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Abstract— This paper deals with the robust control of fully-
actuated robots subject to joint position, velocity and accel-
eration bounds. Robotic systems are subject to disturbances,
which may arise from modeling errors, sensor noises or
communication delays. This work presents mathematical and
computational tools to ensure the robust satisfaction of joint
bounds in the control of robot manipulators. We consider a
system subject to bounded additive disturbances on the control
inputs, with constant joint position, velocity and acceleration
bounds. We compute the robust viability kernel, which is the
set of states such that, starting from any such state, it is
possible to avoid violating the constraints in the future, despite
the presence of disturbances. Then we develop an efficient
algorithm to compute the range of feasible accelerations that
allow the state to remain inside the robust viability kernel.
Our derivation ensures the continuous-time robust satisfaction
of the joint bounds, while considering the discrete-time nature
of the control inputs. Tests are performed in simulation with
a single joint and a 6-DOF robot manipulator, demonstrating
the effectiveness of the proposed approach compared to other
state-of-the-art methods.

I. INTRODUCTION

The control of robot manipulators is a well-understood
and mostly solved problem. However, it is still challenging
when these systems must operate in proximity of their joint
limits. This is the case every time a robot moves at maximum
speed, or reaches an object at the boundary of its workspace.
These hard joint limits, encompassing position, velocity and
acceleration, introduce non-trivial constraints in the control
problem.

An additional challenge is that these systems are subject to
disturbances, which may arise from modeling errors, sensor
noises, or communication delays. Therefore we tackle the
problem of robust control [1], considering bounded additive
disturbances on the system inputs. The non-robust version
of this problem has been already investigated in the liter-
ature [2], [3], [4]. Our main contribution is to extend the
algorithm of [3], introducing robustness to bounded additive
disturbances on the control inputs.
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A. Notation

Let us introduce our notation:
• ∧ and ∨ denote the logical quantifiers AND and OR.
• t ∈ R+ denotes time.
• i ∈ N denotes discrete time steps.
• δ t is the time-step duration of the controller.
• w(t) is the disturbance in continuous-time systems,

while wi is the disturbance in discrete-time systems.
• q(t), q̇(t), q̈(t) ∈ R are the joint position, velocity and

acceleration at time t.
• qi ≜ q(iδ t), q̇i ≜ q̇(iδ t), q̈i ≜ q̈(iδ t).
• qmin, qmax are the joint position boundaries.
• q̇max, q̈max are the maximum velocity and acceleration.1

B. State of the art

Assuming a double-integrator dynamics, the next position
q+ and velocity q̇+ depend on the current acceleration q̈:

q+ = q+δ t q̇+
1
2

δ t2q̈

q̇+ = q̇+δ t q̈
(1)

A basic way to handle joint limits is to bound the acceleration
q̈ so that q+ and q̇+ remain feasible:

q̈≤min
(

q̈max,
1
δ t

( q̇max− q̇),
2

δ t2 (q
max−q−δ t q̇)

)
q̈≥max

(
−q̈max,

1
δ t

(−q̇max− q̇),
2

δ t2 (q
min−q−δ t q̇)

) (2)

This simple approach is unsatisfactory because the resulting
upper bound may be smaller than the lower bound, leading to
an unfeasible problem [5]. Several improvements have been
proposed.

A common approach [5], [6] is to use (2) with a larger
value of δ t; this mitigates the problem by decreasing q̈ when
getting close to a limit, but does not suffice to guarantee
constraint compatibility. Alternatively, one could bound the
velocity using a linear function of the joint position [7].
While this is a sensible idea, this method does not explicitly
account for acceleration limits. Control barrier functions
provide a general framework for handling constraints [10],
[11]. However, they fail to address the key issue of constraint
conflicts, and are therefore ineffective for the problem at
hand [9].

A related (but more challenging) problem is the one
of collision avoidance. Self-collision avoidance has been

1Velocity and acceleration limits are often approximated as constant even
though they are actually state dependent [5], [6], [7], [8], [9], [2], [4].
Our discussion can be easily extended to asymmetric velocity/acceleration
bounds, but for the sake of clarity we focus on symmetric bounds.



tackled with Vector Field Inequalities [12], which, similarly
to control barrier functions, do not deal with constraint
conflicts. [13] proposed a method to avoid collision ensuring
strict bounds between the solution of the inverse kinematic
problem and a reference collision-free joint trajectory. Colli-
sion avoidance for physical human-robot interaction has also
been tackled using Nonlinear Model Predictive Control [14],
together with a low-level feedback controller that guarantees
joint limits [3].

Decre et al. [2] have been the first ones trying to provide
formal guarantees of constraint satisfaction. Their method
has two main issues. First, the assumption of constant
velocity during the time step, so they do not bound the
acceleration, but a pseudo-acceleration, defined as (q̇+ −
q̇)/δ t. Second, the potential conflicts between velocity and
acceleration limits when approaching position limits. The
latter problem was then addressed by Rubrecht et al. [9],
[4], but at the price of a conservative solution.

The viability-based approach developed in [3] solved
the above-mentioned limitations. It is exact and does not
introduce any type of arbitrary conservatism. It assumes
constant acceleration between time steps, so it bounds the
real acceleration. However, it cannot deal with disturbances.
Our contribution is to develop a robust version of this
method.

The problem of robust constraint satisfaction has been
thoroughly investigated in the field of Robust Model Pre-
dictive Control (RMPC) [15], with most work dealing with
linear discrete-time dynamical systems, subject to linear
constrains [16], [17]. The system and the constraints con-
sidered in this paper are linear, so we could apply methods
from RMPC. However, these methods can only guarantee
the satisfaction of the constraints in discrete time, mean-
ing that violations could still occur in-between time steps.
Our method instead guarantees that constraints be robustly
satisfied in continuous time, even though the control inputs
can only be changed at discrete time steps. Moreover, while
RMPC methods typically rely on complex polytope projec-
tion techniques (e.g. to compute Minkowski sums), which
require the use of advanced (and often numerically brittle)
software libraries [18], our approach boils down to a simple
algebraic algorithm, easy to implement and fast to execute.

II. PROBLEM STATEMENT

A. Feasible states

Considering a robot with joint position and velocity limits,
the set of feasible states for a single joint is:

X = {(q, q̇) ∈ R2 : qmin ≤ q≤ qmax, |q̇| ≤ q̇max} (3)

As previously stated, our control inputs are the joint accel-
erations, which are bounded: |q̈| ≤ q̈max.

B. Disturbance definition

We assume our system is subject to an additive distur-
bances on the inputs w, which is bounded by its maximum
value w̄, i.e. w(t) ∈ [−w̄, w̄]. For the control of real-world

systems we use generally discrete-time models. The dis-
turbance in discrete time still holds the property of being
bounded, wi ∈ [−w̄, w̄], but it remains constant throughout
the whole time step i. Assuming constant acceleration and
constant disturbance through the time step, the discrete-time
dynamics are:

qi+1 = qi +δ t q̇i +
1
2

δ t2(q̈i +wi)

q̇i+1 = q̇i +δ t (q̈i +wi)
(4)

Notice that wi does not influence the acceleration bounds: q̈
is the commanded acceleration, to which we add w.

1) Mapping disturbance sources: The disturbances w
could be used to account for different disturbance sources,
such as sensor noises, modelling errors, and communication
delays. For instance, assuming bounded noise on the joint
position-velocity measurements/estimations:

qmeas = q+wq, q̇meas = q̇+wv (5)

with |wq| ≤ w̄q and |wv| ≤ w̄v. Assuming a PD control law:

q̈ = kp(qd−qmeas)+ kd(q̇d− q̇meas)

= kp(qd−q)+ kd(q̇d− q̇)− kpwq− kdwv
(6)

The errors due to wq/wv can be mapped to errors in w
with bound w̄ = kpw̄q + kdw̄v. In case of a nonlinear control
law, such as an inverse dynamics controller, the mapping
from wq/wv to w is nonlinear, and cannot be computed
exactly in general. However, conservative bounds can be
computed using interval arithmetic, affine arithmetic [19] or
more recent and accurate methods [20]. Similarly, known
error bounds on the parameters of the robot model (e.g., link
lengths, link masses) and the communication delays could be
mapped to (possibly conservative) bounds on w.

C. Problem formulation
Finding the maximum (or minimum) acceleration such that

the state constraints can be satisfied in the future can be
formulated as an infinite-horizon optimal control problem:

q̈max
0 = maximize

q̈0,q̈1,...
q̈0

subject to q(iδ t + t) = qi + t q̇i +
t2

2
(q̈i +wi)

q̇(iδ t + t) = q̇i + t (q̈i +wi)

(q(iδ t + t), q̇(iδ t + t)) ∈X

|q̈i| ≤ q̈max

(q(0), q̇(0)) fixed
∀i≥ 0,∀t ∈ [0,δ t],∀wi ∈ [−w̄, w̄]

(7)

The problem has an infinite number of constraints and
variables, therefore it cannot be solved directly.

III. PROBLEM SOLUTION

The concept of viability will help us reformulate prob-
lem (7). A state is viable if, starting from that state, it is
possible for the system to satisfy the constraints in the future.
Formally, a state (q(0), q̇(0)) belongs to the robust viability
kernel V if and only if, using that state as initial conditions
for problem (7), the problem admits a solution. The interest



in the introduction of the robust viability kernel V is that
it allows us to simplify the problem of ensuring the future
satisfaction of the joint limits into the simpler problem of
ensuring that the next state be viable. In the following, we
derive a definition of V that allows us to check membership
easily.

A. Continuous time control

In the beginning, let us assume to deal with a continuous
system, in which q̈ and w can change at any instant. This
results in a set of viable states V C that is a superset of the
previous one: V ⊂ V C. Assuming an initial position q0, the
maximum initial velocity q̇V

M that allows us to satisfy the
position limits in the future can be found as:

q̇V
M(q0) = maximize

q̇0,q̈(t)
q̇0

subject to
dq(t)

d t
= q̇(t)

d q̇(t)
d t

= q̈(t)+w(t)

(q(t), q̇(t)) ∈X

|q̈(t)| ≤ q̈max

q(0) = q0, q̇(0) = q̇0

∀t ≥ 0,∀w(t) ∈ [−w̄, w̄]

(8)

In the case without disturbance, the maximum initial velocity
is such that, by applying maximum deceleration, we reach
qmax with null velocity. Taking into account the disturbance
w(t), we can consider applying the maximum deceleration
−q̈max and the maximum disturbance w̄: this represents the
worst case scenario because the deceleration is reduced by
the disturbance. So we can:

1) write the position trajectory for the maximum deceler-
ation and maximum disturbance q̈(t) =−q̈max + w̄,

2) compute the time when the velocity is null:
t0 = q̇0/(q̈max− w̄),

3) compute the initial velocity that results in: q(t0) =
qmax.

In this way we get:

q̇V
M(q) =

√
2(q̈max− w̄)(qmax−q) (9)

Following the same steps, we can define also the minimum
velocity (i.e. maximum negative velocity) to ensure viability:

q̇V
m (q) =−

√
2(q̈max− w̄)(q−qmin) (10)

So the set V C of viable states can be written as:

V c = {(q, q̇) : (q, q̇) ∈ X , q̇V
m (q)≤ q̇≤ q̇V

M(q)} (11)

With this definition of V c we can easily check the viability of
a state by just evaluating three inequalities. Fig. 1 shows how
the viability kernel varies with the presence of disturbances.

Fig. 1: Example of robust viability kernel with w̄ = 0 and
with w̄ = 1

3 q̈max.

B. Discrete-time control

While in continuous time the acceleration and the distur-
bance can change at any instant, in discrete time they remain
constant for the whole time step. This means that if q reaches
qmax with zero velocity, in continuous-time control we can
immediately switch to zero also q̈. Instead, in discrete-time
control we must keep applying a constant deceleration for the
whole time step. Theoretically, this could lead to a violation
of the lower position-velocity bounds. In the following we
derive the conditions under which the discrete-time viability
robust viability kernel is equivalent to its continuous-time
version.

To do so, let us analyze the worst case, which is when
the system reaches a position bound (q0, q̇0) = (qmax,0)
a moment after the beginning of the time step, with the
maximum deceleration q̈0 =−q̈max, and the disturbance w0 =
−w̄ that increases the deceleration. The resulting deceleration
is kept for the whole time step, resulting in:{

q1 = qmax−0.5δ t2(q̈max + w̄)
q̇1 =−δ t(q̈max + w̄)

(12)

First of all, it is necessary that the value of q̇1 does not
violate the lower velocity bound, so:

− q̇max ≤−δ t(q̈max + w̄) (13)

We can see this as a bound on w̄, which gives us a first
condition for equivalence of discrete and continuous time
viability:

w̄≤ q̇max−δ tq̈max

δ t
(14)

After the first time step the joint is approaching the lower
position bound with velocity q̇1. To ensure that the lower
bound is not going to be reached, we must reach q̇ ≥ 0.
Therefore we must apply maximum acceleration q̈1 = q̈max,
while the worst-case disturbance that can occur is w1 =−w̄,
which decreases the acceleration.{

q2 = qmax−δ t2(q̈max +2w̄)
q̇2 =−2δ tw̄

(15)



Due to the disturbances the velocity is still negative, so
we apply again maximum acceleration q̈2 = q̈max, with
disturbance w2 =−w̄, and analyze in first place the resulting
velocity:

q̇3 = δ t(q̈max−3w̄) (16)

After 3 time steps the velocity could be positive, depending
on the value of w̄. In the following we are going to assume
that this is the case. This is not necessary, but it is reasonable
because it results in a rather large upper bound for w̄:

δ t(q̈max−3w̄)≥ 0 ⇒ w̄≤ 1
3

q̈max (17)

The assumption of a positive q̇ after 3 time steps implies that
we assumed that disturbances are not greater than one third of
the maximum acceleration. It would be possible to deal with
greater values of w̄ considering a change of velocity sign
after a higher number of time steps, but we do not think
this is necessary in practice. Analyzing the q̇ trajectory in
continuous time in the third time step we can calculate the
time when the velocity is null, i.e. the time when the position
reaches its minimum value.

q̇3(t) = q̇2 + t(q̈max− w̄) = 0

t =
−q̇2

q̈max− w̄
⇒ t =

2δ tw̄
q̈max− w̄

≜ t0
(18)

We can now substitute t0 in the position equation and obtain
the minimum value of the trajectory. This value is defined as
qdiscr and represents the maximum value of the lower bound
such that we can neglect the fact that the controller operates
in discrete time.

q3(t0)≜ qdiscr = q2−
4δ tw̄

q̈max− w̄
δ tw̄+

4δ t2w̄2

2(q̈max− w̄)2 (q̈
max−w̄)

(19)
The lower bound qmin must be less than or equal to qdiscr:

qdiscr = qmax−δ t2
(

q̈max +2w̄+
2w̄2

q̈max− w̄

)
≥ qmin (20)

qmax−qmin ≥ δ t2
(

q̈max +2w̄+
2w̄2

q̈max− w̄

)
(21)

As expected, (21) is equal to the expression found in [3]
when the disturbance w̄ = 0. Now we want to find the
maximum value of w̄ that satisfies (21), which seems a
second-order polynomial of w̄, but with some straightforward
manipulations can actually become linear inequality in w̄:

w̄≤ q̈max qr−δ t2q̈max

qr +δ t2q̈max , (22)

where qr ≜ qmax − qmin. We express the maximum distur-
bance as a percentage of q̈max (i.e. w̄=α q̈max, with α ∈R+),
and substituting it in (21) we get:

α ≤ qr−δ t2q̈max

qr +δ t2q̈max ≜ α1 (23)

Together with this bound, we should consider also the bound
on α imposed by (17) and the bound coming from the
velocity constraint (14):

α ≤ q̇max−δ tq̈max

δ tq̈max ≜ α2 (24)

Considering all the contributions we can now define the final
range for the allowable α:

α ∈
[

0,min
(

α1,α2,
1
3

)]
(25)

If α belongs to this range, then we can neglect that the
controller works in discrete time. This greatly simplifies the
problem, and we expect this assumption to be verified in
most practical cases. Therefore, in the following we will
assume that robust viability kernels in discrete time and
continuous time coincide: V = V C.

C. Reformulation in terms of viability

We have now obtained a formulation of V so we can
reformulate problem (7). Starting from the initial state
(q(0), q̇(0)) ∈ V we want to compute the maximum q̈ so
that:

1) the next state is viable: (q(δ t), q̇(δ t)) ∈ V ;
2) the trajectory in [0,δ t] is inside the feasible set X .

The first condition alone is not sufficient, similarly to what
happens in (18), because the trajectory between two viable
states may violate a constraint. We can reformulate (7) as:

q̈max
0 = maximize

q̈
q̈

subject to q(0) = q, q̇(0) = q̇

q(t) = q+ t q̇+
t2

2
(q̈+w)

q̇(t) = q̇+ t (q̈+w)

(q(t), q̇(t)) ∈X

q̇V
m (q(δ t))≤ q̇(δ t)≤ q̇V

M(q(δ t))

|q̈| ≤ q̈max

∀t ∈ [0,δ t],∀w ∈ [−w̄, w̄]

(26)

This problem is much simpler than the previous one:
instead of having an infinite sequence of decision variables
it has only one, and its constraints are limited to the time
interval [0,δ t], rather than [0,∞]. However, the constraints
are infinitely many and nonlinear, therefore problem (26) is
still hard. In the following, we reformulate the inequalities
of problem (26) as simple bounds on q̈.

D. Position inequalities

The position bounds of (26) are:

qmin ≤ q+ tq̇+
1
2

t2(q̈+w)≤ qmax ∀t ∈ [0,δ t],∀w ∈ [−w̄, w̄]
(27)

To be robust we need to guarantee the constraint satisfaction
for the worst-case disturbance, which is w̄ for the upper



bound and −w̄ for the lower bound:

qmin ≤ q+ tq̇+
1
2

t2(q̈− w̄) ∀t ∈ [0,δ t]

q+ tq̇+
1
2

t2(q̈+ w̄)≤ qmax ∀t ∈ [0,δ t]
(28)

Let us focus on the upper bound, and introduce a new
variable γ ≜ q̈+ w̄:

q+ tq̇+
1
2

t2
γ ≤ qmax ∀t ∈ [0,δ t] (29)

In this form, the constraint is equivalent to the associated
constraint for the nominal case (i.e., assuming w̄ = 0). This
means that we can use the algorithm developed in [3] (Alg. 1)
to compute an upper bound for γ , and then convert it to
a bound on q̈ by simply subtracting w̄ from it. A similar
approach can be followed for the lower position limit. The
computation is summarized in Alg. 1.

E. Velocity inequalities

The velocity evolves linearly in time, so we only need to
verify the bounds for t = δ t:

|q̇+δ t(q̈+w)| ≤ q̇max ∀w ∈ [−w̄, w̄] (30)

Since w̄ is the worst-case disturbance for the upper bound,
rearranging (30) we obtain:

q̈≤ q̇max− q̇
δ t

− w̄ (31)

Analogous to the position inequalities, considering the distur-
bance boils down to simply subtracting w̄ to the acceleration
limit computed without disturbance. This analysis stands also
for the lower bound, so we can write both bounds as:

1
δ t

(−q̇max− q̇)+ w̄≤ q̈≤ 1
δ t

(q̇max− q̇)− w̄ (32)

F. Viability inequalities

Let us consider the upper bound of the viability inequality.

q̇(δ t)≤
√

2(q̈max− w̄)(qmax−q(δ t)) ∀w ∈ [−w̄, w̄]
(33)

Assuming a worst-case disturbance, which for the upper
bound is w̄, we get:

q̇+δ t(q̈+ w̄)≤
√

2(q̈max− w̄)(qmax−q−δ tq̇−0.5δ t2(q̈+ w̄))
(34)

Since q̈ always appears together with w̄, we can introduce
a new variable γ ≜ q̈+ w̄ and rewrite (34) as:

q̇+δ tγ ≤
√

2(q̈max− w̄)(qmax−q−δ tq̇−0.5δ t2γ) (35)

At this point the inequality is equivalent to the one for the
non-robust case, therefore we can use the algorithm of [3]
to find the bounds on γ , and then map them to bounds on
q̈ by simply subtracting w̄ from them. The computation is
summarized by Alg. 2.

G. Final Algorithm

To conclude, we need to take into account all the bounds in
a unique algorithm, which is summarized by Alg. 3. Fig. 2
shows the state space divided in regions based on which
acceleration upper bound dominates the others.

Algorithm 1 accBoundsFromPosLimits

Require: q, q̇,qmin,qmax,δ t, w̄
q̈M

1 ←−q̇/δ t
q̈M

2 ←−q̇2/(2(qmax−q))
q̈M

3 ← 2(qmax−q−δ t q̇)/(δ t2)
q̈m

2 ← q̇2/(2(q−qmin))
5: q̈m

3 ← 2(qmin−q−δ t q̇)/(δ t2)
if q̇≥ 0 then

q̈LB← q̈m
3

if q̈M
3 > q̈M

1 then
q̈UB← q̈M

3
10: else

q̈UB←min(q̈M
1 , q̈M

2 )

else
q̈UB← q̈M

3
if q̈m

3 < q̈M
1 then

15: q̈LB← q̈m
3

else
q̈LB←max(q̈M

1 , q̈m
2 )

return { q̈LB + w̄, q̈UB− w̄ }

Algorithm 2 accBoundsFromViability

Require: q, q̇,qmin,qmax, q̈max,δ t, w̄
a← δ t2

b← δ t(2q̇+(q̈max− w̄)δ t)
c← q̇2−2(q̈max− w̄)(qmax−q−δ t q̇)
γ1←−q̇/δ t

5: ∆← b2−4ac
if ∆≥ 0 then

γUB←max(γ1,(−b+
√

∆)/(2a))
else

γUB← γ1

10: b← 2δ t q̇− (q̈max− w̄)δ t2

c← q̇2−2(q̈max− w̄)(q+δ t q̇−qmin)
∆← b2−4ac
if ∆≥ 0 then

γLB←min(γ1,(−b−
√

∆)/(2a))
15: else

γLB← γ1

{q̈LB, q̈UB}← {γLB + w̄,γUB− w̄}
return { q̈LB, q̈UB }

Algorithm 3 Compute Joint Acceleration Bounds

Require: q, q̇,qmin,qmax, q̇max, q̈max,δ t,w̄
q̈UB← [0,0,0, q̈max]
q̈LB← [0,0,0,−q̈max]
(q̈LB[0], q̈UB[0])← accBoundsFromPosLimits(...)
q̈LB[1]← (−q̇max− q̇)/δ t + w̄

5: q̈UB[1]← (q̇max− q̇)/δ t− w̄
(q̈LB[2], q̈UB[2])← accBoundsFromViability(...)
return {max(q̈LB), min(q̈UB)}



Fig. 2: Feasible state space for qmax = −qmin = 0.5 rad,
q̇max = 2 rad/s, q̈max = 10 rad/s2, δ t = 0.1 s, and w̄ = 1

3 q̈max.
Region 0 represents the unreachable space, while region 1
represents the space that is not viable. In each of the other
four regions, a different acceleration upper bound dominates
the others. In region 2 it is the one coming from the position
inequality (27). In region 3 it is the one coming from the
velocity inequality (32). In region 4 it is the acceleration
upper bound q̈max. In region 5 it is the one coming from the
viability inequality (33).

Algorithm 4 Dealing with non-viable states

Require: q, q̇,qmin,qmax, q̇max, q̈max,δ t, w̄
if IsStateViable(...) == False then

if (q̇≥ 0∧q≥ qmin) ∨ q≥ qmax then
(q̈LB, q̈UB)← (−q̈max,−q̈max)

else
5: (q̈LB, q̈UB)← (q̈max, q̈max)

return{q̈LB, q̈UB}

IV. TESTS

This section analyzes the behavior of two robotic systems
using the proposed algorithm to ensure the robust satisfaction
of joint limits. First, we test our method on a single joint, and
then on the 6 degree-of-freedom robot Baxter. We represent
the maximum disturbance at joint j as w̄ j = α q̈max

j , where
q̈max

j is the maximum acceleration at joint j. All our tests
use a large value of δ t = 0.1 s to make the constraint
violations more easily visible in the plots. We compare our
method against i) the naive method described in Section I-
B and ii) the non-robust viability method from [3]. In all
our tests we have verified that the conditions derived in
Section III-B, regarding the equivalence of discrete-time
and continuous-time viability, were satisfied. The Python
implementation of the presented algorithms can be found at
https://github.com/ErikZan/Robust-Joints-bounds-guarantee.

1) Dealing with non-viable states: When the state is
outside the viability kernel V , the robust and non-robust
viability algorithms may give inconsistent acceleration limits.
Our main concern in these cases is to reach V , which these
algorithm may fail doing. Therefore, when a violation occurs
we compute the acceleration bounds using Alg. 4, which is

Fig. 3: Single joint, non-robust viability approach, random
disturbance.

Fig. 4: Single joint, robust viability approach, random dis-
turbance.

based on the following reasoning.
• If q̇ > 0 and q > qmin set q̈ =−q̈max to stop the joint as

soon as possible.
• If q > qmax set q̈ =−q̈max to re-enter the viability kernel

as soon as possible.
• If q̇ < 0 and q < qmax set q̈ = q̈max to stop the joint as

soon as possible.
• If q < qmin set q̈ = q̈max to re-enter the viability kernel

as soon as possible.

A. Single joint

This section deals with a single-joint robot. In these tests
we try to reach the upper position bound without exceeding
it or violating the velocity limit. The values used for this
test are: qmax = 2 rad, qmin = −2 rad, q̇max = 5 rad/s,
q̈max = 10 rad/s2. In the first test we always apply to the
joint the maximum acceleration allowed (as computed by the
algorithms). The system is subject to a uniformly-distributed
random disturbance w. Fig. 3 shows that with the non-
robust viability approach the position bound is violated—
even though by a small amount—and the joint oscillates
close to qmax. Fig. 4 shows instead that with the robust
viability approach the joint never reaches qmax, but it comes
close to it and then slightly fluctuates.

In the second test, shown in Fig. 5 and Fig. 6, the
maximum disturbance w̄ is always applied. With the robust
method the joint comes closer to the limit than it did in
the previous test (Fig. 4), and then it starts oscillating. These

https://github.com/ErikZan/Robust-Joints-bounds-guarantee


Fig. 5: Single joint, non-robust viability approach, worst-case
disturbance w̄.

Fig. 6: Single joint, robust viability approach, worst-case
disturbance w̄.

oscillations are to be expected due to the discrete-time nature
of the controller and, as also observed in [3], can be mitigated
by using a larger value of δ t in the algorithm. The non-robust
method instead clearly violates the constraint.

B. 6-DoF Baxter robot

For these tests the joints have to reach an unfeasible
position: qd . In particular, we set qd for the first joint, referred
from now on as joint 0, 0.5 rad above its upper limit. The
desired acceleration is computed with a PD control law.

q̈d = kP(qd−q)− kDq̇ (36)

where kP,kD ∈ R+. The resulting acceleration (36) is sat-
urated (if needed) based on the limits computed by the
specified algorithm. The values used in this test are kP =
1000, kD = 2

√
kP, and δ t = 0.05 s. The applied disturbance w

is the maximum for each joint, corresponding to w̄ = 1
3 q̈max.

Fig. 7 shows that the naive method leads to a violation of
both velocity and position constraints for joint 0, as expected.
Also, the amplitude of fluctuations around qmax is strongly
dependent on the values of kp,kD.

Fig. 8 shows the results obtained with the non-robust
viability algorithm. First the joint violates the velocity limit,
and so the control chosen with Alg. 4 tries to lead the
joint again in the viability kernel. This generates velocity
fluctuations in the first part of the plot. Later, the joint
violates the position bound, even though the violation is
smaller with respect to the naive method.

Fig. 7: Baxter robot, naive method.

Fig. 8: Baxter robot, viability non-robust method.

Fig. 9: Baxter robot, viability robust method.

Fig. 9 shows that with the robust viability algorithm the
bounds are not violated, but the oscillations on acceleration
in the final part are greater than in the naive or non-robust
case. This behavior was expected, as it was documented
also for the case without disturbance in the non-robust
algorithm [3] and it can be alleviated by choosing a larger
value of δ t when computing the acceleration bounds [3].

V. CONCLUSIONS AND FUTURE WORK

This paper focused on the robust control of robot ma-
nipulators subject to joint position, velocity and acceler-
ation bounds. The problem had already been tackled in
the literature [3], but without considering the presence
of disturbances. This was a severe limitation because all



physical systems are subject to some degree of uncertainty
coming from, for instance, modeling errors, sensor noise and
communication delays. Therefore, we have developed a new
approach that can guarantee the satisfaction of the constraints
despite the presence of bounded additive disturbances on the
joint accelerations. The results obtained in simulation on a
single joint and on the 6-degree-of-freedom Baxter robot arm
show better performance with respect to other state-of-the-
art methods, with our method being the only one capable
of consistently ensuring constraint satisfaction. Moreover,
the presented approach has similar computational complexity
with respect to [3], making it easily usable for real-world
applications. Nonetheless, this challenging problem is still
far from being completely solved.

Even though the developed approach is exact (i.e. tight) for
the case of bounded additive disturbances, one could prefer to
model disturbances using random variables [21], [22]. The
stochastic approach to uncertainty modeling could indeed
result in a less conservative behavior, and thus improve
performance. Moreover, joint acceleration bounds typically
depend on the state, because they are induced by motor
current bounds. Considering this dependence introduces a
nonlinearity in the problem (either in the dynamics or in
the constraints), making the computation of the viability
kernel extremely challenging, even for the nominal (non-
robust) case [23]. Finding computationally tractable methods
to approximate these sets in the nonlinear setting is still an
open problem [24], and an interesting direction for future
work.
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