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Urban agglomerations are constantly and rapidly evolving ecosystems, with

globalization and increasing urbanization posing new challenges in sustainable

urban development well summarized in the United Nations’ Sustainable

Development Goals (SDGs). The advent of the digital age generated by modern

alternative data sources provides new tools to tackle these challenges with

spatio-temporal scales that were previously unavailable with census statistics.

In this review, we present how new digital data sources are employed to

provide data-driven insights to study and track (i) urban crime and public safety;

(ii) socioeconomic inequalities and segregation; and (iii) public health, with a

particular focus on the city scale.
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1. Introduction

Cities occupy only 3% of the global surface but are inhabited by more than 50% of

the world’s population.1 Timely and accurate data are thus becoming fundamental for

policymakers and municipalities to control cities’ dynamics and respond to multiple societal

challenges. In 2015, the United Nations set out 17 Sustainable Development Goals (SDGs)2

that summarize the new challenges we have to face to guarantee everyone a better and more

sustainable future. Examples of such goals are about guaranteeing good quality of (accessible)

health and wellbeing, reduction of inequalities, and design of sustainable and safe cities and

communities.

It is clear that big urban agglomerations have a pivotal role in the accomplishment of

such goals as many of them are fundamentally related to human movements, displacement,

and interactions (Glaeser, 2012; Sassen, 2019). More in general, it is known that human

dynamics are related to the diffusion of viral diseases (Eubank et al., 2004; Colizza et al.,

2007; Perkins et al., 2014), to the behavioral responses in case of natural disasters (Bohorquez

et al., 2009; Bagrow et al., 2011), to the optimization of traffic volumes (Batty, 2013; Mazzoli

et al., 2019), to the economic growth, innovation and social integration (Bettencourt et al.,

2007; Pan et al., 2013; Schläpfer et al., 2014), and to the severity of air pollution and the

consumption of energy, water and other resources (Bettencourt et al., 2007; Bettencourt and

West, 2010).

1 https://www.un.org/sustainabledevelopment/cities/

2 https://sdgs.un.org/goals
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To monitor the progress toward the aforementioned societal

challenges, it is fundamental to have an always up-to-date picture

of cities. In the past, institutions had to rely almost exclusively on

census data and official statistics. However, both these data sources

have some intrinsic limitations including (i) the time gap between

the data collection and the actual availability of the data, and (ii) the

frequencies and costs of the data collection campaigns (Lazer et al.,

2009). Luckily, we are in the middle of a digital sensing revolution

with billions of data that are generated every second and that can be

employed to have an almost real-time picture of cities’ dynamics at

low costs. Examples of such data include tracks from GPS devices

embedded in smartphones, vehicles, or boats, records produced by

the communication between phones and the cellular network, and

geotagged posts from social media platforms (Gonzalez et al., 2008;

Zheng et al., 2010; Moreira-Matias et al., 2013; Spinsanti et al., 2013;

Blondel et al., 2015; Cui et al., 2018). Finally, other data sources like

satellite images, street networks and points of interest can provide

precious information to integrate with human dynamics data in

order to capture socio-economic aspects (Deville et al., 2014; Jean

et al., 2016; Tatem, 2017; Weber et al., 2018; Yeh et al., 2020; Lepri

et al., 2022).

In this review paper, we showcase and discuss how alternative

data sources have been employed by researchers to study the

relationship between human dynamics and three SDGs: (i) crime

diffusion and public safety, (ii) socio-economic inequalities and

segregation, and (iii) public health and disease diffusion. Also, we

have decided to focus on the studies that investigate such dynamics

in urban agglomerations. Thus, excluding studies that, for example,

investigate the relationship between international mobility and the

global diffusion of diseases, or map the socio-economic inequalities

across countries.

Figure 1 provides a visual representation of the main topics

covered in this review, highlighting how these topics are directly

related to a set of SDGs. The main objective of this review paper

is to examine how researchers make use of these novel digital

data sources to develop new computational models and to derive

insights that address important issues related to Urban Crime,

Inequality and Public Health in urban environments.

The paper is structured as follows. We start in Section 2 by

first describing the new sources of data used in these lines of

research. Then, in Section 3, we discuss the implication of using

computational methods for studying urban crime and public safety.

After showing how researchers have used data sources like mobile

phone data, social media, and others for a variety of aspects related

to crime and security, we conclude the Section with a critical

reflection. In Section 4 and Section 5, we follow a similar structure

covering works related to socio-economic inequalities, segregation,

and public health. Finally, in Section 6 we conclude the paper with

a brief discussion.

2. Data sources

The digital age has revolutionized the world we live in, and

simple actions such as clicking on a website, sending an email,

paying with a credit card or making a phone call generate

so-called digital traces. Digital traces track information about

our daily behaviors and in the last decades this rich and vast

amount of information created new research opportunities to better

understand and study human behavior (Lazer et al., 2009, 2020). In

this section we describe the most common type of data used in this

line of research.

2.1. Call detail records

Telecommunication companies collect information regarding

people’s exchanges by means of Call Detail Records (CDRs), which

contain real-world observations on how, when and with whom a

person communicates (Blondel et al., 2015; Luca et al., 2021). A Call

Detail Record is a tuple (uo, ui, t, d,Ao,Ai) which contains privacy-

enhanced metadata about the caller uo, the callee ui, the timestamp

t of when the call took place and its duration d. Ao and Ai represent

respectively the outgoing and incoming Radio Base Stations (RBSs),

namely the antennas that delivered the communication through

the network. Mobile phone data may cover a large sample size on

a national scale and aggregated mobility flows have been inferred

by counting the number of users that move between RBSs or

administrative units such as neighborhoods and municipalities

(Calabrese et al., 2011). Since the position and the coverage area of

each RBS are known, a user’s telecommunication event represents

a proxy of the user’s geographic location. The precision of this

location can vary from 100 m in urban areas to kilometers in

rural areas. This approximation implies that the user’s spatial and

temporal resolution is given by where and when a user makes a

call or sends an SMS leading to sparse and incomplete mobility

trajectories. Nevertheless, CDRs have been proven valuable in

studying and understanding humanmobility (Gonzalez et al., 2008;

Simini et al., 2012; Csáji et al., 2013; Blondel et al., 2015; Pappalardo

et al., 2015).

A less common type of data used in the literature are

the eXtended Detail Records (XDRs), which are generated by

telecommunication companies when a user uploads or downloads

data from the Internet using their phone’s connection. A single

event is a privacy-enhanced record (u, t,A, k) where t is the

timestamp of the event, A is the RBS that managed the connection,

and k the amount of uploaded/downloaded information. Given the

higher frequency of mobile internet connections, XDRs reduce the

problem of sparsity characterizing CDRs (Chen et al., 2019; Luca

et al., 2022).

2.2. GPS location data

Location intelligence companies collect GPS location data of

opt-in individuals from third-party mobile apps through a Software

Development Kit (SDK) that captures user locations through GPS

signals in Android and iOS devices. In general, a data point

contains privacy-enhanced information like the user identifier,

the timestamp, and geographic information such as longitude and

latitude. In the last years, to help a prompt response to the COVID-

19 pandemic, location intelligence companies such as Cuebiq,3

3 https://www.cuebiq.com/
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FIGURE 1

Visual summary of the topics covered in the paper. (Middle) The list of the addressed macro-topics and how they can be mapped to the United

Nations’ Sustainable Development Goals (Right). (Left) An overview of the novel (alternative) data sources that enable the development of complex

computational models that tackle problems in Urban Crime, Inequality and Public Health (icons: Flaticon.com; SDGs icons: UN).

Unacast,4 and Safegraph5 made available several datasets for

research purposes (Chang et al., 2021; Hunter et al., 2021; Lucchini

et al., 2021; Aleta et al., 2022). The collected GPS location data

generally provide more precise location information than CDRs.

Unfortunately, location intelligence companies do not share details

either on how the data is collected or from which mobile apps,

potentially compromising their population representativeness.

On the same line, Big Tech companies such as Facebook

(Data4Good6) and Google (Community Mobility Reports7) have

provided GPS location data collected directly from their platforms.

However, they have shared these data in an aggregated fashion both

in time and space. Thus, the shared data have the advantage of

covering all the countries the Big Tech companies operate in but

are less precise than the GPS location data provided by location

intelligence companies.

2.3. Social media data

Social media platforms such as Facebook, Instagram and

Twitter facilitate the creation and sharing of content with posts

that can contain text, videos, photos, etc. together with a timestamp

and an (optional) geographic location. For example on Twitter,

people can share geo-located tweets with either their precise

geographical position (latitude and longitude) or the location

suggested by the platform (e.g., restaurant, landmarks) where

the user was located when the tweet was published. Platforms

like Foursquare are location-based social networking websites

where users share their locations by checking in at points of

interest (POIs), such as restaurants, pubs, shops, museums. The

users’ location is thus available given that such venues have a

geographical location (latitude and longitude). For most social

media platforms, geotagged posts are downloadable through their

4 https://www.unacast.com/

5 https://www.safegraph.com/

6 https://dataforgood.facebook.com/dfg/covid-19

7 https://www.google.com/covid19/mobility/

Application Programming Interfaces (APIs). From spatial and

temporal information present in social media posts is thus possible

to infer users’ mobility trajectories from their posts’ history.

Such data suffer from data sparsity problems with respect to

datasets collected through mobile phones. Nevertheless, social

media data have been proven valuable in modeling and dealing

with different societal challenges such as urban crime, public

health, unemployment (Wang et al., 2012; Broniatowski et al., 2013;

Llorente et al., 2015).

2.4. Other data sources

2.4.1. Credit card transactions
Credit cards are universal across the world, but they have

received relatively little attention to date. Since peopleâĂŹs

spending has become increasingly digitized, it is possible to capture

consumer behavior at an unprecedented scale. Each credit card

transaction generally consists of privacy-enhanced information

such as a user identifier, the timestamp of the transaction, and

the transaction type represented by the Merchant Category Code

(MCC). Recent research has begun to use transaction records

to provide insights on financial wellbeing (Singh et al., 2015),

individual traits (Gladstone et al., 2019; Tovanich et al., 2021),

purchase behavior in urban populations (Dong et al., 2017;

Di Clemente et al., 2018) and segregation (Dong et al., 2020).

2.4.2. Satellite imagery
There exist several types of satellite imagery collected by

governments and private companies and they can be mainly

divided by their spatial, spectral, temporal, radiometric, and

geometric resolutions (Campbell and Wynne, 2011). As an

example, the Landsat Program represents the longest-running

project for the acquisition of satellite imagery of Earth: they

provide freely downloadable repeated (average return period of 16

days) imagery with a geometric resolution of 30 m for the entire

planet. Satellite data has been proven useful for different tasks such
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as tracking urbanization (Tatem, 2017; Strano et al., 2021) and

forecasting diseases (Dister et al., 1997; Rogers et al., 2002; Ford

et al., 2009).

2.4.3. Wearables
In the last few years, wearable sensors such as smartwatches

have steadily grown in availability. These devices collect

physiological and activity data such as heart rate, sleep, step

count and calories burnt. This information can be exploited to

track in almost real-time a person’s health. As an example, recently

smartwatches were used to investigate changes in physiological

parameters in response to a COVID-19 infection or COVID-19

vaccines (Guan et al., 2022; Wiedermann et al., 2022).

2.4.4. Census
Census data is collected by governments to monitor and gather

information about the population of a country. The data is then

used to have a reliable picture of the current population, including

important information such as demographics and socio-economic

conditions. Despite the vast amount of data produced in the digital

age, census data remains widely used since it can be jointly used (at

an aggregate level) with newer sources of data such as CDRs and

provide valuable insights on the general population.

3. Urban crime and security

This section delves into the benefits of using alternative data

sources to address urban crime and security challenges. The section

first provides a brief overview of how the availability of novel data

and computational models have altered the landscape of crime

research (Section 3.1). Then, Sections 3.2 and 3.2.2 detail various

computational methods researchers have employed. In Sections

3.2.3 and 3.2.4, we explore how mobile phone data and social

media data have been employed in this line of research. Finally, we

conclude the section with critical reflections and potential future

directions.

3.1. The computational contamination in
research on crime

Over the last two decades, scholars from various fields and

disciplines have focused on crime and public safety by leveraging

the potential of computational methods and novel big data

sources. This wave of methodological innovation transcended the

traditional boundaries of criminology as a discipline, fostering

the interest of social scientists as well as computer scientists,

statisticians, applied mathematicians and physicists. As a result, the

study of crime has been invested by contamination of approaches,

techniques, and viewpoints (Brantingham and Brantingham, 2004;

Groff and Mazerolle, 2008; Bogomolov et al., 2015; D’Orsogna

and Perc, 2015; Bouchard and Malm, 2016; Faust and Tita, 2019;

De Nadai et al., 2020; Hayward and Maas, 2021; Campedelli,

2022b).

Interestingly, the link between computational methods and

the study of crime is not as recent as many scholars portray.

For instance, Campedelli (2022b) noted how, despite attempts

to rebrand such a relationship in terms of novelty, the dialogue

between Artificial Intelligence (AI) and research on crime has roots

that date back to the 1980s. The relationship in fact emerged

decades ago as the result of two processes: the use of AI-

based approaches for predictive purposes (Icove, 1986) and the

exploration of AI as a tool for aiding sociological theorizing (Brent,

1988; Anderson, 1989; Woolgar, 1989).

Hence, while it is limiting to describe the link between
computational methods and the study of crime only by focusing

on the recent past, it is nevertheless true that recent years have led
to an acceleration in this dialogue, at least in terms of scientific
productivity. The reasons behind this fact are four-fold. First,

administrative data in digital format have become more and more
ubiquitous and easy to access. Second, the democratization of
programming languagesmade it easier for criminologists and crime

researchers without a computer science background to explore
the potential of algorithmic methods. Third, the availability of

other digital sources such as social media data, GPS data, and

mobile phone data enriched the information horizon available to

study crime. Fourth, following a trend that was already in place,

governments and institutions in many Western countries pushed

for data-driven solutions to reduce crime, thus increasing funding

opportunities in academia as well as business opportunities in

the digital and technological sectors. All these factors together

made it easier for scholars to gather, process, and analyze data

related to crime and security issues, substantially increasing the

number of publications and projects over the years (Campedelli,

2020).

Methodology-wise, crime has been investigated through

a plethora of different techniques and frameworks. Besides

traditional statistical approaches that target either correlational

or causal outcomes, geospatial modeling, network science, agent-

based modeling, and machine learning have been the four main

areas onwhich scholars have focused their attention. Virtually every

area of criminology and crime research has been—to some extent—

explored by computational approaches: from white collar crime

(Ribeiro et al., 2018; Luna-Pla and Nicolás-Carlock, 2020; Kertész

and Wachs, 2021) to terrorism (Moon and Carley, 2007; Chuang

et al., 2019; Campedelli et al., 2021), from illicit drugs (Mackey

et al., 2018; Magliocca et al., 2019; Sarker et al., 2019) to organized

crime (Nardin et al., 2016; Troitzsch, 2017; Calderoni et al., 2021),

from gun violence (Mohler, 2014; Green et al., 2017; Loeffler and

Flaxman, 2018) to cyber-crime (Shalaginov et al., 2017; Duxbury

and Haynie, 2018, 2020), from recidivism (Tollenaar and van der

Heijden, 2013; Duwe and Kim, 2017; Berk and Elzarka, 2020) to

predictive policing (Caplan et al., 2011; Mohler et al., 2011; Perry,

2013). Particularly, the dialogue between computational methods

and the study of recidivism and predictive policing not only focused

on technical innovations to optimize forecasting and predictive

models, but also provoked vivid debates regarding critical issues

of algorithmic accountability, fairness, and transparency (Lum

and Isaac, 2016; Dressel and Farid, 2018; Richardson et al.,

2019; Akpinar et al., 2021; Purves, 2022). In fact, although the

computational analysis of crime has remained chiefly confined to

the academic sphere, in some cases—such as predictive policing
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and criminal justice risk assessment tools—algorithmic solutions

have been deployed by courts and law enforcement agencies. In the

US, where this transition from academia to the public and private

sectors has been faster, data-driven tools to aid police agencies and

courts have a long history (Berk, 2019). Yet, the rapid diffusion of

novel tools, coupled with their secrecy, pushed scholars, activists

and journalists to scrutinize the effects that these software have

on high-stake settings, showing that these instruments often lead

to disparate and unfair treatment against minorities, reinforcing

discrimination and over-policing in policing and criminal justice.

Two sides hence emerged: one populated by those defending the

benefits and potential of computational approaches for predicting

crime and recidivism (among other things), and those calling for

either the elimination of such tools or their heavy regulation.

Within the kaleidoscope of areas in which the computational

wave has spread, the study of urban crime has certainly fostered

significant scholarly interest. Urban crime trivially embraces all

those deviant and criminal behaviors occurring in urban settings

and, therefore, can be seen as a higher-level category containing

some of those previously mentioned, as the study of illicit drugs

(when distributed or consumed in urban settings), the study of

violent crime (when perpetrated in urban settings) or predictive

policing itself, which by definition targets a certain urban area.

3.2. Computational methods, big data, and
urban crime

3.2.1. The advantages in studying urban crime
today

There are some specific reasons behind the fact that urban

crime has attracted so much scholarly attention. First and foremost,

one of the most popular regularities in the empirical study of crime

is the so-called “law of crime concentration” (Weisburd, 2015).

Inspired by the theoretical tradition on crime and place (Shaw

and McKay, 1942; Cohen and Felson, 1979; Eck and Weisburd,

1995; Brantingham and Brantingham, 2004), the “law of crime

concentration” states that most crimes in a city are concentrated

in specific small areas, such as blocks, streets or neighborhoods. In

other words, crime clusters spatially (Johnson, 2010). The dawn of

this empirical finding dates back to the early seminal cartographic

works of Quetelet (1831) in the Nineteenth century. Over the

decades, scores of studies emerged in the context of routine activity

(Cohen and Felson, 1979) and crime pattern theories (Brantingham

and Brantingham, 1984) have verified these findings not only

in the US but in many other countries all around the world

(De Melo et al., 2015; Ye et al., 2015; Mazeika and Kumar, 2017;

Breetzke, 2018; Favarin, 2018; Umar et al., 2020). Second, not

only does crime cluster spatially, it also clusters temporally. It

is in fact well known that the probability that a crime occurs

is not homogeneous across time windows (Aaltonen et al., 2018;

Holbrook et al., 2021; Piatkowska and Lantz, 2021). In general,

crime has its own higher-level seasonalities and these temporal

dynamics also vary across crime types (Yan, 2004; Linning et al.,

2017; Aaltonen et al., 2018). In many cases, these two layers

intersect—especially in the case of urban crime—creating spatio-

temporal regularities that allow for deeper analytical scrutiny. In

general, spatial and temporal patterns create the conditions for

deploying statistical and mathematical models taking advantage of

the non-random data of criminal phenomena for forecasting and

predictive purposes. A third reason behind the strong relationship

between computational methods and urban crime is that both

traditional and more novel data sources for studying crime both

make spatial and temporal information available. In the US and

other Western countries, for instance, data on reported crimes or

calls for service are digitally recorded and easily accessible at the city

level, combining information on the type of crime with information

on the time and location of the offense. At the same time, data

providers and tech companies sell or offer data on social media

activity, mobile usage, public transportation, point of interest

attendance, and GPS tracking. Overall, the availability of digital

data beyond traditional administrative records has allowed scholars

to expand the typical analytical frame in which crime—patterned

but highly dynamic—is studied considering only fixed or static

factors, variables, and conditions, such as the built environment or

socio-economic characteristics. In light of this, the study of urban

crime is aided by an arsenal of information that is rich—often way

richer than the one available to the study of other crime contexts—

and can be connected to other human phenomena that are known

to be patterned, such as mobility flows. Fourth, the computational

analysis of urban crime has straightforward practical consequences

that transcend the pure research dimension.While the gap between

empirical evidence and policy solutions may be wide for other areas

of inquiry, the translation of empirical evidence to crime reduction

strategies has always been much faster in the study of urban crime.

Scholars have taken advantage of these conditions and amassed

a relevant number of studies with mainly two goals: disentangling

crime correlates and forecasting or predicting crime trends and

locations. The two goals are interrelated, as optimal forecasting can

be achieved only through the selection of relevant correlates and, in

turn, the study of correlates cannot be deemed independent from

the need to optimize predictive performance.

3.2.2. Mobility, urban crime, and ecological
networks

Taxi flows and mobility patterns, as proxied for instance

by the analysis of activity at POI locations, have been critical

components of recent studies targeting urban crime. Some of

the works emerging in this area have been framed using agent-

based models (ABMs). ABM refers to generative models that

allow research to simulate social and criminal phenomena by

incorporating empirical or artificial data to investigate research

questions that are impractical to be investigated in the real world

(e.g., for ethical or monetary reasons). Although ABMs pose several

major limitations to the reliability of findings when simulations are

not appropriately designed and cannot be validated (Groff et al.,

2019; Campedelli, 2022a), when models are carried out properly

they offer a compelling set of benefits for criminologists and crime

researchers, including theory testing, scenario exploration, and

long-term forecasting.

Within this line of research, Ross et al. (2020) propose

a simulation model for offender mobility in New York City

(NYC) using open data to simulate urban structure, location-

based information to proxy human activity and taxi flow data
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to proxy human mobility between different areas of the city. By

comparing 35 different mobility patterns, the authors highlight the

benefits of integrating taxi flow data with previous crime data and

popular activity nodes to simulate offenders’ mobilitymeaningfully.

In another example, Ross et al. (2021) designed a model aimed

at identifying drivers of relevant crime patterns through openly

available static and dynamic geographical and temporal features,

and proposed a data-driven decision-making process based on

machine learning to allow artificial agents to decide whether to

engage in crime based on their perception of the surrounding

environment. Focusing again on NYC and targeting crime counts

at the street level, the authors indicate the stability of high crime

areas, in line with the criminological literature, and highlight

the importance of the spatial environment in predicting crime

hotspots. Agent-based modeling, however, is far from being the

only methodological framework utilized in the study of urban

crime through mobility data.

Wang et al. (2016), for instance, focused on Chicago to infer

crime rates at the neighborhood level using POI and taxi flow

data through more traditional statistical approaches like linear

and negative binomial regression, indicating that including these

information sources reduces prediction error by 17.6 percentage

points. In a subsequent extension of the work, Wang et al. (2019)

propose a graphically weighted regression approach for crime

rate inference that aims at capturing the non-stationarity nature

of crime across neighborhoods in the same urban context, i.e.,

Chicago, from 2010 to 2014. The assumption behind the analysis

is that the same features may have different relationships to crime

across different spatial contexts, thus involving a further layer

of complexity in the dynamic nature of criminal phenomena.

Chicago has been historically one of the US cities that attracted

the highest scholarly attention in the study of deviance and crime

(Sampson, 2012). In recent years, Chicago has also been the

focus of several papers investigating crime from a computational

perspective. Besides the articles mentioned above, others have

explored the promises of sophisticated statistical techniques to shed

light on the city’s crime dynamics. Papachristos and Bastomski

(2018), for instance, studied how criminal co-offending (measured

via co-arrests data) generates pathways between neighborhoods in

Chicago, creating a spatial network that facilitates the diffusion

of crime in time and space. Their statistical analyses demonstrate

that these “neighborhood networks" are stable over time, generated

by various processes, including structural characteristics and social

dynamics. Their work fits into a growing body of literature that

assess the interdependency of neighborhoods within an urban

context (Peterson and Krivo, 2009; Tita and Greenbaum, 2009;

Graif et al., 2014), unfolding the connectivity of communities

within cities, despite the belief that, given urban segregation and

crime clustering, co-offending patterns should also be clustered.

Relying on the interdependence of communities via spatial network

representations, Graif et al. (2021) study the relationship between

crime and commuting patterns across Chicago communities by

concentrating onmobility patterns between job and home locations

of the city residents. They mainly investigate whether exposure

to workplaces characterized by higher disadvantage leads to an

increase in local crime, suggesting that this relationship exists.

In other words, Graif et al. (2021) shows that disadvantage in

the extra-local network of communities where citizens work is

associated with higher crime levels in the communities where the

same citizens live. Sampson and Levy (2022) depart from a similar

theoretical perspective to show that a neighborhood’s wellbeing

is statistically dependent upon the wellbeing of the communities

that their residents visit or the communities from which

visitors come. Remarkably, their analysis outlines that mobility-

based socioeconomic disadvantage explains rates of violence and

homicide in Chicago neighborhoods. The combination of low

scores of residential socioeconomic conditions of residents, visited

communities, and visitors constitutes what the authors label “triple

disadvantage," elaborating on how this concept is theoretically

and technically valuable for explaining crime dynamics in Chicago

(Levy et al., 2020).

3.2.3. Urban crime and mobile phone data
Mobility and people dynamics within urban contexts have

also been investigated by means of mobile phone data. One

of the first notable examples is the work by Bogomolov et al.

(2014) in which mobile network infrastructure data on London,

UK, is combined with traditional demographic information and

geo-localized open data to show that human behavioral data

significantly improve the prediction of crime hotspots. London

has been the focus of another early work by Traunmueller

et al. (2014) in which anonymized mobile telecommunication

data are used to investigate urban crime theories. From such

telecommunication data, authors extract quantitative proxies for

mapping the presence of people in a given area and find that

the age diversity and the ratio of visitors in a given area are

negatively related to crime, in line with theoretical concepts

proposed by Jane Jacobs (Jacobs, 1961) such as the one of “natural

surveillance" and by Felson and Clarke (Felson and Clarke, 1998),

i.e., ratio of young people. Song et al. (2019) utilized geocoded

tracks of mobile phones to analyze if the intensity of population

mobility among pairs of communities in a large Chinese city

can help shed light on offenders’ decision-making processes.

The study explicitly considers thefts, and its outcomes suggest

that such a measure of mobility leads to a higher predictive

performance of theft locations compared to the traditional analysis

of crime generators. By leveraging mobile phone data and fine-

grained spatio-temporal data on violent crime in Manchester,

UK, Haleem et al. (2021) proposed the use of the “exposed

population-at-risk" concept to shed light on public crime hotspots

on Saturday nights. De Nadai et al. (2020) sought instead to

examine the link of socioeconomic conditions, built environment

and mobility patterns with violent and property crime across

multiple cities. The authors identify the focus on single urban

contexts as one of the main shortcomings of the existing literature.

They hence focus on four contexts with very different social,

cultural, and urban characteristics—i.e., BogotÃą, Boston, Chicago,

and Los Angeles—to provide higher external generalizability of

their findings. Mobility flows are proxied through the use of

mobile phone data in the form of CDRs. The work shows that

combining information on people, crime, places, and human
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mobility produces better-performingmodels in terms of descriptive

and predictive accuracy.

3.2.4. The role of social media
In the thriving literature focusing onmobility and crime, recent

studies have also sought to unfold the potential of social media

to capture the dynamic dimension of human behavior in urban

contexts, in line with the hypothesis emerging from other studies

in the same area of research, namely that resident population does

not explain the complexity of the ecology of crime. Among social

media platforms, Twitter has certainly received greater attention

from scholars interested in urban crime. Wang and Gerber (2015)

proposed the use of Twitter data for solving the problem of

“next-place prediction," thus seeking to estimate people’s individual

trajectories. According to the authors, Twitter posts provide rich

contextual information in the form of text that can be used

to construct such individual trajectories even in cases when no

direct reference to geospatial information is available. They hence

present two models designed to extract geographic information

from general texts allowing them to predict the type of venue a

user will visit and the distance between the user and a given type

of venue in the future. By leveraging this computational approach,

they apply their methodology to test the correlation between

next-place prediction and crime. Yang et al. (2018) included data

from Twitter (and particularly data on the sentiment and topic

of tweets) in their CrimeTelescope platform, a software intended

to provide optimized crime hotspots prediction in New York.

Besides Twitter data, CrimeTelescope also included information

on urban infrastructure via POIs from Foursquare and historical

crime data. The statistical outcomes of the study suggested that

this multi-modal combination of data leads to better predictive

performance (up to 5.2%) compared to traditional approaches

only using data on past crimes. Malleson and Andresen (2015)

highlighted that there is a relationship between the density of

tweets in a given area and shifts in crime concentration. Similarly,

Hipp et al. (2019) integrated geocoded Twitter data into models to

capture the temporal ambient population in Southern California,

arguing that social media data can be promising to test routine

activity and crime pattern theories. Wo et al. (2022) examines the

potential of four Twitter-derived measures to predict crime counts

across more than 2,300 block groups in the city of Los Angeles.

The aims of the study are specifically two. First, the authors seek

to represent local human activity distinguishing between insider

and outsider occupants of a neighborhood. Second, they analyze

whether statistical relationships exist between property and violent

crime and Twitter-derived measures of the ambient population in

Los Angeles. Wo and co-authors conclude that Twitter is powerful

in aiding research on ambient population and crime distributions

at the spatial level. However, not all studies using Twitter data

reached the same positive and promising conclusions. Tucker et al.

(2021), in fact, critically tested whether geotagged Twitter data

correlate with events of public violence and private conflict during

weekday days, weekday nights, weekend days, and weekend nights

in the city of Boston. The authors indicate that Twitter works as

a proxy of human dynamics only for particular types of locations

and activities, thus recommending caution in the use of tweets as

comprehensive sources for mapping the ambient population within

a city.

3.2.5. Critical reflections
The study of crime has been impacted by the vast array

of computational methodologies that have spread across social

sciences in the last two decades, and urban crime in particular

has benefited from this methodological contamination and the

increasing availability of digital data sources coming from mobile

phones, social media, transportation information, and other

geolocalized trace data. This availability has opened many new

possibilities to test criminological theories and improve predictive

accuracy in terms of crime hotspots and crime patterns in space

and time. Nonetheless, it should be noted that important caveats

should be considered in critically evaluating the potential and

relevance of novel data sources for the study of urban crime.

Particularly, as noted by Browning et al. (2021), representativeness

and generalizability of both mobility at the place- and person-

level is a problem. Browning et al., for instance, argue that

representativeness can be an issue when considering data that

are collected based on voluntary choices of users and that this

representativeness trivially poses a risk to the generalizability

of findings across urban contexts (or even across areas within

the same urban context). Hence, scholars must recognize this

limitation and adopt strategies to mitigate it. Strategies may include

methodological innovations in terms of weighting and result

validation. Furthermore, the reliance on novel digital data may

lead to an increase in the scholarly unbalance toward Western

urban contexts. In fact, while accessibility to digital communication

technologies is very high in the Western world, the scenario is very

different for countries in other regions of the planet, reinforcing the

abovementioned issue of representativity and generalizability when

deploying these data sources outside the Western context. Finally,

it is worth considering the societal implications of governmental

decisions to incorporate mobile phones, GPS, POIs, and social

media data into software designed for crime prediction, especially

in non-democratic countries. In political contexts in which civil,

political, and human rights are not sufficiently protected and

guaranteed, the exploitation of multi-modal data sources may

significantly increase the state of surveillance over citizens, causing

detrimental effects on their liberties and wellbeing. Scholars should

thus engage more in the ethical consequences of information

systems engineered to collect as much data as possible to protect

public safety and crime control allegedly.

4. Socioeconomic inequalities and
segregation

This section explores how novel computational models can

help in addressing socioeconomic inequalities and segregation-

related issues. We organize the discussion as follows: Section 4.1

briefly summarizes how the increased availability of data and use of

computational models benefit these research areas. Next, in Section

4.2, we describe novel computational methods developed to address

socioeconomic inequalities and segregation with a focus on the role

of GPS, mobile phones, and other data sources (Sections 4.2.1 and
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4.2.2). Finally, we conclude the analysis of this line of research with

critical reflections and future directions in Section 4.2.3.

4.1. The computational contamination in
research on inequalities and segregation

Reducing inequalities is of crucial importance to guarantee a

more sustainable and just future for our cities and societies. Indeed,

socioeconomic inequalities and income segregation threaten access

to health and negatively impact health population levels (Wilkinson

and Pickett, 2006; Pickett and Wilkinson, 2015), prevent equal

access to educational opportunities (Quillian, 2014; Logan and

Burdick-Will, 2016), and hinder social and economic development

(Neves et al., 2016). Moreover, they are intimately related to

opportunities offered by neighborhoods (Sampson, 2012, 2019;

Chetty et al., 2016; Manduca and Sampson, 2019; Hedefalk and

Dribe, 2020) and human movements and interactions (Eagle et al.,

2010; Chetty et al., 2016, 2022a,b; Wang et al., 2018; Dong

et al., 2020). Before the advent of the digital era, socioeconomic

inequalities were studied through surveys and census data.

However, while census data provide a large-scale representativeness

of the population, it lacks the ability to capture and provide an up-

to-date picture of cities’ dynamics and citizens’ behaviors, routines,

and habits (Lazer et al., 2009). As previously discussed, census data

are collected every few years and are made publicly available several

months after they were collected (Lazer et al., 2009). Instead, digital

data provide alternative data sources that allow capturing different

facets of human behavior: human interactions, human movements,

and human encounters are just a few examples of human behavior

which may play an essential role in investigating inequalities and

segregation and that nowadays can be studied by means of mobile

phone data (i.e., CDRs, GPS traces, etc.) and other digital traces

(e.g., credit card transactions) (Lazer et al., 2009, 2020). In what

follows, we discuss how several researchers, from economics and

computational social science, have started using alternative data

sources to study the daily behaviors and routines associated with

socioeconomic inequalities and segregation in cities.

4.2. Computational methods, big data, and
inequalities

As more people are moving to cities, governments have

to deal with novel challenges like gentrification, unaffordability,

segregation, and inequality (Glaeser et al., 2001; Florida, 2017). The

place where a person lives can have substantial impacts on health

(Wilkinson and Pickett, 2006), economic opportunities (Chetty

et al., 2014, 2016), infrastructure and services accessibility (Glaeser

et al., 2001; Reid et al., 2016; Florida, 2017), andmany other aspects,

both at a city and national scale (Chetty et al., 2014; Shelton et al.,

2015). Thus, measuring inequalities and segregation with timely

and accurate data is of paramount importance, and alternative

data sources and ubiquitous technologies are starting to play a

central role in deeply analyzing factors and behaviors associated to

inequalities such as environmental inequalities (Brazil, 2022; Dass

et al., 2022), social mixing and income segregation (Shelton et al.,

2015; Moro et al., 2021; Fan et al., 2023), and community resilience

(Hong et al., 2021).

4.2.1. GPS and mobile phone data
Athey et al. (2020) developed a measure of experienced

isolation (by race) to capture individualsâĂŹ exposure to other

(diverse) individuals using GPS data in the US. They found that the

isolation individuals experience in their daily life is lower than the

one measured by standard residential isolation metrics, especially

in cities with higher levels of public transportation, density,

education and income. Järv et al. (2015) moved beyond residential

segregation to explore individuals’ activity spaces, namely the

locations visited by an individual because of their regular activities

and routines. They exploited CDRs in the city of Tallin in Estonia

to measure ethnic segregation (Estonian vs. Russian). They found

that, for example, activity locations of Russian speakers tend to

be more concentrated in regions with a prevalence of Russian-

speaking communities. Xu et al. (2019) leveraged multiple urban

datasets (e.g., CDRs records, housing prices and income data) to

study citizens’ segregation by their socio-economic status and its

evolution in both physical and social (communication) spaces in

Singapore. They found relatively higher levels of segregation in

wealthier classes for both social and physical space. Hong et al.

(2021) leveraged mobile phone data to measure the inequalities

in community resilience to the Harvey hurricane in Texas. By

measuring the mobility behavior of the individuals, the authors

highlighted socio-economical and racial disparities in resilience

capacity and evacuation patterns, suggesting the adoption of novel

data-driven policies to prioritize equal allocations of resources

to vulnerable neighborhoods. Another study (Dass et al., 2022)

used mobile phone data, socio-demographic data, and infection

rates information to measure accessibility to green spaces in

Boston, at the beginning of the COVID-19 pandemic. The authors

discovered inequalities, where communities with higher infections

and higher prevalence of black residents experienced greater

infection exposure per visit. Fan et al. (2023) employed mobile

phone data of half a million people located in three different

metropolitan areas in the US to study how people experienced

social mixing in urban streets. The authors found that the density

of people’s street visits only explains the 26% of street-level diversity

(e.g., social mixing), while the adjacent amenities, residential

diversity, and income level explain the 44% of the designed diversity

score. Also, Fan et al. (2023) shows that while streets densely

visited tend to have more crime, diverse streets have fewer crimes.

Moro et al. (2021) leveraged high-resolution mobility data of more

than 4.5 million users in eleven big US cities to study income

segregation. Previously, income segregation was studied using

static residential patterns with high spatial resolutions. Thanks

to the fine-grained mobility data, the authors found that the

income segregation associated with places and individuals may

significantly vary even for places that are close to each other. The

authors proposed a model and showed that the experienced income

segregation of individuals is associated with the exploration of

new locations and places visited by visitors from different income

groups. In general, Moro et al. (2021) highlights the importance of

considering mobility patterns when we aim at measuring income
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segregation. Yabe et al. (2023) investigated how social interactions

(e.g., encounters) changed during the COVID-19 pandemic with

respect to income diversity. The authors relied on a dataset of

millions of mobile phone users in multiple US cities for a period

of three years before and during the pandemic. Overall, Yabe et al.

(2023) found that the diversity of individual-level urban encounters

decreased significantly despite the fact that in 2021, indices

related to aggregated mobility recovered to pre-pandemic levels.

The authors argued that the pandemic could have long-lasting

implications on urban income diversity. Brazil (2022) utilized

mobile phone data to study the mobility behavior of individuals to

uncover environmental inequalities. The author found that people

from minority groups and poorer neighborhoods tend to travel to

areas with greater levels of air pollution with respect to white and

richer neighborhoods.

4.2.2. The role of other data sources
Using hundreds of millions of geotagged tweets, Wang et al.

(2018) have measured neighborhood isolation for 50 American

cities finding that residents of black and Hispanic neighborhoods,

despite their socio-economic status, are less exposed to either

non-poor or white neighborhoods than residents of white

neighborhoods. Using the same dataset, Phillips et al. (2021)

have computed the social integration of 50 American cities

with indices that measure the extent to which residents in each

neighborhood travel to other neighborhoods in a city. They

have shown that cities with greater population densities and less

racial segregation have higher levels of structural connectedness.

Using Twitter data and geo-located credit card transactions

Morales et al. (2019) investigated segregation in the physical and

online space together with their relationship. They show that

physical and online interactions in urban areas are segregated

by income and that information does not flow homogeneously

across social classes in either the physical or the virtual space. In

a follow-up study, Dong et al. (2020) found that segregation in

urban and online interactions seems stronger than the residential

ones. Indeed, while residential neighborhoods sometimes might

consist of a mix of different socioeconomic groups, purchase

activities and online interactions seem to take place more often

between neighborhoods whose economic conditions are similar.

Additionally, Dong et al. (2020) have shown that segregation

increases with differences in socioeconomic status but this effect

is asymmetric for shopping behaviors. In fact, the number of

movements from poorer to wealthier neighborhoods is larger

than vice versa. Hilman et al. (2022) instead leveraged check-in

datasets collected from location-based social media and census

information to study segregation levels in 20 cities in the US.

The authors found an upwards bias for which people of a certain

socioeconomic class mostly visited places in the same class with

rare visits to locations from higher classes. Furthermore, this

bias increases with socioeconomic status and correlates with

metrics for estimating racial residential segregation. In recent

work, Shelton et al. (2015) showed that geotagged Twitter data

can be used to capture the socio-spatial relations of territories

dynamically. In particular, the authors analyzed the data for

the city of Louisville in Kentucky, US, to show that analyzing

the segregation of the city using static data is not sufficient to

understand its dynamics.

Nicoletti et al. (2022) leveraged a combination of census data

and geographical information from OpenStreetMap (OSM) to

measure the accessibility to different POIs. The authors defined a

metric of accessibility and found that, in more than 50 cities, their

metric suggests that inequalities appear proportional to growth

processes. Also, for 10 of the cities, low accessibility scores were

associated with communities with a larger share of minorities and

with lower income levels.

Inequalities can also be related to the possibilities of accessing

transportation. For example, by analyzing Boston’s BlueBikers

program mobility data, Fraser et al. (2022) showed that some

neighborhoods use bike-sharing programs more than others.

However, by considering the underlying socio-demographic

characteristics, it emerged that there are significantly different

adoption rates with respect to race and income level. Fraser et al.

(2022) also pointed out how, by analyzing the mobility network

over time (e.g., 2011–2021), Boston’s program is gradually reaching

a broader range of neighborhoods.

In a couple of recent works, Chetty et al. (2022a,b) have

leveraged data from Facebook on 21 billion friendships. In

particular, in a first study Chetty et al. (2022a) have measured three

types of social capital by postal code in the US: (i) connectedness,

namely friendship between people with different characteristics

(i.e., high income vs low income), (ii) social cohesion, which

is the extent to which networks of friends are clustered in

cliques, and (iii) civic engagement, which measures as rates of

volunteering or participation in civic organizations. Interestingly,

the share of high-income friends among people with low income

(called economic connectedness by the authors) is one of the

more powerful predictors of upward economic (e.g., income)

mobility. Moreover, Chetty et al. (2022a) have also found that

differences in economic connectedness can explain upward income

mobility, even when controlling for other strong neighborhood-

level predictors such as poverty rates, racial segregation, and

inequality. In a companion study and again using Facebook data,

Chetty et al. (2022b) have shown that about half of the social

disconnection across different socioeconomic groups is explained

by differences in exposure to people with high socioeconomic

status in places such as schools. Instead, the other half is explained

by a friendship bias, namely a lower tendency of low-income

people to establish friendships with high-income individuals. This

ability to disentangle differences in exposures and friendship bias

is of paramount relevance for building effective interventions and

strategies to increase economic connectedness and thus decrease

income segregation and inequalities.

4.2.3. Critical reflections
New methodologies and novel insights on segregation and

inequalities in urban environments have been developed thanks

to novel data sources that enabled the study of different facets of

human behavior and interaction at spatio-temporal scales that were

previously unavailable. While these new approaches have brought

substantial advantages for a timely study of human dynamics, it is

still difficult to use these new methodologies and data sources to
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effectively measure the real impact of policies and interventions

for reducing inequalities. In particular, this second aspect will

require the development of a simulation framework able to generate

different scenarios enabled by specific interventions. Moreover,

given the proprietary nature of these novel data sources, it is often

difficult to have access to longitudinal data that span multiple years

and therefore it is problematic to track whether an intervention had

an effective impact over time. An example of the potential of a study

based on a longitudinal dataset is represented by Yabe et al. (2023),

which using three years of data found that the COVID-19 pandemic

still has long-lasting implications on urban income diversity in

US cities. Furthermore, several studies are based on aggregated

data and not on individual data for privacy reasons. This means

that pieces of information such as poverty and deprivation are not

directly available at the individual level and scholars have to develop

proxies of such measures at an aggregated level (i.e., neighborhood)

which may hinder the understanding of actual inequalities. As an

example, Gündoğdu et al. (2019) had to move the two definitions of

bridging and bonding social capital from an individual level to an

aggregated level due to the unavailability of individual-level data.

5. Public health

In this section, we will examine how computational models

can be useful in addressing public health-related issues. We

will organize our discussion into several sections. First, we will

briefly summarize how the availability of data and the use of

computational models have impacted public health studies in

Section 5.1. Then, we will analyze the benefits of using big data

and new computational tools in Section 5.2.1. Next, we will explore

how mobile phone data (Section 5.2.2), social media data (Section

5.2.3), and other data sources (Section 5.2.4) can be used to tackle

these issues. Finally, we will wrap up this part of the research with

a discussion of future directions and critical reflections in Section

5.2.5.

5.1. The computational contamination in
research on public health

Public health is an inherently interdisciplinary field, whose key

focus, preventing disease and promoting health, largely benefits

from the contribution of different scholarly expertise, ranging

from medicine to the social sciences, psychology and economics

(Gavens et al., 2018). The past decades have seen an ever-increasing

adoption of computational and digital methods in the research

on public health, and many have been advocating for increasingly

closer collaboration between computer scientists and public health

scholars (Epstein, 2013).

In particular, major advances in the use of computational

methods for public health have been witnessed in the area

of infectious disease epidemiology, specifically to model and

understand the patterns of disease dynamics and related causes.

The use of mathematical models to study the spread of

infectious diseases dates back to the seminal works of Ross

(1916) and Kermack and McKendrick (1927) at the beginning

of the 20th century, who first introduced the law of mass

action in epidemiology. Over the years, epidemic models became

increasingly complex, pursuing a higher level of realism by

introducing additional interacting components, such as spatially

defined structures (Rvachev and Longini, 1985; Sattenspiel and

Dietz, 1995), age-stratified contact patterns (Fumanelli et al.,

2012), human movements on long and short scales (Colizza

et al., 2007; Balcan et al., 2009) and, more in general, human

behavior (Funk et al., 2010; Perra et al., 2011). At the same

time, the development of such models has been possible thanks

to the increasing availability of computing power, thus allowing

the in-silico recreation of populations with unprecedented levels

of detail. If, in the origins of mathematical epidemiology, models

were based on the assumption of a single, closed and well-mixed

population (Grassly and Fraser, 2008), modern epidemic models

are usually structured as ABMs, simulating the daily routines

of up to hundreds of millions of individuals and their close

contacts, in households, schools, and workplaces, requiring large-

scale computational infrastructures (Ferguson et al., 2006; Ajelli

et al., 2010; Merler and Ajelli, 2010).

The growth of computing power has been matched by

even faster growth in data availability. With the diffusion of

ubiquitous technologies and the rise of the Internet era, the field of

epidemiology has been rapidly contaminated by digital approaches

leading to a newly defined “digital epidemiology" (Salathe et al.,

2012). Digital epidemiology, in the definition given by Salathé

(2018), refers to epidemiology that uses data that was generated

outside the public health system, data that were not collected with a

specific public health-related purpose. The first study that brought

to worldwide attention the potential use of a novel digital data

source in epidemiology described Google Flu Trends, a system to

monitor flu activity in more than 25 countries based on search

query data (Ginsberg et al., 2009). The service was shut down

in 2015, but historical data are still available. Also, the same

study sparked a significant controversy on the accuracy of such

emerging models and their potential biases (Lazer et al., 2014a,b).

Soon thereafter, studies on digital epidemiology started growing

exponentially, using a variety of digital sources to track disease

prevalence and design public health interventions (Althouse et al.,

2015; Bansal et al., 2016). Many studies followed the seminal

example of Google Flu Trends by integrating different web data

sources to forecast flu activity (Polgreen et al., 2008; Shaman and

Karspeck, 2012; Shaman et al., 2013; Yuan et al., 2013; Lampos et al.,

2015). As other data sources became rapidly available, their use

has been explored in a wide range of epidemiological applications.

Mobile phone data have been used to measure human movements

and inform both spatially structured epidemic models (Tatem

et al., 2009; Wesolowski et al., 2012, 2016), and surveillance

systems (Barlacchi et al., 2017). Other studies have further advanced

epidemic modeling and forecasting by combining additional data

streams such as social media data (Lampos et al., 2010; Zhang

et al., 2015, 2017), internet media reports (Freifeld et al., 2008),

wearable sensors (Isella et al., 2011; Viboud and Santillana, 2020),

and satellite imagery (Bharti et al., 2016; Castro et al., 2021). Finally,

the opportunity provided by the Web to directly engage users in

scientific research has opened the path to participatory surveillance

systems, moving beyond the initial paradigm of passively collected

data sources (Paolotti et al., 2014; Smolinski et al., 2015; Brownstein

et al., 2017).

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2023.1124526
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Luca et al. 10.3389/fdata.2023.1124526

In this context, the COVID-19 pandemic has marked a

turning point for digital epidemiology. While before 2020, digital

epidemiology has been mainly studied as a proof-of-concept with

a few real-time applications, since the early days of the COVID-

19 outbreak in China, digital approaches have played a crucial role

across the whole pandemic life cycle (Oliver et al., 2020), ranging

from predictive modeling (Poletto et al., 2020) to the population-

scale deployment of digital contact tracing apps (Colizza et al.,

2021).

In the next sections, we discuss in more detail the role of

the different alternative data sources and modeling techniques in

computational epidemiology with a specific focus on applications

in the urban context. First, we briefly highlight the general

advantages of studying urban public health using digital approaches

and big data. After that, we highlight the roles of mobile phone data,

social media data, and other novel data streams.

5.2. Computational methods, big data, and
urban public health

5.2.1. The advantages of studying urban public
health today

Modern epidemiology traces its roots to the foundational work

of John Snow, who first identified the Broad Street pump as the

source of the 1854 London cholera outbreak by mapping disease

prevalence in Soho, and showing how cases occurred around this

pump (Shiode et al., 2015). Since then, cartography and mapping

spatial disease patterns have represented a fundamental tool for

epidemiologists (Koch, 2011). In particular, the analysis of disease

patterns in cities has attracted significant attention from scholars,

as large metropolitan areas represent the main hubs of disease

emergence and spreading (Ali and Keil, 2011; Connolly et al.,

2021), a fact that has been well exemplified by the most recent

global pandemics. Due to the high density of people and close

proximity of living and working spaces in cities, infectious diseases

can easily spread from person to person. Additionally, the crowded

and often unsanitary living conditions in many cities can provide

a conducive environment for the spread of infectious diseases.

For example, inadequate access to clean water and sanitation

facilities can lead to the proliferation of waterborne diseases

such as cholera. Furthermore, the rapid pace of urbanization and

population growth in many cities can put a strain on existing

healthcare systems, making it more difficult to effectively detect and

respond to outbreaks of infectious diseases (Neiderud, 2015).

In recent years scholars have investigated the role of urban

features in the spread of infectious diseases, through a number of

computational methods. On the one hand, computational epidemic

models have been developed to capture the complexities of

human behavior in the urban environment, from fine-scale human

movements (Perkins et al., 2014) to contact networks (Eubank

et al., 2004). On the other hand, many studies have explored the

effect of city characteristics, such as urban population scaling laws

(Bettencourt et al., 2007) on health outcomes (Rocha et al., 2015;

Bilal et al., 2021) through a mix of theoretical and computational

approaches (Schläpfer et al., 2014; Tizzoni et al., 2015). As digital

trace data have become pervasive, providing researchers with a

tool to investigate human behavior at a high spatial resolution,

several studies have advanced our understanding of the role of

urban structures in the spread of epidemics. By combining novel

data sources with spatially resolved records of disease incidence,

researchers have shown that variations in mobility patterns and

the associated spatio-temporal fluctuations in population size can

predict variations in the dynamics of seasonal flu epidemics (Dalziel

et al., 2013, 2018; Zachreson et al., 2018). Similarly, the hierarchical

structure of cities, and their different organization as single-center

or multi-center systems, has been shown to predict inter-city

variations in the spreading dynamics of respiratory infections

(Rader et al., 2020; Brizuela et al., 2021; Aguilar et al., 2022).

Furthermore, the availability of high-resolution digital sources

has also enabled the study of determinants of non-communicable

diseases and chronic health conditions in urban areas. In particular,

the analysis of digital trace data has allowed the characterization

of neighborhoods based on novel behavioral indicators, thus

providing new metrics to explain the observed residents’ health

outcomes (Sadilek and Kautz, 2013). Mobile phone data, social

media data, and remote sensing have been used to model the

pulse of urban life at a scale and granularity that would be hard

to achieve with traditional methods. Overall, research in this area

has demonstrated that novel digital sources represent an invaluable

tool to monitor the health conditions of cities, understand their

dynamics and inform public health policies. In the following

sections, we provide an overview of some relevant contributions,

based on different data sources, to address public health issues in

large metropolitan areas.

5.2.2. The role of mobile phone data
Location data generated by mobile phones have played a

pivotal role in the modeling of human mobility and population

settlements at international (Kraemer et al., 2020), national (Deville

et al., 2014), and smaller spatial scales (Alessandretti, 2022). Since

the early days of digital epidemiology, mobile phone data have

represented an invaluable data source to connect empirical human

mobility patterns and the spatial spread of infectious diseases.

They have been used to calibrate epidemic models, understand

disease spreading patterns, and evaluate intervention strategies

against them (Wesolowski et al., 2016). Initial efforts to incorporate

mobile phone derived mobility metrics into epidemic models have

been mostly focused on large spatial scales, such as country-wide

movements. This is the case, for instance, of seminal work by Tatem

(2009), who leveraged mobile phone data collected in Zanzibar to

estimate the relation between human mobility flows and parasite

carrier movements and rates of malaria importation. The authors

found that most of the people in Zanzibar traveled low-risk short

distances but risk groups visiting higher-risk regions for extended

periods could be identified. Similarly, Wesolowski et al. (2012) used

mobile phone data and malaria prevalence information to estimate

how people’s movements were related to parasite importation

between different regions. With their study, the authors were able

to identify sources and sinks of imported infections and also to

identify critical travel routes. Applications to city-scale epidemic

scenarios have been generally more scarce, however, until the

COVID-19 pandemic.
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The COVID-19 pandemic has represented a defining moment

for the use of mobile phone-derived data in epidemic modeling

in cities. For the first time, high-resolution temporally resolved

positioning data, collected from millions of users, became available

to researchers. Such an unprecedented amount of information has

fostered the development of a new generation of ABMs, with the

ability to recreate synthetic populations of large urban areas with

extraordinary realism, which was deemed impossible until a few

years ago. While in 2011 Cooley et al. (2011) built their ABM of

7 million individuals living in New York City only based on the

most recent census surveys, 10 years later, Aleta et al. (2020) could

explicitly model the time-varying interactions of 100,000 people in

the Boston Metropolitan Area, accounting for more than 5 million

interactions in schools, workplaces, and households, derived from

empirical co-location events. Their study showed that a response

system based on enhanced testing and contact tracing could be an

important tool to mitigate the spread of COVID-19, once social

distancing measures were relaxed. In the following paper, Aleta

et al. (2022) developed a similar model, integrating individual-level

mobility data with socio-demographic information, to generate

synthetic populations in New York City and Seattle, and simulate

transmission events in more than 400,000 locations within the

two cities. Such a detailed model allowed them to characterize

the risk of COVID-19 transmission in different venues, identifying

the most likely locations of super spreading events. In a similar

effort, Chang et al. (2021) developed an epidemic ABM describing

the mobility networks of ten of the largest US metropolitan areas.

These networks mapped the hourly movements of 98 million

people from census block groups, resulting in 5 billion dynamic

edges. Simulations of COVID-19 spread on these large spatially-

resolved networks demonstrated how higher infection rates among

disadvantaged racial and socioeconomic groups were solely a

result of differences in mobility in response to non-pharmaceutical

interventions (NPIs). Studies of intra-city mobility during the

pandemic were not limited to the US or Europe. As an example,

Gozzi et al. (2021) investigated the dynamics of COVID-19 in

the metro area of Santiago de Chile, using anonymized mobile

phone data from 1.4 million users. By combining mobility traces

and a compartmental epidemic model, they found that mobility

responses to the lockdown were highly unequal in the city, with

most deprived areas experiencing higher levels of mobility and, as

a consequence, higher infection rates.

Other studies have used mobile phone data to investigate the

socio-economic effects of NPIs in cities. Bonaccorsi et al. (2020)

investigated the impact of the first lockdown measures in Italy,

using a large-scale mobility dataset provided by Meta. They found

that the impact on mobility was stronger in municipalities with

higher fiscal capacity, while, at the same time, mobility reductions

were larger in municipalities with higher income inequalities. Their

results prompted fiscal interventions targeting the unequal effects

of COVID-19 mitigation measures. On a similar note, Gauvin

et al. (2021) used anonymized individual location data to study

the mobility responses to COVID-19 in the neighborhoods of 3

major Italian cities. Their analysis uncovered the desertification

of historic city centers, which persisted after the end of the first

lockdown. Such a center-periphery gradient was mainly associated

with differences in educational attainment. Similar results were

found by Glodeanu et al. (2021) who evaluated socio-economic

disparities of mobility responses in the neighborhoods of Madrid.

As mobility restrictions were removed and social life returned

to normal, other studies focused on persistent changes in human

behavior, that followed the pandemic response. For instance,

Lucchini et al. (2021) used location data to analyze how people

changed their mobility patterns and person-to-person contacts in

response to NPIs in the US. Interestingly, they found a persistent

reduction in close contacts and in the number of venues visited,

even after the lifting of COVID-19 mandates. Using crowdsourced

mobility data from 45 million devices, Li et al. (2022) found

evidence of aggravated social segregation in the 12 largest US

metropolitan areas, as a consequence of the COVID-19 mobility

restrictions. Other studies, instead, have investigated the effects

of the pandemic on lifestyles and individual habits. A notable

example is a work by Hunter et al. (2021), who investigated the

effects of the COVID-19 pandemic on walking habits in 10 major

metropolitan areas of the US. The authors used individual-level

mobility data to identify changes in the walking behavior of more

than 1.6 million anonymized mobile phone users. Their findings

highlighted a dramatic decline in walking habits during the first

wave of the pandemic. Moreover, they found that once restrictions

were lifted, walking levels recovered to pre-COVID-19 measures in

high-income areas, whereas low-income areas were still well below

pre-COVID-19 levels.

Finally, recent modeling advances have further developed

the field of large-scale ABMs by combining high-resolution

mobility data with detailed information on the economic role of

individuals, as workers and consumers. Recent work by Pangallo

et al. (2022) developed an ABM of the New York-Newark-Jersey

City Metro Area that is representative of the real population

across multiple socio-economic characteristics, including their

employment status, the industry they work in, and their ability

to work from home. Parameterizing the model with privacy-

enhanced location data, the authors could explore the complex

tradeoff between health and economy with an unprecedented level

of realism.

5.2.3. The role of social media
In digital epidemiology, social media data have always

represented an important source of information to infer disease

prevalence from health-related behaviors or symptoms reported by

users (Brownstein et al., 2009; Aiello et al., 2020). Among social

media, Twitter is the one that has attracted the most attention from

scholars, thanks to the public availability, and machine readability,

of basically all its content (Mejova et al., 2015b). The most

typical use of Twitter data involves the automatic identification of

relevant tweets, through either keyword search or natural-language

processing, to identify posts whose content is related to some health

condition (Paul and Dredze, 2011). For instance, tweets posted by

users who report Influenza-Like Illness (ILI) symptoms. Collected

tweets are then used as input to predictive models that aim at

reproducing some known baseline, such as the ILI trends reported

by official public health surveillance.

While initial efforts in this direction were mostly focused

on measuring aggregated statistics of disease prevalence at the
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national level (Broniatowski et al., 2013; Gesualdo et al., 2013),

the availability of geo-tagged social media data with GPS accuracy,

in particular from Twitter, has allowed mapping users’ health

conditions at a very high spatial resolution, reaching the scale

of a city (Sadilek et al., 2012). In a seminal paper, Nagar et al.

(2014) used geo-referenced city-level Twitter data as a means of

forecasting real-time ILI emergency department visits in New York

City. They demonstrated that, at that spatial resolution, Twitter

data could effectively capture the dynamics of flu in the boroughs of

NYC. They also found that a model using the number of infection-

related tweets outperformed one based on the number of web

searches in predicting the number of ILI-related visits to emergency

departments. Similarly, Lu et al. (2018) used Twitter data to model

seasonal flu epidemics in the Boston Metropolitan Area.

Social media also represents a valuable data source to

monitor non-communicable diseases and health habits in cities.

A comprehensive study by Nguyen et al. (2016) developed

a publicly available neighborhood-level dataset with indicators

related to health behaviors and wellbeing in the USA. Interestingly,

the authors found that greater happiness, and positivity toward

physical activity and toward healthy foods, assessed via tweets,

were associated with lower all-cause mortality and prevalence of

chronic conditions such as obesity and diabetes and lower physical

inactivity, and smoking. Similarly, Twitter data has been proven

useful to map dietary habits in US cities, down to the level of census

tract. A study by Gore et al. (2015) investigated how the obesity

rate of an urban geographic area correlates with the contents of

geo-tagged tweets in that area. In recent work by Sigalo et al.

(2022), the authors analyzed about sixty-thousand geolocated food-

related tweets collected across 25 cities, in the USA. They found

associations between a census tract being classified as a food desert

and an increase in the number of tweets in a census tract that

mentioned unhealthy foods. Instagram, a video and photo sharing

social network withmore than 1 billion users worldwide, represents

another relevant data source to investigate health habits, and in

particular dietary choices, at scale. As an example, De Choudhury

et al. (2016) showed that the textual content of Instagram posts

predicts with high accuracy food deserts in the metropolitan

areas of the US, while Mejova et al. (2015a) combined data from

Instagram, Twitter, and Foursquare to correlate dietary choices

and the prevalence of obesity across the USA. Another public

health-relevant use of social media, which has been extensively

explored by health departments in the US, is monitoring reports of

foodborne illnesses. Two notable studies investigated the potential

use of Twitter posts (Harris et al., 2014) and Yelp reviews (Harrison

et al., 2014) to track food poisoning outbreaks in Chicago and

New York City, respectively. Both studies demonstrated the high

impact of using social media data to improve surveillance in

collaboration with city public health authorities. Finally, Aiello

et al. (2016) used a random sample of 17 million geo-referenced

Flickr photos taken within Greater London between 2010 and 2015

to create a high-resolution map of the sound landscape of the

city. They further leveraged such dataset to quantify the effects of

noise on population health, correlating noise exposure levels with

hypertension rates, at a very high spatial granularity (Gasco et al.,

2020).

5.2.4. The role of other data sources
Beyond mobile phone location data and social media, several

studies have demonstrated the potential use of other digital sources

for public health research. As already mentioned, multiple studies

have leveraged search query data of services like Google Search

(Ginsberg et al., 2009; Lampos et al., 2015), Baidu (Yuan et al.,

2013), or Bing (Lampos et al., 2021), to monitor epidemics at scale.

Internet search queries have not only been used to track the spread

of infectious diseases but also to monitor other health conditions,

for instance, mental health. As an example, Adler et al. (2019)

combined official demographic statistics with data generated from

Bing queries to gain insight into suicide rates per state in India as

reported by the official census.

Another useful, but mostly untapped, data source to monitor

disease incidence is Wikipedia pageview data. A landmark paper

by McIver and Brownstein (2014) showed that the number of

Wikipedia article views of specific health-related pages was a

good predictor of ILI activity in the US. However, even though

Wikipedia pageview data are geolocated, their availability with

geo-encoded information is limited due to privacy reasons. Thus,

city-scale studies are scarce. A notable example is a work by

Tizzoni et al. (2020), who measured changes in awareness in

the US during the 2016 Zika epidemic through geo-localized

Wikipedia pageview data, at the level of US city. They examined the

attention to Zika in 788 cities in the US with a population larger

than 40,000 and found clear and distinct patterns of attention,

varying with the exposure to the virus and the volume of media

coverage.

Electronic records of retail market purchases represent a novel

and interesting data stream, whose potential has been recently

explored. Miliou et al. (2021) proposed to use retail market data

to improve the forecasting of seasonal flu. In particular, the authors

showed that by identifying some specific co-purchases of products,

by specific customers, it is possible to model seasonal flu incidence

in Italy, 4 weeks in advance, with improved accuracy with respect

to an autoregressive baseline. Aiello et al. (2019) collected and

analyzed a similar dataset, reaching an unprecedented level of

spatial granularity. By analyzing 1.6 billion food item purchases

and 1.1 billion medical prescriptions for the entire city of London

over the course of one year, they showed that nutrient diversity

and amount of calories are the two strongest predictors of the

prevalence of three chronic health conditions: hypertension, high

cholesterol, and diabetes.

5.2.5. Critical reflections
The future of urban public health is undoubtedly going to be

more and more digital. It is clear, however, that several challenges

lie ahead, as has been evidenced by the adoption of computational

and digital technologies during the COVID-19 pandemic. Thanks

to increasing computing power and the availability of high-

resolution behavioral data, computational models of epidemics are

able to capture key determinants of transmission with impressive

detail. However, they often lack a structural integration with

socioeconomic dimensions that are known to affect epidemic

outcomes. Recent studies have pointed out the need for equitable
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approaches in digital epidemiology, to address socioeconomic

gaps in disease surveillance and modeling (Buckee et al., 2021;

Tizzoni et al., 2022). Future work should aim at reducing health

disparities during health emergencies through closer collaboration

between epidemiologists and social scientists, psychologists, and

economists.

Of course, the use of passively collected digital traces in public

health comes with significant privacy and ethical concerns. In an

urban context, measuring behaviors at a high spatial granularity

represents a key advantage with respect to traditional data sources.

However, reaching a high granularity may imply a higher risk

of data re-identification, especially with small sample sizes, thus

putting individual privacy at risk. In the future, it will be important

to understand what privacy-preserving mechanisms can be most

effective in minimizing such risks while preserving the potential of

data analysis, even at a high spatial resolution.

Finally, the use of novel digital sources requires a careful

understanding of their limitations and their scope. For instance,

mobile phone-derived mobility metrics have been proven useful

to understand the dynamics of COVID-19 in the early phase of

the outbreak, however, the relationship betweenmobility indicators

and epidemic outcomes is not straightforward (Kishore, 2021).

While mobile phone data are clearly useful to measure changes in

human behavior and link them with epidemic dynamics, such link

often varies over time, and understanding this varying relationship

poses significant challenges to scholars and policymakers who may

want to use mobile phone data to evaluate the effectiveness of

interventions or forecast future epidemic trajectories. Further work

is needed to define methods that can systematically assess the

quality of mobile phone-derived mobility metrics and make them

comparable across different settings and data providers.

6. Conclusions

Cities are the beating heart of our modern societies. With more

than half of the world’s population living there, multiple emerging

societal challenges require modern solutions. In particular,

measuring the efficiency of deployed policies and progress toward

specific SDGs, it is fundamental to have an always up-to-date

picture of human dynamics in cities (e.g., how people move, how

they interact with each other). In this context, it is clear that

a pivotal role is played by the data collected from alternatives

(ubiquitous) data sources like mobile phones, social media, GPS

traces, satellite images, wearable devices and many others. In our

review paper, we showcase how such alternative data are employed

to monitor signs of progress toward some specific United Nations’

Sustainable Development Goals. In particular, after a discussion

about the different alternative data sources, we review how such

information has been used to monitor urban crime and public

safety. After that, we highlight the role of such data in reducing

socioeconomic inequalities and segregation. Finally, we showed

how they impacted research about public health. In all the sections,

we start with a brief discussion about the advantages of using

big data with respect to other techniques. Afterwards, we describe

how different studies use such information. Finally, we conclude

every section with some critical reflections about limitations and

potential future directions.
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