoTA” indicates the
results from the (non-interpretable) state-of-the-art. Please note that all the papers from the
literature report results only in the FS setting.

Env. Setup Mean Std. Best Reference

Pong
FS (ours) -6.97 8.49 7.42
NoFS (ours) 21.00 0.00 21.00
FS (SoTA) - - 21.00 [150, 121, 124]

Bowling
FS (ours) 189.68 5.06 196.53
NoFS (ours) 220.20 18.00 240.00
FS (SoTA) - - 260.00 [124, 31]

Boxing

FS (ours) 48.59 19.05 75.37
NoFS (ours) 92.78 3.09 98.00
FS (SoTA) - - 100.00 [9, 124, 50, 38, 4, 34, 126]

The fitness trends, as well the cumulative number of evaluations across generations
(mean, represented as solid line, ± std. dev., represented as shaded area, across 5 runs)
are shown for each environment and setting in Figure 5.5. We observe that the clustering
mechanisms allows us to save a significant amount of evaluations, increasing the efficiency
of the co-evolutionary process (approximately saving 41%±12% evaluations).

5.3.1 Analysis of the best pipelines evolved

We conclude our presentation of the results with an analysis of the best-evolved pipelines
obtained by means of the proposed method. Note that, since the settings without frame-
skipping produced better results, we will limit our analysis to these settings.

The best pipelines obtained are shown graphically in Figure 5.6. In order to improve
the readability, the decision modules have been manually simplified, deleting the condi-
tions that always evaluate to the same truth value.
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Figure 5.3: Distribution of the normalized
scores of the best pipelines evolved in 5 runs
of each setting for each environment, nor-
malized w.r.t. the minimum and maximum
scores allowed by each environment.
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0 20 40 60
Generations

0.0

25K

50K

75K

100K

125K

150K

175K

Cu
m

ul
at

iv
e 

ev
al

ua
tio

ns

FS
NoFS
Reference

(f) Evaluations - Boxing

Figure 5.5: Fitness and number of evaluations (mean ± std. dev. across 5 runs) over time. For
the fitness, the reference is the best possible fitness allowed by the environment. For the number
of evaluations, the reference is the number of evaluations needed if the clustering mechanism
described in Section 5.2.3 is not applied.

Pong

As shown in Figure 5.6a, the vision module of the best pipeline evolved for Pong detects the
two most important entities: The racket and the ball, giving in output their coordinates:
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(a) Vision module - Pong (b) Vision module - Bowling (c) Vision module - Boxing
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Figure 5.6: Best pipelines evolved for the three environments (without frame-skipping). On the
top, we show the entities discovered by the vision modules, while on the bottom we show the
corresponding decision modules.

xr, yr, xb, yb, where the subscript r refers to the player’s racket and the subscript b refers
to the ball.

The policy of the decision-making module for this environment, as shown in Figure
5.6d, works as follows. Firstly, it checks whether the racket is on the upper part of the
screen. If so, it checks whether the y-coordinate of the ball is less than the x-coordinate
of the racket. This condition can be simplified: the horizontal position of the racket is
constant (xr = 82). So, this condition is equivalent to yb < 82, which means that the ball
is not near the bottom wall (white part in Figure 5.6a). Then, if this condition evaluates
to true, the decision module decides to go downwards, otherwise, it does not perform any
action. On the other hand, when the racket is on the lower part of the screen, the decision
module checks 87.4 > yb, i.e., if the ball is not near to the bottom wall. If so, it decides
to go upwards, otherwise, it does not perform any action.

Bowling

The entities recognized by the vision module are shown in Figure 5.6b, and they are: the
person throwing the ball and the ball. Thus, the coordinates that the vision module sends
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to the decision module are: xp, yp, xb, yb, where the subscript p refers to the person, and
the subscript b refers to the ball.

The decision module (Figure 5.6e) performs the following decision-making process.
First of all, it checks the vertical coordinate of the person and, if it is too low on the
screen (yp > 48.5, note that the top-left screen has coordinates (0, 0)), it moves the
person upwards, so that it is positioned correctly to perform a good shot. Then, after
the person is correctly positioned on the bowling alley, it checks another condition to
understand whether the ball has been thrown or not (xp > xb). In fact, if the ball has not
been thrown, it stands behind the person. Thus, if the ball is moving toward the pins, it
moves the position of the ball downwards. Otherwise, if the ball is still in the hand of the
person, it makes the person throw the ball.

Boxing

In Figure 5.6c, we show the two entities recognized by the vision module: the punch of the
player, and the position of the right arm of the opponent. Thus, the vision module returns
their coordinates: xp, yp, xo, yo, where the subscript p refers to the player and the subscript
o refers to the opponent. Moreover, by testing the vision module, we have observed that
the kernel does not work perfectly, i.e., it happens that the kernel that should recognize
the position of the player recognizes a part of the opponent. Nevertheless, this pipeline
manages to achieve a near-optimal average score (on unseen episodes) of 98, i.e., 1% away
from the maximum.

The decision module, shown in 5.6f, works as follows. If the player is positioned upper
than the opponent (again, note that the top-left corner has coordinates (0, 0)), it tries to
punch the opponent, otherwise, it goes upwards, to reach the opponent.

Interestingly, such a simple policy (encoded by the decision module) allows us to
understand some properties of the pipeline and the game itself. First, the game can
be played with very good results by using only two actions (note that the environment
provides 18 actions for the player). Moreover, the other actions are not needed because the
opponent chases the player. For this reason, the decision module finds more advantageous
to use a semi-defensive strategy, i.e., always punch if the opponent is reachable by the
punches, and chase it only when it is upwards.

5.4 Conclusions

In this chapter, we propose a novel methodology (based on a divide-et-impera paradigm)
for evolving interpretable systems for RL tasks with visual inputs. In particular, our
approach is based on pipelines characterized by a separation of concerns between a vision
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module (which uses convolutional kernels) and a decision module (based on a decision
tree). Our results show that our approach is able to learn how to effectively play three
Atari games in simplified settings (i.e., without frame-skipping). However, when apply-
ing frame-skipping to the environments, our approach is not able to achieve satisfactory
performance.

Moreover, observing the behaviors of the pipelines evolved confirmed the hypothesis
made in Section 5.2.3. In fact, we observed that even though the coordinates computed
by the vision modules were pretty noisy, the resulting policies were still able to achieve
good performance.

Future work should introduce ways to address the uncertainty in non-deterministic
settings (i.e., with frame-skipping), in order to make this approach more robust to noise
in the environment and achieve performances comparable to those of the state-of-the-
art algorithms developed for these settings. In this sense, two possibilities would be to
incorporate in our approach some mechanisms used in evolutionary optimization in the
presence of noise [3], or using fuzzy [52] or probabilistic [62] decision trees.
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Chapter 6

Approaches for Multi-Agent
Interpretable Reinforcement Learning

Based on: Crespi, Marco, Leonardo Lucio Custode, and Giovanni Iacca. “Towards Inter-
pretable Policies in Multi-agent Reinforcement Learning Tasks.” Bioinspired Optimization
Methods and Their Applications: 10th International Conference, BIOMA 2022, Maribor,
Slovenia, November 17–18, 2022, Proceedings. Cham: Springer International Publishing,
2022.

6.1 Introduction

In recent years, the application of Deep Learning (DL) to the field of Multi-Agent Re-
inforcement Learning (MARL) led to the achievement of significant results in the field.
While DL allows training powerful multi-agent systems (MASs), it has some drawbacks.
First of all, to exploit state-of-the-art deep reinforcement learning (RL) algorithms, one
often has to employ centralized approaches for training [94], which limits the scalability of
the system, i.e., no agents can be added after the MAS has been trained. Moreover, deep
RL methods suffer from an even worse drawback: the lack of interpretability. In fact, in
safety-critical or high-stakes contexts, DL approaches cannot be employed as they are not
fully predictable [116, 119, 117] and, thus, they may exhibit unexpected behaviors in edge
cases. While interpretability in RL is an important concern, in MARL it is even more
important. In fact, in contrast to traditional RL setups where safety can be assessed by
inspecting the trained agent, in MARL not only do we need to analyze each agent, but
we also need to understand their collective behavior.

In this chapter, extend the approach presented in Chapter 3 for training an inter-
pretable MAS. More specifically, we extend the setup proposed in Chapter 3 by using a
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cooperative co-evolutionary algorithm [103] in which each evolutionary process addresses
the evolution of an agent of the MAS. As a baseline, we also provide the results obtained
when a single policy is trained for all the agents in the MAS. We evaluate our approach on
the Battlefield task from MAgent [160] (implemented in the PettingZoo library [143]). The
teams evolved with our approach are able to obtain satisfactory performance, eliminating
the whole opponent team in up to 98% of the cases.

So, the main contributions of this chapter are: 1) the extension of the approach pre-
sented in Chapter 3 to multi-agent reinforcement learning settings; 2) the introduction
of two approaches, a co-evolutionary one and single-policy one; 3) the validation of the
proposed methods on the Battlefield task.

The rest of the chapter is structured as follows. In the next section, we describe the
proposed method. Then, in Section 6.3 we present the numerical results. Finally, we draw
the conclusions in Section 6.4.

6.2 Method

The goal of our work is to produce interpretable agents that are capable of cooperating to
solve a given task. To do that, we evolve populations of interpretable agents in the form
of decision trees. To evolve these decision trees, we use the same approach described in
Chapter 3. It is important to note that our method employs a cooperative co-evolutionary
process [103], where each population optimizes the structure of the tree for a particular
agent of the environment.

6.2.1 Creation of the teams

To evaluate a genotype, we have to assess the quality of the corresponding phenotype when
placed inside a team. Each agent (i.e., a member of the team) has its own evolutionary
process (i.e., there is a separate population for each agent in the task). Thus, we assemble
teams composed of one phenotype (i.e., a genotype transformed into a decision tree) taken
from each agent-local population.

Each agent-local population has np individuals, such that np different teams are cre-
ated. Each i-th team is formed by the corresponding i-th individuals (one per each
agent-local population), where i is an index ∈ [0, np − 1]. This approach guarantees that
each individual from each agent-local population is evaluated exactly once. Note that the
selection operator, when applied, shuffles the array of the individuals. This means that
an individual from an agent-local population is generally not always evaluated with the
same individuals taken from the other agent-local populations.
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At the end of the evolutionary process, we form the final team by combining the
best individuals from all the agent-local populations. Moreover, by using an adoption
mechanism, the structure of the best agents may be shared between different agent-local
populations.

6.2.2 Fitness evaluation

Once a team is created, it undergoes ne episodes of simulation of the task. In the simu-
lation phase, the agents perform IQL (with a dynamic ε-greedy exploration approach) to
learn the function that maps the leaves to actions. By using IQL, each agent does not have
to take into account the choices made by the other agents, as these are modeled as part
of the environment. Moreover, given a sufficient number of episodes for the evaluation,
the continuous learning of all the agents results in a co-adaptation. After the simulation
phase, the seventh decile of the returns (i.e., the cumulative reward for each episode)
received by an agent is used as fitness. The choice of the seventh decile lies on the fact
that our fitness function is meant to describe the quality of a genotype as the quality of
the state-space decomposition function [21], which can only be measured when the perfor-
mance of the agent converges. While also the mean, the maximum, and the median have
been considered as aggregation functions to compute the fitness, they have been discarded
for the following reasons. Since the agents initially use a high ε for the exploration, the
initial returns have a significant impact on the mean, thus they do not reflect the true
quality of the genotype. Using the median would also present problems: on the one hand,
the median would discard all the episodes in which the cooperation between the agents
was fruitful enough to receive high returns; on the other hand, since we expect the returns
to grow towards the end of the simulation phase, using the median would mean that we
take into account the performance of a not-fully-trained agent. Finally, if we used the
maximum to aggregate the returns, we would give too much importance to spurious good
performance that may occur in the simulation (e.g., returns obtained just by randomly
effective behaviors), without taking into account the performance of the trained version
of the agent. In a preliminary experimental phase, the seventh decile represented a good
trade-off between the median and the maximum, reflecting more closely the performance
of the agents. The fitness evaluation process is described in Figure 6.1.

6.2.3 Operators

Besides the selection, mutation, crossover, and replacement operators used in Chapter 3,
we also make use of an “adoption” mechanism, which allows individuals to be transferred
from one population to the other.
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Figure 6.1: Block diagram of the fitness evaluation process.

The adoption of an individual happens at the end of each generation. An agent-local
population is randomly chosen and the individual with the highest fitness is selected.
At this point, the selected individual is copied into the other agent-local populations,
replacing a randomly selected individual from the offspring. The adopted individual’s
parents are then assigned to the replaced individual’s parents. The reason why we use this
adoption mechanism lies in the reward system of the specific BattleField environment (see
Section 6.2.4). As mentioned by the authors of PettingZoo: “Agents are rewarded for their
individual performance, and not for the performance of their neighbors, so coordination
is difficult”1. This means that only agents capable of hitting or killing enemies (this will
become clearer in the next section) obtain a high fitness and the adoption mechanism
allows sharing “knowledge” across agent-local populations.

6.2.4 Experimental setup

Environment

We simulate a multi-agent environment by using the PettingZoo library [143]. More
specifically, we use the Battlefield environment from the MAgent [160] suite. A screenshot
of the environment is shown in Figure 6.2.

In this task, there are two teams: the red team and the blue team. As the name of
the environment suggests, the goal of each team is to defeat the other team by killing all

1https://www.pettingzoo.ml/magent/battlefield (accessed on 02/02/2022).
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Figure 6.2: A screenshot from the
Battlefield environment.

Figure 6.3: Maximum return (blue line: average, shaded
area: std. dev.) at each generation.

of its members. The environment is an 80×80 grid. To win the battle, the agents have
to learn to collaborate with their team in order to eliminate the enemies, and to move
through the map to overcome walls and obstacles.

Each agent has a perceptive field of 13×13 squares and can either move or attack at
each turn. The agents’ perception is composed of: local presence/absence of an obstacle
in a square; local presence/absence of a teammate/enemy in a square; health points (hp)
of the teammate/enemy in a square; global density of teammates/enemies. A square
represents a 7×7 quadrant of the environment. Note that each agent’s local perception
area corresponds to a circle with a radius of six squares around that agent. Moreover, to
simplify the learning phase (and the interpretability of the agents evolved), we perform a
pre-processing of these features, based on domain knowledge, in order to obtain higher-
level features that are then fed as inputs to the decision tree. The selected features,
extracted from the raw observations, are reported in Table 6.1. The “Abbreviation”
column shows the abbreviation that we will use throughout the text to refer to a specific
feature.

Both local and global densities are calculated based on the active agents in the envi-
ronment, i.e., killed agents are not taken into account.

Each agent initially has 10 hp. When an agent attacks another agent (called target),
the target’s hp are decreased by 2 hp. Moreover, each turn increases the agents’ health
points by 0.1 hp (unless the agent already has already 10 hp).

An agent, at each step, can perform 21 discrete actions: no action; move to any of the
8 adjacent squares; move to two squares on either left, right, up, or down; attack any of
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Table 6.1: Extracted features, their abbreviation and
their domain.

Feature Abbreviation Domain
Obstacle 2 squares above o2a {0, 1}
Obstacle 2 squares left o2l {0, 1}
Obstacle 2 squares right o2r {0, 1}
Obstacle 2 squares below o2b {0, 1}
Obstacle 1 square above-left o1al {0, 1}
Obstacle 1 square above o1a {0, 1}
Obstacle 1 square above-right o1ar {0, 1}
Obstacle 1 square left o1l {0, 1}
Obstacle 1 squares right o1r {0, 1}
Obstacle 1 square below-left o1bl {0, 1}
Obstacle 1 squares below o1b {0, 1}
Obstacle 1 squares below-right o1br {0, 1}
Allied global density above aga [0, 1]
Allied global density left agl [0, 1]
Allied global density same quadrant ags [0, 1]
Allied global density right agr [0, 1]
Allied global density below agb [0, 1]
Enemies global density above ega [0, 1]
Enemies global density left egl [0, 1]
Enemies global density same quadrant egs [0, 1]
Enemies global density right egr [0, 1]
Enemies global density below egb [0, 1]
Enemies local density above ela [0, 1]
Enemies local density left ell [0, 1]
Enemies local density right elr [0, 1]
Enemies local density below elb [0, 1]
Enemy presence above-left eal {0, 1}
Enemy presence above ea {0, 1}
Enemy presence above-right ear {0, 1}
Enemy presence left el {0, 1}
Enemy presence right er {0, 1}
Enemy presence below-left ebl {0, 1}
Enemy presence below eb {0, 1}
Enemy presence below-right ebr {0, 1}

Table 6.2: Actions that the agent can
perform.

Action Abbreviation
Move 2 squares above m2a

Move 1 square above-left m1al

Move 1 square above m1a

Move 1 square above-right m1ar

Move 2 squares left m2l

Move 1 square left m1l

No action mn

Move 1 squares right m1r

Move 2 squares right m2r

Move 1 square below-left m1bl

Move 1 squares below m1b

Move 1 squares below-right m1br

Move 2 squares below m2b

Attack above-left aal

Attack above aa

Attack above-right aar

Attack left al

Attack right ar

Attack below-left abl

Attack below ab

Attack below-right abr

the 8 adjacent squares.
Table 6.2 shows the action that can be performed by the agent. As in Table 6.1, the

“Abbreviation” column shows how we refer to the actions in the remainder of the text.
The rewards obtained by the environment are the following: 5 points if the agent kills an
opponent; -0.005 points for each timestep (a time penalty, thus the quicker the team wins,
the higher the reward); -0.1 for attacking (to make the agent attack only when necessary);
0.9 when the agent hits an opponent (to give a quicker feedback to the agent, without
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having to wait for killing an agent to obtain a positive reward that encourages hitting
enemies); -0.1 if the agent dies. At each timestep, the agent receives a combination of
these rewards based on the events that happened in the last timestep. For instance, if an
agent attacks and hits an enemy, it obtains a total reward of r = 0.9− 0.1− 0.005.

While there is no reward for collaboration, we decided not to alter the reward function
to encourage it, to preserve the original configuration of the environment. Note that we
evolve only one of the two teams (the blue one), while the other team (the red one) uses
a random behavior for all the agents. This choice has been made in order to provide
a non-biased baseline policy, i.e., to prevent the evolved policies from overfitting to a
specific handmade policy for the red team. Furthermore, we decided not to competitively
co-evolve the policies for both teams (blue and red) to reduce the complexity of the
evolutionary process, and focus on the interpretability of the evolved policy for the blue
team. For each fitness evaluation, ne episodes are simulated, each of 500 timesteps.

Parameters

The parameters used for GE and Q-learning are shown in Table 6.3. To ensure that the
Q function tends to the optimal one, we employ a learning rate of α = 1

v
, where v is the

number of visits made to the state-action pair [139]. The grammar for the GE algorithm
is shown in Table 6.4. Note that we constrain the grammar to evolve orthogonal decision
trees, i.e., decision trees whose conditions are in the form x < c, where x is a variable and
c is a constant.

6.3 Results

We perform 10 independent evolutionary runs to evolve the policy of each agent in the
blue team. Figure 6.3 shows the average maximum return (across the 10 runs) during
the evolutionary process generation. The shaded area indicates the standard deviation
across runs. We should note that while the average trend did not reach yet a plateau after
the considered number of generations, we had to limit the total duration of our runs due
to constraints on the available computational resources. On average, one full run of our
approach takes approximately 30 hours on a 16-core machine with parallelization at the
level of team evaluation. Given the cost of each run, we constrain the duration of each
run, which reduces the probability of matching state-of-the-art scores [17].

Since the goal of the task is the elimination of the opponent team, we use two metrics
to analyze the results in a post-hoc test phase (i.e., after the evolutionary process): the
number of opponents killed, and the agents’ returns over 100 unseen episodes. Table 6.5
shows the results of this test phase. For each of the 10 evolutionary runs, we report the
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Table 6.3: Hyperparameters used for the
two algorithms (Grammatical Evolution
and Q-learning) used in the experimenta-
tion.

Algorithm Parameter Value

Grammatical
Evolution

np 60
ng 40
px 0.4
pm 0.8
pc 0.05
si 500
st 3

Q-learning

α 1/v

ε0 1
ne 400
εk 0.99kε0

Table 6.4: Grammar used to evolve the de-
cision trees. “|” denotes the possibility to
choose between different productions; “dt”
indicates the start symbol.

Rule Production
dt ⟨root⟩

root ⟨condition⟩ | leaf

condition
if ⟨input_index⟩ < ⟨float⟩

then ⟨root⟩ else ⟨root⟩
input_index [0, 33], step 1

float [0.1, 0.9], step 0.1

statistics obtained with a team composed of the best agents (one for each population)
evolved in that run over unseen episodes. The “Team kills” row shows the descriptive
statistics of the number of enemies killed in each episode. Note that a team is formed by
12 agents therefore in a single episode the number of enemies killed is limited between 0
and 12. The “Agents’ returns” row shows the descriptive statistics of the average returns
of all the agents in the team. The “Completed” column shows the percentage of episodes
in which the team was able to eliminate the entire opponent team.

We observe that, for most runs, the obtained teams are able to complete the task (i.e.,
kill all the enemies) in most cases. In fact, the average number of kills is very close to
the maximum achievable value and the standard deviation confirms that the behaviour
of the teams is quite consistent.

6.3.1 Interpretation

In this section, we practically demonstrate the interpretability of the obtained agents.
Figure 6.4 shows the decision tree of one of the agents evolved in one of the evolutionary

runs presented before. For space reasons, we cannot present all the evolved agents from
each run. However, similar considerations apply also to the other evolved agents in the
various runs.

By reading the decision tree in the figure, we can describe how the agent moves in
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Table 6.5: Summary of the test results (co-evolutionary approach).

Run Type Mean Std Best Worst Completed

1
Team kills 11.96 0.20 12 11

96.0%
Agents’ returns 7.92 0.93 9.08 4.01

2
Team kills 11.85 0.62 12 8

94.0%
Agents’ returns 8.06 0.93 8.96 3.33

3
Team kills 11.98 0.14 12 11

98.0%
Agents’ returns 8.20 0.56 9.09 5.10

4
Team kills 11.97 0.22 12 10

98.0%
Agents’ returns 7.85 0.94 9.00 2.16

5
Team kills 11.81 0.73 12 7

91.0%
Agents’ returns 8.09 1.09 9.21 3.10

6
Team kills 11.91 0.71 12 5

97.0%
Agents’ returns 8.17 0.82 8.94 1.92

7
Team kills 8.98 1.60 12 4

1.0%
Agents’ returns 4.43 1.19 8.22 1.02

8
Team kills 11.65 0.77 12 9

79.0%
Agents’ returns 6.83 2.13 9.20 0.07

9
Team kills 11.15 1.46 12 5

63.0%
Agents’ returns 7.00 1.60 9.38 2.29

10
Team kills 11.9 0.46 12 8

93.0%
Agents’ returns 8.22 0.95 8.95 3.14

the environment. In the following, please remember that we evolve only the blue agents’
behavior, and that these agents always start on the right side of the environment (see
Figure 6.2). To facilitate the description of the evolved policy, we added an id to each
node in the decision tree.

The selected agent moves up to the left (id 24) until the local density of enemies below
(id 6) or to the right (id 18) reaches a certain threshold. In both cases, the agent changes
the direction and moves toward the enemies (ids 11 and 21). It also moves to the right
(id 25) if there is a high global density of enemies on its right (id 22). This means that
this agent moves to the top left of the map and intercepts the enemies it finds in that
area. Another interesting behavior of this agent lies in the fact that it tries not to be on
the front lines. In fact, if there is a high density of allies in the same quadrant (id 14)
it tends to move to the right (id 17), therefore from the direction from which its team
started. This agent appears to behave like a “wing”: it moves above the enemies and tries
to eliminate the ones that try to move in the space between it and the allies below.
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The attack actions are easy to understand: if an enemy is located in a certain square,
the agent simply attacks that square. There are two particular cases. One is caused by
the few visits of the leaf (id 9). The other one happens when there is an enemy above
the agent (id 16): in this case, the agent tries to escape to the right (id 26), unless there
is an obstacle in the above right square (id 19), in which case it attacks the enemy (id
27). Since an obstacle can be either a wall or an ally, this particular condition leads to
two different behaviors. If the obstacle is an ally, the agent helps to kill the opponent,
otherwise, it tries to escape on the right. If the obstacle is present and is a wall, this
means that the agent is located on the left side of that wall, since there is no possibility
to have an opponent above while the agent is located next to a wall. This means that if
there is a wall on the right the agent cannot escape and has to fight. According to the
role that this agent appears to have, this behavior tells us that the agent tries to support
other allies in the area, while it retreats if enemies are trying to surround them.

Other interesting behaviors emerge from the observation of the teams in the environ-
ment. A common behavior of the agents starting closer to the opponent team is to go
through the gap in the walls to reach the enemies. There are also more complex behaviors.
In some runs it is possible to see some agents moving to the top of the environment, pass-
ing the walls from above, and then descending to hit the enemies they encounter. Much
rarer is the reverse behavior, where agents pass the walls from below and then move up.

6.3.2 Comparison with a non-co-evolutionary approach

To provide a baseline for the proposed co-evolutionary approach, we also performed ex-
periments in the same environment using a single phenotype for the entire team, i.e., by
cloning the phenotype and assigning it to each member of the team. The parameters
used in these experiments are the same as Table 6.3. Note that in this case each agent in
the team shares the same decision tree structure, but each one develops its own leaves by
using IQL.

In this case, the fitness evaluation is realized using the average of the seventh decile of
the returns obtained by each agent over the training episodes. This choice is motivated
by the following rationale. Since the structure of the agents is shared, we must favor the
phenotype that, besides guaranteeing a high number of kills, also gives high importance
to agents that do not kill any enemy.

Table 6.6 shows the test results obtained by the agents evolved in each of 10 runs
over 100 unseen episodes. We can compare these results with the ones obtained in the
co-evolutionary setup (shown in Table 6.5) by using the number of kills at test time.
In this regard, we observe that there is a large difference in performance between the
two setups, with the co-evolutionary setup largely outperforming the non-co-evolutionary
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Figure 6.4: Decision tree of the selected agent. The “(*)” notation indicates that the leaf has
been visited a number of times that is not sufficient to train it, thus it can be seen as a random
action. The numbers in parentheses are the identifiers of the nodes.

approach. This indicates that, even though the agents have similar goals in both setups,
the co-evolutionary setup can indeed find much better solutions. This may be due to
the fact that the adoption mechanism used in the co-evolutionary approach allows for a
quicker spreading of high-performing genotypes in the populations.

Another observation concerns the completion percentage: by looking at it, it appears
that the performance of the non-co-evolutionary approach has higher variance across runs.
This suggests that the performance of this setup is heavily impacted by the initialization,
with only a few occasional runs achieving a satisfactory completion percentage. A possible
improvement of the non-co-evolutionary setup would be to include an ad hoc method, e.g.
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based on domain knowledge, to provide a smarter initialization.

Table 6.6: Summary of the test results (non-co-evolutionary approach).

Run Type Mean Std Best Worst Completed

1
Team kills 0.51 0.74 3 0

0.0%
Agents’ returns -2.60 0.72 0.13 -3.47

2
Team kills 1.87 2.23 10 0

0.0%
Agents’ returns -1.15 1.66 4.27 -3.42

3
Team kills 11.03 1.20 12 6

45.0%
Agents’ returns 6.59 1.45 9.45 2.60

4
Team kills 11.55 1.33 12 5

87.0%
Agents’ returns 7.90 1.48 9.88 1.96

5
Team kills 8.08 2.81 12 1

14%
Agents’ returns 3.71 2.27 8.13 -2.23

6
Team kills 9.99 2.27 12 4

41.0%
Agents’ returns 6.00 1.95 9.22 0.81

7
Team kills 4.24 1.93 10 0

0.0%
Agents’ returns 1.50 1.44 5.46 -1.99

8
Team kills 11.16 2.01 12 2

81.0%
Agents’ returns 7.30 190 10.02 -0.25

9
Team kills 0.20 0.57 2 0

0.0%
Agents’ returns -3.08 0.48 -1.32 -3.56

10
Team kills 6.8 2.33 12 3

3.0%
Agents’ returns 3.00 1.74 7.29 -0.50

6.4 Conclusions

In this chapter, we proposed a co-evolutionary approach to interpretable RL in MARL
settings. We do so by extending the approach proposed in Chapter 3 in two ways: a
non-co-evolutionary approach and a co-evolutionary approach. The experimental results
show that the co-evolutionary approach is able to achieve significantly higher performance
while keeping the same computational cost.

Future work includes: 1) evaluating the proposed approach on different tasks; 2)
introducing the possibility of communication between agents (both symbolic [35] and sub-
symbolic [73]); 3) designing more efficient methodologies for training interpretable MARL
systems, including, for instance, using other RL algorithms (different from Q-learning),
and comparing them with existing methods, as well as handmade problem-specific policies;
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4) performing a sensitivity analysis for the proposed method; and 5) designing more
efficient approaches that allow to evolve policies with lower computational cost.
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Chapter 7

Applications

In this chapter, we will show two potential applications for the methods described in
the past chapters. Both of them are focused on COVID-19, and aim at containing the
damages of the pandemic from two different points of view:

• Reducing the number of infections by means of social restrictions

• Maximizing the efficiency of hospitals by automatically assessing the severity of
patients’ lungs

More specifically, in Section 7.1 we will show how the methodology proposed in this thesis
can be used to obtain policies that help to decide the type of restrictions to contain a
pandemic. Moreover, in Section 7.2, we will also show how the methodology can be used
to augment black-box models to improve their performance and give insights into their
inner functioning.

7.1 IRL for containing pandemics

Based on: Custode, Leonardo Lucio, and Giovanni Iacca. “Interpretable AI for policy-
making in pandemics.” Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion. 2022.

7.1.1 Introduction

COVID-19 has changed the way of living of all the people on Earth. In fact, since its
outbreak, several countries adopted safety measures such as social distancing, lockdowns,
and closing of certain types of economic activities and others. These safety measures were
taken to slow down the spreading of the pandemic in the world population. However,
some safety measures may significantly impact the economy of a country. For this reason,
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it is important to find a trade-off between the spreading of the pandemic and economic
losses.

To this end, previous works focused on the use of simulators to estimate the virus
propagation and economic losses given a policy [56, 145]. In this setting, a policy decides
the safety measures to adopt in a given scenario. However, while these works have been
proven to be able to find policies that have better trade-offs between economic losses and
pandemic spread than the ones used by governments, they do not employ interpretable
AI methods. Thus, even though such models do perform very well, their applicability is
limited due to the lack of understandability. More specifically, the main drawbacks of
non-interpretable approaches for this task are: a) the fact that the trained models act as
“oracles” and, thus, a policymaker cannot understand the rationale underlying a decision;
and b) the fact that such models cannot be easily inspected and, thus, their behavior
cannot be formally specified.

In this chapter, we propose an approach that produces interpretable models for policy-
making in pandemics. Our approach uses the methodology presented in Chapter 3 to
produce DTs that are very simple and objectively interpretable. Moreover, our solutions
exhibit better performance w.r.t. non-interpretable state-of-the-art models. Since our
evolved policies are both more effective and more interpretable than existing black-box
models, they are extremely suitable for creating policies to control the pandemic while
avoiding unnecessary economic damage.

This chapter is structured as follows. The next section makes a short review of the
state of the art. Section 7.1.3 describes the method used to evolve interpretable DTs.
In Section 7.1.4 we show the experimental results and, in Section 7.1.5, we interpret the
trees obtained. Finally, in Section 7.1.6 we draw the conclusions and suggest future work.

7.1.2 Related work

In [56], the authors propose a simulator of pandemics that can simulate a population at a
fine granularity, modeling the activities each agent can perform, as well as various types
of economic activities. The goal of this simulator is to test policies with the objective
of minimizing simultaneously the spreading of the pandemic and the economic damages.
The authors test various handcrafted policies, policies used from a few countries, and
a deep-reinforcement-learning-based policy. The results show that the deep-RL-based
policy is able to outperform both the handmade approaches and the governmental ones.

In [145], the authors propose a simulator to estimate the effects on the management
of closing economic activities on both the spreading of the pandemic and the economic
losses. The proposed simulator is tailored to the U.S. economy, simulating all 51 states
and a central entity that manages subsidies.
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The main difference between the approaches proposed above is that in [56] the sim-
ulator acts at a very small scale, but with a high level of detail, being able to simulate
aspects of everyday life, while in [145] the simulator aims to perform at a very large scale
with a lower level of detail.

In [84], the authors use a surrogate-assisted evolutionary process to optimize an agent
that has to apply restrictions to avoid the spreading of the pandemic. They make use of
two neural networks: one that acts as the policy, and the other that estimates the quality
of a policy, trained on real data. While the performance of this approach is promising,
the use of black-box policies such as neural network makes the real-world application of
such systems difficult [116].

7.1.3 Method

Simulator

Since our goal is to evolve general policies for minimizing the spread of the pandemic and,
at the same time, reducing economic losses, we employ the simulator proposed in [56]. In
fact, this simulator allows us to test rules that are applicable in every country (i.e., not
only tailored to the U.S. as in [145]) and that does not make use of economic subsidies.

This simulator allows us to simulate the pandemic of a small city, with the following
properties:

• Population: 1000 people;

• Number of hospitals: 1, with a capacity of 10 people;

• Number of houses: 300;

• Number of grocery stores: 4;

• Number of offices: 5;

• Number of schools: 10;

• Compliance rate: 0.99.

The compliance rate is the probability that an individual, at each time step, will comply
with the restrictions. This allows us to simulate an imperfect scenario, closer to the real
world. Moreover, the state given to the policy is not exact. In fact, to resemble more
closely a real-world scenario, the measurements are noisy (e.g., not all the exposed people
may require a swab, and thus the number of infected may be higher than measured).
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Furthermore, it is important to note that we are trying to simulate and mitigate the pan-
demic from the onset, which may prove difficult in the real world. Finally, the parameters
of the SEIR model have been tuned in such a way that the epidemic resembles COVID-19.

State The simulator, at each step, provides the following features:

• ig: Number of infected people since the beginning of the simulation;

• rg: Number of recovered people since the beginning of the simulation;

• cg: Number of patients in critical conditions since the beginning of the simulation;

• dg: Number of dead people since the beginning of the simulation;

• hg: Number of people that did not contract the virus from the beginning of the
simulation until the current simulation day;

• id: Number of daily infected;

• rd: Number of daily recovered;

• cd: Number of patients that are in critical conditions in the current simulation day;

• dd: Number of dead people in the current simulation day;

• hd: Number of people that did not contract the virus in the current day1;

• l: The current level of ongoing restrictions;

• h: A Boolean variable indicating whether the capacity of the hospitals is saturated.

All the variables are normalized by using a min-max normalization before being fed to
the policy-making agent. Note that the simulator returns a noisy version of the estimates
of the variables described above, to simulate a real-world scenario in which not all the
results of the tests are known.

Actions The agent can choose an action between a pool of 5 actions:

1. Stage 0: No restrictions

2. Stage 1: Stay at home if sick, gathering limits:

• Low-risk people: 50 people
1Please note that the simulator always returns hd = hg. However, for consistency with the experiments

reported in [56], in our experiments we kept both values as inputs to the policy-making agent.
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• High-risk people: 25 people

3. Stage 2: Limitations of stage 1 + wear masks + light social distancing, schools, and
hair salons are closed, gathering limits:

• Low-risk people: 25

• High-risk people: 10

4. Stage 3: Limitations of stage 2 + moderate social distancing + no gatherings

5. Stage 4: Limitations of stage 3 + heavy social distancing + office and retail stores
closed

A more detailed list of actions is described in [56].

Rewards At each step, the agent receives a reward of:

r = −0.4 ·max(
cd − C

C
, 0)− 0.1 · l

1.5

51.5
, (7.1)

where C is the capacity of the hospitals.
Thus, the reward function aims to trade off the number of patients in critical conditions

with the stringency level of the restrictions. Moreover, this function indirectly induces
the agent to minimize also the closing of stores, limiting the economic losses.

Evolution of decision trees

We employ the same setup used in Table 3.4, except for the learning rate, which was set
to α = 10−3.

Fitness evaluation The fitness of each phenotype is determined by using the corre-
sponding policy to perform decisions in the PandemicSimulator2 environment.

7.1.4 Results

Table 7.2 shows the scores obtained by the best agents obtained in each independent
run. Here, we differentiate between training and testing returns. Training returns are
defined as the returns obtained by the agent in the training process, while testing refers
to the returns obtained by the agent after the evolutionary process, i.e., when learning is
disabled.

2https://github.com/SonyAI/PandemicSimulator
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Table 7.1: Grammar used to produce the decision trees.

Rule Production
dt ⟨if⟩
if if ⟨condition⟩ then ⟨action⟩ else ⟨action⟩

condition input_var ⟨comp_op⟩ ⟨constinput_var⟩
action leaf | ⟨if⟩

comp_op lt | gt
const1..10 [0, 1) with step 0.1
const11,12 [0, 1) with step 0.5

Figure 7.1, instead, compares the results obtained with the best DT produced by our
method (i.e., the one corresponding to seed 3 in Table 7.2, which obtained the highest
test mean return) to the policies reported in [56]. In particular, the policies used for the
comparison are the following:

1. S0-4-0: Starts with stage 0, then, once 10 have been infected, it switches to stage 4
and, after 30 days, it returns to stage 0.

2. S0-4-0FI: Similar to S0-4-0, but the return from stage 4 to stage 0 is performed
gradually, by reducing the restrictions by 1 stage every 5 days.

3. S0-4-0GI: Similar to S0-4-0, but the intermediate stages from stage 4 to stage 0 last
10 days instead of 5.

4. S0: Always applies stage 0 restrictions.

5. S1: Always applies stage 1 restrictions.

6. S2: Always applies stage 2 restrictions.

7. S3: Always applies stage 3 restrictions.

8. S4: Always applies stage 4 restrictions.

From Figure 7.1, we can see that our best DT outperforms all the hand-crafted policies
under comparison (note that the negative reward is to be maximized). The statistical
difference between the best decision tree evolved and the hand-crafted policies have been
confirmed by a two-sided Wilcoxon test with α = 0.05.

As for the deep-RL-based policy presented in [56], while we could not test it due to
the fact that the model is not publicly available (and neither its numerical results are),
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we estimate, from the plots reported in the original paper, a cumulative reward of about
-5, which is substantially lower than the cumulative reward obtained by our best DT.

Finally, in Figure 7.2 we compare the policy obtained by means of our best DT with
the ones implemented by the Italian and Swedish governments (for which we use the
implementation provided in [56]). These policies act as follows:

1. ITA (approximation of the restrictions adopted by the Italian government): Increase
the restrictions gradually from stage 0 to stage 4 and then gradually returns to stage
2.

2. SWE (approximation of restrictions adopted by the Swedish government): Applies
stage 0 regulations for 3 days and then stage 1 restrictions for the duration of the
simulation.

Also in this case, we observe that the performance is significantly better than the compared
policies. Similarly, also in this case, a Wilcoxon test with α = 0.05 confirms the statistical
significance of the results.

Moreover, we observe that the number of people infected, by using our proposed policy,
is significantly smaller w.r.t. the other approaches. This fact, combined with the very
high rewards obtained by our policy, suggests that the policy minimizes the economic
losses by trying to stop the pandemic at the beginning and then making the restrictions
less stringent.

In the next section, we analyze the policy to understand the reasons underlying its
significantly higher performance.

Table 7.2: Results obtained by running our method in 10 i.i.d. experimental runs.

Train mean return Test mean return M
−1.82± 0.29 −1.67± 0.47 40.94± 14.66

7.1.5 Interpretation

The best DT obtained is shown in Figure 7.3. While the size of the DT is quite limited,
its performance is extremely satisfactory. We can see that the DT makes use of two
conditions to compute its output.

The first condition (the root) checks whether the number of never-infected people (hd)
is greater than 90%. If so, then it checks the second condition. Otherwise, it applies stage
2 restrictions, regardless of the other variables. We may hypothesize that, in the latter
case, the policy does that because if the number of infected people (from the beginning
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Figure 7.1: Comparison of the performance of the best DT evolved w.r.t. handcrafted policies
proposed in [56].
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Figure 7.2: Comparison of the performance of the best DT evolved w.r.t. policies adopted by
the Swedish (SWE) and Italian (ITA) governments.
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hd > 0.9

Stage 2

F

ig > 0

T

Stage 3
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Stage 0
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Figure 7.3: Best decision tree evolved (on the test score).

of the pandemic) is greater than the 10%, then the virus may spread very quickly if the
restrictions are not appropriate.

The second condition, instead, checks the number of people infected so far (ig). If the
known number of infected is greater than zero, it applies stage 3 restrictions. Otherwise,
it applies no restrictions.

In essence, the combination of the two branches of the root aims to induce a “strong”
response to the initial wave of the pandemic, which is then slightly relaxed after the
number of total cases increases. Thus, the overall strategy learned by the agent is to stop
the pandemic at the beginning, keeping slightly less stringent restrictions after the initial
wave, to avoid new waves.

It is important to note that the DT obtained depends highly on the scenario simulated.
In fact, we expect that changing the parameters of the epidemic or the initial state (e.g.,
having significantly more infected people) can significantly change the outcome of the
optimization process, both in terms of DT and in terms of score.

7.1.6 Conclusions

In this section, we leveraged interpretable AI methodologies to train interpretable policies
for managing a pandemic.

Despite the widely-thought trade-off between interpretability and performance, the
obtained policies proved to be significantly better than handcrafted policies, deep learning
policies, and government policies.

It is important to note that the results shown above have been tested in a simulated
scenario and, thus, their applicability to real-world scenarios must be assessed.

A limitation of the current work is the simulation scenario adopted: here, we simulate
a population of 1000 people. The assessment of the scalability of our results is left as
future work.
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Other future works include: testing the proposed methodology on different simulators
with different objectives, and adopting more realistic scenarios w.r.t. economical aspects
(e.g., subsidies) or epidemiological aspects (e.g., the possibility of the emergence of new
variants).

7.2 Neuro-Symbolic Analysis of COVID-19 Patients’ Data

Based on: Custode, Leonardo Lucio, et al. “Multi-objective automatic analysis of lung
ultrasound data from COVID-19 patients by means of deep learning and decision trees.”
Applied Soft Computing 133 (2023): 109926.

7.2.1 Introduction

Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, the use of lung
ultrasound (LUS) has been globally and fastly spreading. Indeed, the main advantages
of LUS (portability, cost-effectiveness, real-time imaging, and safety) compared to other
imaging technologies such as, e.g., Computed Tomography (CT), allowed LUS to be widely
adopted to evaluate the state of lungs in patients affected by COVID-19 [135, 136, 101, 72,
90, 157, 152, 97, 30]. Moreover, LUS can be nowadays used for patients’ monitoring and
for the triage of symptomatic patients [135]. In particular, LUS is often exploited to detect
COVID-19-associated interstitial pneumonia and follow its evolution [27, 136]. To perform
this task, different imaging protocols have been proposed together with semi-quantitative
scoring systems [1]. Indeed, even though quantitative approaches aiming at assessing the
condition of lung parenchyma with ultrasound are emerging [83, 81, 27, 134, 86, 159], these
strategies are not available for emergency contexts, due to their current preliminary state.
Therefore, semi-quantitative scoring systems based on specific LUS imaging patterns (e.g.,
vertical and horizontal artifacts, or consolidations) have been extensively exploited during
the pandemic [136].

Even though an LUS quantitative analysis cannot be performed with the currently
available technologies, the use of artificial intelligence (AI) for the classification of LUS
frames according to a semi-quantitative scoring system can be exploited to reduce sub-
jectivity in the evaluation and to reduce the time required to perform the analysis [115,
18, 155, 40].

Here, we exploit a standardized imaging protocol based on 14 scanning areas and on
a four-level scoring system, which allows the grading of the state of lungs [136]. A recent
study demonstrated how this standardized protocol and scoring system have a prognostic
value when evaluating the cumulative score (sum of scores obtained in the 14 scanning
areas) at exam-level [100]. We acquire 1808 LUS videos from 100 COVID-19-positive
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patients, which consist of 366,301 frames in total. These frames are then fed to two
DNNs [115] that were previously trained to perform automatic scoring and segmentation
of LUS frames according to the above-mentioned four-level scoring system [136]. We
successively use the scores given as output by two DNNs (respectively for segmentation
and labeling) [115] to train and test a novel automatic approach, based on decision trees
(DTs) automatically synthesized by evolutionary computation, aiming at passing from
frame-based labeling to video-based labeling. Specifically, we compare the video-level
scores given by our automatic approach with scores given by expert clinicians. Indeed,
to perform their evaluation, clinicians associate a score to each video rather than to each
frame. We then assess the performance of our aggregation approach (both at video level
and exam level) by comparing the results obtained by the proposed method with the
empirical aggregation technique previously reported in [82], which represents the current
state-of-the-art. We hypothesize that, even though this existing technique achieves good
performance, the fact that its decisions are obtained by aggregating the outputs of the
DNNs by means of a simple threshold-based approach may be sub-optimal. To overcome
this limitation, we instead use a fully data-driven DT-based approach, that is in principle
more flexible and does not require empirical choices of thresholds. To summarize, the
main contributions of this work are the following:

1. we propose a neuro-symbolic approach to the automatic scoring of COVID-19 pa-
tients by combining DNNs and interpretable DTs;

2. we compare single-objective and multi-objective evolutionary approaches to synthe-
size DTs optimized w.r.t. three different metrics of interest;

3. we interpret the evolved DTs to understand their decision policies;

4. we obtain decision support systems that have both higher prognostic agreement and
less variance w.r.t. the approach previously proposed in the state-of-the-art work in
the field [82].

This section is organized as follows. Next subsection describes the data and the method
used for this study. Section 7.2.3 presents the experimental results. In Section 7.2.4, we
analyze the DTs produced, and, finally, in Section 7.2.5, we draw the conclusions.

7.2.2 Method

We use the two models from [115] as feature extractors, whose outputs are aggregated and
given in input to an evolved DT, which will then make a prediction of the score related
to the video. A block diagram of the process is shown in Figure 7.4.
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Figure 7.4: Block diagram of the prediction process.

Data

The investigated population consists of 100 patients diagnosed as COVID-19 positive by a
reverse transcription polymerase chain reaction (RT-PCR) swab test. Of the 100 patients,
63 (35 male, 28 female; ages ranging from 26 to 92 years, and average age equal to 63.72
years) were examined within the Fondazione Policlinico San Matteo (Pavia, Italy), 19
(16 male, 3 female; ages ranging from 34 to 84 years, and average age equal to 63.95
years) within the Lodi General Hospital (Lodi, Italy), and 18 (8 male, 10 female; ages
ranging from 23 to 95 years, and average age equal to 52.11 years) within the Fondazione
Policlinico Universitario Agostino Gemelli (Rome, Italy). As a subgroup of patients was
examined multiple times, on different dates, a total of 133 LUS exams were performed (94
at Pavia, 20 at Lodi, and 19 at Rome). A total of 1808 LUS videos were thus acquired
(1,290 at Pavia, 276 at Lodi, 242 at Rome), which consist of 366,301 frames (292,943 at
Pavia, 44,288 at Lodi, 29,070 at Rome).

The data from Pavia have been acquired using a convex probe with an Esaote MyLab
Twice scanner, and an Esaote MyLab 50, setting an imaging depth from 8 to 12 cm
(depending on the patient) and an imaging frequency from 5.0 to 6.6 MHz (depending
on the scanner). The data from Lodi have been acquired using a convex probe with an
Esaote Mylab Sigma scanner, and a MindRay TE7, setting an imaging depth from 8 to
12 cm (depending on the patient) and an imaging frequency from 3.5 to 5.5 MHz. The
data from Rome have been acquired using a convex probe with an Esaote MyLab 50,
an Esaote MyLab Alpha, and a Philips IU22, setting an imaging depth from 8 to 12 cm
(depending on the patient), and an imaging frequency from 3.5 to 6.6 MHz (depending
on the scanner).

This study was part of a protocol that has been registered (NCT04322487) and received
approval from the Ethical Committee of the Fondazione Policlinico Universitario San
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Matteo (protocol 20200063198), of Milano area 1, the Azienda Socio-Sanitaria Territoriale
Fatebenefratelli-Sacco (protocol N0031981), of the Fondazione Policlinico Universitario
Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (protocol 0015884/20
ID 3117). All patients gave informed consent.

The patients were examined by applying a standardized acquisition protocol based on
14 scanning areas [136]. This protocol is based on a four-level scoring system consisting in
assigning a score that ranges from 0 to 3, depending on the observed LUS patterns, with
score 0 indicating a healthy lung surface, and 1, 2, 3 an increasingly altered lung surface
[136]. All the 1808 LUS videos were thus scored by LUS medical experts (in this case, the
authors T.P., F.T., and A.S.). Each expert labeled the videos acquired by himself, i.e.,
T.P. labeled videos from Pavia, F.T. from Lodi, and A.S. from Rome. The distribution
of scores assigned at the video level by the experts is shown in Figure 7.5.

Figure 7.5: The distribution of scores assigned at video-level by the three clinical experts is shown.
The percentage of scores 0, 1, 2, and 3 is shown for each hospital (Pavia, Lodi, and Rome) and
for the entire dataset (overall). The total number of videos for each group is provided on top.

Inputs All the 1808 videos are fed to the two DNNs presented by Roy et al. [115],
i.e., a labeling DNN derived from Spatial Transformer Networks and a segmentation
DNN derived from U-Nets and DeepLab v3+. The former provides as output a score for
each input frame, whereas the latter provided semantic segmentation and assigned one
or multiple scores to each frame [115]. As the segmentation DNN can provide multiple
scores for the same frame, we assign only the highest score predicted by this DNN to
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Figure 7.6: Examples of frames labeled as scores 0, 1, 2, and 3.

each considered frame (i.e., the worst-case score). Moreover, it is important to highlight
how the segmentation DNN could provide no scores in output (if it does not find any
relevant LUS pattern). Therefore, an extra score indicating the absence of LUS patterns
(characteristic of the four scores) is considered when evaluating the output provided by
segmentation DNN (we called it score -1). These two DNNs have been previously trained
with the dataset presented by Roy et al. [115], which does not depend on the dataset
exploited in the hereby work. Figure 7.6 shows examples of frames labeled as scores 0,
1, 2, and 3. Figure 7.7 shows the distribution of scores assigned at frame-level by the
exploited two DNNs. Considering the entire dataset (see the overall distribution, Figure
7.7, right), there is a high percentage of scores 0 and 2 for both labeling and segmentation
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Figure 7.7: The distribution of scores assigned at frame-level by the labeling and segmentation
DNNs presented in [115]), exploited in this work, is shown. The percentage of scores 0, 1, 2, and
3 are shown for each hospital (Pavia, Lodi, and Rome) and for the entire dataset (overall). The
frame-level scores given by each architecture are shown separately. As the segmentation DNN
can provide multiple scores for the same frame, we scored each frame with the worst-case (i.e.,
maximum) score predicted by the segmentation DNN. As the segmentation DNN could provide
no output (if it does not find any relevant LUS pattern), an extra distribution represented as
score -1 is observable in the left bars. The total number of frames for each group is provided on
top.

DNNs, whereas score 1 is less frequently given as output. It is also observable how the
percentage of score 3 is significantly higher when looking at the segmentation DNN.

Targets Given the frame-level labeling provided by the two DNNs, our target consists
in finding an aggregation technique that allows us to pass from a frame-level score to
a video-level score, which is the output needed by physicians to perform their clinical
evaluation. Therefore, the goal of the proposed technique is to optimize three metrics
of interest that compare the video-level scores obtained by our algorithm and the ones
assigned by clinical experts (see Figure 7.5). These three metrics are: the video-level
agreement, the exam-level agreement, and the prognostic-level agreement [82].

The video-level agreement consists of the percentage of videos that are correctly clas-
sified by the algorithm (i.e., the score assigned by the expert coincides with the score
assigned by the algorithm) [82]. We also evaluate the video-level agreement when al-
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lowing a disagreement up to 1 point (e.g., if the algorithm classified a video as score 2
and the expert as score 1 or 3, the evaluation is correct) [82]. To distinguish these two
video-level agreements, we denote the agreement characterized by an exact match between
video-level scores as video-level agreement with a threshold (Th) equal to 0, whereas we
refer to the video-level agreement allowing a disagreement up to 1 point as video-level
agreement with Th equal to 1.

The exam-level agreement is instead computed by considering the cumulative score
obtained by summing the video-level scores assigned to each of the 14 scanning areas
[136, 82]. Specifically, we compute the exam-level agreement as the percentage of LUS
exams (133 in total) having a cumulative score (ranging from 0 to 3×14 = 42) allowing a
disagreement between algorithm and clinical experts of up to 2, 5, and 10 points (i.e., Th
equal to 2, 5, and 10, respectively) [82]. To support the stratification between patients at
high risk of clinical worsening and patients at low risk, we need to consider the prognostic
value of the aforementioned protocol [136], which has been recently proven in a single-
center study on 52 patients [100]. In particular, the patient is at low risk of clinical
worsening when the exam-based cumulative score is less than or equal to 24, whereas the
patient is at high risk of worsening when the exam-based cumulative score is greater than
24 [100].

We thus evaluate the algorithm capability of automatically stratifying these two cate-
gories of patients by measuring the prognostic-level agreement [82]. Specifically, clinical
experts and algorithms are considered in prognostic agreement when both cumulative
scores are less than or equal to 24 (low risk) or greater than 24 (high risk) (Th equal to
24) [82].

As we will show in detail in Section 12, it should be noted that we use a proxy for
the first two metrics, i.e., the Mean Square Error (MSE), which gives us an advantage
over optimizing directly the agreement. In fact, in [82] the authors use several tolerances
for the video-level and exam-level agreement: this implies that in practical scenarios one
should either use n objectives for each metric, where n is the number of tolerances (e.g.,
maximize the exam-level agreement with tolerances 2, 5, and 10); or, one should choose
one tolerance among all the tolerances, which may lead to DTs that perform well only for
that particular tolerance. Instead, using the MSE as we do here allows us to maximize
simultaneously the agreement for all the tolerances.

Splitting of the data We split the data randomly into 5 folds. To prevent data leakage,
we make sure that all the data belonging to a patient are assigned to the same fold. More-
over, we use 4 folds for the training phase (i.e., to compute the fitness of the individuals)
and the remaining one to assess the generalization capabilities of the best-evolved DTs
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(i.e., as test set).

Feature extraction and aggregation of the outputs

The DT (as shown in Figure 7.4) expects as input video-level features. Instead, the two
DNNs’ input consists of single frames of each video. To convert the features from frame
level to video level, we aggregate the outputs of each DNN. For the labeling DNN, we
simply use as features the relative frequency of the prediction of each class (i.e., the argmax
of the output vector of each frame). For the segmentation DNN, instead, we aggregate the
features by computing the relative frequency of the worst-case (i.e., maximum) predicted
classes inside each frame. This distinction between the two DNNs is needed since the
segmentation DNN does not produce a single prediction but, instead, produces a mask
for the frame taken in input. Moreover, we add to the feature vector also the minimum
and maximum prediction made by the two DNNs.

The resulting feature vector is thus composed of 12 features: l0, l1, l2, l3, lmin, lmax,
s0, s1, s2, s3, smin, smax where: li, i = 0, 1, 2, 3, represents the relative frequency of the
prediction of the class i made by the labeling DNN; lmin and lmax represent the minimum
and the maximum gravity level predicted by the labeling DNN; si, i = 0, 1, 2, 3, represents
the number of cases in which the class i corresponds to the worst-case in the predictions
made by the segmentation DNN; smin and smax represent the minimum and the maximum
gravity level predicted by the segmentation DNN. Note that, while lmin and lmax range in
[0, 3], the segmentation DNN can also detect the absence of LUS patterns (i.e., the pixel
is assigned a score of -1). For this reason, smin and smax range in [−1, 3].

Evolutionary settings

We use Grammatical Evolution (GE) [120] to evolve programs that resemble DTs (i.e.,
they are based on an if-then-else structure). GE is an evolutionary algorithm that allows
the evolution of grammars, encoded in the Backus-Naur form. It makes use of a genotype,
which consists of a list of integers (called codons). When the genotype has to be evaluated,
it makes use of a translator, which allows to convert the grammar to the corresponding
phenotype. The grammar we employ is shown in Table 7.3.

We consider two GE settings, namely: 1) a single-objective one, in which we optimize
either the video-level MSE, the exam-level MSE, or the prognostic-level agreement (see
Section 12 for details on the three metrics); and 2) a multi-objective one, in which we
optimize simultaneously all the three objectives stated previously.

The pseudo-code of the algorithm is shown in Algorithm 6. The algorithm consists
in an initialization step (Line 1) followed by an evolutionary loop (Lines 4 - 10). The

118



CHAPTER 7. APPLICATIONS 7.2. NEURO-SYMBOLIC ANALYSIS FOR COVID-19

evolutionary loop starts with the evaluation of the population (Line 4), followed by the
replacement of the individuals in the population (Line 5). Then, we perform the usual
evolutionary steps, i.e., selection (Line 6), crossover (Line 7), and mutation (Line 8).

We should note that the GE algorithm we use here has some differences with respect
to the original one described in [120]. First of all, we do not make use of a variable-length
genotype but, instead, we fix its length (as shown in Table 7.4). Fixing the length of
the genotype to small values constrain the resulting DTs to be small and, thus, more
interpretable than the ones we can obtain by having longer genotypes. In fact, fixing the
size of the genotype implicitly sets a maximum number of splits, maximum depth and
maximum number of leaves in the DT. For instance, given the grammar shown in Table 7.3,
the maximum number of nodes is maxnodes = ⌊ si

7
⌋, the maximum number of leaves is

maxleaves = maxnodes + 1, and maxdepth = maxnodes + 1. Moreover, instead of using the
genetic operators described in [120], we use traditional operators for genetic algorithms.
The reason underlying this choice is the fact that, from preliminary experiments, the
original operators seem to achieve worse performance than traditional genetic operators.
For this reason, we employ standard operators, described below. Moreover, the operators
proposed in [120] could not be used since they are specific to variable-length genotypes.

We make use of the replacement operator (Line 5) described in [24], which replaces a
parent from the population only if there is an offspring that outperforms it. In case there
are two offspring whose performance are better than only one of the two parents, then

Algorithm 6: Evolutionary process for the optimization of DTs
Input: sp: the size of the population
Input: g: the number of generations
Result: pop: The final population

1 pop← create_population(sp);
2 old_pop← [];
3 for i = 0; i < g; i++ do
4 fitnesses← evaluate(pop);
5 pop← replacement(pop, old_pop, fitnesses);
6 parents← select(pop, fitnesses);
7 offspring ← crossover(parents);
8 offspring ← mutation(offspring);
9 old_pop← pop;

10 pop← offspring;

11 end
12 return pop;
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the best offspring replaces the worst parent.

Moreover, we use of two different parent-selection operators (for Line 6), depending on
whether we are working in the single-objective or multi-objective setting. In the single-
objective setting, we use the “best-wise” selection operator, i.e., a selection operator that
reorders the population by descending fitness such that, when performing crossover, the
(2i)-th best mates with the (2i + 1)-th best. Conversely, in the multi-objective setting,
the selection operator we use is the NSGA-II [26] operator, which proved to work very
well for multi-objective problems3.

The crossover operator (Line 7), instead, is the one-point crossover, which produces
two offspring from two parents by splitting their genotypes in a randomly chosen point
and mixing the corresponding sub-strings obtained from the two parents.

While mutating a solution (Line 8), we employ a uniform mutation, which mutates
each codon of the genotype according to a given probability pcodon. Its new value is
sampled randomly from the possible values.

The parameters we use are presented in Table 7.4. The parameters shown in the table
were obtained by manual tuning.

Table 7.3: Grammar used to evolve the DTs. The symbol “|" denotes the possibility to choose
between different symbols. When using the grammar to translate a genotype into a phenotype,
the rules are expanded in one of the possible choices listed in their production, depending on the
value of the genotype.

Rule Production
dt ⟨if⟩
if if ⟨condition⟩ then ⟨output⟩ else ⟨output⟩

condition ⟨var⟩⟨op⟩⟨const⟩ | ⟨var⟩⟨op⟩⟨var⟩
var {inputi}; i ∈ [0, 12[

op < | > | ==

output 0 | 1 | 2 | 3 | ⟨if⟩
const [0, 1] with step 10−2

3Since the most “important” metric is the prognostic-level agreement, an attentive reader may point out that
using Pareto optimization may not be the ideal choice in this case. However, we cannot use a lexicographic
selection, since this would require specifying a preference also between the exam- and the video-level MSE while,
in this case, we do not have a clear preference. Moreover, using a weighted sum of the three objectives is also
not feasible, since this would require assigning a specific weight to each of the three objectives. For these reasons,
we optimize the objectives using Pareto optimization and, then, we select the best solution according to the
prognostic-level agreement.
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Table 7.4: Hyperparameters used for the Grammatical Evolution algorithm.

Parameter Value
Pop size 1000

Generations 1000
Genotype length 50

Crossover probability 0.8
Mutation probability 1

Crossover One-point
Mutation Uniform with pcodon = 0.05

Selection Best

Fitness evaluation The fitness evaluation phase works as follows. For each training
fold, we feed the features of each video to the DT and record its predictions. Then, we
compute the following metrics of interest:

1. Video-level MSE (to be minimized):

1

Nvideos

Nvideos∑
i=1

(yvi − ŷvi )
2; (7.2)

2. Exam-level MSE (to be minimized):

1

Nexams

Nexams∑
j=1

(yej − ŷej )
2; (7.3)

3. Prognostic-level agreement (to be maximized):

1

Nexams

Nexams∑
j=1

I(ypj = ŷpj )
2; (7.4)

where: yvi is the ground truth for the video i; yej =
14∑
i=1

yvj,i is the ground truth for exam j,

i.e., the sum of the scores of each video of the exam; ypj = I(yej > 24) is the ground truth
for the prognosis j; I is the indicator function, i.e., it outputs 1 if the argument is true,
otherwise 0. The notation ŷab refers to the output of the DT given the output b in setting
a, i.e., it is the approximation made by the DT of the variable yab .

The pseudo-code for the fitness evaluation function (in the most general case, i.e.,
multi-objective) is shown in Algorithm 7. In the pseudo-code, a lowercase bold variable
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represents a vector, while an uppercase bold variable represents a matrix. Otherwise, the
variable is assumed to be scalar.

The reason underlying the optimization of different metrics is the following. Our overall
goal is to maximize the agreement for all the three metrics, as done in [82]. However,
as we discussed earlier optimizing the video- and exam-level agreement requires also a
specification of the tolerances to use for the computation of the agreement (e.g., in [82],
the authors compute the exam-level agreement with a tolerance of 2, 5, and 10 points).
Instead, optimizing the MSE for these two metrics (Lines 6-7 of Algorithm 7) allows us
to evolve DTs that minimize the distance of the predictions from the ground truth, no
matter the threshold. Finally, for the prognostic-level agreement, we cannot use the MSE
because this variable is not a score but, instead, it is a binary variable. So, in this case,
using the MSE does not give any advantage over directly optimizing the agreement (Line
8).

Then, for each metric, we use as fitness the worst value obtained on the 4 folds used
for training (Lines 11-13).

While the single-objective fitness corresponds to a scalar value that consists in the
value of a single metric, in the multi-objective setting it is composed of a tuple containing
three values, i.e., the video-level MSE, the exam-level MSE, and the prognostic-level
agreement.

7.2.3 Results

We perform 10 independent runs for the proposed method in each of the four settings:
single-objective, video-level MSE; single-objective, exam-level MSE; single-objective, prognostic-
level agreement; multi-objective. For each run, we test (on the test fold) only the best
evolved DT, i.e., for the single-objective runs it is the individual with the best fitness while,
for the multi-objective runs, it is the one with the maximum prognostic-level agreement
(i.e., the most important metric).

Tables 7.5, 7.6, 7.7 show the descriptive statistics computed on the agreement (%)
(with the physicians’ opinion) computed across all the 5 folds. Bold values represent the
best score across all the methods. We compute the statistics on all the 5 folds for the
following reason. Since this work is meant to work in a medical scenario, we are not
really interested in knowing the training and the test agreements as such. Instead, we are
interested in knowing the worst-case scenario, and, to compute it, we need to compute
the statistics on all the 5 folds. Note that, for each fold, we compute the three agreement
scores on that fold and then we use these scores to compute the statistics across folds.
The tables, “Video”, “Exam”, “Prognostic” and “3 objectives” refer to, respectively, our
method evolved on video, exam, prognostic, and three objectives. In the same tables, we
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Algorithm 7: Fitness evaluation function (multi-objective case)
Input: T : the DT to evaluate
Input: X1,X2,X3,X4: input features of each fold
Input: v1,v2,v3,v4: video-level ground truth
Input: e1, e2, e3, e4: exam-level ground truth
Input: p1,p2,p3,p4: prognostic-level ground truth
Result: f : a list of fitnesses

1 num_folds← 4 // Number of folds used for the training

2 ev ← [];
3 ee ← [];
4 ap ← [];
// Iterate over the folds

5 for (i = 0; i < num_folds; i++) do
// For each fold, compute the metrics and concatenate

6 ev ← concatenate(ev, [video_mse(T,Xi,vi)]) // Eq. 7.2

7 ee ← concatenate(ee, [exam_mse(T,Xi, ei)]) // Eq. 7.3

8 ap ← concatenate(ap, [prognostic_agreement(T,Xi,pi)]) // Eq. 7.4

9 end
// Assign the worst-case to each metric

10 f ← [];
11 f [0]← max(ev);
12 f [1]← max(ee);
13 f [2]← min(ap);
14 return f ;

also report the state-of-the-art results presented in [82], listed as “JASA L” and “JASA
L+S”, which refer to, respectively, the approach using only the labeling DNN, and the
one using both the labeling and the segmentation DNNs. Note that we do not use the
results shown in [82] but rather we evaluate them on the same folds used for the DTs,
to guarantee a uniform evaluation of all the methods.

Finally, it should be considered that even if we use MSE as the metric for the first two
objectives, we are still interested in evaluating the agreement with the physicians. For
this reason, we do not show the MSE in the tables, but the agreement at the video and
exam levels. This allows us also to use the same thresholds as in [82], keeping consistency
on the method used for evaluating such models.

We observe that the model evolved on three objectives in some cases has a smaller
minimum/mean agreement than that of the model specifically evolved on each metric.
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However, it is never smaller than the minimum/mean agreement of the other two models
evolved on the other metrics. This suggests that the model evolved by means of multi-
objective optimization has a good trade-off between the three objectives.

Surprisingly, we observe that in some cases the performance of the DTs evolved in
the multi-objective setting (i.e., the ones evolved on the three objectives simultaneously)
exceeds even the performance of the best DTs found in the single-objective setting. This
suggests that optimizing for all the metrics simultaneously can enforce a “consistency”
between the different metrics and allows the DT to learn better strategies for classifying
the samples. In fact, we find that the DTs evolved on single objectives do not generalize
well to the other objectives. Instead, the DT evolved in the multi-objective setting is able
to keep a good trade-off between the objectives.

Finally, compared with the two methods described in [82], we observe that while the
DTs evolved in the multi-objective setting have a comparable (usually better) minimum
agreement than that of JASA L and JASA L+S, they perform substantially better when
considering the mean agreement computed on the folds.

Table 7.5: Descriptive statistics of the video-level agreement on all the folds. “Th” stands for the
video-level threshold (i.e., the tolerance) used for the evaluation of the results.

Method Th Min Mean Std Med Max

JASA L
0 44.70 50.40 4.28 50.68 57.38
1 82.74 85.87 2.49 85.91 89.76

JASA L+S
0 42.35 50.10 5.48 51.43 56.67
1 82.74 85.87 2.43 85.36 89.29

Video
0 42.75 46.08 2.41 46.07 49.88
1 88.63 92.40 2.14 93.41 94.52

Exam
0 42.35 47.82 4.74 46.14 54.29
1 80.78 84.42 3.00 85.91 87.86

Prognostic
0 41.18 48.21 4.46 50.68 52.62
1 79.61 83.71 2.79 85.48 86.43

3 objectives
0 45.88 49.48 2.24 49.77 52.86
1 85.47 88.31 2.29 87.84 92.14

7.2.4 Analysis of the decision trees

In this section, we show the best-evolved DTs in each setting and interpret them to
understand the relationships they captured on the predictions made by the DNNs. We
consider as “best DT” the trees that satisfy the following properties (over the best solutions
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Table 7.6: Descriptive statistics of the exam-level agreement on all the folds. “Th” stands for the
exam-level threshold (i.e., the tolerance) used for the evaluation of the results.

Method Th Min Mean Std Med Max

JASA L
2 21.05 32.30 6.75 32.26 41.94
5 45.00 56.95 9.43 57.90 70.97
10 80.00 89.44 6.44 89.47 100.00

JASA L+S
2 21.05 30.97 7.58 35.00 38.71
5 45.16 59.44 13.23 52.63 80.64
10 80.00 84.58 6.27 81.25 96.77

Video
2 21.05 29.65 8.41 25.81 45.16
5 40.00 57.75 12.14 63.16 70.97
10 80.00 85.85 4.47 84.38 93.55

Exam
2 25.00 31.90 7.89 29.03 46.88
5 61.29 64.27 3.28 63.16 70.00
10 73.68 88.01 7.62 90.32 95.00

Prognostic
2 26.32 30.38 3.77 29.03 37.50
5 45.00 58.50 8.81 59.38 67.74
10 78.95 87.06 4.96 87.50 93.55

3 objectives
2 21.05 36.36 9.68 38.71 46.88
5 45.00 63.98 11.35 62.50 77.42
10 85.00 91.51 5.34 90.32 100.00

Table 7.7: Descriptive statistics of the prognostic-level agreement on all the folds. “Th” stands
for the (prognostic) threshold used for the evaluation of the results.

Method Th Min Mean Std Med Max
JASA L 24 63.13 78.12 7.96 80.64 85.00
JASA L+S 24 57.90 76.78 12.01 83.87 90.00
Video 24 57.89 79.63 11.68 85.00 90.32
Exam 24 61.29 76.25 12.76 77.42 95.00
Prognostic 24 73.68 81.89 5.27 81.25 90.00
3 objectives 24 68.42 82.11 7.51 84.38 90.00

obtained in the 10 runs). For the setup considering only the video-level MSE, the best tree
is the one that obtains the smallest MSE. When we only consider exam-level MSE, the
best tree is the tree that achieves the smallest exam-level MSE. When we consider only
the prognostic-level agreement, the best tree is the one with the highest prognostic-level
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agreement. Finally, when we consider all the objectives simultaneously, the best tree is
the one that achieves the best prognostic-level agreement. In this case, if there are ties
between two solutions, we choose the one that has the best trade-off between video- and
exam-level MSE. In all the cases, the conditions of the DT are numbered as when doing
a pre-order traversal of the DT.

Decision tree evolved on the video-level MSE Figure 7.8 shows the best DT obtained
in this setting. While this DT performs worse than JASA L and JASA L+S when no
tolerance is given to the prediction, it outperforms them significantly when a threshold of
1 is allowed. For this reason, we will interpret it considering that each prediction ŷ must
be considered as a value ranging in [ŷ − 1, ŷ + 1] (constraining the values in [0, 3]).

This DT checks very few things about the predictions made by the two DNNs. In fact,
the first split (lmax > smax) captures a very simple pattern: when the maximum class of
risk predicted by the labeling DNN is greater than the maximum risk class predicted by
the segmentation DNN, then it assigns the video a risk varying in [0, 2], i.e., it excludes
the class 3. On the other hand, when the root condition is false, it checks whether the
fraction of frames classified as maximum risk (by the labeling DNN) is bigger than the
fraction of predictions made by the segmentation DNN in which the highest score is 2
(s2 < l3). If so, it assigns the video a score varying in [2, 3], i.e., high risk. Basically, this
condition checks whether the video refers to a high-risk patient. In fact, the condition
can be interpreted as:

If the ratio of samples classified as maximum risk by the labeling DNN is bigger
than the ratio of samples classified as risk 2 by the segmentation DNN, then
give the priority to the labeling DNN and assign the maximum score to the
video.

To confirm this hypothesis, in Figure 7.9c we plot the histogram of the number of videos
assigned to each class that fall in the case explained above (note that in the other sub-
figures of Figure 7.9 we do the same for all the other conditions in the DT). We observe
that the number of videos belonging to class 3 is significantly higher w.r.t. the other
classes. Finally, in the third condition (l2 < 0.15) the DT makes an extremely simple
check:

If the ratio of frame labeled with class 2 is low (i.e., under a threshold of 0.15),
then probably the number of frames assigned to class 3 will be even lower, so
assign a score ranging in [0, 2] to the video. Otherwise, there is a high chance
that the severity score is higher than 0, so assign a score ranging in [1, 3] to
the video.
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From this DT, we infer that the labeling DNN may be “biased” toward high scores.
The DT is then evolved to make use of the output of the segmentation DNN in order to
reduce this bias.

lmax > smax

1

T

s2 < l3

F

3

T

l2 < 0.15

F

1

T

2

F

Figure 7.8: Best DT evolved on the video-level MSE.

Decision tree evolved on the exam-level MSE This DT (shown in Figure 7.10) achieves
a better worst-case agreement with low thresholds (2 and 5). However, in this case (and
the following ones), we cannot use the threshold as a tolerance value to be used on the
output value of the DT. This is due to the fact that, in this case, the DT outputs the
gravity for each video, but the tolerance is expressed at the exam level.

The first condition of this DT (l0 < 0.72) checks that the severity of the patient is high,
by ensuring that the fraction of frames labeled as minimum risk is lower than an evolved
threshold. If so, it then assesses the severity of the conditions by using the segmentation
DNN, checking if the fraction of frames that are classified as maximum risk is more than
the half (s3 > 0.51). If so, it assigns the maximum risk to the video.

If the first condition is false, then the DT performs additional checks. In fact, the
right part of the DT is basically a decision list, i.e., an extremely unbalanced DT, which
isolates one particular case at each split. While the first condition on the right (s2 > lmax)
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(a) Left branch, 1st condition.
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(b) Right branch, 1st condition.
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(c) Left branch, 2nd condition.

0 1 2 3
Physician's judgement

0

100

200

300

400

500

Nu
m

be
r o

f s
am

pl
es

(d) Right branch, 2nd condition.
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(e) Left branch, 3rd condition.
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(f) Right branch, 3rd condition.

Figure 7.9: Class histograms for each of the branches of the DT shown in Figure 7.8. Note that
the nodes are counted as in a pre-order traversal of the DT.

may make no sense at a first sight, it is a simple trick that the DT uses to perform an
and between two conditions. In fact, we know that s2 ∈ [0, 1] and lmax ∈ {0, 1, 2, 3}. This
means that the condition s2 > lmax evaluates to true only in case s2 > 0 and lmax = 0.

The second case isolated by the decision list checks for a particular case (s1 = l3).
By analyzing the training set, we observe that this case only happens when s1 = l3 = 0.
Moreover, in these cases, s1 and l3 are the only variables that are always equal to zero.
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Figure 7.10: Best DT evolved on the exam-level MSE.

While this may seem a remote possibility, we found that this condition (conjoined with
the conditions that are evaluated before it) evaluates to true for about a quarter of the
samples in the training set. Hence, this condition exploits a bias of the two DNNs to
detect cases in which the severity is likely to be low (45% of the cases with score 0, 31%
of the cases with score 1, 17% with score 2, 7% with score 3).

The third condition on the right branch (smin = 0) checks whether the patient has at
least one frame with minimum risk (i.e., 0, as opposed to a case in which no damaged
tissue is detected, i.e., -1) by checking the outputs of the segmentation DNN. If so, it
assigns class 2 to the video.

Finally, the last condition (s0 > 0.37) checks the number of frames with minimum risk
(detected by the segmentation model): if they consist of more than the 37% of the frames
in the video, the risk assigned to the video is very high (3). Otherwise, it is assigned a
lower score (1).

It is important to note that the video-level predictions performed by this model aim
to reduce the worst-case exam-level MSE w.r.t. the physicians’ judgment.

Also in this case, for the sake of completeness, we report in Figure 7.11 the distribution
of classes for each condition in the DT.

Decision tree evolved on the prognostic-level agreement This DT (shown in Figure
7.12) achieves the best worst-case prognostic-level agreement among all the best DTs (in
this case, evolved with the single threshold value, 24).
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(b) Right branch, 1st condition.
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(c) Left branch, 2nd condition.
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(d) Right branch, 2nd condi-
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(e) Left branch, 3rd condition.
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(f) Right branch, 3rd condition.
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(g) Left branch, 4th condition.
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(h) Right branch, 4th condi-
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(i) Left branch, 5th condition.
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(j) Right branch, 5th condition.
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(k) Left branch, 6th condition.
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(l) Right branch, sixth condi-
tion.

Figure 7.11: Class histograms for each of the branches of the DT shown in Figure 7.10. Note
that the nodes are counted as in a pre-order traversal of the DT.

In the root condition (l3 < s1), this DT checks whether the confidence given to class 3
from the labeling DNN is smaller than the confidence given to class 1 by the segmentation
DNN. This, intuitively, tries to filter out the cases where the probability of having the
maximum risk is high. In fact, as shown in Figure 7.14a, the ratio of samples belonging
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to class 3 is not so high in this case (12.5%), see the other sub-figures in Figure 7.14 for
the distributions of classes corresponding to the other conditions in the DT.

The second condition (i.e., the left branch of the root, l0 > 0.75) naturally follows the
first one: given that, as shown in Figure 7.14a, the distribution of the classes is skewed
towards class 2, is there a way to filter out the samples belonging to class 2? While this
condition does not filter perfectly the samples belonging to class 2, it is able to filter 67.9%
of them (as shown in Figures 7.14c and 7.14d).

The third condition (lmax = lmin) seeks cases in which the maximum class and the
minimum class predicted by the labeling DNN are equal. Of course, this condition is
way more likely to happen in low-risk frames, as confirmed by Figure 7.14e. However, as
we can see from Figure 7.14f, not all the samples with low risk are filtered out by this
condition.

For this reason, the purpose of the fourth condition (s3 < s0) is to separate the low-risk
cases from the higher-risk ones. In fact, what it does is simply check the predictions made
by the segmentation DNN: if the ratio of samples assigned to class 0 is higher than the
ratio of samples assigned to class 3, then it predicts 0, otherwise 2.

Note that this DT has been optimized to maximize the prognostic-level agreement.
This explains why, in some cases, the outputs are not coherent with what a human expects
when trying to predict the label for each video. In fact, we hypothesize that these counter-
intuitive tests aim to soften the contributions of each video to the prognostic score. This
can be seen in the fact that predictions for class 3 never appear in this DT, and also
that the predictions for class 1 are not frequent (even when they would minimize the
video-level MSE, which is not taken into account when optimizing this DT).

l3 < s1

l0 > 0.75

T

0

T

2

F lmax = lmin

F

1

T

s3 < s0

F

0

T

2

F

Figure 7.12: Best DT evolved on the prognostic-level agreement.

Decision tree evolved on three objectives This DT (shown in Figure 7.13) has com-
parable, but often better, performance with respect to all the other DTs evolved in the
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l3 > l0

3

l2 > 0.07

s3 = 1

3 2

lmax < 0.97

s3 > 0.60

2 0

s3 > 0.59

0 1

T F

T F

T F T F

T F T F

Figure 7.13: Best DT evolved on the three objectives.

other settings. One interesting feature of this DT is that it uses the labeling DNN to
make coarse-grained decisions, that are then refined by using the segmentation DNN.

In the first condition (l3 > l0), this DT simply checks the outputs coming from the
labeling DNN to address the gravity of the conditions. Surprisingly, only checking if the
ratio of samples assigned to risk 3 is higher than the ratio of samples assigned to risk 0
is enough to discriminate very well the high-risk cases, as shown in Figure 7.15a (see the
other sub-figures in Figure 7.15 for the distributions of classes corresponding to the other
conditions in the DT).

In the second condition (l2 > 0.07), the DT checks the ratio of labels assigned to class
2 by the labeling DNN. If they are more than 7%, then it makes a simple refinement
using the segmentation DNN: if the segmentation DNN classifies all the samples as class
3 (s3 = 1), then it assigns the video the maximum score, otherwise, it assigns the video a
score of 2.

If the second condition evaluates to false, then the DT checks whether lmax < 0.97.
Since lmax is an integer, this corresponds to checking whether lmax = 0. If so, again, the
DT makes use of the segmentation DNN to refine the decision: if the ratio of samples
assigned to class 3 by the segmentation DNN is more than the 60% (s3 > 0.60), then it
assigns the video a score of 2. Otherwise, the gravity of the condition is not high enough,
so it assigns a score of 0 to the video. This condition handles a bias of the labeling DNN,
which happens when this DNN classifies all the frames with a severity of 0, but, instead,
their actual score is very different from 0.

Finally, if lmax > 0.97, it uses a similar check (s3 > 0.59) to assign the samples either
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(a) Left branch, 1st condition.
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(b) Right branch, 1st condition.
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(c) Left branch, 2nd condition.
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(d) Right branch, 2nd condition.
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(e) Left branch, 3rd condition.
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(f) Right branch, 3rd condition.
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(g) Left branch, 4th condition.
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(h) Right branch, 4th condition.

Figure 7.14: Class histograms for each of the branches of the DT shown in Figure 7.12. Note
that the nodes are counted as in a pre-order traversal of the DT.

to class 0 or 1. Surprisingly, when s3 is greater than 59%, the DT assigns the sample to
class 0 while, as we can see from Figure 7.15k, assigning it a value equal to 1 would reduce
the video-level MSE. However, this reasoning applies to the video-level predictions, but
it may affect negatively the other two metrics. On the other hand, when s3 ≤ 0.59, we
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observe that the probability for class 3 is quite low, so the DT classifies the sample as
belonging to class 1, probably to minimize the video-level MSE.

7.2.5 Conclusions

In this section, we combined two previously proposed DNNs as feature extractors, and then
we used a DT for combining the two predictions. We use both single- and multi-objective
evolutionary optimization to evolve the DT that takes in input the predictions made by
the two DNNs aggregated at the video level (i.e., a collection of frames). When evaluating
our approach on three different levels of agreement with the physicians’ judgment, we find
that the multi-objective optimization approach leads to DTs that, in general, perform in
most cases comparably or better than the DTs evolved on single objectives. Moreover, our
approach appears to perform better (in terms of descriptive statistics) than the approach
presented in [82].

In light of these limitations, future work should aim at (1) collecting more data, in
order to increase the size of the dataset, and evolving DTs by using different types of
conditions, including oblique ones (which may lead to different insights); and (2) assessing
the interpretability of the DTs produced with physicians.

Finally, we highlight that we make our data publicly available for further development
and reproducibility4. Moreover, in a separate repository5 we release the scripts used to
produce the results shown in this section.

4https://drive.google.com/drive/folders/1Or4dF2fAM23H5fd_yxtq1vyAS8b7pL0s
5https://gitlab.com/leocus/neurosymbolic-covid19-scoring
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(a) Left branch, 1st condition.
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(b) Right branch, 1st condition.
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(c) Left branch, 2nd condition.
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(d) Right branch, 2nd condition.

0 1 2 3
Physician's judgement

0

100

200

300

Nu
m

be
r o

f s
am

pl
es

(e) Left branch, 3rd condition.

0 1 2 3
Physician's judgement

0
5

10
15
20
25

Nu
m

be
r o

f s
am

pl
es

(f) Right branch, 3rd condition.
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(g) Left branch, 4th condition.

0 1 2 3
Physician's judgement

0

20

40

60

80

Nu
m

be
r o

f s
am

pl
es

(h) Right branch, 4th condition.
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(i) Left branch, 5th condition.
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(j) Right branch, 5th condition.
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(k) Left branch, 6th condition.
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(l) Right branch, 6th condition.

Figure 7.15: Class histograms for each of the branches of the DT shown in Figure 7.13. Note
that the nodes are counted as in a pre-order traversal of the DT.
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Chapter 8

Conclusions and Future Directions

While in recent years AI made huge progress, the need of being able to understand how
a model works is becoming more and more important. To overcome this issue, significant
effort was put to advance the XAI field. However, XAI is not always a suitable solution.
In fact, they suffer from some problems that make their use unsafe in safety-critical or
high-stakes processes.

Interpretable AI, instead, consists in using transparent approaches to have a compre-
hensive understanding of what happens in the model. In fact, understanding how models
take their decisions is extremely important for their real-world applications, as pointed
out by the European Union and UNESCO. However, these models are not widely used
in practice because of their widely-thought lower performance. Moreover, little work has
been done at the intersection of Interpretable AI and Reinforcement Learning.

In this thesis, we took steps in this direction, proposing methods for the application
of Decision Trees in Reinforcement Learning contexts focused on interpretability. The
experimental results presented in this thesis indicate that these approaches can be com-
petitive w.r.t. black-box methods (in score) while being extremely easier to interpret.
These results suggest that the widely thought performance-interpretability trade-off does
not always hold (as suggested by [116]) and that interpretable models can be competitive
with state-of-the-art techniques. For this reason, research in this field must be encouraged.
Moreover, we presented also the results obtained in scenarios that are much closer to the
real world. In the pandemic control task, interpretability was a hard constraint. In fact,
to be applied in the real world, the policy needs to be translated into law. Also in these
cases, our methods have shown to be competitive with the state of the art, confirming
that it is indeed a promising direction. On the other hand, in the automatic assessment of
COVID-19, our methodology, besides improving performance, was helpful to understand
the biases of the two neural networks that were being used to extract features.

In all the sections, we practically showed how easily these models can be interpreted.
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This is very important, as interpretability does not have to be confused with transparency
[6]. In fact, as stated in [66], very deep DTs may not be interpretable. We also found
that this is in agreement with the metrics of interpretability used in this thesis [149, 5].

While these methods seem promising, they need extensive experimentation on a va-
riety of domains in order to thoroughly understand their points of strength and weak-
nesses. Moreover, the number of interactions needed with the environment needed by the
methodologies proposed in this thesis is often significantly worse than those needed for
non-interpretable, state-of-the-art approaches, e.g., DQN [85], Proximal Policy Optimiza-
tion [128], and similar. This means that the training time for the methods discussed in
this is significantly higher than that of black-box state-of-the-art methods. Finally, they
include several components (e.g., GE/GP, Q-Learning, co-evolutionary algorithm). This
means that the set of hyperparameters is significantly bigger than most state-of-the-art
RL methods.

Future work should address these points:

1. extending the experimentation presented in this thesis to a wide set of well-known
RL benchmarks, such as the MuJoCo [144] or the full Atari ALE [9, 75] benchmarks;

2. increasing the efficiency of such methods, making them competitive with the non-
interpretable state-of-the-art methods also from the point of view of the computa-
tional budget needed for the training process;

3. automating the hyperparameter optimization process of such methods in such a way
that the practitioner can adapt the method to their own use case by modifying a
reduced set of hyperparameters;

4. assisting the human operator in interpreting the solutions obtained. To this end,
one may make use of Large Language Models that, taking in input a summary of
the background of a user and the solution obtained, tries to explain as simply as
possible the solution to the user.
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Interpretable AI for Automatic COVID-19 Patient-Stratification Based on Standard-
ised Lung Ultrasound Data’. Proceedings of Meetings on Acoustics 182ASA, vol.
46, Acoustical Society of America, 2022, p. 020002 uses decision trees, evolved by
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141

https://arxiv.org/abs/2208.12758


CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

142



Acknowledgements

First, I want to thank my advisor, Giovanni Iacca, for everything he taught me over these
years, for being a fantastic advisor, and for supporting and caring about me even when
no one else would have done it. I could not have asked for a better advisor. Thank you
very much, Giovanni.

I want to thank my girlfriend, Rosa, for being incredibly supportive and patient
throughout these years. Thank you for being so kind and helping me be the best version
of myself. Thank you for being at my side in the bad moments I’ve been through. I love
you.

I also want to thank my family (in Italian). Voglio ringraziare mio padre, che è stato
il primo ad accorgersi di questa mia inclinazione, e che mi ha incoraggiato a perseguire i
miei sogni. I tuoi consigli sono stati molto preziosi e mi hanno portato a fare ciò che amo.
Grazie a mia madre, per tutti i sacrifici che ha fatto e che sta facendo, per tutto l’amore
e il supporto che mi dimostra tutti i giorni. Un grazie va anche a mia sorella, Lucia, per
esserci sempre per me e per rendere la mia vita più luminosa. Voglio anche ringraziare
mia nonna, Lucia, per tutto quello che ha fatto per me, da sempre. Infine, voglio dedicare
un pensiero a tutte le persone che sono state importanti per me e che non sono più tra
noi: i miei nonni Antonietta, Carmelo e Leonardo, e mio zio Franco.

Moreover, I want to thank my friends, who always show me their love and support.
Thanks to Giovanni, Antonio, Ciro, Francesco, Alessandro, Luigi, Serena, Filomena, An-
tonio, Isabella, Enrica, Miriam, Michela, Sara, Anna, Mariagiulia, and all the others that
I met before and during this path. Thanks for all the special moments we spent together.
I want you to know that you will always have a place in my heart.

Finally, I want to thank the colleagues of my research group: Hyunho, Andrea, Elia,
and all the others with whom I shared a part of this path. Thank you for all the valuable
conversations we had.

143



CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

144



Bibliography

[1] Marco Allinovi, Alberto Parise, Martina Giacalone, Andrea Amerio, Marco Del-
sante, Anna Odone, Andrea Franci, Fabrizio Gigliotti, Silvia Amadasi, Davide Del-
monte, Niccolò Parri, and Angelo Mangia. Lung Ultrasound May Support Diagno-
sis and Monitoring of COVID-19 Pneumonia. Ultrasound in Medicine and Biology,
46(11):2908–2917, sep 2020.

[2] Jose M. Alonso, Ciro Castiello, and Corrado Mencar. Interpretability of Fuzzy Sys-
tems: Current Research Trends and Prospects, pages 219–237. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2015.

[3] Dirk V Arnold and Hans-Georg Beyer. Noisy optimization with evolution strategies,
volume 8. Springer, Boston, MA, USA, 2002.

[4] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann,
Alex Vitvitskyi, Daniel Guo, and Charles Blundell. Agent57: Outperforming the
Atari Human Benchmark, 2020. arXiv:2003.13350.

[5] Pablo Barceló, Mikaël Monet, Jorge Pérez, and Bernardo Subercaseaux. Model
Interpretability through the Lens of Computational Complexity. arXiv:2010.12265
[cs], 33, November 2020. arXiv: 2010.12265.

[6] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Ben-
netot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel
Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. Explainable Arti-
ficial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Information Fusion, 58:82–115, June 2020.

[7] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. Interpretability via Model Ex-
traction.

[8] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. Interpreting Blackbox Models
via Model Extraction. arXiv:1705.08504 [cs], January 2019. arXiv: 1705.08504.

145



BIBLIOGRAPHY BIBLIOGRAPHY

[9] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning
Environment: An Evaluation Platform for General Agents. Journal of Artificial
Intelligence Research, 47:253–279, jun 2013.

[10] Roman Beltiukov. Optimizing Q-Learning with K-FAC Algorithm. In International
Conference on Analysis of Images, Social Networks and Texts, pages 3–8. Springer,
Cham, 2020.

[11] Martijn C. J. Bot. Improving induction of linear classification trees with genetic
programming. In Genetic and Evolutionary Computation Conference, pages 403–
410, San Francisco, CA, USA, July 2000. Morgan Kaufmann Publishers Inc.

[12] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv:1606.01540, 2016.
arXiv:1606.01540.

[13] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. OpenAI Gym, 2016. arXiv:1606.01540.

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language Models are Few-Shot Learners. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc.,
2020.

[15] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A Comprehensive Survey
of Multiagent Reinforcement Learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 38(2):156–172, March 2008.

[16] Erick Cantú-Paz and Chandrika Kamath. Inducing Oblique Decision Trees With
Evolutionary Algorithms. IEEE TRANSACTIONS ON EVOLUTIONARY COM-
PUTATION, 7(1):15, 2003.

[17] Zixuan Cao, Mengzhi Shi, Zhanbo Zhao, and Xiujun Ma. Pool: Pheromone-inspired
communication framework forlarge scale multi-agent reinforcement learning, 2022.

[18] L Carrer, E Donini, D Marinelli, M Zanetti, Federico Mento, E Torri, A Smargiassi,
R Inchingolo, G Soldati, L Demi, F Bovolo, and L Bruzzone. Automatic Pleural Line

146



BIBLIOGRAPHY BIBLIOGRAPHY

Extraction and COVID-19 Scoring from Lung Ultrasound Data. IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control, 67(11):2207–2217, 2020.

[19] Xiangxiang Chu and Hangjun Ye. Parameter Sharing Deep Deterministic Policy
Gradient for Cooperative Multi-agent Reinforcement Learning. arXiv:1710.00336,
October 2017. arXiv:1710.00336.

[20] William G Cochran. Sampling techniques. John Wiley & Sons, 2007.

[21] Leonardo Lucio Custode and Giovanni Iacca. Evolutionary learning of interpretable
decision trees, 2020.

[22] Leonardo Lucio Custode and Giovanni Iacca. A co-evolutionary approach to inter-
pretable reinforcement learning in environments with continuous action spaces. In
IEEE Symposium Series on Computational Intelligence, pages 1–8, New York, NY,
USA, 2021. IEEE.

[23] Leonardo Lucio Custode and Giovanni Iacca. Evolutionary learning of interpretable
decision trees, April 2021. arXiv:2012.07723.

[24] Leonardo Lucio Custode and Giovanni Iacca. Evolutionary learning of interpretable
decision trees, 2021.
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