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Multiple Shapes Reconstruction by means of Multi-

region Level Sets

M. Benedetti, D. Lesselier, M. Lambert, and A. Massa

Abstract

In the framework of inverse scattering techniques for mi@ee imaging, this paper pro-
poses an approach based on the integration between a ralitigsprocedure and the level-
set-based optimization in order to properly deal with thapghreconstruction of multiple
and disconnected homogeneous scatterers. The effecs/e@me robustness of the pro-
posed approach is assessed against both synthetic anéhexmiad data. A selected set of

results concerned with complex shapes is presented anasdest.

Key Words - Microwave Imaging, Inverse Scattering, Level Set, MuliiecReconstruction,

Multiple Objects, Homogeneous Scatterers.
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1 Introduction

Short-range remote sensing methods are aimed at deteatgeds buried in an inaccessible host
domain as in nondestructive evaluation and testing (NDEVN&F industrial artifacts [1], sub-
soil inspection [2], biomedical imaging (BI) [3], and thiglrwall imaging (TWI) [4]. In order

to effectively image the investigation areg;rays, ultrasonics, eddy currents, and microwaves
have been used. Microwave imaging techniques seemed torpeffective because of the
ability of electromagnetic fields at centimeter wavelesgtt penetrate non-ideal conductors
[5]. Moreover, they usually require low power levels and quite inexpensive. Furthermore,
microwave imaging techniques do not need a mechanical cob&ween object and source
and, unlike ultrasonics, a couplant is not usually necgs$amn the other hand, they are opera-

tor/patient friendly [6] while a great care should be exseed when using(-rays.

Among microwave imaging modalities, inverse scatteringhteques have been employed to
obtain quantitative reconstructions of the domain undst iteboth 2-D [7]-[15] and 3-D ge-
ometries [16]-[20]. Notwithstanding the promising resul16]-[22], further efforts are still
necessary to allow a massive employment in real applicatiés a matter of fact, the under-
lying mathematical model is usually characterized by sswdnawbacks, such as ill-posedness
[23] and non-linearity [24], that limit their feasibilitydrause of the reduced achievable spatial
resolution and the non-negligible computational costs. mitigate the ill-posedness, multi-
view/multi-illumination systems are adopted to collectudfisient amount of data. However,
the information available from the scattering experimaatsipper-bounded and the number
of independent data results lower than the dimension of dh&ien space [25][26]. There-
fore, suitable strategies aimed at effectively exploiting scattering data must be employed to

increase the accuracy of the reconstruction process.

A possible solution is the use of multi-resolution stragsgi The idea is that of using an en-
hanced spatial resolution only in those regions of intgfBsi's) where the unknown scatterers
are supposed to be located [27] and/or where discontisudibeur [28][29]. Recently, adap-
tive multi-step approaches have been implemented toiiehatincrease the spatial resolution
through a “zooming” procedure [30][31]. Such a techniqusodteeps, during the inversion
procedure, a fixed low ratio between unknowns and data irr éod@inimize the occurrence of

local minima [26].



Onthe other hand, it should be also noticed that the lackfofimation causing the ill-posedness
can be also reduced by exploiting when/if availabledakgriori knowledge on the scenario un-
der test. In several applications, the electromagnetipgntees of the unknown targets are
known and the objects lie within a known host medium. Morepgtepending on the required
degree of accuracy, more complex scenarios can be apprtednby a set of homogeneous
regions with different shapes and parameters [32]. Undeln an hypothesis and by assuming
a suitable description of the Green’s operator [33], thegim@ problem reduces to the recon-
struction of the support of a set of homogeneous regions @.ahape retrieval procedure).
Parametric techniques aimed at describing the unknowrcbbjemeans of a finite set of suit-
able descriptors [34][36] or more sophisticated approadbesed on evolutionary-controlled
spline curves [37]-[38], shape gradients [39][40], lesets [43]-[48], or binary profile [49][50]
have been proposed. On the other hand, the support of sioopigected scatterers [51] can be

also determined by means of the so-caljedlitativemethods [51]-[53].

As regards the level set description, it allows one to modehglex shapes or regions in a
simpler way, unlike pixel-based or parametric-based atfias. Within such a framework, an
innovative strategy based on the integration of the iteeatiulti-scaling approachNISA) [30]
and the level-setl(S) representation [45][46] has been recently proposed [64lilly exploit
the availablea-priori information (e.g., the homogeneity of the scatterer) amditfiormation
content from the scattering measurements. Such an appfealtddIMSA-LSin the following)
has been validated in various scenarios characterizedddgomultiple scatterers with complex
shapes. Despite the accuracy of the reconstruction resudtthe reduction of the computational
burden with respect to the standard strategy [45], such gteimentation still needs some
improvements to better deal with multiple disconnectecoly. As a matter of fact, the spatial
accuracy in resolving disconnected objects can be enhdncadsociating to each scatterer a
different Rol and processing the whole investigation domain as a cadleaf domains with
different discretizations instead of using, at each retanson step, a unique grid within the

whole scenario under test.
This paper focuses on the qualitative retrieval of multgdatterers by adding some innovative
features to the single-region implementation [54]. Morecfically, a customized mathemat-

ical formulation for dealing with multiple disconnectétb/s, but also keeping the reliability



and efficiency of the previous approach in retrieving sirgft@pes, is presented to define an

unsupervised multi-scaling multi-region inversion prdgee (MSMRA-LS.

The outline of the paper is as follows. Section 2 presentsrithematical formulation of the
multi-region strategy. A selected set of numerical resiutisn the reconstructions of simple as
well as complex shapes is presented and discussed in Se€indly, some conclusions are

drawn (Sect. 4).

2 Mathematical Formulation

With reference to a 2-D scalar electromagnetic inversdaeigat) problem [55], let us consider
a set of P homogeneous obstacles with suppdit®), p = 1, ..., P, located in an inaccessible
investigation domairD; and characterized by known relative permittivityand conductivity
o (Fig. 1). Such a scenario is probed by a sef/ofransverse magnetid) plane waves
whose electric field"(r), v = 1,...,V, r = (z,y), is directed along thé coordinate and
parallel to the axis of the cylindrical geometry. The saattifield,£"(r) = £¥(r)z, is collected
at M measurement points located in a region, called observatomainD,, external to the

investigation domain.

In order to model the scenario under test, let us define theasirfunctionr (r)

r reD® p=1 . P
() = 1)

0 otherwise

wherer = (¢ — 1) , f ande, being the working frequency and the background permit-

- ] 27r(}€0
tivity, respectively. As regards the scattering phenomémainteractions between objects and

fields are described by the following integral equations

v 27T 2 / v / / /
&) = (5) [ 7@ E W) Gan /) !, 1 € Do @
Dy
v v 27T 2 / v / / /
B =@+ () [ @) B )G (/) de, e Dy )
Dy
where)\ is the background wavelength? is the total electric field, an@sp (r/r') = —%HOQ) (27“ |lr — £’||)
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is the free-space 2-D Green’s functidm@(2) being the second-kin@-th order Hankel function.

As far as the qualitative imaging of a single scatterer isceoned, the inverse scattering prob-
lem described by (2) and (3) has been solved in [54] by meatisedMSA-LS.The unknown
shape and position of the target have been retrieved byngesatiS reconstruction procedure
into a multi-step process peing the step index). More in detail, at each step o Bh8A the
iterative ¢:*) being the iteration indeX)S procedure minimizes the cost functién
S v 2
(s) POHID Pt ’gmvv { /E:)} ~ Smeas (Em)‘
© {¢’<f } - % M v 2

Zv:l Zm:l |€mea5 (zm)|

which quantifies the discrepancy between the measuredesedtiields”,, . (r,,,) and the re-

meas

, 4)

constructed field,, , { ,(j)} computed from the current estimate of the level set funcgi.

In order to properly take into account the presence of miglttfisconnected scatterers, an en-
hancement and an extension of IMSA-LSare necessary. Besides a suitable generalization
of the IMSA — LS architecture proposed in [54] to deal with single scatterére presence

of multiple Rols is addressed by defining the following new procedural djmers: iteratively

repeated at each step

e Multi-Region Level Set Representatiaimed at defining a suitable representation of
the problem unknown when considerigy® regions of interestR@, ¢ = 1,...,Q®,

s=1,...,5;

e Termination Procedureaimed at stopping theS-based iterative minimization performed

at each step;

e Rol Detection aimed at determining the numb@fr+! and the extension of thoIs at

the (s + 1)-th step starting from the reconstructed shape at the puevone.

2.1 Multi-Region Level Set Representation

At each step of theIMSAand according to the multi-region multi-resolution re@etstion, a
higher resolution leveli(= s) is adopted to describe the level set functigfl (r) only inside
theRols, B9, ¢ = 1,...,Q®, while the same spatial accuracy adopted at the ()-th step

is kept unaltered in the remaining part Bf. More in detail, ifs = 1, the unique Q" = 1)
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region of interest?") extends to the whole investigation domaitt?) = D;, and the level set
function is then expressed as the followiNgelements {V being the number of discretization
subdomains chosen according to the degrees-of-freedoheafdattered field [25][26]) linear

combination

N
oM (r) =Y .8 (r,) (5)
n=1

where B (r,,) is a rectangular basis function whose support is centereleat-th partition
subdomain ofR"), R(. Otherwise § > 1), each region of interesk@, ¢ = 1,...,Q®),
is partitioned intoN (@ sub-domainsxfff N@ = N, and the multi-region multi-resolution

representation of the level set function is adopted (Fig. 1)

s Q) N

8@ =Y Y 6B (1) ©
i=1 g=1 n=1
whereB (zﬁf)) is equal tal if 9 € R and0 otherwise. Moreover? indicates the constant

value of the level set function within the sub-domaiff’ of the ¢-th region of interesty =

1,...,Q¥). As regardsV(?, it is defined as

A@

N@ — S
T AW

(7)

to have the same spatial resolution in evls, | - | being the floor function and(? is the area
of R, According to the multi-region multi-resolution represation of the level set function,

Equation (2) assumes the following form

s QW Nl
S 5) = S 55 o110 (20))] 820 £ (£9) 60 ) 2 D0

i=1 g=1 n=1
(8)
whereH { . } is the Heaviside step function equal(tdf its argument is negative arill other-

wise, and
GO (1/r?) = Gop (r/rl) AD, r@ e RW, q=1,.,Q",i=1,..5 (9

Moreover, the value oF" (r ‘I)) is numerically determined by solving (3) in its multi-scale

—n

form



s QW N@

B () =325 5 ¢ (19 -7 [1 - 1 {09 (£9))] 60 (10, 19)] . 29 € D,

i=1 g=1 n=1

with a standard direct solver.

2.2 Termination Criterion

At each step, the LS-based inversion is stopped when eitharthe reconstruction is “stable”
or (b) a maximum number of iterations is reachéd= K) or the value of the cost function (4)
is smaller than a fixed threshoid[i.e., © {gb,(f)} < v, k = ko). As far as the stability of the

reconstruction is concerned, it is verified when the follogvconditions hold true:

e Shape Stability - Unlike the standard pixel-based criteribnused for quantitative imag-
ing, a technique based on the Hausdorff distafi¢e6][57]-[59] is adopted to properly
deal with shape reconstruction. It is based on the computati the value of the Haus-
dorff distance between the contour of tfie— h)-th estimated shape iR, 8D,g"2h, and

the current oneé?D,iq), for a fixed number of iterations, =1, ..., K,
Lin = max{max,min, [|r, — rp|] , maxmin, [|r, — r|]} (12)

wherer,, b = 1, ..., B,(f), andr,,a =1, ..., B,(f_)h, are the centers of the sub-domains to
which the contour®D'? [i.e., ¢\ (r,) = 0] anddD'\?, [i.e., ¢\, (r,) = 0] belong,

respectively. Then, the stability takes place when

Lk

max,—1,. k. {W} <7z (12)

~¢ being a user-defined threshold afttl = /242 is the spatial resolution in eadkv!,
R9, ¢ =1,..,QY [Fig. 2@);

(1) The standard pixel-based stability criterion based on timegarison between the pixels of the reconstruc-
tions at two different iterations [54] is not suitable fbiS-based algorithms, since when a “blinking” behavior
arises during the iterative process without significantlydifying the estimated shapes (i.e., a small amount of
pixels of the reconstruction intermittently turns up), 8tability condition does not hold true.



e Cost Function Stationariness - Likewise [54], the cost function is assumed to be station-
ary when its variations are numerically negligible withiwandow of K¢ iterations. This

is assessed by evaluating the variance of the ve&h%ﬁﬁf)}, h=1,., Ke.

If the convergence of the iterative process is successfelptocess is stopped by settinl) =
gb,(j) and performing the?ols detection. Otherwise, the iteration index is increagee-( k +
1) and the level set function is updated within th¢h Rol by solving the Hamilton-Jacobi

equation

o) (r) = o) (29) — Ad o, (K w{g?, (r?)}, 1@ € RD, g=1,..,Q®
(13)
whereW {-} is the numerical Hamiltonian andindicates the velocity function [54]. Further-
more, At is the time-step chosen according to the Courant-Friedreroy condition [41][42]

and defined as follows
(@)

max, {v,” (1)}

At = (14)

2.3 RolsDetection

Until the convergence [54}s(= s,,t), the RoIs at the(s + 1)-th step are defined as the rectan-
gular regionskR¥, ¢ = 1, ..., Q®**Y, containing the contou8D?, ¢ = 1, ..., Q®+Y. In order

to determine the locations and extensions offilads, the definition of closed curves in [60] is
exploited to overcome the limitations of other and well-kmatopology theories in dealing with
practical purposes. More specifically, starting from thetrbution of the level set function at
the s-th step,¢®) (r), an estimate of the-th object contourdD@, ¢ = 1, ..., Q=Y is given
by determining the set of discretization domains whosetionar;,, b = 1, ..., B,iq), satisfy the

following conditions [60]

¢ (1) =0

. (15)
0 < |zp — To1| + Y — Yo | < 209



When the coordinategry, y,) of the B,iq) subdomains belonging to tikeconnected simple
closed curves [60] that edge the targets [Fidp)ére available, th&ols are then identified by
computing their centers?, ¢ = 1, ..., QU+,
(a) (a)
(@) _ Y1 (q) b1 Yo

- Bw Y T T pw (10)

and the corresponding sides?), L&, ¢ = 1,..., Q“,

L =max, oy o) s = zall, LGP =ma, oy oo [l — wil] an

3 Numerical Validation

To show the effectiveness and limitations of the proposguageh, this section discusses the
results from a selected set of inversions concerned wiferéifit geometries including a set of

experimental data collected in a controlled environmefi.[6

3.1 Analysisof the Robustness

The first test case is concerned with the reconstruction i@etloff-centered scatterers with
complex shapes. The objects whose contours are indicatékebsed dashed lines in Figs.
3(a)-3(c)-3(e) have known dielectric permittivity equal to= 1.8. Such a scenario has been
illuminated fromV" = 40 directionsg, = 2%@, v =1,...,V, and the scattered field has been
collected atM = 40 (i.e., M = V since each probe can act as electromagnetic source/réceive
equally-spaced angular locations on a cirgle= 5\ in radius external to the investigation
domainL = 5 A-sided. The number of measurement points has been choséetimto account
the degrees of freedom of the scattered fields,which dependke size of the investigation

domain [25], and to collect all the information “coded” irettmeasured data.

As far as the initialization of thetMSMRA-LSechnique is concerned, a centered circular scat-
terer of radiusg and permittivitye, = ¢ has been chosen as guess solution andiilehas

been partitioned intoV) = 29 x 29 sub-domains according to the guidelines suggested in
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[26] to minimize the occurrence of local minima. Moreovédre tmaximum number oRols
has been set t@ = 10. Concerning the stopping criterion, the following threlsiscthave been
adopted:S = 5 (maximum number of steps)y = 500 (maximum number of iterations), and
Ko = K, = % (stability counters). The choice of the optimization threlsl v, strongly
influences the trade-off between reconstruction accuradycanvergence rate of the iterative
process. More specificallyy, = 0 forces the “Shape Stability” condition to hold true only
when the current shape is equal to those estimated dttheh)-th, h = 1, ..., K., previous
iterations. On the contrary, a high valuegf may cause a premature convergence of the itera-
tive process to a wrong solution. A good trade-off betweanveayence rate and reconstruction
accuracy is generally obtained by setting: v, < 2 (i.e., the Hausdorff distance betweé&f
and2¢(9). After a detailed heuristic analysis (not reported herafant of space)y has been

set tol.5 throughout the numerical validation.

As a representative result, Figure 3 shows the reconsttyatefile in correspondence with

blurred data characterized by a signal-to-noise-refityv () value

(18)

v M v 2
SNR = 10log{2”:1 Y= [€" (Tm)] }

ZL/:1 ZIWVLI:1 |/~Lv’m‘2
equal toSNR = 20dB, u”™ being a complex Gaussian random variable with zero mean
value. At the first stepqd = 1 - Fig. 3@)], the supports of the scatterers are inaccurately
estimated although their centers turn out to be close to theahones. Thanks to enhanced
spatial resolution within thé&o/s, the reconstruction accuracy improves at the successpe s
[s = 2 - Fig. 3(c)] as confirmed by the quantitative indexes in Tab.) knd A being the
values of the localization error and the support estimagioor [30][36], respectively. At the
convergences(= s,,; = 3), Q¥ = 3 Rols discretized intoV() = 18 x 18, N® = 15 x 15,

and N® = 16 x 16 cells are properly identified and the object shapes fairfljeeed. When
reducing the numbe¥” of views, the amount of information is not enough to reachshme
reconstruction accuracy. As a matter of fact, the averagensruction errorsg< § > and

< A >, get sensibly worse ag decreases (e.0x 6 >y_3= 4.2 x 1072, < A >y_3=

49 % 1073 < § >y_g= 52 x 1072, < A >p_90= 9.0 x 1073; < § >p_10= 8.7 x 1072,

<A >y—10= 1.93 x 10_2).

For completeness, the plot of the multi-resolution levelse at different steps is shown [= 1
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- Fig. 3(), s = 2 - Fig. 3(d), ands = s,,; = 3 - Fig. 3()] and the behavior of the cost function
@,(f) versus the iteration indek is reported in Fig. 4. It is worth to notice that the level set
distribution within the investigation domain is quite @ifent from the object function behavior
and it determines, instead of the distribution of the obfaattion itself, the evolution of the
reconstruction during the iterative process. The final ltssand the corresponding level set
functions for thelMSA-LS[54] [Figs. 5@)-(b) - N = 29 x 29] and theBare LS[Fig. 5(c)-

(d) - N = 50 x 50] are also given for a comparative analysis. From the corsparithe
reconstructions without the multi-region detection apgeae less accurate and the decrease
of the misfit function worsen (Fig. 4). The single-region eggrh does not perform an accurate
data inversion, although the scatterers are still wellliaed [Fig. 5@)]. As a matter of fact,
the actual objects are too far to allow a suitable allocatbbthe unknowns for achieving a
satisfactory spatial resolution within the unigBel and the multi-step process stopssat
sept = 1. On the other hand, thBare LSis able to detect only two scatterers, while the third
one is fully omitted. A summary of the results in terms of thagtitative error indexes is given

in Tab. I.

As regards the data fitting, the plots of the misfit functiorig. 4 show a similar behavior
between thédMSA-LSand the multi-region strategy only at the initial step justidg the first
iterations, while the multi-region implementation guaess a better fitting with the scattering
data. As expected, a more significant mismatch is presemtriegpondence with thBare LS

inversion because of the failure of the approach in detg¢he hollow cylinder.

Concerning the computational issues, since the complekitye algorithm is of orde® <2 X [n(s)} 3> ,
nt) = fof N because of the solution of two forward problems at eachtii@m, the burden
reduces as increases/{(!) = n® = 841 andn® = 805 - Tab. 1). Moreover, the multi-
resolution implementations appear to be more effectiva tha bare approach because of the
reduction of the total number of complex floating point opierss to reach the convergence,
Fros = 301 O (2 y ng’) x k) (Tab. 1I).

In the second experiment, tt&V R value is varied fron20 d B down to5 dB to further assess

the robustness of the proposed approach as well as itsyabilitetect disconnected regions in
the presence of high levels of noise. Thanks to this lattepg@rty and the consequent greater

spatial resolution within théRols to which the actual scatterers belong, the reconstrugtion
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with the multi-region strategy turn out to be better thansthwith thel M SA — LS [Fig. 6(a)

vs. Fig. 6€) - SNR = 10dB and Fig. 6b) vs. Fig. 6€) - SNR = 5dB] and almost
insensitive to the blurring of the data except for the estiomaof the support of the hollow
square scatterer. As a matter of fact, it can be observeditbaahapes of the actual objects are
quite carefully reconstructed with tH®ISMRA-LSwhile some difficulties occur in retrieving

the hollow circular cylinder withe thBMSA-LS

The third experiment deals with the sensitivity of the restounction to the target permittivity.
Towards this end, the value ehas been increased fron up to4.0, while keeping the&S N R
equal to20 d B. Figure 7 shows the inversion results when setting ¢, = 2.5 [Fig. 7(@)-(c)],

e = g, = 3.0 [Fig. 7(d)-(f)], ande = ¢, = 4.0 [Fig. 7(9)-(i)]. As it can be observed, the
reconstructions worsen when the permittivity value insesa On the other hand, it should be
also noticed that, untd, < 4.0, the results from thtMSMRA-LSurn out to be quite accurate
and certainly better than those of tHdSA-LSand theBare-LS as further confirmed by the

average values of the error indexes in Tab. IlI.

3.2 Analysisof the Resolution

The second test case deals with the different scatteringasiceshown in Fig. 8 and composed
by two objects of permittivity: = 1.8, while the imaging setup has been kept equal to that
of the previous example. In order to focus on the resolutibthe multi-region approach,
the minimum distancéd between the objects has been varied in successive expésifnem

d = 2.5 down tod = 0.1 A and the reconstructions [Figs. &{8(d)-8(g)-8(1)] have been
compared with those from the standard multi-resolutionraggh [54] [Figs. 8)-8(e)-8(h)-
8(m)] and the bare method [Figs.&{8(f)-8(i)-8(n)].

As expected, thtMSMRA-LSoutperforms thdMSA-LSwhen the detection procedure allows
one to distinguish the disconnected regiohs=(0.9). In such cases, the differences between
the corresponding values of both the localization efr@nd the support misfif\ increases
as the distancd enlarges (Fig. 9). Otherwise, both techniques achievedhegesults still
significantly better than those coming from tBaretechnique as depicted in Fig. 8 (left column
and center column versus right column) and confirmed by theegaof the error indexes (Fig.

9).
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It should be also noticed that the performances of the stdidaandIMSA-LSworsen asi
increases, while the accuracy of the multi-region stratggyears to be almost constant. Con-
cerning the minimum inter-objects distance=£ 0.1)\), theIMSAmethods still improve theS
reconstruction because of the higher resolution achievddmthe smallesRol including the

two actual scatterers.

These conclusions are also highlighted by the plots of tieexgence values of the cost func-
tion (4) versus the object distance in Fig. 10. As it can becedt the enhanced resolution
granted by the multi-region strategy results in a bettercmaty with the scattering data. As
an example, the case= 2.5 \ corresponds to a convergence vaiig») for the IMSMR-LS

(sopt)
(& JIMSA—LS

theIMSA-LS(©r) |

~ 1072) of about one order and two orders in magnitude lower thahdha

~ 10~1) and theBare-LY( G(SOWJ ~ 10°), respectively.

IMSA-LS Bare—LS

3.3 Analysisof the Sensitivity to the A-Priori I nfor mation

With reference to the same scattering geometry of the test taSect. 3.2 and considering
the distancel = 2.5 ), the third example is aimed at analyzing the dependenceeofetton-
struction accuracy on the knowledge of the permittivitylod scatterers. Towards this end, the
reconstruction process has been initialized with a wrayggiori information on the dielectric
characteristics of the trial shape. More specifically, tieenmttivity of the objects has been
assumed equal to, = 1.62 ande, = 1.98 instead of: = 1.8 (i.e., an underestimate and
an overestimate of the actual value of abdwit%). Under these conditions th&s-based ap-
proaches have been applied and the reconstructions arenshdvig. 11 along with the plots
of © versus the iteration number (Fig. 12). Figure 11 confirmssme conclusions yielded
from the analysis of Figs. 8]-8(c) and assesses the robustness of the multi-region approach n
only with respect to data blurring, but also in the preserf@nadncorrecta-priori information.
As it can be observed, the quality of the retrieved contounsst out to be very similar to that
with an exact knowledge of the scatterer permittivity [FidL@) vs. Fig. 8@)] as well as the

convergence value of the cost function [Fig. &2¢s. Fig. 12b) and Fig. 12¢€)].

To further investigate on such a potential positive featfrehe IMSMR-LS the analysis has
been extended from synthetic data to experimental measmtsmrowards this end, the multiple-

frequency angular-diversity bi-static datasewv6dielTM_4f.exp of the Marseille repository
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[61] has been considered as representative test case bemfatle presence of multiple dis-
connected and homogeneous scatterers. Such a benchmaldtésirto two off-centered ho-
mogeneous circular cylinder$imm in radius) having a nominal value of the object function
equal tor = 2.0 and illuminated by a probing source fromh= 36 different angular directions.
For each view, the field samples have been collectetf at= 49 measurement points in an
aspect-limited configuration on a circte= 0.9 m in radius. As regards the application of the
inversion algorithms, the following parameters have bessdul = 30 cm, NI(}V)[SA =11 x11
atf =2GHz, NI(}V?,SA =19x19atf =4GHz andN. s = 41 x 41. The value ofN.s has
been kept constant in order to perform a fair comparison rimseof spatial accuracy among

BareandIMSAapproaches (i.e., similar spatial resolution within fhe/s).

Figures 13 and 14 show the results at the convergence wher2 GHz (Fig. 13) andf =

4 GHz (Fig. 14) withe, = 3.0 [Figs. 13@)-13(d)-13(g) and Figs. 144)-14(d)-14@Q)], . =
3.1 [Figs. 13p)-13(e)-13(h) and Figs. 14{)-14(e)-14(h)], ande, = 3.3 [Figs. 13€)-13(f)-
13() and Figs. 14§)-14(h)-14()]. The scatterers are quite carefully located and estichate
f = 2GH~z and for an accurate knowledge of the dielectric propertfeb® scatterers being
e, = 3.0 [Figs. 136@)-13(d)-13(g)], while non-negligible differences arise in correspomcie
with a higher frequencyf = 4 GH = - Figs. 146)-14(d)-14(g)]. The enhanced performances
of the IMSMR-LSstand out in a more significant fashion when= 3.1. In such a case, the
reconstructions worsen for both tHdSA-LSand theBare-LS especially when the frequency
increasesf = 4GHz: Fig. 14(d) vs. Fig. 14¢) - IMSA-LS Fig. 14@) vs. Fig. 14b) -
Bare-LS. Incidentally, the larger number of unknowns consideretheBare-LSmy explain it
poor performance. On the contrary, the quality of the inigrsurns out to be almost equivalent
using the multiregion strategy [Fig. 18(vs. Fig. 13b) - f = 2 GH z; Fig. 14@) vs. Fig. 140)

- f = 4GH?Zz]. Similar conclusions holds true also when= 3.3, even though th&MSA-LS
reconstructions slightly improve [Fig. 1#3(vs. Fig. 13€) - f = 2GHz; Fig. 14) vs. Fig.
14@) - f = 4GHz].
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4 Conclusions

In microwave imaging, an automatic procedure based on tiegration of a multi-region ap-
proach and the level set optimization has been proposedofmefdy deal with the qualitative
imaging (i.e., positions and shapes) of multiple scatser@he method is characterized by an
effective exploitation of the scattering data by means efrttulti-region multi-scale representa-
tion that allows a smart allocation of the problem unknovarerthance both detection properties

and the spatial resolution in tiols where the unknown objects are supposed to be located.

The most significant methodological novelties of this wooksist in:

e a multi-region level set representation nested into a Rswép architecture to properly
deal with multiple shapes reconstruction, thus improving generalizing the range of

applicability ofLSapproaches;

e an innovative unsupervised object detection techniquedas the theory of closed

curves in discrete spaces;

e a new unsupervised termination criterion based on the udeedflausdorff distance.

Thanks to the numerical assessment concerned with diffsoemarios and both synthetic and

experimental data, the following main indications can tkeendr:

e the IMSMRA-LSproved to give an always better or equivalent resolutionhefIMSA

single-region implementation and a non-negligible imgment over the bareS;

¢ the multi-region strategy turned out less computationekpensive than the standdr8
approach and comparable (even though with an enhancedsteaction efficiency) with

theIMSA-LS

Future developments will be aimed at extending the mugiene approach to the quantitative
imaging (i.e., the reconstruction of the dielectric prafitd the scatterers) and three-dimensional
geometries where a reduction of the computational costsaamdh spatial resolution are not
only useful, but mandatory. Concerning the latter itemhddd be also pointed out that the pro-
posed approach can be profitably used in conjunction witidiasct solvers further improving

and multiplying its intrinsic positive features.
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FIGURE CAPTIONS

e Figure 1. Problem geometry.

e Figure 2. IMSMR-LS (a) descriptive parameters ofRol and () Rol detection proce-

dure.

e Figure 3. IMSMR-LS - Numerical Assessméfithree objects” < = ¢, = 1.8, L = 5,
SNR = 20dB). Inversion results ata) s = 1, (¢) s = 2, and €) s = s, = 3. Plot of
the level set function:k) ¢, (d) ¢, and €) ¢®.

e Figure4. IMSMR-LS - Numerical Assessméfithree objects” < = ¢, = 1.8, L = 5,

SNR = 20 dB). Behavior of the cost functio®,, versusk.

e Figure5. IMSMR-LS - Comparative AnalyHisThree objects” =« = ¢, = 1.8, L = 5,
SNR = 20dB). Inversion results obtained witla)(b) theIMSA-LS(s,,: = 1) and €)(d)

theBare-LS (a)(c) reconstructions andj(d) plot of the level set function.

e Figure 6. IMSMR-LS - Robustness Analy§ifhree objects” < = ¢, = 1.8, L = 5)).
Object supports estimated at the convergenceaip) the IMSMRA-LSand €)(d) the
IMSA-LSin correspondence with blurred data characterized I$N\aR value equal to

(@)(c) SNR =10dB and p)(d) SNR =5dB.

e Figure7. IMSMR-LS - Robustness Analyéishree objects”,L = 5\, SNR = 20dB).
Inversion results obtained at the convergenced)(dj(g) IMSMRA-LS (b)(e)(h) IMSA-
LS and €)(f)(i) Bare-LSwhen @)(b)(c) ¢ = ¢, = 2.5, (d)(©)(f) e = ¢, = 3.0, and
@h)(i) e = ea = 4.0.

e Figure 8. IMSMR-LS - Resolution Analys{sTwo objects” -¢ = ¢, = 1.8, L = 5,
SNR = 20dB). Reconstructed shapes with)(d)(g)(l) the IMSMRA-LS (b)(e)(h)(m)
theIMSA-LS and €)(f)(i)(n) the Bare-LSwhen @)(b)(c) d = 2.5\, (d)(e)(f) d = 1.7 ),
(@Mh)(i) d =09\, and )(m)(n) d = 0.1 \.
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e Figure 9. IMSMR-LS - Resolution Analys{sTwo objects” -¢ = ¢, = 1.8, L = 5,
SNR = 20dB). Localization errof (a)(c) and area erroA (b)(d) versusd.

e Figure 10. IMSMR-LS - Resolution AnalysfsTwo objects” -¢ = ¢, = 1.8, L = 5,

SNR = 20dB). Value of the cost function at the convergense<(s,,) versus%.

e Figure1ll. IMSMR-LS - Sensitivity Analys{sTwo objects” -e = 1.8, L = 5\, SNR =
20dB). Reconstructions when using)(b) the IMSMRA-LS (c)(d) the IMSA-LS and
(e)(f) Bare-LSwhen @)(c)(e) ¢, = 1.62 and @d)(e)(f) e, = 1.98.

e Figure12. IMSMR-LS - Sensitivity Analys{sTwo objects” -e = 1.8, L = 5\, SNR =
20dB). Plot of the cost functio®, versusk when @) ¢, = 1.8, (b) ¢, = 1.62, (C)

€q = 1.98.

e Figure 13. IMSMR-LS - Experimental DatgtwodielTM_4f.exp” - Dataset “Marseille”
[61] - f = 2 GH*z). Reconstructions witha)(b)(c) theIMSMRA-LS (d)(e)(f) the IMSA-
LS and @)(h)(i) the Bare-LSwhen @)(d)(g) ¢, = 3.0, (b)(e)(h) ¢, = 3.1, and €)(f)(i)
€q = 3.3.

e Figure 14. IMSMR-LS - Experimental DatgtwodielTM_4f.exp” - Dataset “Marseille”
[61] - f = 4 GHz). Reconstructions withaj(b)(c) the IMSMRA-LS (d)(e)(f) the IMSA-
LS and @)(h)(i) the Bare-LSwhen @)(d)(g) ¢, = 3.0, (b)(e)(h) ¢, = 3.1, and €)(f)(i)
€q = 3.3.

TABLE CAPTIONS

e Tablel.Comparative Analysi€Three objects” < = ¢, = 1.8, L = 5\, SNR = 20dB).

Reconstruction errors.

e Table Il. Comparative Analysi¢‘Three objects” -« = ¢, = 1.8, L = 5\, SNR =

20 dB). Computational indexes.

e Tablelll. Robustness AnalysfsThree objects”,.. = 5\, SNR = 20dB). Summary of

the averaged reconstruction errors.
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IMSMRA — LS

Step

s=1

Object

2

3

Average

8.4 x 1072

3.5 x 107!

3.2 x 1072

1.6 x 1071

1.8 x 1072

1.2 x 1072

8.2 x 1072

3.8 x 1072

Step

Object

Average

2.6 x 1072

4.0 x 1072

6.9 x 1073

50 x 1073

Step

Object

Average

28 x 1073

1.7 x 1072

4.5 x 1072

2.2 x 1072

1.3 x 1073

1.9 x 1073

4.3 x 1073

2.5 %x 1073

IMSA—-LS

Step

s=1

Object

2

3

Average

4.2 x 1073

6.1 x 1072

4.5 x 1072

3.7 x 1072

1.8 x 1072

9.0 x 1073

1.0 x 1072

1.2 x 1072

Bare — LS

Step

Object

Average

3.4 x 1072

3.2 x 1072

53 x 1073

4.0 x 1072

4.4 % 1073

1.6 x 1072

Tablel - M. Benedetti et al. - “ Multiple shapes reconstruction ..."
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IMSMRA — LS| IMSA — LS| Bare — LS
SNR =20dB
kc()gl)% 79 96 302
ko) 264 _ _
n'? 841 _ -
ko) 53 — ~
' 805 - —
Spos 4.63 x 10" 1.14 x 101 | 9.44 x 10'2

Tablell - M. Benedetti et al. - “
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