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Abstract
BACKGROUND 
The pandemic outbreak of the novel coronavirus disease (COVID-19) has 
highlighted the need to combine rapid, non-invasive and widely accessible 
techniques with the least risk of patient’s cross-infection to achieve a successful 
early detection and surveillance of the disease. In this regard, the lung ultrasound 
(LUS) technique has been proved invaluable in both the differential diagnosis and 
the follow-up of COVID-19 patients, and its potential may be destined to evolve. 
Recently, indeed, LUS has been empowered through the development of 
automated image processing techniques.

AIM 
To provide a systematic review of the application of artificial intelligence (AI) 
technology in medical LUS analysis of COVID-19 patients using the preferred 
reporting items of systematic reviews and meta-analysis (PRISMA) guidelines.

METHODS 
A literature search was performed for relevant studies published from March 2020 
- outbreak of the pandemic - to 30 September 2021. Seventeen articles were 
included in the result synthesis of this paper.

RESULTS 
As part of the review, we presented the main characteristics related to AI 
techniques, in particular deep learning (DL), adopted in the selected articles. A 
survey was carried out on the type of architectures used, availability of the source 
code, network weights and open access datasets, use of data augmentation, use of 
the transfer learning strategy, type of input data and training/test datasets, and 
explainability.

CONCLUSION 
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Finally, this review highlighted the existing challenges, including the lack of large datasets of 
reliable COVID-19-based LUS images to test the effectiveness of DL methods and the 
ethical/regulatory issues associated with the adoption of automated systems in real clinical 
scenarios.

Key Words: Lung ultrasound; Deep learning; Neural network; COVID-19 pneumonia; Medical imaging

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Challenging coronavirus disease 2019 (COVID-19) pandemic through the identification of 
effective diagnostic and prognostic tools is of outstanding importance to tackle the healthcare system 
burdening and improve clinical outcomes. Application of deep learning (DL) in medical lung ultrasound 
may offer the advantage of combining non-invasiveness and wide accessibility of ultrasound imaging 
techniques with higher diagnostic performance and classification accuracy. This paper overviews the 
current applications of DL models in medical lung ultrasound imaging in COVID-19 patients, and 
highlight the existing challenges associated with the effective clinical application of automated systems in 
the medical imaging field.

Citation: De Rosa L, L'Abbate S, Kusmic C, Faita F. Applications of artificial intelligence in lung ultrasound: 
Review of deep learning methods for COVID-19 fighting. Artif Intell Med Imaging 2022; 3(2): 42-54
URL: https://www.wjgnet.com/2644-3260/full/v3/i2/42.htm
DOI: https://dx.doi.org/10.35711/aimi.v3.i2.42

INTRODUCTION
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a life-threatening infectious virus and 
its related disease (COVID-19) represents a still ongoing challenge for humans. At time of writing, over 
497 million infections have been recorded worldwide including more than 6.1 million attributable 
deaths[1]. Despite the large number of vaccination programs introduced from the end of 2020 has 
represented an opportunity to minimise the risk of severe COVID-19 and death, the spread of new 
genetic viral variants with a higher probability of contagion has raised a renewed strong concern for 
either not vaccinated and vaccinated people. Thus, since the outbreak of the pandemic, research has 
continuously looked for a quick and reliable way to diagnose the disease, treat and monitor people 
affected by coronavirus.

To date, molecular test based on real time quantitative reverse transcription polymerase chain 
reaction (RT-qPCR) assay by nasopharyngeal swabs along with the serological antibody-detecting and 
antigen-detecting tests are the current accepted diagnostic tools for the conclusive diagnosis of COVID-
19[2]. RT-qPCR may take up to 24 h to provide information and requires multiple tests for definitive 
results and, in addition, it is not relevant to assess the disease severity. Furthermore, the accuracy of 
molecular and serological tests remains highly dependent on timing of sample collection relative to 
infection, improper sampling of respiratory specimens, inadequate preservation of samples and 
technical errors, particularly contamination during RT-qPCR process and cross-reactivity in the 
immunoassay[3,4].

To complement conventional in vitro analytical techniques of COVID-19, biomedical imaging 
techniques have demonstrated great potential in clinical diagnostic evaluation by providing rapid 
patient assessment in the presence of high pre-test probability. Furthermore, imaging techniques are 
currently important in the follow-up of subjects with COVID-19[5,6]. Among the imaging techniques, 
chest computed tomography (CT) is considered the primary diagnostic modality and an important 
indicator for assessing severity and progression of COVID-19 pneumonia[7,8], although it has been 
reported to have limited specificity[9-11]. Indeed, the CT imaging features can overlap between COVID-
19 and other viral pneumonia. Moreover, CT scanning is expensive, not easy to perform in the COVID-
19 context, and multiple risks are associated with it, such as radiation exposure and cross-infection risk 
associated with repeated use of a CT suite[12], along with unavailability of CT in many parts of the 
world.

In the last few years, lung ultrasound (LUS) technique has become increasingly popular and a good 
option for real-time point-of-care testing, with several advantages making it a valuable tool in the fight 
against COVID-19[13], although it has specificity limits comparable to those of chest CT.

Ultrasound (US) is a low-cost, non-radioactive medical imaging method, particularly indicated for 
evaluation in pregnant women and children, which is portable to the bedside or patient’s home and is 
easy to sterilise. Moreover, the risk of COVID-19 cross-infection can be limited by making use of 
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disposable ultrasound gel with a portable probe[14]. In addition, some studies indicate that LUS shows 
excellent performances in speed of execution and accuracy of diagnosis in case of respiratory failure
[15]. Furthermore, compared with chest X-ray, LUS demonstrated higher sensitivity in detecting 
pneumonia[16] and similar specificity in the diagnosis of pneumothorax[15]. On the other hand, the 
distinctive LUS features (B-lines, consolidations, pleural thickening and rupture) observed in patients 
with varying severity of COVID pneumonia are similar to the features seen in patients with pneumonia 
of different aetiologies. Indeed, a recent review[17] on ultrasound findings of LUS in COVID-19 
demonstrated that LUS has high sensitivity and reliability in ruling out lung involvement, but at the 
expense of low specificity. Therefore, especially in the case of low prevalence of the disease, at present 
LUS cannot be considered a valid gold standard in clinical practice.

Ultrasound image processing techniques have assumed great importance in recent years, with the 
growing experience that accurate image processing can significantly help in extracting quantitative 
characteristics to assess and classify the severity of diseases. Accordingly, sophisticated techniques of 
automated image processing, that include the use of artificial intelligence (AI) methods, have been 
developed and applied to assist LUS imaging in the detection of COVID-19 and make such assessment 
more objective and accurate. AI methods - from machine learning (ML) to deep learning (DL), indeed, 
aim to imitate cognitive functions and stand out in automatically recognizing complex patterns in 
imaging data, providing quantitative rather than qualitative assessments. The primary purpose of 
applying AI methods in medical imaging is to improve the visual recognition of certain features in 
images to produce lower-than-human error rates. Furthermore, an enhancement in LUS performance 
can reduce the use of more invasive and time-consuming techniques, facilitating both faster diagnosis 
and recognition of earlier stages of the disease[18]. To allow a quick development of highly performant 
AI models, a large amount of accessible and validated data to train and test AI models is a critical 
requirement that can be achieved, for instance, with the development of shared big data archives. 
Indeed, one of the most common problems associated with using limited training samples is the over-
fitting of DL models. To address this issue, two main approaches can be selected: model optimization 
and transfer learning. These strategies significantly improve the performance of DL models. Likewise, 
data pre-processing and data augmentation/enhancement can be useful additional strategies[19,20].

The most common applications of DL methods in clinical imaging, and hence in medical ultrasound 
imaging as well, are object detection, object segmentation, and object classification[21]. The main 
architectures applied in current analysis are convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs)[22]. CNNs are architectures able to work with 2D and 3D input images and 
RNNs recognize the image's sequential characteristics and use patterns to predict the next likely 
scenario[23].

Since the outbreak of the pandemic, many proposals have been made based on AI methods applied to 
LUS scans of COVID-19 patients. Here we propose a comprehensive systematic review of the literature 
on the use of AI technology, DL in particular, to aid in the fight against COVID-19.

MATERIALS AND METHODS
Study selection
A literature search to identify all relevant articles on the use of DL tools applied to LUS imaging in 
patients affected by COVID-19 virus was conducted.

This systematic review was carried out using the PubMed/Medline electronic database and 
according to the preferred reporting for systematic reviews and meta-analysis (PRISMA) guidelines[24,
25]. We performed a systematic search covering the period from March 2020 (from the outbreak of the 
pandemic) to 30 September 2021. The search strategy was restricted to English-language publications.

We performed an advanced research concatenating terms with Boolean operators. In particular, 
search words and key terms used in the search included ("lung ultrasound" OR "lus") AND ("COVID-
19" OR "coronavirus" OR "SARS-CoV2") AND ("artificial intelligence" OR "deep learning" OR "neural 
networks" OR "CNN").

Eligibility criteria
The inclusion criteria were: Studies that include COVID-19 patients with LUS acquisitions and 
developed or tested DL-based algorithms on LUS images or on features extracted from the images; No 
restriction on the ground truth adopted to analyse the presence/absence of COVID-19 and/or the 
severity of lung disease (e.g., PCR, visual evaluation of video/images and score assignment by expert 
clinicians); No restriction on the type of DL architecture used in the studies. Studies on paediatric 
population were excluded. Studies were restricted to peer reviewed articles and conference 
proceedings. However, the following publication types were excluded: reviews and conference 
abstracts.



De Rosa L et al. DL methods in COVID-19 LUS imaging

AIMI https://www.wjgnet.com 45 April 28, 2022 Volume 3 Issue 2

Data extraction and analysis
Two investigators (DRL and FF) screened the articles independently. Disagreement between reviewers 
was resolved by consensus via discussion. The reasons for the exclusion of some trials are described in 
the Results section. Publications by the same research group or by different groups using the same 
dataset were included in the analysis. After the selection of the articles, we collected the following 
characteristics: First author’s surname, date of publication, sample size, general characteristics of the 
study populations, AI techniques used, validation methods and main results obtained. The study 
selection process is presented in Figure 1.

RESULTS
Search results
Twenty-four articles resulted after querying the database and screened for eligibility (Figure 1). Of the 
24 articles, we discarded four references as review papers. After examining the titles and abstracts, we 
excluded five articles: one manuscript did not include DL methods applied on US imaging, three papers 
were not based on AI and DL approaches, and one article was focused on the paediatric population. 
Moreover, two additional papers, retrieved from the checking of references of the eligible articles, were 
included. Finally, 17 articles[26-42] were selected for full-text screening and included in our analysis 
(Table 1 and 2). The following part of the section provides a concise overview of the studies’ main 
features.

Dataset and source code availability 
Authors of seven[27-30,33,39,40] of the seventeen selected articles (41.2%) extrapolated their datasets 
from the free access LUS database acquired by point-of-care ultrasound imaging and made available 
firstly by Born et al[30]. Instead, an Italian group firstly introduced the Italian COVID-19 Lung 
Ultrasound DataBase (ICLUS-DB)[38], which is accessible upon mandatory request to the authors, and 
that was used in two other studies[32,37]. Noteworthy, Roy et al[38] have created a platform through 
which physicians can access algorithms, upload their data and see the algorithm's evaluation of the 
data.

Besides dataset open access, access to the code for the neural network is also important to reproduce 
results and compare performances. Seven articles[26-30,32,38] (41.2%) made the source code 
implementing the proposed DL architecture available for download from the Git-hub repository.

Single-frame/multi-frames or video based architecture
In the majority of the selected papers, DL architectures work with single frame images as input and only 
three publications[29,34,41] (17.6%) report DL architectures based on image sequences (i.e., video). 
However, six studies[28,30,32,37-39] (35.3%), despite adopting a DL architecture designed to perform 
single-frame classification, also propose additional methods to fulfil video-based classification. In 
particular, Roy et al[38] proposed an aggregation layer system of frame-level scores to produce 
predictions on LUS videos and Mento et al[37] proposed an alternative video-based classification using a 
threshold-based system on the frame-level scores obtained from DL architecture.

Other authors[32] adopted a Long Short-Term Memory (LSTM) system, which has been used to 
exploit temporal relationships between multiple frames by taking long time series as input, over 
performing their results obtained by CNN without LSTM.

Finally, Xue et al[42] applied AI models for patient-level assessment of severity using a final module 
across the entire architecture that works with ML rather than DL systems.

Test strategy of DL models
The proposed DL models have been tested on a database entirely independent from the training 
database in seven articles[26,35-39,42] (41.2%); five-fold and ten-fold cross-validation techniques were 
applied in nine[27-34,40] (52.9%) and one[41] (5.9%) studies, respectively. Among the papers that tested 
DL models on an independent database, the percentage of data used for the testing ranged from 33%[35] 
to 20%[38] and 10%[26,36] of the overall data. Born et al[29], alongside the five-fold cross-validation 
technique in the training/test phase of the DL model, also used an independent validation dataset 
made-up of 31 videos (28 convex and 3 linear probes) from six patients. Indeed, Roy et al[38], for 
instance, used 80 videos/10709 frames out of the total 277 videos/58924 frames to test their DL model.

In all studies, the splitting of data between training set and test set was performed either at the 
patient-level or at the video-level. Thus, all the frames of a single video clip belonged either to the 
training or to the test set.

Data augmentation 
Twelve (70.6%) research groups extended their LUS database by augmentation. The main strategies for 
data augmentation applied to LUS images were: Horizontal/vertical flipping[26,27,29,30,32,33,36,38-40,
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Table 1 General characteristics of the studies included in the analysis (part I)

Ref. Publication 
date Journal Sample size1, N° 

pts/videos/images Subjects Main results

Arntfield et al
[26]

22/02/2021 BMJ Open 243/612/121k COVID +, COVID -, 
HPE

Overall Acc = 0.978AUC = 1/0.934/1 for 
COVID +, COVID -, HPE

Awatshi et al
[27]

23/03/2021 IEEE Trans Ultrason 
Ferroelectr Freq 
Control

-/64/1.1k COVID +, Healthy, PN 5-fold validation: Acc = 0.829

Barros et al[28] 14/08/2021 Sensors 131/185/- COVID +, PN bacterial, 
Healthy

Best model (Xception+LSTM): Acc = 
0.93 – Se = 0.97

Born et al[29] 12/01/2021 Applied Sciences 216/202/3.2k COVID +, Healthy, PN External validation: Se = 0.806 – Sp = 
0.962

Born et al[30] 24/01/2021 ISMB TransMed -/64/1.1k COVID +, Healthy, PN Overall Acc = 0.89Binarization COVID 
y/n: Se = 0.96 – Sp = 0.79 – F1score = 
0.92

Chen et al[31] 29/06/2021 IEEE Trans Ultrason 
Ferroelectr Freq 
Control

31/45/1.6k COVID-19 PN 5-fold validation: Acc = 0.87

Dastider et al
[32]

20/02/2021 Comput Biol Med 29/60/14.3k COVID-19 PN Independent data validation: Acc = 
0.677 – Se = 0.677 – Sp = 0.768 – F1score 
= 0.666

Diaz Escobar et 
al[33]

13/08/2021 PLos One 216/185/3.3k COVID +, PN bacterial, 
Healthy

Best model (InceptionV3): Acc = 0.891 – 
AUC = 0.971

Erfanian Ebadi 
et al[34]

04/08/2021 Inform Med 
Unlocked

300/1.5k/288k COVID +, PN 5-fold validation: Acc = 0.90 – PP=0.95

Hu et al[35] 20/03/2021 BioMed Eng OnLine 108/-/5.7k COVID + COVID detection: Acc = 0.944 – PP = 
0.823 – Se = 0.763 – Sp=0.964

La Salvia et al
[36]

03/08/2021 Comput Biol Med 450/5.4k/> 60k Hospitalised COVID-19 External validation (ResNet50): Acc = 
0.979 – PP=0.978 – F1score = 0.977 – 
AUC = 0.998

Mento et al[37] 27/05/2021 J Acoust Soc Am 82/1.5k/315k COVID-19 confirmed % Agreement DL and LUS = 96%

Roy et al[38] 14/05/2020 IEEE Trans 35/277/58.9k COVID-19 confirmed, 
COVID-19 suspected, 
Healthy

Segmentation: Acc = 0.96 – DICE = 0.75

Sadik et al[39] 09/07/2021 Health Inf Sci Syst -/123/41.5k COVID +, PN, Healthy COVID y/n (VGG19+SpecMen): PP = 
0.81 – F1score = 0.89

Muhammad et 
al[40]

25/02/2021 Information Fusion 121 videos + 40 frames COVID +, PN bacterial, 
Healthy

Overall: Acc = 0.918 – PP = 0.925

Tsai et al[41] 08/03/2021 Phys Med 70/623/99.2k Healthy, Pleural effusion 
pts

Pleural effusion detection:Acc = 0.924

Xue et al[42] 20/01/2021 Med Image Anal 313/-/6.9k COVID-19 confirmed 4-level and binary disease severity:Acc = 
0.75 and Acc = 0.85

1k: Indicates × 103.
pts: Patients; HPE: Hydrostatic pulmonary edema; PN: Pneumonia; Acc: Accuracy; Se: Sensitivity; Sp: Specificity; AUC: Area under the curve; PP: 
Precision; DL: Deep learning; LUS: Lung ultrasound.

42], bidirectional arbitrary rotation[26,27,29,30,32,33,35,38-40,42], horizontal and vertical shift[30,32,38,
39,42]; filtering, colour transformation, adding salt and pepper noise, Gaussian noise[36,38,42], normal-
isation of grey levels’ intensity[38]. Although proposed by all the authors, only seven papers[26,29,30,32,
33,38,40] provided details on the amplitude of image rotation. In particular, Dastider et al[32] applied 
rotations in the range of 0 ± 360 degrees, while other authors have limited image rotations to 10 degrees
[26,29,30,33], ± 15 degrees[38] and ± 20 degrees[40], respectively. The remaining five papers[28,31,34,37,
41] (29.4%) did not perform data augmentation.

Explainability
Among the selected articles, tools for interpreting the network output were provided in twelve studies 
(70.6%), whereas in the remaining five (29.4%) the DL algorithms’ outcomes were proposed as black box 
systems. The majority of papers[26-29,32,35,36,38,40] reported the Gradient-weighted Class Activation 
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Table 2 General characteristics of the studies included in the analysis (part II)

Ref. DL 
architecture

Input of 
DL models

Available 
dataset

Available 
code

Pre-
trained/TL

Test 
independent

Data 
Augmentation Explainability

Arntfield et al
[26]

CNN SF No Yes (on 
github)

Yes Yes Yes Yes

Awatshi et al
[27]

CNN SF No Yes (on 
github)

Yes No (five-fold) Yes Yes

Barros et al[28] CNN+LSTM SF Yes Yes (on 
github)

Yes No(five-fold) No Yes

Born et al[29] 3D CNN MF Yes Yes (on 
github)

Yes No(five-fold) Yes Yes

Born et al[30] CNN SF Yes Yes (on 
github)

Yes No(five-fold) Yes No

Chen et al[31] MLFCNN SF No Yes (on 
github)

No No(five-fold) No No

Dastider et al
[32]

CNN+LSTM SF No Yes (on 
github)

Yes No(five-fold) Yes Yes

Diaz Escobar et 
al[33]

CNN SF No No Yes No(five-fold) Yes No

Erfanian Ebadi 
et al[34]

3D CNN MF No Yes (on 
github)

Yes No(five-fold) No Yes

Hu et al[35] CNN + MCRF SF No No Yes Yes Yes Yes

La Salvia et al
[36]

CNN SF No No Yes Yes Yes Yes

Mento et al[37] CNN+ STN SF No No No - No No

Roy et al[38] CNN+ STN SF Yes (on 
request)

Yes (on 
github)

No Yes Yes Yes

Sadik et al[39] CNN SF No No Yes Yes Yes Yes

Muhammad et 
al[40]

CNN SF Yes No No No(five-fold) Yes Yes

Tsai et al[41] CNN+ STN MF No No Yes No(ten-fold) No No

Xue et al[42] CNN SF No No No Yes Yes Yes

CNN: Convolutional neural network; LSTM: Long short-term memory; MCRF: Multimodal channel and receptive field; MLFCNN: Multi-layer fully 
connected neural network; STN: Spatial transformer network; SF: Single-frame; MF: Multi-frame; DL: Deep learning; TL: Transfer learning.

Mapping (Grad-CAM) as the preferred explainability tool. Grad-CAM uses gradients to create a location 
map to highlight the region of interest of the images[43]. Instead, Sadik et al[39] used a colormap jet to 
visualise a heat map overlay to US images; Erfanian Ebadi et al[34] adopted an activation map system to 
detect and segment features in LUS scans. Furthermore, one study[42] showed LUS images with 
overlaid colormaps to indicate the segmentation zone of ultrasound according to the different severity. 
Roy et al[38], differently, provided an ultrasound colormap overlay on the LUS frame/video and used 
four colours to distinguish the different classes of disease severity recognized by DL architecture.

Clinical use
Most of the selected papers applied the AI system to diagnose COVID-19 and/or discriminate between 
COVID-19 and other lung diseases (such as bacterial pneumonia)[26-30,33,34,39,40]. The first approach 
using DL architecture for automatic differential diagnosis of COVID-19 from LUS data was POCOVID-
Net[30].

However, a fair number of studies have focused on assessing the severity of COVID-19[31,32,35-38,
42]. In particular, a disease severity score is assigned to the single image according to some character-
istics visible in the image pattern. Most of the articles used four severity classes by assigning a score to 
the single frame from 0 to 3[31,32,35-38], as defined by Soldati et al[44]. Xue et al[42] proposed a classi-
fication in five classes of pneumonia severity (score from 0 to 4) along with a binary severe/non-severe 
classification. Furthermore, these authors used the DL technology exclusively to implement a 
segmentation phase based on a VGG network, while the classification phase still employed a more 
traditional, features-based machine learning approach. Finally, La Salvia et al[36] proposed a classi-
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Figure 1 Flow diagram of systematic identification, screening, eligibility and inclusion of publications that applied deep learning methods 
to lung ultrasound imaging in coronavirus disease 2019 patients.  AI: Artificial intelligence; DL: Deep learning; US: Ultrasound.

fication based on three severity classes and a modified version considering a seven-classes scenario.
Furthermore, Arntfield et al[26] showed that their network was able to recognize pathological pattern 

in LUS images with higher sensitivity than sonographers; whilst an InceptionV3 network proposed by 
Diaz-Escobar et al[33] was able to discriminate COVID-19 pneumonia from healthy lung and other 
bacterial pneumonia with an accuracy of 89.1% and an area under the ROC curve of 97.1%.

Curiously, one of the eligible papers[41] did not include confirmed cases of COVID-19 patients. The 
authors’ aim was to design an algorithm capable of identifying the presence of pleural effusion. 
However, we have included this work in our systematic review, because small pleural effusions are 
rarely reported in COVID-19 patients. Therefore, the detection of pneumonia with pleural effusion can 
help rule out the hypothesis of COVID-19 disease.

Transfer learning and DL architecture
From our analysis, it emerged that most of the studies have proposed convolutional neural networks 
(CNNs) as DL models to generate screening systems for COVID-19. In particular, all publications with 
the exception of one[31] used the CNN network. Conversely, Chen et al[31] developed a multi-layer 
fully connected neural network for scoring LUS images in assessing the severity of COVID-19 
pneumonia.

Among the DL systems included in this review, most of them were generated starting from DL 
architectures already proposed for other tasks[26-30,32-36,39,42], suitably modified and trained for new 
tasks. Furthermore, many works compared the results of their architectures with those obtained using 
existing and well-known architectures[27-30,32,33,35,38-40]. In particular, the following DL 
architectures were adapted to fulfil the requirements of LUS analysis to assist in COVID-19 detection 
and/or assessment of the severity of the lung disease, or just to compare their performances: VGG-19
[28,33,39] and VGG-50[28-30,33]; Xception[26,28,39]; ResNet 50[27,33,36,40]; NasNetMobile[27,29,39]; 
DenseNet[32,39].

More in detail, Awasthi et al[27] proposed Mini-COVIDNet, a modified MobileNet model belonging 
to the CNN’s networks family and originally developed for detecting objects in mobile applications[45]. 
Barros et al[28], along with their proposed DL model, also investigated the impact of using different pre-
trained CNN architectures in extracting spatial features that were successively classified by a LSTM 
model. Finally, Born et al[29] derived their DL video-based models from a model that was pre-trained 
on lung CT scans[46].
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All aforementioned architectures are pre-trained on ImageNet[47].

Sample size
Partly due to the recent outbreak of the pandemic and to the difficulty of having standardised high 
quality archives of US images, only few of the selected studies relied on a large dataset in terms of 
enrolled patients. Six papers (35.3%) reported a sample size greater than 200 subjects (namely, 243, 216, 
216, 300, 450 and 313 in references[26,29,33,34,36,42] respectively).

However, despite the relatively low number of subjects, the total number of LUS videos reaches up to 
5400 in one study[36], with an average equal to 1589 videos[26,29,33,34,36]. Among the studies carried 
out on a low sample size, Dastider et al[32] included 29 patients and 60 videos, whilst 35 patients/45 
videos and 35 patients/277 videos were analysed in references Chen et al[31] and Roy et al[38], 
respectively. However, it should be noted that Roy et al[38] published their work at the beginning of the 
COVID-19 pandemic, when the total number of COVID-19 patients was still relatively limited. In the 
paper by Xue et al[42], the number of frames/video was not reported.

DISCUSSION
The paper reviews the different DL techniques able to work with LUS images in assisting the diagnosis 
and/or prognosis of the COVID-19 disease published since the outbreak of the pandemic. In the 
selected documents, the use of DL systems aimed to achieve an accuracy comparable to or better than 
clinical standards to provide a faster diagnosis and/or follow-up in COVID-19 patients.

Most of the papers present pre-trained DL architectures[26-30,32-36,39,42] that were modified and 
adapted to new data. This approach is also known as transfer learning (TL) technique - i.e., a training 
strategy for new DL models with reduced datasets. The network is pre-trained on a very large dataset, 
such as ImageNet, with millions of images intentionally created to facilitate the training of DL models, 
focusing on image classification and object location/detection tasks[48]. Indeed, deeper models are 
difficult to train and provide inconsistent performances when trained on a limited amount of data[49]. 
Therefore, most of the studies based on DL systems to classify COVID-19 images appropriately use the 
TL strategy as large datasets of US images from COVID-19 patients are not yet easily available, partly 
because the coronavirus disease is a relatively recent concern.

Furthermore, most of the proposed systems shared the same design, i.e., CNN’s architectures. CNNs 
have several applications in medical imaging – among others, image segmentation and object detection
[50]. However, CNNs are particularly suited for image classification problems[51] and, consequently, 
represent an optimal solution for the classification of the disease severity from US images.

To date, one of the main challenges faced by DL architectures applied to LUS images of COVID-19 
patients are the limited datasets in the available databases. This problem could benefit from creating 
open access databases that collect large amounts of data from multiple centres. In some of the selected 
studies, a first attempt to overcome this issue is evident, with particular emphasis on the work by Born 
et al[30], the authors who first collected a free access dataset of lung images from healthy controls and 
patients affected by COVID-19 or other pneumonia.

The development of public and multicentre platforms would guarantee the collection of a 
continuously growing amount of data, large and highly heterogeneous, suited for the training and 
testing of new DL applications in medical imaging, both in the COVID-19 and LUS field. Furthermore, 
this would allow an easier comparison of performances among DL models proposed in different 
studies. However, alternative approaches are often used in the testing phase that do not require the use 
of independent data sets to evaluate the performance of the model in the event of a limited number of 
images available. Among these, the k-fold cross-validation is a statistical method used to evaluate the 
ability of ML models to generalise to previously unseen data. Despite being widely used in ML models, 
the k-fold cross validation approach is less reliable than tests performed using an external dataset; the 
latter is always preferable to test model's ability to adapt properly to new, previously unseen data.

Data augmentation techniques are an alternative strategy to overcome the issue of the limited 
amounts of data, largely adopted in practice. These techniques generate different versions of a real 
dataset artificially to both increase its size and the power of model's generalisation. Despite the great 
advantage in increasing data to feed DL architectures, data augmentation techniques should be used 
with awareness, as some geometric transformations could be unrealistic when applied to LUS images (
e.g., angles of rotations greater than 30°). In the field of DL applied to medical imaging, the use of 
architectures designed to work with 3D images is another interesting challenge. Indeed, a DL system 
that operates with 3D data input usually requires a larger amount of data for training, as a 3D network 
contains a parameters’ number that is orders of magnitude greater than a 2D network. This could 
significantly increase the risk of overfitting, especially in the case of limited dataset availability. In 
addition, the training on large amounts of data requires high computational costs associated with 
memory and performance requirements of the tools used. LUS images are usually recorded in the form 
of videoclips (2D + time) and can be assimilated to 3D data. Exploitation of dynamic information 
naturally embedded in image sequences has proven very important in the analysis of lung echoes. In 
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particular, changes induced by COVID-19 viral pneumonia are better detectable in LUS through the 
analysis of multi-frames acquisition due to its ability in capturing dynamic features, e.g., pleural sliding 
movements and generation of B-line artefacts[44].

Regardless of the data format (i.e., 3D, 2D or 2D+time images), the labelling of ground truth data is 
required in supervised DL applications and should be provided by skilled medical professionals. 
However, it is a time-consuming activity, in particular in the 2D approach that is characterised by a high 
number of samples.

Indeed, some authors demonstrated that the performance in pleural effusion classification on LUS 
images obtained with the video-based approach was comparable to that obtained with frame-based 
analysis, despite a significant reduction in labelling effort[41]. Furthermore, Kinetics-I3D network was 
able to classify LUS video sequences with great accuracy and efficiency[34]. On the other hand, the 
video-based approach has also revealed a reduced accuracy in patients classification with respect to the 
single frame analysis; however, this could be explained by the relatively reduced number of available 
LUS clips[29].

Extending the use of DL architectures beyond multi-frame analysis with respect to single 2D images 
is highly desirable. In particular, these methods could be effectively used to assign a patient-level 
disease severity score. In fact, this information plays a key role in the selection of treatment, monitoring 
of disease progression and management of medical resources (e.g., mechanical ventilator needed).

Code availability is another very critical issue in applications of AI in medical imaging. Indeed, the 
lack of ability to reproduce the training of the proposed DL models or to test these models on new US 
images is a rather widespread problem. Often, authors do not provide access to either the source code 
used to train NNs or the final weight of the trained network. On the other hand, the availability of this 
information would greatly facilitate the diffusion of new AI systems in the clinical setting.

DL systems are often presented as black boxes - i.e., they produce a result without providing a clear 
understanding in "human terms" of how it was obtained. The black-box nature of the algorithms has 
restricted their clinical use until now. Consistently, the explainability - i.e., making clear and 
understandable the features that influence the decisions of a DL model - is a critical point to guarantee a 
safe, ethical, and reliable use of AI. Especially in medical imaging applications, explainability is very 
important as it gives the opportunity to highlight regions of the image containing the visual features 
that are critical for the diagnosis. Gradient-weighted Class Activation Mapping (Grad-CAM) is a 
promising technique for producing "visual explanations" of decisions taken from a large class of CNN-
based models, making their internal behaviour more understandable, thus partially overcoming the 
black-box problem. The basic idea is to produce a rough localization map that highlights the key regions 
in the image that have a major effect on customization of network parameters, thus maximally 
contributing to the prediction of outcomes[43].

These maps visualised areas using a blue-to-red scale, with the highest/lowest contribution to the 
class prediction operated by the model. The clinical use of DL systems is a crucial issue. One of the 
major current limitations of LUS imaging in COVID patients is the specificity. Focusing the design of DL 
systems to overcome this limit could really represent a benefit in the clinical setting.

Along this line, some of the included studies tested the agreement between physicians' ability to 
classify COVID-19 patients and that proposed by neural networks. Furthermore, this finding suggests 
that the automated system can capture some features (biomarkers) in US images that are not clearly 
visible to the human eye.

Finally, another important issue to mention is the use of the quantitative evaluation indicators and 
the analysis of the benchmarking techniques adopted to evaluate the effectiveness of the proposed 
methods. Unfortunately, the tools examined in the selected manuscripts had very heterogeneous targets 
(Table 1, Main results column), ranging from diagnostic to prognostic purposes or assessment of disease 
severity. This dispersion of intent and the few articles published in the literature at present make any 
comparison or analysis very difficult.

CONCLUSION
The studies analysed in this article have shown that DL systems applied to LUS images for the 
diagnosis/prognosis of COVID-19 disease have the potential to provide significant support to the 
medical community. However, there are a number of challenges to overcome before AI systems can be 
regularly employed in the clinical setting. On the one hand, the critical issues related to the availability 
of high-quality databases with large sample size of lung images/videos of COVID-19 patients and free 
access to datasets must be addressed. On the other hand, existing concerns about the methodological 
transparency (e.g., explainability and reproducibility) of DL systems and the regulatory/ethical and 
cultural issues that the clinical use of AI methods raise must be resolved. Finally, a closer collaboration 
between the communities of informatics/engineers and medical professionals is desirable to facilitate 
the outcome of adequate guidelines for the use of DL in US pulmonary imaging and, more generally, in 
medical imaging.
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ARTICLE HIGHLIGHTS
Research background
The current coronavirus disease 2019 (COVID-19) pandemic crisis has highlighted the need for 
biomedical imaging techniques in rapid clinical diagnostic evaluation of patients. Furthermore, imaging 
techniques are currently important in the follow-up of subjects with COVID-19. The lung ultrasound 
technique has become increasingly popular and is considered a good option for real-time point-of-care 
testing, although it has specificity limits comparable to those of chest computed tomography.

Research motivation
The application of artificial intelligence, and of deep learning in particular, in medical pulmonary 
ultrasound can offer an improvement in diagnostic performance and classification accuracy to a non-
invasive and low-cost technique, thus implementing its diagnostic and prognostic importance to 
COVID-10 pandemic.

Research objectives
This review presents the state of the art of the use of artificial intelligence and deep learning techniques 
applied to lung ultrasound in COVID-19 patients.

Research methods
We performed a literature search, according to preferred reporting items of systematic reviews and 
meta-analysis guidelines, for relevant studies published from March 2020 - to 30 September 2021 on the 
use of deep learning tools applied to lung ultrasound imaging in COVID-19 patients. Only English-
language publications were selected.

Research results
We surveyed the type of architectures used, availability of the source code, network weights and open 
access datasets, use of data augmentation, use of the transfer learning strategy, type of input data and 
training/test datasets, and explainability.

Research conclusions
Application of deep learning systems to lung ultrasound images for the diagnosis/prognosis of COVID-
19 disease has the potential to provide significant support to the medical community. However, there 
are critical issues related to the availability of high-quality databases with large sample size and free 
access to datasets.

Research perspectives
Close collaboration between the communities of computer scientists/engineers and medical profes-
sionals could facilitate the outcome of adequate guidelines for the use of deep learning in ultrasound 
lung imaging.
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