
Generalized Reasoning with Graph Neural Networks by
Relational Bayesian Network Encodings

Raffaele Pojer
Aalborg University
rafpoj@cs.aau.dk

Andrea Passerini
University of Trento

andrea.passerini@unitn.it

Manfred Jaeger
Aalborg University
jaeger@cs.aau.dk

Abstract
Graph neural networks (GNNs) and statistical relational learning are two different
approaches to learning with graph data. The former can provide highly accurate
models for specific tasks when sufficient training data is available, whereas the
latter supports a wider range of reasoning types, and can incorporate manual
specifications of interpretable domain knowledge. In this paper we present a
method to embed GNNs in a statistical relational learning framework, such that
the predictive model represented by the GNN becomes part of a full generative
model. This model then supports a wide range of queries, including general
conditional probability queries, and computing most probable configurations of
unobserved node attributes or edges. In particular, we demonstrate how this latter
type of queries can be used to obtain model-level explanations of a GNN in a
flexible and interactive manner.

1 Introduction

Graph-neural networks (GNNs) define the state-of-the-art in many graph learning tasks, such as node
classification, link prediction, and graph generation. While achieving high performance scores for the
specific task it was trained for, any given GNN is limited to that single task. This is in contrast with
probabilistic generative models, where a single model can be used for a wide variety of probabilistic
inferences that take a partial observation of an instance as input, and return conditional probabilities
or probable configurations for the instance’s unobserved components. Bayesian networks are such
a class of probabilistic generative models. Originally defined as models for tabular data, Bayesian
networks and other probabilistic graphical models have been adapted to deal with relational data
in the field of statistical relational learning (SRL) [5, 15]. Even though the original motivation in
SRL is mostly an integration of logic-based representations and probabilistic reasoning, the resulting
frameworks can equally be understood as probabilistic models for multi-relational, attributed graphs.

Relational Bayesian networks (RBNs)[6] are a type of SRL model with a particularly close connection
with current graph neural network models: as has been shown in [7], standard GNN message-passing
models can be encoded as components of an RBN model, such that, e.g., a GNN model for node
classification can be used to define the conditional probability of a node attribute as a component of
a full generative model. This encoding is “native” in the sense that it fully translates the GNN into
the original RBN representation language, and it is “computationally faithful” in the sense that the
computational operations performed in forward and backpropagation operations of the GNN are in
one-to-one correspondence with the computations performed by the native RBN algorithms when
performing inference or learning with the encoding.

In this paper we will briefly review the RBN encoding of GNNs (Section 3). We then proceed to
demonstrate different ways in which the integrated RBN/GNN model can be used to widen the scope
of reasoning tasks that can be performed with a trained GNN model. Specifically, we show how for a
trained node classification GNN, inference can now also be conducted from observed node labels to
unobserved node attributes or link structure (Section 4), and how most probable explanation inference

Pojer et al., Generalized Reasoning with Graph Neural Networks by Relational Bayesian Network Encodings.
Proceedings of the Second Learning on Graphs Conference (LoG 2023), PMLR 231, Virtual Event, November
27–30, 2023.



Generalized Reasoning with Graph Neural Networks

in the sense of probabilistic graphical models[2, 10] can be used to construct global explanations of a
GNN (Section 5).

2 Related Work

Our work relates to the general areas of neuro-symbolic integration and Bayesian deep learning.
Kautz proposed a taxonomy of six types of neural-symbolic integration [8]. Most closely related to
our work are the types:

NEURO;SYMBOLIC: a neural network converts non-symbolic inputs into a symbolic representation
that is then used by a symbolic solver. This system keeps the neural network and the symbolic solver
separated for their complementary tasks. This is the type of integration realized by the DeepProbLog
system [12, 13] within the SRL area.

Symbolic[Neuro]: a neural component is used as a sub-routine of a symbolic solver.

NEURO[SYMBOLIC]: this is the most integrated type of neuro-symbolic integration. The neural
network is able to reason logically at a certain point in the execution. The symbolic component is a
subsystem of the main neural system. Other methods that can be close to the NEURO[SYMBOLIC]
type are GNNs with Knowledge Graph (KG) integration. For example, [14] impose logical constraints
in the embedding space using structural relational information to transform the latent space according
to the node neighborhood in the original space. Other approaches include [16], where logical
constraints are applied to the loss function to encourage inter-relation structure learning. For a
broader perspective, we refer to the reviews [3, 11].

Our work shares with the NEURO[SYMBOLIC] type the tight integration into a single system.
However, as for the Symbolic[Neuro] type, the top-level system is the symbolic one. That said,
“symbolic” in our case only means the support for high-level, logic-based model specifications.
Computations performed for these models already are purely numeric: probabilistic marginalization
and gradient descent optimization. This numeric processing of symbolic representations in the RBN
framework is the key to the seamless integration with purely neural components.

The probabilistic nature of the integration we propose establishes a link to the field of Bayesian
deep learning (BDL). In [17] BDL is presented as a form of neuro-symbolic integration of type
NEURO[SYMBOLIC], where the symbolic component is a probabilistic graphical model. However,
an important element of BDL also is the interpretation of neural network weights as random variables
in the sense of Bayesian statistics, leading e.g. to natural-parameter networks[18]. In [19] multiple
natural parameter networks are linked together to define a joint distribution over random variables that
can be queried for arbitrary conditional probabilities. The resulting bidirectional inference networks
are, thus, closely related to our work in that they also aim at a seamless integration of neural networks
into a general reasoning framework. Distinct from our approach, this integration is for modeling
tabular rather than relational data, and it is based on the specific class of natural-parameter networks,
rather than aiming at the integration of a wide range of common (graph) neural networks.

3 GNN-RBN Integration

3.1 Relational Bayesian Networks

We briefly review the main elements of the RBN framework by an example. We here only cover simple
“non-recursive” RBNs [6] that only allow probabilistic dependency models at the attribute/relation
level, as opposed to auto-regressive dependencies for the values of a single attribute at different nodes.
Suppose, then, that we model graphs with a single link relation, and two Boolean node attributes
verified and influential (RBNs directly support only Boolean attributes; multi-valued attributes can
be handled in the form of one-hot-encodings). To define a generative model for graphs with these
two attributes, the attributes and relations are first arranged in a directed, acyclic graph representing
the conditional dependencies. Here we may choose to consider link and verified as roots of the
graph, and influential as their common child. An RBN then defines for each attribute/relation its
conditional distribution given its parent attributes/relations. This conditional distribution is defined by
a probability formula, which essentially is an expression in a special-purpose functional programming
language.

2



Generalized Reasoning with Graph Neural Networks

1. Fverified(x) = 0.1
2. Flink(x, y) = 1/#nodes
3. Ftriangle (x, y, z) =

link(x, y)&link(x, z)&link(y, z)
4. Ftriangle_count(x) =

combine 1.0
with sum
forall y, z
where Ftriangle(x, y, z)

5. Finfluential(x) =
combine 0.6 · Ftriangle_count(x)

0.3 · verified(x)
−3.0

with logistic regression

Table 1: RBN example

For the root attribute verified we can specify a formula Fverified(x) that evaluates to the constant
probability 0.1 for all nodes x (see Table 1, line 1.). For the root relation link we may want to use a
sparse graph model, according to which the probability of a link between any pair of nodes x, y is
inversely proportional to the number of nodes in the graph (line 2.; we here display formulas using
some syntactic abbreviations instead of their actual representation in the RBN language primitives).
For the influential attribute we define a conditional probability model according to which verified
nodes that are part of many triangles are more likely to be influential. This conditional model is
given by an incrementally constructed probability formula as follows: first, we define a formula
that represents the Boolean condition for three nodes x, y, z to form a triangle (line 4., illustrating
the support for symbolic knowledge representation). The next formula then defines for a single
node x the number of triangles it is part of. This formula illustrates the key combination function
construct that aggregates values of already defined formulas for sets of related nodes. Finally, the
triangle_count and verified features are used as input features of a logistic regression model for the
influential attribute (line 5.).

A very useful capability of the RBN framework is to impose logical constraints on the generated
graphs. As an example, consider graphs where nodes are equipped with three Boolean attributes
red,green,blue. If the intention is that these three Booleans actually are a one-hot-encoding of a single
color attribute, then we want to impose the constraint that for every node x exactly one of the three
Booleans is true. For this we can introduce a new Boolean constraint node attribute, defined by the
probability formula

Fconstraint(x) = (red(x)∨green(x)∨blue(x))∧¬(red(x)∧green(x))∧ . . .∧¬(green(x)∧blue(x)).

For any node j, conditioning the model on constraint(j) = true then ensures that with probability
1 the node j has exactly one color. We use this capability in Section 5.2 to interactively generate
explanations with different desired properties.

3.2 GNN encodings

Generally, probability formulas define scalar features for nodes, pairs of nodes, or tuples of more
than two nodes. To see the relationship with node feature vectors constructed in a GNN, consider a
basic message-passing update:

hk+1(x) = σ(
∑
y∈Nx

Uhk(y)), (1)

where the hk are l-dimensional feature vectors at the k’th network layer, the hk+1 are m-dimensional
feature vectors, U is an m× l-dimensional parameter matrix, and σ is a general activation function.
Breaking this vector-matrix specification down to the scalar level, we obtain for the i’th component
of hk+1(x):

hk+1
i (x) = σ(

∑
y∈Nx

l∑
j=1

Ui,jh
k
j (y)). (2)

Assuming that the scalar features hk
j (j = 1, . . . , l) are already defined by probability formulas Fk,j ,

and that σ is the sigmoid activation function, then the right-hand side of (2) can be expressed by the

3



Generalized Reasoning with Graph Neural Networks

probability formula:

Fk+1,i(x) = combine Ui,1 · Fk,1(y),
Ui,2 · Fk,2(y),
· · ·
Ui,l · Fk,l(y)

with logistic regression
forall y
where link(x, y)

(3)

Formula (3) shows the core of RBN encodings of GNNs by an iterative construction of probability
formulas encoding the computations at each GNN layer. For ease of exposition we here have assumed
the very simplistic form of message-passing update (1). Additional elements like a special treatment
of the dependence of hk+1(x) on hk(x), or the addition of bias terms, can be included in this
encoding.

A GNN for node classification defines the conditional distribution P (A0|A1, . . . , Ar, E0) for a
node attribute A0 (usually considered as a distinguished class label), given other node attributes
A1, . . . , Ar, and the edge relation E0. The RBN probability formula encoding of the GNN then
defines the same conditional distribution as part of a full generative model in which A1, . . . , Ar, E0

are the parents of A0 in the underlying dependency graph. Note that the generative model may
also include other attributes Ar+1, . . . and additional edge relations E1, . . ., which are not part of
the conditional model for A0. The RBN encoding of a GNN contains the same parameters as the
original GNN. As the following theorem states, also learning these parameters by training the GNN
is equivalent to learning them inside the RBN. To state the result more precisely, we also have to
consider parameters in the RBN that are not part of the GNN encoding.

Theorem 3.1 Let A0, . . . , Ar, Ar+1, . . . , Ap and E0, . . . , Eq be a set of node attributes and edge
relations. Let G1, . . . , GN be a set of graphs for these attributes and relations, and Ḡ1, . . . , ḠN their
reductions to the attributes A0, . . . , Ar, and the single relation E0. Let g be a node classification GNN
with target A0 and inputs A1, . . . , Ar, E0. Let ϕ denote the parameters of g. Let r be a RBN defining
a generative model for graphs over all attributes and relations A0, . . . , . . . , Ap, E0, . . . , Eq, such
that in the underlying dependency graph A1, . . . , Ar, E0 are the parents of A0, and the conditional
distribution of A0 is given by the encoding of g. Let (ϕ,ψ) denote the parameters of r. Then for any
instantiation ϕ∗ ∈ R|ϕ| of the parameters ϕ the following are equivalent:

A. ϕ∗ minimizes cross-entropy loss of g for training data Ḡ1, . . . , ḠN .

B. There exists an instantiation ψ∗ of ψ, such that (ϕ∗,ψ∗) maximizes the log-likelhood score of r
for training data G1, . . . , GN .

Proof: The log-likelihood for r given G1, . . . , GN decomposes according to the chain rule into a
sum of conditional log-likelihoods for each Ai and Ej . Since the conditional distribution for A0 is
defined by the encoding of g, it only depends on the parameters ϕ, and the reductions Ḡh of the
training graphs. Since the ϕ do not occur in any other log-likelihood term than the one for A0, the
local optimization of the conditional log-likelihood for A0 is part of the optimal solution for the full
log-likelihood function. Finally, maximizing the log-likelihood for A0 is equivalent to minimizing
the cross-entropy loss. □

Note that the theorem considers the case of training under a “pure” loss/likelihood objective without
regularization or procedural elements like dropout or batch-normalization. The theorem shows that
the following two learning approaches for a full generative RBN model are equivalent: encode a
GNN model for the conditional distribution of a specific attribute A0 as an RBN probability formula,
and use the native likelhood-optimization methods for RBN learning to learn all RBN parameters
jointly, or to use an external GNN library to learn the GNN parameters, and import them into the
RBN model. Even though both approaches will also lead to exactly the same computational steps in
the optimization (assuming the same optimization technique, e.g. Adam[9]), the latter turns out to be
much more efficient in practice, and is therefore the approach we have adopted in our experiments.

4



Generalized Reasoning with Graph Neural Networks

3.3 Implementation

For representing and reasoning with RBNs we use the Primula tool.1 Our current GNN-to-RBN
compiler supports the class of ACR-GNNs [1] with sigmoid activation functions. Extensions to
cover other GNN modeling elements like ReLu activation and attention mechanisms are quite
straightforward in principle, but may also require some minor extensions to the Primula tool. GNNs
are implemented and trained in PyTorch Geometric [4].2 The code for reproducing the experiments is
available at https://github.com/raffaelepojer/GNN-RBN-reasoning.

For the computation of conditional probabilities (Sections 4.1) we use an importance sampling
method provided by Primula. Computation of most probable configurations (Sections 4.2 and 5.2)
are performed using Primula’s most probable explanation (MPE) module. This module uses a
semi-greedy strategy with limited lookahead to find a maximum likelihood joint configuration of
a list of target attributes and/or edges. The search starts with a random configuration, and random
restarts can be used to optimize the likelihood of the solution.

4 Generalized inference
In this section we demonstrate the enhanced inferential capabilities afforded by embedding a trained
GNN model into a fully generative RBN. Our examples make use of synthetic node labels with
an underlying deterministic definition expressed in first-order logic, as introduced by Barceló et
al.[1]. Originally conceived to explore logic-based characterizations of GNN expressivity, we adopt
Barceló et al.’s example because the underlying well-defined logical ground-truth facillitates the
demonstration and evaluation of probabilistic inferences. Concretely, we consider graphs whose
nodes x have a color attribute with five different values, and a label α(x) defined as

α(x) := ∃[2,3]y(Blue(y) ∧ ¬edge(x, y)). (4)

Thus, a node x belongs to the α class if and only if there exist 2 or 3 blue nodes not connected to
x (if x itself is blue, and does not have a self-loop, then x itself will also count towards these blue
non-neighbors). We generate small random graphs with 5-8 nodes, random node coloring, and the α
label as defined above.

We trained a one-layer ACR-GNN model with 20 hidden units, which achieves a test-set accuracy
of 0.9944. The trained GNN was compiled into a probability formula, and embedded in a RBN
where all the Boolean color attributes were given a prior probability of 0.5, and edges given a prior
probability pedge that is varied in some inference tasks.

4.1 Inverse inference: from labels to attributes

In our first demonstration we show how the RBN embedding of the GNN enables us to invert the
usual direction of (predictive) inference: given our model trained on the α prediction task, we now
consider an inference scenario where the α labels are observed, but information about the node
attributes is incomplete. Figure 1 shows a small graph where node labels and the graph structure are
observed, but there is only very partial information on the color attributes. Since blue is the color of
most interest, we are interested in inferring the probabilities of blue for all nodes.

The table on the right of Figure 1 shows the computed probabilities. The logical specification (4) in
conjunction with the partial observation of the graph imply that n4 must be blue (otherwise n0 and n1
could not be α nodes, and that n0 and n1 cannot be blue (otherwise n3 and n4 would have to be α
nodes). This is well reflected in the computed probabilities. The probabilities do not attain the exact
values 0 and 1, because the trained GNN model only is a somewhat noisy representation of (4). The
given observations impose no constraints on the blue value of n2, which therefore retains its prior
probability of 0.5.

4.2 Inferring the graph structure

Next we consider a scenario where node properties (attributes, labels) are fully observed, but the graph
structure is unknown. Figure 2 at the top left shows such a scenario: five nodes with full observation

1https://github.com/manfred-jaeger-aalborg/primula3
2https://pyg.org/

5

https://github.com/raffaelepojer/GNN-RBN-reasoning


Generalized Reasoning with Graph Neural Networks

Query Atoms P(n)
blue(n0) 0.1291
blue(n1) 0.1228
blue(n2) 0.5086
blue(n3) 1.0
blue(n4) 0.8283

Figure 1: Left: graph with known labels and edges, and partial assignment to the blue attribute.
Right: posterior probabilities for the blue attribute for all nodes

on their α class membership and blue attribute are given as input. Similar as in Section 4.1 one could
query the probability of each possible edge. However, of greater interest is the joint configuration of
all edges. For this we employ MPE inference to obtain a most probable edge configuration (there
may be many solutions).

Figure 2: Results of the generated graph under the different edge probability given. Graphs with
edge probability of 0.1 and 0.95 are exampls that are not consistent with (4). With 0.5 there is no bias
towards sparser or denser graph.

Figure 2 shows the MPE solutions obtained for various settings of the prior edge probability. At
the default value of 0.5 there is no bias towards sparser or denser graphs. The computed solution is
consistent with (4) and the observed node attributes and labels. Increasing or decreasing the edge
probability leads to denser and sparser solutions, respectively, which still stay consistent with (4).
Only at the more extreme values pedge = 0.1 and pedge = 0.95 do the inferred graph topologies
become inconsistent with (4). The bias induced by the edge priors here overrules the imperfect GNN
representation of (4).

5 MPE inference for model-level explanation
Explanation techniques for GNNs have received a significant amount of attention. Much work is
dedicated to instance-level explanations (i.e., explaining a specific prediction), but a few authors
also have addressed the problem of model-level explanation (explaining the underlying predictive
rules)[20, 21]. Model-level explanation in the form of constructing an input graph that maximizes
the output probability for a specific target graph label is a special case of the general most probable
explanation (MPE) inference task for RBNs. Thus, the GNN-RBN embedding together with the
Primula RBN toolbox provides an out-of-the-box GNN explainer.

When considering GNN explanation techniques, one has to carefully consider different levels and
objectives of explanations. At one level, the objective is strictly limited to explaining the functioning
of a given GNN, e.g. with a view towards troubleshooting or robustness analysis. In the context
of popular molecule classification scenarios, the question would be: “what makes the GNN predict

6



Generalized Reasoning with Graph Neural Networks

a graph to be toxic?”. At another level, the objective is to better understand the actual domain.
The question then is: “what makes a molecule toxic”? Two conditions have to be fulfilled for the
second type of objective: the explanation graphs have to resemble actual molecules, and the GNN
model has to be highly accurate. The first condition implies that the explainer cannot be based on
the GNN as the only input; it also requires information on the real-world data distribution. In the
GNNInterpreter[20], for instance, this information is provided by access of the interpreter to the
training data of the GNN. In our approach, we focus on the first level explanations that only take a
given model as input. However, human domain knowledge can be used to bias or condition the MPE
inference towards graphs with desired properties.

5.1 Synthetic dataset

To test the feasibility of our approach, we first conduct an experiment with synthetic data that allows
us to identify correct explanations. Inspired by molecule data, we generate undirected random graphs
with 5 to 20 nodes which are labeled with a type attribute with possible values {A,B,C,D,E, F,G}.
A graph belongs to the positive class, if it contains the two motifs B −A−B and D − C −D. We
trained a three-layer ACR-GNN with 10, 8, and 6 hidden units on a dataset containing 7000 graphs
for each class. The trained network achieved a validation accuracy of 0.9904 (± 0.0012).

We use the approach described in Section 3.1 to enforce the constraint that for all nodes exactly one
of the type values is set to true in the one-hot-encoding. We create an RBN containing the encoding
of the trained GNN, uniform prior for the type attribute, and a prior edge probability of 0.5. We run
MPE inferences where the input consists of the number of nodes in the desired explanation graph,
and the target class positive or negative. Table 2 in the top row shows explanations obtained for
n = 2, 4, 6, 8 nodes, as well as the target class probability returned by the GNN for these inputs.
Since the MPE inference depends on a random initial state, we allow 10 random restarts and select
the solution with the highest target class probability. Once n reaches the minimum size n = 6 for
the positive class, the explanations for the positive class consist of graphs containing the two motifs.
Explanations for the negative class do not contain any of the motifs. The computed explanations are
quite dense. In order to obtain sparser explanations, we reduce the prior edge probability. The results
shown in the second row of Table 2 now identify the two motifs in a more parsimonious manner.
However, the lower probabilities show that the GNN’s confidence in the positive class prediction is
increased by a denser graph structure.

For comparison, we have also applied XGNN[21] to provide explanations for the trained GNN.
XGNN only allows to specify a maximum number of nodes in the explanation, and it also contains a
random element producing different solutions in different runs. We have rerun XGNN as many times
as allowed in the time budget defined by the time required for the 10 restarts in RBN-MPE inference.
The results are shown in the bottom row of Table 2. XGNN was not able in this case to provide any
high probability explanations for the positive class.

5.2 Real-world dataset

We now consider the real-world Mutagenicity3 dataset. The data consists of 4337 molecules
with 4 to 417 atoms (30.3 on average). Atoms are labeled with one out of 14 elements
Ca,Na,H,F,S,Li,N,Cl,P,K,C,O,I,Br, and molecules with a mutagenic class label. We trained a small
3-layer ACR-GNN with 16, 8, and 8 hidden units. The trained network achieved a validation accuracy
of 0.7929 and F1 score of 0.7688. Table 3 in the top row shows the explanations we obtained from
the GNN-RBN explainer with prior edge probability 0.5. As for the synthetic data, explanations
for both classes are rather dense. Already a slight reduction in the edge probability leads to much
sparser explanations (second row). This leads to a substantial decrease in the class probabilities
for the mutagenic class, hinting at the relevance of connections in characterizing the positive class.
On the other hand, completely disconnected graphs have the same class probability as dense ones
in the non-mutagenic class, suggesting that the element distribution is what characterizes negative
examples in the learned model. Both the dense and sparse explanations are composed almost entirely
of uncommon elements, leading to a possible conjecture that the GNN has mostly learned to base its
prediction on characteristic occurrences of uncommon elements. In order to test this conjecture, we
modify the prior probabilities for the elements, such that the common elements C,O,H,N are much
more probable than the uncommon ones. We then obtain solutions that are composed entirely of

3https://chrsmrrs.github.io/datasets/docs/datasets/

7



Generalized Reasoning with Graph Neural Networks

Settings Generated graphs
Positive Negative

GNN-RBN
Dense 0.0305 0.0480 0.9934 0.9999

0.9970 0.9975 1.0000 1.0000

GNN-RBN
Sparse 0.0263 0.0194 0.9899 0.9989

0.8870 0.9593 1.0000 1.0000

XGNN
0.1519 0.1519 0.9908 0.9908

0.1519 0.1519 0.9999 0.9999

Table 2: Synthetic data: computed explanation graphs for positive and negative class with target
class probabilities assigned by the GNN. First row: dense GNN-RBN explanations, achieved setting
P(edge)=0.5. Second row: sparse GNN-RBN explanations, achieved setting P(edge)=0.3. Third
row: best results obtained through multiple runs of XGNN (same time budget of GNN-RBN).

these four elements, and which retain essentially the same probabilities as the original solutions (third
row in Table 3), thus showing that against the preliminary conjecture, the GNNs predictions are not
based on uncommon elements alone. The results highlight the utility of the GNN-RBN in supporting
an interactive analysis of learned GNN models that can confirm or disconfirm conjectures about the
features being learned, something beyond the reach of typical GNN explainers.

We again also applied XGNN to this task allowing an equivalent time budget as used for GNN-RBN.
For the mutagenic class here XGNN did not succeed in producing any viable solutions, whereas
for the non-mutagenic class it produced explanations whose probabilities almost precisely match
the probabilities of the GNN-RBN solutions, and which also are mostly composed of uncommon
elements.

6 Conclusion
We have presented an approach to integrate GNNs into a SRL modeling and inference framework.
In the resulting fully generative model one can exploit the high predictive accuracy of the GNN in
the discriminative task it was trained on to also perform a wider range of probabilistic inferences. In
particular, we have shown how MPE inference can be used to reconstruct unobserved graph structures
from observed node data, and as a way to find model-level explanations. Our current implementation

8



Generalized Reasoning with Graph Neural Networks

is limited to dealing with GNNs of small size. However, there do not seem to be any fundamental
complexity issues arising in the GNN-RBN integration, as the computations performed on the GNN
encoding are identical to standard forward and backpropagations. Scaling our implementation to
larger GNNs therefore is an objective of future work.

Settings Generated graphs
Mutagenic Non-mutagenic

GNN-RBN
Dense 0.6956 0.8291 0.9278 0.69842

0.9102 0.9548 0.9967 0.9993

GNN-RBN
Sparse

0.6397 0.7248 0.9274 0.9841

0.7947 0.7774 0.9967 0.9993

GNN-RBN
C,O,H,N only 0.5163 0.8284 0.9024 0.9707

0.9101 0.9548 0.9925 0.9983

XGNN
0.2847 0.2847 0.9277 0.9841

0.2847 0.2847 0.9967 0.9993

Table 3: Mutagenicity data: computed explanation graphs for positive and negative class with target
class probabilities assigned by the GNN. First row: dense GNN-RBN explanations, achieved setting
P(edge)=0.5. Second row: sparse GNN-RBN explanations, achieved setting P(edge)=0.3. Third
row: GNN-RBN explanations using frequent atoms only, achieved setting probability of rare atoms
to 0.01 (with the probability for common atoms and edges being 0.5). Last row: best results obtained
through multiple runs of XGNN, all executed within the same time budget of GNN-RBN.

9



Generalized Reasoning with Graph Neural Networks

Acknowledgments
This research was supported by TAILOR, a project funded by the EU Horizon 2020 research and
innovation program under GA No 952215.

References
[1] Pablo Barceló, Egor Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo Silva.

The logical expressiveness of graph neural networks. In 8th International Conference on
Learning Representations (ICLR 2020), 2020. 5, 11

[2] Adnan Darwiche. Modeling and reasoning with Bayesian networks. Cambridge university
press, 2009. 2

[3] Lauren Nicole DeLong, Ramon Fernández Mir, Matthew Whyte, Zonglin Ji, and Jacques D
Fleuriot. Neurosymbolic ai for reasoning on graph structures: A survey. arXiv preprint
arXiv:2302.07200, 2023. 2

[4] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. 5

[5] L. Getoor and B. Taskar, editors. Introduction to Statistical Relational Learning. MIT Press,
2007. 1

[6] Manfred Jaeger. Relational Bayesian networks. In Dan Geiger and Prakash Pundalik Shenoy,
editors, Proceedings of the 13th Conference of Uncertainty in Artificial Intelligence (UAI-13),
pages 266–273, Providence, USA, 1997. Morgan Kaufmann. ISBN 1-55860-485-5. 1, 2

[7] Manfred Jaeger. Learning and Reasoning with Graph Data: Neural and Statistical-Relational
Approaches. In Camille Bourgaux, Ana Ozaki, and Rafael Peñaloza, editors, International
Research School in Artificial Intelligence in Bergen (AIB 2022), volume 99 of Open Access
Series in Informatics (OASIcs), pages 5:1–5:42. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. ISBN 978-3-95977-228-0. 1

[8] Henry Kautz. The third ai summer: Aaai robert s. engelmore memorial lecture. AI Magazine,
43(1):105–125, 2022. 2

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 4

[10] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009. 2

[11] Luís C Lamb, Artur Garcez, Marco Gori, Marcelo Prates, Pedro Avelar, and Moshe Vardi.
Graph neural networks meet neural-symbolic computing: A survey and perspective. arXiv
preprint arXiv:2003.00330, 2020. 2

[12] Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc De
Raedt. Deepproblog: Neural probabilistic logic programming, 2018. 2

[13] Giuseppe Marra, Sebastijan Dumančić, Robin Manhaeve, and Luc De Raedt. From statistical
relational to neural symbolic artificial intelligence: a survey. arXiv preprint arXiv:2108.11451,
2021. 2

[14] Giuseppe Marra, Michelangelo Diligenti, and Francesco Giannini. Relational reasoning net-
works, 2023. 2

[15] Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statistical relational
artificial intelligence: Logic, probability, and computation. Synthesis lectures on artificial
intelligence and machine learning, 10(2):1–189, 2016. 1

[16] Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting logical background knowl-
edge into embeddings for relation extraction. In Proceedings of the 2015 conference of the
north American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 1119–1129, 2015. 2

[17] Hao Wang and Dit-Yan Yeung. A survey on bayesian deep learning. ACM computing surveys
(csur), 53(5):1–37, 2020. 2

[18] Hao Wang, Xingjian Shi, and Dit-Yan Yeung. Natural-parameter networks: A class of proba-
bilistic neural networks. Advances in neural information processing systems, 29, 2016. 2

10



Generalized Reasoning with Graph Neural Networks

[19] Hao Wang, Chengzhi Mao, Hao He, Mingmin Zhao, Tommi S Jaakkola, and Dina Katabi.
Bidirectional inference networks: A class of deep bayesian networks for health profiling. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 766–773, 2019.
2

[20] Xiaoqi Wang and Han Wei Shen. Gnninterpreter: A probabilistic generative model-level
explanation for graph neural networks. In The Eleventh International Conference on Learning
Representations, 2022. 6, 7

[21] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 430–438, 2020. 6, 7

A Results on the MAP inference
In this appendix, we provide additional details regarding the experimental procedures employed to
investigate the effects of random initialization in Most Probable Explanation (MPE). In our study,
we followed a standard practice for MPE, where the initial state of the optimization algorithm is
initialized randomly. This randomness in the initial state allows for exploration of various regions in
the solution space. We performed likelihood analysis across multiple runs, specifically, we conducted
100 restarts. With the likelihood, we was able to measure the presence of the two motifs inside
the graph. Our analysis of the likelihood scores across 100 runs revealed noteworthy insights: the
majority of the results obtained from the multiple runs consistently contained at least one motif. This
observation indicates that the algorithm are effective in discovering motifs across a wide range of
initial conditions. To achieve the optimal solution, characterized by the best likelihood score, a higher
number of runs (e.g., 10 restarts) was typically necessary. The likelihood analysis demonstrated
that, with 10 restarts, the probability of obtaining the optimal solution increased significantly, with a
probability around 0.8. This suggests that the use of multiple restarts can enhance the likelihood of
finding both of the two motifs.

In conclusion, our experiments in MPE involved random initialization, and the robustness and
reliability of the results were ensured through multiple experimental runs. The likelihood analysis
indicated that the algorithms are effective in discovering motifs, and achieving the perfect solution is
feasible with a higher number of restarts. These findings provide valuable insights into the practical
application of MPE for motif discovery.

Figure 3: Histograms of the likelihood collected in 100 runs in a Log scale for the x-axis (best
solutions have an higher likelihood).

B Training: PyTorch vs. Primula
To illustrate the computational equivalence between GNN training and likelihood optimization of
its RBN encoding, we here show learning curves obtained by training on a dataset of 5000 graphs
provided by Barceló et al.[1] for the synthetic α label (Section 4). We used a PyTorch Geometric
(PyG) implementation of an ACR-GNN architecture, and an RBN encoding of that architecture. We
used Adam stochastic gradient descent both for training the ACR-GNN in PyG, and to learn the
parameters of the RBN encoding using Primula. We rand stochastic gradient descent for 20 epochs,

11



Generalized Reasoning with Graph Neural Networks

PyTorch Geometric Primula

Figure 4: Training performance of PyTorch Geometric (left) and Primula (right) with multiple
restarts. It is possible to see how the training curve are analogous. Red curves are accuracy, blue are
the loss.

and restarted the learning 10 times with different random initialization. The following plots show the
development of accuracy (right y-axes) and loss (left y-axes) during training over the epochs (x-axes).

The learning curves clearly exhibit an analogous behavior of the optimization process. However, in
terms of actual time, the 20 epochs in Primula took about 50 times longer than the 20 epochs in PyG.
While a certain discrepancy in computation time may be expected due to the matrix-vector based
operations in PyTorch vs. object-oriented data representations and computations at the scalar level in
Primula, there is at this point no full explanation for the order of magnitude of this discrepancy.

12


	1 Introduction
	2 Related Work
	3 GNN-RBN Integration
	3.1 Relational Bayesian Networks
	3.2 GNN encodings
	3.3 Implementation

	4 Generalized inference
	4.1 Inverse inference: from labels to attributes
	4.2 Inferring the graph structure

	5 MPE inference for model-level explanation
	5.1 Synthetic dataset
	5.2 Real-world dataset

	6 Conclusion
	A Results on the MAP inference
	B Training: PyTorch vs. Primula

