
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School

Analysis of Oauth and CORS
vulnerabilities in the wild.

Elham Arshad

Advisor

Prof. Bruno Crispo

Università degli Studi di Trento

July 2022

Abstract

Thanks to the wide range of features offered by the World Wide Web (WWW),
many web applications have been published and developed through different
libraries and programming languages. Adapting to new changes, the Web
quickly evolved into a complex ecosystem, introducing many security prob-
lems to its users. To solve these problems, instead of re-designing the Web,
the vendors added the security patches (protocols, mechanisms)to the Web
platform to provide a more convenient and more secure environment for web
users. However, not only did these patches not completely resolve the secu-
rity problems, but their implementations also introduced other security risks
unbeknownst to website operators and users.

In this thesis, I propose a novel research on two different security patches
to understand and analyze their deployment in real-world scenarios and dis-
cover the unseen, neglected factors and the elements involved in exploiting
their use: one security protocol, OAuth, and one security mechanism, CORS.
As this thesis is based on offensive approaches, I develop automated method-
ologies, including novel strategies for analyzing and measuring the security
qualities of the OAuth protocol and CORS mechanism in real-world scenar-
ios.

Keywords

Protocol, mechanism, OAuth, privacy, CSRF, CORS, Cross-Origin Resource
Sharing, Same-Origin Policy, SOP.

Acknowledgments

I would like to thank my advisor, Bruno Crispo, for his support and valu-
able insights during my Ph.D. career. I would like to thank my reviewers,
Alessio Merlo and Aaron Visaggio Corrado, for reviewing my Ph.D. disser-
tation and their comments.

I am thankful for working with the brilliant people , Matteo Golinelli,
Giuliano Turri, Michele Benolli.

Special thanks to my brothers, Saleh and Kazem, for supporting me during
this time. And also I thank my whole family, specially my mom and my
sisters, for their support and patience during all these years.

Last but not least, I thank my best friend, Dr. Farzaneh Ghalamzan, who
stayed by my side all this time and helped me to successfully finish my Ph.D.

4

Contents

1 Introduction 1

1.1 Motivation . 2
1.1.1 An example of a protocol (OAuth) 2
1.1.2 An example of a mechanism (CORS) 4

1.2 Thesis Contribution . 5
1.3 Thesis Structure . 6

2 Background 7

2.1 Authorization in the web . 8
2.1.1 OAuth protocol . 9

2.2 Referrer Policy . 23
2.2.1 Cross-Domain Referrer Leakage (CDRL) 23

2.3 Access Control Policy in Web 25
2.4 Cross-Site Attacks . 31

2.4.1 CSRF . 31
2.5 Cookies . 36
2.6 Web Cache . 37

3 Related Works 41

3.1 OAuth . 42
3.1.1 Formal Approaches 42
3.1.2 Empirical studies . 43

i

3.2 CORS . 50

4 OAuth 53
4.1 Motivation . 54

4.1.1 CSRF . 55
4.2 Threat Models . 57

4.2.1 Enabling factors . 58
4.3 Methodology . 60

4.3.1 Phase 1: Target Selection 60
4.3.2 Phase 2: Measurement Setup 61
4.3.3 Phase 3: OCSRF Discovery 62
4.3.4 Ethical Consideration 65

4.4 Analysis . 67
4.4.1 Measurement Overview 67
4.4.2 Results . 71
4.4.3 Discussion . 81

4.5 Conclusion . 95

5 CORS 97
5.1 Motivation . 98
5.2 Threat Model . 99
5.3 Methodology . 101

5.3.1 Phase1: Collection . 101
5.3.2 Phase2: Detection . 101
5.3.3 Phase3: Exploitation 102

5.4 Analysis . 107
5.4.1 Measurement Overview 108
5.4.2 Results . 109
5.4.3 Discussion . 112

5.5 Cache poisoning through CORS 115

ii

5.6 Conclusion . 116

6 Conclusion 119

Bibliography 120

iii

List of Tables

4.1 Login scenarios handled by the crawler 69

4.2 Number of exploitable sites in Facebook by OCSRF for each
attack scenario . 72

4.3 Number of exploitable sites in Google by OCSRF for each
attack scenario . 73

4.4 Classification of exploitable sites in Facebook by OCSRF - The
first category of candidates (with Absence of state parameter) 74

4.5 Classification of exploitable sites in Google by OCSRF - The
first category of candidates (with Absence of state parameter) 74

4.6 Classification of exploitable sites in Facebook by OCSRF -
The second category of candidates (with Presence of state

parameter) . 75

4.7 Classification of exploitable sites in Google by OCSRF - The
second category of candidates (with Presence of state param-
eter) . 77

4.8 Number of exploitable sites with custom header for each attack
scenario . 79

4.9 Classification of exploitable sites in Google by OCSRF - Con-
stant state parameter . 88

4.10 Classification of exploitable sites in Facebook by OCSRF -
Constant state parameter 88

v

5.1 Browsers that default SameSite attribute to Lax when not
specified [12]. *Chromium-based include: Chrome, Chromium,
Edge, Opera . 105

5.2 Experiment statistics. 110
5.3 Number of sites misconfigured to the tested variations. Per-

centages are calculated over the number of misconfigured sites
(1823). 110

5.4 Number of sites that meet the conditions required for the
attack to be successful for the web attacker listed in Sec-
tion 5.3.3. The variations referenced in the first conditions
are presented in Table 5.3. 111

5.5 Number of vulnerable sites and login pages that leak sensitive
information of authenticated and unauthenticated victims re-
spectively. 111

vi

List of Figures

2.1 The OAuth 2.0 protocol flow 11
2.2 RFC 6749 - Representation of the authorization code flow . . 15
2.3 RFC 6749 - Representation of the implicit flow 20

4.1 The main steps involved in the CSRF attack against the redirect-
uri . 57

4.2 Abstract view of OCSRF detection methodology. 60
4.3 Abstract view of OCSRF detection methodology. 64
4.4 Classification of login state parameter length 90

5.1 High-level visualization of our methodology in three phases: a
collection of candidate pages to test, detection of CORS flaws,
and flaws exploitation. 102

5.2 Distribution of websites using CORS and misconfigured to at
least one variation with respect to their Tranco ranking in 5k
bins. 108

5.3 Distribution of websites using CORS and misconfigured to at
least one variation with respect to their Tranco ranking in 5k
bins. 109

5.4 CORS error after hitting the cache [6] 115

vii

Chapter 1

Introduction

Since its introduction in 1989, the use of the World Wide Web (WWW) has
been expanding to cover a greater demand, e.g., B2B (business-to-business),
B2C (business-to-client),information-sharing, healthcare, and government ser-
vices. With the internet becoming available to the public, more people began
sharing sensitive information online.

Malicious entities exploit the web ecosystem as a potential source of rev-
enue in order to steal sensitive data from people and governments. Already by
2003 as the Symantec analysis of network-based attacks [76] reported, eight
out of the top ten attacks were associated with Web applications, stating
that port 80 was the most frequently attacked TCP port. The report sug-
gested that the vulnerabilities in web applications are the easiest to exploit.
Since then, the reliability and security of Web applications have become an
increasingly important concern due to the dynamic nature of the Web.

These issues are caused by several factors, one of which is web ecosystem
complexity. At first, the Web was initially designed to deliver data to others,
but over the years, it quickly evolved into a complex platform due to meeting
rising demands. On top of such a complex platform, more sophisticated
applications have developed, and as a result, web specifications have also
changed rapidly, along with browsers and web-development languages, to

1

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

win market share. Unfortunately, the first design of the Web has not adapted
enough to this rapid change in order to secure its users, and instead of re-
designing this huge ecosystem from scratch, it has been patched over the
years by introducing revised versions of existing protocols, adding new ones
and/or issuing new mechanisms.

This way of patching problems may guarantee the parties’ security on pa-
per (at the level of the specifications), but their real-world implementations
created a whole different situation. Since these patches have been utilized
by a vast number of software vendors with a different training backgrounds,
this situation has brought other types of security issues into the web ecosys-
tem. The vendors are obliged to adapt to those patches (e.g., protocols and
mechanisms) to enforce the security of their users, and even though there are
many guidelines widely used by developers, for their correct implementation,
web applications are still vulnerable due to 1) many unseen, involving human
factors and elements, and 2) the guidelines not being implemented properly.

1.1 Motivation

There are many proposed patches (protocols, mechanisms) to guarantee the
confidentiality and integrity of users interacting with web applications devel-
oped in this vast, complex ecosystem. For this thesis, I studied and analyzed:
1) the most commonly used security protocol for authorization (OAuth) as
an example of a security protocol, and 2) the almost new and less studied
mechanism for cross-access policy (Cross-Origin Resource Sharing [for short,
CORS]) as an example of a mechanism.

1.1.1 An example of a protocol (OAuth)

One of the nowadays pervasively used protocols is OAuth 2.0, an industry-
standard protocol for authorization adopted by many websites worldwide to

2

CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

support both user authentication and authorization for third-party applica-
tions.

OAuth was released in 2012 as RFC 6749 and is more streamlined, less
complicated, and more accessible for developers to implement, and supports
a wide range of third-party applications, such as websites and applications
running on a browser, mobile, desktop, or appliance devices[24].

With the boom of software-as-a-service and social networking, the OAuth
protocol is being deployed by more and more commercial websites to protect
many web resources; Over a billion users employ their Facebook or Google
accounts to sign into more than one million websites.

The protocol has been widely studied, and its theoretical and practical
security has been covered extensively by the literature. OAuth was designed
to enhance several aspects of the former client-server authorization model.

Given the popularity of the OAuth protocol and the proliferation of third-
party applications, the risk of compromised implementations of OAuth can be
critical, and it becomes essential to understand how secure the OAuth-based
system genuinely is. The recent studies on some well-known OAuth vulner-
abilities show that many application or authorization servers are still vul-
nerable, even though many third-party application developers implemented
recommended and proposed security countermeasures by standard – with the
knowledge that OAuth protocol is very complicated for average developers
to comprehend[39].

Most previous works either are based on manual analysis to discover new
weaknesses in OAuth implementations or suggest tools to recognize a set of
specific and known attacks in OAuth deployments. Therefore, motivated by
the prevalence of OAuth vulnerabilities in the wild, the security analysis and
testing of OAuth-based systems adaptively and systematically is needed to
evaluate its large-scale implementation to measure the impact of the severe
vulnerabilities in the wild.

3

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

1.1.2 An example of a mechanism (CORS)

One of the common web security mechanisms is the Same-Origin Policy
(SOP) which allows restricting access to resources on a site from origins
other than the site itself. The origin of a site is defined by the three val-
ues of protocol, host and port. However, if a website relies on interchanging
data with third-party websites with different origins, the SOP may be too
restrictive and break its functionality.

For websites that wish to maintain cross-site information exchange with
certain third-party websites without relinquishing the use of the SOP as a
protection mechanism, the Cross-Origin Resource Sharing (CORS) mecha-
nism was introduced [96].

CORS is based on two HTTP headers in response to cross-site requests:
"Access-Control-Allow-Origin" (ACAO), which allows indicating whether to
trust the origin included in the request and "Access-Control-Allow-Credentials"
(ACAC), which allows the server to instruct on whether authentication cook-
ies and any authorization headers may be attached to requests by the browser
[119].

The enforcement of the rules established by CORS is delegated to the
client browser, while the server is responsible of verifying the value of the
origin of requests and the subsequent decision on whether or not to trust it.
For this reason, the logic that verifies the value of the origin is crucial for the
security of the website.

Since the application developers program the origin verification in CORS,
there is a high possibility of introducing flaws that lead to trusted websites
that can potentially be controlled by malicious actors, compromising the
website’s security. The simplest case of dangerous CORS configuration is
when the value of the request origin is copied into the ACAO header of the
response, effectively trusting every possible origin. Other dangerous config-

4

CHAPTER 1. INTRODUCTION 1.2. THESIS CONTRIBUTION

urations may be introduced by errors in the creation of regular expressions,
by using prefixes or suffixes in the checks, or by allowing the value null.

1.2 Thesis Contribution

It is critical to define the extent of security vulnerabilities associated with
these current patches on the Web due to the growing reliance of users on the
Web.

In this thesis, I investigated the feasibility and effectiveness of novel ap-
proaches to measure and reduce the security risks introduced by current
patches for website vendors and their users.

Regarding the OAuth protocol, we presented the most comprehensive set
of test cases to exploit OCSRF vulnerabilities, including novel attack strate-
gies that stress all possible client-side status. They complement and integrate
the guidelines provided by documents such as [112, 74] in helping OAuth de-
velopers to mitigate implementation mistakes.

We designed a repeatable methodology and conducted automated analysis
on 395 high-ranked sites of two representative IdP: Facebook and Google, to
assess the prevalence of CSRF attacks against the redirect_uri in OAuth
implementations.

The analysis discovered that about 36% of targeted sites are still vulner-
able and detected about 20% more well-hidden vulnerable sites utilizing the
novel attack strategies. We analyzed other CSRF mitigation for all the imple-
mented attack scenarios and tested the impact of the attacks on mitigation,
showing how inconsistent they are in different situations.

Regarding CORS, we discovered that the consequences of the exploitation
of CORS flaws can enable attackers to steal personal and potentially sensitive
information of authenticated users, along with stealing security tokens of
both authenticated and non-authenticated visitors, which can later be used

5

1.3. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

to carry out the subsequent attacks (such as CSRF and login CSRF).
We conducted a large-scale analysis to measure the prevalence of CORS

flaws in the Tranco Top 50k ranking. We find that 30.2% of the websites
have at least one CORS flaw.

We developed a methodology to exploit candidate websites with CORS
flaws and replicate the attacks in a realistic real-world scenario. We then
analyzed the consequences of exploiting CORS flaws and discussed potential
solutions to mitigate them.

We identified additional conditions necessary for CORS flaws to be ex-
ploited by attackers against victims using modern browsers with default se-
curity settings.

1.3 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 presents the
required background. Chapter 3 provides the literature review of the previous
research on the OAuth protocol and CORS mechanism. Chapter 4 presents
the research on the OAuth protocol, including the design and implementation
of the repeatable methodology and the novel attack scenario in the wild. We
propose our methodology for large-scale analysis of CORS flaws in Chapter
5. Finally, Chapter 6 concludes the thesis.

6

Chapter 2

Background

In this chapter, we provide useful information relating to this study on the
security issues in OAuth protocol and Cross-origin resource sharing (CORS),
containing some background on OAuth protocol, OpenID Connect, Referer
policy, Access control policy on the web, Cross-site attacks, and Cookies
values.

7

2.1. AUTHORIZATION IN THE WEB CHAPTER 2. BACKGROUND

2.1 Authorization in the web

Authentication is used when a server needs to be certain who has the right to
access their website or information, and the user or computer has to prove its
identity to the server or client, usually entailing the use of a username and
password. Authentication does not determine which actions an individual
can perform or which files an individual can access. Authentication only
establishes the legitimacy of the system or individual.

Authorization is the process by which a server determines whether or not
a client is authorized to use a resource or access a file and ensures that users
have appropriate privileges to access the requested resources.

For this matter, some authorization and authentication protocols have
been introduced. However, before authorization protocols, a common way
for providing access to an account to a third-party application was to simply
give it the password and let it act as the user.

This pattern of applications obtaining user passwords obviously has a
number of problems. Since the application would need to log in to the service
as the user, these applications would often store users’ passwords in plain
text, making them a target for harvesting passwords[124].

Once the application has the user’s password, it has complete access to
the user’s account, including having access to capabilities such as changing
the user’s password. Another problem was that after giving an application
the password, the only way the user would be able to revoke that access was
by changing her password, something that users are typically reluctant to
do. [85]

From the implementation side, if the user changed their service credentials,
every single one of the connected applications then broke because they could
no longer log in.

A final problem is the all-or-nothing of permissions. An application either

8

CHAPTER 2. BACKGROUND 2.1. AUTHORIZATION IN THE WEB

had complete access to a user’s account and could perform all of the actions
that the user could, or none because they did not give the application their
credentials.[50]

Naturally, many services quickly realized the problems and limitations of
this model and sought to solve this quickly by proposing a standard for API
access control to be used by any system to address these concerns, such as
OAuth, SAML[36], and OpenID Connect[95].

As an authentication framework, the user does not have to handle her
own authentication systems, and as an authorization framework, it enables
third-party applications to grant access to resources from the services. [45]

Authorization is typically combined with authentication so that the server
knows who is requesting access. In most web applications, developers com-
bined OpenId Connect as authentication and Oauth as authorization for
securing the resources on the web.

2.1.1 OAuth protocol

OAuth [57] is a delegation protocol that is useful for transferring authoriza-
tion decisions across a network of web-enabled applications and APIs, which
enables a third-party application to gain limited access to an HTTP service,
either on behalf of a resource owner by orchestrating an approval interac-
tion between the resource owner and the HTTP service or by allowing the
third-party application to obtain access on its own behalf.[109].

The authorization is made without sharing the user’s passwords and lets
the user repeal an application’s access to their account. It actually works by
delegating user authentication to the service which hosts the user account
and authorizing third-party applications to access the user account. OAuth
protocol provides authorization flows for web and desktop applications and
mobile devices. In OAuth protocol, there are four roles, which are explained
in detail as follows [59]:

9

2.1. AUTHORIZATION IN THE WEB CHAPTER 2. BACKGROUND

• Resource Owner: User: The user who allows an application to access
their account is called the resource owner. The application only has
access to the area that assumes by the owner (e.g., read or write access).

• Authorization Server: The server issues access tokens to the client
after successfully authenticating the resource owner and obtaining au-
thorization. It verifies the identity of the user and then issues access
tokens to the application.

• Resource Server: The server who is responsible for protected resources
in case of having the valid access token of the client starts to answer the
request. From an application developer perspective, the service’s API is
able to do the task of resource and authorization server. Both of these
jobs are composed and recourse to them as a Service or API role.

• Client (Application): The client is the application that requires ac-
cess to the user’s account. This action takes place when a user is au-
thorized, and the API must validate the authorization.

The abstract OAuth 2.0 flow illustrated in Figure 2.1 describes the inter-
action between the four roles and includes the following steps:

1. The client requests authorization from the resource owner. The autho-
rization request can be made directly to the resource owner (as shown)
or preferably indirectly via the authorization server as an intermediary.

2. The client receives an authorization grant, which is a credential repre-
senting the resource owner’s authorization, expressed using one of four
grant types defined in this specification or using an extension grant type.
The authorization grant type depends on the method used by the client
to request authorization and the types supported by the authorization
server.

10

CHAPTER 2. BACKGROUND 2.1. AUTHORIZATION IN THE WEB

Figure 2.1: The OAuth 2.0 protocol flow

3. The client requests an access token by authenticating with the autho-
rization server and presenting the authorization grant.

4. The authorization server authenticates the client and validates the au-
thorization grant, and if valid, issues an access token.

5. The client requests the protected resource from the resource server and
authenticates it by presenting the access token.

6. The resource server validates the access token and, if valid, serves the
request.

Application Registration The client must register with the API before
it can use OAuth 2.0, during which the API gathers security-critical informa-
tion about the client, including the client’s redirect URI (redirect URI), i.e.,
the URI to which the user-agent is redirected after the API has generated
the authorization response and sent it to the client via the user-agent.

During registration, the API issues the client with a unique identifier

11

2.1. AUTHORIZATION IN THE WEB CHAPTER 2. BACKGROUND

(client id) and, optionally, a secret (client secret). If defined, the client secret
is used by the API to authenticate the client in the Authorization Code Grant
flow.[59]

Authorization Grant An authorization grant is a credential represent-
ing the resource owner’s authorization (to access its protected resources) used
by the client to obtain an access token; The OAuth 2.0 specification defines
four different grant types – authorization code, implicit, resource owner pass-
word credentials, and client credentials [35].

• Authorization Code Mode. The authorization server initially gives
an authorization code for starting the flow between the client and the
resource owner. In this case, the client resource owner will not receive
authorization directly. This means that a link will be produced between
the resource owner and authorization server and the result of this action
is that the resource owner will have an authorization code to continue
communication with the client.

Exactly before establishing a link between the resource owner and the
client for the authorization code and after authorization of the resource
owner, the authorization will be given to the resource owner.

As mentioned before, the client will not obtain the resource owner cre-
dential, which is the pass-through authorization server and resource
owner. The authorization code contains important security interests,
such as client authentication and access token transfer directly from the
resource owner’s user-agent to the resource owner.

• Implicit Grant Mode. The implicit grant is the simple authorization
code flow customized for clients implemented in a browser which are
using a scripting language like JavaScript. In the implicit flow, an access
token is given to the client directly. In this situation, the authorization
code will not issue anymore.

12

CHAPTER 2. BACKGROUND 2.1. AUTHORIZATION IN THE WEB

The authorization server does not authorize the client until the access
token publishes to the client. In some cases, the client identity can be
inquired by redirection URI that is used to deliver the access token to
the client.

It is possible that the access token is displayed to the resource owner
or other application with an approach to the resource owner’s user-
agent. Implicit grants increase the performance and responsiveness of
some clients (such as a client accomplished as an in-browser application)
because this action declines the number of circular trips necessary to
take an access token. However, this convenience should be weighed
against the security implications of using implicit grants, especially when
the authorization code grant type is available.

• Resource Owner Password Credentials Mode. In this method,
the user presents her/his credential for an API straight to a client. After
that, the client is able to authenticate to API on the user’s behalf and
regain an access token. This style is predesignated for highly-trusted
clients, including the operating system of the user’s device or highly-
privileged applications, or if the prior two methods are not feasible to
perform (e.g., for applications without a web browser).

• Client Credentials Mode. In opposition to the style shown above,
this method works without the user’s interplay. In lieu, it is begun by
a client instead of giving and bringing an access token to access the
resources of the client at an API. Facebook lets clients to usage the
client credential mode to gain access to reports of their advertisements
efficiently. It is generally used for programs that do not have any di-
rection to communicate with programs for machine-to-machine (like
background services and daemons)

13

2.1. AUTHORIZATION IN THE WEB CHAPTER 2. BACKGROUND

Authorization Code Mode in detail

The most used OAuth 2.0 grant type is the authorization code. It serves as
the best grant for web server applications and is implemented by both web
and native applications.

Because the source code is hidden in a server-side web application, the
confidentiality of the "client_secret" data may be maintained.

To obtain the access token from the authorization server, the client can
set up a server-to-server connection. As a result, the token is not given to
the user, preventing any potential unintentional disclosures.

Here is a high-level view of the main steps involved in this flow:

• The user is forwarded to the authorization server by the client applica-
tion.

• The user verifies and accepts the application’s request for authorization.

• The user is sent to the client after being given an authorization code.

• The client trades an access token for the authorization code.

The client application initiates the flow by requesting access to some user-
owned private resources that are hosted by the resource server.

The resource owner is not required by the OAuth authorization protocol
to divulge passwords to the client application. It is necessary for the user
to authorize the client’s request after authenticating it on the authorization
server. The client consequently gets an authorization grant. The application
establishes a connection with the authorization server and exchanges the
received grant with an access token. Finally, the client can access the user’s
protected resources by using the access token.

Figure 2.2 contains a representation of the flow as it is described in the
specification, from the request for permission to getting a legitimate access

14

CHAPTER 2. BACKGROUND 2.1. AUTHORIZATION IN THE WEB

User

User	authenticates

Client	id	and	redirect	URI

User
Agent

Authorization	code	and	redirect	URI

Access	token

Client

Authorization	code

Authorization
Server

A C

B

B

A

C

D

E

Figure 2.2: RFC 6749 - Representation of the authorization code flow

token. Due to the user-agent, the arrows for steps A, B, and C are split
into two halves. We provide a detailed description of the protocol’s steps as
follows:

Authorization request The user is forwarded to the authorization end-
point by the client application. Two required parameters are included in
the request URL: response_type and client_id. The value of the former,
which indicates the grant type, must be equal to "code". The public appli-
cation identifier is contained in the client_id field and is given to the client
by the authorization server upon the registration process.

GET {Authorization endpoint}

?response_type=code // Required

&client_id={Client identifier} // Required

&redirect_uri={Redirect URI} // Optional

&scope={List of scopes} // Optional

15

2.1. AUTHORIZATION IN THE WEB CHAPTER 2. BACKGROUND

&state={Arbitrary string} // Recommended

HTTP/1.1

HOST: {Authorization server}

The location to which the user should be routed following the authoriza-
tion stage is specified by the redirect_uri option. Typically, the autho-
rization server receives the addresses used in the redirect_uri during the
client registration process.

Using the scope parameter, the authorization endpoint’s authorization
request scopes can be specified by the client. The client application’s access
to the user’s account is restricted through this approach. An infinite num-
ber of space-delimited strings, each representing separate permission, can be
included in the scope parameter.

The state parameter contains a random string used by the application
to prevent cross-site request forgery attacks. The value must be a secret and
non-guessable nonce.

User authorization Following the authentication process, the authoriza-
tion server shows the user an authorization form to authorize the requests
made by the application. The user has the option to view a detailed list of all
the permissions that the client application requires. If the user voluntarily
agrees to the request, the authorization process is finished.

Authorization response The authorization server generates an autho-
rization code for the client if all the request parameters are valid and the
user has been correctly granted access. When the address indicated in
redirect_uri is reached, the user is forwarded back to the client appli-
cation. The authorization response contains the query parameters code and
state.

The user will be redirected to the redirect_uri address if the autho-
rization step fails, along with the additional error parameter in the URL
to specify the reason for the failure. The OAuth specification includes a

16

CHAPTER 2. BACKGROUND 2.1. AUTHORIZATION IN THE WEB

comprehensive list of all error types.

HTTP/1.1 302 Found

Location: {Redirect URI}

?code={Authorization code} // Required

&state={Arbitrary string} // Optional/Required

The client identifier and redirect_uri are tied to a temporary string
that serves as the authorization code. If the authorization request included
it, the answer must also include the state parameter. In this scenario, the
client’s original string must be returned. To mitigate any CSRF attacks, the
program verifies the values’ correspondence.

Access Token request The application can now obtain an access token
due to a valid authorization code. The client sends a POST request, includ-
ing the authorization code, the grant type authorization_code, and the
redirection URI to the token endpoint of the authorization server.

According to the OAuth specification, in order to send requests to the
token endpoint, the client must first authenticate with the authorization
server. The HTTP Basic Authorization header can be used to handle the
request authentication, with the parameters client_id and client_secret

provided as the user name and password, respectively. The client credentials
can also be added as additional POST parameters as an option.

POST {Token endpoint} HTTP/1.1

Host: {Authorization server}

Authorization: Basic {Client credentials}

Content-Type: application/x-www-form-urlecoded

grant_type=authorization_code // Required

&code={Authorization code} // Required

&redirect_uri={Redirect URI} // Optional/Required

&client_id={Client identifier} // Optional/Required

17

2.1. AUTHORIZATION IN THE WEB CHAPTER 2. BACKGROUND

Access Token response The authorization server verifies the client’s
identity and the information contained in the access token request. The
authorization server issues an OAuth access token and transmits it to the
client application in a JSON-encoded response if the validation is successful.
The authorization server responds with an error message if the authentication
is failed or the request is invalid.

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

"access_token": {Access token}, // Required

"token_type": {Token type}, // Required

"expires_in": {Lifetime in seconds}, // Recommended

"refresh_token": {Refresh token}, // Optional

"scope": {List of scopes} // Optional/Required

}

The client application can utilize the access token obtained at the end
of the flow to send valid API calls in order to access the user’s protected
resources.

Implicit Grant Mode in detail

The second grant type in the OAuth 2.0 specification is the implicit grant.
It was created especially for native and JavaScript applications. The secrecy
of the information included in the client_secret cannot be maintained
because the source code of these types of applications is typically publicly
disclosed. For this reason, the flow does not include any client authentication.

18

CHAPTER 2. BACKGROUND 2.1. AUTHORIZATION IN THE WEB

It was intended for the implicit permission to be more user-friendly than
the authorization code. There is no intermediate code exchange phase in the
flow, which is by its very nature straightforward.

The access token is shared with the user’s browser in the authorization
response rather than being sent directly to the client through a reliable server-
to-server channel, which is a significant disadvantage of the implicit grant
type.

This grant type hasn’t been widely adopted yet because of the various
security flaws discovered in several of the existing implementations of it.
The implicit flow should never be used, according to the OAuth 2.0 Security
Best Current Practice [74]. The value of the access token is vulnerable to
serious leakage issues because it is included in the authorization response.

In any case, the implicit grant flow is secure. A faultless application that
includes a compliant and comprehensive implementation of the protocol is
likely to be secure. However, because of the flow’s wide attack surface, it is
rightfully regarded as insecure with regard to the code flow, and its use is
still severely prohibited.

Figure 2.3 provides a graphic depiction of the stages taken during implicit
flow. A and B’s arrows are broken to show that they are moving via the user
agent.

The user’s browser is sent to the authorization endpoint by the client,
starting the flow (A). The user verifies their identity on the authorization
server and grants the client’s requested permissions (B). The browser is sent
to the client at the address supplied by the redirect_uri parameter if the
authorization is successful.

The access token is contained in the fragment of the redirect URI (C). The
browser sends a request to a client resource hosted on the web to complete
the redirect action. The browser stores the fragment data locally, not sending
it with the request (D).

19

2.1. AUTHORIZATION IN THE WEB CHAPTER 2. BACKGROUND

User

User	authenticates

Client	id	and	redirect	URI

User
Agent

Client

Authorization
Server

A G

B

B

A

C

Script
Web-hosted

Client Resource

Redirect	URI	with	access	
token	in	fragment

Redirect	URI	without	
fragment

E

D

F

Figure 2.3: RFC 6749 - Representation of the implicit flow

A web page with a client-side script able to access the complete URI using
the fragment is returned by the web-hosted resource (E). The script is run by
the user-agent, and as it does so, it parses the fragment and determines the
value of the texttt access token parameter (F). Finally, the browser provides
the client with the obtained access token(G).

Authorization request
The client starts the process by sending the user’s browser to the au-

thorization endpoint. The authorization request provided for the authoriza-
tion code flow is nearly identical. The response_type parameter’s value of
«token» is the only indication of the difference.

GET {Authorization Endpoint}

?response_type=token // Required

&client_id={Client identifier} // Required

20

CHAPTER 2. BACKGROUND 2.1. AUTHORIZATION IN THE WEB

&redirect_uri={Redirect URI} // Optional

&scope={List of scopes} // Optional

&state={Arbitrary string} // Recommended

HTTP/1.1

HOST: {Authorization Server}

The authorization server checks the request parameter values for accuracy
and confirms that the redirect URI matches a previously registered address. If
the checks are successful, the authorization server moves on to authenticating
the resource owner, who must then grant the client’s requested permissions.
The user is presented with the same consent dialog as in the authorization
code flow. The user’s browser is then sent to the redirect_uri address by
the authorization server.

Authorization response The client makes distinct requests to get the
access token and the authorization code during the flow of the authorization
code. The access token is instead given to the client directly in the autho-
rization response in the implicit grant flow. The redirect URI’s fragment
component contains all of the parameters.

HTTP/1.1 302 Found

Location: {Redirect URI}

#access_token={Access token} // Required

&token_type: {Token type}, // Required

&expires_in: {Lifetime in seconds}, // Recommended

&state: {Arbitrary string}, // Optional

&scope: {List of scopes} // Optional/Required

21

2.1. AUTHORIZATION IN THE WEB CHAPTER 2. BACKGROUND

OpenIDConnect

It is a simple identity layer on top of the OAuth 2.0 protocol. It allows
clients to verify the identity of the End-User based on the authentication
performed by an Authorization Server, as well as to gain the end-user’s profile
information in an interoperable and REST-like manner. Its current version
is OpenID Connect which is the successor of OpenID 2 [90].

OpenID Connect performs many of the same tasks as OpenID 2.0 but does
so in a way that is API-friendly and usable by native and mobile applications.
OpenID Connect provides optional mechanisms for signing and encryption.
Whereas integration of OAuth 1.0a and OpenID 2.0 required an extension,
in OpenID Connect, OAuth 2.0 capabilities are integrated with the protocol
itself.

OpenID Connect allows clients of all types, including Web-based, mobile,
and JavaScript clients, to request and receive information about authenti-
cated sessions and end-users. The specification suite is extensible, allowing
participants to use optional features such as encryption of identity data, the
discovery of OpenID Providers, and session management when it makes sense
for them.[24]

22

CHAPTER 2. BACKGROUND 2.2. REFERRER POLICY

2.2 Referrer Policy

The Referrer is an HTTP header field containing the address of the content
from which the current resource has been requested. It allows the server to
identify the URL of the resource from which the request was generated. A
web application can use the Referrer field to generate back-links, to identify
the location from which the requests come, for analysis and logging purposes
[48].

Referrers may be required to properly configure tracking and advertise-
ment systems. When a target content is obtained with a direct browser call
from a source without a defined URL, the user agent does not include any
Referrer field. Each content-initiated request is associated with a Referrer
header. A referrer policy modifies the algorithm used to populate the Refer-
rer when fetching sub-resources or performing navigation.

The empty string corresponds to the absence of a referrer policy. When
a policy is not specified, the default value set by the browser is no-referrer-
when-downgrade. With this default setting in place, the full URL is sent in
the referrer field when the protocol security level is on the same level (HTTP
→ HTTP or HTTPS → HTTPS), and the field is left empty if the new
request is directed toward a less secure destination[19].

2.2.1 Cross-Domain Referrer Leakage (CDRL)

When a web browser makes a request for a resource, it typically adds an
HTTP header, called the "Referrer" header, indicating the URL of the re-
source from which the request originated. This occurs in numerous situations,
for example, when a web page loads an image or script or when a user clicks
on a link or submits a form.

If the resource being requested resides on a different domain, then the
Referrer header is still generally included in the cross-domain request. If the

23

2.2. REFERRER POLICY CHAPTER 2. BACKGROUND

originating URL contains any sensitive information within its query string,
such as a session token, then this information will be transmitted to the other
domain. If the other domain is not fully trusted by the application, then this
may lead to a security compromise. [43]

24

CHAPTER 2. BACKGROUND 2.3. ACCESS CONTROL POLICY IN WEB

2.3 Access Control Policy in Web

The Same-Origin Policy (SOP) is a fundamental concept in web application
security, on which the main principle of web security is based. The SOP
sets access restrictions on web resources (including sensitive information),
isolating them and providing boundaries from other websites with different
origins. This rule does not apply to websites with the same origin: two
websites are considered from the same origin if and only if all the following
three values are exactly the same: protocol, host, and port [96].

Since the SOP must be guaranteed by the client (e.g., browser) to assure
the user’s data integrity and confidentiality, it involves a large group of client-
side scripting languages, such as JavaScript, which is implemented in almost
all websites, even for a simple action. According to the SOP rule, the scripts
from websites with the same origin can be run with no particular restrictions
to access each other’s methods, and resources [96].

As the way SOP builds a protective wall for websites, it became too re-
strictive for a large portion of websites that need to communicate beyond the
boundary of their current origin, for example, their subdomains.

Due to the complexity of the web environment, more websites are relying
on other websites for exchanging data in order to provide better functionality
to users. To address this problem, some solutions have been introduced, such
as postMessage and CORS.

The postMessage mechanism was first introduced by HTML5 for support-
ing cross-document communication in order to relax the same origin policy
by allowing Web content from many origins to connect with one another.
The implementation of postMessage typically involves two parties: the re-
ceiver and the sender. Every message has precise origin information, but the
receiver must verify this information before receiving the message. Thus, the
postMessage’s receiver functions are given some authority to prevent cross-

25

2.3. ACCESS CONTROL POLICY IN WEB CHAPTER 2. BACKGROUND

origin attacks instead of the Web browser. [31]
In 2006, the W3C introduced another mechanism, called Cross-Origin

Resource Sharing (CORS), to relax the SOP allowing cross-origin requests
and sharing of resources between websites with different origins [40].

CORS, an extension of the XMLHttpRequest API, functions through a
set of HTTP headers enforced by the client to provide the permissions to
access the selected resources in cross-origin requests.

The server performs the validation, authorization, and access restrictions,
while it is the browser’s responsibility to support these HTTP headers to
enforce the restrictions. This protocol has been adopted by all major browsers
(e.g., Chrome, Firefox, IE) and has been widely adopted by websites.

We take websites A and B as an example to describe CORS in a real
scenario. Website A requests a resource from website B, and the SOP will
not grant this access unless website B is CORS configured and responds with
an "Access-Control-Allow-Origin" (ACAO) header, indicating website A as
a trusted party to access that resource.

To check whether the server is configured to use CORS, the browser sends
a preflight request, i.e., an OPTIONS HTTP request that includes the three
headers "Access-Control-Request-Method," to discover which methods are
supported, "Access-Control-Request-Headers," and "Origin" [118]. ACAO
header supports a single origin within a CORS response, and if a website
wants to allow any origin, the header sets to * wildcard. An additional header
called "Access-Control-Allow-Credentials" (ACAC) is available, which, if set
to true, allows credentialed requests (i.e., with authentication cookies and
authorization headers attached). Importantly from a security point of view,
credentialed requests with a * wildcard are forbidden [78].

OPTIONS /fold1/documents

Host: https://application.example.com

26

CHAPTER 2. BACKGROUND 2.3. ACCESS CONTROL POLICY IN WEB

Origin: https://example.com

Access-Control-Request-Method: PUT

Access-Control-Request-Headers: origin, x-requested-with

Before a browser makes any cross-origin request and it does not consider
as a simple request, then the browser sends a preflight request to server.
The server has to respond with the proper headers confirming to accept the
request, and the browser will wait to send the real request afterwards.

In real-world scenarios, all cross-origin API requests will require the pre-
flight requests with the following conditions:

• Requests with a JSON or XML body

• Requests with methods other than GET, POST or HEAD

• Requests including credentials

• Requests with any headers other than Accept, Accept-Language, Content-
Language and Content-Type

Each of these requests prevents the original request from being processed
for at least the round-trip time to the server. OPTIONS Requests are typi-
cally not handled by the CDN since they are not cacheable by default, there-
fore the server must be accessed each time. In many circumstances, this
practically doubles the latency of the API for all browser clients. The per-
formance has been cut in half from the perspective of the end user. It may
significantly increase the demand on and cost of API servers. [16]

The "Access-Control-Max-Age header" can be used to optionally cache the
preflight response for requests made using the same URL. The browser em-
ploys a unique cache for preflight answers that is distinct from the browser’s
standard HTTP cache. Preflight answers are never stored in the ordinary

27

2.3. ACCESS CONTROL POLICY IN WEB CHAPTER 2. BACKGROUND

HTTP cache of the browser. It is also crucial to set the ’Vary’ header to
’origin’ value because it instructs the cache, in addition to using the same
URL, to use this response only for requests that have the same Origin header
(requests from the same cross-origin source). [77]

CORS Security Analysis

Many developers, through different frameworks, generate dynamic CORS
policies deployed in web applications and dynamically validate the value of
the request’s "Origin" header. If these policies are not implemented correctly
on the server side, the web application might unintentionally trust any other
domain and hinder SOP enforcement. Due to the policy’s complexity and
pitfalls in CORS design, there are several flaws in CORS implantation. The
most common results of these mistakes in configurations are privacy leakage,
information theft, and account hijacking. We provide the list of current
faulty configurations in CORS, which are caused by validation mistakes or
poor clarification of the policy for developers[40].

• Reflecting arbitrary origin: The basic way to configure CORS while
dynamically generating the policies is to blindly reflect the "Origin"
header value in the "Access-Control-Allow-Origin" headers in responses.
This configuration could be dangerous since it trusts any website to read
authenticated resources.

• Prefix matching: the server ignores the ending characters and trusts
any domain prefixed with a trusted domain. For instance, a server wants
to trust "victim.com" and allows "victim.com.attacker.com."

• Suffix matching: the server only checks if the ending characters match
the trusted domain, or their own domain, as a way to allow all the
subdomains. For example, if a server wants to allow "victim.com," it

28

CHAPTER 2. BACKGROUND 2.3. ACCESS CONTROL POLICY IN WEB

mistakenly trusts any domains that end with "victim.com" as well, e.g.,
"attackvictim.com."

• Not escaping ’.’: when the validation is performed using a regu-
lar expression, the developer might forget to escape the "." charac-
ters in the configuration. For instance, "victim.com" wants to allow
"www.victim.com" but allows "wwwavictim.com" as well.

• Value ’null’: the "origin" header was first proposed as mitigation
against CSRF attack, and CORS reuses this header [1]. One of the
essential conditions for CORS security is that the "origin" header value
cannot be forged in a cross-origin request, but this is not always true in
reality. RFC 6454 states that a request from a privacy-sensitive context
should set the "origin" header to ’null,’ even though it does not provide
an explicit definition for privacy-sensitive context. Moreover, CORS
standards do not define the ’null’ value clearly. In reality, browsers send
the ’null’ value from multiple sources, like iframe sandbox scripts. To
share data with these types of sources, a developer must allow the null
value in their configuration, setting "Access-Control-Allow-Origin: null"
and "Access-Control-Allow-Credentials: true." By doing so, an attacker
could easily forge the "origin" header by sending a cross-origin request
from an iframe sandbox in the browser. Consequently, a website with
this flaw ("ACAO: null" and "ACAC: true") can be read by any other
website.

• HTTPS site trusts HTTP domain: some CORS configurations do
not take the protocol (scheme) into account and cause HTTPS websites
to trust HTTP ones. In this situation, a network attacker could com-
promise the user’s communication with the target website, steal their
sensitive information, and hijack HTTP content to perform a CSRF
attack against HTTPS.

29

2.3. ACCESS CONTROL POLICY IN WEB CHAPTER 2. BACKGROUND

• Arbitrary subdomain: most applications decide to allow access from
all their subdomains (even non-existent ones). Additionally, some web-
sites allow access from various third-party websites, including all their
subdomains. This kind of mistake in CORS implementations can lead
to unauthorized access from arbitrary subdomains by related-domain
attackers.

30

CHAPTER 2. BACKGROUND 2.4. CROSS-SITE ATTACKS

2.4 Cross-Site Attacks

Since browsers attach cookies to all requests by default, they allow an adver-
sary to deliver malicious payloads through user authentication.

A large part of web security is involved in cross-site (XS) attacks, in
which victims visit a malicious website that sends cross-site authenticated
HTTP requests to a vulnerable website, tricking their browser. The malicious
website references the resources of the vulnerable website through a hidden
HTML form or JavaScript code.

When the user visits the malicious website, the browser automatically
attaches the user’s authenticated session cookies to the request, and the
vulnerable website processes the request, providing an authenticated response
[66]. Cross-Site Request Forgery (CSRF) and Cross-Site Scripting (XSS) are
some examples of cross-site attacks.

2.4.1 CSRF

Authenticated users are made to take unwanted activities on a web applica-
tion via a technique known as cross-site request forgery (CSRF). The attacker
deceives the victim in order to execute specially crafted malicious requests
to a target website.

The trust relationship between the web application and the browser is
exploited by the attack. The victim’s browser includes the authentication
cookies in all requests made to the target website if the user has been au-
thenticated there. [30]

The web application is unable to distinguish between genuine requests and
malicious requests that are generated by the user’s browser but are forged by
the attacker. State-changing activities, such as modifying the victim’s login
information or completing transactions, are the attack’s main objectives.
[120]

31

2.4. CROSS-SITE ATTACKS CHAPTER 2. BACKGROUND

Login CSRF

A login cross-site request forgery occurs when the attacker tricks the victim
into sending a cross-site request to the target website’s login endpoint. The
login request is forged by the attacker using its own credentials. If the attack
is successful, the server sends a session cookie to the victim’s browser.

As a result, the victim is logged into the target website with the account
of the attacker [30]. There has been several studies [70, 125, 98, 107, 27]
analysing the login CSRF attacks.

The attack could seem quite harmless at first glance. An attack using
cross-site request forgery often targets actions taken on the victim’s protected
resources. The attacker uses a login CSRF to trick users into carrying out
undesired actions inside the attacker’s account by taking advantage of an
application bug. After the attack is carried out, the browser’s state is altered,
and the victims might not even be aware that they are logged into someone
else’s account. As a result, individuals might upload delicate files, divulge
credit card information, and share other private information with evil users.
[30]

Impact: Some web applications let users register multiple OAuth provider
logins that are connected to the main account. It stands for an alternative
and less complicated method of using the application. In this scenario, a lo-
gin CSRF attack could result in account takeover if one of the implemented
OAuth flows is unsafe. The ability to link accounts can be used to access the
victim’s data completely.

The security researcher Egor Homakov initially outlined the attack flow in
an essay on his blog, [60]. Only if specific requirements are met is the attack
feasible. The target website must use at least one flow implementation that
is vulnerable in external login procedures based on OAuth 2.0 in order to
be vulnerable. Only users that have been authenticated by the target client

32

CHAPTER 2. BACKGROUND 2.4. CROSS-SITE ATTACKS

application are eligible to receive the attack.
With the target website’s identity provider using a susceptible implemen-

tation, the attacker starts the authorization process. Following the server’s
authorization response, the OAuth flow is immediately blocked. The attack
vector is represented by the retrieved redirect address. The victim is per-
suaded to click on the link or visit a malicious website that contains it.

In the latter case, the malicious request often starts without any additional
user input. All of the remaining OAuth flow steps are completed on the
victim’s own browser once the victim opens the authorization response. The
attacker’s account is connected to the victim’s account at the conclusion of
the attack. As a result, using the identity provider’s profile used in the attack,
the attacker can access the victim’s account on the client application. [25]

Mitigation against CSRF attacks

There are some mechanisms that a site can use to defend against CSRF
attacks [87]; verifying the origin with standard headers, synchronizer token
pattern, SameSite Cookie Attribute, double submit cookies, and use of cus-
tom request headers, to name but a few.

As we study CSRF in Single Sign-On through a web attacker, we consider
the three effective defense mechanisms in this manner: validating a CSRF
token to all state-changing requests(state parameter, in case of SSO), in-
cluding additional headers with XMLHttpRequest, and user interaction as
these three defense mechanisms were used repeatedly throughout our large
dataset.

These mechanisms are in use on the web today, yet they are not entirely
satisfactory. However, we observed a small fraction of cases using other
defense mechanisms which were effective in defending against some of the
proposed attack scenarios.

State parameter The demonstrated CSRF attacks against OAuth are

33

2.4. CROSS-SITE ATTACKS CHAPTER 2. BACKGROUND

successful because the weak client application fails to appropriately confirm
that the user who submitted the authorization request is the same user who
is submitting the response. This check can be performed in the OAuth 2.0
flow with the analysis of a security parameter named state. [32]

According to OAuth 2.0 specification [58], for its redirection URI, the
client must implement CSRF protection. A value that ties to the user-
authenticated agent’s state must be part of every request delivered to the
redirection endpoint.

«The client SHOULD utilize the state parameter to deliver this
value to the authorization server when making an authorization re-
quest. The authorization server must redirect the user-agent back
to the client with the required binding value contained in the state
parameter. The binding value enables the client to verify the valid-
ity of the request by matching the binding value to the user-agent’s
authenticated state.»

[112]
This value state parameter which can be performed in OAuth 2.0 flow.

The state parameter, to prevent CSRF attacks, should be a non-guessable
randomly generated sequence of characters.

«The authorization server MUST prevent attackers from guessing
generated tokens, the probability MUST be less than or equal to
2−128 and SHOULD be less than or equal to 2−160.»

[58]
The client’s security against a CSRF attack is not assured by the presence

of the parameter, though. The vulnerability of the application may result
from incorrect validation or improper processing of the parameter, as seen in
[125].

34

CHAPTER 2. BACKGROUND 2.4. CROSS-SITE ATTACKS

Custom HTTP Headers Sites implementing AJAX interfaces can de-
fend against CSRF by setting a custom header via XMLHttpRequest (e.g.,
X-Requested-With) to all state-modifying requests. It has been suggested
that the presence of the X-Requested-With header ensures that the request
originated from a trusted domain.

For example, to defend against login CSRF, the site must send the user’s
authentication credentials to the server via XMLHttpRequest. In this way,
the site validates the headers that guarantee the integrity of the request and
rejects all state-modifying requests that are not accompanied by the header.
[107] Since, in this research, none of the attackers have control over the origin
of the websites, custom HTTP headers are an effective protection mechanism
against CSRF attacks.

However, custom headers can only be used by websites implementing all
their security-sensitive operations via JavaScript. In our experiment, we show
that despite implementing this custom header, there are websites that are
still vulnerable to Login CSRF.

User Interaction The proposed defenses against CSRF attacks do not
require any user interactions. However, a crucial feature of CSRF is that web
applications cannot recognize whether or not a request is intentionally issued
by the user, So involving the user in performing an additional step before
accepting the request could prevent unauthorized operations.

Examples of these steps that can act as strong CSRF defense when im-
plemented correctly are as follows: 1) user Re-authentication, 2) One-time
Token, and 3) solving CAPTCHA challenges. Even though this type of de-
fense is very effective against CSRF, it can create an unpleasant impact on
the user experience, and for this reason, only a small fraction of websites
implement it, as shown in our result in section 4.4.2.

35

2.5. COOKIES CHAPTER 2. BACKGROUND

2.5 Cookies

Modern web apps continue to be developed on the foundation of simple web
primitives built for less complex applications, even though they now offer
rich user experiences that can compete with those of desktop applications.

In particular, HTTP, a stateless protocol, transports messages between the
user’s browser and the server. Since practically every application requires a
state that is unique to each user, the server must explicitly connect these
messages into "sessions" in order for this data to be accessed and changed
throughout a user’s interaction with the application. There are several tech-
niques for maintaining this session state on the web, and the most commonly
used ones are Cookies. [34]

Cookies are a primary HTTP mechanism to secure the session’s integrity
and confidentiality. The consequences of compromising the confidentiality or
integrity of a user’s session are critical: stealing the sensitive data, hijacking
the account, and replacing the session (e.g., login CSRF [32]).

To do so, cookies allow websites to store key/value pairs using the HTTP
Set-Cookie header, and then the user agent returns them on subsequent re-
quests. One of the attributes is SameSite handling the restriction of the
user’s session to a first-party or third-party request.

SameSite

Generally, cross-site attacks are successful when the browser includes valid
cookies in all the requests; therefore, an effective solution to cross-site attacks
is to set restrictions on cookies’ scope, instructing the browsers on whether
to include them in the outgoing requests using the SameSite attribute in the
Set-Cookie HTTP response header. The SameSite attribute introduces three
cookie policies: None, Lax, and Strict [66].

None This policy specifies that cookies are sent in all outgoing requests,

36

CHAPTER 2. BACKGROUND 2.6. WEB CACHE

including first-party and cross-site ones. This policy corresponds to the de-
fault policy before the introduction of the SameSite attribute. When setting
SameSite=None, the Secure cookie attribute must also be set; otherwise,
cookies will be blocked.

Lax The Lax policy tries to increase the usability of the website and yet its
security, maintaining the user’s logged-in session when the user arrives from
an external link. In fact, cookies are sent for requests issued by top-level
navigation (e.g., clicking on a link) but not for sub-requests (e.g., requests
to load media files). This is the default value for cookies when the Same-
Site attribute is not specified in the Set-Cookie header on Chromium-based
browsers, while Firefox and Safari default the attribute to None.

Strict This value is more stringent than other values for attaching cookies
to outgoing requests. It prevents the browser from sending the cookies in all
cross-site browsing contexts, even those with safe methods, and only allows
requests from the same website to include cookies.

Secure

The Secure attribute of cookies allows for restriction of the use of cookies to
secure connections, i.e., generally HTTPS connections. This attribute only
protects the confidentiality of the cookies, as a network attacker might still
break their integrity, rewriting their value by injecting a Set-Cookie header
into a response to the victim [29].

2.6 Web Cache

The cache lies in between the user and the server and acts as man-in-the-
middle proxy devices. The Cache interface provides a persistent storage
method for Request/Response object pairs cached in long-term memory. It
stores (caches) responses to specific requests, typically for a specified amount

37

2.6. WEB CACHE CHAPTER 2. BACKGROUND

of time. When the next user makes the same request, the cache simply
delivers the user a copy of the previously cached response without involving
the back-end in any way. By lowering the volume of duplicate requests the
server must process, this significantly lessens the server’s workload[7].

The implementation of web caches occurs at many points along the traf-
fic delivery channel, starting with the private caches found inside browsers
and ending with the application caches set up alongside the origin server,
including any caching proxies that may be present in between. First and
foremost, Content Delivery Networks (CDNs) with their extensive networks
of caching proxies (also known as edge servers) have gained widespread adop-
tion. [15, 17]

Website owners have a wide range of options with CDNs to modify the
caching behavior to suit their requirements. The request endpoint, file exten-
sion, query string arguments, the presence of cookies, the request headers, the
response content type, or a complex combination of several such attributes,
for instance, can all be used to determine whether to cache a response. Major
CDNs have more recently begun to provide edge computation capabilities,
allowing website owners to automate these decisions. An origin can have
multiple, named Cache objects. The vendors must handles Cache updates;
items in a Cache are not automatically updated until specifically requested,
and they do not depreciate unless removed. [18, 54, 16, 53]

Web Cache Poisoning

Web cache poisoning was first introduced in Practical Web Cache Poisoning
research paper [9] in 2018. In this technique, an attacker manipulates a web
server’s and cache’s functionality to deliver a malicious HTTP response to
other users. A poisoned web cache could to be severe to other users by spread-
ing several different threats, using vulnerabilities such as XSS, JavaScript
injection, open redirection [10].

38

CHAPTER 2. BACKGROUND 2.6. WEB CACHE

Only users who access the affected page while the cache is poisoned will
receive the poisoned response and depending on the popularity of the website,
its impact might be massive. Web cache poisoning essentially comprises two
stages. The attacker must first figure out a way to get the back-end server to
respond with an unintended harmful payload. Once they are successful, they
must make sure that their response is stored and then served to the target
audience.[84]

39

2.6. WEB CACHE CHAPTER 2. BACKGROUND

40

Chapter 3

Related Works

In this chapter, we include the related works on both OAuth protocol security
and Cross-origin communication security. We mention the works on OAuth
security in general. However, since we consider CSRF attacks in OAuth
in our research, we illustrate the studies mostly related to OAuth CSRF
in detail. For cross-origin policy, we mention another mechanism, called
postmessages, other than cross-origin resource sharing (CORS). However,
we describe mostly the works related to CORS in detail.

41

3.1. OAUTH CHAPTER 3. RELATED WORKS

3.1 OAuth

Several formal approaches have been used to examine the OAuth 2.0 protocol,
which involves an examination of the protocol flow.

Although protocol analysis techniques are useful to verify the security
of protocols, they assume websites are correctly implemented, and the im-
plementation details and browser behaviors might be ignored. Hence some
other researchers performed a security analysis through the real-world OAuth
implementations.

3.1.1 Formal Approaches

Chari et al. [38] analyzed the security of the authorization code mode in
the universally composability [37] security framework. They defined an ideal
functionality for OAuth protocol and implemented it without considering the
web features, i.e., the semantics of HTTP status codes or details of cookies.

With the use of formal methods and the verification of the associated
flows and state changes, Pai et al. [88] examine the theoretical security of
the protocol.

To define OAuth 2.0 with all of its restrictions and behaviors, they em-
ploy the Alloy modeling language and thanks to this intended model, an
OAuth client credentials flow security hole was found. To assess the security
of the OAuth protocol in other works, abstract models were utilized, and
they demonstrated how the finite-state Alloy checker was able to identify the
known OAuth flaws. However, the theoretical method has the drawback of
not allowing for the discovery of implementation-related problems. [67]

Wang et al. [115] present a systematic approach to finding implicit as-
sumptions in SDKs used for authentication and authorization, including
SDKs that implement OAuth 2.0.

In their formalization of OAuth 2.0, Bansal et al. [28] perform a formal

42

CHAPTER 3. RELATED WORKS 3.1. OAUTH

analysis of OAuth 2.0 to discover attacks on OAuth. They use the WebSpi
library [14], which defines the basic components to model web applications
and their security policies, ProVerif [33], and a description of new concrete
website attacks found and confirmed by their formal analysis. They identify
previously unknown attacks on the OAuth implementations,i.e., and Social
CSRF attack, based on a customized attacker model and finer-grained web
security mechanisms.

Another formalization by Fett et al. [47] perform the extensive formal
analysis of the OAuth 2.0 standard for all four modes, which can even run
within the same and different clients and APIs, based on a comprehensive
and expressive web model, covering the part of how browsers and servers
interact in real-world configuration.

While proving the security of OAuth in the web model, they discovered
four new attacks which break the security of OAuth: 307 redirect[81], Mix-up,
State leak, and Naive client session integrity. They proposed some solutions
for recognized vulnerabilities to fix them.

3.1.2 Empirical studies

Many empirical works have been done on the security of OAuth-SSO (e.g.,
[82, 46, 114, 26, 111, 110, 44, 99, 22, 106]) either by developing web-based
tools or evaluating the risk in real-world implementations. In the following,
we illustrate the papers covering OAuth and CSRF attacks. We categorize
these related works into three groups: mitigation, protection tools, and se-
curity analysis.

Mitigation

There are some researches focusing on mitigations against CSRF(e.g. [71,
49, 20, 73, 97, 116, 13]).

43

3.1. OAUTH CHAPTER 3. RELATED WORKS

Li et al. [71] involve the analysis and validating Referer header field per-
formed by the relying party. The technique allows preventing the execution
of OCSRF initiated from domains under the control of an attacker. They
propose an attack model and how this mitigation is effective in some cases.
However, in our paper, we test a larger portion of websites automatically,
including more mitigations in our results.

In [73], the authors provide a broad security evaluation of CSRF miti-
gations throughout the popular web frameworks. By dissecting CSRF at-
tacks, they identify 16 existing defense mechanisms from literature and non-
literature resources, which are considered in four distinct categories; Origin
checks, Request Unguessability, SOP for Cookies, and User Intention.

They discover a few vulnerabilities in some of the web frameworks which
allow the attacker to bypass the CSRF defense. They show that even though
CSRF defenses have been implemented, much of their correct and secure im-
plementation depends on developers’ awareness of CSRF attacks and specific
behaviors of the implementations. However, they analyze and evaluate the
frameworks, web languages, and current documentation to assess the CSRF
attack in general. Unlike our research, not only is their evaluation not fully
automated, but also they do not consider all the different factors in the real
scenarios which the victim might face in the wild.

Protection tools

Another thread of research [35, 72, 127, 123, 121] focuses on designing and
implementing browser-side tools to protect users against web attacks regard-
ing the OAuth protocol.

The user’s browser will attach the cookies to the request that the malicious
code sends to the target web application. This form of behavior could be
exploited by CSRF attacks. There are some works suggesting to modify this
behavior of the browser, via proxies (e.g., [42, 22, 64]) and browser extensions

44

CHAPTER 3. RELATED WORKS 3.1. OAUTH

[63, 75, 93, 94, 68]

The authors in [121] implement a protection tool providing security to
vulnerable web APIs communications. It works as a proxy on the service’s
website, checking on the set of invariant relations among the HTTP requests
and responses during an SSO action. They show that their tool is effec-
tive in complicated situations and defeats the exploits on high-profile web
applications.

Zhou and Evans [127] developed SSOScan, an automated vulnerability
scanner, which was used to check the security of Facebook OAuth 2.0 im-
plementations in 1,660 heavily frequented websites. The tool was made to
involve humans as little as possible.

The Facebook button is located inside the login page using a module called
SSO Button Finder, which automates the permission procedure. In our re-
search, a similar keyword-based approach was used to successfully automate
the information retrieval phase. Our crawler’s development was greatly in-
fluenced by additional features of their implementation.

Calzavara et al. [35] design and implement a browser-side security mon-
itor for web protocols, called WPSE, to prevent nine attacks violating the
security properties of OAuth. However, WPSE cannot prevent certain classes
of attacks, including automatic login CSRF attacks, network attacks that are
not observable by the browser, and impersonation attacks.

The authors in [72] develop OAuthGuard, a real-time vulnerability an-
alyzer, and protector, and put it into use as a JavaScript Chrome browser
extension. Implementations of OAuth 2.0 and OpenID Connect can both be
secured using it.

OAuth 2.0 Detector, Vulnerability Analyzer, and Vulnerability Protector
are the three primary parts of the program. The OAuth protocol-related
requests are recognized using the first module. The vulnerability analyzer
examines network traffic to look for vulnerabilities, and it enables the detec-

45

3.1. OAUTH CHAPTER 3. RELATED WORKS

tion of CSRF attacks against the redirect-uri in addition to other security
risks.

Yang et al. [123] develop S3KVetter, an automated testing device, to
confirm the SSO SDKs’ implementations’ security. An SDK’s source code is
frequently made available to the public, enabling white box testing methods
to be applied to the distributed libraries.

Dynamic symbolic execution was used to analyze each SDK’s source code.
The tool tests the interactions between the players engaged in the flow and
handles the multi-party aspect of the protocol correctly. S3KVetter identifies
seven categories of logical errors.

Security Analysis

There are some papers with an approach similar to ours [70, 108, 125, 98, 107].
In the following, we provide a detailed explanation of these works and the
gaps we address in this paper.

Sun and Beznosov [110] examine the Facebook SSO implementations on
96 client websites as well as the implementations of three OAuth 2.0 identity
providers: Microsoft and Google.

They examine the network traffic produced by the user’s access while
treating the relying parties and authorization servers alike as black boxes.
A subset of 15 depending parties was queried manually for traffic, and the
data was then semi-automatically analyzed using some established tools. The
information extracted from the network traces led to the discovery of various
known security flaws.

Li and Mitchell [70] analyze the security of OAuth 2.0-based SSO imple-
mentations in 10 identity providers and 60 Chinese-reliant parties. The work
is concentrated on CSRF attacks using OAuth against websites using iden-
tity providers. To gather and examine the network traffic generated while
the protocol was being executed, they deployed a proxy.

46

CHAPTER 3. RELATED WORKS 3.1. OAUTH

A sizable number of case studies were produced once the discovered secu-
rity flaws were manually examined. To make traffic analysis easier and cut
down on errors caused by manual inspections, Java software was created.

They discovered that a sizeable percentage of clients were not using any
defenses against the CSRF attack against the redirect-uri. Many of the
websites inspected did not include a state parameter in the OAuth flow or
used a constant value, and some relying parties failed to bind the state with
the user’s session.

Sumongkayothin et al. developed OVERSCAN [108], a Java security scan-
ner that can spot missing or improperly utilized parameters in the OAuth
2.0 protocol. The utility was developed as an add-on for the Burp Suite
software. It functions as a proxy and gathers and examines network traffic
flowing between the browser and the target web applications.

Only the requests related to the OAuth protocol are examined; the classi-
fication is based on the presence of the response_type variable in the query
string. OVERSCAN can detect the absence of the state value in the OAuth
authorization request, among other parameters. The severity level of this
flow misconfiguration is considered high. The researchers used the security
scanner to conduct an experimental examination. The results revealed that
in 5 out of 45 web applications, the state parameter was missing.

Yang et al. [125] developed OAuthTester, a model-based method for auto-
matically finding flaws in OAuth 2.0 implementations. OAuthTester builds
a state machine from the protocol specifications in order to overcome the
shortcomings of earlier theoretical approaches, but it then improves the state
machine and fills in the blanks left by the ambiguities of the specification by
tracking the traffic of the OAuth flow and the server state.

However, as the authors note, they can only examine HTTP traffic. Thus
they are unable to obtain all of the information we utilized to develop the
attack tactics. As a result, they miss the vulnerabilities that our analysis

47

3.1. OAUTH CHAPTER 3. RELATED WORKS

identifies.

Shernan et al. [98] conducted a large-scale analysis to determine whether
CSRF vulnerabilities existed in actual protocol deployments. They imple-
mented a lightweight crawler named OAuth Detector (OAD), a high-performance
tool specifically developed to gather and analyze OAuth-related traffic in a
sizable number of well-known websites.

A review of the top 10K Alexa domains indicated that 25% of OAuth-using
websites were susceptible to CSRF attacks. This outcome can be explained
by the frequent lack of fundamental safeguards against CSRF vulnerabilities.
The OAuth 2.0 protocol makes it very explicit that in order to protect the
flow, some kind of CSRF mitigation must be used to secure the flow.

However, several of the major identity providers examined in this paper ei-
ther suggested using the state parameter in the flow or outright disregarded
it. The OAD tool performs crawling at a depth level of two, beginning on
the home page of each website.

In order to find the requests connected to the OAuth authorization code
flow, the acquired links are examined. Any website that contains an exposed
request is marked as vulnerable. The approach to determining vulnerability
is based on the absence of the state variable in the OAuth authorization
request. Although the inspection is simple to do, unfortunately, it leads to
partially unreliable results.

Sudhodanan et al.[107] present a comprehensive study on the different
types of authentication CSRF reported in the literature. For identification
of strategies in order to detect and reproduce each vulnerability, they use
the same browser to simulate the interaction between the attacker and the
victim, which led to missing some additional scenarios regarding the victim’s
browser states at the time of the attack.

Our approach considers additional attack strategies. Instead of using the
same browser, we totally separate the environment in which the attacker and

48

CHAPTER 3. RELATED WORKS 3.1. OAUTH

victim operate. In place of performing the attack in a clean browser session,
we also perform tests in the presence of a visitor and authorized cookies,
which are not considered in their analysis.

Compared to related works, we identified three different types of login links
possible through OAuth protocol (direct link, internal link, and button link),
and we carefully implemented and automated the login part. In addition,
our tool does not have the limitation of language or location of the website.

49

3.2. CORS CHAPTER 3. RELATED WORKS

3.2 CORS

The SOP is too restrictive for the modern Web and the W3C standardized
two new mechanisms of cross-origin communication, namely postMessages
and CORS, in order to relax SOP.

There are many studies (e.g.,[101, 104, 122, 52, 103]) aiming at the security
issues in postMessages mechanism and analyzing their incorrect implemen-
tations in the wild.

CORS is a relatively new security mechanism, and several academic and
non-academic researchers have identified various security problems. Some
studies have highlighted common flaws of CORS ([21, 83, 23, 65, 61, 55, 91,
119, 128]).

In [128], the author analyzes the security risks of applying CORS in local
storage. By considering some concrete attack cases, they propose a practical
scheme and some recommendations for the safe use of CORS in Local storage.

Gurt [55] found a CORS configuration mistake in one of Facebook Message
domains that caused the exposure of the victim’s private information in the
chat box by any malicious website.

Revay [91] found a file upload CSRF vulnerability that was caused by a
POST body format that was relaxed in XMLHttpRequest API.

Wilander on Github [119] show that an attacker may deliver malicious pay-
loads via the three headers (i.e,Accept, Accept-Language, and Content-Language)
to. They suggested that the Fetch standard should restrict these headers’
values according to RFC 7231 [62].

The authors in [126] and [100] analyze inconsistent access control policies
for different resources in web browsers (Cookies and DOM), but they did not
include CORS.

Kettle [65] provides a summary of several CORS flaws identified through-
out his penetration testing experiences. Müller [83] takes the different CORS

50

CHAPTER 3. RELATED WORKS 3.2. CORS

flaws and measures their prevalence on the Alexa top 1M websites, while Evan
J performs a measurement of the arbitrary origin reflection in [61], showing
a high number of vulnerable websites in the Alexa top 1M.

Chen et al. [40] provide an empirical study for CORS security, finding
some new issues in the design and implementation of CORS: they craft the
size and value of the requests headers and body, leading to Remote Code
Execution (RCE), file upload CSRF and attacks on binary protocol services,
and endangering the privacy of the user. They also analyze the risky relation-
ship between websites through CORS, including third-party and subdomain
websites. In addition, they measure the CORS flaws of 50k websites and the
frameworks they use.

Meiser et al. in [78] construct a graph of interconnected trust relationships
between websites considering existing cross-communication methods, namely
postMessage, CORS, and domain relaxation. They focus specifically on the
dangers that the interconnected network of trust could cause and investigate
the attack surface. Based on this graph, they estimate the damage of XSS
exploitation that usually occurs when websites trust each other in the inter-
connected web. As for CORS, they only investigate the explicit trust that
enabled it, disregarding flaws.

Previous research has focused on measuring the prevalence of CORS flaws
in the wild without investigating the actual exploitability of such flaws in a
realistic real-world scenario.

51

3.2. CORS CHAPTER 3. RELATED WORKS

52

Chapter 4

OAuth

Many works have been done on the security of OAuth protocol, whether
formal or empirical, and OAuth specification has been published, providing
the best practice for developers and vendors. With all, significant fractions of
websites are still vulnerable, not only because of implementation mistakes but
also because of other factors unrelated to the application (e.g., cookie policy
on modern browsers). In the following chapter, we provide the automated
methodology targeting many web applications regarding their language or
locations and implement the most comprehensive attack scenarios.

53

4.1. MOTIVATION CHAPTER 4. OAUTH

4.1 Motivation

At the beginning of the study on OAuth, we investigated the OAuth-based
SSO implementation on top 5k domains since OAuth-based SSO implemen-
tation is prevalent in the wild.

Since the study was manual, the registration and login part was time-
consuming, and we only did it on 160 websites at the time. We conducted a
measurement study on the captured traffic and characterized Cross-Domain
referrer Leakage (CDRL) vulnerabilities in OAuth implementation.

We perform a custom web crawler to collect the data used in this measure-
ment. The crawler was configured to identify vulnerable websites. Each link
crawled, and all generated requests by the browser were captured. One hun-
dred sixty websites generated a total number of 6,824 unique HTTP requests
by the simulated browser.

After inspecting these requests, 4,195 requests exposed sensitive data
(such as token, username, and state parameter) in the referrer field. How-
ever, other requests do not contain the state parameter or access token in
the referrer and, for this reason, cannot be considered vulnerable.

Regarding the analysis of the collected data, a large fraction of websites
that implement OAuth protocol suffers from a serious web vulnerability
(CDRL) which causes an unwanted leakage to untrusted third parties. In
one scenario, if a third party is compromised, many state parameters and
access tokens would be disclosed to an attacker.

Even though CDRL is a serious vulnerability, we aim more dangerous one
in OAuth protocol: Cross-Origin Request Forgery. We learned our lesson
from this primary study to achieve better results: automated and repetitive
methodology to cover more and more websites. Much research has been done
on CSRF attack in OAuth, so in the following, we provide a comparison
within all the current studies related to OAuth CSRF attack, hence our

54

CHAPTER 4. OAUTH 4.1. MOTIVATION

motivation for this part of my thesis.

4.1.1 CSRF

In our work, we proposed an automated technique to perform a large-scale
analysis of a large number of popular websites. The purpose of the study
is the identification of vulnerable OAuth 2.0 implementations related to the
identity services of Facebook and Google.

As reported by [107] CSRF vulnerabilities related to authentication and
identity management services are extremely pervasive, even among the top-
ranked websites.

Our analysis is aimed to discover the incidence of the attack in the wild
under different conditions. We designed an automated testing framework to
programmatically perform this evaluation.

Other works tested the attack only within a clean browser session, but
this setup does not accurately represent a real attack scenario.

At the time of the attack, the victim may already be logged into the web-
site, and the browser may have set some cookies. The presence of visitor or
authentication cookies can significantly influence the outcome of the attacks.

Our study is aimed to gain new knowledge to understand the impact and
the outcome of the CSRF attack in scenarios resembling real-world situations
which lead to serious consequences, ranging from the disclosure of sensitive
information to a malicious user [30] to the complete account takeover [60].

As a minor consideration, we worked with a heterogeneous set of websites
with different languages and alphabets located in different countries. Our
dataset contains, for example, Japanese and Russian websites, as well as
websites registered in the United States and in several European countries.

Our approach overcomes the limitations of other works [70, 110], which
only analyze websites providing a user experience in a specific language.

The main limitation of the manual approaches is that they represent a

55

4.1. MOTIVATION CHAPTER 4. OAUTH

small number of websites that can be examined. The lack of automation
makes the inspection process extremely time-consuming, and the restricted
size of the considered sample makes it difficult to discover vulnerabilities and
error patterns.

This approach is suitable for examining the details of a specific vulnera-
bility but is inadequate for large-scale security evaluations. To obtain statis-
tics on the prevalence of OAuth vulnerabilities in the wild, it is required to
overcome and extend the manual approach. For example, a higher level of
automation can be achieved with the use of crawlers and software to control
and simulate browser navigation.

With the aim of estimating the incidence and real impact of OAuth vul-
nerabilities in a heterogeneous world of applications, several large-scale mea-
surement studies have been performed over time.

Our tool considers many more implementation parameters and factors
present in real-world implementations than existing tools, and it does not
remove any website (because of the presence of state parameters).

The tool works with a larger number (15) of different attack scenarios
compared to the existing tool; some of these scenarios are completely new.
The scenarios are all automated and implemented without user interactions,
which are assessed to find more vulnerable websites. Unlike previous works,
we analyze the impact of these attack scenarios on other CSRF mitigations
and find that these factors could easily affect and disable other mitigations.

56

CHAPTER 4. OAUTH 4.2. THREAT MODELS

Client

3

Authorization
Server

4

User	Agent

1

Malicious
website

2

Figure 4.1: The main steps involved in the CSRF attack against the redirect-uri

4.2 Threat Models

The redirect URI used in the authorization code and implicit flows is targeted
by the attack, which is defined in RFC 6819.

After getting an authorization code or an access token from the identity
provider, the attacker starts the authorization process to access his own pro-
tected resources and terminates it after. The victim receives the retrieved
URL and is deceived into executing the redirect back to the client application.

In case the authorization code flow is used, the client application generates
a server request to exchange the authorization code for an access token.

In the implicit flow, a client-side script that is run by the victim’s browser
retrieves the access token from the URI fragment and sends it to the client.
In both situations, the victim may utilize the access token given to them by
the identity provider at the end of the OAuth flow to access resources on the
attacker’s behalf.

The login CSRF attack described in the preceding paragraph shares the
same risks and impacts as the CSRF attack against the redirect-uri.

Figure 4.1 outlines the key attack steps within the context of the autho-
rization code flow. In the illustrated example, the attacker stored a link
leading to the redirect URI of the target website on a malicious website. The

57

4.2. THREAT MODELS CHAPTER 4. OAUTH

victim’s browser opens a malicious website to begin the operation (1).
The browser typically launches the attacker’s specially constructed request

automatically as the page loads (2).
The victim’s side then completes the OAuth flow that the attacker started.

The authorization server’s token endpoint receives a request from the client
application. The request contains the attacker’s authorization code generated
by the AS (3).

The identity provider returns the client’s access token after exchanging
the received code for one (4). The client can now use the token that was
just received to get the data required to authenticate the user in a case that
OAuth. The login is carried out using the attacker’s account because the
attacker started the flow.

4.2.1 Enabling factors

In a practical setting, a number of variables can affect how the CSRF attack
against redirect-uri turns out. What takes place if the victim is logged into
the vulnerable application? Does it matter if a person has never been to
the website before? Is the attack stopped if the victim has already verified
on the website? Understanding the effects of OCSRF in practical situations
requires the answers to these issues.

The victim does not have to be authenticated on the target application
for the CSRF attack against the redirect-uri to be exploitable. The attack
frequently succeeds even if the victim has never been to the website before.
However, the presence of cookies that the target website had already set in
the browser can change how the attack turns out.

In our analysis, we investigated this hypothesis by running all the test
scenarios with three different configurations:

(a) No cookies

58

CHAPTER 4. OAUTH 4.2. THREAT MODELS

(b) Visitor cookies

(c) Authentication cookies

The attacker’s forged link is opened in a new browser session in the sim-
plest configuration, indicated by the letter «a». The browser instance is clean,
and there are no cookies set by the client application. In order to simulate a
situation when a user is attacked who has never visited the website before,
this parameter is employed. As soon as the browser is launched, the victim
clicks on the malicious link.

In the second configuration, the target website’s login page is accessed
before the attack is carried out. The victim’s browser starts the login process,
and the crawler is then forwarded to the IdP login endpoint. On the target
website, the navigation causes the creation of some visitor cookies. The
attack is then carried out. The victim had previously visited the tested
website before the attack, which is represented by the configuration’s name,
«b».

The victim is first authenticated on the target site in the final config-
uration, known as «c» before the attack is performed. With the victim’s
account, the crawler logs into Facebook and then checks the target site’s lo-
gin status. The attack is launched at this point. The interaction between
two authenticated actors makes this scenario the most difficult to accomplish.
We employed two registered users—one as the attacker and the other as the
victim — to fully automate the testing process.

59

4.3. METHODOLOGY CHAPTER 4. OAUTH

4.3 Methodology

We designed a repeatable methodology to discover and validate OCSRF vul-
nerabilities in targeted websites. As depicted in Figure 4.3, our methodology
has three phases: 1. target selection, 2. measurement setup, and 3. OCSRF
detection. We developed a tool based on Python-Seleniumto automatically
select targets and test different OCSRF scenarios.

Data
collection

Login	flow
extraction

Manual
registration

Login
validation

Phase	1:	Target	Selection

Auth. links
extraction

Phase	2:	Measurement	Setup Phase	3:	OCSRF	Discovery

State
modification Exploitation

Figure 4.2: Abstract view of OCSRF detection methodology.

4.3.1 Phase 1: Target Selection

Step 1: OAuth Login Detection For extracting the initial seed set of
candidate websites using OAuth login, we developed a browser-based crawler
to visit websites in the initial seed set (e.g., Alexa Top 50K) in April 2020.
The crawler is designed in a way that extracts initial OAuth login links
for specific popular providers via checking the presence of OAuth standard
parameters in all extracted links.: response_type, client_id, and oauth.
The string «oauth» is commonly contained in the URL of authorization
endpoints, and its presence is a good indicator of the existence of an OAuth-
based process. All these parameters are used by the crawler in the detection
phase to classify the links and identify the different login systems built on top
of the OAuth protocol. Since many websites use JavaScript, which requires
interaction with users to trigger OAuth login, we develop a browser-based
crawler to increase the detection rate.

60

CHAPTER 4. OAUTH 4.3. METHODOLOGY

Step 2: OAuth Flow Extraction In order to remove false positives and
extract OAuth redirection flows properly, the crawler follows all extracted
and selected links. If the crawler lands on any well-known identity provider,
we will add the site to our candidate list, which will later be used to test our
OCSRF attack strategies. A keyword-based approach is used to detect the
Login/Sign-in buttons (these elements usually contain some known keywords
to identify the login action and the identity provider). Extracted flows would
later be fed into the next phases.

4.3.2 Phase 2: Measurement Setup

Step 1: Manual Registration We follow the extracted OAuth links and
create two sets of test accounts (victim and attacker) for each targeted site.
Since the information provided by the external identity provider is not suf-
ficient for the account creation process in many targeted websites, manual
data entry is necessary. We adopt the previously proposed technique[79] to
populate attacker and victim accounts with unique information (e.g., name,
email, user identifier, phone number, profile logo, etc.) and use them in the
next steps as markers.

Step 2: Login Validation To verify the login steps, the crawler uses the
login information gathered in the first phase to initiate the OAuth login trail.
It reaches the authentication page and enters the credential automatically.
At this point, the flow is complete, and the browser is redirected to the target
site’s landing page.

OCSRF attack detection requires a victim to log in as an attacker to the
targeted site. The detection crawler should be capable of detecting the forged
login to the attacker’s account. In this regard, a learning process is developed
for the crawler to automatically complete and learn the login processes for
both attacker and user accounts. In the learning process, the crawler scans
the HTML code of the landing page and looks for specific user-related strings.

61

4.3. METHODOLOGY CHAPTER 4. OAUTH

We presume the presence of some predefined unique markers, visible only as
a result of a valid login to each account (which is populated to each account
in the registration step).

4.3.3 Phase 3: OCSRF Discovery

The main goal of this phase is to discover exploitable websites. The crawler
is designed in a way to discover various implementation flaws in state vali-
dation (described in step 2). In the first step, the crawler follows the OAuth
flow, logs into the attacker account, and extracts the authorization response
links. In the second step, the crawler applies different modifications based
on five attack strategies on the extracted authorization link. In the last step,
the different victim browser status is exploited with modified links.

Step 1: Authorization link Extraction Since the successful exploita-
tion of OCSRF needs an attacker authorization response link including au-
thorization code, state etc., the crawler initially follows OAuth login and
obtains an attacker authorization response from the identity provider. We
develop a browser extension to allow the crawler to record the attacker autho-
rization link from the identity provider and halt the OAuth flow immediately.
In other words, the generated authorization link is recorded, and the OAuth
flow is stopped before redirection to the target site. The extracted link will
be modified in the next steps to discover vulnerable websites.

Step 2: state Modification
The extracted authorization link would be modified by going through five

attack strategies. All attack strategies are performed mainly based on mod-
ifications on state, as a result of which attack URLs would be created.
The first scenario is applied to the subset of websites in which a state is
not present in the authorization link. In other scenarios, the attack strat-
egy would build further attack URLs by manipulating the state value as
enumerated as follows.

62

CHAPTER 4. OAUTH 4.3. METHODOLOGY

0. No state. The link is sent unaltered to the victim if the original link
does not contain a state.

1. Empty state. The state value is replaced with an empty string.

2. Lack of state validation. The value of the state is replaced with a
randomly generated string.

3. Unlinked state. The link including state is sent unaltered to the
victim.

4. Missing state. The state is removed.

In the first attack strategy, the authorization response link obtained at the
first stage remains unchanged. In order to build other test cases, the testing
strategy would manipulate the value of state value by either replacing it
with an empty string, substituting it with a randomly generated string, or
keeping the same value. The last attack strategy would completely remove
the state parameter. In both strategies 0 and 3, the attacker would deliver
the attack link unchanged to the victim. The strategies 1 and 2 rely on
different alterations of the state value. In strategy 1, the content of the
parameter is replaced with an empty string, while attack strategy 2 replaces
the value with a random string. Finally, in the last strategy, the state value
and parameter name are completely removed.

Step 3: Exploitation Each of the attack URLs generated in the previ-
ous step would be opened in a separate browser. We propose several OCSRF
test cases based on the above strategies to determine whether a site is ex-
ploitable or not. In this regard, the above strategies assess various victim
browser statuses. Each of them is performed on three different victim browser
statuses:

(a) Status A. No Cookie, when the victim opens the attack URL, there
is no cookie related to the targeted site in the victim’s browser. In other

63

4.3. METHODOLOGY CHAPTER 4. OAUTH

state	=	"a34e9b7812"

state	=	"2a7e49b183"

state	=	""

state	=	"a34e9b7812"

1

2

3

No	state	provided Attack	URL0

state	removed4

Figure 4.3: Abstract view of OCSRF detection methodology.

words, either victim never visited the targeted site in the past or used a
new/history-cleared browser. Obviously, no cookies will be sent to the
server when attack URLs are requested.

(b) Status B. Visitor Cookies, If the victim visited the targeted site
in the past and visitor or unauthorized cookies have been set in the
browser, the victim’s browser adds them to all requests. In this case,
the crawler visits the first page of the candidate site and stores all cookies
before requesting the attack URLs.

(c) Status C. Authorized Cookies, If the victim is already authenticated
to the targeted site, authorized cookies have been set on the victim’s
browser. To simulate this test case, the victim has been authenticated
by our crawler by logging in to the victim’s account before requesting
the attack URLs.

Each of the created attack URLs, obtained from applying previously-
mentioned strategies, would be tested on each and every browser status de-
fined above. As we have five different attack strategies and three possible

64

CHAPTER 4. OAUTH 4.3. METHODOLOGY

victim browser statuses, we would end up with 15 test cases that would be
exploited for each site. We later open all attack URLs inside victim browsers.
We consider a test case to be successful if the attacker’s marker is observed
inside the victim’s browser.

In a nutshell, each test case could be considered as the following three-step
process.

1. Extract an attacker valid authorization response.

2. state parameter modification based on attack strategies.

3. Simulation of OCSRF attack on one of victim browser’s status

4.3.4 Ethical Consideration

All test cases were performed with accounts specifically generated for this
purpose. We never tried to exploit user accounts outside of our control. In
all vulnerability assessment phases, our crawler never injected, sent, or stored
any malicious payload to candidate websites. In order to evade detection by
bots detector [113], less than 100 pages of each candidate site were visited
slowly in the data collection phase. We also developed a Selenium crawler to
complete the authentication steps and simulate a real user browser session.
The number of requests involved in all test cases is significantly low, and the
examined websites did not suffer from excessive bandwidth consumption.
Moreover, all tests were conducted on the entire set of candidate websites;
therefore, none of them has repeatedly been scanned in a short period of
time.

Responsible Disclosure Since the impact of the discovered vulnerabil-
ities is severe, we reported the site owners using recommended notification
techniques[69, 105].

We contacted the vulnerable websites’ owners through the support/secu-
rity email or submitted a new request on their websites. We explained the

65

4.3. METHODOLOGY CHAPTER 4. OAUTH

details of the OCSRF attack on their websites and how it could endanger the
security of their users and provided some references regarding CSRF attacks.
Some websites (about 9%) have replied asking for more details about the
vulnerability and tried to fix the problem immediately. After one month of
our report, we checked the rest (the ones that did not reply), and only a few
websites fixed the vulnerability after our report.

Additionally, we tried to disclose the vulnerabilities to those websites for
which a centralized reporting system such as Hackerone[56] can be used, as
these promise an increased success rate over attempting direct notification.

66

CHAPTER 4. OAUTH 4.4. ANALYSIS

4.4 Analysis

In this section, we present the results of the empirical analysis and discuss
them in detail. We conducted a large-scale analysis implementing all the
above attack scenarios to test OCSRF attacks in the wild. In this study, we
discuss the measurement results of each attack strategy with different victim
browser statuses. We managed to answer the following research questions:

(Q1) What is the popularity of OCSRF vulnerabilities on high-profile and
popular websites?

(Q2) Can OCSRF vulnerabilities be exploited in the victim browser with
unauthorized and authorized cookies?

(Q3) What are the most exploitable OCSRF attack strategies and test cases?

(Q4) Could the victim browser status be used to discover OCSRF vulnera-
bilities?

(Q5) What are the most popular implementation mistakes?

(Q6) How do the current mitigation mechanisms against OCSRF respond
through the attack scenarios? Are they satisfactory enough to protect
the victim?

4.4.1 Measurement Overview

Dataset We fed our crawler with the Alexa Top 50K websites and analyzed
the first page of them to extract the list of candidate websites with OAuth
login. Since we considered two types of SSO implementation, we targeted
the most popular ones, examples of each, Google and Facebook, in web ap-
plications. The crawler discovered 624 websites with Facebook login, Google
login, or both. In the next step, we tried to create two sets of accounts (vic-
tim and attacker) and recorded the successful OAuth flow on each site. We

67

4.4. ANALYSIS CHAPTER 4. OAUTH

narrowed down the dataset to 314 for Facebook and 284 for Google due to
the exclusion of websites with incomplete account registration (e.g., Social
Security Number, credit card, etc.) and unsuccessful account verification.

Alexa Ranking Our crawler analyzed all fifteen proposed test cases on
the target dataset and discovered 114 out of 314 (%36.3) websites with Face-
book IdP and 117 out of 284 (%41.2) websites with Google IdP to be ex-
ploitable by at least one attack scenario. Given the distribution of the tar-
geted and vulnerable websites across the Alexa Top 50K, it is noteworthy that
about 32% of the websites among the Top Alexa 1K are vulnerable. Websites
with higher Alexa ranking are slightly more vulnerable, but no specific major
correlation among different buckets has been observed.

Login flow extraction This stage’s goal is to gather the data the crawler
needs to carry out the login automatically. The crawler must be able to
successfully navigate from the target website’s login page to the identity
provider’s authorization endpoint in order to complete this task.

In general, various websites do not consistently integrate SSO login with
the same external identity provider. In some instances, the login button has
a direct link to the endpoint of the authorization server.

Using an internal page with a redirect to the IdP login is an alternate
method. Delegating the redirect to a JavaScript script is another method
of getting to the login form. The realization of a standard technique to
automate the login is complicated by the varied implementations of the login
functionality. To correctly manage the widest range of potential scenarios,
we devised an algorithm taking these differences into account.

Direct link Some websites create a direct link to the external IdP’s autho-
rization endpoint and put it in the corresponding login button. In this case,
parsing the page of the evaluated website that contains the button is sufficient
to extract the whole login URL.

68

CHAPTER 4. OAUTH 4.4. ANALYSIS

Scenario Example

1. Direct link

2. Page-generated redirect

3. JavaScript-generated redirect

Table 4.1: Login scenarios handled by the crawler

The crawler simply requires the address of this page in order to start
the login procedure. A regular expression that identifies potential addresses
connected to the IdP login endpoint defines the search pattern. The following
regex is used to find the link to the login page:

https://www\.idp\.com/((v\d*\.?\d*/)?dialog/oauth|login\.php|login/reauth\.php).*

As specified in the regular expression, the base URL https://www.idp.com

is optionally followed by a path segment containing a floating-point number.
This component designates a certain login dialog version. According to the
documentation, it is not required to include the version number; unversioned
calls always lead to the API’s earliest available implementation.

Page-generated redirect If the investigated website contains an internal page
that redirects to the identity provider’s authorization endpoint, the crawler
can save the URL and utilize it later to find the external login page. Because
it does not require additional investigation, the presence of a page-generated
redirect is frequent and represents the simplest scenario to handle.

To perform the login, the crawler just has to access the website’s internal
page URL to log in; the content produces the external login URL and directs
the browser to the IdP’s authorization endpoint.

With the aim of finding internal pages redirecting to the IdP, the Beau-

69

4.4. ANALYSIS CHAPTER 4. OAUTH

tifulSoup [92] parsing library is used for the analysis of the login page. The
search process starts by choosing all HTML elements with the href prop-
erty. A resource’s location is specified by the hypertext reference, which
also establishes the connection between the source element and the destina-
tion anchor. Absolute and relative URIs pointing to the external identity
provider’s authorization endpoint are of our interest.

The page source is used to extract any links that include a keyword asso-
ciated with the identity provider. To convert relative URL paths to their ab-
solute paths and create a list of addresses the crawler could test, the urljoin
method of the urllib.parse package was utilized.

JavaScript-generated redirect The information about the button’s location
is saved for the website if the identity provider redirection is started by
JavaScript and triggered by a button click event. The sign-in buttons were
found using a keyword-based technique; these elements typically have some
keywords identifying the login action and the identity provider.

The login button was identified, and an XPath expression [41] encoding
the element’s position was stored in a file-based database using a parsing
library to analyze the HTML source of each website’s login page. The crawler
uses this expression to find the element in the HTML source needed for the
login procedure. The crawler is equipped to press the button, cause the
redirection, and then arrive at the IdP login page.

Verification Since the login flow extraction is done automatically, the crawler
attempting to access each website’s identity provider’s login page verifies the
accuracy of the data collected. If the process is successful, the acquired data
is designated as verified; if not, some manual analysis is done to fix the stored
data.

Cookie-based login Every web application needs to be independently

70

CHAPTER 4. OAUTH 4.4. ANALYSIS

tested in a fresh browser instance. At the end of each test case, the browser
must be closed and reopened in order to conduct each test in a distinct
environment.

We did not use the form-based login during the test phase to prevent
a sizable and possibly suspicious number of consecutive logins. This is an
added safety measure to avoid having a large number of automatic logins in
a short period of time recorded by the identity provider.

For each identity provider, we made two accounts during the registration
process. All of the study’s participating websites use these profiles to authen-
ticate users. Additionally, each web application’s registration process had to
be manually completed in order to create client-side accounts. Disabling an
IdP account as a result of a ban would have required repeating the relevant
sign-up procedures. For this reason, we thought of various approaches that
might be used to lessen the likelihood of a ban.

As already indicated, the login form is not required for user authentication.
Cookies can be imported and exported using Selenium. Once the form-based
login on the authorization server was completed, the session cookies that were
produced were kept for further use. The imported saved cookies restored the
login status when the browser was launched. Using this method, we were
able to confirm that the login procedure was accurate for each website and
for all attack scenarios that were put to the test.

4.4.2 Results

Categories based on presence of state The candidate websites have
been categorized based on the absence or presence of state parameter within
the recorded authorization request. For the former category, as mentioned
in 4.3.3, our crawler directly exploits the site without state, and no modi-
fication is applied to the attack URLs. However, in the latter category, due
to the presence of state parameters, 15 different attack scenarios have been

71

4.4. ANALYSIS CHAPTER 4. OAUTH

tested. We will discuss the result of both categories in 4.4.2 in detail. The
overall results of the crawler are summarized as follows:

1. The first category, 44 out of 314 (14.0%) websites with Facebook IdP
and 65 out of 284 (22.9%) websites with Google IdP do not use state,
which shows a significant increase in utilization of state compare to
past large scale analyses[71, 64, 30]. It is worth mentioning that absence
of state does not guarantee successful exploitation of OCSRF as our
crawler found 41 out of 44 (93.1%) with Facebook IdP and 60 out of 65
(92.3%) with Google IdP are exploitable; we will discuss case studies in
4.4.2.

2. The second category, 270 out of 314 (85.9%) websites with Facebook
IdP and 219 out of 284 (77.1%) websites with Google IdP are using
state. Although this indicates a significant increase in OCSRF protec-
tion compared to the past studies[71, 64, 30, 72], our crawler detected
73 out of 270 (27.0%) with Facebook IdP and 57 out of 219 (26%) with
Google IdP exploitable websites utilizing different test cases. This high
number indicates the complexity of OCSRF protection implementation.
We will discuss the case studies in details in section 4.4.3.

Table 4.2: Number of exploitable sites in Facebook by OCSRF for each attack scenario

Attack No cookies (a) Visitor cookies (b) Auth. cookies (c) All

0 33 (10.5%) 41 (13.1%) 23 (7.3%) 41 (13.1%)

1 34 (10.8%) 33 (10.5%) 23 (7.3%) 41 (13.1%)
2 30 (9.6%) 40 (12.7%) 23 (7.3%) 40 (12.7%)
3 49 (15.6%) 63 (20.1%) 36 (11.5%) 64 (20.4%)
4 33 (10.5%) 34 (10.8%) 24 (7.6%) 40 (12.7%)

Total 91 (29.0%) 105 (33.4%) 62 (19.7%) 114 (36.3%)

72

CHAPTER 4. OAUTH 4.4. ANALYSIS

Table 4.3: Number of exploitable sites in Google by OCSRF for each attack scenario

Attack No cookies (a) Visitor cookies (b) Auth. cookies (c) All

0 40 (14%) 60 (21.1%) 24 (8.4%) 60 (21.1%)

1 29 (10.2%) 32 (11.3%) 13 (4.5%) 37 (13%)
2 26 (9.1%) 31 (10.9%) 14 (4.9%) 33 (11.6%)
3 35 (12.3%) 48 (17%) 25 (8.8%) 50 (17.6%)
4 29 (10.2%) 32 (11.3%) 13 (4.6%) 36 (12.7%)

Total 80 (28.2%) 111 (39%) 50 (17.6%) 117 (41.2%)

Attack Strategies Table 4.2 for Facebook IdP and Table 4.3 for Google
IdP shows the number of exploitable websites to each attack strategy. As
shown, the «attack strategy 3: Unlinked state» has the highest success
rate(20.4% for Facebook and 17.6% for Google) in all victim browser statuses.
In this attack strategy, as previously described in 4.3.3, the victim visited
a crafted attack URL with an attacker’s valid and unused state. It means
lack of proper relationship between the victim browser and generated state

is the most common implementation mistake. Interestingly «attack strategy
1: Empty state» has the second rank in both SSO types, which means some
websites mistakenly accept the authorization link with an empty state value.

Attack Scenarios Since visitor cookie is the most vulnerable status,
which makes the highest success rate (20.4% with Facebook IdP and 17.6%
with Google IdP) and «attack strategy 3: Unlinked state» is the most ef-
fective attack strategy, attack scenario «3b» has the highest detection rate.
Our crawler detected 63 out of 270 (20.1%) websites with Facebook IdP and
48 out of 219 (21.9%) with Google IdP to be exploitable with it. Attack sce-
narios «1c» and «2c» had the lowest detection rates, most probably because
targeted websites do not accept new OAuth login when a user is authenti-
cated.

Victim Browser Status We tested each attack strategy with three dif-

73

4.4. ANALYSIS CHAPTER 4. OAUTH

Table 4.4: Classification of exploitable sites in Facebook by OCSRF - The first category
of candidates (with Absence of state parameter)

0a 0b 0c Sites
1 ○ ○ ○ 17 (38.6%)
2 ○ ○ ○␣ 16 (36.4%)
3 ○␣ ○ ○ 6 (13.6%)
4 ○␣ ○␣ ○␣ 3 (6.8%)
5 ○␣ ○ ○␣ 2 (4.5%)
Total 33 41 23 44

Table 4.5: Classification of exploitable sites in Google by OCSRF - The first category of
candidates (with Absence of state parameter)

0a 0b 0c Sites
1 ○ ○ ○ 17 (26.1%)
2 ○ ○ ○␣ 23 (35.3)
3 ○␣ ○ ○␣ 13 (20%)
4 ○␣ ○ ○ 7 (10.7%)
5 ○␣ ○␣ ○␣ 5 (7.6%)
Total 40 60 24 65

ferent victim browser status. Our crawler detects unique exploitable cases
in each browser status. Previous researches only test the OCSRF in a
clean browser without the presence of any cookie[107] or only with visitor
cookie[125]. In this research, our crawler was able to detect 23 out of 114
(20.2%) with Facebook IdP and 37 out of 117 (31.6%) with Google IdP more
exploitable OCSRF cases compared to test case «a: No cookies» through
utilizing different browser status and 9 out of 114 (7.9%) with Facebook IdP
and 6 out of 117 (5.1%) with Google IdP compared to test case «b: Visitor
cookies». Applying all of the browser statuses together with attack strategies
has been done for the first time to the best of our knowledge.

Based on our results presented in Table 4.2 for Facebook and Table 4.3
for Google, the presence of visitor cookies in the victim browser increases the
chance of finding exploitable cases significantly. Even though it is common
that websites with authorization cookies are less vulnerable, we observed

74

CHAPTER 4. OAUTH 4.4. ANALYSIS

Table 4.6: Classification of exploitable sites in Facebook by OCSRF - The second category
of candidates (with Presence of state parameter)

1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c Sites
1 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ 197 (73.0%)
2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 18 (6.7%)
3 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ ○␣ ○␣ ○␣ 11 (4.1%)
4 ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ 7 (2.6%)
5 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣ ○␣ ○␣ ○␣ 6 (2.2%)
6 ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ 5 (1.9%)
7 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ 4 (1.5%)
8 ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ 4 (1.5%)
9 ○␣ ○␣ ○␣ ○ ○ ○ ○ ○ ○ ○␣ ○␣ ○␣ 3 (1.1%)
10 ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ 3 (1.1%)
11 ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ 2 (0.7%)
12 ○ ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○ 2 (0.7%)
13 ○␣ ○␣ ○␣ ○ ○ ○␣ ○ ○ ○␣ ○␣ ○␣ ○␣ 2 (0.7%)
14 ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ 2 (0.7%)
15 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ ○ ○ ○ 1 (0.4%)
16 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○␣ 1 (0.4%)
17 ○ ○ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ 1 (0.4%)
18 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣ ○␣ ○␣ 1 (0.4%)
Total 34 33 23 30 40 23 49 63 36 33 34 24 270

websites that unexpectedly were vulnerable only in these specific test cases,
which would be discussed in 4.4.2 and 4.4.2.

state Parameter

As mentioned, there are two categories of candidates based on the presence
of state parameter within the recorded authorization request, which will be
analyzed and explained separately in this section.

Absence of state

Interestingly, 44 out of 314 (14.0%) of websites on Facebook and 65 out
of 284 (22.9%) of websites on Google do not set state. In some cases, the
absence of visitor cookies led to errors in the OAuth login flow, and this
contributes to explaining the lower number of vulnerabilities found in status
«a» than «b».

All exploitable websites are also exploitable to «b» while about half of

75

4.4. ANALYSIS CHAPTER 4. OAUTH

them are not exploitable when there is an authorized cookie. The classifica-
tion of exploitable websites are listed in table 4.4 and table 4.5. Each row
represents one pattern w.r.t different test cases (1a,1b,etc.). A filled circle
in each entry indicates successful exploitation. The Sites column shows the
total number of websites that have been found exploitable via the indicated
pattern in the corresponding row. Take Facebook, for example; 3 out of
44 websites were not exploitable to any of the attack scenarios, and so on.
While only 17 websites are vulnerable to all three attack scenarios, there are
two websites that are only exploitable when the visitor cookies are present.
It means successful exploitation of them requires the victim browser to add
only unauthorized cookies in the Attack URL.

In contrast to other research, the absence of state does not guarantee
successful exploitation of OCSRF, as other enabling factors can prevent tar-
gets from being exploited. In order to remove the false positives, our crawler
analyzed all the websites in the first category of candidates without state

parameter. Unexpectedly, three websites with Facebook IdP and five web-
sites with Google IdP were not exploitable. In this regard, some websites
use encoded and nonstandard parameters in the redirect_uri and imple-
ment proper validation to check if the OAuth flow is initiated with the same
browser. At the time of writing this paper, OAuth specifications for both
Facebook and Google do not allow developers to set arbitrary parameters to
redirect_uri as the full redirect URL should be reserved, and the OAuth
flow is blocked if there is any change in redirect_uri.

However, other websites expect the flow to be completed in a popup win-
dow, which is not opened by the crawler during the attack execution. The
JavaScript code running on the client-side fails due to the absence of an
opener parent window, and the attack is consequently blocked in the browser.
We consider this site a secure one despite the absence of adequate protection
against OCSRF. We will discuss related case studies in 4.4.3.

76

CHAPTER 4. OAUTH 4.4. ANALYSIS

Table 4.7: Classification of exploitable sites in Google by OCSRF - The second category
of candidates (with Presence of state parameter)

1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c Sites
1 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ 164 (74.8%)
2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 10 (4.6%)
3 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ ○␣ ○␣ ○␣ 7 (3.2%)
4 ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ 12 (5.5%)
5 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ 3 (1.4%)
6 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣ ○␣ ○␣ 4 (1.8%)
7 ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ 4 (1.8%)
8 ○␣ ○␣ ○␣ ○ ○ ○ ○ ○ ○ ○␣ ○␣ ○␣ 2 (0.9%)
9 ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ 2 (0.9%)
10 ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ 1 (0.5%)
11 ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ 1 (0.5%)
12 ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ 2 (0.9%)
13 ○ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣ 1 (0.5%)
14 ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ 1 (0.5%)
15 ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ 2 (0.6%)
16 ○ ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○ 1 (0.5%)
17 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣ ○␣ ○␣ ○␣ 1 (0.5%)
18 ○ ○ ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣ ○ ○ ○␣ 1 (0.5%)
Total 29 32 13 26 31 14 35 48 25 29 32 13 219

Presence of state Attack

The presence of the state does not mitigate OCSRF vulnerabilities. We
summarized each exploitable pattern that was observed during our experi-
ment on websites in our candidate set in Table 4.6 for Facebook and Table 4.7
for Google. About 73% of websites are not exploitable to any of the proposed
attack scenarios. In many websites, this is due to a correct implementation
of the OAuth flow. Some secure instances notify the user about the OCSRF
attack; others simply display a generic authorization error or do not perform
any action. It should be noted that the group of 197 websites on Facebook
and 164 websites on Google marked as not exploitable by the crawler may
contain a small fraction of false negatives. This hypothesis is supported by
some evidence presented later in the analysis. For this reason, the number
of vulnerabilities identified in our tests must be considered as a lower bound.
Details will be discussed in the following section.

77

4.4. ANALYSIS CHAPTER 4. OAUTH

Custom HTTP Headers

In our database, 159 websites out of 395 (40%) implemented their login
actions via XMLHttpRequest containing the X-Requested-With header. As
mentioned, setting this custom header to requests defends against the Login
CSRF attack; however, we found that 50 websites out of 159 websites (31.4%)
were still vulnerable.

Surprisingly, the websites did not set this custom header in all attack sce-
narios and had different behavior towards each attack. As we divided the
candidates into two categories (no state and with the state), out of 159 web-
sites, 23 websites set no state parameter (first category), and 136 websites set
the state parameter (second category). Out of 15 proposed attack scenarios,
three ones applies to the first category, and the other 12 apply to the second
category. With all consideration, if 159 websites implement this defense in
all attack scenarios, there should be 1,701 occurrences. Instead, there were
1,063 occurrences in total. All 109 non-vulnerable websites behaved consis-
tently in all attack scenarios and implemented this defense correctly, and
the custom header was present in all test cases. Presenting occurrences for
each victim’s browser status are as follows: 254 for no cookie (a), 280 for
visitor cookies (b), and 529 for authorized cookies(c). The custom header is
mostly set when the victim is already logged in and the authorized cookies
are present.

On the other hand, 50 vulnerable websites were inconsistent in each attack
scenario, and they did not include the custom HTTP header in every test
case. Table 4.8 shows the number of vulnerable websites for each test case,
representing a great difference in various victim browser statuses. Most of
them (42 out of 50 websites) are still vulnerable to visitor cookies status (b),
and the least number (27 out of 50 websites) belongs to authorized cookies
status. Comparing the attack strategies, the third one (Unlinked state) is

78

CHAPTER 4. OAUTH 4.4. ANALYSIS

Table 4.8: Number of exploitable sites with custom header for each attack scenario

Attack No cookies (a) Visitor cookies (b) Auth. cookies (c) All

0 12 (7.5%) 19 (12%) 13 (8.2%) 20 (12.6%)

1 10 (6.3%) 10 (6.3%) 7 (4.4%) 15 (3.1%)
2 7 (4.4%) 10 (6.3%) 5 (3.1%) 10 (6.3%)
3 17 (10.7%) 22 (13.9%) 10 (6.3%) 24 (15.1%)
4 10 (6.3%) 9 (5.7%) 9 (5.7%) 16 (10%)

Total 33 (20.7%) 42 (26.4%) 27 (17%) 50 (31.4%)

the most successful one among the attack strategies. However, 12 out of 50
websites implemented the custom header in all the test cases and were still
vulnerable in all situations. It is worth mentioning that 7 out of 12 websites
belonging to the first category (no state).

In some cases, the custom header was included after the attack was taken
successfully (in case of (a) and (b) victim browser status). As shown in classi-
fication 4,13,18 in Table 4.7, classification 4,13 in Table 4.6 and classification
2 in both Table 4.5 and 4.4, the websites are more vulnerable in (a) and
(b) victim browser status. In the case of authorized cookies browser status
(c), the custom header set in both situations, before and after the attack is
taken, and yet this mitigation was not effective against OCSRF, as shown in
classification 2,3,8,6,15 in 4.7, in classification 2,3,9,14 in 4.6, in classification
1,3 in 4.4 and in classification 1,4 in 4.5.

Generally, the custom HTTP header is more implemented and also more
effective when the user is already logged in (authorized cookies status) com-
pared to other victim browser statuses. So, it is one of the reasons the number
of vulnerable websites in authorized cookies status is much lower than in the
other two victim browser status.

79

4.4. ANALYSIS CHAPTER 4. OAUTH

User Interaction

This mitigation performs through some techniques (e.g., re-authentication,
CAPTCHA, or One-time token). Based on our observation in the dataset,
only 25 out of 395 websites (6%) utilized this mitigation to prevent CSRF
attacks; Only one site performed CAPTCHA, and others (24 websites) went
through a re-authentication technique for this type of defense.

Any site without OAuth service, utilizing a successful re-authentication
technique against CSRF mitigation, redirects the user to the main login page
of the site. However, within OAuth protocol, when the re-authentication
technique occurs, the user will be redirected to the IdP(Google/Facebook)
login page, requiring the Google/Facebook credentials.

In our experiment, proposing 15 different attack scenarios, this technique
occurred in case of (a) and (b) victim browser status and none in case of
(c) authenticated cookies. This technique was successfully performed in the
victim browser (in the case of C victim browser status), and the reason it
did not require the re-authentication by the user is that the authenticated
cookies are already present in the victim browser, and as a result, the login
CSRF attack in this case (c) was not successful, redirecting the victim to his
own account instead of attacker’s account.

As shown in other mitigation against OCSRF, the mitigation provided
in the websites are not consistent in all the attack scenarios, and some fac-
tors (e.g., the victim browser status and fuzzing the state parameter value)
change the course of CSRF mitigation, leading to a successful attack. This
mitigation is no exception: While 19 websites performed this mitigation in
all attack scenarios stopping the OCSRF attack successfully, six websites
were inconsistent with utilizing this mitigation, causing the websites to be
vulnerable in some scenarios.

80

CHAPTER 4. OAUTH 4.4. ANALYSIS

4.4.3 Discussion

Case Studies

In this section, different attack scenarios used during this research will be
explained, along with notable case studies of each attack strategy. It is
worth mentioning that in this section, the second category, the presence of
state parameter, is studied.

Empty & Missing state In attack strategy 1, the value of the state in
the authorization response is replaced with an empty string. At the beginning
of the flow, the site generates a valid state to identify the authorization
request. If the authorization response contains an empty state value, the
application is supposed to not accept it and block the OAuth flow. The same
approach applies to attack strategy 4, in which the state parameter – not
only its value – is entirely removed from the authorization response URL.

A couple of manually analyzed websites have been discovered to be ex-
ploitable only to attacks 1 and 4, as illustrated in Table 4.6, classification
8, 12, 17 for Facebook, and in Table 4.7, classification 11, 12, 13, 16 for
Google. This result shows that when the parameter is present, state is han-
dled supposedly and would be verified by the application. However, when
the state value is empty, or the parameter is missing, the validation is by-
passed, and the flow is successfully accepted. The application source code is
not directly available. However, we can get an insight into the internal logic
of the state validation algorithm by analyzing the site reactions in response
to different inputs. This behavior can be clarified by following programming
exemplification:

If state in response and state:

if not is_valid(state):

Raise an exception and block the flow

81

4.4. ANALYSIS CHAPTER 4. OAUTH

Continue and complete the flow

In Facebook SSO implementation, a couple of websites are exploitable
only via attack strategy 1 but not the 4th (Refer to 4.6, classification 11).
The validation process checks the presence of a parameter called "state" in
the authorization response and blocks the flow if it is not found. However,
an empty state is accepted as valid and leads to the flow completion. The
reverse is still possible when a site is exploitable with attack 4 and not to 1
(Refer to Table 4.6, classification 15). As an instance, we found a case study
in which the verification succeeds only in the presence of a valid state, while
it could be bypassed if the parameter was not provided. The empty state

supplied in the first test scenario was considered invalid by the application
and caused the flow to be halted.

Furthermore, we also found six exploitable websites in which the only
performed validation is related to the presence of the state parameter inside
the authorization response (For Facebook in Table 4.6, classification 9 and
10. For Google in Table 4.7, classification 8 and 14). The client application
does not accept requests with a missing or empty state parameter, but even
a random value is enough to bypass the validation.

The difference between attack strategies 1 and 4 is subtle, and the results
are almost overlapping. But the insight provided by the above-mentioned
unexpected results would be to take both attack strategies into account to
discover related vulnerabilities to a great extent.

Unlinked state In attack strategy 3, the authorization response received
by the attacker is maintained unchanged and sent to the victim. The test
is performed to assess the absence of a valid relationship between the state

and the user’s session. If the state is not handled properly during the
generation of the authorization request, the application does not have enough
information to perform correct validation in the subsequent steps of the flow.

The site is not able to understand whether the authorization response was

82

CHAPTER 4. OAUTH 4.4. ANALYSIS

issued by the identity provider for the current user or if someone else initiated
the request. As a result, the client may accept all the state values produced
by the application as valid.

As illustrated in Table 4.2 for Facebook and 4.3 for Google, attack strat-
egy 3 is the most successful one. More than 20% of the candidate site are
vulnerable to scenario «3a», «3b», or «3c» for both Google and Facebook in
total. This can be justified by the inherent complexity of implementing a
valid relationship between the browser session and the state, which requires
generating and storing a random token and proper management of that in
the validation phase.

Even though the RFC clearly describes the role and operation of the
state parameter, the documentation provided by different identity providers
is not often sufficiently precise and detailed. For Facebook, 23 out of 114
(20.2%) and for Google, 15 out of 117 (12.8%) exploitable websites are only
vulnerable to attack strategy 3 (In Table 4.6, classifications 3,5,7,16, and 18.
In Table 4.7, classification 3, 5, 6 and 17). For these applications, arbitrary
state values are correctly rejected by the validation method, but valid states
with incorrect associated with user sessions are erroneously not refused.

Eleven websites with Facebook IdP and seven websites with Google IdP
are vulnerable to all configurations of attack strategy 3 (Table 4.6, classifica-
tions 3 and Table 4.7, classifications 3). In total, five websites were incorrectly
classified by the crawler in this group due to the notification message to the
victim, which we considered as false positives. The sample message is shown
as follows.

«The account ({attacker email}) belongs to another user ({attacker
name}). You can log in as {attacker name} or cancel to stay logged
in as {victim name}.»

The crawler wrongly classified websites due to the presence of marker

83

4.4. ANALYSIS CHAPTER 4. OAUTH

information related to the attacker’s account. The attack is not blocked by
default, but the above-mentioned informative message helps the victim to
make the correct decision. Although not recommended, we classified the
websites which show their users a similar message as secure (not vulnerable).

Lack of state Validation In attack strategy 2, the state parameter
produced by the client application is replaced with another string which is a
random permutation of the initially generated value. The new parameter has
the same length as the original and the same character set. The purpose of
this strategy is to understand if using an invalid state is sufficient to bypass
the OCSRF protections implemented by the examined websites.

For Facebook, our crawler detects total number of 30 out of 114 (26.3%),
40 out of 114 (35.1%) and 23 out of 114 (20.2%) exploitable websites to be
vulnerable to test cases «2a»,«2b», and «2c».

For Google, the numbers are 26 out of 117 (22.2%), 31 out of 117 (26.5%),
and 14 out of 117 (12%), respectively. The presence of visitor cookies in-
creases the attack success rate, similar to other attack strategies.

It can be easily noticed from Table 4.6 and Table 4.7 that the results of
attack strategies 2 and 3 are strongly related.

There are no websites discovered to be vulnerable only to 2, and the
websites vulnerable to this attack constitute a proper subset of the ones
vulnerable to the third scenario. Although it does not add any item to the
set of vulnerable websites, the second scenario gives remarkable indications
about the nature of the validation performed. For instance, looking at the
attack results reveals the possibility of a completely incorrect validation from
a session association issue.

Specific Characters in generating state: Websites that employ a
state consisting of a single character or a string of N identical characters
are an example of a specific situation for attack strategy 2.

With this approach, it is impossible to generate a distinct permutation of

84

CHAPTER 4. OAUTH 4.4. ANALYSIS

the original string, and the attack cannot be performed as it was intended.
There are two websites that have state of length, one among the samples

taken into account. The symbols are respectively underscored «_» and slash
«/». The website utilizing «/» was discovered to be open to attack scenario
3b. Even if «/» is replaced with another random character, the attack still
succeeded. The attack failed on the other site because the random character
was used in place of «_», blocking its execution.

Based on the aforementioned implementation errors, we advise using a
state value that is generated randomly and cannot be guessed at. Further-
more, in order to prevent OCSRF vulnerability, state must be correctly
associated with the user session.

Popup-based login

Some websites’ login screens include popup windows. When carrying out
attacks, the developed crawler handles opening several browser windows
and transitioning control from one to the other with accuracy. Selenium
is equipped to detect whether a secondary window is open or closed and to
respond appropriately.

Utilizing a popup can occasionally offer some degree of defense against
attacks. The OCSRF cannot always be completed by the crawler. For in-
stance, one of the examined domains has a constant state option, but all
tests show that it is not vulnerable.

A popup window appears when the «Login with Facebook/Google» but-
ton is clicked. The designed browser extension correctly collects the attacker-
generated authorization response. The victim’s browser session opens the
URL, leading to the target website’s redirection endpoint.

A function of the window.opener object is called in a few lines of JavaScript
that are part of the page response. Since there is no opener window and
the URL is called directly from the victim’s browser address bar, an error is

85

4.4. ANALYSIS CHAPTER 4. OAUTH

issued, and the attack fails.
We discovered another domain that is safe for the same reason. Because

the login flow involves communication between a parent window and a popup,
the OAuth flow cannot be completed in the victim’s browser. The attack
cannot be carried out because the victim’s browser does not contain this
structure. The attack can be carried out successfully if the authorization
response is manually accessed from the login prompt.

The fact that this login structure does not stop the attack from being
successful via additional methods means that it cannot be used as an efficient
OCSRF mitigation. For instance, a POST request that is carefully prepared
to launch an attack against the domain with the constant state parameter
results in vulnerability. The authorization code is given as a body parameter
in a script that produces a POST request to an internal endpoint when the
login popup calls the JavaScript function in the main window.

In order to obtain a valid access token, the client then requests the autho-
rization server to complete the flow. Not even the state parameter is taken
into account. It is sufficient to duplicate the POST request using a form,
from a domain controlled by the attacker, in order to bypass the error and
complete the attack.

Popup-based logins do not always stop a crawler from performing an at-
tack. We discovered numerous websites using this access approach, many of
which had undergone thorough testing and analysis.

Forcing the enabling factors

As shown, the attack scenarios mostly fail whether the victim is authenticated
(«c» configuration) and are most successful with «a» and «b» configurations.

By directing the victim’s browser to the logout endpoint in the absence of
security, the attack can be carried out with ease. A victim could be tricked
into performing an unwanted logout action. As a result, it enforces the

86

CHAPTER 4. OAUTH 4.4. ANALYSIS

authenticated user into a condition of «b» (visitor cookies), and the success
rate of the OCSRF attack increases.

The usage of a logout form adequately protected with an anti-forgery token
helps reduce the risk of this type of attack. The request’s token is compared
to the token saved in the browser session by the server. The logout action is
performed if the validation is successful and the request is considered legiti-
mate; otherwise, the activity is prevented. With the help of this protection,
a logout request made from an attacker-controlled environment cannot be
completed.

Constant state

The OAuth 2.0 specification clearly states that the state parameter must
be one-time use and a random string. This requirement is necessary to pro-
tect applications from brute-force attacks. Some websites do not follow these
instructions and include a fixed and constant state in the OAuth authoriza-
tion request, which would not change for different users and browser sessions.
These websites are not able to distinguish between a legitimate authorization
response created for the victim and a response forged by the attacker.

We visited all candidate websites twice from two different browser sessions
and compared the state values in order to identify this implementation
problem. If the state remains unchanged, the site is potentially vulnerable
to a "state reuse" attack. Our crawler collected and stored all authorization
requests. We later extracted the state values from the URL and compared
them to each other. The analysis disclosed 17 out of 270 (6.3%) websites with
Facebook IdP and 17 out of 219 (7.7%) websites with Google IdP reusing
the same state values.

Table 4.10 and 4.9 in the last column shows the number of discovered
vulnerable websites with constant state parameter for each classification
for Facebook and Google respectively. 16 out of 17 (94.1%) on Facebook

87

4.4. ANALYSIS CHAPTER 4. OAUTH

Table 4.9: Classification of exploitable sites in Google by OCSRF - Constant state
parameter

1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c Sites

1 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ ○␣ ○␣ ○␣ 2 (11.8%)

2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 5 (29.4%)

3 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ 2 (11.8%)

4 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣ ○␣ ○␣ 2 (11.8%)

5 ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ 1 (5.9%)

6 ○␣ ○␣ ○␣ ○ ○ ○ ○ ○ ○ ○␣ ○␣ ○␣ 1 (5.9%)

7 ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ 1 (5.9%)

8 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ 2 (11.8%)

9 ○ ○ ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣ ○ ○ ○␣ 1 (5.9%)

Total 7 8 5 7 8 6 10 15 10 7 8 5 17

Table 4.10: Classification of exploitable sites in Facebook by OCSRF - Constant state
parameter

1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c Sites

1 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ ○␣ ○␣ ○␣ 5 (29.4%)

2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 4 (23.5%)

3 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ 3 (17.6%)

4 ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ ○␣ ○ ○ 1 (5.9%)

5 ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ 1 (5.9%)

6 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ ○ ○ ○ 1 (5.9%)

7 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ 1 (5.9%)

8 ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣ ○␣ ○␣ ○␣ 1 (5.9%)

Total 4 6 5 4 6 5 11 16 11 5 7 6 17

88

CHAPTER 4. OAUTH 4.4. ANALYSIS

and 15 out of 17 on Google were found vulnerable to the CSRF against
redirect-uri. A manual analysis showed that the use of a popup-based
login prevented the completion of OCSRF attack.

The presence of a constant state value does not provide any additional
protection to the OAuth flow as a malicious user can easily assess the exis-
tence of a "state reuse" vulnerability and include the same unchanged pa-
rameter in every attack attempt. Finally, a couple of websites are classified
as not vulnerable by the crawler. (Table 4.10, classification 7 and Table 4.9,
classification 8).

State parameter value

In the case of OCSRF attacks, the state parameter plays a crucial role. This
is why we retrieved and looked at the values that the tested websites set. The
distribution of the state parameters utilized by the examined applications,
by length, is shown in Figure 4.4 length. The number of states with lengths
less than or equal to the value indicated on the x-axis is represented by each
column of the histogram.

Out of the 395 tested websites, 109 do not include a state parameter.
The state values contain characters in the range [32, 64] in more than 71%
of the cases. There are 11 websites with a state length equal to or less than
5.

The length of the Nonce used to apply for the OCSRF protection fre-
quently does not match the length of the parameter. When the state value
is used to convey extra data like paths, URLs, or application-specific informa-
tion, this happens. The information is often organized in a JSON structure
by these enriched states, and the CSRF token is added as an object attribute.

A quick manual check found some websites that lacked a random string of
characters in the state. The parameter is absolutely ineffective for defending
the website from OCSRF attacks since it lacks a random value with enough

89

4.4. ANALYSIS CHAPTER 4. OAUTH

0 20 21 22 23 24 25 26 27 28 29
Number of characters per state

20

21

22

23

24

25

26

27

Nu
m
be

r o
f s
ta
te
s

Figure 4.4: Classification of login state parameter length

entropy.
The absence of an OCSRF defense is clearly seen when the state value is

readable. For instance, some websites include their base URL in the state.
Even if the information relating to the state is concealed behind a general
encoding technique, the misuse of this security parameter can be easily de-
tected. State parameters with a Base64 encoding are present on a number of
websites. Encoding is frequently employed in this context to serialize JSON
values.

Other CSRF defense mechanisms

As an example, we discovered one application that is not exploitable, using
the SameSite cookie attribute in addition to the state parameter [86] against
Login CSRF. SameSite is a cookie attribute that instructs the browser on
whether to send cookies along with cross-site requests.

The application opens a popup window during the login process. When
the login popup calls the JavaScript function in the main window, a script

90

CHAPTER 4. OAUTH 4.4. ANALYSIS

generates a POST request to an internal endpoint, providing the authoriza-
tion code as a body parameter. The client subsequently continues the flow,
contacting the authorization server to receive a valid access token.

This cookie attribute can take the values Lax, Strict, or None. In the
example above, the application has set the SameSite to Lax. The Lax value
will be sent only in the GET request in top-level window navigations and
blocks the cross-site requests in CSRF-prone request methods such as POST.

It is worth mentioning that this attribute should not be replaced with a
CSRF Token and only implemented as an additional layer of defense. This
attribute alone protects the user through the browsers supporting it, and it
could be bypassed easily by replicating the POST request using a form from
a website that is under the attacker’s control.

In double submit cookie [87], a site can set a CSRF token as a cookie
and also insert it as a hidden field in each HTML form. When the form is
submitted, the site can check that the cookie token matches the form token.
This mechanism is stateless since it does not require any server-side state for
CSRF token.

In table 4.6 and table 4.7, classification 4, the websites are vulnerable in all
configuration, except the authorized cookies browser status (c). We inspected
the HTTP traffic and discovered seven websites with presence of CSRF to-
ken in cookies, as ’xf_csrf’, and an HTTP header, as ’X-CSRF-TOKEN or
’X-XSRF-TOKEN’. However, these websites used this technique inconsistently
and only in authorized cookies browser status(c). In other words, when a
user logs into the site, the double submits cookie implements and is only
effective in auth. Cookie browser status(c).

Comparison Facebook and Google results

The result for Google and Facebook is quite similar. In the candidate web-
sites, the flow and process of both IdPs are the same as we observed in our

91

4.4. ANALYSIS CHAPTER 4. OAUTH

collected data. As follows, we provide the results for google compared to
Facebook.

In both Google and Facebook login, 3b(unlinked state: [visitor cookie])
attack strategy has the highest success rate (22.2% for Google and 20.1% for
Facebook) in all victim browser statuses. A visitor cookie is the most vulner-
able status in both IdPs, which makes the highest success rate compared to
other attack strategies, and 3b is the most effective attack strategy. In both
IdPs, Test cases 1c and 2c had the lowest detection rates, most probably
because targeted websites do not accept new OAuth login when the user is
authenticated.

More than 20% of the candidate websites in both IdPs are vulnerable to
attack 3. As we concluded in the main draft, OCSRF attacks have a better
chance of success in the presence of visitor cookies. With all the similarities
in the result for both IdPs, there are some slight differences. Based on our
observation, Google mostly uses OpenID Connect + OAuth protocol, which
OpenID Connect is used for authentication [51].

The OpenID Connect protocol suggests that websites include a self-signed
Nonce to protect against reply attacks. The websites should generate a
fresh Nonce, save the Nonce in the browser’s cookie and place Nonce in
the return_to parameter of the OpenID protocol [95].

The site should validate that the Nonce value in the return_to URL
matches the Nonce stored in the cookie after obtaining the identity assertion
from the user’s Identity Provider. It ensures that the OpenID protocol session
completes on the same browser as it began.

Among 284 websites with Google IdP, only five are using Nonce parameter,
and 4 of them are immune to all the attack scenarios. The other one is only
exploitable to attack 1b, 3b, and 4b. (visitor cookie: Empty state, Unlinked
state, Missing state) and surprisingly not vulnerable to 2b (visitor cookie:
lack of state validation) as shown in Table 4.7, classification 10.

92

CHAPTER 4. OAUTH 4.4. ANALYSIS

The reason might be that the value for both state and nonce parameter
in the authorization url is always the same, and any change in the state
parameter would raise an error on the server-side. However, our crawler only
modifies the state parameter in the authorization url. So we manually tested
the attack scenario 2b on this particular site; We modified both state and
nonce parameters to the same value, and surprisingly, the site was vulnerable
to attack scenario 2b within this small change.

Also, we found one site which uses the constant state and immune to
attack scenario 2(lack of state validation) in Table4.7, classification 18, Col-
umn ’Const’. The reason might be the request is using the constant state
parameter, and any changes also cause an error on the server side. However,
the site was vulnerable to other attack scenarios.

In our dataset, 197 websites are deploying both Google and Facebook API,
of which 96 websites (48.7%) are immune to OCSRF attack in both IdPs.
38 out of 197 websites (19.3%) are vulnerable and have the same results and
pattern in all the attack scenarios.

The remaining websites (63 out of 197 websites) have different patterns for
all the attack scenarios. However, in this sample, the number of vulnerable
websites with Google IdP is almost twice the ones with Facebook IdP, i.e.,
there are 25 websites in which only the Google IdP is vulnerable to OCSRF
attacks, and 15 websites which are only the Facebook IdP is vulnerable.

Limitations

There are several technologies created especially to find bots and crawlers
and to obstruct their operation. We discovered proof of a number of protec-
tions used by the websites under examination to avoid automated login and
browsing, including CAPTCHA and similar human verification methods.

An attack could fail due to the presence of a properly implemented OCSRF
protection or because of the sporadic intervention of a bot detection system.

93

4.4. ANALYSIS CHAPTER 4. OAUTH

However, this does not undermine the presented results as they indicate a
notably lower bound for vulnerable websites.

False positives could still occur with the tests that run. Our investi-
gation showed that even when the login was incorrectly executed, marker
information was occasionally still available. In order to prevent including
false positives that were incorrectly deemed as successful in our automated
crawler, we manually analyzed every successful attack in order to confirm it.

Another source of errors in testing is the occurrence of temporary service
unavailability. Even highly available systems have downtime occasionally,
for example, because of network problems, system errors, or planned main-
tenance. We manually evaluated if these categorization errors were present.

For all the reasons listed above, the list of websites the crawler identified
as susceptible is not comprehensive; rather, it merely provides a reasonable
range for the number of vulnerable websites among our examined candidate
websites, including well-known websites. This demonstrates the need for
OCSRF countermeasures and the importance of the implementation errors
that our well-considered attack techniques have identified.

94

CHAPTER 4. OAUTH 4.5. CONCLUSION

4.5 Conclusion

Our work is mainly focused on the analysis of the CSRF attack against
redirect_uri, a well-known and documented OAuth 2.0 vulnerability.

Our security evaluation found that many real-world SSO service imple-
mentations are susceptible to the alleged attack. The difficulty of deploying
efficient mitigations and the lack of tools to detect threats accurately are the
causes of the predominance of this class of vulnerabilities. We intend to test
similar tactics for additional OCSRF attacks in future work.

We created a broad variety of different attack tactics, some of which were
innovative, taking into account various implementation flaws and the victim’s
browser’s state at the time of the attack. Our investigation revealed that a
number of enabling factors have a significant impact on the attack’s viability
and contribute significantly to its prevention or success, raising the overall
risk.

We looked into a number of the vulnerability’s unexplored facets in an
effort to cover all the relevant bases and expand our knowledge of how the
attack would influence various scenarios. We were able to find various im-
plementation errors and well-hidden vulnerabilities thanks to the enormous
number of test cases we carefully analyzed.

Based on the methodology described, we performed a thorough investiga-
tion to determine whether OCSRF vulnerabilities existed in 395 sites using
two different SSO solutions (i.e., Google and Facebook). For at least one of
the planned attack scenarios, more than a third of them were discovered to
be weak. This outcome suggests that this security vulnerability still poses
a serious challenge for OAuth and OpenID Connect + OAuth authentica-
tion systems and that researchers and developers should definitely pay more
attention.

95

4.5. CONCLUSION CHAPTER 4. OAUTH

96

Chapter 5

CORS

Cross-Origin Resource Sharing (CORS) is a mechanism to relax the security
rules imposed by the Same-Origin Policy (SOP), which can be too restrictive
for websites that rely on cross-site data exchange for their functioning. CORS
allows trusting origins different from the website domain despite the presence
of a strict SOP using a series of HTTP headers. This mechanism is supported
by all modern browsers and is extensively adopted by websites. The server is
responsible for verifying the value of the Origin header and deciding whether
or not to trust it. For this reason, developers must be thorough in coding this
process not to introduce security issues. In the following chapter, we carried
out a large-scale analysis of the Tranco Top 50k to measure the prevalence
of various implementation flaws due to errors or simplifications in Origin
verification.

97

5.1. MOTIVATION CHAPTER 5. CORS

5.1 Motivation

The enforcement of the rules established by CORS is delegated to the client
browser, while the server is responsible for verifying the value of the origin of
requests and the subsequent decision on whether or not to trust it. For this
reason, the logic that verifies the value of the origin is crucial for the security
of the website.

Since the origin verification in CORS is programmed by the application
developers, there is a high possibility of introducing flaws that lead to trusted
websites that can potentially be controlled by malicious actors, compromising
the website’s security. The simplest case of dangerous CORS configuration is
when the value of the request origin is simply copied into the ACAO header
of the response, effectively trusting every possible origin. Other dangerous
configurations may be introduced by errors in the creation of regular expres-
sions, by the use of prefixes or suffixes in the checks, or by allowing the value
null.

Previous research has focused on measuring the prevalence of CORS flaws
in the wild without investigating the actual exploitability of such flaws in a
realistic real-world scenario [40, 83, 61].

Unlike previous research, we exploit the vulnerabilities introduced by these
CORS flaws in a realistic real-world scenario from the point of view of three
attacker models with different capability levels, evaluating the conditions
necessary for a successful attack and its consequences. We show how these
flaws enable attackers to steal victims’ sensitive data and security tokens that
can then be used to mount subsequent attacks. We conclude that CORS
is an effective but complicated mechanism, and its use should be carefully
evaluated by website operators not to risk introducing severe security issues
in their systems.

98

CHAPTER 5. CORS 5.2. THREAT MODEL

5.2 Threat Model

Due to the complexity of the Web, security professionals must consider all
the angles and choose suitable attacker models in order to cover possible
web attacks. Therefore, as a fundamental assumption of this research, we
take three types of attackers from the web security literature: Web attacker,
Related-domain attacker, and Network attacker. Our threat model, unlike
previous research on CORS flaws, does not depend on the presence of XSS
vulnerabilities on other websites and does not assess the security of third-
party websites that could affect the target website. We describe the types of
attackers with respect to our attacks based on CORS implementation flaws.

• Web Attacker. The most well-known attacker model in the web secu-
rity literature is the web attacker, which is of great concern to security
professionals. A web attacker operates at least one website that responds
to any HTTP(S) requests with malicious content and mounts attacks
through standard HTML and JavaScript code. This attacker has no
privileged access or control over the network. A web attacker could be
anyone who obtains an HTTPS certificate for an arbitrary domain [34].
Web browsers are designed to protect users even when they visit a ma-
licious website. Therefore, we assume that the web browser correctly
implements the web standards and has default settings accordingly to
its version. We do not exploit vulnerabilities in the user’s browser but
only the ones introduced by the CORS flaws on the target websites.

• Related-domain Attacker. This attacker is a slightly more powerful
web attacker that controls the malicious website hosted on a sibling do-
main of the target website. A sibling domain is a domain that shares
a suffix long enough with one of the target websites that is not present
in a public database of suffixes, such as facebook.com or bbc.co.uk. For
example, if we take "example.com" as the target website, we assume

99

5.2. THREAT MODEL CHAPTER 5. CORS

that a related domain attacker has control over "evil.example.com".
This type of attacker is stronger as it is based on simple assumptions
of web design, i.e., cookies can be shared between any domain and its
siblings, and a related domain attacker can easily compromise the con-
fidentiality and integrity of the target website’s cookies [102]. Attacks
on related domains might seem uncommon in the real world, as it is as-
sumed that the owner of "example.com" would never allow control over
"evil.example.com" to untrusted parties. However, recent research has
shown that the takeover of subdomains is a serious and widespread se-
curity risk. Moreover, an attacker might find an XSS vulnerability on a
subdomain, therefore gaining control over the JavaScript code included
in the pages on the subdomain.

• Network Attacker. These attackers are stronger than the other two
attacker models as, in addition to the capabilities of the web and related-
domain attackers, they can inspect, spoof, and forge all HTTP traffic on
the network. Network attackers can launch man-in-the-middle attacks
through, for instance, ARP spoofing and DNS cache poisoning. Network
attackers could be the Internet service provider or an attacker in a public
WiFi network in a café [34].

100

CHAPTER 5. CORS 5.3. METHODOLOGY

5.3 Methodology

We present our measurement methodology in three phases: 1) Collection, 2)
Detection, and 3) Exploitation, as shown in figure 5.1.

5.3.1 Phase1: Collection

The first phase aims at finding the web pages to test. We developed a tool
based on python and a Selenium web browser to identify the websites using
CORS. Our tool checks not only the home pages but also the login pages.
Specifically, we visited the domains using both the HTTPS and HTTP pro-
tocols in both forms of the URL, with or without "www." prepended. To
identify the login pages, the tool uses a specially designed heuristic that relies
on keyword matching both on the URL and the HTML code of the web page.

Next, we test all collected web pages to check whether they use CORS or
not. For each web page to test, we try to force the use of CORS by including
the "Origin" header with a genuine value in an HTTP request and check
the presence of the ACAO header in the response. If the ACAO header is
present, the web page is using CORS and can be tested for possible flaws.

As mentioned, SOP and CORS are enforced on domains, and when a
website uses CORS, it means the rules are based on the domain. However, a
website using CORS shares the resources in some web pages of the website
with the same domain, not all. This is the reason we also check for login
pages and not only the base domains. If the website has CORS flaws, it
will affect the other web pages as well. However, some login pages represent
different domains than the website, and their CORS rules might be different.

5.3.2 Phase2: Detection

In this phase, we test all extracted web pages from the previous phase for the
CORS flaws listed in Section 2.3. We developed a tool CORS Flaws Scanner.

101

5.3. METHODOLOGY CHAPTER 5. CORS

Figure 5.1: High-level visualization of our methodology in three phases: a collection of
candidate pages to test, detection of CORS flaws, and flaws exploitation.

Our tool sends one HTTP request for each flaw to each web page, where the
value of the Origin header is mutated accordingly to the variation. If the
mutated Origin value is reflected in the response ACAO header, the web
page is misconfigured to the tested variation. All the HTTP requests to test
for CORS flaws are performed using the python requests library, providing
the User-Agent of a legitimate Chrome web browser to simulate a genuine
user visiting the web page using a browser.

5.3.3 Phase3: Exploitation

As discussed in Section 2.3, flaws in the way the server checks the value of
the Origin header for CORS might lead to security vulnerabilities. In this
section, we describe different cross-site attacks that we replicated against
several websites with CORS flaws from the perspective of the three attacker
models in Section 5.2 and also tested with modern browsers, i.e., Firefox,
chrome-based browsers, and Safari.

Web Attacker

To carry out this attack, the web attacker creates a website with a domain
name that is mistakenly trusted by the CORS configuration of the target
website and generates an HTML page containing some JavaScript code that
performs a cross-site request to the target website and has unauthorized

102

CHAPTER 5. CORS 5.3. METHODOLOGY

access to the response.
We partly automated the exploitation of these vulnerabilities by creating

a tool that works as follows:

1. The tool binds the attacker’s domain name (mistakenly trusted by the
target site) to localhost using the /etc/resolv.conf file, a configuration
file used by the DNS resolver of several operating systems, simulating
an attacker with controlling the domain. In a real-world scenario, an
attacker has to register the domain using a registrar.

2. The tool creates an exploit HTML containing the JavaScript code pre-
sented in Listing 5.1. This code performs an XHR (XMLHttpRequest)
request to the flawed web page on the target website, instructing the
browser to include credentials (i.e., cookies, authorization headers) and
stores the response content (that contains sensitive information of the
authenticated victim).

3. The exploit HTML code is served by a web server running in localhost
that can be accessed using the previously bound domain name and, if
necessary, providing an encrypted connection with HTTPS using TLS
certificates specifically created and installed in the browser (in a real-
world attack scenario, an attacker can generate a certificate trusted by
the browser of potential victims using free services such as Let’s Encrypt
[11]).

4. Finally, the automation uses a puppeteer-controlled browser to open the
login page of the target website, where the victim account must log in,
and then the victim visits the exploit web page using the previously
bound domain. Due to CORS flaws, the response to the XHR request,
which contains the sensitive data of the logged-in victim, will be exposed
to the attacker. In a real-world scenario, the victim would already be

103

5.3. METHODOLOGY CHAPTER 5. CORS

authenticated on the target website, and the response content would be
exfiltrated to the attacker.

Listing 5.1: URL_PLACEHOLDER is replaced with the flawed web page on the target website

<sc r i p t >
var u r l = ’URL_PLACEHOLDER’ ;
var req = new XMLHttpRequest () ;
req . addEventListener (’ load ’ , () =>

conso l e . l og (req . responseText)) ;
req . open (’ get ’ , ur l , t rue) ;
req . w i thCredent i a l s = true ;
req . send () ;

</s c r i p t >

To exploit the null_value flaw, we use a modified JavaScript code that
creates an exploit web page where the script is included in an iframe. In fact,
the Origin header of HTTP requests performed from inside an iframe is set
to the value ’null’.

This attack is mitigated by websites by correctly setting the SameSite
attribute of authentication cookies; therefore, for the attack to work against
a flawed target, the following conditions must be met:

1. An attacker must be able to register a domain name mistakenly trusted
by the CORS configuration of the target website on a registrar.

2. The CORS configuration of the target website must allow credentialed
requests (i.e., "ACAC: true").

3. The website must not set the SameSite attribute of authentication cook-
ies, or it must be set to the None value.

Moreover, the victim must use a web browser that does not implement the

104

CHAPTER 5. CORS 5.3. METHODOLOGY

Table 5.1: Browsers that default SameSite attribute to Lax when not specified [12].
*Chromium-based include: Chrome, Chromium, Edge, Opera

Browser Defaults SameSite=Lax

Chromium-based* Y
Firefox N
Safari N

Lax-by-default policy for the SameSite attribute when not otherwise specified
(e.g., Firefox, Safari. See Table 5.1).

To test this attack on each potentially exploitable website (i.e., the web-
sites that meet the aforementioned conditions), it is necessary to simulate an
authenticated victim, which is why it is required to conduct the registration
and login procedure on each website to be tested to create a dummy ac-
count populated with bogus information. Since the number of websites to be
tested is high and this procedure is time-consuming, we decided to test only
those websites that allow registration and login using Google and Facebook
OAuth. To identify the websites that support OAuth with at least one of
these two IdPs (Identity Providers), we developed a tool that, given the URL
of the login page (previously identified in the Collection phase described in
Section 5.3.1), identifies any OAuth button present in the page. Specifically,
this tool is based on a Selenium browser and python’s BeautifulSoup [3] li-
brary to crawl through all HTML tags of type a, input and button and checks
whether they contain some specific keywords (e.g., "Login with", "Continue
with"). The tool also checks whether any URL in the HTML code of the
web page is an OAuth URL of the two providers, using a regex system.

Related-domain Attacker

This attacker can perform the same attack, but instead of controlling any
arbitrary domain, the malicious actor must have control of a sub-domain of
the target website. To simulate the exploitation of these vulnerabilities, we

105

5.3. METHODOLOGY CHAPTER 5. CORS

used the same automation as for the web attacker, mimicking an attacker
with the control of a sub-domain by using the /etc/resolv.conf file.

Network Attacker

Instead of registering a domain on the website, a network attacker can in-
tercept the victim’s HTTP traffic and inject the malicious JavaScript code
directly in a forged response. We replicated the attack on an authenticated
victim account as follows:

1. Using a proxy tool, we intercept the victim’s HTTP traffic with the
hijacked subdomain. Our tool then injects into response the same mali-
cious code used by the web attacker to make an HTTPS request to the
main domain. In this way, the Origin header value will be set to the
HTTP version of the subdomain, trusted by the target website according
to CORS policy.

2. The response is returned to the HTTP subdomain, and it is exfiltrated
to the attacker by the malicious JavaScript code.

106

CHAPTER 5. CORS 5.4. ANALYSIS

5.4 Analysis

In this section, we present the results of the empirical analysis and discuss
them in detail. We conducted a large-scale experiment and performed dif-
ferent attacks using CORS flaws in the wild through modern browsers with
default settings from the perspective of the three types of attacker models.

The goal of this research is to answer the following questions.

(Q1) What are the required conditions for CORS flaws to be exploitable in
a real-world scenario by existing attacker profiles in standard threat
models?

(Q2) What are the consequences of the exploitation of such vulnerabilities on
the victims?

(Q3) What can be done by the browser vendors and application developers
in order to protect the users’ session?

To answer these questions, we first conduct a large-scale analysis of the
homepages and login pages of the websites in the Tranco Top 50k to measure
the prevalence of several variations of CORS implementation flaws. Of 6,032
websites using CORS, we found 1,823 (30.2%) that have at least one CORS
flaw. We then partly automate and replicate the attacks enabled by such
flaws in a real-world scenario from the perspective of three types of attacker
models, distinguished by the different levels of capabilities they possess: 1)
web attacker : has the least power (and therefore it is the most dangerous);
can operate a website with an arbitrary domain for which they possess a valid
HTTPS certificate. 2) related-domain attacker : controls a website hosted on
a subdomain of the target website. 3) network attacker : is the most powerful;
can intercept, modify and forge the network traffic and can therefore carry
out man-in-the-middle attacks.

107

5.4. ANALYSIS CHAPTER 5. CORS

Figure 5.2: Distribution of websites using CORS and misconfigured to at least one varia-
tion with respect to their Tranco ranking in 5k bins.

5.4.1 Measurement Overview

We conducted our experiment over the websites included in the Tranco Top
50k [89]. As described in Section 5.3.1, we first crawled each website to
identify its homepage and login pages. In total, we identified the homepage
of 43,137 websites and the login pages of 17,667 ones. For 6,857 websites, we
could not identify the homepage for various reasons, whether the request was
timed out or it did not resolve the host with the DNS. In total, we collected
and tested 60,804 web pages, only 9,052 of which (on 6,032 different websites)
responded with CORS headers.

Using our Flaws Scanner tool, we tested all the collected web pages to
detect possible CORS flaws. As shown in Table 5.2, we found that 1,823 sites
are misconfigured to at least one variation of the ones listed in Section 2.3,
for a total of 2,116 web pages.

108

CHAPTER 5. CORS 5.4. ANALYSIS

Figure 5.3: Distribution of websites using CORS and misconfigured to at least one varia-
tion with respect to their Tranco ranking in 5k bins.

Figure 5.3 illustrates the distribution of websites using CORS that are
misconfigured to at least one variation in relation to their Tranco ranking.
The chart suggests that the adoption of CORS is slightly correlated with the
popularity of the website, while the number of websites with CORS flaws is
only correlated with the number of websites using CORS. It is important to
note that this correlation is not affected by the number of websites for which
we could not locate the homepage, which is evenly distributed in the Tranco
ranking (except for the first 5k websites, where for almost 1k websites, we
could not identify the homepage).

5.4.2 Results

In this section, we describe the attacks replicated in a real-world scenario,
carried out from the point of view of the three types of attackers described

109

5.4. ANALYSIS CHAPTER 5. CORS

Table 5.2: Experiment statistics.

Tested Use CORS Vulnerable

Websites 43075 6032 (14.0%) 1823 (30.2%)
Web pages 60450 9052 (15.0%) 2116 (23.4%)

Table 5.3: Number of sites misconfigured to the tested variations. Percentages are calcu-
lated over the number of misconfigured sites (1823).

ID Variation Affected sites

1 HTTPS trusts HTTP 1625 (89.1%)
2 Arbitrary subdomain 762 (41.8%)
3 Arbitrary origin reflection 568 (31.2%)
4 Null value 553 (30.3%)
5 Prefix matching 72 (3.9%)
6 Suffix matching 51 (2.8%)
7 Non escaped dot 51 (2.8%)

in Section 5.2.

Web Attacker

This attack is performed by the web attacker who controls a website for which
they possess an HTTPS certificate and on which they host malicious code;
the attacker uses social engineering techniques to induce the unsuspecting
victim to visit the website containing the malicious code. As described in
Section 5.3.3, for this attack to be possible, the victim must use a browser
that does not implement the Lax-by-default policy, and three conditions must
be met. The variations that meet the first condition are lines 3 to 7 in
Table 5.3. Table 5.4 shows the number of websites with CORS flaws that
meet the conditions, with a total of 158 websites.

However, it is not enough for these conditions to be met for an attacker to
be able to mount a successful attack. In fact, these conditions are measured
when the visitor is not authenticated while the attack is carried out against

110

CHAPTER 5. CORS 5.4. ANALYSIS

Table 5.4: Number of sites that meet the conditions required for the attack to be successful
for the web attacker listed in Section 5.3.3. The variations referenced in the first conditions
are presented in Table 5.3.

Total misconfigured sites 1823
1) Misconfigured to variations 3 to 7 816 (44.8%)
2) Allow credentials 1096 (60.1%)
3) No SameSite attribute 697 (38.2%)

All conditions 158 (8.7%)

Table 5.5: Number of vulnerable sites and login pages that leak sensitive information of
authenticated and unauthenticated victims respectively.

Authenticated Unauthenticated
Total tested 30 Sites 677 Pages

Personal Information 16 (53.3%) —
CSRF Token 10 (33.3%) 155 (22.9%)
CSP Nonce 1 (3.3%) 26 (3.8%)
OAuth State — 29 (4.3%)

an authenticated victim. For this reason, we selected 30 websites that im-
plement Facebook or Google OAuth to log in, registered a dummy account
as the victim, and performed the attack as described in Section 5.3.3. We
successfully performed the attacks on 24 websites, while for the other six
websites, the attack failed for different reasons (e.g., requests blocked by the
WAF, enforcing different CORS policies when the visitor is authenticated).
We were able to steal the victim’s sensitive data on 17 websites, categorized
in Table 5.5.

Related-domain Attacker

This attacker model can exploit the "Arbitrary subdomain" variation (line
2 in Table 5.3). For this attack to be successful, no further conditions are
necessary, and all 762 website users are prone to cross-site attacks.

111

5.4. ANALYSIS CHAPTER 5. CORS

Network Attacker

This attacker exploits vulnerabilities introduced by the co-presence of the
"HTTPS trusts HTTP" and "Arbitrary subdomains" flaws (lines 1 and 2 of
Table 5.3). In total, 1,192 websites have both flaws.

Unauthenticated Victim

Motivated by the findings of Mirheidari et al., who in [80] showed how even
web pages publicly accessible to unauthorized visitors could contain valuable
secrets for an attacker to bypass security mechanisms or mount subsequent
attacks, we statically analyzed the content of all vulnerable login pages to
detect the presence of common types of sensitive information, presented in
Table 5.5. To detect the sensitive information, we used regular expressions
on the dynamic parts of login pages, i.e., those parts of HTML code that
change when the web page is requested multiple times using clean browsers.
As shown in [32], stealing the state parameter allows attackers to mount
successful login CSRF attacks.

5.4.3 Discussion

We answer our first research question (Q1), showing how theoretical flaws
introduced by CORS flaws can be exploited in practice to break the security
of websites. We analyzed the conditions necessary for three different attacker
models with different levels of capabilities to exploit the security issues intro-
duced by CORS flaws and the consequences of these attacks, mainly related
to the confidentiality of victims’ data. Moreover, we analyzed how stealing
security tokens assigned to victims may allow attackers to mount subsequent
attacks against them, also impacting the integrity and availability. The web
attacker, with the lowest level of prior capabilities required, can only exploit
the flaws when three conditions are met and against victims using browsers

112

CHAPTER 5. CORS 5.4. ANALYSIS

without the Lax-by-default policy, but the severity of the resulting attacks is
greater than that of the others. This attack is only made possible by the fact
that some modern browsers, such as Firefox and Safari, with an estimated
combined usage of 16% [8], do not implement the Lax-by-default policy pro-
posed by Google precisely to mitigate this type of flaw [117]. Firefox initially
supported and then discontinued this policy from version 69 in favor of back-
ward compatibility [12]; however, as our research shows, it also sacrificed
part of its users’ security. Firefox users can enable the Lax-by-default policy
from the settings to protect themselves against web attackers; however, this
still does not protect against the other two attackers, for which no simple
solution is available. Moreover, the Lax-by-default policy will most likely be
adopted by all browsers in the near future: Firefox has already started to do
so in some nightly and beta versions [4, 2], while for Safari, the intention is
not yet clear [5].

Related-domain attackers can exploit one type of flaw, provided he is in
control of at least one subdomain of the target website, with severe conse-
quences for the confidentiality of victims’ data on the main domain. Finally,
with very high prior capabilities, the network attacker can exploit the most
common flaw, provided the website also trusts arbitrary subdomains in their
HTTP version.

We also answer (Q2) by showing that the exploitation of these vulnera-
bilities leads to stealing victims’ sensitive data. Moreover, we analyzed the
consequences of such an attack against unauthenticated victims, stealing the
security tokens assigned to them on vulnerable login pages.

As the third question (Q3), we showed that samesite cookies do not di-
rectly prevent attackers from accessing cross-origin resources through the
CORS flaws, but they do not allow to send the cross-site requests with cre-
dentials, little worth to the attacker. To do so, the modern browsers as
default or application developers must set the samesite to lax. However, this

113

5.4. ANALYSIS CHAPTER 5. CORS

setting will not work against other types of attacker models, and with CORS
flaws in subdomains and protocols (HTTP, HTTPS), regardless of samesite
value, the cookies attached to the cross-site requests.

30% of the websites using CORS had at least one flaw. In particular,
almost all websites trust the HTTP version of their domain; nearly half
allow arbitrary subdomains, and one in three trusts the value null or simply
reflects the value of the request origin in the response. These results suggest
that developers are either unaware of the potential security consequences of
these dangerous behaviors or underestimate them. We believe that devolving
the burden of verifying the origin programmatically on the server, instead of
introducing a policies-based system enforced directly by the browser, has
introduced an inherent complexity to the CORS mechanism, which is thus
prone to human error or underestimation, with severe consequences for web
security.

Ethical considerations During the execution of the attacks that we re-
produced and described, we always used specifically created test accounts
as victims. No users of any website were impacted by our attacks. During
all experiments, we minimized the impact on targeted websites by limiting
the number of requests performed to the minimum possible; moreover, we
performed no disruptive attacks. Although we have never disclosed the do-
mains of sites impacted by these vulnerabilities to any third party and in this
article, in the coming weeks, we will proceed with the responsible disclosure
to all websites that provide a security contact.

114

CHAPTER 5. CORS 5.5. CACHE POISONING THROUGH CORS

Figure 5.4: CORS error after hitting the cache [6]

5.5 Cache poisoning through CORS

The majority of CDNs do not alter their cache based on random HTTP
headers. Therefore, there is a possibility where the cache be poisoned. In a
general scenario, if the proper http headers (CORS headers and vary) are not
set, then subsequent requests to that URL, with the correct Origin HTTP
header will receive the same response from cache. There has been some
reports [54, 84] that the Cross-Origin Resource Sharing (CORS) feature in
browsers caused a new exploitation by an attacker resulting in a Denial of
Service attack on the website.

In this attack, the attacker first sends a request to a website with an origin
value. The origin value based on CORS gets reflected in the response and the
response will be saved with the "ACAO" header with the first value of origin.
Since this vulnerable website does not set the ’vary’ header, this response in
cache will be served to the requests to this host due to hitting the cache first
to get the response. So when other users try to initiate a request to this host
with different origin value, they receive the error shown in figure 5.4.

However, not all the websites are programmed to cache their response.
If the response contains some http headers regarding to Cache, there is a
high possibility that they cache the response, such as ’Cache-Control’, ’X-
Cache’ (based on the CDN the headers would be different). For instance, in
our dataset, we found that 1,294 out of 1,823 websites (71%) cached their
responses. For a successful DoS/CORS attack one condition must be met,
the ’vary=origin’ not be set in the response header and in our measurements,
491 out of 1,294 websites (38%) did not set this header, which make a huge
number of websites to be vulnerable to this type of attack by simply not

115

5.6. CONCLUSION CHAPTER 5. CORS

setting a ’vary’ header.

5.6 Conclusion

A web security tool called the Same-Origin Policy (SOP) enables limiting
access to resources on a website from origins other than the site itself. The
three values of protocol, host, and port together identify the origin of a
website. However, the SOP could be excessively restrictive and undermine
the functioning of a website if it depends on exchanging data with third-party
websites of different sources.

The Cross-Origin Resource Sharing (CORS) mechanism was established
for websites that seek to continue cross-site information exchange with spe-
cific third-party websites without giving up the usage of the SOP as a pro-
tection mechanism.

In order to respond to cross-site requests, CORS relies on two HTTP
headers: "Access-Control-Allow-Origin" (ACAO), which lets the server spec-
ify whether to trust the origin of the request and "Access-Control-Allow-
Credentials" (ACAC), which lets the server specify whether authentication
cookies and any authorization headers may be attached to requests by the
browser.

While the server is in charge of determining whether or not to trust re-
quests after validating their origin and their value, the client browser is re-
sponsible for enforcing the rules set out by CORS. Because of this, the logic
that confirms the value of the origin is essential for the website’s security.

Due to the fact that CORS origin verification is programmed by the ap-
plication developers, there is a considerable risk of introducing defects that
cause users to trust websites that may be under the control of hostile actors,
jeopardizing the security of the website.

The most straightforward instance of a risky CORS configuration is when

116

CHAPTER 5. CORS 5.6. CONCLUSION

the origin value of the request is simply copied into the ACAO header of the
response, thereby trusting every potential origin. Errors in the construction
of regular expressions, the use of prefixes or suffixes in the checks, or allowing
the value null can all result in other problematic settings.

We first conducted a large-scale analysis on the homepages and login pages
of the websites in the Tranco Top 50k to measure the prevalence of several
variations of CORS implementation flaws.

We found 1,823 out of 6,032 (30.2%) websites using CORS having at least
one CORS flaw. We then partly automate and replicate the attacks enabled
by such flaws in a real-world scenario from the perspective of three types
of attacker models, distinguished by the different levels of capabilities they
possess:

1) web attacker : has the least power (and therefore it is the most danger-
ous); can operate a website with an arbitrary domain for which they possess
a valid HTTPS certificate.

2) related-domain attacker : controls a website hosted on a subdomain of
the target website.

3) network attacker : is the most powerful; can intercept, modify and forge
the network traffic and can therefore carry out man-in-the-middle attacks.

We discovered that the consequences of the exploitation of CORS flaws
could enable attackers to steal personal and potentially sensitive information
of authenticated users, along with stealing security tokens of both authenti-
cated and non-authenticated visitors, which can later be used to carry out
subsequent attacks (such as CSRF and login CSRF).

We also identified possible additional conditions necessary for CORS flaws
to be exploited by attackers against victims using modern browsers with de-
fault security settings. We developed a methodology to exploit candidate
websites with CORS flaws and replicate the attacks in a realistic real-world
scenario. We analyzed the consequences of exploiting CORS flaws and dis-

117

5.6. CONCLUSION CHAPTER 5. CORS

cussed potential solutions to mitigate them.

118

Chapter 6

Conclusion

I have taken OAuth protocol (vastly studied on its security) and CORS
mechanism (newly introduced and rapidly adapted) into account for this
thesis. We investigated the feasibility and effectiveness of novel approaches
to measure and reduce the security risks introduced by current patches for
web applications and their users.

Even though these two concepts have been introduced to protect their
users’ privacy while increasing the Web’s functionality, as shown in this thesis,
in real-world scenarios, the goals have not been appropriately achieved due
to many factors and elements involved.

In chapter 4, a wide range of attack strategies and scenarios have been
implemented by a repeatable methodology on large-scale OAuth deployments
in the wild. As a result, one-third of high-profile websites are still vulnerable
to CSRF (the most studied attack).

Analysis showed that not only the primary mitigation (presence of state)
did not work in all the situations, but also different cases, deactivated other
CSRF mitigations, even the most effective one (user interaction), showing
how inconsistent these mitigations are in an interaction with each other.

In chapter 5, we provided a large-scale study on CORS implementations
in the wild by considering all the elements present in every situation (e.g.,

119

CHAPTER 6. CONCLUSION

threat models, modern browsers) and propose a semi-automated methodol-
ogy to perform the attacks regarding these security issues in order to find
the involving factors to successful exploitation.

We showed that each attacker model with a different level of capabilities
could endanger the users’ privacy and security. We looked into each attack
scenario’s current and active mitigations in every situation. We proposed
some solutions to decrease the danger of these mistakes in high-profile web
applications.

Of course, for both studies and the development of the methodologies, we
faced many limitations. Nevertheless, we overcame most of them through
novel approaches and achieved more test cases leading to accurate results.

Security professionals can use these repeatable, automated methodolo-
gies to perform a large-scale measurement for OAuth protocol and CORS
mechanism to discover the well-hidden vulnerabilities in real-world imple-
mentations.

120

Bibliography

[1] RFC 6454. https://www.rfc-editor.org/info/rfc6454, author = Adam
Barth, title = The Web Origin Concept, pagetotal = 20, year = 2011,
month = dec,.

[2] 1617609 - (samesitelax) [meta] Enable sameSite=lax by default. RE-
OPENED (n.goeggi) in Core - Networking: Cookies., 2022-07-15,
https://bugzilla.mozilla.org/show_bug.cgi?id=1617609.

[3] Beautiful Soup Documentation — Beautiful Soup 4.9.0 documentation.
https://www.crummy.com/software/BeautifulSoup/bs4/doc/.

[4] Changes to SameSite Cookie Behavior – A Call to Action for Web
Developers – Mozilla Hacks - the Web developer blog. https://hacks.
mozilla.org/2020/08/changes-to-samesite-cookie-behavior.

[5] Cookies default to SameSite=Lax - Chrome Platform Status. https:
//chromestatus.com/feature/5088147346030592.

[6] Cors’ing a denial of service via cache poisoning. https://nathandavison.
com/blog/corsing-a-denial-of-service-via-cache-poisoning.

[7] Fastly documentation. configuring caching, 2021. https://docs.fastly.
com/en/guides/configuring-caching.

121

https://www.rfc-editor.org/info/rfc6454
https://bugzilla.mozilla.org/show_bug.cgi?id=1617609
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://hacks.mozilla.org/2020/08/changes-to-samesite-cookie-behavior
https://hacks.mozilla.org/2020/08/changes-to-samesite-cookie-behavior
https://chromestatus.com/feature/5088147346030592
https://chromestatus.com/feature/5088147346030592
https://nathandavison.com/blog/corsing-a-denial-of-service-via-cache-poisoning
https://nathandavison.com/blog/corsing-a-denial-of-service-via-cache-poisoning
https://docs.fastly.com/en/guides/configuring-caching
https://docs.fastly.com/en/guides/configuring-caching

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Global Desktop Browser Market Share for 2022. https://kinsta.com/
browser-market-share/, language = en-US, urldate = 2022-07-01, jour-
nal = Kinsta®,.

[9] James kettle. practical web cache poisoning. portswig-
ger web security blog, 2018. https://portswigger.net/blog/
practical-web-cache-poisoning.

[10] James kettle. web cache entanglement: Novel pathways to poison-
ing. portswigger research, 2020. https://portswigger.net/research/
web-cache-entanglement.

[11] Let’s Encrypt. https://letsencrypt.org/, abstract = Let’s Encrypt is a
free, automated, and open certificate authority brought to you by the
nonprofit Internet Security Research Group (ISRG)., 2022-06-28,.

[12] SameSite cookies - HTTP | MDN. https://developer.mozilla.org/
en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite, abstract =
The SameSite attribute of the Set-Cookie HTTP response header al-
lows you to declare if your cookie should be restricted to a first-party
or same-site context.,2022-06-28,.

[13] Samesite cookies csrf attacks. https://symfonycasts.com/screencast/
api-platform-security/samesite-csrf.

[14] Webspi and web application models. http://prosecco.gforge.inria.fr/
webspi/. Accessed: 2019-08-30.

[15] Akamai developer. edgeworkers, 2021. https://developer.akamai.com/
akamai-edgeworkers-overview.

[16] Builtwith technology lookup., 2021. https://trends.builtwith.com/
CDN/Content-Delivery-Network.

122

https://kinsta.com/browser-market-share/
https://kinsta.com/browser-market-share/
https://portswigger.net/blog/practical-web-cache-poisoning
https://portswigger.net/blog/practical-web-cache-poisoning
https://portswigger.net/research/web-cache-entanglement
https://portswigger.net/research/web-cache-entanglement
https://letsencrypt.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
https://symfonycasts.com/screencast/ api-platform-security/samesite-csrf.
https://symfonycasts.com/screencast/ api-platform-security/samesite-csrf.
http://prosecco.gforge.inria.fr/webspi/
http://prosecco.gforge.inria.fr/webspi/
https://developer.akamai.com/akamai-edgeworkers-overview
https://developer.akamai.com/akamai-edgeworkers-overview
https://trends.builtwith.com/CDN/Content-Delivery-Network
https://trends.builtwith.com/CDN/Content-Delivery-Network

BIBLIOGRAPHY BIBLIOGRAPHY

[17] Cloudflare docs. cloudflare workers documentation., 2021. https://
developers.cloudflare.com/workers/.

[18] Fastly. compute@edge., 2021. https://www.fastly.com/products/
edge-compute/use-cases.

[19] Referrer-policy, 2021. https://developer.mozilla.org/en-US/docs/
Web/HTTP/Headers/Referrer-Policy, 2021.

[20] Omer Akgul, Taha Eghtesad, Amit Elazari, Omprakash Gnawali, Jens
Grossklags, Daniel Votipka, and Aron Laszka. The hackers’ viewpoint:
Exploring challenges and benefits of bug-bounty programs.

[21] Devdatta Akhawe, Adam Barth, Peifung E Lam, John Mitchell, and
Dawn Song. Towards a formal foundation of web security. In 2010
23rd IEEE Computer Security Foundations Symposium, pages 290–
304. IEEE, 2010.

[22] Tamjid Al Rahat, Yu Feng, and Yuan Tian. Oauthlint: an empirical
study on oauth bugs in android applications. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 293–304. IEEE, 2019.

[23] Wade Alcorn, Christian Frichot, and Michele Orru. The Browser
Hacker’s Handbook. John Wiley & Sons, 2014.

[24] Marios Argyriou, Nicola Dragoni, and Angelo Spognardi. Security flows
in oauth 2.0 framework: a case study. In International Conference on
Computer Safety, Reliability, and Security, pages 396–406. Springer,
2017.

[25] Elham Arshad, Michele Benolli, and Bruno Crispo. Practical attacks
on login csrf in oauth. Computers & Security, page 102859, 2022.

123

https://developers.cloudflare.com/workers/
https://developers.cloudflare.com/workers/
https://www.fastly.com/products/edge-compute/use-cases
https://www.fastly.com/products/edge-compute/use-cases
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy

BIBLIOGRAPHY BIBLIOGRAPHY

[26] Guangdong Bai, Jike Lei, Guozhu Meng, Sai Sathyanarayan Venkatra-
man, Prateek Saxena, Jun Sun, Yang Liu, and Jin Song Dong. Auth-
scan: Automatic extraction of web authentication protocols from im-
plementations. In NDSS, 2013.

[27] Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and
Sergio Maffeis. Keys to the cloud: formal analysis and concrete attacks
on encrypted web storage. In International Conference on Principles of
Security and Trust, pages 126–146. Springer, 2013.

[28] Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and
Sergio Maffeis. Discovering concrete attacks on website authorization
by formal analysis 1. Journal of Computer Security, 22(4):601–657,
2014.

[29] Adam Barth. HTTP State Management Mechanism. RFC 6265, April
2011. https://www.rfc-editor.org/info/rfc6265.

[30] Adam Barth, Collin Jackson, and John C Mitchell. Robust defenses for
cross-site request forgery. In Proceedings of the 15th ACM conference
on Computer and communications security, pages 75–88, 2008.

[31] Adam Barth, Collin Jackson, and John C Mitchell. Securing frame
communication in browsers. Communications of the ACM, 52(6):83–
91, 2009.

[32] Michele Benolli, Seyed Ali Mirheidari, Elham Arshad, and Bruno
Crispo. The Full Gamut of an Attack: An Empirical Analysis of OAuth
CSRF in the Wild, pages 21–41. Springer International Publishing,
Cham, 2021.

[33] Bruno Blanchet et al. An efficient cryptographic protocol verifier based
on prolog rules. In csfw, volume 1, pages 82–96, 2001.

124

https://www.rfc-editor.org/info/rfc6265

BIBLIOGRAPHY BIBLIOGRAPHY

[34] Andrew Bortz, Adam Barth, and Alexei Czeskis. Origin cookies: Ses-
sion integrity for web applications. ACM Transactions on Internet
Technology (TOIT), 2, 05 2012.

[35] Stefano Calzavara, Riccardo Focardi, Matteo Maffei, Clara Schnei-
dewind, Marco Squarcina, and Mauro Tempesta. {WPSE}: Fortifying
web protocols via browser-side security monitoring. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages 1493–1510, 2018.

[36] Brian Campbell, Michael Jones, and Chuck Mortimore. Security asser-
tion markup language (saml) 2.0 profile for oauth 2.0 client authenti-
cation and authorization grants. 2015.

[37] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, pages 136–145. IEEE, 2001.

[38] Suresh Chari, Charanjit S Jutla, and Arnab Roy. Universally compos-
able security analysis of oauth v2. 0. IACR Cryptology ePrint Archive,
2011:526, 2011.

[39] Eric Y Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and
Patrick Tague. Oauth demystified for mobile application developers.
In Proceedings of the 2014 ACM SIGSAC conference on computer and
communications security, pages 892–903. ACM, 2014.

[40] Jianjun Chen, Jian Jiang, Haixin Duan, Tao Wan, Shuo Chen, Vern
Paxson, and Min Yang. We still Don’t have secure Cross-Domain
requests: an empirical study of CORS. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1079–1093, Baltimore, MD,
August 2018. USENIX Association.

[41] James Clark, Steve DeRose, et al. Xml path language (xpath), 1999.

125

BIBLIOGRAPHY BIBLIOGRAPHY

[42] Alexei Czeskis, Alexander Moshchuk, Tadayoshi Kohno, and Helen J
Wang. Lightweight server support for browser-based csrf protection. In
Proceedings of the 22nd international conference on World Wide Web,
pages 273–284, 2013.

[43] Neil Daswani, Christoph Kern, and Anita Kesavan. Cross-domain
security in web applications. Foundations of Security: What Every
Programmer Needs to Know, pages 155–196, 2007.

[44] Shehroze Farooqi, Fareed Zaffar, Nektarios Leontiadis, and Zubair
Shafiq. Measuring and mitigating oauth access token abuse by col-
lusion networks. In Proceedings of the 2017 Internet Measurement
Conference, pages 355–368, 2017.

[45] Daniel Fett, Ralf Küsters, and Guido Schmitz. An expressive model
for the web infrastructure: Definition and application to the browser id
sso system. In 2014 IEEE Symposium on Security and Privacy, pages
673–688. IEEE, 2014.

[46] Daniel Fett, Ralf Küsters, and Guido Schmitz. Spresso: A secure,
privacy-respecting single sign-on system for the web. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 1358–1369. ACM, 2015.

[47] Daniel Fett, Ralf Küsters, and Guido Schmitz. A comprehensive formal
security analysis of oauth 2.0. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 1204–
1215. ACM, 2016.

[48] R. Fielding. Hypertext transfer protocol – http/1.1. RFC 2616, 1999.
https://datatracker.ietf.org/doc/html/rfc2616.

126

https://datatracker.ietf.org/doc/html/rfc2616

BIBLIOGRAPHY BIBLIOGRAPHY

[49] Mohammad Ghasemisharif, Amrutha Ramesh, Stephen Checkoway,
Chris Kanich, and Jason Polakis. O single {Sign-Off}, where art thou?
an empirical analysis of single {Sign-On} account hijacking and ses-
sion management on the web. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1475–1492, 2018.

[50] Kevin Gibbons, John O Raw, and Kevin Curran. Security evaluation
of the oauth 2.0 framework. Information Management and Computer
Security, 22(3), 2014.

[51] Google Developers. Using oauth 2.0 to access google apis, 2020. https:
//developers.google.com/identity/protocols/oauth2.

[52] Chong Guan, Kun Sun, Lingguang Lei, Pingjian Wang, Yuewu Wang,
and Wei Chen. Dangerneighbor attack: Information leakage via
postmessage mechanism in html5. Computers & Security, 80:291–305,
2019.

[53] Run Guo, Jianjun Chen, Baojun Liu, Jia Zhang, Chao Zhang, Haixin
Duan, Tao Wan, Jian Jiang, Shuang Hao, and Yaoqi Jia. Abusing cdns
for fun and profit: Security issues in cdns’ origin validation. In 2018
IEEE 37th Symposium on Reliable Distributed Systems (SRDS), pages
1–10. IEEE, 2018.

[54] Run Guo, Weizhong Li, Baojun Liu, Shuang Hao, Jia Zhang, Haixin
Duan, Kaiwen Sheng, Jianjun Chen, and Ying Liu. Cdn judo: Breaking
the cdn dos protection with itself. In NDSS, 2020.

[55] Y GURT. Critical issue opened private chats of facebook messen-
ger users up to attackers., 2013. https://www.bugsec.com/news/
facebook-originull/,2013,2022-06-28.

127

https://developers.google.com/identity/protocols/oauth2
https://developers.google.com/identity/protocols/oauth2
https://www.bugsec.com/news/facebook-originull/, 2013
https://www.bugsec.com/news/facebook-originull/, 2013

BIBLIOGRAPHY BIBLIOGRAPHY

[56] HackerOne. Hackerone bug bounty platform, 2020. https://www.
hackerone.com/.

[57] E Hammer-Lahav. The oauth 2.0 authorization protocol.
draft-ietf-oauth-v2-16, 2011.

[58] D. Hardt. The oauth 2.0 authorization framework. RFC 6749, 2012.
http://www.rfc-editor.org/rfc/rfc6749.txt.

[59] Dick Hardt. The oauth 2.0 authorization framework. 2012.

[60] Egor Homakov. The most common oauth2 vulnerability. Tech-
nical report, 2012. http://homakov.blogspot.com/2012/07/
saferweb-most-common-oauth2.html.

[61] Evan J. Misconfigured cors, 2016. https://ejj.io/
misconfigured-cors,2022-06-28.

[62] Ed. J. Reschke. Hypertext transfer protocol (http/1.1): Semantics
and content. RFC 7231, 2014. https://datatracker.ietf.org/doc/html/
rfc7231.

[63] Martin Johns and Justus Winter. Requestrodeo: Client side protection
against session riding. In Proceedings of the OWASP Europe 2006
Conference, 2006.

[64] Florian Kerschbaum. Simple cross-site attack prevention. In 2007 Third
International Conference on Security and Privacy in Communications
Networks and the Workshops-SecureComm 2007, pages 464–472. IEEE,
2007.

[65] James Kettle. Exploiting cors misconfigurations for bit-
coins and bounties, 2016. https://portswigger.net/research/
exploiting-cors-misconfigurations-for-bitcoins-and-bounties.

128

https://www.hackerone.com/
https://www.hackerone.com/
http://www.rfc-editor.org/rfc/rfc6749.txt
http://homakov.blogspot.com/2012/07/saferweb-most-common-oauth2.html
http://homakov.blogspot.com/2012/07/saferweb-most-common-oauth2.html
https://ejj.io/misconfigured-cors
https://ejj.io/misconfigured-cors
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7231
https://portswigger.net/research/exploiting-cors-misconfigurations-for-bitcoins-and-bounties
https://portswigger.net/research/exploiting-cors-misconfigurations-for-bitcoins-and-bounties

BIBLIOGRAPHY BIBLIOGRAPHY

[66] Soheil Khodayari and Giancarlo Pellegrino. The state of the samesite:
Studying the usage, effectiveness, and adequacy of samesite cookies. In
43rd IEEE Symposium on Security and Privacy (S&P ’22), May 2022.

[67] Apurva Kumar. Using automated model analysis for reasoning about
security of web protocols. In Proceedings of the 28th Annual Computer
Security Applications Conference, pages 289–298, 2012.

[68] Sebastian Lekies, Walter Tighzert, and Martin Johns. Towards state-
less, client-side driven cross-site request forgery protection for web ap-
plications. SICHERHEIT 2012–Sicherheit, Schutz und Zuverlässigkeit,
2012.

[69] Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad Karami, Michael
Bailey, Damon McCoy, Stefan Savage, and Vern Paxson. You’ve got
vulnerability: Exploring effective vulnerability notifications. In 25th
{USENIX} Security Symposium ({USENIX} Security 16), pages 1033–
1050, 2016.

[70] Wanpeng Li and Chris J Mitchell. Security issues in oauth 2.0 sso
implementations. In International Conference on Information Security,
pages 529–541. Springer, 2014.

[71] Wanpeng Li, Chris J Mitchell, and Thomas Chen. Mitigating
csrf attacks on oauth 2.0 and openid connect. arXiv preprint
arXiv:1801.07983, 2018.

[72] Wanpeng Li, Chris J Mitchell, and Thomas Chen. Oauthguard: Pro-
tecting user security and privacy with oauth 2.0 and openid connect.
In Proceedings of the 5th ACM Workshop on Security Standardisation
Research Workshop, pages 35–44, 2019.

129

BIBLIOGRAPHY BIBLIOGRAPHY

[73] Soheil Khodayari Giancarlo Pellegrino. Likaj, Xhelal. Where we
stand (or fall): An analysis of csrf defenses in web frameworks. In
24th International Symposium on Research in Attacks, Intrusions and
Defenses., 2021.

[74] Labunets Fett Lodderstedt, Bradley. draft-ietf-oauth-security-
topics-15. Technical report, 2020. https://tools.ietf.org/html/
draft-ietf-oauth-security-topics-15.

[75] Ziqing Mao, Ninghui Li, and Ian Molloy. Defeating cross-site re-
quest forgery attacks with browser-enforced authenticity protection.
In International Conference on Financial Cryptography and Data
Security, pages 238–255. Springer, 2009.

[76] Mark Higgins. Symantec internet security threat report, 2003. https:
//docs.broadcom.com/doc/istr-03-jan-en.

[77] MDN. Preflight requests in cors, 2022. https://developer.mozilla.org/
en-US/docs/Glossary/Preflight_request.

[78] Gordon Meiser, Pierre Laperdrix, and Ben Stock. Careful Who
You Trust: Studying the Pitfalls of Cross-Origin Communication. In
ASIACCS 2021 - 16th ACM Asia Conference on Computer and Communications Security,
16th ACM Asia Conference on Computer and Communications Secu-
rity, Hong Kong / Virtual, China, June 2021.

[79] Seyed Ali Mirheidari, Sajjad Arshad, Kaan Onarlioglu, Bruno Crispo,
Engin Kirda, and William Robertson. Cached and confused: Web
cache deception in the wild. In 29th {USENIX} Security Symposium
({USENIX} Security 20), pages 665–682, 2020.

[80] Seyed Ali Mirheidari, Matteo Golinelli, Kaan Onarlioglu, Engin Kirda,
and Bruno Crispo. Web cache deception escalates! In 31st USENIX

130

https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15
https://tools.ietf.org/html/draft-ietf-oauth-security-topics-15
https://docs.broadcom.com/doc/istr-03-jan-en
https://docs.broadcom.com/doc/istr-03-jan-en
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request

BIBLIOGRAPHY BIBLIOGRAPHY

Security Symposium (USENIX Security 22), Boston, MA, August 2022.
USENIX Association.

[81] Mitre. Url redirection to untrusted site, 2020. https://cwe.mitre.org/
data/definitions/601.html.

[82] Vladislav Mladenov, Christian Mainka, and Jörg Schwenk. On the se-
curity of modern single sign-on protocols: Second-order vulnerabilities
in openid connect. arXiv preprint arXiv:1508.04324, 2015.

[83] Jens Müller. On Web-Security and -Insecurity: CORS misconfigura-
tions on a large scale, July 2017. https://web-in-security.blogspot.com/
2017/07/cors-misconfigurations-on-large-scale.html.

[84] Hoai Viet Nguyen, Luigi Lo Iacono, and Hannes Federrath. Your cache
has fallen: Cache-poisoned denial-of-service attack. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 1915–1936, 2019.

[85] OAuth.net. User authentication with oauth 2.0. Technical report, 2020.

[86] OWASP. Cookies: Http state management mechanism draft-ietf-
httpbis-rfc6265bis-02, 2021. https://datatracker.ietf.org/doc/html/
draft-ietf-httpbis-rfc6265bis-02#section-5.3.7.

[87] OWASP. Cross-site request forgery prevention, 2021. https:
//cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_
Forgery_Prevention_Cheat_Sheet.html.

[88] Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M Pai, and Sanjay
Singh. Formal verification of oauth 2.0 using alloy framework. In 2011
International Conference on Communication Systems and Network
Technologies, pages 655–659. IEEE, 2011.

131

https://cwe.mitre.org/data/definitions/601.html
https://cwe.mitre.org/data/definitions/601.html
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-02#section-5.3.7
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-02#section-5.3.7
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

BIBLIOGRAPHY BIBLIOGRAPHY

[89] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob,
Maciej Korczynski, and Wouter Joosen. Tranco: A research-oriented
top sites ranking hardened against manipulation. In Proceedings 2019
Network and Distributed System Security Symposium. Internet Soci-
ety, 2019.

[90] David Recordon and Brad Fitzpatrick. Openid authentication 2.0-final.
Network working group internet-draft, 2007. https://openid.net/specs/
openid-authentication-2_0.html.

[91] G. REVAY. Here it is, the file upload csrf 2013. http://gerionsecurity.
com/2013/04/here-it-is-the-file-upload-csrf/.

[92] Leonard Richardson. Beautiful soup. Crummy: The Site, 2013. https:
//www.crummy.com/self/resume.html.

[93] Philippe De Ryck, Lieven Desmet, Thomas Heyman, Frank Piessens,
and Wouter Joosen. Csfire: Transparent client-side mitigation of
malicious cross-domain requests. In International Symposium on
Engineering Secure Software and Systems, pages 18–34. Springer, 2010.

[94] Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank Piessens.
Automatic and precise client-side protection against csrf attacks. In
European Symposium on Research in Computer Security, pages 100–
116. Springer, 2011.

[95] Nat Sakimura and John Bradley. Openid connect core 1.0 incorporating
errata set 1. 2014.

[96] Jörg Schwenk, Marcus Niemietz, and Christian Mainka. Same-Origin
policy: Evaluation in modern browsers. In 26th USENIX Security
Symposium (USENIX Security 17), pages 713–727, Vancouver, BC,
August 2017. USENIX Association.

132

https://openid.net/specs/openid-authentication-2_0.html
https://openid.net/specs/openid-authentication-2_0.html
http://gerionsecurity.com/2013/04/here-it-is-the-file-upload-csrf/
http://gerionsecurity.com/2013/04/here-it-is-the-file-upload-csrf/
https://www.crummy.com/self/resume.html
https://www.crummy.com/self/resume.html

BIBLIOGRAPHY BIBLIOGRAPHY

[97] Robin Sharma. Preventing cross-site attacks using
same-site cookies, 2017. https://dropbox.tech/security/
preventing-cross-site-attacks-using-same-site-cookies.

[98] Ethan Shernan, Henry Carter, Dave Tian, Patrick Traynor, and Kevin
Butler. More guidelines than rules: Csrf vulnerabilities from non-
compliant oauth 2.0 implementations. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 239–260. Springer, 2015.

[99] Jaimandeep Singh and Naveen Kumar Chaudhary. Oauth 2.0: Archi-
tectural design augmentation for mitigation of common security vul-
nerabilities. In Journal of Information Security and Applications 65,
2022.

[100] Kapil Singh, Alexander Moshchuk, Helen J Wang, and Wenke Lee. On
the incoherencies in web browser access control policies. In 2010 IEEE
Symposium on Security and Privacy, pages 463–478. IEEE, 2010.

[101] Sooel Son and Vitaly Shmatikov. The postman always rings twice:
Attacking and defending postmessage in html5 websites. In NDSS,
2013.

[102] Marco Squarcina, Mauro Tempesta, Lorenzo Veronese, Stefano
Calzavara, and Matteo Maffei. Can i take your subdomain? explor-
ing Same-Site attacks in the modern web. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2917–2934. USENIX Associ-
ation, August 2021.

[103] Marius Steffens and Ben Stock. Pmforce: Systematically analyzing
postmessage handlers at scale. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, pages
493–505, 2020.

133

https://dropbox.tech/security/preventing-cross-site-attacks-using-same-site-cookies
https://dropbox.tech/security/preventing-cross-site-attacks-using-same-site-cookies

BIBLIOGRAPHY BIBLIOGRAPHY

[104] Ben Stock, Martin Johns, Marius Steffens, and Michael Backes. How
the web tangled itself: Uncovering the history of {Client-Side} web
({In) Security}. In 26th USENIX Security Symposium (USENIX
Security 17), pages 971–987, 2017.

[105] Ben Stock, Giancarlo Pellegrino, Christian Rossow, Martin Johns, and
Michael Backes. Hey, you have a problem: On the feasibility of
large-scale web vulnerability notification. In 25th {USENIX} Security
Symposium ({USENIX} Security 16), pages 1015–1032, 2016.

[106] Avinash Sudhodanan, Alessandro Armando, Roberto Carbone, Luca
Compagna, et al. Attack patterns for black-box security testing of
multi-party web applications. In NDSS, 2016.

[107] Avinash Sudhodanan, Roberto Carbone, Luca Compagna, Nicolas Dol-
gin, Alessandro Armando, and Umberto Morelli. Large-scale analysis
& detection of authentication cross-site request forgeries. In 2017 IEEE
European symposium on security and privacy (EuroS&P), pages 350–
365. IEEE, 2017.

[108] Karin Sumongkayothin, Pakpoom Rachtrachoo, Arnuphap Yupuech,
and Kasidit Siriporn. Overscan: Oauth 2.0 scanner for missing param-
eters. In International Conference on Network and System Security,
pages 221–233. Springer, 2019.

[109] San-Tsai Sun and Konstantin Beznosov. The devil is in the (im-
plementation) details: An empirical analysis of oauth sso systems.
In Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 378–390, New York, NY,
USA, 2012. ACM.

[110] San-Tsai Sun and Konstantin Beznosov. The devil is in the (im-
plementation) details: an empirical analysis of oauth sso systems.

134

BIBLIOGRAPHY BIBLIOGRAPHY

In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 378–390, 2012.

[111] San-Tsai Sun, Yazan Boshmaf, Kirstie Hawkey, and Konstantin
Beznosov. A billion keys, but few locks: the crisis of web single sign-on.
In Proceedings of the 2010 New Security Paradigms Workshop, pages
61–72. ACM, 2010.

[112] Ed. T. Lodderstedt. Oauth 2.0 threat model and security considera-
tions. RFC 6819, 2018. https://www.rfc-editor.org/rfc/rfc6819.txt.

[113] David Y Wang, Stefan Savage, and Geoffrey M Voelker. Cloak and dag-
ger: dynamics of web search cloaking. In Proceedings of the 18th ACM
conference on Computer and communications security, pages 477–490,
2011.

[114] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing me onto your
accounts through facebook and google: A traffic-guided security study
of commercially deployed single-sign-on web services. In 2012 IEEE
Symposium on Security and Privacy, pages 365–379. IEEE, 2012.

[115] Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer, David Evans, and
Yuri Gurevich. Explicating sdks: Uncovering assumptions underlying
secure authentication and authorization. In 22nd {USENIX} Security
Symposium ({USENIX} Security 13), pages 399–314, 2013.

[116] Mike West. Incrementally better cookies. (2019). https://tools.ietf.org/
html/draft-west-cookie-incrementalism-00.

[117] Mike West. Incrementally Better Cookies. Internet-Draft draft-west-
cookie-incrementalism-01, Internet Engineering Task Force, March
2020. Work in Progress.

135

https://www.rfc-editor.org/rfc/rfc6819.txt
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00

BIBLIOGRAPHY BIBLIOGRAPHY

[118] WHATWG. Fetch Standard. https://fetch.spec.whatwg.org/,2022-06-
29.

[119] John Wilander. CORS-safelisted request headers should be restricted
according to RFC 7231 · Issue #382 · whatwg/fetch. https://github.
com/whatwg/fetch/issues/382.

[120] Damon Williams. Introduction to paypal. Pro PayPal E-Commerce,
pages 1–12, 2007.

[121] Luyi Xing, Yangyi Chen, XiaoFeng Wang, and Shuo Chen. Integuard:
Toward automatic protection of third-party web service integrations.
In NDSS, 2013.

[122] Guangliang Yang, Jeff Huang, Guofei Gu, and Abner Mendoza. Study
and mitigation of origin stripping vulnerabilities in hybrid-postmessage
enabled mobile applications. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 742–755. IEEE, 2018.

[123] Ronghai Yang, Wing Cheong Lau, Jiongyi Chen, and Kehuan Zhang.
Vetting single sign-on {SDK} implementations via symbolic reason-
ing. In 27th {USENIX} Security Symposium ({USENIX} Security
18), pages 1459–1474, 2018.

[124] Ronghai Yang, Wing Cheong Lau, and Tianyu Liu. Signing into one bil-
lion mobile app accounts effortlessly with oauth2. 0. blackhat Europe,
2016.

[125] Ronghai Yang, Guanchen Li, Wing Cheong Lau, Kehuan Zhang, and
Pili Hu. Model-based security testing: An empirical study on oauth 2.0
implementations. In Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, pages 651–662, 2016.

136

https://fetch.spec.whatwg.org/
https://github.com/whatwg/fetch/issues/382
https://github.com/whatwg/fetch/issues/382

BIBLIOGRAPHY BIBLIOGRAPHY

[126] Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Haixin Duan, Shuo Chen,
Tao Wan, and Nicholas Weaver. Cookies lack integrity:{Real-World}
implications. In 24th USENIX Security Symposium (USENIX Security
15), pages 707–721, 2015.

[127] Yuchen Zhou and David Evans. Ssoscan: automated testing of web ap-
plications for single sign-on vulnerabilities. In 23rd {USENIX} Security
Symposium ({USENIX} Security 14), pages 495–510, 2014.

[128] Ningxian Zhu. Security of cors on localstorage. In 2021 International
Conference on Internet, Education and Information Technology (IEIT),
pages 141–146. IEEE, 2021.

137

	Introduction
	Motivation
	An example of a protocol (OAuth)
	An example of a mechanism (CORS)

	Thesis Contribution
	Thesis Structure

	Background
	Authorization in the web
	OAuth protocol

	Referrer Policy
	Cross-Domain Referrer Leakage (CDRL)

	Access Control Policy in Web
	Cross-Site Attacks
	CSRF

	Cookies
	Web Cache

	Related Works
	OAuth
	Formal Approaches
	Empirical studies

	CORS

	OAuth
	Motivation
	CSRF

	Threat Models
	Enabling factors

	Methodology
	Phase 1: Target Selection
	Phase 2: Measurement Setup
	Phase 3: OCSRF Discovery
	Ethical Consideration

	Analysis
	Measurement Overview
	Results
	Discussion

	Conclusion

	CORS
	Motivation
	Threat Model
	Methodology
	Phase1: Collection
	Phase2: Detection
	Phase3: Exploitation

	Analysis
	Measurement Overview
	Results
	Discussion

	Cache poisoning through CORS
	Conclusion

	Conclusion
	Bibliography

