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Abstract: Although decision making strategy based on clinico-histopathological criteria is well
established, renal cell carcinoma (RCC) represents a spectrum of biological ecosystems characterized
by distinct genetic and molecular alterations, diverse clinical courses and potential specific therapeutic
vulnerabilities. Given the plethora of drugs available, the subtype-tailored treatment to RCC subtype
holds the potential to improve patient outcome, shrinking treatment-related morbidity and cost. The
emerging knowledge of the molecular taxonomy of RCC is evolving, whilst the antiangiogenic and
immunotherapy landscape maintains and reinforces their potential. Although several prognostic
factors of survival in patients with RCC have been described, no reliable predictive biomarkers of
treatment individual sensitivity or resistance have been identified. In this review, we summarize the
available evidence able to prompt more precise and individualized patient selection in well-designed
clinical trials, covering the unmet need of medical choices in the era of next-generation anti-angiogenesis
and immunotherapy.

Keywords: renal cell carcinoma; angiogenesis; immune-checkpoint inhibitor; tumor microenvironment;
molecular subtypes; prognostic-biomarkers; predictive factors

1. Introduction

Angiogenesis inhibition remains one of the most active approaches in the treatment of advanced
kidney tumors. Although tumor heterogeneity can be a therapeutic obstacle [1] angiogenesis-related
mechanisms represent a truncal event in renal cell carcinoma (RCC) biology, particularly in clear-cell
histotype. Indeed, the alterations of the HIF/VEGF axis are deemed to be the fundamental target [2],
even aiming at overcoming drug resistance [3]. This evidence explains the clinical success of sequential
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strategies employing tyrosine kinase inhibitors (TKI) [4–6]. Nonetheless, recent evidence warrants taking
into consideration a more complex biological scenario accounting for RCC pro-angiogenetic mechanisms.
However, the RCC boosted neo-vessel formation does not behave as an oncogene addiction that
characterizes other malignancies [7]. Indeed, a complex architecture accounts for the RCC heterogeneity,
coexisting with a tumor microenvironment educated as a tolerogenic niche [8]. This sophisticated milieu
prompts us to uncover immunotherapy to be an effective up-front treatment option.

Nevertheless, not all patients seem to benefit equally from immune-checkpoint inhibition, being
characterized by either primary- or secondary-refractoriness [9–12]. Indeed, the subset of individuals
classified as favorable risk seems to be an oasis in which the TKI sequence followed by TKI may still
represent a logical choice [13–15]. Conversely, despite ambitious attempts aimed at dissecting the
biology behind RCC [16,17], the criteria used to stratify patients’ risk and response predictions remain
largely elusive, since the evidence on which we currently base the hypothesis-generating indications
have been adapted from clinical and laboratory criteria. Peculiar subgroups treated by single agents
inhibiting angiogenesis, even in a stepwise fashion [13], hold great potential in terms of disease control
and long survival. Indeed, molecular signatures exist and may perhaps identify angiogenesis-driven
tumors, able to translate the plethora of already broadly corroborated evidence obtained from
in vitro [18,19], in embryo [20–22] and in vivo assays [23,24]. Contrariwise, specific subjects can be
considered non-angiogenesis addicted. In these cases, combination immunotherapy or less selective
TKI may constitute a more efficient upfront strategy [25,26]. From this perspective, the phenotypic
deconvolution aiming at biomarkers identification and response prediction, can support customizing
RCC treatment. From this standpoint, it is tempting to propose a combination of anti-angiogenic and
immune-checkpoint inhibitors (ICI), especially when driven by compelling molecular signatures [27,28].

2. Historical Evolution/Perspective of Prognostic Systems in mRCC

The prognosis of patients with renal cell carcinoma (RCC) is influenced by the anatomical,
histological, clinical and molecular characteristics of the neoplasm. The use of anatomo-histological
prognostic factors is further supported by higher levels of evidence compared to clinical and molecular
factors. Anatomical features are described in clinical practice through the TNM classification system.
Anatomical classification systems such as the PADUA (Preoperative Aspects and Dimensions Used
for an Anatomical classification system), the R.E.N.A.L. (Radium, Exophytic/endophytic properties,
Nearness of the tumor to the collecting system or sinus, Anterior/posterior, Location relative to the polar
line) and the C-index have been proposed to standardize the description of kidney tumors [29–31]. These
classification criteria take into consideration features such as size, endo/exophytic growth, relationships
with the renal hilum and collector ducts and the anterior or posterior position of the tumor. These systems
are useful for assessing the potential morbidity of surgery and ablation techniques. Furthermore, in the
case of metastatic neoplasia (mRCC), the prognosis is further influenced by the number and location
of the metastatic sites [32,33]. The main histological features of renal carcinoma potentially holding
a prognostic value are represented by the histotype (clear-cells: 70–80% of cases; papillary: 10–15%;
chromophobe: 5%), grading, the presence of tumor necrosis, microvascular invasion, sarcomatoid
component, and involvement of the collector system. Grading remains the most important accredited
prognostic factor [34]. The WHO/ISUP classification published in 2013 proposes the replacement of the
Fuhrman grade with a ISUP/WHO system ranging from I to IV, describing nucleolar characteristics,
taking into account the presence of a rhabdoid component in grade IV and/or the presence of the
sarcomatoid variant. So far, this classification has been validated for clear-cell and papillary tumors so
far. Among the other histotypes nuclear grading it holds a descriptive role [35], with scanty translational
consequences. Moreover, statistical validation by univariate analysis corroborated the prognostic impact
of the tumor histotype, while describing the clear-cell carcinoma as the most aggressive subtype, followed
by the papillary and chromophobe. Conversely, in multivariate models, the prognostic significance of
the histotype was deemed not significant, suggesting that the stage of disease and tumor grading harbor
a greater impact on the prognosis than the histotypic characteristic per se. Furthermore, the papillary
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carcinomas can be further subdivided into two subtypes with different clinical outcomes: type I, low
grade tumor with favorable prognosis, and type II, high grade tumor with increased dissemination
potential [36–38]. In a retrospective multivariate analysis of over 600 patients suffering from metastatic
renal carcinoma and enrolled in clinical trials in the 1980s, Elson et al. identified five survival indicators:
ECOG PS, the time period between diagnosis and first systemic treatment, the number of metastatic
sites, previous systemic therapies and weight loss. Based on these factors, the authors stratified patients
into five groups characterized by different survival [35]. Subsequently, numerous integrated models
were outlined aimed at analyzing clinical, pathological factors and laboratory parameters in order to
predict survival and identify patients with a high risk of relapse. Among these, the two most widely
used in clinical practice and experimentation are the prognostic system of the MSKCC (Memorial
Sloan Kettering Cancer Center or Motzer model) and the prognostic system of the IMDC (International
Metastatic RCC Database Consortium or Heng’s model) [39].

In order to overcome the statistical power limitation, both in terms of sample size and number of
series included in the multivariate analyses available [40], Motzer et al., in a series of 670 patients with
advanced RCC and treated with immunotherapy or chemotherapy, identified five pre-treatment factors
significantly related to a unfavorable prognosis, namely decreased Karnofsky PS (<80%), s high value of
LDH (>1.5 times over the boundaries) and calcemia (>10 mg/dl), decreased hemoglobin concentration,
and failure to perform the surgical procedure [40]. Using these variables, they stratified the patients
into three groups (favorable, intermediate and unfavorable risk group) with dismal clinical outcome
for the high risk subgroup; survival ranged from 20 months for the group with a favorable prognosis to
4 months for the group with a poor prognosis [40]. Next, a similar analysis was applied to 400 patients
treated in the first line with IFN-α; this restriction of inclusion criteria has minimized the heterogeneity
determined by previous treatments. The prognostic stratification criteria were unmodified, except
for the substitution of the factor “no nephrectomy”, with the factor “time period elapsed between the
diagnosis and the immunological treatment less than one year” [41] (Figure 1).
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Figure 1. MSKCC Model (Motzer et al.) and International Metastatic RCC Database Consortium (IMDC)
Model (Heng et al.): risk categories and relative median survivals in renal cell carcinoma [13,40–42].
The color code represents the presence of a given prognostic factors for each model: PS, Hb, LDH,
corrected Ca, time from diagnosis to treatment (red) for MSKCC model; PS, Hb, corrected Ca, time from
diagnosis to treatment, NE, PLT (green) for IMDC model.
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Subsequently, Heng et al., in a series of 645 patients with advanced renal cell carcinoma, identified
six prognostic factors significantly related to a worse prognosis (IMDC, or Heng model). This system
derives from a retrospective analysis conducted on patients with metastatic renal cell carcinoma treated
with sunitinib, sorafenib or bevacizumab + interferon alfa-2a. Patients who had received a first line of
treatment with cytokines and VEGF/VEGFR inhibitors as second-line treatment were also included
in the analysis. Six prognostic factors have been identified: Karnofsky PS, low hemoglobin level,
high corrected serum calcium, period from diagnosis to treatment < 1-year, high absolute neutrophil
count, and high platelet count. Subjects were divided into different subgroups according to clinical
risk: favorable (n = 157), for whom the median overall survival (OS) was 43.2 months and the 2-year
OS was 75%; intermediate (n = 440), characterized by a median OS was 22.5 months and the 2-year OS
was 53%; poor risk (n = 252) in which the median OS was 7.8 months and the 2-year OS was 7% [13,42]
(Figure 1).

3. New Insights in Prognostic and Predictive Biomarkers Stratification

3.1. From the Cytogenetics to the Mutational Landscape of RCC

Despite the considerable efforts made to stratify patients from a prognostic standpoint by using
clinical criteria, efficient prognosticators for characterization represent an unmet medical need, especially
when considering the plethora of new immunomodulatory and anti-angiogenic drugs available to date.
Cytogenetics pioneered the molecular investigation of patient stratification, based on Xp11.2 translocation
and deletion or chromosomal aberration on 3p and 14 in RCC-impacted clinical outcomes [43–45];
the incidence of Xp11.2 translocation is very low, but should be searched for systematically in young
patients [46]. Chromosome 3 harbors several putative oncogenes and oncosuppressors, the biological
relevance of which is highlighted by von Hippel-Lindau(VHL)/HIF-1α axis, PBRM1, BAP1, SETD2
prognostic role [16,45,47–49]. Furthermore, numerous chromosome alterations in terms of chromosome
gain or loss (i.e., gain of 7q, loss of 9p, 9q and 14q) have been highlighted and associated with worse
survival (p < 0.001), with a prognostic but not predictive role [50].

Next, several novel biomarkers are currently being evaluated to assess the prognostic and
predictive value for different response of renal malignancies treated with antiangiogenic-TKI and
immunotherapy. Molecular markers can be classified according to their physiological location into
tissue and soluble factors [51]. Among the above-mentioned traditional histological features, carbonic
anhydrase IX (CaIX) [52], CXCR4 [53,54], HIF-1α and HIF-2α [55] have been reported to predict response
to sorafenib or sunitinib as well as improved progression-free survival (PFS), despite no consistent
impact on OS being reported. Specifically, tumor shrinkage gained by sorafenib treatment significantly
differed between CaIXhigh vs. CaIXlow cases (−13% vs. +9%) [52]. Moreover, D’alterio et al. and
Guo et al. independently revealed CXCR4 expression level to be significantly correlated to sunitinib
response and improved PFS in patients treated with sorafenib, respectively (median PFS 20 vs.
6 months, in CXCR4low/high, p = 0.038) [53,54]. Furthermore, patients’ stratification—according to
HIF-1α expression level—was also able to predict improved PFS in the HIF-1αhigh over the HIF-1αlow

sunitinib-treated-subgroup (42.0 weeks vs. 30.4, respectively, p = 0.034) [56].
Furthermore, PD-L1 expression in tumor cells and in tumor-infiltrating immune cells is associated

with poor clinical outcome (cancer-specific death, p < 0.05) [57], without a predictive role of response to
cabozantinib and axitinib plus anti-PD1/PD-L1 [4,58–61]. Nevertheless, available data are still debated,
since interesting results showed a clinical value in predicting response to ipilimumab combined with
nivolumab treatment [9].

The assessment of the soluble factors evaluation has also been extensively investigated in the
prognostic stratification attempts, uncovering VEGF/VEGFR, LDH, IL-6, IL-8, osteopontin (OPN),
HGF and TIMP1 to be significant drivers of a patient’s prognosis and response to therapy [62–65].
High serum VEGF levels reflected an aggressive tumor biology and kept an independent prognostic
value in a multivariate analyses including MSKCC score and ECOG PS, while being able to predict
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a better clinical outcome over the unstratified population (p = 0.015) [66]. Low baseline levels of
sVEGFR3 and VEGF-C were also predictive of improved PFS upon sunitinib treatment. (median PSF
36.7 weeks and 19.4 weeks in sVEGFR 3low/high, respectively; moreover, the median PSF was 46.1 weeks
and 21.9 weeks in VEGF-Clow/high patients, respectively [62]. Next, IL-6, osteopontin, and TIMP-1 were
integrated in a prognostic model including selected clinical variables and showing higher prognostic
accuracy than IMDC model (concordance-index 0.75 vs. 0.67, respectively) [65]. Ancillary, emerging
evidences uncovered nucleotide polymorphisms (SNPs) of IL-8, HIF-1α and VEGF axes to significantly
impact the therapeutic outcome in RCC [67,68] as in several TKI sensitive tumors [69–71]; however,
no validation has been achieved in statistically powered clinical studies [55,72].

A recent report highlighted the emerging role played by non-coding RNA, such as miRNA in
RCC; in the frame of this thinking, clinically and prognostically relevant RCC subgroups were reflected
by distinctive miR expression levels [73–76]. For example, Heinzelmann and colleagues identified
a signature, including miR-451, miR-221 and miR-26a, which separated between metastatic and
non-metastatic clear cell RCC [77]. Functionally, miRs orchestrate crucial steps in immunosurveillance
and modulate cancer immune checkpoints by influencing cells of the immune system and tumor
cells [78,79]. In RCC, miRs were shown to regulate HLA-G [80] and PD-L1 expression [81]. Additionally,
there is a growing body of literature highlighting the prominent role of miRs in angiogenesis-related
signaling [76,82–84]. For instance, miR-195 and miR-221 regulate the expression of VEGFR2 in various
tissues, including RCC [85–89]. Accordingly, miR-221 expression was part of signatures predicting the
response of RCC patients towards TKI/anti-angiogenic therapy in two independent studies [87,90].

Evidence from tissue and circulating pro-angiogenic factors matches with familial VHL syndrome
disease-phenotype: hypoxia-inducible factors overactivation constitutes a fundamental proof of
principle in hereditary clear-cell RCC (ccRCC), but also elicited comprehensive genomic characterization
of sporadic tumors, by focusing on pro-angiogenic mechanisms. In ccRCC, decreased VHL activity
correlated with enhanced HIF-1α expression, as well as with the consequent hyperactivation of VEGF,
PDGF, TGF-α, thus leading to increased PI3-K/PKB/mTOR signaling, and tumor progression [91–93].
Undoubtably, the biological knowledge related to VHL pathway-driven investigation inspired novel
therapeutic windows [94,95]. However, several data and meta-analyses revealed that VHL gene
alteration holds neither prognostic, nor predictive value in subjects suffering from ccRCC [91,96].

The dismal impact on clinical outcome exerted by VHL per se can likely also be explained by the
complex genomic architecture driving the malignant phenotype of RCC. Indeed, several additional
genetic alterations were also frequent in ccRCC, such as somatic mutation of chromatin remodeling
genes including PBRM1, SETD2 and BAP1 (38%, 13% and 11% of cases, respectively), mutation of
PI3K–AKT–mTOR pathway genes (occurring in 16% of patients) comprising PTEN, MTOR and PIK3CA,
loss of CDKN2A, and mutation of TP53 (16.2% and 2.6%, of subjects, respectively) [16]. CDKN2A loss,
BAP-1 and TP53 mutation are associated with poorer survival in ccRCC. The poor prognostic role of
CDKN2A loss has also been confirmed in papillary and chromophobe RCC histological subtypes [16].
Conversely, PBRM1 loss-of-function mutations correlated with less aggressive behavior and with
better PFS and OS in advanced patients [97–99]. In a retrospective study, Kapur et al. revealed
PBRM1 to be significantly predictive for improved median OS (10.6 vs. 4.6 years) when compared
to BAP1 mutational status. Consistently, data from TCGA confirmed the UTSW cohort by showing
median OS of 5.4 and 1.9 years for PBRM1 vs. BAP1 mutated cases, respectively [98]. Next, genomic
annotation-model based uncovered the independent prognostic value harbored by any TP53, BAP1
and PBRM1 mutation to be relevant in improving the MSKCC model in patients treated with first-line
TKI [100]. Likewise, the IMmotion150 trial, which compared, in a three-arm fashion, sunitinib over
atezolizumab monotherapy and atezolizumab plus bevacizumab in treatment-naive RCC, revealed
PBRM1 mutations to be correlated with improved survival in the sunitinib arm. Additionally, the ICI
response prediction to anti-PD1 identified by PBRM1 mutational status apparently parallels the
behavior reported in TKI-treated patients [97], warranting further statistically powered trials aimed to
clarify the predictive value of PBRM1 [25].
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3.2. Molecular Classification

Gene expression profile parallels genetic and genomic alterations and impacts the clinical outcome.
The mRNA expression patterns differ among major histological subtypes as well as among each RCC
subtype. Proteomics-based subtyping of ccRCC, either according to Brannon et al. (two clusters,
ccA and ccB) [101], Chen et al. (three clusters, CC–e.1, CC–e.2, CC–e.3) [102], or KIRC analysis
(four clusters m1–m4) [103] consistently deconvolute the biologic taxonomy of disease phenotype.
Moreover, the combination of the singular subtypes can dissect three different clinical behaviors: (1)
good prognosis group (cluster ccA, CC–e.2, and m1), involved chromatin modifier genes mutations,
such as PBRM1; (2) poor prognosis group (cluster ccB, CC–e.3, m3), associated with higher expression of
CDKN2A and hypoxia-related genes, chromatin remodeling genes mutation including SETD2 or BAP1,
PI3K/AKT/mTOR pathway genes mutations, epithelial–mesenchymal transition, hypermethylation, and
a metabolic shift with higher glutathione and dipeptide levels; (3) intermediate prognosis group (cluster
3, CC–e.1, m2, and m4) associated with BAP1 mutations and base-excision repair [55]. Additionally, data
obtained from 942 surgical series pinpoint a molecular signature consisting of 16 genes that could predict
post-surgery relapse and could be translated into clinical trials [104]. Unsupervised hierarchical cluster
analysis identified different biological pathways, including vascular, cell growth or division, immune
response, and inflammation phenotypes. In line with previous data, vascular and immune response
phenotypes were associated with a better outcome, whereas higher expression of proliferation and
differentiation genes and markers associated with inflammatory responses were associated with a worse
outcome [104]. Overall, it is worth highlighting that all the above-mentioned data were generated by
analyzing prognostic implications obtained from non-metastatic settings. Conversely, Beuselinck et al.
performed a multi-omics analysis and identified four molecular tumor subtypes able to predict clinical
outcome and response to sunitinib in metastatic ccRCC: ccrcc1 (“c-myc-up”) and ccrcc4 (“c-myc-up
and immune-up”) characterized by the upregulation of MYC targets and shorter PFS, OS and poorer
response to sunitinib; ccrcc2 (“classical”) and ccrcc3 (“normal-like”) with a higher expression of the
pro-angiogenic HIF-VEGF-VEGFR-pathway, longer OS and better TKI response. Characteristically,
the ccrcc4 subtype had a strong inflammation, BAP1 mutation, sarcomatoid dedifferentiation and
decreased angiogenesis dependency, and significantly poor survival and response to sunitinib and
pazopanib [105,106]. The four molecular subtypes could explain the different outcome in the IMDC
risk group. The IMDC good risk group was enriched for the ccrcc2 subtype and higher angioscore;
conversely, the IMDC poor risk group was enriched for the ccrcc4 subtype and lower angioscore.
Nevertheless, no correlation was found in the immune score across IMDC risk groups [107]. Given
that the existence of an angiogenesis-addicted, and immune-inflamed phenotypes seems to correlate
with the presence of peculiar genomic signatures [108], it is tempting to speculate an ancillary role
played by specific mutated genes. Remarkably, PBRM1 mutational status and boosted angiogenesis in
ccrcc2–3 seem to have more interactions among themselves than would be expected for a random set of
molecular interactions [26,108]. The different clinical outcome obtained in sunitinib-treated patients
compared to avelumab alone or in combination with bevacizumab remains to be fully elucidated, and
might be explained by an underlying angiogenesis-driven mechanism in this subgroup over PBRM1
wild type phenotype [25].

In a comprehensive interrogation of available datasets carried out by Hakimi et al., four clusters
were also identified, shedding more light on the peculiar features of the tumor microenvironment (TME)
and substantially extending the insights regarding the role of angiogenesis signatures in predicting
TKI response. Specifically, this analysis highlighted the role of macrophages fingerprint within the
TME and uncovered a putative angiogenesishigh macrophageslow signature to be one fundamental
determinant predicting prognosis and, likely, impacting response to TKI [26]. This piece of evidence
might support clinical decision while selecting approaches based on mono- vs. combination-therapy
and anti-angiogenesis vs. ICI-inhibitors based approaches, also pinpointing the unexplored efficacy
of CSFR1-targeting [26]. These data need to be confirmed in appropriately designed studies to be
translated into clinical practice.
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Collectively, the complex taxonomy behind RCC recapitulates evidences already validated in
several solid [109,110] and haematological [111–114] malignancies, from the emerging role of the tumor
microenvironment standpoint [115,116]: in patient clinical outcome prediction, inspired non-invasive
evaluation aimed to picture the impact of cancer associated bystanders, such as circulating and
cancer-associated stromal cells [117], like fibroblast [118] and endothelial cells (EC) [119]. This phenotype
mirrors the behavior of several angiogenesis-addicted cancers [120–124], in which laboratory and
angiogenesis-markers [63,125] related to the VHL [91] and mTOR (mammalian target of rapamycin)
pathway [92] are also shared.

4. Therapeutic Window Driven by Angiogenesis and the Immune System Targeting
Current Challenges

The treatment scenario of mRCC has largely evolved in recent years, translating into an outcome
improvement achieved by targeting VEGF/VEGFR pathways (bevacizumab, sorafenib, sunitinib,
pazopanib, axitinib, cabozantinib and lenvatinib) [66,126–131], mTOR signaling (everolimus and
temsirolimus) [132,133] and immunocheckpoint inhibitors comprising anti PD1/PD-L1 (nivolumab,
pembrolizumab, avelumab, atezolizumab) [11,59–61] and anti-CTLA4 (ipilimumab) [134] alone or in
combination therapies (Figure 2).
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* Only EMA approval, # Only FDA approval.

Due to the dynamic plethora of therapeutic options available to date, it is critical to identify
criteria driving personalized approaches. Indeed, real-life clinical practice faces the significant
challenge of patient selection by tailoring a TKI- vs. ICI-based and mono- vs. combination-therapeutic
strategy [55,135]. Currently, besides the obvious impact of clinical individual risk profiling and
comorbidities potentially influencing the safety issues, the single decision-making tool is represented
by the risk stratification considered by the regulatory agencies.
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Intermediate and high-risk might warrant a cabozantinib-containing regimen according to the
CABOSUN study [4] that evaluated only this setting of patients. Cabozantinib, as a small molecule
halting several tyrosine kinase receptors such as VEGFR-2, MET and AXL, as well as other potentially
relevant kinases including RET, KIT, and FLT3, has been evaluated in the CABOSUN phase II multicenter
study. In total, 157 subjects with intermediate/high risk stratified by Heng profiling were randomized to
receive cabozantinib or sunitinib [4,136,137]. The CABOSUN trial met the primary end-point, showing
improved PFS in the experimental arm (median PFS 8.2 months vs. 5.6 months with cabozantinib over
sunitinib, respectively, supporting cabozantinib as a potential first-line treatment option for patients
with advanced ccRCC of intermediate or poor risk [138]. Cabozantinib has been uncovered to also be
effective in metastatic non-clear RCC in a retrospective cohort study investigating naïve and refractory
cancers and all IMDC model risk groups. The median PFS was 7.0 months, and median OS was
12.0 months [139].

The combination study of nivolumab with ipilimumab (CheckMate-214 study) including all-comers
showed an ICI benefit in the intermediate/high-risk population only, apparently with a detrimental
effect in low-risk patients, where sunitinib conferred an improved clinical outcome [9,134]. The phase 3
trial included 847 patients with untreated advanced RCC who were randomly assigned to receive
either nivolumab in combination with ipilimumab, or sunitinib. In the latest update, presented at 2020
Genitourinary Cancers Symposium at median 42 months of follow-up, the combination immunotherapy
continued to be associated with improved OS and PFS compared to sunitinib arm (median 47.0 vs.
26.6, and 12 vs. 8.3 months, respectively, and 42-month rates of 52% versus 39%, and 35% versus 19%,
respectively). PFS curves plateaued after 30 months at around 35% with nivolumab plus ipilimumab.
An exploratory efficacy analysis restricted to the 249 favorable-risk participants established sunitinib to
be more active when compared to ICI in this patient subset, gaining a median PFS of 27.7 vs. 17.8 months
and ORRs of 54% vs. 29% [140].

However, the clinical and pathological features not entirely mirroring the complex biology of
the tumor should be adapted to the novel agent’s era. Specifically, Heng criteria [13] and prognostic
factors were developed to inform patients about their prognosis and in order to compare the results
of different trials [141]. Conversely, such stratification tools are not expected to perform efficiently
in therapeutic strategy selection. The Checkmate 214 study represented a paradigm shift, with the
potential to picture and weigh the single prognostic factors quantity over the global additive effect on
the clinical outcome [9,134]. Moreover, the platelet count and the calcium levels had a more significant
impact than was usually observed [142].

The recently published data regarding the combination of anti-angiogenic and anti-PD1 treatment
(axitinib in combination with pembrolizumab [59] or avelumab [60]) compared to sunitinib demonstrated
a benefit from the combination across the population, regardless of risk class and PD-L1 expression.

In the phase III KEYNOTE-426 study, the majority of patients displayed intermediate or poor risk
disease as assessed by IMDC criteria and sarcomatoid features in 18% of the patients. PFS was 15.1 and
11.1 months in the pembrolizumab/axitinib and in the sunitinib group, respectively. Pembrolizumab
plus axitinib demonstrated effectiveness and good safety for patients with clear cell mRCC, with an
impressive 59% objective response rate.

The Javelin renal 101 study dichotomized patients into two classes—PD-L1positive/negative

—choosing immunohistochemistry expression as class boundary and by declaring as co-primary
outcome OS and PFS assessment in PD-L1positive. Avelumab/axitinib performed better than sunitinib in
terms of both PFS and ORR, regardless of PD-L1 expression [60]. Conversely, a trend of enhanced efficacy
within the PD-L1positive subgroup was observed in the atezolizumab plus bevacizumab arm compared
to sunitinib in the IMmotion151 trial (median PFS 11.2 vs. 7.7 months, respectively; p = 0.0217) [61].
Preliminary results of a new combination of TKI (cabozantinib) plus anti-PD1 (nivolumab) promise a
clinically meaningful benefit (NCT03141177) and warrants further investigation regarding the chance
of anti-angiogenic strategies combined to ICI. Additional information aiming to clarify whether this
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approach might benefit as pure synergic strategy or by intercepting a broader disease spectrum
irrespective of patients’ selection remains as-of-yet unknown.

Collectively, evidence generated by the above-mentioned trials uncovered neither the risk class
nor the PD-L1 expression as being efficient in predicting the response to therapy. Thus, several omics
attempts retrospectively analyzed the available data. Nonetheless, as a first in class prospective study,
the IMmotion150 phase II emphasized the translational role of TME deconvolution at the transcriptomic
level, suggesting that the outcome prediction with anti-angiogenic drugs and ICI is applicable upfront
in mRCC [25]. In detail, a gene expression profiling fingerprint has been proposed according to different
phenotypes, clustered using expression ranks boundaries of pro-angiogenic, pre-existing immune-
and myeloid tolerogenic-associated molecular subgroups [25]. Consequently, as expected, angiogenic
blocking by sunitinib was highly active in AngiogenesisHigh patients, whilst atezolizumab alone seems
to halt tumor activity in immunogenic cancers and dismal myeloid inflammation (TeffHigh MyeloidLow).
Regarding the combination of ICI plus sunitinib, although the authors comprehensively demonstrated
a direct impact of immune- and inflamed-infiltration (TeffHigh MyeloidHigh) [25], it is still debated
whether combining anti-angiogenic and immunological checkpoint inhibitors without proper selection,
more than what would be necessary, constitutes a synergistic strategy [143]. Nonetheless, robust and
compelling preclinical [28,143] and clinical [26] evidence supports the biological ecosystem dissection
as the future driver of patient selection for choosing candidates among ICI/anti-angiogenic strategies:
different biological RCC behaviors pinpoints the tight correlation existing by intermediate/high risk
profile, tumor angiogenesis and indirect immune-tolerogenic milieu. The roadblocks in standardizing
biomarkers in clinics are due to the lack of data able to deconvolute RCC biological characteristics
derived from prospective studies. Moreover, additional caveats restraining the real-life translation
of the biological RCC taxonomy are constituted by the patient population heterogeneity and by the
absence of a clinical stratification model accounting for next-generation immune-targeted therapy.
Statistically powered clinical studies are expected to be carried out, aimed at further validating the
promising pioneering results [144]. State-of-the art molecular dissection of RCC subtypes should guide
clinical trials’ designs, in order to efficiently tailor the best therapeutic option upfront. An Achilles’
heel of the modern approach proposed might be the applicability of changing clinical tools; however,
the rational and efficient use of the novel agents available would also prevent the inevitable financial
toxicity of the integrated stepwise RCC management. These data will be more than a determinant in a
dynamic evolving sequential treatment strategy, thereby deeply impacting further therapy. Details from
the most recent clinical trials are summarized in Table 1.
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Table 1. Phase II/III trials of novel therapeutic approaches vs. Sunitinib for untreated patients with metastatic renal cell carcinoma. PFS= progression free survival;
OS = overall survival; ORR = overall response rate; CR = complete response; AE = adverse events; NA = not available; NR = not reached [59–61,136,140].

Cabozantinib (n = 79)
vs. Sunitinib (n = 78)

CABOSUN

Nivolumab +
Ipilimumab (n = 550)

vs. Sunitinib (n = 546)
CheckMate 214

Pembrolizumab +
Axitinib (n = 432)

vs. Sunitinib (n = 429)
KEYNOTE 426

Avelumab +
Axitinib (n = 442)

vs. Sunitinib (n = 444)
JAVELIN Renal 101

Atezolizumab + Bevacizumab
(n = 454)

vs. Sunitinib (n = 461)
IMmotion 151

IMDC Score
Favorable − 23% 32% 21% 20%

Intermediate 81% 61% 55% 61% 69%
Poor 19% 17% 13% 16% 12%

PD-L1 expression ≥ 1% 23% 24% 60.5% 63.2% 40%

Primary end-point PFS OS, PFS, ORR (intermediate + poor risk) OS, PFS (ITT) PFS, OS (PD-L1+) PFS (PD-L1+), OS (ITT)
Secondary end-point OS, ORR OS, PFS, ORR (ITT) ORR PFS, OS (ITT), ORR PFS (ITT), OS (PD-L1+), ORR

Median follow-up (months) 34.5 months 42.0 months 12.8 months 9.9 months (Av. + Ax.)
8.4 months (Sun.)

15.0 months for PFS
24.0 months for OS

Median PFS (months)
Experimental arm vs. Sunitinib (ITT) 8.6 vs. 5.3 months 12.5 vs. 12.3 months 15.1 vs. 11.1 months 13.8 vs. 8.4 months 11.2 vs. 8.4 months

Experimental arm vs. Sunitinib (other population) NA 12.0 vs. 8.3 months
(intermediate + poor risk)

15.3 vs. 8.9 months
(PD-L1+)

13.8 vs. 7.2 months
(PD-L1+)

11.2 vs. 7.7 months
(PD-L1+)

Median OS (months)
Experimental arm vs. Sunitinib (ITT) 26.6 vs. 21.2 months NR vs. 38.4 months NR NR 33.6 vs. 34.9 months

Experimental arm vs. Sunitinib (other population) NA 47.0 vs. 26.6 months
(intermediate + poor risk) NA NR 34.0 vs. 32.7 months

(PD-L1+)

ORR (%)
Experimental arm vs. Sunitinib (ITT) 20% vs. 9% 39% vs. 33% 59.3% vs. 35.7% 51.4% vs. 25.7% 37% vs. 33%

Experimental arm vs. Sunitinib (other population) NA 42% vs. 26%
(intermediate + poor risk) NA 55.2% vs. 25.5%

(PD-L1+) 43% vs. 35% (PD-L1+)

CR (%)
Experimental arm vs. Sunitinib (ITT) 0.8% vs. 0% 11% vs. 2% 5.8% vs. 1.9% 3.4% vs. 1.8% 5% vs. 2%

Experimental arm vs. Sunitinib (other population) NA 10% vs. 1%
(intermediate + poor risk) NA 4.4% vs. 2.1

(PD-L1+)
9% vs. 4%
(PD-L1+)

Grade ≥ 3 AEs
Experimental arm vs. Sunitinib 68% vs. 65% 46% vs. 63% 62.9% vs. 58.1% 71.2% vs. 71.5% 40% vs. 54%
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5. Conclusions

We are currently entering the third era of mRCC therapy with the challenging aim of combining
immune–immune and immune–VEGFR-TKI, which is a direct portrait of the peculiar underlying
pathophysiology of disease, being dependent on angiogenesis and the close connection between cancer
cells and the immune system. The lack of direct comparisons, as well as different study designs
and patient stratification, considered as major limits could also represent a caveat in order to better
tailor clinical decisions. Nonetheless, though prognostication is mandatory, biological correlates
are highly needed. Using immunotherapy, it is mandatory to design clinical trials with a robust
immunological background.
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