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Abstract

This article deals with modelling and experimental characterisation of the continuum dynamic response

of dielectric elastomer actuators (DEAs) subject to high-frequency voltage excitation.

DEAs are capable of large deformations in response to an electrostatic stimulus, and they show large

operating bandwidths of up to a few kilohertz. Although DEA systems normally make use of simple

deformation patterns and a well-defined main actuation mode, they show complex structural dynamics

and mode shapes if subject to high frequency voltage inputs. Taking advantage of these complex structural

dynamics potentially allows developing multi-function actuators, audio devices and vibration isolators

capable to perform different tasks using different vibration regimes.

We first present a multi-domain model for the structural dynamics of DEAs, accounting for the

contribution of the air pressure loads generated the DEA membrane vibrations, which play a relevant role

in the DEA dynamics.

We then present an extensive experimental characterisation of DEA samples’ structural dynamics based

on laser Doppler vibrometer measurements. In particular, we measure the complex structural mode shapes

and the velocity spectra generated through a broadband excitation in correspondence of a wide set of

different design and control parameters (namely, the DEA geometric layout, the mechanical-preload and

the applied voltage bias).

Based on the experimental results, we validate the proposed continuum model, and we demonstrate that

the forced response of the DEA can be efficiently described using a lumped-parameter computationally

efficient reduced reformulation.

Keywords: dielectric elastomer; vibrations; natural frequencies; modelling; vibrometer; modal anal-

ysis; dynamics; acoustic-structure-interaction.

1 Introduction

Dielectric elastomer actuators (DEAs) are electrostatic transducers that exploit voltage-driven deforma-

tions of a stretchable polymeric dielectric membrane covered by compliant electrodes [1]. DEAs are

capable of providing large actuation energy densities (on the order of 0.1-1 J/g per actuation cycle [2]),
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present large operating bandwidths (up to the kHz range [3, 4]), and are made of lightweight and resilient

materials. For these reasons, they offer promising perspectives for a wide range of applications, such as

soft robots [5], fluidic systems [6], haptic interfaces [7], tunable lenses [8], or active vibration suppression

devices [9].

Most of the current applications of dielectric elastomer (DE) systems exploit a single actuation mode,

such that the DE membrane follows a predefined deformation pattern over the DEA’s working frequency

range. Such an actuation mode, also referred to as pumping mode, corresponds to the response that a

DEA exhibits when a low frequency voltage input is applied. The pumping mode is largely exploited

in static or low frequency dynamic applications, including resonant actuators [6] or energy harvesters

[10]. In principle, complex deformation patterns can also be achieved, by taking advantage of the DE

membranes structural dynamics, in the presence of high frequency or broadband voltage excitations [11].

The exploitation of such higher order mode shapes and deformations patterns opens up possibilities

towards new designs and applications, such as multi-mode loudspeakers exploiting different deformation

modes over different frequency ranges, or fluid dispensers that change their distribution patterns at

different frequencies.

To date, only a few works have investigated the complex structural dynamics that take place in DEAs

subject to high frequency excitation.

In a first pioneering work, Fox and Goldbourne [11] used a scanning laser vibrometer to measure the

axial-symmetrical mode shapes generated on a bubble-like DEA subject to AC voltage signals. They then

observed that the natural frequencies and the oscillation amplitudes associated to those mode shapes vary

as functions of the electro-mechanical loads [12].

Garnell et al. carried out an extensive analysis of the vibration and acoustic response of a pneumatically

biased bubble-like DEA used as a loudspeaker [13]. The authors built a structural dynamic model of

the system based on a finite element (FE) formulation. They carried out experiments with a laser

Doppler vibrometer, measuring a wide set of structural axial-symmetrical eigenmodes, and proved the

ability of their model to predict the experimental modes. Similar to other lightweight structures [14],

they demonstrated that there exists a strong coupling between the DEA membrane vibrations and the

resulting air pressure waves, which is due to the low thickness, density, and stiffness of the DE membranes.

Those effects were accounted for by resorting to a coupled electro-elasto-acoustic formulation [15].

Gareis et al. [16] proposed a dynamic continuum model of a buckling DEA actuator, based on the

assumption of small strain and linear elastic material behaviour, and compared it with measurements of

the DEA membrane central point displacements.

Whereas the mentioned works focused on axial-symmetrical deformations, experimental three-dimensional

analyses of DEA structures’ dynamics were also carried out [4, 9, 17] using laser scanning vibrometers.

In particular, Nalbach et al. [17] measured the velocity spectra and mode shapes of a square DEA mem-

brane deformed out-of-plane by a pulling force, and excited by an AC voltage on an annular electrode

sub-portion. They hence identified a set of complex three-dimensional eigenmodes, and observed the

trends in their natural frequencies as a function of the structural masses, the applied bias voltage, and

the mechanical pre-load.

This paper deals with modelling and experimental characterisation of the continuum dynamics of

a circular out-of-plane DEA (COP-DEA) [18]. The COP-DEA consists in an annular DEA membrane

connected to a biasing elastic element, which impresses an out-of-plane deformation on the membrane

and allows it to axially expand upon electrical activation. The COP-DEA is one of the most popular

DEA layouts, and it has been investigated in combination with a diversity of applications, including small

robots [19], volumetric pumps [20], and loudspeakers [21]. Although modelling of the static continuum
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response [22] as well as the low-frequency dynamic response [23] of COP-DEAs have been widely discussed

in the past, this is the first work dealing with the complex structural dynamics occurring in COP-DEAs

at high frequencies.

We first present a fully-coupled continuum model for the COP-DEA dynamics, including the contri-

bution of the electro-hyperelastic dynamics and the acoustic pressure loads. This model allows predicting

the complex three-dimensional mode shapes and natural frequencies of the DE membrane, and selecting

the design parameters so as to change the distribution of the natural frequencies. We then propose a

lumped-parameter model for the forced DEA dynamic response. The reduced model is built using inputs

from the continuum model, but it presents lower computational burden, and is therefore practical for

design or control-oriented simulations.

Using a laser scanning vibrometer, we present an experimental characterisation of the vibration re-

sponse of different COP-DEA geometries, subject to broadband excitation under the effect of different

electro-mechanical pre-loads. In particular, we identify the mode shapes and natural frequencies of the

DEAs in different working conditions, and the associated velocity spectra at different points over the

membrane surface.

We then present an extensive comparison between theoretical predictions and experimental data. By

resorting to a coupled FE approach, we are able to predict the different mode shapes characterising the

DEA dynamics (including low-amplitude three-dimensional circumferential modes), and we show that

their natural frequencies are significantly affected by the acoustic pressure loads caused by the DEA

vibrations. We then show that the forced dynamics of the DEA can be efficiently described using the

lumped-parameter version of the model, whose dynamic parameters are properly calibrated based on the

results of the fully-coupled FE analysis.

To the author best knowledge, the present work represents one of the most extensive available analyses

on the continuum dynamics of DEAs. In contrast with previous works, which focused either on eigenfre-

quency analyses [12, 17], or on the study of the membrane velocity time history at a target point [16],

this article presents a comprehensive analysis of different aspects of the DEA continuum dynamics. These

include: 1) systematic evaluation of the free-response eigenfrequencies and three-dimensional structural

mode shapes, and how these are influenced by coupled electro-elasto-acoustic effects; 2) characterisation

and prediction of the forced vibration response and the velocity spectra at different points over the DEA

surface; 3) extensive evaluation of the influence of different design and control parameters on the DEA free

and forced dynamic response. Compared to the authors’ early work on lumped modelling of COP-DEA

vibrations [24], this paper accounts for the effect of the acoustic loads on the structural dynamics, and

presents an extensive experimental validation.

The numerical approaches validated in this work can be used to analyse the dynamics of COP-DEAs

at different levels. The proposed fully-coupled three-dimensional FE analysis allows identifying suitable

working ranges for the DEA where certain mode shapes should be included or avoided. The reduced

model of the forced dynamics provides, in contrast, a computationally convenient tool for design and

optimisation of high-frequency COP-DEA systems, or real-time control applications, such as the active

shaping of the acoustic response in DEA loudspeakers.

The paper is structured as follows. Sect. 2 introduces the architecture and operating principle of the

COP-DEA. Sect. 3 presents a multi-physics continuum dynamic model of the system, together with its

lumped-parameter reduced versions. Sect. 4 describes the experimental setup, and presents an overview

of the results. Sect. 5 presents a validation of the model, both in terms of the DEA eigenfrequencies and

the velocity spectra. Finally, Sect. 6 discussed the conclusions.
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Figure 1: Layout of the COP-DEA. The DEA is built by pre-stretching a flat annular membrane (top

left), clamping its edges to a rigid solid disc and an annular outer frame (bottom left), and deforming it

out-of-plane via a biasing element (right).

2 Circular out-of-plane DEA

The COP-DEA [18, 23] is made of a planar annular DE membrane, holding deformable electrodes on

both surfaces. The membrane has its outer perimeter attached on a fixed frame, and the inner perimeter

connected to a rigid disc. The inner disc is free to move along the axis, and it is connected to a pre-loaded

mechanical biasing element (e.g., a spring) which impresses an initial out-of-plane conical-like deformation

to the DEA membrane (see Fig. 1). In the flat configuration, prior to the application of the elastic biasing

element, the membrane is subject to an equibiaxial pre-stretch λp. We denote as ri and ro the inner

and outer radii of the pre-stretched membrane, respectively, while z represents the equilibrium distance

between the central disc and the outer frame, and h0 describes the DE thickness in the undeformed state

(before pre-stretching). Assuming the DE material incompressible [25], the thickness of the membrane in

the pre-stretched configuration is h0/λ
2
p.

When a voltage difference is applied between the electrodes, the DE membrane further expands out-

of-plane and the axial distance z of the central disc and the outer perimeter increases. Notice that, if no

mechanical biasing was present (z = 0), the COP-DEA could not produce any out-of-plane displacement

of the central disc, since the stresses acting on the membrane would entirely lie in-plane. Namely, the

state corresponding to z = 0 is a singular configuration for the actuator.

Although at low frequencies the COP-DEA motion is pistonic, i.e., dominated by axial displacements

of the membrane and the disc, in the presence of high frequencies or broadband voltage excitations the

COP-DEA exhibits complex dynamics, characterised by combined radial and axial deformations of the

membrane profile. In our previous work [24], we observed that, in case the mass of the central disc is

much larger than the membrane mass, the motion of the COP DEA at high frequencies entirely consists

of structural deformations of the membrane profile, with no motion of the central disc.

Knowledge of high order structural dynamics, as well as the frequencies at which they are triggered, is

crucial as it either 1) allows identifying upper bounds for the working range of devices exploiting a purely

pistonic motion; or 2) enables design and optimisation of applications that could exploit such complex

structural dynamics, e.g., loudspeakers [24].
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Figure 2: Block-diagram structure of the coupled model.

3 Multi-domain dynamic model of COP DEAs

In this section, we present a multi-domain model for the continuum dynamics of COP-DEAs. The

dynamics of the DEA is described by taking into account two main multi-physics interactions:

– Electro-mechanical interactions, i.e., the contribution of the electric stresses (namely, the Maxwell

stress) on the DEA dynamics

– Interaction between acoustic domain and structure, i.e., the effect of the air pressure variations

induced by structural vibrations of the DE membrane on the DEA dynamics

Whereas electro-mechanical coupling in DEs has been largely studied and is key to the description of the

working principle of any DEA system, the interaction with the acoustic domain has been recently found

to play an important role in the structural vibrations of DEAs operating at high frequencies [15]. In

fact, the air pressure gradients (namely, the acoustic waves) induced by the vibrations of thin lightweight

membranes (such as DEs) generate loads that are comparable to the membrane inertial forces, and play

an important role in the dynamic response of the structure [14].

We first present a general formulation for the fully-coupled problem, which combines structural, elec-

trostatic, and acoustic domains. We then present a reduced model, built upon calibration data from

experiments and dynamical parameters computed using the fully-coupled continuum model, which allow

describing the complex COP-DEA dynamics in a simplified computationally-convenient way, thus making

it suitable for iterative design and control applications.

3.1 Fully-coupled three-dimensional model

We hereby present a fully-coupled model with the structure shown in Fig. 2 , which includes: 1) a

continuum electro-elastic model of the DEA; and 2) the response of the surrounding acoustic domain.

The electro-elastic model uses the time-varying applied voltage as the input, and computes the time-

history of the displacements of points on the membrane surface. The latter represent an input to the

acoustic model, which computes the air pressure loads on the membrane, which are fed back into the

DEA model.

The continuum DE dynamic model relies on the following assumptions:

– The DE membrane is a thin shell element, with negligible bending stiffness. Stretches and stresses

are constant through the thickness, and no stress acts in the thickness direction (plane-stress).

– The DE material can be described as an incompressible visco-hyperelastic continuum [25]. The

mechanical response of the electrodes is not modelled explicitly, and it is indirectly accounted for

through a suitable choice of the elastic parameters.

– In the presence of an electric potential difference between the electrodes, the DE material behaves

as an ideal dielectric. Electrical loses due to the electrodes resistivity and the DE conductivity [26]

are here neglected.
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Figure 3: (a) DE membrane element in the undeformed state (left part) and in the stretched state,

subject to displacement u (right part). (b) COP-DEA discretisation into annular portions.

We consider a generic three-dimensional membrane element (Fig. 3a), and we call u = u(X, t)

the displacement functions that maps a material point X on the undeformed membrane into a spatial

point x: x = X + u(X, t). We define F = Grad u the deformation gradient (with Grad denoting the

material-frame gradient operator) and C = FTF the right Cauchy-Green tensor. The square-rooted

eigenvalues of C represent the membrane principal stretches, and they are denoted λ1, λ2 and λ3. Owing

to incompressibility, the following equality holds:

λ1λ2λ3 = 1. (1)

In thin membranes, the thickness direction is a principal deformation direction. If the membrane is

in tension, the minimum stretch λ3 represents the stretch along the thickness, whereas λ1 and λ2 are

tangential in-plane stretches. Because of the thin membrane assumption, elements C3,1 and C3,2 (and

their symmetric counterparts) of C are equal to 0.

We formulate the equation of motion of the deformed membrane in terms of material coordinates in

the undeformed frame. With the aim of including the contribution of the air pressure loads directly into

the equation of motion, we consider the dynamics’ equation of the DE membrane element expressed in

weak form [27]:

h0

∫
S0

(F S) : Gradη dS0 +

∫
S0

JpδF
−T N̂ · η dS0 − ρ0h0

∫
S0

ü · ηdS0 = 0 (2)

where h0 and ρ0 are the initial membrane thickness and density (assumed uniform); ü is the material

points’ acceleration with respect to the reference configuration; N̂ is a unit vector perpendicular to the

undeformed membrane surface; J is the determinant of F; pδ = po−pi is the air pressure difference between

the two faces of the membrane (with po being the pressure on the external face, towards which the normal

points); S is the second Piola-Kirchoff stress tensor. Because of the thin membrane assumption, elements

Si,3, i = 1, 2, 3 (and their symmetric counterparts) are equal to 0. Finally, η is a generic test function

(namely, a virtual displacement) satisfying the boundary conditions. Operator : is the tensor double-dot

product, and · is a scalar product. Integrals in (2), are calculated over the reference membrane surface,

denoted by S0.

In the case of the COP-DEA, we consider a material reference frame (X1, X2, X3) centred on the

device axis, with axes X1 and X2 on the undeformed membrane plane, and the third axis X3 parallel to

the thickness (Fig. 1). Assuming that the central rigid disc can only move axially, the following boundary

6



conditions hold:


ui|Γo

= (λp − 1)Xi, i = 1, 2, u3|Γo
= 0

ui|Γi
= (λp − 1)Xi, i = 1, 2[

FSN̂
∣∣∣
Γi

]
3

=
λp

2πrih0
Fe

(3)

where Γo = {(X,Y ) : X2 + Y 2 = r2o/λ
2
p} and Γi = {(X,Y ) : X2 + Y 2 = r2i /λ

2
p} are the sets of points

on the outer and the inner perimeter respectively; ui are the components of u. The first two conditions

express the displacement of the points on the membrane outer and inner perimeter respectively due to

pre-stretch. The last condition accounts for the force Fe applied by the biasing element on the membrane:

Fe = kb(u3|Γo
− lb) + Mdü3 (4)

where kb and lb describe the stiffness and the preload of the biasing element (here, a linear spring), and

Md is the central disc mass.

Conditions (3) hold in case the mass of the biasing spring is negligible. If such a mass is comparable to

Md, further considerations are required to incorporate the spring continuum dynamics into the formulation

(see Annex I).

3.1.1 Electro-visco-elastic constitutive model

Stress tensor S is symmetric, and can be expressed as a sum of terms as follows [25]:

S = Sem(C, V ) − γC−1 + Sv(C, γ1, . . . , γm), (5)

where Sem is an electro-elastic equilibrium stress, which is a function of C and the voltage on the elec-

trodes; the second term accounts for the material incompressibility: in particular, γ is an indefinite

multiplier, whose value is resolved by prescribing the plane stress assumption; Sv is a non-equilibrium

stress, which accounts for the dissipative response of the material, and it is a function of C and a set of

strain-like variables γ1, . . . , γm describing the internal visco-elastic dynamics.

Constitutive relationships for Sem(C, V ) are formulated in terms of an electro-mechanical co-energy

function Ψem = Ψem(C, V ), such that:

Sem = 2
∂Ψem(C, V )

∂C
. (6)

where V = V (t) is the voltage applied on the electrodes, which is the system input variable. For a thin

single-layer membrane with electrodes on the outer faces, Ψem can be written as:

Ψem(C, V ) = Ψm(C) − ε

2

(
V

h0

)2 J(C)

C33
. (7)

The first term on the right-hand side of (7) is the elastic strain-energy function, expressing the elastic

energy density of the elastomer as a function of the stretches, according to a given hyperelastic model

[28]. The second term on the right-hand side of (7) represents a generalised electrostatic potential energy

contribution (or co-energy), equal to the energy supplied to the DE by the power supply minus the

electrostatic potential energy [18]. In particular, ε is the DE permittivity, and J is the determinant of F.
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The non-equilibrium stress can be formulated resorting to established visco-elastic models, which

make use of a set of additional equations for the internal states dynamics [29]. In the results presented

in this work (see Sect. 5), we describe the structural damping in a simplified way, making use of an

experiment-based identification, without explicit use of a visco-elastic model. Further details on visco-

elastic constitutive relationships for Sv are hence omitted.

3.1.2 Acoustic-structure interaction

We consider a DE membrane immersed in an open infinite air volume, i.e., the membrane has air on both

faces. In case a low thickness DE membrane is considered, the pressure waves caused by the membrane

motion might have a significant impact on the structure dynamics [15].

We consider a spatial reference frame, describing the geometry of the static deformed equilibrium

position of the DE membrane. For the acoustic problem, we assume that the system geometry is simply

composed of the deformed membrane surface, the central rigid disc, and the outer frame, which are all

rendered as thin flat surfaces (S, Sd, and Sf respectively - see Fig. 3). The air pressure distribution,

denoted by p(x, t), is described by the Helmholtz equation and the following boundary conditions:



∂2p

∂t2
= c2adiv (grad p)

ρan̂ · grad po|S∪Sd
= −n̂ · ∂

2u

∂t2

ρan̂ · grad pi|S∪Sd
= n̂ · ∂

2u

∂t2
n̂ · grad po|Sf

= 0

n̂ · grad pi|Sf
= 0

(8)

where div and grad represent the spatial divergence and gradient operators; ca is the sound speed in air;

ρa is the air density; n̂ is the normal vector to the geometry’s surfaces (deformed DEA, fixed frame, rigid

disc). The first two boundary conditions express the continuity of the velocity between the air and the

moving DEA sruface (S ∪ Sd), whereas the last two conditions account for the fixed perfectly-reflecting

frame surface (Sf ). A discontinuity on p is present in correspondence of the surfaces, hence po and pi
represent the values of the pressure evaluated respectively on the outer faces (where n̂ is pointing) and

the inner faces of the geometry’s surfaces (see also Eq. (2)).

In contrast with Eq. (2), Eq. (8) makes use of a spatial representation, i.e., the accelerations and gradients

are expressed in terms of the coordinates of the deformed geometry. Notice also that Eq. (8) is linear,

provided that surfaces S and Sd are fixed and correspond to the static equilibrium surfaces of the deformed

DEA.

3.1.3 Modal shapes analysis

Combining Eqs. (2)-(8) provides a model that relates the membrane displacement field u with the input

voltage V . Such a model allows identifying a set of three-dimensional mode shapes (including non-axial-

symmetrical modes) that describe the free linearised response of the COP-DEA in the neighbourhood of

an equilibrium configuration, where the DEA is subject to the biasing spring load and a constant voltage

bias V = Vb.

We call u0 the static deformation of the system, which is subject to constant voltage Vb and boundary

conditions (3), i.e., u = u0 and ü = u̇ = 0 is a solution of Eq. (2). Linearising Eqs. (2)-(8) with respect to

u around u0 and researching a solution to the equation system in the form u = u0(X) + ũk(X) exp(iωkt)

8



provides an eigenvalue problem (whose explicit equation is here omitted for simplicity). The solution to

the eigenvalue problem provides a set of natural frequencies ωk and the corresponding mode shape profiles

ũk, which represent displacements with respect to the equilibrium pre-loaded position.

Considering the whole set of Eqs. (2)-(8) provides a set of mode shapes that account for the coupled

acoustic-structural response of the DEA. Qualitatively, the acoustic loads generated by a structure vibra-

tions provide the structure with an added mass and a radiation damping, which are respectively due to

the air kinetic energy and the radiated acoustic waves [30]. Such additional mass and damping generally

depend on the oscillation frequency, and they might affect the system dynamics in those working regimes

where the moving structural mass or the damping are comparable to the acoustic mass and damping.

3.2 Reduced model of the forced axial-symmetrical response

If electrodes cover the whole DEA surface, the system is practically axial-symmetric. In this case, non-

axial-symmetrical steady-state deformation patterns in the forced dynamics can only be explained in

terms of local inhomogeneities or higher order effects (e.g., minor asymmetries and inhomogeneities in the

boundary conditions). Since these effects are difficult to systematically model, and are also expected to

play a minor role in the forced system dynamics, we hereby propose a reduced axial-symmetrical lumped-

parameter version of the general model presented in Sect. 3.1, suitable to describe the forced dynamics of

the COP-DEA in the presence of small-amplitude voltage excitation. Due to its computational simplicity,

the proposed reduced model can be used as a convenient reference for the design of applications and

driving strategies.

On this end, we first introduce a finite-dimensional lossless axial-symmetrical reduced version of the

COP-DEA structural dynamics (excluding the contribution of the acoustic pressure). Based on that, we

then reformulate the DEA equations of motion via a linear modal decomposition approach. Finally, we

introduce simplified damping and acoustic added mass terms in a simplified fashion, directly into the

modal form of the equations of motion.

3.2.1 Finite-dimensional lossless structural model formulation

A finite-dimensional axial-symmetrical model for the structural dynamics of the COP-DEA (excluding

the contribution of the acoustic coupling) can be obtained by ideally dividing the DE membrane into ring

elements. This approach has been introduced by the authors of this paper in [24], and is shortly recalled

in the following.

Let us ideally partition the flat pre-stretched DEA into n concentric elements, and call Rk the inner

radius of the k−th element in the flat pre-stretched configuration (k = 1 indicates the outer element,

with external diameter ro, while k = n denotes the inner element, with internal diameter rn = ri), as

shown in Fig. 3b. Let us then call rk and zk the radial and axial positions of the inner radius of the

k−th element in a deformed state. The surface (meridian and circumferential) stretches λ1k and λ2k on

the k−th element in the meridian, circumferential and thickness direction respectively read as:

λ1k = λp

√
(rk − rk−1)2 + (zk − zk−1)2

Rk−1 −Rk
, λ2k = λp

rk + rk−1

Rk−1 + Rk

(9)

and the stretch λ3k in the thickness direction relates to the these via Eq. (1)

Denoting q = [r1, . . . , rn−1, z1, . . . , zn]⊺ a vector of generalised coordinates (where zn = z, as defined

in Fig. 1), the equations of motion of the DEA can be written in a lagrangian fashion as follows:

d

dt

∂T (q̇)

∂q̇
+

∂Um(q)

∂q
− V 2

2

∂C(q)

∂q
= 0, (10)
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where T is the device kinetic energy; Um is the elastic potential energy; the third term represents a

generalised electrostatic potential energy (similar to Eq. (7) [18]); and Cd in the total DEA capacitance,

namely:

Cd =

n∑
k+1

Ck, with Ck =
π2ε(rk + rk+1)

2
(
(rk − rk−1)

2 + (zk − zk−1)
2
)

Ωk
, (11)

where Ωk = π(R2
k−1 −R2

k)t0/λ
2
p is the volume of the k−th element.

The kinetic energy is the sum of the kinetic energies of the single elements Tk (k = 1, . . . , n) plus the

energy of the central disc:

T =
∑
k

Tk +
1

2
Mbż

2, Tk = πρ0
h0
λ2
p

∫ Rk−1

Rk

(
v2rk(R) + v2zk(R)

)
R dR (12)

where vrk and vzk are radial and axial velocity distributions such that: vrk(Rk−1) = ṙk−1, vrk(Rk) =

ṙk, vzk(Rk−1) = żk−1, vzk(Rk) = żk, and they are assumed to vary linearly with R. Note that the

kinetic energy of the biasing spring is neglected by (12). An extended formulation which accounts for its

contribution in the dynamics is given in Annex I.

The elastic energy is the sum of the elastic energy of the membrane rings and the elastic energy of

the biasing spring:

Um =

n∑
k=1

ΩkΨ̃m(λ1k, λ2k, λ3k) +
1

2
kb (lb − z)2 , (13)

where Ψ̃m is the elastic strain-energy function (see Eq. (7)), rewritten as a function solely of the principal

stretches [25].

Notice that Eqs. (9)-(12) hold for all k = 1, . . . , n with the following observations: for k = 1,

Rk−1 = rk−1 = ro and zk−1 = 0; for k = n, Rk = rk = ri.

Eq. (10) is a set of 2n− 1 non-linear dynamic equations. We hereby consider small vibrations of the

DEA generated by small-amplitude time-dependent voltage perturbations, namely: V (t) = Vb + Ṽ (t),

with |Ṽ (t)| ≪ Vb. Under this assumption, we can linearise Eq. (10) and express it as follows:

Ms
¨̃q + Ksq̃ = d(t), with Ms =

(
∂2T (q̇)

∂q̇2

)
q̇=0

,

Ks =

(
∂2Um(q)

∂q2

)
q=q0

−
V 2
b

2

(
∂2C(q)

∂q2

)
q=q0

, d(t) = 2VbṼ (t)

(
∂C(q)

∂q

)
q=q0

(14)

where Ms and Ks are mass and stiffness matrices, q0 such that q̈0 = q̇0 = 0 is the equilibrium state

corresponding to V (t) = Vb, q̃ = q− q0 is the deviation from the equilibrium state, and d is the voltage-

induced excitation.

3.2.2 Modal decomposition and truncation

Based on Eq. (14), the natural frequencies and mode shapes of the undamped acoustically uncoupled

system can be found by solving:

Ksq̂k = ω2
kMsq̂k, k = 1, . . . , 2n− 1 (15)

where ωk is the k−th natural frequency of the system, and q̂k, with k + 1, . . . , 2n − 1 are a set of mode

shape profiles, which can be chosen in such a way that the following generalised orthogonality properties
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apply [31]:

QT
αMsQα = Ms,α = diag(mα,1, . . . ,mα,2n−1), QT

αKsQα = Ks,α = diag(kα,1, . . . , kα,2n−1), (16)

where Qα = [q̂1, . . . , q̂2n−1] is the modal matrix; mα,k and kα,k are called modal mass and stiffness

coefficients such that kα,k/mα,k = ω2
k. Ms and Ks can be proven to be symmetric and positive definite,

hence guaranteeing that all ωk are real and that Eq. (16) holds [31]. In practice, the eigenvectors q̂k can

be conveniently normalised in such a way that mα,k = 1 ∀ k [32].

Generalised coordinates q̃ can be expressed as linear superposition of mode shapes, namely q̃ = Qαα.

The new configuration variable α is called the modal representation of q̃, and allows reformulating Eq.

(14) in a modal fashion, as follows [33]:

Ms,αα̈ + Ks,αα = dα(t), with dα(t) = QT
αd(t). (17)

If n is sufficiently large (i.e., ωk is above the frequencies of interest for some k), q̃ can be tightly

approximated as the sum of a subset of l mode shapes (with l < 2n− 1), i.e., q̃ = Qαα ≈ Q̄αᾱ, where ᾱ

is the truncated representation of α while Q̄α is an (2n − 1) × l modal matrix containing a sub-set of l

columns of Qα. Each one of the columns of Q̄α represents a different modal shape. The first l modes, or

a selected set of l modes which are relevant to the problem under investigation, represent suitable choices

for the model truncation. The corresponding reduced modal mass and stiffness matrices M̄s,α and K̄s,α

are computed accordingly, by considering a subset of the elements of the corresponding Ms,α and Ks,α

matrices. Under the above considerations, Eq. (17) can be effectively truncated as follows:

M̄s,α ¨̄α + K̄s,αᾱ = d̄α(t), with d̄α(t) = Q̄T
αd(t). (18)

Because of condition (16), Eq. (18) represents a set of decoupled linear equations.

3.2.3 Reduced model

The contribution of structural damping and acoustic added mass can be introduced into Eq. (18) in a

simplified manner.

By assuming that the damping and the acoustic loads are small compared to the structural, inertial,

and electrostatic loads, the following practical simplifications can be introduced:

– In the presence of visco-elastic damping and acoustic pressures, the mode shapes of the DEA are

the same as in the undamped “dry” scenario in the absence of acoustic loads (see Eq. (15)).

– The contribution of the acoustic and viscous material damping loads can be approximately accounted

for in Eq. (18) via additional linear and time-invariant diagonal damping and inertial terms. Notice

that, assuming a diagonal damping matrix in the modal reduced form is in fact equivalent to

resorting to a proportional damping model [34].

We thus introduce the following modal-domain equation of motion for the damped DEA in air:(
M̄α + M̄ad

)
¨̄α + B̄α ˙̄α + K̄αᾱ = d̄α(t), (19)

where M̄ad and B̄α are matrices accounting for the air added mass and the total damping (which is the

sum of an acoustic and a structural contribution).

Compared to an exact fluid-structural coupled model, the present formulation makes use of time-invariant
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acoustic added mass coefficients, neglecting their dependency on the frequency [30]. In practice, this

assumption hold if the individual modes have a rather narrow band, which is in fact consistent with the

experimental observations described in the following (see Sect. 4.3). Although model (19) builds upon

the assumption that the system mode shapes are the same as in the dry undamped case, the additional

aerodynamic inertia introduced causes a shift in the natural frequencies of the modes.

The terms M̄α, K̄α and d̄α in Eq. (19) can be analytically derived based on the discretised model

presented in Sects. 3.2.1 and 3.2.2. The additional terms M̄ad and B̄α, instead, can be calibrated a-

posteriori based on experimental observations, or calculated with dedicated analyses. In this paper (Sect.

5) we explicitly solve the fully-coupled eigenvalue problem (Sect. 3.1.3) using a FE approach, and we

use the resulting estimate of the natural frequencies to compute M̄ad, whereas we calibrate the damping

based on a restricted set of experimental measurements.

Compared with a fully-coupled continuum formulation, which involves complex visco-elastic models

that are difficult to calibrate within a broad frequency range, this formulation allows including the con-

tribution of damping through a reduced number of parameters that directly map into the modal response

of the DEA, and can be conveniently employed for design and control purposes, leading to a significant

reduction in the computational burden.

4 Experimental characterisation

This section presents the setup and results of a set of experimental tests aimed at characterising the

continuum dynamics of COP-DEAs. The response of the device is characterised in terms of the mode

shapes, their natural frequencies, as well as the velocity spectra of a set of target points on the COP-DEA

when the latter is subject to a broadband frequency excitation.

4.1 COP-DEA samples

Figure 4: (a) Picture of the COP-DEA samples used for the tests. (b) Force vs. central disc displacement

response (at 0 and 3 kV) for the COP-DEA samples measured via tensile tests.

We manufactured COP-DEA samples made of DE silicone Elastosil 2030 by Wacker Chemie, with

screen-printed carbon-loaded silicone electrodes. The composition and properties of our screen printed

electrodes are described in [35]. The DE membrane samples had a pre-stretch λp = 1.20, and initial

thickness of the dielectric layer (prior to pre-stretch) h0 = 100 µm. Such a thickness represents a practical

trade-off between very thin membranes, for which a solid perimeter clamping (crucial in vibration analyses)

is difficult to achieve, and thick membranes, which would require very large driving voltages. The outer
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rigid frame holding the membrane and the central rigid disc were 3D printed with rigid acrylic plastic.

Connections of the electrodes to the power electronics were realised via copper tape foils located at the

four corners of the frame (two tracks per electrode). A linear tension spring with mass Ms = 1.8 g,

initial length Ls = 30 mm, and stiffness kd = 52 N/m was connected to the central disc and used as the

mechanical biasing element.

ro 35.5 mm ρ0 1490 kg/m3

λp 1.2 h0 100 µm

kd 52 N/m Ms 1.8 g

Ls 30 mm ε 2.8 · 8.85 · 10−12 F/m

ri 17 mm (G1) 12 mm (G2)

Md 3.0 g (G1) 1.9 g (G2)

Table 1: Properties of the COP-DEA samples

Two different DEA geometries (hereafter called G1 and G2) have been tested, as shown in Fig. 4a,

which have the same outer radius ro and differ in terms of the aspect ratio ro/ri. A list of the samples

properties is shown in Tab. 1. The density of the membrane (reported to the nominal thickness h0) has

been obtained from the actual measured membranes mass (measured with a high precision scale), and it

thus includes the contribution of the electrodes’ mass as well. The dielectric permittivity is given by the

DE material datasheet [36].

Tensile tests at voltages between 0 and 3 kV (i.e., the voltage ranges used in the tests) have been

preliminarily done on the membranes to measure their force-displacement characteristic (Fig. 4b). The

tensile tests were carried out on a sensorised setup available at Saarland University premises and described,

e.g., in [37]. As expected, geometry G1 has a larger total stiffness (i.e., the slope of the force-displacement

response), because, given the same value of the disc axial displacement z, it is subject to larger meridian

stretch along the membrane slant height. Similar to other membrane DEA topologies [29, 38], the slope

of the force-displacement curves (i.e., the total actuator stiffness) decreases when a voltage is applied on

the electrodes, as a result of the electrostatic force contribution.

4.2 Setup and procedures

Figure 5: Schematic (a) and photo (b) of the experimental test-bench. (c) COP-DEA sample in the

mounting configuration. (d) Distribution of the measurement points.

The vibration measurements are performed by using a 3D Doppler laser vibrometer PSV-500 3D by

Polytec, in the same fashion as in [17]. The vibrometer has three laser heads that allow measuring the

velocity components of target points on the device surface.
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The DE samples are mounted in a vertical position, aligned with the vibrometer heads through a rigid

structure. The out-of-plane deformation is adjusted via a positioning stage that allows controlling the

spring pre-load. A schematic of the test-bench is shown in Fig. 5a, whereas pictures of a DEA sample

(G2) mounted on the setup are shown in Fig. 5b,c.

The DEAs’ voltage is driven via high-voltage amplifier Trek 609E-6. Data acquisition is performed by

the vibrometer’s proprietary software PSV 9.1. Velocity measurements are taken on a grid of 84 points

(see Fig. 5d): 80 points on the DEA electrode surface and 4 points on the rigid disc.

The vibrometer scans the different points in sequence, by providing the amplifier with a selected multi-

chromatic driving signal (see Supplementary Material video). The output of the measurements are the

velocity spectra (for the single points and averaged over the membrane), and a 3D imaging of the mem-

brane velocity distribution at the different frequencies.

The membrane is driven using a chirp input voltage with constant-magnitude spectrum, with a time-

domain amplitude of Ṽ = 100 V, bias Vb between 1000 and 3000 V, and frequency varying from 0 and

1000 Hz. As observed in Sect. 4.3, the selected frequency range allowed observing a rather large set

of mode shapes and different vibration regimes. For each scanning point, the chirp voltage signal has

been applied for a time of 800 ms, using a sample time of 0.4 ms. Frequency spectra with 800 samples

(resolution of 1.25 Hz) were generated.

For each of the reference DEA geometries (Fig. 4), different tests have been performed by varying: 1)

the out-of-plane deformation z; and 2) the voltage bias Vb.

4.3 Results

In the following, an overview of the results obtained in the tests is presented.

Attention is first of all focused on the mean spectra (averaged on the scanning grid points) of the velocity

components in the three directions (as defined by the reference frame in Fig. 5d), as provided by the

vibrometer acquisition software. Spectra are computed as the fast Fourier transform (FFT) of the mea-

sured velocity, normalised by the number of frequency samples [39]. Analysing the average spectra allows

us to easily detect the natural frequencies of the system and the corresponding mode shapes.

Fig. 6 shows the average spectra of DEA G1 (as defined in Fig. 4a) in the presence of a voltage

bias Vb = 2 kV and different values of the initial out-of-plane deformation z. In the case z = 0, the DE

membrane is flat, and no biasing element is applied on the rigid disc, whereas in the other cases the DEA

is deformed by means of the pre-loaded spring.

The frequency response of the actuator is characterised by different peaks, corresponding to the system

resonances. The visible peaks have a narrow band (namely, a large quality factor) and represent highly

underdamped dynamics, i.e., the peak abscissa can be assumed to coincide with the natural frequency of

the associated mode. The imaging of the velocity distribution over the DEA provided by the vibrometer

software allows reconstructing the mode shapes associated with each peak.

In the mechanically biased case, two vibration regimes can be identified (see Fig. 7): at low frequency,

the DEA shows a pistonic motion, characterised by axial movements of the central disc (Fig. 7a), whereas

at higher frequencies, the central rigid disc (whose mass is much higher that the membrane mass) does

not move, and the dynamics is characterised by off-plane vibrations of the lightweight DE membrane (Fig.

7b). These higher-frequency structural vibrations have similar mode shapes at the different biasing levels,

and only their natural frequency changes as a result of the initial deformation. As observed by Fox &

Golbourne [11] and Garnell et al. [13] for the case of circular inflated DEAs, the structural mode shapes

resemble the the known modes of a flat tensioned annular membrane with fixed edges (as graphically

rendered in Fig. 7b) [40, 41], i.e., the velocity profiles are characterised by a progressively increasing
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Figure 6: Average spectra of the velocity components of DEA prototype G1, subject to a bias voltage

Vb = 2000 V and different values of the initial displacement z (namely, z = 0, 11 and 16 mm).

number of nodes in the radial and circumferential directions. We hereby refer to this modes using the

standard terminology used in mechanics of vibrations: (m,n) identifies a mode shape with m + 1 radial

nodes (including both fixed edges) and n circumferential nodes (see Fig. 7b).

Figure 7: (a) Experimental vibrometer contour plot of the DEA velocity module in the pumping mode

(top), and qualitative contour plot showing the axial velocity distribution in the DEA and the biasing

spring (bottom). (b) Experimental vibrometer contour plot of the velocity module for a set of structural

modes (top row), and contour plots of the corresponding modes for a flat annular membrane with fixed

edges (bottom row). The labels into parentheses define the modes nomenclature.
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(a) (b)

Figure 8: (a) Average spectra of the z velocity components for DEA prototype G1, subject to an initial

displacement z = 16 mm and different bias voltages (Vb = 1 and 3 kV). (b) Natural frequencies of a set

of mode shapes for prototypes G1 and G2, subject to Vb = 2 kV and z = 16 mm. The markers represent

different mode shapes, whereas the dashed line is the bisector line of the axes.

In the flat unbiased configuration, the pistonic motion that characterises the biased scenarios is not

visible. As z = 0 is a position of mechanical singularity for the DEA, applying a voltage does not generate

off-plane motions of the membrane in this position, and steady-state vibrations are only excited as a con-

sequence of inhomogeneities in the membrane and the boundary conditions. In the biased configurations

(z ̸= 0), multiple peaks are present within the pumping region, in correspondence of all of which the

DEA membrane follows a same pistonic deformation pattern. This is due to the dynamics of the biasing

spring, which has a mass comparable to the total DEA mass, and behaves as a distributed oscillator,

hence introducing a set of additional resonance peaks (see also Annex I). Different low-frequency peaks

(P1), (P2), etc. are characterised by a same deformation pattern of the DEA membrane. The first one of

these peaks corresponds to the scenario in which the stretch on the spring is uniform, whereas the others

correspond to the presence of longitudinal waves on the spring (i.e., the maximum displacement point is

located somewhere along the spring length).

The comparison of the plots in Fig. 6 shows that increasing the deformation z of the DEA causes an

increase in the frequency of the corresponding structural modes, as a result of the increase in the stress

on the membrane. Compared to the flat scenario, in which vibrations in the z direction are dominant, in

the biased configurations the motion of the membrane features in-plane velocity components rendering

the circumferential deformations of the membrane profile. Due to symmetry, the spectra of the x and y

component are practically identical.

Although the excitation is uniform and the geometry is approximately axial-symmetrical, a set of

non-axial-symmetrical mode shape peaks are present, whose steady-state oscillation is triggered by in-

homogeneities and uncontrollable asymmetries in the setup. These non-symmetrical mode shapes are

particularly visible at low biases, when the membrane is close to the singular configuration, and they

become increasingly small (compared to the symmetrical modes (0,m)), or practically inexistent, as the

deformation z increases. There are two axial-symmetrical structural modes ((0, 1), (0, 2)) within the

considered range, in addition to the pumping modes.

An animation of the mode shapes for the case with z = 16 mm (Fig. 6 - bottom) is shown in the Supple-

mentary Material video. Notice that, unlike the axial-symmetrical modes, which show a standing-wave

behaviour, some of the non-symmetrical modes (e.g. (1,1), (2,1)) exhibit travelling nodes, i.e. they be-
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have as complex modes [34]. Similar to other structures, this behaviour is possibly due to aero-elastic

interactions or the membrane’s damping [34].

For the same DEA layout, Fig. 8a shows the influence of the biasing voltage on the velocity spectra.

The plot shows that increasing the biasing voltage causes an increase in the amplitude of the oscillations.

This happens because the total membrane stiffness decreases with increasing voltage (see Fig. 4b).

Moreover, increasing the bias voltage results in a reduction in the natural frequencies. This happens

because an increased bias voltage causes a decrease in the membrane stresses (due to the Maxwell stress

component), to which the natural frequency is directly related. Such a shift in the natural frequency

is much more evident in the structural modes rather than in the low-frequency pumping mode. The

biasing voltages considered here correspond to relatively low electric fields of 40 and 65 kV/mm (i.e.,

a difference of only 25 kV/mm), hence loosely affecting the lumped axial stiffness and pumping mode

frequency, but they still produce a reduction in stress which causes visible shifts at in the higher order

modes frequencies.

COP-DEAs with different aspect ratios feature significantly different natural frequencies distributions.

Fig. 8b shows a comparison between the two DEA geometries shown in Fig. 4a, in terms of the natural

frequencies of a selection of target mode shapes. In the plot, the markers indicate different mode shapes.

The natural frequencies of the low-frequency pumping modes are similar for the two DEAs, whereas

significant differences emerge when the structural modes are considered. The natural frequencies are

larger on membrane G1, as a result of the higher stresses to which it is subject (see Fig. 4b). In addition

to that, different geometries result in different distributions of the mode shapes (i.e., the difference between

the natural frequencies of consecutive modes are different).

These results suggest that, compared to the low frequency response typically exploited in DEA appli-

cations, higher-frequency structural dynamics present a greater sensitivity to the variations in the actuator

geometry, pre-load, and applied electric field.

5 Model validation

Based on the experimental tests described in Sect. 4, here we present a validation of the modelling

framework introduced in Sect. 3. First, attention is focused on the ability of the model in accurately

predicting the natural frequencies of the COP-DEA. On this end, a three-dimensional FE analysis is

employed, which allows predicting the frequencies at which different modes (including the non-axial-

symmetrical ones) are excited.

The focus is then shifted on the forced dynamic response generated by the time-varying input voltage

signal. In this case, only axial-symmetrical dynamics are considered, to which the largest oscillation

amplitudes are associated. In fact, predicting the amplitude of the non-symmetric modes would require a

deeper knowledge of the inhomogeneities in the membrane thickness, electrodes, and boundary conditions,

which falls beyond the scope of this paper.

5.1 Numerical implementation

For the calculation of the structural eigenfrequencies of the DEA membranes, a FE model has been devel-

oped in Comsol multiphysics, which implements the theory described in Sect. 3.1. The FE model makes

use of the Nonlinear Structural and Pressure Acoustic modules. The DE is modelled using membrane

elements, that automatically implement the plane-stress condition and bending moment cancellation im-

plicit into elastic membranes theory (see Sect. 3.1). Since the thin DE membrane can be treated as

a parallel-plate capacitor, in which the electric field is simply perpendicular to the deformed electrodes
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surfaces, the electrostatic problem is not solved for explicitly, and the electrostatic coupling contribution

is included in the model through a simple modification of the default form of the free energy (involved in

the stress computation), so as to include the voltage-dependent term present in Eq. (7)

Figure 9: (a) FEM model geometry with the DEA in the flat unstretched position. (b) Deformed

(pre-loaded) membrane and mesh. (c) FEM eigenfrequency analysis: contour plots of the displacement

(absolute value) distribution for a reference mode (mode (2, 1)) and corresponding contour of the air

pressure distribution. (d) Profiles of the axial-symmetrical mode shapes used in the lumped-parameter

model. Points Q1-Q3 are used in the analyses presented in Sect. 5.3.

For the solution of the acoustic problem, an infinitely-thin fixed 80mm×80mm square and perfectly-

reflecting frame is included around the pre-stretched membrane perimeter (Fig. 9a-c). This element

models, in a simplified way, the sound wave reflections from the support frame in the immediate neigh-

bourhood of the DEA membrane. The other structural elements (support structure, spring, etc.) are

not included in the modelled geometry, for simplicity. The acoustic domain is modelled as a spherical

volume (with radius equal to 3.5ro), holding a perfectly-matched layer (with radial thickness of 0.5ro)

on the outer surface (Fig. 9a), i.e., an artificial absorbing layer that computationally approximates an

open-boundary condition [15].

The study is carried out in two steps: a stationary step in which the DEA is electro-mechanically

pre-loaded to the target configuration, and a fully-coupled eigenfrequency analysis. Since in Comsol the

continuum mechanics problem is formulated in a Lagrangian fashion (see Eq. (2)), whereas the acoustic

problem is formulated in an Eulerian way (see Eq. (8)), the built-in moving mesh feature is employed

(with the mesh displacement set equal to the membrane nodes displacements) during the static pre-load

step. This allows consistent and automatic mapping of the nominal geometry into the deformed frame

(Fig. 9b), and permits to use an arbitrary Lagrangian-Eulerian framework to resolve the inconsistencies

among the spatial and material formulations [42, 43]. The output of the analysis are the velocity and

displacement profiles for the different nodes, their natural frequencies, and the corresponding air pressure

distribution profiles governing the elasto-acoustic interaction (Fig. 9c). Because of the acoustic interaction

(e.g., the air radiation damping), the eigenfrequencies computed by Comsol are complex-valued. The real

parts of such frequencies are then extracted, and considered as the corresponding natural frequencies of

the modes.

In all the analyses, the elastic membrane response is described by means of a generalised Mooney-
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Rivlin hyperelastic model in the following form:

Ψm(C) = Ψ̃m(λ1, λ2, λ3) =

2∑
k=1

ck,0(λ
2
1 + λ2

2 + λ2
3 − 3)k + c0,1(λ

−2
1 + λ−2

2 + λ−2
3 − 3), (20)

where hyperelastic parameters c10 = 228.5 kPa, c20 = 8.4 kPa, c01 = −28.6 kPa have been fitted on

the tensile curves (at V = 0) shown in Fig. 4b, using a static version of the model presented in Sect.

3.2.1. The theoretical force-displacement curves at V = 3 kV in the picture have been obtained from the

identified elastic parameters, using the nominal DE permittivity (Tab. 1).

The calculation of the pumping modes frequencies is performed using Eq. (22) in Annex I, and

computing the DEA global axial stiffness from the reduced model in Sect. 3.2.1.

Figure 10: Comparison of experimental and model natural frequencies for a set of target modes, for two

DEAs (row 1 and 2) subject to Vb = 2 kV. The first column refers to flat membranes with no biasing

spring. The second column refers to an initial displacement z = 16 mm. Each marker refers to a different

mode shape. Dashed-dotted lines are for low-frequency pumping modes, solid lines compare experiment

and fully-coupled model (structural modes), and dashed lines compare experiments and electro-elastic

model (omitting the acoustic contribution). Points lying on the dashed thin bisector line indicate a

perfect agreement between model and experiments.

For the forced response, a linearised model is built using Eq. (19), calculating M̄α, K̄α and d̄α based

on the model in Sect. 3.2.1. For the purpose of this analysis, three axial-symmetrical modes were used

for the modal truncation (see Fig. 7), namely, the first pumping mode (P1), and structural modes (0, 1)

and (0, 2), whose contribution is dominant in the system response, especially in the presence of large

deformations (see, e.g., bottom plot in Fig. 6). The other axial-symmetrical pumping modes, (P2), (P3)

etc. were not included in this analysis, as their response depends on the chosen mechanical pre-loading

system (here, the biasing spring) rather than the DEA itself. The analysis of their forced response hence

goes beyond the aim of this paper. A discretisation of the membrane profile into n = 6 rings has been

used for this purpose. We then compute an approximation for M̄ad, based on the eigenfrequency FE

analysis. Since the frequency-domain distance among the resonance peaks of the symmetrical modes is
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larger than the peaks band (see, e.g., Fig. 6 - bottom), the modes are assumed uncoupled. M̄ad is thus

assumed diagonal, and its elements, mad,k, are chosen in a way that the eigenfrequencies of the axial-

symmetrical modes match the values obtained via the FE analysis (the damping is assumed low enough

not to significantly affect the natural frequencies). Different values of the added mass elements mad,k

are calculated for each combination of mechanical pre-load z and electrical bias Vb. The added mass

associated with the pumping mode is neglected (mad,1 = 0), since it is much lower than the moving disc

mass. The added mass of mode (0,1) has been found to range between 45% and 80% the structural modal

mass, whereas the added mass of mode (0,2) is between 25% and 30% the modal structural mass. The

added mass is higher at higher values of the off-plane deformation z, i.e., when the membrane thickness is

lower and its radiating surface larger. The damping matrix B̄α is also assumed diagonal, and its elements

bα,k are calibrated based on an experimental dataset (as described in detail in Sect. 5.3). In contrast with

the added mass, fixed values of damping (calibrated on a specific dataset) are used for all the simulations.

Since the model in Eq. (19) is linear and time-invariant, simulations are carried out in the frequency

domain: the same periodic chirp excitation signal used in the tests is fed as input into the model, and

the frequency-domain representation of the velocity distribution at a set of target points is obtained.

(a) (b) (c)

Figure 11: Prediction of how the natural frequencies are influenced by (a) the bias voltage Vb (membrane

G2, z = 12 mm), (b) the initial deformation z (membrane G1, Vb = 2 kV), (c) the COP-DEA geometry

(z = 16 mm, Vb = 2 kV)

5.2 Natural frequency and mode shapes analysis

A comparison of the measured and the theoretical estimated natural frequencies for a set of target modes

is shown in Fig. 10 , for the two DEA geometries in Fig. 4, at two different levels of mechanical bias-

ing (i.e., flat unbiased and out-of-plane preloaded). In the flat unbiased case structural modes are only

observed, whereas in the presence of a pre-load the first three pumping frequencies are also considered.

For the structural modes, experimentally observed frequencies are compared with model predictions both

considering the case in which no fluid-structure interaction occurs (e.g., neglecting the contribution of

the pressure), and the fully-coupled case. The plots show that the acoustic interaction has a remarkable

influence on the estimated natural frequencies: the natural frequencies calculated by neglecting the air

loads are up to 30% higher than those obtained from the fully-coupled model and larger than the ex-

perimental values, hence previous results relative to different DEA layouts [15]. Although some of the

non-symmetrical modes are complex modes with travelling nodes (see Supplementary Material video),

their shape and natural frequency is still accurately predicted by the model, owing to the low damping
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to which the membrane is subject.

The fully-coupled model is able to accurately predict the natural frequencies in the different considered

scenarios, with a maximum error on the order of 8%. The maximum error is on mode (0, 1), which

is also maximally affected by the air loading (i.e., for this mode, the difference between the natural

frequency estimated with the two models versions is maximum). These discrepancies are possibly due

to the simplified geometry used in the FE analysis, which neglects the presence of reflecting structural

elements in the surrounding of the device. It is worth noticing that, compared with the purely structural

model, the acoustically-coupled model also provides a more consistent estimate of the distribution of the

natural frequencies (rendered in Fig. 12 by the curves slope), in addition to providing a better prediction

of the natural frequency values.

Fig. 11 further shows that the model consistently predicts the trends of the modes’ frequencies

variations as a function of the design and control parameters. The structural natural frequencies decrease

by increasing the voltage, due to the reduction in stress (Fig. 11a), they increase when the membrane

biasing deformation is increased (Fig. 11b), and they show different values and distributions for different

geometrical layouts (namely, the ratio ro/ri) of the COP-DEA (Fig. 11), as already observed in Sect. 4.3.

Figure 12: Comparison of model’s (solid lines) and experimental (dashed lines) average spectra of the

COP-DEA velocity components at three different initial deformations: (a) z = 11 mm, (b) z = 16 mm,

(c) z = 18 mm - membrane G1, Vb = 2 kV.

5.3 Forced response analysis

Validation of the reduced axial-symmetrical model of the forced dynamic response of the COP-DEA is

carried out by comparing the measured velocity spectra and those predicted by the reduced model in

Sect. 3.2 (Eq. (19)).

Comparisons are focused both on the average spectra and on local spectra of the individual points.

Since the considered model is axial-symmetrical, two velocity components are considered, namely the axial

and the radial velocity (as opposed to the cartesian components provided by the vibrometer), where the

average experimental radial velocity spectra are calculated from the vibrometer’s spectra of the cartesian

components.
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With reference to membrane G1, Fig. 12 shows a comparison between the experimental and model-

predicted velocity spectra for different values of the mechanical biasing z.

Figure 13: Comparison of model’s (solid lines) and experimental (dashed lines) average spectra of the

COP-DEA velocity components for membrane G1 at Vb = 3 kV

and z = 18 mm.

The dataset in Fig. 12b (relative to an intermediate bias of z = 16 mm) has been used for the

calibration of the damping coefficients. Since the frequency passbands of the different modes practically

do not overlap, the damping coefficients for the different modes were calculated independently from each

other. Each element of the diagonal damping matrix B̄α (see Eq. (19)) has been chosen in such a way that

the height (average of axial and radial component) of the associated peak equals that of the experimental

spectra. The identified values of the modal damping coefficients (divided by the modal structural masses)

are: bα,1/mα,1 = 45 s−1 for mode (P1), bα,2/mα,2 = 245 s−1 for mode (0,1) and bα,3/mα,3 = 57 s−1 for

(0,2). These same values of the damping-to-structural-mass ratio have been then used for the comparisons

drawn in Fig. 12a and c, as well as the other comparisons presented in the following. These correspond,

in all cases, to damping ratios below 10−3.

Based on Fig. 12, the model shows a good agreement with the experimental data, as it is able, with a

relatively modest calibration, to predict the trends in the velocity amplitudes at different values if z. In

particular, the model captures the amplitudes of both velocity components, hence consistently predicting

the amount of radial displacement generated by the off-plane deformations. The mismatches between

models and experiments are basically due to errors in the estimate of the modes’ natural frequencies by

the model, which, although rather small in percentage (as discussed in Sect. 5.2), result is a misalignment

between the model and experimental peaks.

The calibrated model is then used to evaluate the modifications in the spectrum obtained by changing

the bias voltage Vb. With reference to the same DEA geometry and initial deformation considered in Fig.

12c, Fig. 13 compares the spectra obtained using a larger value of the biasing voltage. Although a same

excitation amplitude Ṽ is used in both tests, the reduction in stiffness due to the Maxwell stress generates

increases on the order of 30-40% in the amplitude of the different resonance peaks, which are consistently

captured by the model.

In addition to the presented average spectra comparisons, Fig. 14 shows a comparison in terms of
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the velocity spectra at different target points on the membrane, so as to prove that the model succeeds

in describing the local behaviour of the DEA. Reference is made to points Q1, Q2 and Q3 (as defined in

Fig. 5d), which roughly lie at a distance of 1/4, 1/2, and 3/4 the membrane radial width (ro − ri) from

the electrode inner circumference.

Compared to the average spectrum (at the same voltage and deformation) shown in Fig. 12, the point

spectra individually show higher/lower amplitude of the different peaks, based on the relative position

of the considered points and mode shapes (see Fig. 9d). In particular, point Q2 lies in proximity of a

crest point for mode (0, 1), and hence shows larger amplitude at the second peak compared to the other

points. The same point lies in proximity of a node point for mode (0, 2), hence exhibiting a relatively

small amplitude of the third peak. In contrast, points Q1 and Q3 are close to a crest point for mode (0, 2),

and feature maximum velocity amplitude at the natural frequency of that mode. Though calibrated on

the average spectrum response (Fig. 12b), the model fully describes the above mentioned trends, and it

is thus able to predict how the velocity profiles change throughout the membrane and assess how much

the different mode shapes weight on the response of different points.

Figure 14: Comparison of model’s (solid lines) and experimental (dashed lines) spectra of the COP-DEA

velocity components of three different points (Q1, Q2, Q3) on the DEA membrane - membrane G1, Vb = 2

kV, z = 16 mm.

In conclusion, the presented lumped parameter model of the COP-DEA forced excitation makes use of

a low number of experimentally-calibrated parameters (a value of damping for each modal shape, identified

based on the system average response), and it is able to predict the trends of the DEA membrane velocity

components variations as a function of the bias voltage and deformation, and what the spatial distribution

of the velocities components is.

6 Conclusions

We presented a mathematical model and experimental characterisation of voltage-driven structural vi-

brations in dielectric elastomer actuators (DEAs).

Although most DEA topologies normally exploit a dominant predefined deformation mode (namely, a

pumping mode), the polymeric dielectric membranes are elastic continua that, subject to high frequency
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alternated current or broadbanded electrical excitation, exhibit a complex set of structural mode shapes

and deformation patterns. Taking advantage of such higher order modes potentially allows using DEAs

for a completely new set of applications, such as morphing conformable structures, tunable optical or

acoustic systems.

In this work, reference is made on a widely investigated DEA layout, called a circular out-of-plane

DEA (COP-DEA). This device does not require any pressure biasing or sealed air volumes, as it makes

use of elastic springs to provide an initially flat DEA membrane with the off-plane pre-load required for

actuation.

We performed tests on different silicone-based COP-DEA geometries subject to different mechanical

pre-loads and voltage biasing. Using a scanning laser Doppler vibrometer, we could measure the velocity

spectra generated by multi-chromatic voltage inputs at different points over the DEA surface, and the

mode shapes that are excited at the different frequencies.

At low excitation frequency, the membrane shows a pistonic axial motion, whereas at higher frequency

a complex set of mode shapes appear. Because of the large mass of the structural components (moving

rigid fixtures, biasing spring), the pistonic motion completely disappears in the frequency range where

higher order structural modes are excited. At low frequencies, the biasing spring element introduces

a set of resonance peaks in the DEA response, due to its own structural dynamics. Choosing a suit-

able combination of the biasing element stiffness and mass is therefore crucial, if COP-DEA with a flat

frequency-response are sought. In spite of the circular geometry of the DEA and the uniform excitation,

complex circumferential modes are detected on the membrane at high frequency, at least in the neighbour-

hood of the flat singular configuration. As expected, by increasing the off-plane deformation, the influence

of such circumferential modes becomes increasingly small compared to the dominant axial-symmetrical

modes.

We were able to explain the observed mode shapes and their natural frequency using a fully-coupled

finite-element model. The model relies on the assumption the the active material can be treated as a thin

hyperleastic membrane with dielectric properties, and is thus potentially suitable to describe COP-DEAs

made of a wide variety of dielectric elastomer materials. Similar to previous works on different DEA

topologies, we observed that the air pressure loads (generated by the DEA vibrations) significantly affect

the natural modes’ frequency, as they provide the system with a non-negligible aerodynamic added mass.

Using information from the FE formulation, we built a lumped-parameter model that, by relying on a

modal decomposition, describes the forced dynamic response of the COP-DEA, and is able to predict the

profiles of the different velocity components at different points within the considered frequency range.

The developed modelling framework might be used, in the future, for the design of multi-function actuators

that exploit different vibration regimes (pumping and structural modes) over different frequency ranges,

and the definition of control strategies aimed at the selective excitation of target vibration modes.
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ANNEX I: Effect of the biasing element mass on the COP-DEA low-

frequency response

If the mass Ms of the biasing spring is comparable with the mass of the central disc, the continuum

dynamics of the spring affects the dynamics of the system, introducing additional modes. Since both the

mass of the spring and the central disc are much larger than the DE mass, these effects are only relevant in

the low frequency range. In this range, the DEA moves pistonically, and the coupled DEA-spring system

can be modelled as in Fig. 15 , where kDE is an equivalent pumping-mode DEA stiffness (calculated

from the slope of the DEA force-displacement response in the neighbourhood of the equilibrium state, at

a given bias voltage), and the spring mass Ms is uniformly distributed over the spring length.
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Figure 15: Low-frequency mechanical equivalent model of the DEA-spring system

We denote Xs the position of a material point of the spring in the undeformed configuration, and

xs(Xs, t) the time-varying position of the same point in a deformed state. The dynamics of the system is

described by the following partial differential equation and boundary conditions:
∂2xt
∂t2

= c2s
∂2xt
∂X2

s

xs(0, t) = 0

Mdc
2
s

∂xt
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∣∣∣∣
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(21)

where the first equation describes the dynamics of longitudinal waves on a spring, whose speed is cs =

(kdL
2
s/Ms)

0.5. The second boundary condition in Eq. (21), at Xs = Ls is the linearised equation of

motion of the DEA lumped mass Md.

The corresponding eigenvalue problem associated with the partial differential equation is as follows:

−Mdω
2
k,s sin

(
ωk,s

cs
Ls

)
+ kdLs

ωk,s

cs
cos

(
ωk,s

cs
Ls

)
+ kDE sin

(
ωk,s

cs
Ls

)
= 0, (22)

and it provides a set of additional natural frequencies ωk,s for the system generated by the structural

dynamics of the biasing spring. The corresponding eigenvector shape-function x̃t,k, rendering pumping

mode shape (Pk), is:

x̃t,k(Xs) = sin

(
ωk,s

cs
Xs

)
. (23)

Here, ωk,s and x̃t,k are respectively the natural frequency and the mode shape of mode (Pk).
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