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Abstract
1.	 Spring	mowing	in	May	and	June	is	one	of	the	main	causes	of	mortality	of	roe	deer	

fawns in agricultural regions. Knowing the exact birth distribution of fawns is 
important to guide farmers in their pre- mowing precautions to avoid fawn deaths.

2. Wildlife volunteers searching fields prior to mowing can act as citizen scientists by 
producing data sets of rescued fawns and their approximate age at find. However, 
due to weather- dependent searches, the corresponding birth distributions can be 
highly skewed. We simulated virtual field data to examine the shortcomings of 
such data sources and introduced two algorithms for reconstructing reliable birth 
distribution parameters (mean and standard deviation) based on skewed samples.

3. We found that weather- dependent search data biased the calculated means and 
standard	deviations	by	up	to	14	and	5 days,	respectively.	However,	the	use	of	the	
proposed	advanced	algorithms	 (Grid	Search	and	Machine	Learning)	 resulted	 in	
better estimates of the sample means and standard deviations by reducing the 
root- mean- square error by 65% and 80% respectively. Furthermore, the Grid 
Search algorithm was able to capture birth distribution parameters based on real 
citizen science data in Bavaria, Germany, from 2021, which are close to the results 
of more systematic samples of the same year.

4. The simulation exercise highlighted the shortcomings and discrepancies of using 
non- probabilistic samples, for example on the occasion of mowing activities, to 
study demographic parameters compared to the true simulated distribution. Yet, 
the proposed algorithms can address these drawbacks and potentially turn citizen 
science data into an important data source for wildlife studies. This could ulti-
mately help reduce wildlife losses during the mowing season by better knowing 
the distribution of births in a region.
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1  |  INTRODUC TION

In temperate regions with intensive agriculture, spring mowing 
in	May	and	 June	 forms	a	great	danger	 to	many	 species	 inhabiting	
agricultural environments such as ground- nesting bird species like 
Corncrakes Crex crex (Tyler et al., 1998), pheasants (Deák et al., 2021) 
or grey partridge Perdix perdix (Kittler, 1979), leverets of brown hare 
Lepus europaeus	 (Kałuziński	&	Pielowski,	1976) as well as roe deer 
fawns Capreolus capreolus L. (Jarnemo, 2002;	 Kałuziński,	 1982; 
Kittler, 1979). Particularly for roe deer fawns, mowing is one of 
the main causes of mortality. Roe deer fawns follow a hiding strat-
egy	 for	up	 to	2 months	 (Linnell,	1994) to protect themselves from 
predators and stay mostly hidden and secluded from their mothers 
(Jarnemo, 2004; Kurt, 1968; Lent, 1974). Therefore, particularly 
grassland and meadows are preferred bedding sites for roe deer due 
to their high seclusion and food abundance (Christen et al., 2018; 
Linnell et al., 1999, 2004; Panzacchi et al., 2010). Concurrent with 
parturition and lactation periods of roe deer, farmers begin with the 
first	hay	cut,	usually	in	May,	when	grass	protein	content	is	at	its	high-
est. Due to the fawns' native instinct to stay hidden, the animals 
are at great risk from approaching machinery and many get killed 
(Jarnemo, 2002; Linnell, 1994). Jarnemo (2002) estimated for south 
central	 Sweden	 that	 over	 3 years	 about	 31%	 (n = 54)	 of	 new-	born	
fawns are killed by mowing, while Kittler (1979) approximated 14.5% 
(n = 3755)	of	the	game	taken	in	North-	Rhine	Westphalia	is	lost	due	
to mowing and Rehnus and Reimoser (2014) recorded that 19.5% 
of 930 reported deaths of marked fawns can be related to mow-
ing activities in Switzerland. Not only in terms of wildlife welfare 
and conservation but also from an economic point of view, reducing 
mowing death is desirable as undetected animal carcasses can con-
taminate fodder silage for cattle (Driehuis et al., 2018; Israel, 2011; 
Jarnemo, 2002;	Moeller	Jr.	&	Puschner,	2007). In order to reduce the 
risk of mowing death of field- dwelling animals, conservational ac-
tions such as delaying mowing or adjusting mowing techniques have 
been found beneficial (Dicks et al., 2020) but are not always practi-
cable. With respect to roe deer, several methods have been tested, 
such as antagonizing animals with scaring devices or searching 
fields before mowing with drones or volunteers (Cukor et al., 2019; 
Israel, 2011; Jarnemo, 2002). Despite high efforts by farmers, hunt-
ers, gamekeepers and volunteers, not all fields can be searched at 
the same time, as the time window for the first mowing of silage or 
hay is often restricted to a few days with favourable weather condi-
tions. Furthermore, the limited knowledge about possible (temporal) 
plasticity of the underlying birth distribution of roe deer fawns and 
its corresponding (spatial) variations make effective and targeted 
searches difficult under climate warming. Particularly, the possible 

plasticity of breeding phenology of roe deer to environmental cues 
or	 climate	 change	 is	 not	 yet	 fully	 understood.	 Although,	 informa-
tion on demography, plasticity, and adaptability to climate change 
are of great interest (Gaillard et al., 2013;	Marchand	 et	 al.,	2021; 
Plard et al., 2013, 2014). For example, synchrony of reproduction 
and variability of peak parturition are thought to be responsive to 
environmental stimuli, but studies have produced conflicting results 
(Gaillard et al., 2013; Hagen et al., 2021; Plard et al., 2013, 2014; 
Rehnus et al., 2020). While Plard et al. (2014) were not able to de-
tect a significant shift in birth timing in response to advancing plant 
phenology in Trois Fontaine, France, a fenced lowland area, Rehnus 
et al. (2020) reported a slight trend towards earlier births across dif-
ferent regions and most elevations in Switzerland and so did Hagen 
et al. (2021) in Baden- Württemberg, Germany, equally a very het-
erogeneous landscape. Hence, only regular (scientific) field survey 
data about parturition timing with high amounts of individuals in dif-
ferent areas and from free- ranging populations can lead to a higher 
validity of results (Rehnus et al., 2018, 2020; Weiser et al., 2020), 
however, these systematic surveys are expensive and thus rare.

In order to overcome this data deficit, observations of wildlife 
volunteers	when	searching	for	fawns	in	May	and	June,	reported	for	
example via online tools, may generate valuable records. However, 
data collected by these wildlife volunteers, like in our study in 
Bavaria, may have some inadequacies due to special circumstances 
of the fawn rescue search, such as non- random and opportunistic 
selection of locations for observations (Brown & Williams, 2019; 
Weiser et al., 2020) and biased sampling dates. While traditional 
study designs attempt to sample regularly, independently and ran-
domly from the true population (structured survey with a probability 
sample design; Conn et al., 2016), wildlife volunteers involved in fawn 
rescue search only on mowing days and consequently, the sample 
dates are confined to those mowing dates. The time window for the 
first grassland harvest is again determined by the optimal quality and 
output of hay for forage along with periods of dry weather (Figure 1; 
Boob et al., 2019). Hence, fawns are searched by occasion and then 
sampled on a few, often consecutive days within a region, deter-
mined by the farmers' choices of mowing. This type of sampling falls 
under a non- probability sampling technique since not all fawns have 
the same probability of being found (Etikan et al., 2016; Fink, 2003). 
Only fawns being already born on the mowing days, young enough 
to be caught and laying in the particular fields are included which 
collates this particular case to convenience sampling. In contrast to 
probability sampling, the probabilities of errors and biases, such as 
temporal truncations (see Figure 1), are not known and the represen-
tatives of the sample cannot be quantified (Leiner, 2016). Therefore, 
inferring moments (population mean μ or standard deviation σ) of a 

F I G U R E  1 Illustrative	plots	of	the	study's	concept:	Comparison	of	the	effects	of	275	simulated	systematic	searches	(light	brown)	and	
275 simulated by occasion searches (blue, confined to mowing dates) on (a) histograms of finds and (b) the reconstructed parturition timing 
and birth date distribution with the assumption that fawns older than 25 cannot be found anymore and age calculation of older fawns is 
error-	prone.	Day	of	the	year	(DOY)	130	in	the	calendar	represents	May	10th.	Red	circles	indicate	days	of	search.	Reconstruction	of	birth	
dates (b) from finds (a) is based on age estimates of the fawns. The dashed line in (b) indicates the likely true distribution (virtual field data) of 
parturition dates.
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distribution that are based on the sample's mean (x̅ ) and sample's 
standard deviation (s) of a non- probability sample can lead to false 
conclusions. Similarly, due to the density of fawns across spring 
and year- by- year variations, a systematic search can also not be ac-
counted for as a true probability sample design but is considered to 
be more reliable.

Some proposals have been made regarding the handling of 
truncated and non- probability sample data, like expanding the con-
venience sample by a smaller probability sample that potentially 
remedies the shortcomings and leads to higher validity (Brus & 
De Gruijter, 2003). Speak et al. (2018) proposed to stratify a con-
venience sample by known categories like land cover types, while 
Elliott (2009) suggested pseudo- weights to expand a probability 
sample	 by	 a	 non-	probability	 sample.	 Most	 research	 concentrates	
on examining the effects of non- probabilistic sampling within an-
imal abundance and spatial distribution studies (Conn et al., 2017; 
Dambly et al., 2021; Weiser et al., 2020).

However, biases introduced by the time window of by- occasion 
observations are less in focus. Inferring precise information about 
breeding	 phenology	 poses	 unforeseen	 challenges	 (Moussus	
et al., 2010). Caughley and Caughley (1974) proposed probit- analysis 
to estimate the median birth date in impalas Aepyceros melampus by 
monitoring the ratio of young to females at different times. Johnson 
et al. (2004) dealt with issues of coarse scales in measurements and 
came up with a generalization of Sheppard's correction to predict 
the breeding variance of Dall's sheep Ovis dalli.

Tackling the knowledge gaps regarding phenological asynchrony 
in roe deer and spring green- up introduced by climate change, we 
introduce novel methods to infer reliable demographic birth param-
eters. This knowledge about the exact birth distribution of roe deer 
fawns in a region can have practical implications for the farmers and 
wildlife managers in terms of intensified searches during the peak 
period of breeding. In principle, the methods could be also of value 
to any other opportunistic environmental sampling, for example by 
citizen scientists.

In this paper, we study how well we can estimate the birth distri-
bution of roe deer when the fawns are found based on a convenience 
sample driven by mowing dates and thus indirectly by weather con-
ditions (see Figure 1). We develop and test algorithms to counteract 
systematic omissions resulting from convenience sampling. Further, 
we apply the proposed methods to field data and citizen science data 
from Bavaria, Germany in 2021. Finally, we evaluate the benefits and 
drawbacks of integrating citizen science data with their inhered bi-
ases and test if flowering dates of meadow foxtail Alopecurus praten-
sis could add value to birth distribution approximations.

2  |  MATERIAL S AND METHODS

The underlying data for our study are 2500 virtual fawn seasons 
with simulated distributions of fawn births with varying but known 
mean and standard deviation, upon which we sampled parturition 
events biased by various aspects of convenience sampling (see 

Section 2.1). We compared two algorithms to infer better estimates 
of the first two moments (population's mean (μ) and population's 
standard deviation (σ)) of these birth distributions. First, an itera-
tive approach was applied where we set up a Grid Search seeking 
the first two moments that fit the field data best (see Section 2.2). 
Second,	we	used	machine	learning	algorithms	(ML)	to	infer	the	mean	
with Support Vector Regression (SVR) and standard deviation with 
Gradient Boosting Regression (GBR; see Section 2.3). We compared 
our estimates to the true simulated moments as well as to the cal-
culated sample's mean (x̅ )	 and	 sample's	 standard	 deviation	 (s).	 All	
computations were performed in Python 3.8.6 (see code Kauffert 
et al., 2023a).	 Algorithms	 were	 tested	 on	 multiple	 simulated	 test	
data (see Section 2.1) as well as on real data from a case study in 
Bavaria, Germany in 2021 (see Section 2.4 and fawn data: Kauffert 
et al., 2023b). We also checked whether plant phenological data may 
support fawn birth estimates (see Section 2.5).

2.1  |  Simulating virtual field data

We generated virtual field data accounting for different mow-
ing times as well as varying parameters of birth distributions. 
Simulations included in total 2500 fawn seasons varying in the 
mean and standard deviation of a Gaussian distribution of birth 
dates and 23 mowing scenarios. The resulting virtual field data was 
based on the following assumptions (see Table 1). Birth date dis-
tribution characteristics such as the mean or the standard devia-
tion for simulations have been sampled from uniform distributions 
allowing only integer values and their ranges reflected estimated 
published literature values (Ellenberg, 1978; Hagen et al., 2021; 
Linnell	 &	 Andersen,	1998; Raganella- Pelliccioni et al., 2007). We 
used 23 different mowing scenarios which are characterized by 
different	 weather	 regimes	 beginning	 with	 the	 25th	 of	 April	 and	
lasting to the 5th of July (range is within dates of first hay cut ac-
cording	 to	 the	German	Meteorological	 Service	 [DWD:	Deutscher	
Wetterdienst] Bock et al., 2013). Thus, mowing scenarios varied 
in the number of days and the number of consecutive day chunks. 
We evaluated their main effects by highlighting four representa-
tive mowing scenarios which describe (1) early mowing (Day of Year 
(DoY): 124– 130), (2) midway mowing (DoY: 135– 141), (3) late mow-
ing (DoY: 155– 156, 167– 170) and (4) distributed mowing (DoY: 119– 
121, 138– 141, 157– 158).

We also considered the estimated fawn's age and its maximum 
possible	age	at	find.	A	correct	estimation	of	the	fawn's	age	is	chal-
lenging, especially if done by untrained volunteers. Even though the 
fawn's age was determined by attributes of behaviour, appearance 
(colour, coat pattern) and vocalization, age estimation can still be er-
roneous, in particular for older fawns (Rehnus et al., 2018; Stamm 
et al., 2017). However, age estimations can be expected to match 
actual births better if parameters such as weight, hindfoot, body 
length and umbilical cord appearance can be additionally included 
by trained staff (Galli et al., 2008; Sams et al., 1996).	Most	accurate	
age approximations can be yielded by monitoring habitat use and 
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activity rates of GPS- collared mothers in conjunction with the afore-
mentioned	methods	(Marchand	et	al.,	2021).

At	the	age	of	10 days,	 fawns	start	 fleeing	from	an	approaching	
human	with	a	distance	of	less	than	1 m	(Jarnemo,	2002) but are still 
catchable.	However,	fawns	aged	20	to	30 days	are	fleeing	at	a	human	
distance	of	1–	2 m	 (Jarnemo,	2002), hence catching becomes more 
difficult.	Thus,	we	used	25 days	as	an	upper	limit	for	age	that	a	fawn	
can be found and aged appropriately.

To accommodate these restraints for our simulations, we tested 
algorithms based on three scenarios (S1, S2 and S3). Scenarios 1 (S1) 
and	 2	 (S2)	 assumed	 that	 only	 fawns	 younger	 than	 25 days	 can	 be	
found and aged if born before the respective mowing day. This re-
striction may lead to left- truncated birth distributions. In scenario 2, 
we additionally assumed that fawns' age estimations are erroneous 
and depend on age (see Table 1). In contrast, in scenario 3 (S3), we 
did not apply an age estimation error and allowed fawns of any age to 
be found (no maximal age— no left truncation). Hence, S3 represents 
an ideal scenario, whereas S2 presumably represents reality best.

We sampled 500 parturition events from each of the 2500 sim-
ulated virtual field data seasons given the mowing days and the 
aforementioned restrictions and performed a sensitivity analysis by 

increasing the sample size to test the robustness of our results (see 
Figure S1). Probability distributions of the samples (500 parturition 
events) and the virtual field data with the known birth distribution 
were estimated in a non- parametric way by using kernel density es-
timation with a Gaussian kernel.

2.2  |  Grid Search algorithm

Inferring the first two parameters, the mean (μ) and standard devia-
tion (σ), based on a not necessarily normal, truncated sample forms 
a nonlinear inverse problem. Since the possible values of μ and σ 
can be restricted to only a range (e.g. μ must be between DoY: 130 
and 144) due to prior knowledge and the mowing days are given, 
a Grid Search algorithm can be used to exhaustively iterate over 
every possible combination of the selected ranges of μ and σ and 
compare	each	outcome	 to	 the	 sample	 (Menke,	2012). In this way, 
the combination of the first two parameters was reiteratively up-
dated to match the sample best. This kind of procedure is commonly 
used during hyperparameter tuning in machine and deep learning 
algorithms	 to	 find	 the	 best	 parameters	 for	 training	 (Alibrahim	 &	

Parameter V Value Reference

Distribution Gaussian distribution Gaillard et al. (1993), Linnell 
and	Andersen	(1998) and 
Ellenberg (1978)

Mean	birth	date DoY: 130– 144 Mean	143	in	Bavaria	1970s	
(Ellenberg, 1978); mean 143 
in Baden- Wuerttemberg 
(1973– 2019), however, the 
advance of parturition dates 
between	0.16	and	0.33 d/
year (Hagen et al., 2021); 
high variability in Europe 
(Linnell	&	Andersen,	1998)

Standard deviation Days: 5– 12 9.5 days	(Hagen	et	al.,	2021); 
high variability in Europe 
(Linnell	&	Andersen,	1998; 
Raganella- Pelliccioni 
et al., 2007)

Fawns max. age at 
time of finding

S1/S2 25 days Jarnemo (2002)

S3 No age restriction

Age	estimation	error S1/S3 None

S2 Age:	<7 days:	±2; age: 
8–	14 days ± 6,	age:	
>15 days	±5

The age of recently born fawns 
can better be estimated 
than older fawns (Rehnus 
et al., 2018)

Mowing	period DoY: 115– 185 Different combinations of 
mowing regimes, varying in 
length, timing and number 
of consecutive days. Based 
on phenological data from 
the	German	Meteorological	
Service (Deutscher 
Wetterdienst	[DWD];	first	
cut for silage in Germany)

TA B L E  1 Assumptions	in	simulating	
birth distribution and virtual field data 
with three scenarios (S1, S2 and S3) in age 
estimation and maximum age at the time 
of finding.
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Ludwig, 2021). The weakness of common Grid Search algorithms lies 
in the prior determination of parameter ranges and a limited number 
of parameters. Testing many different parameters and/or defining 
broad ranges results in high numbers of possible combinations and 
is	thus	computationally	inefficient	and	time-	consuming	(Alibrahim	&	
Ludwig, 2021).

2.3  |  Machine Learning algorithms

The	second	approach	included	supervised	ML	methods	to	infer	the	
first two parameters of the underlying distribution. Estimations of 
ML	approaches	were	not	only	based	on	the	calculated	birth	date	of	
fawns but also used the fawn's age at the day of find. The composi-
tion of the ages possibly added further information for the models 
to make better predictions by exploiting the relationship between 
birth date distribution and age distribution. The day of birth and 
the corresponding age were zipped together into arrays storing all 
observations of the iteration (Harris et al., 2020). The data set was 
then	split	into	training	(70%)	and	testing	(30%).	ML	was	performed	
with scikit- learn in Python 3.8.6 (Pedregosa et al., 2011). Used and 
presented	 supervised	ML	 algorithms	 were	 selected	 based	 on	 the	
best accuracies of a broad comparison of models and algorithms. 
Estimations of μ were predicted with a Support Vector Regression. 
SVR	 is	 a	 generalization	 of	 the	 popular	 Support	 Vector	 Machines	
(SVM),	which	are	widely	used	in	many	fields	(Awad	&	Khanna,	2015). 
In	contrast	to	classification	problems	(like	in	SVM)	where	the	output	
is restricted to a finite and determined set, the output of regression 
problems (here SVR) is allowed to return a continuous- value output. 

Within	SVM,	an	optimal	hyperplane	 is	fitted	to	the	training	points	
with support vectors (Vapnik et al., 1996). To make this algorithm 
applicable to regression problems, an alternative loss function that 
includes	 a	 distance	measure	 is	 introduced	 to	 the	model	 (Awad	 &	
Khanna, 2015). Gradient Boosting Regression was used to infer the 
standard deviation of the underlying distribution. GBR, and boosted 
regression trees in general, are tree- based methods yielding high 
prediction accuracy by strategically combining and assembling sim-
ple tree models and thus forming an additive regression model (Elith 
et al., 2008; Friedman, 2001). Further, we made use of bagging re-
gressors	to	perform	bootstrapping	on	ML	algorithms	to	improve	ac-
curacy (Breiman, 1996).

2.4  |  Case study

In contrast to our simulated virtual field data, true moments of the 
population are not known for real case studies but are always an 
approximation	of	the	truth	(Moussus	et	al.,	2010). Nonetheless, al-
gorithms are meant to be tested and examined on field data. Thus, 
as a case study, we used data from our own research teams and data 
provided by volunteers and citizen science projects in Bavaria in 
2021 (see Figure 2). For this, we set up an online form (LimeSurvey 
Project Team, 2022) for volunteers to record observations of roe 
deer	 fawns	 in	 Bavaria.	 Additionally,	 we	 used	 data	 from	 an	 estab-
lished	tool	by	the	Bavarian	State	Ministry	of	Food,	Agriculture	and	
Forestry (Wildtierportal— https://www.wildt ierpo rtal.bayern.de/), 
which already had a good reputation and traffic among gamekeep-
ers and hunters. Both forms contained questions about the date of 

F I G U R E  2 Locations	of	fawns	
reported in Bavaria, Germany, in 2021 and 
localisation of study region Oettingen.
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the	find,	whereabouts	as	well	as	features	of	the	fawn.	Mowing	days	
were approximated by periods of dry weather in Bavaria and an in-
creased number of reported fawns. The occurrence of false positive 
observations was neglected since fawns are handled in person by 
volunteers, and there are low chances of confusion between other 
species (Ruiz- Gutierrez et al., 2016).

Altogether,	in	2021,	813	fawns	were	reported	from	which	458	
fawns have been found in association with mowing (from fawn res-
cues), whereas 355 have been found irrespective of mowing (from 
own research teams). Only fawns with sufficient attributes regard-
ing behaviour, appearance (colour, coat pattern) and vocalization 
have been used in analysis to validate age estimations. For better 
validation, the study region of Oettingen was searched intensively 
from	the	end	of	April	to	late	June	2021	(see	Figure 2), producing a 
data set with a high number of observations irrespective of mow-
ing (115/309 on mowing days). This rather randomly selected data 
set provided a good baseline for comparisons of inferred moments 
with	 respect	 and	 irrespective	of	mowing.	Age	estimations	of	 the	
data set in Oettingen can be expected to match actual births better 
since attributes such as weight, hindfoot, body length and umbil-
ical cord appearance extended estimations of a fawn's age (Galli 
et al., 2008; Jullien et al., 1992; Sams et al., 1996).	Additionally,	19	
roe deer females were captured with box and up- net traps, han-
dled and fitted with a Lotek LiteTrack 360 collar (Lotek Wireless, 
Newmarket, Ontario, Canada) in Oettingen between January and 
March	 2021.	 The	 collars	 were	 scheduled	 to	 take	 GPS	 positions	
every	15 min	during	 the	 fawning	season.	Visual	 inspection	of	 the	
transmitted data was carried out daily. We searched for the fawns 
on a frequent basis and as soon as a change in the females' space 
use was visible. The age estimate of the fawns was calculated fol-
lowing a weighted combination of Jullien et al. (1992) and Rehnus 
et al. (2018). Visual appearance was connected to the change of 
female	space-	use	to	determine	the	day	of	birth.	Age	estimation	of	
fawns matching GPS- collard mother does was expected to be the 
most accurate. Therefore, we assumed that the actual birth peak in 
Oettingen should match the mean of the aforementioned data sets 
closely. Ethical standards for capturing and handling females and 
fawns were in agreement with German law (capture permit RUF- 
55.2.2- 2532- 2- 1160- 25 by the government of lower Franconia, 
Germany	[18.11.2020]).

2.5  |  Link to plant phenology

Lastly, we tested if parturition dates can be associated with flower-
ing dates of meadow foxtail across space. It is assumed that birth 
phenology follows Hopkins' Bioclimatic Law (correspondence of 
birth distribution to latitude and elevation), but Peláez et al. (2020) 
also remarked, that parturition seems to be more likely driven by 
phenology than by elevation exclusively. Similar observations were 
made in Norway, where fawns were born on the island of Storfosna 
on	 average	 2 weeks	 earlier	 than	 in	 the	 more	 southern	 county	 of	
Hedmark	 (Linnell	&	Andersen,	1998).	According	 to	 these	 findings,	
we related flowering dates of meadow foxtail from the German 
Meteorological	Service	(DWD)	in	2021	to	our	parturition	dates	and	
sites	as	well	as	elevation	(mean	elevation	of	fawn	locations:	501.3 m,	
standard	deviation:	128.4 m,	SRTM	30 m	resolution).	Flowering	dates	
were provided as an interpolated raster with a spatial resolution of 
1000 m	based	on	phenological	observations	 in	Germany	 (compare	
Yuan et al., 2021). We sampled raster values of interpolated flower-
ing dates of 2021 and elevation to the locations (points) of the found 
fawns. We tested for linear relationships and examined the environ-
mental conditions of the study region in Oettingen to the remaining 
parts in Bavaria.

3  |  RESULTS

3.1  |  Simulation study

The analysis of the 2500 samples of simulated virtual field data sea-
sons (see Section 2.1) clearly indicated that incomplete field data 
would lead to considerable errors when estimating the population's 
mean (μ) and its standard deviation (σ) solely based on the averages 
of the sample. The calculated sample's mean (x̅ ) and sample's stand-
ard deviation (s) diverged substantially from the simulated true μ and 
σ	 with	 a	 root-	mean-	square	 error	 (RMSE)	 of	more	 than	 4.845 days	
for	the	mean	(S1	and	S2)	and	RMSE	of	2.393 days	for	the	standard	
deviation (S1). Only scenario 3 (no age restriction, no age estima-
tion error, thus optimal survey conditions) yielded a slightly smaller 
RMSE	for	the	mean	with	4.389 days	and	for	the	standard	deviation	
with	1.588 days	(Table 2).

RMSE of

S1 S2 S3

Mean
Standard 
deviation Mean

Standard 
deviation Mean

Standard 
deviation

Virtual field data 4.845 2.393 4.845 2.127 4.389 1.588

Grid search 2.731 1.135 2.597 1.155 2.315 0.858

ML 2.158 1.596 2.166 1.647 1.785 1.270

Note:	S1,	S2	and	S3	represent	different	scenarios	of	restrictions:	S1	with	max.	age	of	25 days	and	
no	age	estimation	error,	S2	with	max.	age	of	25 days	and	age	estimation	error,	S3	with	no	age	
restriction and no age estimation error (see Table 1).

TA B L E  2 Root	mean	square	error	
of estimations of mean and standard 
deviation of fawn birth based on 
simulated distributions with 23 mowing 
scenarios (n = 2500).
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For	all	three	simulation	scenarios,	S1–	S3,	Grid	Search	and	ML	al-
gorithms were able to yield better results in estimating μ and σ than 
the respective averaged virtual field samples (see Table 2).

ML	was	superior	concerning	estimations	of	μ of the virtual field 
data, while Grid Search improved the estimations of σ. Further, re-
sults of S2 suggested that an error in age estimation did not nec-
essarily impact the estimation's quality. If fawns of any age were 
allowed to be found (S3), meaning no left truncation, estimations of 
algorithms as well as of averaged field data improved.

Selected examples of our simulation study (Figure 3) under-
lined for one identical mowing scenario (DoY: 128– 133, 161– 162) 
that both assumptions on age estimation error and maximum find 
age	(S1–	S3,	columns),	as	well	as	fitting	algorithms	(Grid	Search,	ML,	
rows) mattered. Grid Search performed slightly better in S1 than 

ML	algorithms	and	estimated	μ to be DoY: 135. The sample's x ̅was 
almost	5 days	earlier.	Estimations	for	σ matched the underlying dis-
tribution closely for Grid Search (σ:	 9),	ML	 algorithms	 (σ: 10) and 
based on the sample (s: 10.5). With imperfect age estimation (S2) 
Grid Search algorithms might deliver too early birth dates, whereas 
ML	algorithms	can	cope	with	 imperfect	age	estimates	and	provide	
better estimates for V2. With respect to V3 (no restrictions), Grid 
Search	was	out	by	1 day	for	the	mean,	while	ML	algorithms	yielded	
very close results for μ as well. The sample's x	̅was	off	by	5.5 days.	
Again,	results	for	σ of Grid Search (σ:	10),	ML	(σ: 10.5) and the recon-
structed sample (s: 9.6) matched the true value closely.

For a better understanding of the impact of specific mow-
ing	scenarios,	RMSEs	of	 representative	scenarios	are	displayed	 in	
Table 3. Representative scenarios that mirror early, midway, late 

F I G U R E  3 Example	for	one	simulated	find	scenario	and	its	reconstructed	parturition	dates	of	found	fawns	and	distribution	moments	
based	on	three	scenarios	of	age	estimation	(S1–	S3)	and	two	algorithms	(Grid	Search,	ML).	All	results	are	based	on	a	specific	simulated	birth	
distribution (μ: 135, σ: 10, solid line) and finds are based on an identical mowing scenario (light grey bars). The reconstructed parturition 
dates (dark grey bars and x	̅and	s	given	in	the	upper	left	corner)	depend	on	the	scenario	of	restrictions:	S1	(a,	d)	with	max.	age	of	25 days	and	
no	age	estimation	error,	S2	(b,	e)	with	max.	age	of	25 days	and	age	estimation	error,	S3	(c,	f)	with	no	age	restriction	and	no	age	estimation	
error (see Table 1). The estimated birth distributions are given as dashed lines (estimates of μ and σ in the upper right corner) and refer to the 
Grid	Search	method	(a–	c)	and	the	ML	method	(d–	f).

TA B L E  3 Root	mean	square	error	of	estimated	distribution	moments	in	comparison	to	simulated	distributions	of	test	data	set	for	four	 
representative mowing scenarios.

RMSE of

S1 S2 S3

Virtual field data Grid Search ML Virtual field data Grid Search ML Virtual field data Grid Search ML

Mean
Standard 
deviation Mean

Standard 
deviation Mean

Standard 
deviation Mean

Standard  
deviation Mean

Standard 
deviation Mean

Standard 
deviation Mean

Standard 
deviation Mean

Standard 
deviation Mean

Standard 
deviation

Early mowing 13.846 4.814 5.628 1.168 4.785 0.944 13.845 4.514 5.449 1.448 4.781 1.131 14.709 4.879 4.877 1.267 4.757 0.783

Midway	mowing 6.603 3.603 3.645 1.405 2.793 1.198 6.603 3.295 3.736 1.560 2.797 1.468 6.733 3.088 4.357 1.349 2.890 1.39

Late mowing 6.355 2.507 3.982 0.729 2.694 1.058 6.358 2.058 4.074 0.865 2.730 1.473 0.425 0.330 0.790 0.525 0.610 0.736

Distributed mowing 2.610 1.196 1.653 0.668 1.751 1.036 2.611 0.952 1.617 0.645 1.758 1.317 4.072 0.992 2.108 0.616 1.466 0.791

Note:	DoYs	of	‘Early’:	124–	130,	DoYs	of	‘Midway’:	135–	141,	DoYs	of	‘Late’:	155,	156,	167,	168,	169,	170;	DoYs	of	‘Distributed’:	119,	120,	121,	138,	 
139, 140, 141, 157, 158.
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or distributed mowing days were selected. Results indicated that 
with distributed mowing across the spring season best results 
were expected (S1 and S2). Early mowing impeded the accuracy of 
fawn	birth	distribution	estimation	most	 (up	to	almost	2 weeks	 for	
the	mean	and	5 days	for	the	standard	deviation).	Midway	and	late	
mowing yielded almost similar results, however, if all fawns can be 
found and aged (no age restriction— S3) the late mowing scenario 
performed by far best. Within this particular case, estimating μ 
and σ solely based on the sample's x̅ and s gave the best results. 
In	most	other	cases	(except	for	distributed	mowing)	ML	algorithms	

yielded the best results in estimating the moments of the underly-
ing distribution.

3.2  |  Case study 2021

For the recorded fawn birth data in 2021 in Bavaria (see Figure 2) 
and the subset for our intensive study region Oettingen in the 
West, Figure 4b,d show the obvious discrepancies between x̅ and 
s of the different sampling designs (sampling confined to mowing 

TA B L E  3 Root	mean	square	error	of	estimated	distribution	moments	in	comparison	to	simulated	distributions	of	test	data	set	for	four	 
representative mowing scenarios.

RMSE of

S1 S2 S3

Virtual field data Grid Search ML Virtual field data Grid Search ML Virtual field data Grid Search ML

Mean
Standard 
deviation Mean

Standard 
deviation Mean

Standard 
deviation Mean

Standard  
deviation Mean

Standard 
deviation Mean

Standard 
deviation Mean

Standard 
deviation Mean

Standard 
deviation Mean

Standard 
deviation

Early mowing 13.846 4.814 5.628 1.168 4.785 0.944 13.845 4.514 5.449 1.448 4.781 1.131 14.709 4.879 4.877 1.267 4.757 0.783

Midway	mowing 6.603 3.603 3.645 1.405 2.793 1.198 6.603 3.295 3.736 1.560 2.797 1.468 6.733 3.088 4.357 1.349 2.890 1.39

Late mowing 6.355 2.507 3.982 0.729 2.694 1.058 6.358 2.058 4.074 0.865 2.730 1.473 0.425 0.330 0.790 0.525 0.610 0.736

Distributed mowing 2.610 1.196 1.653 0.668 1.751 1.036 2.611 0.952 1.617 0.645 1.758 1.317 4.072 0.992 2.108 0.616 1.466 0.791

Note:	DoYs	of	‘Early’:	124–	130,	DoYs	of	‘Midway’:	135–	141,	DoYs	of	‘Late’:	155,	156,	167,	168,	169,	170;	DoYs	of	‘Distributed’:	119,	120,	121,	138,	 
139, 140, 141, 157, 158.

F I G U R E  4 Actual	finds	in	2021	(a,	b)	and	estimated	parturition	dates	of	roe	deer	fawns	(c,	d)	in	Bavaria	(left	column)	and	Oettingen	(right	
column). (a and b): Finds per day confined to mowing (dark cyan) and total finds (light cyan). (c and d): Reconstructed parturition dates based 
on finds confined to mowing (dark red) and based on all finds (light red) with respective x ̅and s. The lines show the estimated distribution 
of	birth	dates	of	the	Grid	Search	algorithms	(black	dot-	dashed)	and	of	the	ML	algorithms	(grey	dashed)	with	respective	estimates	of	μ and σ 
based on parturition dates confined to mowing.
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versus total finds). When calculating x̅ of all fawns found in Bavaria 
in 2021, the x̅ and median parturition date can be approximated 
to	the	135th	day	of	the	year	(15th	May),	while	68%	of	births	took	
place	in	ca.	20.4 days	(standard	deviation = 10.2 days).	Limiting	the	
observations to mowing days, the mean parturition date of the 
sample was later on the 139th day, the median on the 141st and 
the	 standard	 deviation	was	 smaller	 (s = 8.1;	Figure 4a,c).	 A	 simi-
lar but even more distinctive divergence was observed when only 
looking at data from the study region of Oettingen (Figure 4b,d). 
While the mean date of parturition timing was the 132nd day of 
the year (median 134, s: 9.6) when taking all finds into account, the 
mean of parturition timing based on finds confined to mowing was 
over	1 week	later	(x̅ : 140, median: 141) and births were less spread 
out (s: 6.4). The fawns of 19 GPS- collard roe deer females were 
born on average on DoY 131 (median: 132, s: 10.9), which clearly 
underlines that a mowing- only survey in 2021 might have led to 
late birth distribution estimates in comparison to additionally sur-
veying systematically.

We	applied	our	previously	developed	Grid	Search	and	ML	algo-
rithms to the data, which was confined to mowing of Bavaria and 
Oettingen.

The Grid Search algorithm approximated the mean parturition 
date	as	DoY	132	for	the	whole	of	Bavaria,	whereas	the	ML	algorithm	
estimated the mean parturition day to be the 138th. Both estima-
tions were again closer to the mean of all finds (x̅: 134.9; Figure 4c). 
With respect to Oettingen, results showed similar tendencies. Grid 

Search estimates (μ: 133 and σ: 9) were close to the reconstructed 
dates based on all finds in Oettingen (x̅: 132.3 and s: 9.6) and to par-
turition dates of GPS- collard roe deer females (x̅: 131 and s: 10.9), 
whereas	ML	algorithms	estimated	mean	parturition	time	consider-
ably later (μ 139.7 and σ 7.1; Figure 4c,d).

The assessment of roe deer breeding phenology and site- specific 
related plant developmental conditions showed that flowering dates 
of meadow foxtail are more synchronized than parturition dates. 
For the smaller and environmentally more uniform subset region 
Oettingen, flowering and parturition dates were naturally less scat-
tered (Figure 5a). Flowering dates of meadow foxtail and elevation 
at the site showed a significant relationship with parturition dates in 
Bavaria across space, with p = 0.077	 and	p = 0.00114	 respectively,	
with α = 0.1	to	reduce	the	chance	of	Type	2	error	due	to	a	smaller	
sample size compared to Peláez et al. (2020; Figure 5b,c).

4  |  DISCUSSION

The study results demonstrate the adverse effects of estimating 
parameters of roe deer birth distribution when non- probabilistic 
sampling techniques are used. However, the proposed algorithms 
were found to be suitable for obtaining reliable results. Estimations 
of	ML	algorithms	worked	well	when	applied	to	similar	data	compared	
to its training data set. There were no big differences in estima-
tion quality regarding different mowing times, which indicates the 

F I G U R E  5 (a)	Flowering	dates	(DoY)	of	meadow	foxtail	(2021),	estimated	parturition	dates	and	elevation	(m)	in	Bavaria	excluding	
Oettingen) (red) and Oettingen (yellow). Flowering dates of meadow foxtail (b) and elevation (c) against all estimated Bavarian roe deer 
parturition dates (including Oettingen). Flowering dates of (d) meadow foxtail in Bavaria are based on interpolated phenological maps of 
Deutscher	Wetterdienst,	DWD	and	elevation	(e)	based	on	a	DEM	of	SRTM.
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models' satisfactory ability to generalize the data. The Grid Search 
algorithm performed less sharply on the test data set, especially if 
mowing was early, but yielded reasonable results with late mowing 
and better results with distributed mowing scenarios. Our simula-
tions have also examined the effects of erroneous age estimations. 
Even though results in Tables 2 and 3 do not show that age estima-
tion error considerably affected the estimations, this could be due 
to a loose assumption of the age assessment error. We expected the 
RMSE	to	be	higher	with	erroneous	age	estimations	and	additionally	
higher when mowing was late as fawns would be on average older 
when found. The precision of age approximation decreases with ad-
vanced age and is more challenging. Especially if fawns are fleeing, 
estimations are often flawed due to only a glimpse or a very short 
examination of appearance. However, a gradual increase of higher 
errors with later mowing events could not be seen in the data or 
was negligibly low. Even though age estimation error varied with the 
age at which a fawn was found (Table 1), the errors were treated as 
a normal random phenomenon. It must be acknowledged that age 
estimation error could be skewed by guessing fawns' ages either sys-
tematically	older	or	younger.	Again,	this	error	is	hardly	graspable	and	
needs further attention in future work.

As	expected,	when	mowing	days	were	spread	over	a	longer	time	
frame, higher precision of estimates for S1 and S2 were achieved 
(Table 3). Early mowing combined with early searches resulted in 
estimates with the highest errors due to a heavily right- sided trun-
cation. While left truncation due to age restriction was lower (since 
fawns	at	this	time	of	the	season	are	rarely	older	than	25 days),	right	
truncation (fawns have not been born by the day of search) impeded 
the estimations even more. Particularly predominant is this seen in 
S3 where the bias of parameter approximation of the sample is in-
tensified due to more fawns on the left side of the distribution (com-
pare Figure 3).	Nonetheless,	 the	ML	algorithm	was	able	 to	 reduce	
this	RMSE	for	the	mean	(early	mowing	scenario)	by	∼65% (S1 and S2) 
and for the standard deviation by 80% (S1) and 75% (S2).

For late mowing scenarios, however, the left truncation of the 
data considerably impaired estimates (compare late mowing S1– S3 
for which S3 yielded the best results), since fawns that flee or al-
ready follow the mother are not found or correctly aged. However, 
only when mowing was late, S3 provided considerably better results. 
Only then, the algorithms can rely on a sample from the full distribu-
tion. In this particular case, the parameter estimations solely based 
on virtual field data yielded the best results. This illustrates the un-
recoverable error by left truncation in late mowing scenarios of S1 
and S2 in contrast to S3.

Another	bias	within	estimations	of	real-	life	studies	could	be	in-
troduced by neglecting the survival rate of roe deer fawns. Next to 
mowing, roe deer fawns encounter a handful of other threats in their 
first weeks of life. Hypothermia, starvation or disease are less likely 
than predation by red fox Vulpes vulpes in areas with high predator 
abundance	 (Aanes	&	Andersen,	1996; Jarnemo & Liberg, 2005).	A	
long- term study in Sweden with high predator abundance has shown 
that predation risk is lowest shortly after the birth peak and signifi-
cantly highest at both ends of the birth distribution. The majority of 

fawns	that	are	killed	by	a	red	fox	are	younger	than	30 days	and	the	
risk is highest within the first week of life and thereafter declines 
almost linearly (Jarnemo et al., 2004). Thus, our algorithms could 
be affected by a reduced number of very young fawns (<7 days)	
and accordingly misinterprets the age distribution of the sample 
(Gilbert et al., 2014).	Yet,	Aanes	and	Andersen	(1996) and Panzacchi 
et al. (2009) found contrary results regarding habitat fragmenta-
tion, movement, mobility, sex and, age. Thus, the results of other 
studies cannot be readily transferred to other regions without con-
sidering	 predator	 abundance	 or	 landscape	 composition	 (Aanes	 &	
Andersen,	1996; Jarnemo et al., 2004). It is known that red fox abun-
dance and density have increased in many parts of Europe in recent 
decades due to successful rabies vaccination and adaption to urban 
areas	and	human-	modified	environments	(Goszczyński	et	al.,	2008; 
König et al., 2018; Soe et al., 2017). However, due to a knowledge 
gap on the exact red fox densities in Bavaria, predation was not in-
cluded in our simulations. If predation risk within areas is known, 
simulations should be adjusted.

When applying the algorithms in the case study in Bavaria in 
2021, it must be acknowledged that a perfect validation of the meth-
ods cannot be accomplished, since the true distributions are hardly 
measurable	 (Moussus	et	 al.,	2010). Birth distribution in Oettingen 
can be inferred with higher confidence due to sound data from GPS- 
collard animals and a higher portion of random searches in fields and 
forests. Further, the study region of Oettingen forms a small and 
homogeneous area. For the Oettingen case study in 2021, the Grid 
Search algorithm was able to capture the mean of the birth peak 
in Oettingen based on the parturition of GPS- collard animals best. 
Estimates of breeding synchrony (standard deviation) also matched 
the measured standard deviation from field data well. Surprisingly, 
the	 trained	ML	model	 predicted	 the	mean	 to	 be	 later	 and	 similar	
to the sample's mean x̅ which was confined to mowing. The rea-
son	for	this	presumably	poorer	performance	of	ML	algorithms	can	
be manifold. One possible pitfall could be the confrontation with 
a mowing scenario that was not included in the training data set. 
In that case, the model might have been overfitted to the training 
data	set	or	trained	on	an	unbalanced	data	set.	As	there	 is	no	such	
effect as ‘learning’ within the Grid Search algorithm, the quality of 
its estimates does not depend on high- quality and balanced train-
ing.	 Another	 simulation	 assumption	 has	 not	 yet	 been	 discussed.	
The probability of a meadow being mowed on a mowing day was 
assumed to be uniform for all scheduled mowing days, whereas in 
reality probabilities could be uni-  or bimodally distributed or even 
more complex. This could lead to a more complex function of pos-
sible detectable fawns on mowing days. Unfortunately, the specific 
mowing probability for a field on mowing days is again dependent on 
weather, machine availability, and work scheduling and thus hardly 
predictable.

The evaluation of the models for the actual finds in Bavaria in 
2021 is more complicated due to a higher uncertainty of the actual 
birth peak, breeding synchrony and its uniformity across space. 
The	 reconstructed	mean	 parturition	 day	 for	 Bavaria	 was	 2.6 days	
later than in Oettingen (Bavaria x̅: 134.9, Oettingen x̅: 132.3), while 
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the	Grid	 Search	 and	ML	algorithms	predicted	mean	birth	dates	 in	
Oettingen	 to	 be	 later.	 Again,	 the	 Grid	 Search	 algorithm	 seems	 to	
yield better results in comparison to the mowing- biased field data. 
Interpretation of the results for standard deviation must be evalu-
ated carefully within all scenarios. Due to a smaller range of possible 
true values, results could diverge substantially.

In accordance with Peláez et al. (2020), we were able to relate 
the variance of parturition timing to plant phenology and eleva-
tion across space. Flowering dates of meadow foxtail were a good 
proxy to describe the environmental conditions of a site (compare 
Peláez et al., 2020), however, the relationship between parturition 
dates and elevation was more significant in Bavaria. The flowering 
dates of meadow foxtail at the approximate site of fawn finds were 
more synchronized and showed less variation in contrast to parturi-
tion days. Yet, flowering dates are based on interpolations and thus 
mirror phenology with uncertainties and lower (spatial) variability. 
A	clear	relationship	between	parturition	dates	and	flowering	dates	
would have been useful to interpolate parturition dates with plant 
phenology across space if sampling was confined to mowing.

5  |  CONCLUSIONS

The results, based on simulated finds of virtual field data with 
varying mowing dates, have highlighted the drawbacks of non- 
probabilistic sampling techniques and the issues of inferring 
moments if searches are confined to a few and consecutive, for 
example mowing days. The results should raise awareness when 
dealing with such data and reveal possible ways to retrieve bet-
ter	 estimates	 of	 underlying	 distributions.	 Modelling	 and	 under-
standing skewed and truncated distributions of possible sampling 
outcomes are essential to leveraging the potential of field data 
surveyed by non- expert groups like citizen scientists. Simulating 
field data can help to capture deficiencies of sampling designs 
but can also show possibilities to trim down costly survey designs 
while obtaining defensible outcomes. The developed methods 
can be used for any other species, such as ground- nesting bird 
species or rodents, and can empower incomplete data for conser-
vation actions related to mowing but also for wildlife studies in 
general. Potentially, voluntarily collected data from roe deer fawn 
rescue initiatives can form an integral part to increase data size on 
regional birth distributions and ultimately help understand how 
much roe deer are adapting to environmental drivers such as cli-
mate	warming.	Moreover,	knowledge	of	exact	birth	distributions	
can lead to more efficient searches during mowing season and 
ease the thread of mowing deaths among roe deer fawns.
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Figure S1. Results of the sensitivity analysis with an increasing 
number of observations (50– 2400) per sample in the analysis 

(sampling was performed based on assumptions of scenario 2: 
maximal	age	at	find:	25 days + age	estimation	error).
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