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Abstract
We consider a variational model for periodic partitions of the upper half-space into
three regions, where two of them have prescribed volume and are subject to the geo-
metric constraint that their union is the subgraph of a function, whose graph is a free
surface. The energy of a configuration is given by the weighted sum of the areas of the
interfaces between the different regions and a general volume-order term. We estab-
lish existence of minimizing configurations via relaxation of the energy involved, in
any dimension. Moreover, we prove partial regularity results for volume-constrained
minimizers in two space dimensions. Thin films of diblock copolymers are a possible
application and motivation for considering this problem.

Keywords Partial regularity · Quasi-minimal partitions · Nonlocal isoperimetric
problem · Thin films

Mathematics Subject Classification 49Q10 · 49Q20 · 49J10 · 49K21

1 Introduction

The goal of this paper is to initiate the analytical investigation of variational models
for partitions with quasi-minimal surface area, subject to a geometric graph constraint.
The admissible configurations of themodel that we consider here consist of two phases
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(i.e., regions of the spacewith prescribed volume)which are confined by a flat substrate
on the bottom side, and by the graph of a Lipschitz function on the upper side. The
upper interface between the two phases and the region above them corresponds to a
free surface.

The imposition of a graph constraint on the admissible configurations is not new
in the mathematical literature and appeared in particular in variational models for
epitaxially strained elastic films, see (Bonnetier and Chambolle 2002; Chambolle and
Solci 2007; Fonseca et al. 2007; Davoli and Piovano 2019; Crismale and Friedrich
2020); however, to the best of our knowledge this is the first instance where a similar
constraint is enforced on a system with multiple phases, and this constitutes the main
novelty of this paper.

We are interested in the description of optimal configurations minimizing an energy
functional given by the sum of the surface measures of the different interfaces between
the phases, possiblywith differentweights.We also include in the total energy a general
volume-order term (allowing, for instance, for possible nonlocal interactions among
the two phases); the results in this paper are valid under quite general assumptions
on this term, whereas its explicit form would be crucial for the characterization of
optimal or equilibrium configurations.

This paper is the first step in the rigorous investigation of the properties of the
energy and of optimal configurations of the system. In particular, we discuss the
lower semicontinuity properties of the energy, which permits to prove existence of
minimizing configurations via relaxation in any dimension. Moreover, we establish
several regularity properties of minimizers in dimension two. Further investigations
on the fine structure of optimal configurations will be the subject of future work.

A possible application of the variational model that we introduce is the description
of equilibrium configurations of thin films of diblock copolymers, see Sect. 1.3 for
details.

1.1 TheModel

We now pass to an introductory description of the model and of the main results
obtained in this paper. For the precise definitions and assumptions, we refer to Sect. 2.

We consider a configuration described by a phase variable u defined in the upper
half-space of Rn , in general dimension n ≥ 2, taking values +1, −1, and 0, repre-
senting the two phases Au = {u = 1}, Bu = {u = −1}, and the region above them
Vu = {u = 0}. For mathematical convenience, we extend u by a fixed value (say,
u = 2) also in the lower half-space. Having in mind the application to thin films
of diblock copolymers, we will often use the terminology film to denote the region
occupied by the two phases Au ∪ Bu , substrate to indicate the lower half-space, and
void to indicate the region Vu above the film.

Admissible configurations are those for which the region Au ∪ Bu is confined in
the subgraph of a function hu over the flat substrate (see Fig. 1). As customary in
this kind of problems, to focus on the effect of the surface energy on the equilibrium
configurations, we work with lateral periodic boundary conditions. We also impose
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Fig. 1 The different phases and interfaces of an admissible configuration

the total volume of the film and the ratio between the two constituent phases by means
of two mass constraints.

We consider a sharp-interface model in which the short-range interaction energy
G (u) of a configuration u is assumed to be proportional to the surface measure of
the interfaces between the different phases, with possibly different surface tensions.
The interfaces involved are: �AB

u (between the two phases inside the film), �A
u , �B

u
(between each phase and the void), and, since also the contact between the film and
the substrate costs surface energy, SA

u , S
B
u (between each phase and the substrate), SVu

(between the substrate and the void).
In addition to the interfacial energy G (u), we consider in the total energy a general

volume-order term N (u). For the results contained in this paper, the precise form of
this term does not play a role, and the only property that we use is thatN (·) is Lipschitz
continuous with respect to the symmetric difference of sets, namely

|N (u) − N (v)| ≤ LN ( |Au�Av| + |Bu�Bv| ) (1.1)

for some constant LN .
Then, the total energyF (u) of a regular configuration u, whose profile is given by

a Lipschitz function hu , writes as

F (u) := G (u) + γN (u)

:= σAHn−1(�A
u ) + σBHn−1(�B

u ) + σABHn−1(�AB
u )

+ σASHn−1(SA
u ) + σBSHn−1(SB

u ) + σSHn−1(SVu ) + γN (u)

(see Sect. 2 for the precise definition of all the terms involved).
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1.2 Main Results

The paper is divided into two main parts, where we study several properties of the
energy F . In the first part, we focus on its lower semicontinuity with respect to the
L1-topology, and we identify in Theorem 3.1 the lower semicontinuous envelopeF ,
defined over a larger class of possibly irregular profiles. In particular, the relaxation
procedure allows to consider configurations whose free boundary is described by a
function hu of bounded variation: it then might be unbounded and with jump discon-
tinuities.

The functionalF has the same form of the original functionalF , namely it is the
sum of a surface energy contribution G (u) and of the nonlocal interaction γN (u).
Notice that the relaxation affects only the surface part of the energy, as the nonlocal
term is continuous with respect to L1-convergence. As might be expected, the new
surface energy G has relaxed surface tension coefficients, due to the possibility of
reducing the energy by inserting a thin layer of a phase between two other phases
(wetting). The non-standard aspect of this procedure is that, due to the additional
constraints of the model (namely, the only admissible configurations are subgraphs),
not all the possible infiltrations are allowed; this prevents us to apply directly the well-
known results about the relaxation of surface energy of clusters in Rn , see (Ambrosio
and Braides 1990).

Concerning the proof, whereas the liminf inequality follows by a standard argument
adapted to our setting (see Proposition 3.7), the construction of a recovery sequence
requires extra care (see Proposition 3.8). Indeed, first we approximate a non-regular
profile by a Lipschitz one, thanks to a construction by Chambolle and Solci (2007);
next, when one of the surface tension coefficients between two phases changes in the
relaxation process, we need to approximate the corresponding interface by carefully
inserting thin layers of the other phases, preserving both the graph constraint and the
mass constraint.

Finally, the existence of a solution to the mass constrained minimization problem
for the relaxed functional

min{F (u) : |Au | + |Bu | = M, |Au | = m}, (1.2)

where 0 < m < M , follows by a standard application of the direct method (see
Theorem 3.5).

In the second part of the paper,we turn our attention to the study of regularity proper-
ties of solutions to (1.2). This iswhere themainmathematical challenges are, stemming
from the fact that admissible competitors have to satisfy the additional condition of
being subgraphs. Indeed, if no graph constraint is in force, then partial regularity of
minimizing clusters could be obtained by a standard strategy, which would amount to
first showing that volume-constrained minimizers are quasi-minimizers of the surface
energy, and then to proving an elimination property (see Leonardi 2001) which allows
to reduce locally to the case of only two interfaces. Once this is done, partial regularity
follows from classical results (see Gonzalez et al. 1983). In our case, though, we can-
not apply directly those results, as they require to make arbitrary perturbations, thus
possibly exiting the restricted class of admissible configurations. Therefore, we need
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to perform delicate geometric constructions, and to combine several ideas in order to
prove regularity.

Wenext summarize ourmain strategy. InLemma4.2we remove themass constraints
by showing that every solution to (1.2) is also a solution to a suitable penalized problem.
The proof of this fact follows a rather standard contradiction argument, which amounts
to show that if a minimizer of the penalized problem does not satisfy the volume
constraint, then it is possible to modify it and reduce its energy—which would be a
contradiction—provided that the constant in front of the penalization term is large
enough. When there is just one mass constraint and the problem is in the whole space
R
n , this can be achieved by a suitable rescaling of the minimizer. A refined argument

by Esposito and Fusco (2011) shows that the same can be done by a local perturbation
of the set, which brings the mass of the perturbed set closer (but not necessarily
equal) to the desired mass, reducing the energy at the same time. However, the local
variation constructed in Esposito and Fusco (2011) is radial, and is not suitable in our
case since the competitor that is constructed in this way might not satisfy the graph
constraint. Instead, we perform a local rescaling in the vertical direction, so that the
perturbed configuration remains the subgraph of an admissible profile and can be used
to contradict the minimality of the starting configuration. Another relevant difference
is that in our case two mass constraints are in force; we can however avoid the use
of the Implicit Function Theorem (used in arguments like that in (Maggi (2012),
Lemma 29.14) and deal with the two constraints one at a time.

The fact that minimizers solve a penalized minimum problem, together with the
Lipschitz continuity of the nonlocal energy, immediately implies (see Proposition 4.3)
that every solution u to (1.2) is a quasi-minimizer of the surface energy G , in the sense
that there exists � > 0 such that

G (u) ≤ G (v) + �
(|Au�Av| + |Bu�Bv|

)
, (1.3)

for all admissible competitorsv.Notice that in this formulation, admissible competitors
do not have to obey the mass constraints, but they still have to satisfy the graph
constraint, and thus the regularity of quasi-minimizers does not follow directly from
classical results. We denote by A�,M the class of quasi-minimizers satisfying the
inequality (1.3) and with total mass M , see Definition 4.1. By using (1.3) we then
show that hu is bounded, see Proposition 4.4.

The next main result, which is proved in Sect. 4.2 through a series of propositions,
concerns the regularity of quasi-minimizers in dimension n = 2. In view of the
previous discussion, it applies in particular to any solution of the minimum problem
(1.2).

Theorem 1.1 (Partial regularity in dimension n = 2) Assume that n = 2, and that
the surface tension coefficients satisfy the strict triangle inequalities

σAB < σA + σB, σA < σB + σAB, σB < σA + σAB . (1.4)

Let u ∈ A�,M be a quasi-minimizer, according to Definition 4.1. Then, the followings
hold.
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(i) (Infiltration) There exists ε0 > 0 (depending only on M,�, and the surface energy
coefficients) such that, for any squareQr (z0) centered at z0 ∈ R

n with side length
r ∈ (0, 1), the following implications hold:

|Vu ∩ Qr (z0)| < ε0r
2 ⇒ |Vu ∩ Q r

2
(z0)| = 0,

and, if Qr (z0) does not intersect the substrate,

|(Au ∪ Bu) ∩ Qr (z0)| < ε0r
2 ⇒ |(Au ∪ Bu) ∩ Q r

2
(z0)| = 0.

(ii) (Lipschitz regularity of the graph) There exists a finite set �, containing the jump
points of hu, such that hu is locally Lipschitz outside �.

(iii) (Singular set) At the upper end of a jump point of hu, the graph has a vertical
tangent. At the points of � that are not jump points of hu, the left or the right
derivative of hu is infinite. The graph of hu does not contain interior or exterior
cusps.

(iv) (Internal regularity of �AB
u ) For every α ∈ (0, 1/2) the interface ∂A ∩ ∂B is a

locally a C1,α-curve in {(x, y) ∈ R
2 : 0 < y < hu(x)}.

(v) (C1,α-regularity of the graph) If x0 /∈ � is such that (x0, hu(x0)) ∈ ∂∗A ∪ ∂∗B,
then hu is of class C1,α in a neighborhood of x0, for every α ∈ (0, 1/2).

Conditions (1.4) are known to be needed in order to get regularity for minimizing
clusters (see Leonardi 2001; White 1996). Indeed, consider the simple case of a flat
interface between the phase A and the void V : if for instance one had σA = σB +σAB ,
then it would be energetically equivalent to insert a thin layer of the phase B between
A and V , in such a way that these two phases do not touch anymore. In other words,
the strict triangular inequalities are natural conditions to prevent small infiltrations
between pair of phases.

The elimination property iswell known in the case ofminimal clusters (seeLeonardi
2001). The idea of the proof is to construct a suitable competitor by filling the minority
phase in Qr (z0) with one of the other phases. Again, in our case filling Au or Bu by
Vu might lead to a configuration which violates the graph constraint. Therefore, the
proof of the infiltration for Vu (Proposition 4.5) and for Au ∪ Bu (Proposition 4.6) uses
a two-step strategy: first, we prove the elimination property in a semi-infinite strip,
where it is possible to fill Au ∪ Bu with Vu , without violating the graph constraint;
then, we show that a minimal configuration having small volume percentage of the
void (or of the subgraph) in a cube must necessarily have a small volume percentage
of the same in the semi-infinite strip, so that it is possible to conclude by using the
first step.

The proof of the Lipschitz regularity follows an idea by Chambolle and Larsen
(2003) (see also Fonseca et al. 2007; Fusco and Morini 2012): we show an interior
ball condition (see Proposition 4.8), namely that there exists a uniform radius ρ0 > 0
such that, for each z on the graph of hu , it is possible to find a ball with radius ρ0
tangent to the graph of hu only at the point z and contained in the subgraph of hu . This
property implies (Proposition 4.9) that hu has only a finite number of jump points,
and that hu is locally Lipschitz continuous outside a finite set (where the inner ball is
tangent to the graph horizontally).
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Since in two dimensions the graph hu is closed, for each point z on the internal
interface between the two phases it is possible to find a ball centered at z that does not
intersect the graph, nor the substrate. Therefore, since internal interfaces do not have
any graph constraint to satisfy, theirC1,α-regularity follows from classical results (see
Remark 4.11).

Finally, the proof of theC1,α regularity of the graph (Proposition 4.12) is also based
on an elimination property for the two sets Au , Bu separately. To obtain this,we observe
that thanks to the Lipschitz regularity of hu , for every point (x0, hu(x0)) ∈ ∂∗A∪∂∗B
with x0 /∈ � we can find a rectangle such that the graph of hu does not intersect its
upper and lower sides. This property allows to perform a local perturbation which
preserves the graph constraint.

1.3 Application to Thin Films of Diblock Copolymers

We now discuss a possible application of the variational model considered here for the
description of the morphology of optimal or equilibrium configurations of thin films
of diblock copolymers under some additional assumptions that will be discussed later.

Block copolymers are an important class of soft materials (see Bates and Fredrick-
son 1999). They are composed by chemically bonded linear chains of monomers.
The competition between the repulsion among different subchains and the entropy
cost associated with chain stretching is the mechanism behind the extraordinary self-
assembly property of block copolymers, that leads to the creation of fascinating
patterns exhibiting interesting periodicity properties (see Thomas et al. 1988).

When block copolymers are constrained in a thin film, the landscape of observed
configurations can be significantly different from that of the bulk case, due to the
influence of film surfaces and the interactions of the blocks with the interfaces. It is
indeed observed that in the vicinity of an external interface the microdomains tend to
align parallel to that surface (Fredrickson 1987). As noted in the physical literature,
“as film thickness decreases, a regime may be encountered where the constraining
effects of both interfaces are felt throughout the film and a transition from the bulk,
3D morphology to a 2D thin film morphology may result” (Radzilowski et al. 1996).

An important distinction must be made between unconfined films supported by
a solid, flat substrate, where one interface of the film is free, and confined films,
where the copolymers and constrained between two hard walls with a fixed thickness.
The behavior in these cases is usually illustrated (see Matsen 1997) by considering
symmetric diblock copolymers, where the preferred bulk configuration is lamellar:
in this case, the copolymer tends to form multilayered structures of lamellae parallel
to the interface, in which each period (L) consists of two monolayers. This induces
a quantization of the film thickness, which is forced to be a multiple of the natural
spacing of the lamellae H ≈ kL

2 , with k even if the upper and lower surfaces have
an affinity for the same component of the diblock copolymer, and k odd if the two
surfaces have opposite affinities. However, when the film thickness H and the natural
spacing L are not commensurate, this causes compression of the chain of polymers,
namely stress in the film, that in the unconfined case is released by locally modifying
the thickness of the profile by forming terraces (see Fig. 2, top-right), islands and holes
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Fig. 2 Schematic cartoon of three different ways in which a film of symmetric diblock copolymers can
release the stretching stress caused by imposing an initial thickness H (see top-left) that is not commensurate
with the natural spacing of lamellae L

(see Fig. 2, bottom-left); in the confined case, the frustration is relieved by changing
the orientation of the lamellae (see Fig. 2, bottom-right).

Besides lamellar configurations, other structures have been observed for asymmet-
ric block copolymers, like for instance spherical (Yokoyama et al. 2000) or cylindrical
(van Dijk and van den Berg 1995) mesophases, which show the same phenomena of
thickness quantization or change in orientation of themicrodomains. See also (Darling
2007) for a review of the possible phases that have been observed and a discussion of
their many applications, and (Huang et al. 2021, Fig. 4) for an illustration of the phase
diagram in the case of confined films, showing twenty different morphologies depend-
ing on the volume fraction and on the film thickness. The possibility of accessing a
larger class of equilibrium configurations has been exploited for many applications
(see Segalman 2005), ranging from lithography tomass transport. Patterns in thin films
of block copolymers have been investigated numerically (see, for instance, Hill and
Millett 2017; Lyakhova et al. 2006; Matsen 1997, 1998; Parsons et al. 2017; Stasiak
et al. 2012).

Mathematical models aimed at describing the behavior of block copolymers from
physics and chemistry can be roughly divided into two categories: (self-consistent)
mean fields models (see, for instance, Matsen and Bates 1996; Matsen and Schick
1994) and density functional theory models. A celebrated mean field model for block
copolymers was derived by Ohta and Kawasaki in (Ohta and Kawasaki 1986) for the
case of diblock copolymers (twomonomers) in the strong segregation regime by using
several approximations (infinite temperature and thermodynamic limit). It has success-
fully been used to derive qualitative properties related to both the dynamics and the stat-
ics of diblock copolymers. In mathematical terms, the Ohta–Kawasaki is a phase-field
model given by the sum of a Cahn–Hilliard-type functional (replaced by a perimeter
term in the sharp-interface version) and a nonlocal interaction term. By using a nota-
tion similar to the one implemented above, such an energy can be written in the form

σABHn−1(�AB
u ) + γN (u), (1.5)

where the first term models the short-range interaction between different monomers,
related to the surface energy of the interfaces dividing the regions of high concentration
of the two monomer species, while the second represents their long-range interaction.
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The emergence of highly nontrivial pattern configurations at a mesoscopic scale is
precisely due to the competition between these two kinds of energies.

Themodel considered in this paper can be viewed as a variant of theOhta–Kawasaki
model suitable to describe thin films of diblock copolymers in the unconfined case. The
two regions Au , Bu of an admissible configuration u represent the two phases of the
diblock copolymers, and are confined by a solid, flat substrate on the bottom side,while
the upper surface is exposed. As a volume-order term N (u) in the total energy, we
consider a long-range interaction responsible for the repulsion force between different
monomers, and thus acting only on the two sets Au and Bu—see Example 2.3 for
the precise definition of N (u). The region above the film (which could be void, air,
or a liquid solvent) is modeled as a homopolymer, in the framework of the density
functional theory for blends of diblock copolymers with homopolymers derived by
Choksi and Ren (2005) (see also Bonacini and Knüpfer 2016; van Gennip and Peletier
2008, 2009 for related studies in the mathematical literature), and it only interacts
with the diblock copolymer via the surface energies.

As it can be seen by looking at the Ohta–Kawasaki energy (1.5), surface effects
with the exterior are usually neglected in models for block copolymers in the bulk,
since they are of several orders of magnitude lower than the other effects considered.
When confined in thin films, though, the surface interactions of the two phases with
the substrate and with the air (i.e., the additional terms in the energyF compared with
(1.5)) become important. This is how, at least heuristically, the change in the energy
landscape is justified in the physics literature. Under the additional assumption that
the configurations of interest can be described by a graph over the substrate, the model
considered in this paper could be of help in the study of such a class of equilibrium
stable configurations of block copolymers confined in thin films. We would like to
thank the anonymous referees for pointing out that this latter additional assumption
is not easily justified from the physical point of view. Indeed, despite the fact that in
the physical literature authors refer to the thickness of the film, this does not exclude
the possibility of having a film with holes, or arranging with tubes that violate the
graph constrain. We were not able to find any paper, either in the physical or in the
experimental literature that clearly disregard such possibility.

Finally, we would like to point out that our model is not a dimension reduction
model, like that investigated in De Simone et al. (2002).

1.4 Remarks

We conclude this introduction with a few more remarks. The extension to the case of
more than two phases is relatively straightforward and the arguments presented here
can be directly generalized, at the price of a more demanding notation and of a larger
number of different cases to be taken into consideration. It could also be possible to
extend our results to different kinds of boundary conditions, or if surface interactions
with horizontal walls are presents.

The proofs of the results in this paper follow several well-known arguments used
to treat similar problems and most of the techniques are fairly standard. However,
the implementation of such ideas in our context, where the graph constraint is in
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force, poses several additional challenges, mainly due to the need of adapting, and in
some cases significantly modifying, the construction of suitable competitors. This is
particularly relevant for the construction of a recovery sequence (Proposition 3.8), the
local deformation map used in the proof of the penalization argument (Lemma 4.2),
and the elimination-type properties (Proposition 4.5 and Proposition 4.12).

The generalization to higher dimensions of the two-dimensional regularity theory
for quasi-minimal partitions subject to a graph constraint, developed in Sect. 4.2, is not
straightforward and would require new ideas: while we believe that the elimination
property might be obtained by refined but similar arguments, the inner ball condition
leading to the Lipschitz regularity of the graph is a purely two-dimensional strategy.

Future directions of investigation are the following: firstly, as discussed above, the
extension of the regularity results to higher dimensions (in particular in the physical
dimension three), and the investigation of finer regularity properties in two dimension;
secondly, a description of optimal configurations by means of the Euler–Lagrange
equations satisfied by a minimizer, which involve an interplay between the curvature
and the nonlocal potential on the regular parts of the interfaces; thirdly, an analysis of
the possible singularities (jump points, points where three different interfaces meet,
and points where an interface meets the substrate), in particular by deriving rigorously
Young’s law for the triple points. Finally, an ambitious task would be to study specific
configurations (for instance lamellar patterns with terrace formations) and investigate
their stability properties, possibly by means of second variation arguments.
Structure of the paper. The paper is organized as follows. In Sect. 2, we introduce the
main notation, the class of admissible configurations and the total energy of the system.
In Sect. 3, we compute the relaxation of the energy (Theorem3.1) andwe use this result
to prove the existence of minimizing configurations (Theorem 3.5). In Sect. 4, we first
show that solutions to the minimum problem (1.2) are quasi-minimizers of the surface
energy under a graph constraint (Sect. 4.1), and then we prove Theorem 1.1 on the
regularity of quasi-minimizers in dimension two (Sect. 4.2).

2 TheModel

2.1 Notation for Functions of BoundedVariation and Perimeters

The profile of the filmwill bemodeled by the (generalized) graph of a periodic function
with finite total variation in (0, L)n−1 (n ≥ 2), where L > 0 is a fixed parameter, and
its subgraph will represent the reference configuration of the film. We therefore firstly
recall a few notions from the theory of BV-functions (see Ambrosio et al. 2000), in
order to fix the notation used in the paper. Given h ∈ L1

loc(�), where � ⊂ R
m is an

open set (m ≥ 1), its total variation is defined as

|Dh|(�) := sup

{∫

�

h divφ dx : φ ∈ C∞
c (�;Rm), |φ| ≤ 1

}
,

and this quantity is finite if and only if the distributional derivative Dh of h is a
bounded Radon measure on �. We let BV(�) := {h ∈ L1(�) : |Dh|(�) < ∞}. If
h ∈ BV(�), at each point x ∈ � the approximate upper and lower limits
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h+(x) := inf

{
t ∈ R : lim sup

ρ→0

L m({h > t} ∩ Bρ(x))

ωmρm
= 0

}
,

h−(x) := sup

{
t ∈ R : lim sup

ρ→0

L m({h < t} ∩ Bρ(x))

ωmρm
= 0

} (2.1)

are well defined, whereL m is the m-dimensional Lebesgue measure, Bρ(x) ⊂ R
m is

the ball centered at x with radius ρ, and ωm = L m(B1(0)). The jump set of h is then
defined as the set

Jh := {x ∈ � : h−(x) < h+(x)}, (2.2)

and it is well known that Jh is a (Hm−1,m − 1) rectifiable set, with normal νh(x) at
Hm−1-a.e. point x ∈ Jh .

We also recall that a set E ⊂ � has finite perimeter in � if |DχE |(�) < ∞, where
χE (x) = 1 if x ∈ E , χE (x) = 0 if x /∈ E ; the perimeter of E in � is then defined as

P(E;�) := |DχE |(�). (2.3)

We introduce the essential boundary of E

∂eE := �\(E0 ∪ E1), (2.4)

where, for t ∈ [0, 1], Et denotes the set of points where E has Lebesgue density t .
Another relevant subset of the boundary of a set of finite perimeter is the reduced
boundary ∂∗E (see Ambrosio et al. 2000). At every point of the reduced boundary the
measure-theoretic outer normal νE is defined, the Lebesgue density of E is equal to
1/2, and it is well known that ∂eE coincides with ∂∗E up to a Hm−1-negligible set.
We finally recall that a Caccioppoli partition of � is a finite partition {Ei }i∈{1,...,N }
of �, N ∈ N, such that

∑N
i=1P(Ei ;�) < +∞. For a Caccioppoli partition {Ei }i ,

Hm−1-a.e. point of � belongs to one of the sets (Ei )
1 or to one of the intersections

∂∗Ei ∩ ∂∗E j (i �= j).

2.2 Admissible Configurations

We now describe the class of admissible configurations. Throughout the paper, we
will denote by x = (x ′, xn) the generic point in R

n ≡ R
n−1 × R, and by R

n+ :=
R
n−1 × [0,∞). The canonical basis of Rn will be denoted by (e1, . . . , en), and the

Lebesgue measure on Rn by | · | := L n(·). Given L > 0, we also set

QL := [0, L)n−1 ⊂ R
n−1, Q+

L := QL × [0,+∞). (2.5)

We assume that the substrate occupies the infinite region

S := R
n−1 × (−∞, 0). (2.6)
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We introduce the class of admissible profiles

AP(QL) :=
{
h : Rn−1 → [0,+∞) : h ∈ BVloc(R

n−1), h is QL − periodic
}
.

(2.7)

The reference configuration of the film is represented by the subgraph of an admissible
profile h ∈ AP(QL): we denote it and its periodic extension by

�h :=
{
(x ′, xn) ∈ QL × R : 0 < xn < h(x ′)

}
,

�#
h :=

{
(x ′, xn) ∈ R

n−1 × R : 0 < xn < h(x ′)
}
,

(2.8)

respectively. Notice that, as h has finite total variation, the set �h has finite perimeter.
We also define, for h ∈ AP(QL), the free profile

�h :=
{
(x ′, xn) : x ′ ∈ QL , h−(x ′) ≤ xn ≤ h+(x ′)

}
, (2.9)

and we denote by �#
h its periodic extension. Notice that if 0 < xn < h−(x ′) then

x ∈ (�#
h)

1, while if xn > h+(x ′) then x ∈ (�#
h)

0; therefore ∂e(�
#
h ∪ S) is a subset of

�#
h (and coincides with �#

h up to aHn−1-negligible set).
The region �h occupied by the film is partitioned into two disjoint sets of finite

perimeter A, B representing the two phases of the system.We identify these two phases
with the level sets of a marker function u : �h → {±1} with bounded variation, so
that A = {u = 1} and B = {u = −1}. As �h is in general not an open set, it will be
convenient to consider u as a piecewise constant function defined in the full spaceRn ,
taking two additional values u = 0 and u = 2 in the region above the film and in the
substrate, respectively. This is made precise by the following definition.

Definition 2.1 (Admissible configurations)Let I := {±1, 0, 2}. The classX of admis-
sible configurations is the space of functions u : Rn → I satisfying the following
properties:

(i) u ∈ BVloc(R
n; I ),

(ii) u(x ′ + Lei , xn) = u(x ′, xn) for all (x ′, xn) ∈ R
n , i = 1, . . . , n − 1,

(iii) there exists hu ∈ AP(QL) such that �#
hu

= {u = 1} ∪ {u = −1},
(iv) S = {u = 2}, where S is the substrate defined in (2.6)

(the previous identities have to be understood in the almost everywhere sense with
respect toL n). The class of regular admissible configurations is defined as

Xreg :=
{
u ∈ X : hu is Lipschitz continuous

}
. (2.10)

We consider the space X endowed with the L1-convergence: we say that a sequence
{uk}k∈N ⊂ X converges in X to u ∈ X if uk → u in L1(Q+

L ).
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Given an admissible configuration u ∈ X , we have a partition of the strip Q+
L into

three sets of finite perimeter, which will be denoted by

Au := {u = 1} ∩ Q+
L , Bu := {u = −1} ∩ Q+

L , Vu := {u = 0} ∩ Q+
L ,

(2.11)

and as usual we will denote by A#
u , B

#
u and V #

u their periodic extensions. Notice that
Au ∪ Bu = �hu and ∂∗V #

u = �#
hu

(up to a Hn−1-negligible set). In other words, the
admissible configurations are just periodic partitions of the upper half-space into three
sets of locally finite perimeter A, B, V , with the constraint that A∪ B is the subgraph
of a BV-function. The jump set Ju of u coincides (up to a Hn−1-negligible set) with
the union of their reduced boundaries:

Hn−1
(
Ju\

⋃

i, j∈I
i �= j

∂∗{u = i} ∩ ∂∗{u = j}
)

= 0, (2.12)

with (u+(x), u−(x)) = (i, j) (up to a permutation) for every x ∈ ∂∗{u = i}∩∂∗{u =
j}.
As we want to consider different values of the surface tension for all the possible

different interfaces between the phases, it is convenient to introduce the following
notation (see Fig. 1):

�A
u := �hu ∩ ∂∗A#

u, �B
u := �hu ∩ ∂∗B#

u , �AB
u := ∂∗A#

u ∩ ∂∗B#
u ∩ Q+

L ,

(2.13)

and

SA
u := ∂∗Au ∩ (

QL × {0}), SB
u := ∂∗Bu ∩ (

QL × {0}), SVu := �hu ∩ (
QL × {0}).

(2.14)

The set SVu represents the possible region in which the substrate is exposed. In view of
(2.12), the disjoint union of these interfaces coincides with the jump set Ju of u inside
the periodicity strip:

Ju ∩ Q+
L = �A

u ∪ �B
u ∪ �AB

u ∪ SA
u ∪ SB

u ∪ SVu ∪ N (2.15)

withHn−1(N ) = 0.

2.3 The Energy of Regular Configurations

We now introduce the energy associated with a regular configuration u ∈ Xreg. This
energy will be extended to the whole space X of admissible configurations in Sect. 3
via a relaxation procedure. The total energy is the sum of a surface penalization of
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the interfaces between the phases, with possibly different surface tension coefficients,
and a general volume-order, possibly nonlocal, energyN (u). Here and the rest of the
paper we will always assume that N : X → [0,+∞) is a given function satisfying
the following property: given a positive constant M > 0, there exists LN ∈ (0,+∞),
depending on M , such that for all u, v ∈ X with |�hu |, |�hv | ≤ M it holds

|N (u) − N (v)| ≤ LN ( |Au�Av| + |Bu�Bv| ) . (2.16)

Under the previous assumption, we can define the energy of a regular configuration
as follows.

Definition 2.2 (Energy) Given positive coefficients σA, σB, σAB , σAS, σBS, σS, γ >

0, we define the total energy of a regular configuration u ∈ Xreg as

F (u) := σAHn−1(�A
u ) + σBHn−1(�B

u ) + σABHn−1(�AB
u ) + γ N (u)

+ σASHn−1(SA
u ) + σBSHn−1(SB

u ) + σSHn−1(SVu ).
(2.17)

By introducing the surface energy density

�(i, j) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σA if (i, j) = (1, 0),

σB if (i, j) = (−1, 0),

σAB if (i, j) = (1,−1),

σAS if (i, j) = (1, 2),

σBS if (i, j) = (−1, 2),

σS if (i, j) = (0, 2),

(2.18)

with �(i, j) = �( j, i), we can write in a more compact notation an equivalent
representation of the energy in terms of the jump set of the piecewise constant function
u (see (2.15)):

F (u) =
∫

Ju∩Q+
L

�(u+, u−) dHn−1 + γ N (u). (2.19)

Example 2.3 (Thin films of diblock copolymer) As discussed in the Introduction, a
possible application of the variational model introduced above is in the description
of thin films of diblock copolymers. In this case, the sets Au and Bu associated with
an admissible configuration u ∈ X represent the two phases occupied by the diblock
copolymer, and Vu represents the void (or homopolymer) above the film.

Following (Choksi and Ren 2005) and modeling the phase Vu as a homopolymer,
one can introduce a nonlocal interaction energyN (u) between the two phases Au , Bu

as follows. For u ∈ X we let ū := ∫
Q+

L
u(x) dx = |Au | − |Bu |, and we define

N (u) :=
∫

Q+
L

|∇φu(x)|2 dx, (2.20)
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where the potential φu : Q+
L → R associated to the configuration u ∈ X is the

solution to

−�φu = u − ū in Q+
L ,

∫

Q+
L

φu(x) dx = 0,

with periodic boundary conditions on the lateral boundary ∂QL × (0,+∞) and zero
Neumann boundary condition at the interface QL ×{0}with the substrate. By arguing
as in (Acerbi et al. (2013), Lemma 2.6), one can check thatN (u) obeys the assumption
(2.16).

3 Relaxation and Existence of Minimizers

The goal of this section is to compute the lower semicontinuous envelope F of the
functional F with respect to the convergence in X , under a volume constraint: for
every u ∈ X

F (u) := inf
{
lim inf
k→∞ F (uk) : uk ∈ Xreg, |Auk | = |Au |, |Buk | = |Bu |, uk → u in X

}
.

(3.1)

In the following theorem,which is proved in Sects. 3.1 and 3.2,we give a representation
formula for the relaxed functional F .

Theorem 3.1 (Relaxation) Assume that σAB ≤ σA + σB. Then, the functional F ,
defined in (3.1), is given by

F (u) =
∫

Ju∩Q+
L

�(u+, u−) dHn−1 + γ N (u) (3.2)

for all u ∈ X , where

�(i, j) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̄A := min{σA, σB + σAB} if (i, j) = (1, 0),

σ̄B := min{σB, σA + σAB} if (i, j) = (−1, 0),

σAB if (i, j) = (1,−1),

min{σAS, σBS + σAB} if (i, j) = (1, 2),

min{σBS, σAS + σAB} if (i, j) = (−1, 2),

min{σS, σAS + σ̄A, σBS + σ̄B} if (i, j) = (0, 2),

(3.3)

and �(i, j) = �( j, i).

Remark 3.2 From the proof of Theorem 3.1, it also follows that the representation
formula (3.2) continues to hold if we drop the mass constraints in the definition (3.1)
of F .
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Remark 3.3 The assumption σAB ≤ σA + σB prevents the possibility of reducing the
energy by inserting of a thin layer of void between the phases A and B. In the diblock
copolymer application, this is justified by the fact that the subchains of type A and
B are chemically bonded together. In case the opposite inequality holds, the relaxed
functional would have a different surface tension (σA + σB) only for the vertical
interfaces of �AB connected to the graph.

Remark 3.4 The choice of the L1 topology is justified by the fact that, in the application
we have in mind, we do not consider elastic effects, that would lead to cracks inside
the copolymer phases. In case these effects have to be taken into account, a natural
topology would be the Hausdorff convergence of the epigraph of the profile, as in
Bonnetier and Chambolle (2002), Fonseca et al. (2007); the corresponding relaxed
functional would contain additional terms accounting for vertical cracks, connected
to the free profile of the film, inside the two phases.

The existence of minimizers of the relaxed functional F follows by a standard
application of the direct method of the Calculus of Variations. We fix two positive real
numbers M > 0 and m ∈ (0, M), which represent the total volume of the film and
the volume of the phase A, respectively.

Theorem 3.5 Existence of minimizers Under the assumptions of Theorem 3.1, the
constrained minimization problem

min
{
F (u) : u ∈ X , |Au | = m, |Bu | = M − m

}
(3.4)

admits a solution. Furthermore, if ū ∈ X is a solution of the above problem, then

F (ū) = inf
{
F (u) : u ∈ Xreg, |Au | = m, |Bu | = M − m

}
. (3.5)

The remaining part of this section is devoted to the proof of Theorem 3.1. Since
by assumption (2.16) the term N in the energy is continuous with respect to the
convergence in X , it is sufficient to compute the relaxation of the surface energy. This
is proved, as usual, in two steps: denoting byF the right-hand side of (3.2), in the first
step (Proposition 3.7) it is shown that the energy F(u) is smaller than the liminf of
the energies of every sequence approximating u; in the second step (Proposition 3.8),
we prove the sharpness of the lower bound, constructing a recovery sequence made
of regular configurations.

3.1 Lower Semicontinuity

The lower semicontinuity of the interface part of the energy (3.2) follows essentially
from the same type of arguments as in Ambrosio and Braides (1990). It is indeed
well known (see also White 1996) that, for an isotropic surface energy defined on
Caccioppoli partitions of a domain �, where each interface has a cost proportional
to its area, the validity of the triangle inequalities between the surface tensions is
a necessary and sufficient condition for the lower semicontinuity of the functional.
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However, in our case we do not deal with generic Caccioppoli partitions, but we have
a geometric restriction on the admissible configurations; this is reflected in the fact
that the surface tension coefficients �(i, j) do not satisfy all the possible triangle
inequalities, but only those corresponding to actual configurations of the system. For
this reason, we cannot directly deduce the lower semicontinuity from Ambrosio and
Braides (1990), but the proof is based on the same type of arguments and we will only
sketch the main ideas. The main tool is the following lower semicontinuity lemma,
whose proof follows easily by adapting the ideas in (Morgan (1997), Proposition 3.1).

Lemma 3.6 Let F1, F2 ⊂ B1 be disjoint sets of finite perimeter with F1 ∪ F2 = B1,
and let m > 2. Suppose that, for i, j ∈ {1, . . . ,m}, λi j = λ j i are nonnegative
coefficients such that

λ12 ≤ λ1i1 + λi1i2 + . . . + λi j−1i j + λi j2 for all i1, . . . i j ∈ {3, . . . ,m} distinct.
(3.6)

For every k ∈ N let (F1
k , F2

k , . . . , Fm
k ) be a Caccioppoli partition of B1 into m sets,

such that F1
k → F1, F2

k → F2, and Fi
k → ∅ in L1(B1), i = 3, . . . ,m, as k → ∞.

Then,

λ12Hn−1(∂∗F1 ∩ ∂∗F2) ≤ lim inf
k→∞

m∑

i, j=1
i< j

λi jHn−1(∂∗Fi
k ∩ ∂∗F j

k ).

Proposition 3.7 Denote by F the right-hand side of (3.2). For every u ∈ X and for
every sequence {u j } j∈N ⊂ Xreg such that u j → u in X there holds

F(u) ≤ lim inf
j→∞ F (u j ). (3.7)

Proof As already observed, it is sufficient to consider the surface part of the energy, as
N (u) is continuous with respect to the convergence in X . Without loss of generality
we can assume that the sequence F (u j ) is bounded and that the measures μ j :=
�(u+

j , u−
j )Hn−1 Ju j locally weakly* converge in R

n to a positive Radon measure

μ. We need to show that μ ≥ �(u+, u−)Hn−1 Ju . By (Ambrosio et al. (2000),
Theorem 2.56) it is sufficient to show that

lim sup
ρ→0+

μ(Bρ(x))

ωn−1ρn−1 ≥ �(u+(x), u−(x)) forHn−1-a.e. x ∈ Ju . (3.8)

This can be proved by a standard blow-up argument: for fixed x ∈ Ju , for a suitable
sequence ρk → 0+ and for a suitable subsequence, we have that the rescaled functions
vk(y) := u jk (x + ρk y) converge in L1(B1) as k → ∞ to the function

w(y) :=
{
u+(x) in {y ∈ B1 : y · νu(x) > 0},
u−(x) in {y ∈ B1 : y · νu(x) < 0},
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and lim supρ→0+
μ(Bρ(x))
ωn−1ρn−1 ≥ lim infk→∞ 1

ωn−1

∫
B1∩Jvk

�(v+
k , v−

k ) dHn−1, so that the

claim (3.8) will follow once we prove that

lim inf
k→∞

∫

B1∩Jvk

�(v+
k , v−

k ) dHn−1 ≥ ωn−1�(w+, w−). (3.9)

In view of (2.15), in order to show (3.8) we now have to distinguish among six possible
cases, depending on which interface contains the point x .
Case 1: x ∈ �A

u . In this case, in the blow-up limit we have that half of the ball B1
is filled with the pure phase Au , and the other half-ball is filled with the phase Vu ;
that is, up to a permutation w+ = 1, w− = 0. Notice that xn > 0 and therefore for
k large enough the ball Bρk (x) does not intersect the substrate and can contain only
the phases A, B, and V ; hence, the rescaled functions vk can only take the values
{±1, 0} in B1, that is, v

±
k ∈ {±1, 0}. Since by definition of � the triangle inequality

�(1, 0) ≤ �(1,−1) + �(−1, 0) holds and � ≤ �, the claim (3.9) follows from
Lemma 3.6, applied to F1 := {w = 1}, F2 := {w = 0}, F1

k := {vk = 1} → F1,
F2
k := {vk = 0} → F2, F3

k := {vk = −1} → ∅.
Case 2: x ∈ �B

u . This is analogous to the previous case.
Case 3: x ∈ �AB

u . In this casew+ = 1,w− = −1, and since Bρk (x) does not intersect
the substrate for k large enough, we have v±

k ∈ {±1, 0}. Then, (3.9) follows again by
Lemma 3.6 in view of the triangle inequality �(1,−1) ≤ �(1, 0)+�(−1, 0), which
holds by definition of � and by the assumption σAB ≤ σA + σB .
Case 4: x ∈ SA

u . In this case w+ = 1, w− = 2. In principle, all the four phases can
be present in a neighborhood of the point x ; however, by the geometric constraint the
limit interface between the phase A and the substrate S cannot be approximated by
the boundary of V . Therefore, in order to apply Lemma 3.6, we first need to get rid of
the possible infiltration of the phase V .

We denote by Ak := {vk = 1}, Bk := {vk = −1}, Vk := {vk = 0} the phases of vk
in the upper half-ball B+

1 , and the corresponding interfaces by

�A
k := ∂∗Ak ∩ ∂∗Vk ∩ B1, �B

k := ∂∗Bk ∩ ∂∗Vk ∩ B1, �AB
k := ∂∗Ak ∩ ∂∗Bk ∩ B1,

SA
k := ∂∗Ak ∩ ∂S ∩ B1, SB

k := ∂∗Bk ∩ S ∩ B1, SVk := ∂∗Vk ∩ S ∩ B1.

Then, we modify vk by “filling” the region Vk with either Ak or Bk , according to the
following rule:

ṽk(y) :=

⎧
⎪⎨

⎪⎩

vk(y) if y ∈ B1\Vk,
1 if y ∈ Vk and Hn−1(�B

k ) ≤ Hn−1(�A
k ),

−1 if y ∈ Vk and Hn−1(�A
k ) < Hn−1(�B

k ).

Notice that ṽk → w in L1(B1), and that the partition of the unit ball determined by ṽk
does not contain the phase V . Therefore, using the inequality �(1, 0) + �(−1, 0) ≥
�(−1, 1),
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∫

B1∩Jvk

�(v+
k , v−

k ) dHn−1 = �(1, 0)Hn−1(�A
k ) + �(−1, 0)Hn−1(�B

k ) + �(−1, 1)Hn−1(�AB
k )

+ �(1, 2)Hn−1(SA
k ) + �(−1, 2)Hn−1(SB

k ) + �(0, 2)Hn−1(SVk )

≥ �(−1, 1)min
{Hn−1(�A

k ),Hn−1(�B
k )
}+ �(−1, 1)Hn−1(�AB

k )

+ �(1, 2)Hn−1(SA
k ) + �(−1, 2)Hn−1(SB

k ) + �(0, 2)Hn−1(SVk )

=
∫

B1∩Jṽk

�(ṽ+
k , ṽ−

k ) dHn−1 + �(0, 2)Hn−1(SVk )

− max{�(1, 2),�(−1, 2)}Hn−1(SVk ).

By observing thatHn−1(SVk ) → 0 as k → ∞, from the previous inequality we obtain

lim inf
k→∞

∫

B1∩Jvk

�(v+
k , v−

k ) dHn−1 ≥ lim inf
k→∞

∫

B1∩Jṽk

�(ṽ+
k , ṽ−

k ) dHn−1.

To deduce (3.9) we can now apply Lemma 3.6 to the partition of B1 determined by
ṽk , which contains only the three phases A, B, S and that converges to the config-
uration where the upper half-ball is filled by A, and the lower half-ball is filled by
S. Therefore to apply Lemma 3.6 one only needs to check the triangle inequality
�(1, 2) ≤ �(1,−1) + �(−1, 2), which holds by definition of �.
Case 5: x ∈ SB

u . This is analogous to Case 4, with the roles of phases A and B
exchanged.
Case 6: x ∈ SVu . In this case w+ = 0, w− = 2, and all the four phases can be present
in a neighborhood of the point x . We deduce (3.9) by applying once more Lemma 3.6,
since that all the possible triangle inequalities (3.6) hold for λ12 = �(0, 2) in view of
the definition of �. ��

3.2 Recovery Sequence

The goal of this section is to prove the following result, which combined with Propo-
sition 3.7 completes the proof of Theorem 3.1.

Proposition 3.8 Denote byF the right-hand side of (3.2). For every u ∈ X there exists
a sequence {u j } j∈N ⊂ Xreg such that u j → u in X , |Au j | = |Au |, |Bu j | = |Bu |, and

F(u) = lim
j→∞F (u j ). (3.10)

Proof Fix u ∈ X and let hu ∈ AP(QL) be the corresponding admissible profile. The
proof is divided into several steps (see Fig. 3 for the modifications performed in Step 2,
3, and 4).
Step 1: approximation of hu with a regular profile. In this step, we construct a sequence
ũ j ∈ X such that ũ j → u in X and F (̃u j ) → F(u), with the additional property that
the corresponding profiles hũ j are smooth. By a diagonal argument, this will allow
us, in the following steps, to work under the assumption that the limiting profile is
smooth, and to construct a recovery sequence only in this case.
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For each j ∈ N it is possible to find a QL -periodic function f j ∈ C∞(Rn−1) such
that

‖ f j − hu‖L1(QL ) + Hn−1(�hu ∩ � f j ) ≤ 1

j
, (3.11)

∣
∣∣∣

∫

QL

√
1 + |∇ f j (x ′)|2 dx ′ − Hn−1(�hu )

∣
∣∣∣ ≤ 1

j
, (3.12)

and

∣∣
∣Hn−1({ f j = 0}) − Hn−1({hu = 0})

∣∣
∣ ≤ 1

j
. (3.13)

The proof of the first two statements is contained in Step 1 of the proof of (Chambolle
and Solci (2007), Proposition 4.1), while the last statement is proved in (Chambolle
and Solci (2007), Remark 4.4). Define the function ũ j : Rn → {0,−1, 1, 2} as

ũ j (x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x) if x ∈ �#
f j

∩ �#
hu

,

1 if x ∈ �#
f j
\�#

hu
,

0 if x ∈ R
n+\�#

f j
,

2 if x ∈ S.

(3.14)

This modification amounts to fill the (small) region in � f j \�hu by the phase A, and
to remove the possible parts of the phases A and B outside � f j by replacing them
with V . Notice that ũ j ∈ Xreg with f j = hũ j and

‖ũ j − u‖L1(QL×R) ≤ 2

j
. (3.15)

First, we show that

Hn−1(�AB
ũ j

) → Hn−1(�AB
u ). (3.16)

Define the Radon measures μA := DχA#
u
, μB := DχB#

u
, and, for j ∈ N, define

μA
j := DχA#

ũ j
and μB

j := DχB#
ũ j
. Then, (3.12) and (3.13) yield

lim
j→∞ |μA

j + μB
j |(Q+

L ) = lim
j→∞ |Dχ�#

f j
|(Q+

L ) = |Dχ�#
hu

|(Q+
L ) = |μA + μB |(Q+

L ),

(3.17)

and, since Aũ j → Au , Bũ j → Bu , using also the periodicity,

|μA|(Q+
L ) ≤ lim inf

j→∞ |μA
j |(Q+

L ), |μB |(Q+
L ) ≤ lim inf

j→∞ |μB
j |(Q+

L ). (3.18)
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Combining the previous estimates we obtain (3.16) from

Hn−1(�AB
u ) = |μA|(Q+

L ) + |μB |(Q+
L ) − |μA + μB |(Q+

L )

2

≤ lim inf
j→∞

|μA
j |(Q+

L ) + |μB
j |(Q+

L ) − |μA
j + μB

j |(Q+
L )

2

= lim inf
j→∞ Hn−1(�AB

ũ j
)

≤ lim inf
j→∞

(
Hn−1(�AB

u ) + Hn−1(�hu ∩ � f j )

)
≤ Hn−1(�AB

u ),

where last step follows by (3.11). Next, we claim that

Hn−1(�A
ũ j

) → Hn−1(�A
u ), Hn−1(�B

ũ j
) → Hn−1(�B

u ), (3.19)

and that

Hn−1(SA
ũ j

) → Hn−1(SA
u ), Hn−1(SB

ũ j
) → Hn−1(SB

u ). (3.20)

Using (3.16), (3.17), and (3.18), we have

|μA|(Q+
L ) + |μB |(Q+

L ) ≤ lim inf
j→∞

[ |μA
j |(Q+

L ) + |μB
j |(Q+

L )
]

= lim inf
j→∞

[ |μA
j + μB

j |(Q+
L ) + 2Hn−1(�AB

ũ j
)
]

= |μA + μB |(Q+
L ) + 2Hn−1(�AB

u )

= |μA|(Q+
L ) + |μB |(Q+

L ),

hence

|μA
j |(Q+

L ) → |μA|(Q+
L ), |μB

j |(Q+
L ) → |μB |(Q+

L ). (3.21)

Denote now, for ε > 0, Qε := QL × (ε,+∞), and notice that for L 1-almost every
ε > 0 we haveHn−1(Ju ∩{xn = ε}) = 0. For all such ε, thanks to (3.17) and to (3.21)
we obtain

|μA
j |(Qε) → |μA|(Qε), |μB

j |(Qε) → |μB |(Qε), |μA
j + μB

j |(Qε) → |μA + μB |(Qε),

and in turn, arguing as in the proof of (3.16),Hn−1(�AB
ũ j

∩ Qε) → Hn−1(�AB
u ∩ Qε).

Then, for almost every ε > 0

Hn−1(�A
ũ j

∩ Qε) = |μA
j |(Qε) − Hn−1(�AB

ũ j
∩ Qε)

→ |μA|(Qε) − Hn−1(�AB
u ∩ Qε) = Hn−1(�A

u ∩ Qε),
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Fig. 3 The modifications we perform in Step 2 (left), 3 (center), and 4 (right)

and similarly Hn−1(�B
ũ j

∩ Qε) → Hn−1(�B
u ∩ Qε). From these two convergences,

(3.19) follows: indeed, if (3.19) fails then for some η > 0 we would have (using the
fact that Hn−1(�A

ũ j
∪ �B

ũ j
) → Hn−1(�A

u ∪ �B
u ))

lim sup
j→∞

Hn−1(�A
ũ j

) ≥ Hn−1(�A
u ) + η, lim inf

j→∞ Hn−1(�B
ũ j

) ≤ Hn−1(�B
u ) − η

(or the symmetric inequalities with A and B exchanged). This yields

lim inf
j→∞ Hn−1(�B

ũ j
\Qε) ≤ Hn−1(�B

u \Qε) − η for every ε > 0,

which is a contradiction since Hn−1(�B
u \Qε) → 0 as ε → 0. This proves (3.19).

Finally, by writing

|μA
j |(Q+

L ) = Hn−1(�A
ũ j

) + Hn−1(�AB
ũ j

) + Hn−1(SA
ũ j

),

|μA|(Q+
L ) = Hn−1(�A

u ) + Hn−1(�AB
u ) + Hn−1(SA

u )

(and similarly for B), we conclude that also (3.20) holds by using (3.16), (3.19), and
(3.21).

Thanks to (3.15), (3.16), (3.19), and (3.20) we obtain F (̃u j ) → F(u), as desired.
Step 2: the non-exposed substrate. Assume v ∈ Xreg. We construct a sequence
{v j } j∈N ⊂ Xreg such that

lim
j→∞ ‖v j − v‖L1(Q+

L ) = 0, (3.22)

that allows to recover the relaxed coefficients �(1, 2) and �(−1, 2) with the non-
exposed substrate in the limit energy, in the sense that

F (v j ) → F (v) + (
�(1, 2) − �(1, 2)

)Hn−1(SA
v ) + (

�(−1, 2) − �(−1, 2)
)Hn−1(SB

v ).

(3.23)

In the case where σAS ≤ σBS + σAB and σBS ≤ σAS + σAB , the relaxed surface
tensions�(1, 2) and�(−1, 2) coincide with the original ones�(1, 2) and�(−1, 2);
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in this case there is nothing to do, and we just take v j := v for each j ∈ N. Assume
instead

σAS ≤ σBS + σAB and σAS + σAB < σBS .

The only other possible case is σBS + σAB < σAS and σBS ≤ σAS + σAB , that can
be treated similarly. We need to build a sequence {v j } j∈N satisfying (3.22) and (3.23),
which in this case becomes

F (v j ) → F (v) + (σAS + σAB − σBS)Hn−1(SB
v ). (3.24)

By standard results on traces of BV-functions (for instance, combining Eq. (2.8)
and Theorem 2.11 in Giusti (1984)), it is possible to find a sequence {s j } j∈N with
s j → 0+ as j → ∞ such that

Hn−1(A(1)
v ∩ {xn = s j }) → Hn−1(SA

v ), Hn−1(B(1)
v ∩ {xn = s j }) → Hn−1(SB

v ),

(3.25)

and since Hn−1(Jv ∩ {xn = t}) = 0 forL 1-a.e. t we can also assume

Hn−1(Jv ∩ {xn = s j }) = 0. (3.26)

Also note that, since Hn−1(Jv) < ∞,

Hn−1(Jv ∩ {0 < xn < s j }) → 0. (3.27)

Define the function v j : Rn → {0,−1, 1, 2} as

v j (x
′, xn) :=

{
1 if (x ′, xn) ∈ �#

hv
and 0 < xn < s j ,

v(x ′, xn) otherwise,
(3.28)

which satisfies v j ∈ Xreg for each j ∈ N (since hv j = hv) and ‖v j − v‖L1(Q+
L ) ≤

2s jL n−1(QL), which gives (3.22). This sequence allows to adjust the surface tensions
for the substrate: namely, we have by (3.26)

F (v j ) − F (v) = (σA − σB)Hn−1(�B
v ∩ {0 < xn < s j }) − σABHn−1(�AB

v ∩ {0 < xn < s j })
+ σABHn−1(B(1)

v ∩ {xn = s j }) + (σAS − σBS)Hn−1(SB
v )

+ γ (N (v j ) − N (v)).

By passing to the limit as j → ∞, the first two terms on the right-hand side vanish
thanks to (3.27), the third term tends to σABHn−1(SB

v ) by (3.25), and the last term
tends to zero by (3.22). Hence, (3.24) follows.
Step 3: the graph. Let v ∈ Xreg and {v j } j∈N ⊂ Xreg be the sequence constructed in the
previous step, satisfying (3.22) and (3.23). We want to modify the sequence in such
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a way to recover the relaxed surface tensions �(1, 0) and �(−1, 0) between the two
phases A, B and the void V : more precisely, we want to construct another sequence
{w j } j∈N ⊂ Xreg such that

lim
j→∞ ‖w j − v j‖L1(Q+

L ) = 0, (3.29)

and

lim
j→∞

∣∣F (w j ) − F (v j ) − (
�(1, 0) − �(1, 0)

)Hn−1(�A
v )

−(�(−1, 0) − �(−1, 0)
)Hn−1(�B

v )
∣∣ = 0. (3.30)

In the case where σA ≤ σB +σAB and σB ≤ σA+σAB , the relaxed surface tensions
�(1, 0) and �(−1, 0) coincide with the original ones �(1, 0) and �(−1, 0); in this
case there is nothing to do, and we just takew j := v j for each j ∈ N. Assume instead

σA ≤ σB + σAB, σA + σAB < σB .

The only other possible case is σB + σAB < σA and σB ≤ σA + σAB , that can be
treated similarly. In this case the condition (3.30) becomes

lim
j→∞

∣∣
∣F (w j ) − F (v j ) − (σA + σAB − σB)Hn−1(�B

v )

∣∣
∣ = 0. (3.31)

Let δ j → 0+ and define, for each j ∈ N, the function w j : Rn → {0,−1, 1, 2} by

w j (x
′, xn) :=

⎧
⎪⎨

⎪⎩

v j (x ′, xn) if (x ′, xn) ∈ �#
hv j

,

1 if hv j (x
′) < xn < (1 + δ j )hv j (x

′),
0 if xn ≥ (1 + δ j )hv j (x

′).
(3.32)

Note that hw j = (1 + δ j )hv j = (1 + δ j )hv (recalling that hv j = hv for all j , by the
construction in Step 2), therefore w j ∈ Xreg and

‖w j − v j‖L1(Q+
L ) ≤

∫

QL

∫ (1+δ j )hv(x ′)

hv(x ′)
|1 − v j (x

′, xn)| dxn dx ′ ≤ 2δ j

∫

QL

hv(x
′) dx ′

which yields (3.29). Moreover, by a Taylor expansion

∫

QL\SVv

√
1 + |(1 + δ j )∇hv(x ′)|2 dx ′ = Hn−1(�A

v j
) + Hn−1(�B

v j
) + o(1),

therefore

F (w j ) − F (v j ) = σA
(Hn−1(�A

v j
) + Hn−1(�B

v j
)
)+ o(1)

+(σAB − σB)Hn−1(�B
v j

) − σAHn−1(�A
v j

) + γ (N (w j ) − N (v j )).
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We get (3.31) by using (3.29) and recalling that, by the construction in Step 2, we have
Hn−1(�A

v j
) → Hn−1(�A

v ) and Hn−1(�B
v j

) → Hn−1(�B
v ).

Step 4: the exposed substrate. Let v ∈ Xreg and {w j } j∈N ⊂ Xreg be the sequence
constructed in the previous step. We want to modify again the sequence in such a way
to recover the relaxed surface tension �(0, 2) of the exposed substrate, that is the
interface between the substrate S and the void V : more precisely, we want to construct
another sequence {z j } j∈N ⊂ Xreg such that

lim
j→∞ ‖z j − w j‖L1(Q+

L ) = 0, (3.33)

and

lim
j→∞

∣∣F (z j ) − F (w j ) − (
�(0, 2) − �(0, 2)

)Hn−1(SVv )
∣∣ = 0. (3.34)

In the case where σS ≤ min{σAS + σ̄A, σBS + σ̄B} there is nothing to do since
�(0, 2) = �(0, 2), and thus we define z j := w j for all j ∈ N. Assume that

σAS + σ̄A ≤ min{σS, σBS + σ̄B} and σ̄A = σAB + σB .

In this case (3.34) becomes

lim
j→∞

∣
∣∣F (z j ) − F (w j ) − (σAS + σAB + σB − σS)Hn−1(SVv )

∣
∣∣ = 0. (3.35)

Note that the other possible cases can be treated similarly (and even more easily).
We fix two sequences s(1)

j , s(2)
j ∈ (0, 1), for j ∈ N, with s(1)

j < s(2)
j and s(1)

j , s(2)
j →

0 as j → ∞, such that, by setting Ls := Vw j ∩ {xn = s}, we have

Hn−1(L
s(1)j

) → Hn−1(SVv ), Hn−1(L
s(2)j

) → Hn−1(SVv ), (3.36)

and

Hn−1(�w j ∩ {0 < xn < s(2)
j }) → 0. (3.37)

The existence of such sequences can be proved similarly to (3.25), using also the
convergence Hn−1(SVw j

) → Hn−1(SVv ) in view of the construction of w j in the
previous step. We define the function z j : QL × R → {0,−1, 1, 2} (extended by
periodicity to Rn) by

z j (x
′, xn) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w j (x ′, xn) if (x ′, xn) ∈ �hw j
∪ S,

1 if (x ′, xn) ∈ Vw j and 0 < xn < s(1)
j ,

−1 if (x ′, xn) ∈ Vw j and s(1)
j < xn < s(2)

j ,

0 else.

(3.38)
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Since hz j = max{hw j , s
(2)
j } we have z j ∈ Xreg, and also ‖w j − z j‖L1(Q+

L ) ≤
s(2)
j L n−1(QL), which yields (3.33). Moreover,

F (z j ) − F (w j ) = σBHn−1(L
s(2)j

) + σABHn−1(L
s(1)j

) + (σAS − σS)Hn−1(SVw j
)

+ γ (N (z j ) − N (w j )) + R j ,

(3.39)

where

R j := −Hn−1(�A
w j

∩ {0 < xn < s(1)
j }) + (σAB − σB)Hn−1(�B

w j
∩ {0 < xn < s(1)

j })
+ (σAB − σA)Hn−1(�A

w j
∩ {s(1)

j < xn < s(2)
j }) − Hn−1(�B

w j
∩ {s(1)

j < xn < s(2)
j }).

Notice that R j → 0 thanks to (3.37). We then obtain (3.35) by passing to the limit in
(3.39), using (3.33), (3.36), and the fact that Hn−1(SVw j

) → Hn−1(SVv ).
Step 5: the mass constraint. By combining the constructions in the previous steps
and using a diagonal argument, we have that given u ∈ X , there exists a sequence
{z j } j∈N ⊂ Xreg such that

lim
j→∞ ‖z j − u‖L1(Q+

L ) = 0, lim
j→∞F (z j ) = F(u) (3.40)

(see in particular (3.22), (3.29), (3.33) for the convergence of the functions, and (3.23),
(3.30), (3.34) for the convergence of the energies). In order to obtain the recovery
sequence, we need to restore the mass constraint: denoting by |�hu | = M , |Au | = m,
we modify the sequence {z j }z∈N and we construct a new sequence {u j } j∈N ⊂ Xreg
such that

lim
j→∞ ‖u j − z j‖L1(Q+

L ) = 0, lim
j→∞ |F (u j ) − F (z j )| = 0, (3.41)

and

|Au j | = m, |Bu j | = M − m. (3.42)

We first adjust the volume of �hz j
by a vertical rescaling: namely, we take λ j :=

M
|�hz j

| (notice that λ j → 1 as j → ∞) and we let h j := λ j hz j , so that |�h j | = M .

We now need to adjust the volume of Az j and Bz j . Let

Ã j := {
(x ′, λ j xn) : (x ′, xn) ∈ Az j

}
, B̃ j := {

(x ′, λ j xn) : (x ′, xn) ∈ Bz j

}

be the sets obtained by rescaling vertically Az j and Bz j by the factor λ j ; notice that
Ã j ∪ B̃ j = �h j and therefore | Ã j | + |B̃ j | = M . We also remark that, as λ j → 1 and
Az j → Au , Bz j → Bu in L1, we have | Ã j | → m, |B̃ j | → M − m as j → ∞.
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Suppose to fix the ideas that | Ã j | < m (we proceed similarly in the other case). Let
x̄ ∈ �hu be a point of density one for Bu . Since B̃ j → Bu in L1, we have

lim
r→0+ lim

j→∞
|B̃ j ∩ Br (x̄)|

|Br | = 1.

Hence, it is possible to find r0 > 0 and j0 ∈ N such that

3

4
≤ |B̃ j ∩ Br0(x̄)|

|Br0 |
≤ 1 for all j ≥ j0.

Therefore, for every j ≥ j0 (for a possibly larger j0) it is possible to find r j ∈ (0, r0)
such that |B̃ j ∩ Br j (x̄)| = m − | Ã j | > 0, since this quantity tends to zero as j → ∞.
We eventually define

u j (x
′, xn) :=

⎧
⎪⎨

⎪⎩

1 if (x ′, xn) ∈ Br j (x̄) ∩ B̃ j ,

z j (x ′, xn/λ j ) if (x ′, xn) ∈ �h j \(Br j (x̄) ∩ B̃ j ),

0 if (x ′, xn) ∈ Q+
L \�h j .

We then have hu j = h j = λ j hz j , so that u j ∈ Xreg and |�hu j
| = M . Moreover,

Au j = Ã j ∪ (Br j (x̄) ∩ B̃ j ), hence |Au j | = | Ã j | + |B̃ j ∩ Br j (x̄)| = m. Thus (3.42)
are satisfied. Finally, also the convergences (3.41) hold, since λ j → 1 and r j → 0. ��

4 Regularity of Minimizers

In this section, we will study the regularity of solutions to the minimum problem

min
{
F (u) : u ∈ X , |Au | = m, |Bu | = M − m

}
, (4.1)

whose existence has been established in Theorem 3.5.
The strategy to prove the regularity of minimizers relies, as it is common in these

kinds of problems, on the regularity theory for area quasi-minimizing clusters (see
(Maggi 2012, Part IV) and the references therein). Indeed, we will firstly show in
Sect. 4.1 via a penalization technique that it is possible to remove the volume constraint
in (4.1) by adding a suitable volume penalization to the functional. Furthermore,
the term N (u) in the energy behaves as a volume-order term thanks to assumption
(2.16). In view of these two properties, it follows that the partition of Rn given by
(Au, Bu, Vu, S), for a solution u of (4.1), is a quasi-minimizer cluster for the surface
energy

G (u) :=
∫

Ju∩Q+
L

�(u+, u−) dHn−1, u ∈ X . (4.2)

The precise definition of quasi-minimality in our context is given in Definition 4.1.
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Next, in Sect. 4.2 we exploit the quasi-minimality property to obtain the regularity
of minimizers in two dimensions stated in Theorem 1.1. Technical difficulties arise
from two fronts: on the one hand, we can only compare with clusters that satisfy
the constraint of being the subgraph of a function of bounded variation, a fact that
poses a severe restriction on the class of competitors. On the other hand, the interfaces
between the phases of the cluster areweighted by different surface tension coefficients.
The challenges that arise from these two features prevent us to rely on the standard
theory quasi-minimizing clusters, and requires ad hoc modifications of the classical
proofs. For this reason, we develop a regularity theory only in dimension n = 2, since
the general dimensional case requires more refined arguments. We also remark that
the regularity properties are obtained under the assumption that the surface tension
coefficients satisfy a strict triangle inequality (see (4.45)).

4.1 Penalization and Quasi-Minimality

In this section, we show that, in any dimension n ≥ 2, every solution to the minimum
problem (4.1) is a quasi-minimizer for the surface energy (Proposition 4.3), in the
sense of the following definition.

Definition 4.1 (Quasi-minimizer) We say that u ∈ X is a quasi-minimizer for the
surface energy G , defined in (4.2), if there exists� > 0 such that for every admissible
configuration v ∈ X one has

G (u) ≤ G (v) + �
(|Au�Av| + |Bu�Bv|

)
. (4.3)

We denote, for� > 0 and M > 0, byA�,M the class of all configurations u ∈ X such
that u is a quasi-minimizer for G with quasi-minimality constant �, and |�hu | ≤ M .

As a first step, we remove the mass constraint in (4.1) by considering a suitable
penalized minimum problem, see (4.4). The main idea of the proof is discussed in the
Introduction.

Lemma 4.2 (Penalization) Let 0 < m < M < ∞. Then, there exists � > 0 such
that every solution to the constrained minimum problem (4.1) is also a solution to the
penalized problem

min
{
F (u) + �

(∣
∣|Au | − m

∣
∣+ ∣

∣|�hu | − M
∣
∣
)

: u ∈ X
}
. (4.4)

Proof Let u ∈ X be a minimizer for (4.1), consider a sequence {λ j } j∈N with λ j → ∞
as j → ∞, and u j ∈ X solving the minimum problem

min
{
Hλ j (v) := F (v) + λ j

(∣∣|Av| − m
∣∣+ ∣∣|�hv | − M

∣∣
)

: v ∈ X
}
, (4.5)

whose existence can be shown arguing as in the proof of Theorem 3.5. We will show
that, for j large enough, we have

|Au j | = m, |�hu j
| = M, (4.6)
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which will imply that u itself is a solution to (4.5) for j large, as desired.
To prove (4.6), we argue by contradiction and we show that, if at least one of the

equalities in (4.6) is not satisfied, then for j large enough it is possible to construct
by a local variation a configuration ũ j ∈ X such that Hλ j (̃u j ) < Hλ j (u j ). The
construction of the local variation exploits the same diffeomorphism for both of the
mass constraints, applied at different points. In the first part of the proof (Steps 1–4),
we thus present the construction of the general diffeomorphism and the corresponding
estimates for the change of volume, perimeter, and nonlocal energy under this pertur-
bation. To simplify the notation, in the rest of the proof we will write A j , Bj , and � j

in place of Au j , Bu j , and �hu j
, respectively.

Step 1: Definition of the diffeomorphism.We denote by B ′
r := {x ′ ∈ R

n−1 : |x ′| < r}
the (n − 1)-dimensional ball centered at the origin with radius r > 0, and define for
z ∈ R

n

C+(z, r) := z + (
B ′
r × (0, r)

)
, C−(z, r) := z + (

B ′
r × (−r , 0)

)
,

and

C(z, r) := C+(z, r) ∪ C−(z, r) ∪ (
z + B ′

r × {0}).

We next assume that z = 0 and we define a family of local perturbations inC(0, r).
Precisely, for |σ | < r we define the map �σ : Rn → R

n by

�σ (x ′, xn) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
x ′, xn + σ

(
1 − |x ′|

r

)( xn
r − 1

))
if x ∈ C+(0, r),

(
x ′, xn − σ

(
1 − |x ′|

r

)( xn
r + 1

))
if x ∈ C−(0, r),

(x ′, xn) if x ∈ R
n\C(0, r).

(4.7)

The function �σ is a vertical rescaling with horizontal and vertical cutoff functions.
The role of the parameter σ can be seen fromFig. 4. Notice that for |σ | < r the function
�σ is a bi-Lipschitz map and that �σ (C(0, s)) = C(0, s). Moreover, it holds

D�(x ′, xn) =
(

Idn−1 0
vσ (x ′, xn) 1 + aσ (x ′, xn)

)
, (4.8)

where Idn−1 is the (n − 1) × (n − 1) identity matrix,

aσ (x ′, xn) :=
{(

1 − |x ′|
r

)
σ
r if (x ′, xn) ∈ C+(0, r),

−(1 − |x ′|
r

)
σ
r if (x ′, xn) ∈ C−(0, r),

(4.9)

and

vσ (x ′, xn) :=
{

−σ
r

( xn
r − 1

) x ′
|x ′| if (x ′, xn) ∈ C+(0, r),

σ
r

( xn
r + 1

) x ′
|x ′| if (x ′, xn) ∈ C−(0, r).

(4.10)
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Fig. 4 The effect of the map �σ , for σ > 0, on a set E : it stretches the set on C+(z, r) and it compresses
it on C−(z, r)

Whenwewill perform a perturbation localized in a cylinder centered at a point z ∈ R
n ,

we will consider the map x �→ z + �σ (x − z).
Step 2: Estimate of the change in volume. Let E ⊂ C(0, r) be a measurable set. We
first estimate the maximal change of volume ||�σ (E)| − |E ||: by using (4.8) and (4.9)
we get

∣∣∣ |�σ (E)| − |E |
∣∣∣ ≤ |σ |

r
|E ∩ C(0, r)|. (4.11)

Next, we prove more refined estimates on the change of volume of a set E in the
upper and lower cylinders C+(0, r), C−(0, r). We first consider the case σ > 0. In
this case, the followings hold:

(i) For every ε > 0 and σ ∈ (0, r), if |E ∩ C+(0, r)| < εrn then

0 ≤ |�σ (E ∩ C+(0, r))| − |E ∩ C+(0, r))| ≤ U (ε)|σ |rn−1, (4.12)

where

U (ε) :=
[
1 − n − 1

n

( ε

ωn−1

) 1
n−1

]
ε.

(ii) For every μ ∈ (0, ωn−1) and σ ∈ (0, r), if |E ∩ C−(0, r)| > μrn , then

|�σ (E ∩ C−(0, r))| − |E ∩ C−(0, r))| ≤ −L(μ)|σ |rn−1 < 0, (4.13)
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where

L(μ) :=
[
1

n
−
(
1 − μ

ωn−1

)
+ n − 1

n

(
1 − μ

ωn−1

) n
n−1

]

ωn−1.

To prove (4.12) we notice that by (4.8) and (4.9), and since σ > 0,

|�σ (E ∩ C+(0, r))| − |E ∩ C+(0, r)| = σ

r

∫

E∩C+(0,r)

(
1 − |x ′|

r

)
dx ≤ σ

r

∫

Fε

(
1 − |x ′|

r

)
dx,

where Fε := B ′
rε × (0, r) and rε := r(ε/ωn−1)

1
n−1 . Similarly we obtain (4.13) by

comparison with Gμ := C−(0, r)\(B ′
sμ × (−r , 0)), sμ := r(1 − μ/ωn−1)

1
n−1 .

In (4.12)–(4.13) we have written |σ | in place of σ to stress the fact that the same
estimates hold also in the case σ < 0 up to exchanging the roles of C+(0, r) and
C−(0, r), as can be easily checked. Notice that U (ε) → 0 as ε → 0, and that
L(μ) is strictly positive, and more precisely L(μ) ∈ (0, ωn−1

n ) for every choice of
μ ∈ (0, ωn−1), with L(μ) → 0 as μ → 0, L(μ) → ωn−1

n as μ → ωn−1.
Step 3: Estimate of the change in perimeter. Given a countably Hn−1-rectifiable set
� ⊂ R

n , by the generalized area formula (see (Ambrosio et al. 2000, Theorem 2.91))
we have that

Hn−1(�σ (�)) − Hn−1(�) =
∫

�

(
Jn−1d

�
x �σ − 1

)
dHn−1(x), (4.14)

where d�
x �σ : π�

x → R
n denotes the tangential differential of �σ at x ∈ � along

the approximate tangent space π�
x to �, and the area factor Jn−1d�

x �σ is defined as
(see (Ambrosio et al. 2000, Definition 2.68))

Jn−1d
�
x �σ :=

√
det

(
(d�

x �σ )∗ ◦ d�
x �σ

)
(4.15)

(here (d�
x �σ )∗ is the adjoint of the linear map d�

x �σ ). In order to estimate (4.15), fix
x ∈ � and let τ1, . . . , τn−1 be an orthonormal basis for the approximate tangent space
π�
x . By using (4.8), (4.9), and (4.10), for all i, j ∈ {1, . . . , n − 1} we have
(
(d�

x �σ )∗ ◦ d�
x �σ

)
i j = τi · τ j + τ ni (τ j · wσ (x)) + τ nj (τi · wσ (x)) + (τi · wσ (x))(τ j · wσ (x)),

where �σ = (�1
σ , . . . , �n

σ ) and τi = (τ 1i , . . . , τ ni ) denote the components with
respect to the canonical base of Rn , and wσ (x) := (vσ (x), aσ (x)). By using the fact
that |wσ (x)| ≤ √

2|σ |/r and the general formula det(I+t A) = 1+t trace(A)+O(t2)
as t → 0, we get

det
(
(d�

x �σ )∗ ◦ d�
x �σ

) = 1 + 2
n−1∑

i=1

τ ni (τi · wσ (x)) + O
((σ

r

)2)
,
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where
∣
∣O
((

σ
r

)2)∣∣ ≤ C
(

σ
r

)2 for a constant C > 0 independent of σ , r , and of x ∈ �.
Therefore by (4.14) we find for |σ | sufficiently small

∣∣Jn−1d
�
x �σ − 1

∣∣ =
∣∣∣∣

√
det

(
(d�

x �σ )∗ ◦ d�
x �σ

)− 1

∣∣∣∣ ≤ c0
|σ |
r

,

where c0 > 0 is a dimensional constant. This, together with (4.14), yields

∣∣∣Hn−1(�σ (�)) − Hn−1(�)

∣∣∣ ≤ c0
|σ |
r
Hn−1(�). (4.16)

Step 4: Estimate of the change of the term N (·). Finally, we estimate the change
in the term N (·) of the energy. We note that, by assumption (2.16), it is enough
to get an estimate on |�σ (E)�E | for a general set E with finite perimeter. By the
same computation as in (Acerbi et al. (2013), Proposition 2.7), writing �−1

σ (x ′, xn) =
(x ′, xn + φσ (xn)) with |φσ (xn)| ≤ |σ |, for f ∈ C1(Rn) we have

∫

C(0,r)
| f − f ◦ �−1

σ | dx ≤ |σ |
∫

C(0,r)
|∇ f (x)| dx . (4.17)

Let now E ⊂ R
n be a set with finite perimeter and let { fk}k∈N be a sequence of

smooth functions such that fk → χE in L1 and ‖∇ fk‖L1 → P(E). Then, also
fk ◦�−1

σ → χE ◦�−1
σ in L1. Therefore applying (4.17) to the function fk and passing

to the limit as k → ∞ yields

|�σ (E)�E | =
∫

C(0,r)

∣∣χE − χE ◦ �−1
σ

∣∣ dx ≤ |σ |P(E). (4.18)

Step 5: General strategy.We can now go back to the main argument of the proof and
show that any solution u j of the penalized problem (4.5) satisfies the mass constraints
(4.6), for j large enough. The idea of the proof is to assume by contradiction that one
of the mass constraints in (4.6) is not satisfied, and to construct a perturbation of u j in
a cylinder C(z, r) by means of the maps �σ j . More precisely, we will choose a point
z ∈ R

n , a radius r > 0 and scaling coefficients σ j ∈ (−r , r) and define

ũ j (x) := u j (z + �−1
σ j

(x − z)). (4.19)

This is a local perturbation inside C(z, r) (the center and the radius will be chosen in
such a way that the cylinder does not intersect the substrate S) such that the phases of
the new configuration ũ j are given by

Ã j = z + �σ j (A j − z), B̃ j = z + �σ j (Bj − z), �̃ j = z + �σ j (� j − z).

123



Journal of Nonlinear Science            (2022) 32:93 Page 33 of 53    93 

Thanks to (4.16), (4.18), and (2.16), we get the estimate

Hλ j (̃u j ) − Hλ j (u j ) ≤
( c̃0
r

+ γ LN
)(

P(A j ) + P(Bj )
)|σ j |

+ λ j

(∣
∣| Ã j | − m

∣
∣+ ∣

∣|�̃ j | − M
∣
∣− ∣

∣|A j | − m
∣
∣− ∣

∣|� j | − M
∣
∣
)
,

(4.20)

where c̃0 depends on the constant c0 in (4.16) and on the surface tension coefficients.
The goal would be then to show that, if at least one of the volume constraints is not
satisfied, then it is possible to choose z, r and σ j so that

∣
∣| Ã j | − m

∣
∣+ ∣

∣|�̃ j | − M
∣
∣− ∣

∣|A j | − m
∣
∣− ∣

∣|� j | − M
∣
∣ ≤ −C |σ j |rn−1, (4.21)

for some C > 0 independent of j . As λ j → ∞, the combination of (4.20) and (4.21)
shows thatHλ j (̃u j ) < Hλ j (u j ) for j large enough, which is a contradiction with the
minimality of u j in (4.5).

In the next two steps, we will implement the previous strategy. We first observe
that, by using u as a competitor in the minimum problem (4.5) and sinceF (u) < ∞,
we obtain the bounds

sup
j∈N

(
P(A j ) + λ j

∣∣|A j | − m
∣∣
)

< ∞, sup
j∈N

(
P(Bj ) + λ j

∣∣|Bj | − (M − m)
∣∣
)

< ∞.

(4.22)

Thus, up to a subsequence (not relabeled), we get that A j → A and Bj → B in L1,
with |A| = m, |B| = M − m since λ j → ∞. We also have � j → � := A ∪ B.
Notice that � is still the subgraph of an admissible profile.

In the following, given a point x0 ∈ R
n , r > 0, and a direction ν = (ν′, νn) ∈ S

n−1

with νn �= 0, we define

yr := x0 +
(
r cos

(
arctan

|νn|
|ν′|

))
ν (4.23)

and we consider the corresponding cylinder C(yr , r). The choice of the point yr
guarantees, since νn �= 0, that there exists a constant cν > 0, independent of r , such
that if νn > 0

C+(yr , r) ∩ {(x − x0) · ν < 0} = ∅,
∣∣C−(yr , r) ∩ {(x − x0) · ν < 0}∣∣ = 2cνr

n,

(4.24)

while if νn < 0

C−(yr , r) ∩ {(x − x0) · ν < 0} = ∅,
∣∣C+(yr , r) ∩ {(x − x0) · ν < 0}∣∣ = 2cνr

n .

(4.25)
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Notice that the strict positivity of cν is a consequence of the fact that νn �= 0.
Step 6: Fixing the total volume. Assume by contradiction that |� j | �= M for infinitely
many j . We will consider for simplicity the case |� j | > M for all j , as the other case
can be treated by a similar argument.

Case 1.Assume that there exists x0 ∈ ∂∗�∩ ∂∗B such that ν�(x0) · en > 0 (where
ν� denotes the exterior normal). We consider the point yr and the constant cν defined
in (4.23) and (4.24), respectively, for ν = ν�(x0) and r > 0 to be chosen later.

De Giorgi’s structure theorem for sets of finite perimeter ((Ambrosio et al. 2000,
Theorem 3.59)) together with (4.24) ensures that

lim
r→0

|� ∩ C+(yr , r)|
rn

= lim
r→0

|A ∩ C(yr , r)|
rn

= 0, lim
r→0

|� ∩ C−(yr , r)|
rn

= 2cν .

Therefore, for every ε > 0, the fact that χ� j → χ�, χA j → χA and χBj → χB in
L1 yields the existence of r ∈ (0, 1) and j0 ∈ N such that for all j ≥ j0 the following
holds:

|� j ∩ C+(yr , r)| < εrn, |� j ∩ C−(yr , r)| > cνr
n, (4.26)

|A j ∩ C(yr , r)| < εrn . (4.27)

Moreover, for r small enough we can also guarantee that the cylinder C(yr , r) is
contained in the upper half-space and does not intersect the substrate. We then choose
σ j > 0 and consider the perturbation defined in (4.19) centered at the point z = yr .
In view of (4.26), by using (4.12) and (4.13), we get

|�̃ j | − |� j | ≤ −(L(cν) −U (ε)
)
σ j r

n−1.

On the other hand, by (4.11) and (4.27),

∣∣| Ã j | − |A j |
∣∣ ≤ σ j

r
|A j ∩ C(yr , r)| ≤ εσ j r

n−1.

Therefore, noting that we can assume M < |�̃ j | < |� j | (it is sufficient to choose σ j

and ε small enough), we find

∣
∣|�̃ j | − M

∣
∣− ∣

∣|� j | − M
∣
∣+ ∣

∣| Ã j | − m
∣
∣− ∣

∣|A j | − m
∣
∣ ≤ |�̃ j | − |� j | + ∣

∣| Ã j | − |A j |
∣
∣

≤ −(L(cν) −U (ε) − ε
)
σ j r

n−1.

By choosing ε sufficiently small, we can ensure that U (ε) + ε < L(cν), which yields
(4.21) and leads to the desired contradiction in this case.

Case 2. If the assumption of the previous case does not hold, we can find a point
x1 ∈ ∂∗� ∩ ∂∗A such that ν�(x1) · en > 0. Since 0 < m < M , it is possible to find a
second point x2 ∈ ∂∗A ∩ ∂∗B such that νA(x2) · en < 0.
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We will consider the composition of two perturbations of the form (4.19) localized
in two disjoint cylinders C(y1r , r) and C(y2r , r), where (see also (4.23))

y1r := x1 +
[
r cos

(
arctan

|(ν�(x1))n|
|(ν�(x1))′|

)]
ν�(x1),

y2r := x2 +
[
r cos

(
arctan

|(νA(x2))n|
|(νA(x2))′|

)]
νA(x2).

Let

E1
r := {(x − x1) · ν�(x1) < 0} ∩ C(y1r , r), E2

r := {(x − x2) · νA(x2) < 0} ∩ C(y2r , r).

Note that E1
r ⊂ C−(y1r , r) and that E2

r ⊂ C+(y2r , r). We let μ := cν�(x1), where the
constant cν , for a vector ν, is defined in (4.24). As in the previous case, fixed ε > 0,
we can find r > 0 and j0 ∈ N such that for all j ≥ j0 we have

|� j ∩ C+(y1r , r)| < εrn, |� j ∩ C−(y1r , r)| > μrn, (4.28)

|Vj ∩ C(y2r , r)| < εrn, (4.29)

and

|
(
A j ∩ C(y1r , r)

)
�E1

r | < εrn, |
(
A j ∩ C(y2r , r)

)
�E2

r | < εrn . (4.30)

By reducing the value of r > 0 we can further assume that the two cylinders C(y1r , r)
and C(y2r , r) are disjoint and do not intersect the substrate. For a fixed sequence
{σ 1

j } j∈N ⊂ (0, r), we define a second sequence {σ 2
j } j∈N as

σ 2
j := ασ 1

j , where α :=
∫
E1
r −y1r

(
1 − |x ′|

r

)
dx

∫
E2
r −y2r

(
1 − |x ′|

r

)
dx

(4.31)

for each j ∈ N. Notice that α is independent of r by scale invariance. Then, we
consider the configuration ũ j obtained by applying to u j the composition of the two
perturbations y1r + �σ 1

j
(· − y1r ) and y2r + �σ 2

j
(· − y2r ). We denote the sets of the new

partition determined by ũ j by Ã j , B̃ j , �̃ j = Ã j ∪ B̃ j , Ṽ j .
We first consider the variation of the volume of � j . By (4.28), and since σ 1

j > 0,
we can apply (4.12) and (4.13) and obtain

|�̃ j ∩ C(y1r , r)| − |� j ∩ C(y1r , r)| ≤ −(L(μ) −U (ε)
)
σ 1
j r

n−1.

On the other hand, by (4.29) and using (4.11) we find

|�̃ j ∩ C(y2r , r)| − |� j ∩ C(y2r , r)| = |Vj ∩ C(y2r , r)| − |Ṽ j ∩ C(y2r , r)|

≤ σ 2
j

r
|Vj ∩ C(y2r , r)| ≤ εσ 2

j r
n−1.
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By combining the two estimates and recalling (4.31), it follows that

|�̃ j | − |� j | ≤ −
(
L(μ) −U (ε) − αε

)
σ 1
j r

n−1. (4.32)

Next, we look at the variation of the volume of A j . We have for i = 1, 2

| Ã j ∩ C(yir , r)| − |A j ∩ C(yir , r)| = |�σ i
j
(Ei

r − yir )| − |Ei
r | + Ri

j , (4.33)

where thanks to (4.30) and (4.11)

|Ri
j | ≤ ∣∣|�σ i

j
((A j ∩ C(yir , r))�Ei

r − yir )| − |(A j ∩ C(yir , r))�Ei
r |
∣∣ ≤ εσ i

j r
n−1.

(4.34)

Also notice that the choice of σ 2
j in (4.31) guarantees exactly that

(
|�σ 1

j
(E1

r − y1r )| − |E1
r |
)

+
(
|�σ 2

j
(E2

r − y2r )| − |E2
r |
)

= −σ 1
j

r

∫

E1
r −y1r

(
1 − |x ′|

r

)
dx + σ 2

j

r

∫

E2
r −y2r

(
1 − |x ′|

r

)
dx = 0. (4.35)

Therefore, from (4.33), (4.34), and (4.35), we get

∣∣| Ã j | − |A j |
∣∣ = ∣∣| Ã j ∩ C(y1r , r)| − |A j ∩ C(y1r , r)| + | Ã j ∩ C(y2r , r)| − |A j ∩ C(y2r , r)|∣∣
≤ ∣
∣|�σ 1

j
(E1

r − y1r )| − |E1
r | + |�σ 2

j
(E2

r − y2r )| − |E2
r |
∣
∣+ |R1

j | + |R2
j |

≤ ε(σ 1
j + σ 2

j )r
n−1 = ε

(
1 + α

)
σ 1
j r

n−1.

(4.36)

We can now conclude as follows. Similarly to (4.20), we find

Hλ j (̃u j ) − Hλ j (u j ) ≤
( c̃0
r

+ γ LN
)(

P(A j ) + P(Bj )
)
(σ 1

j + σ 2
j )

+ λ j

(∣
∣| Ã j | − m

∣
∣+ ∣

∣|�̃ j | − M
∣
∣− ∣

∣|A j | − m
∣
∣− ∣

∣|� j | − M
∣
∣
)

≤ C(1 + α)σ 1
j + λ j

(∣
∣| Ã j | − |A j |

∣
∣+ |�̃ j | − |� j |

)

≤
[
C(1 + α) − λ j

(
L(μ) −U (ε) − αε − (1 + α)ε

)
rn−1

]
σ 1
j (4.37)

where we used (4.22) in the second inequality, and (4.32), (4.36) in the last one. We
can therefore choose ε > 0 small enough so that the constant multiplying λ j is strictly
negative; as λ j → +∞, this provides the desired contradiction with the minimality
of u j .

Step 7: Fixing the volume of each phase. In this step, we conclude the proof by showing
that |A j | = m for j large. Thanks to the previous step, we can assume that |� j | = M
for all j ∈ N. Suppose by contradiction that A j �= m for infinitely many j . We
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consider for simplicity only the case |A j | > m for all j , as the other case can be
treated with similar computations.

Case 1. Assume that there exists x0 ∈ ∂∗A ∩ ∂∗B such that νA(x0) · en �= 0. We
assume to fix the ideas to be in the case νA(x0) ·en > 0; in the other case, it is sufficient
to exchange the roles of the upper and lower cylinders in the computations below. We
consider, for r > 0 to be chosen, the point yr and the constant cν defined in (4.23) and
(4.24), respectively, corresponding to ν = νA(x0).

Fix ε > 0. By De Giorgi’s structure theorem and the convergence χA j → χA, there
exist r > 0 and j0 ∈ N such that for all j ≥ j0 it holds

|A j ∩ C+(yr , r)| < εrn, |A j ∩ C−(yr , r)| > cνr
n, (4.38)

and

|Vj ∩ C(yr , r)| < εrn . (4.39)

Moreover, for r small enough we can also guarantee that the cylinder C(yr , r) is
contained in the upper half-space and does not intersect the substrate. We then choose
σ j > 0 and consider the perturbation defined in (4.19) centered at the point z = yr .
From (4.38), (4.12), and (4.13), we have

| Ã j | − |A j | ≤ −(L(cν) −U (ε))σ j r
n−1.

Moreover, from (4.39) and (4.11) we can estimate

∣∣|Ṽ j ∩ C(yr , r)| − |Vj ∩ C(yr , r)|
∣∣ ≤ εσ j r

n−1.

Thus, using the fact that |� j | = M for all j ∈ N, and that m < | Ã j | < |A j | (by
choosing σ j and ε small enough), we obtain

∣∣| Ã j | − m
∣∣+ ∣∣|�̃ j | − M

∣∣− ∣∣|A j | − m
∣∣− ∣∣|� j | − M

∣∣ = ∣∣|�̃ j | − |� j |
∣∣+ | Ã j | − |A j |

= ∣∣|Ṽ j ∩ C(yr , r)| − |Vj ∩ C(yr , r)|
∣∣+ | Ã j | − |A j |

≤ −(L(cν) −U (ε) − ε)σ j r
n−1.

Therefore, by choosing ε > 0 small enough we get (4.21), as desired.
Case 2. Finally, assume that νA(x) ·en = 0 for all x ∈ ∂∗A∩∂∗B. The construction

in this case is similar to the one in Step 6, Case 2. Since 0 < m < M , we get that there
exist x1 ∈ ∂∗A∩ ∂∗V and x2 ∈ ∂∗B ∩ ∂∗V . We let, for r > 0, y1r and y2r be the points
defined by (4.23) corresponding to the choice of ν�(x1) and ν�(x2), respectively, and

E1
r := {(x − x1) · ν�(x1) < 0} ∩ C(y1r , r), E2

r := {(x − x2) · ν�(x2) < 0} ∩ C(y2r , r).
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We let μ := cν�(x1) > 0, where the constant cν , for a vector ν, is defined in (4.24). As
in the previous cases, for fixed ε > 0, we can find r > 0 and j0 ∈ N such that for all
j ≥ j0 we have

|
(
� j ∩ C(y1r , r)

)
�E1

r | < εrn, |A j ∩ C−(y1r , r)| > μrn, |A j ∩ C+(y1r , r)| < εrn

(4.40)

and

|
(
� j ∩ C(y2r , r)

)
�E2

r | < εrn, |A j ∩ C(y2r , r)| < εrn . (4.41)

By reducing the value of r > 0, we can further assume that the two cylinders C(y1r , r)
and C(y2r , r) are disjoint and do not intersect the substrate. For a fixed sequence
{σ 1

j } j∈N ⊂ (0, r), we define a second sequence {σ 2
j } j∈N as

σ 2
j := −ασ 1

j , where α :=
∫
E1
r −y1r

(
1 − |x ′|

r

)
dx

∫
E2
r −y2r

(
1 − |x ′|

r

)
dx

(4.42)

for each j ∈ N. Notice that σ 2
j < 0 and that α is independent of r by scale invariance.

Then, we consider the configuration ũ j obtained by applying to u j the composition
of the perturbations y1r + �σ 1

j
(· − y1r ), y

2
r + �σ 2

j
(· − y2r ). We denote the sets of the

new partition determined by ũ j by Ã j , B̃ j , �̃ j = Ã j ∪ B̃ j , Ṽ j .
Wefirst consider the variation of the volume of A j . By using the last two inequalities

in (4.40) and the last inequality in (4.41), together with (4.12), (4.13), (4.11), we get

| Ã j | − |A j | ≤ −(L(μ) −U (ε)
)
σ 1
j r

n−1 + ε|σ 2
j |rn−1. (4.43)

The choice (4.42) guarantees that

(
|�σ 1

j
(E1

r − y1r )| − |E1
r |
)

+
(
|�σ 2

j
(E2

r − y2r )| − |E2
r |
)

= −σ 1
j

r

∫

E1
r −y1r

(
1 − |x ′|

r

)
dx − σ 2

j

r

∫

E2
r −y2r

(
1 − |x ′|

r

)
dx = 0,

therefore by arguing as in (4.36) we find

∣∣|�̃ j | − |� j |
∣∣ ≤ ε(σ 1

j + |σ 2
j |)rn−1 = ε

(
1 + α

)
σ 1
j r

n−1, (4.44)

and in turn, similarly to (4.37) (using (4.22) (4.43), and (4.44))

Hλ j (̃u j ) − Hλ j (u j ) ≤
[
C(1 + α) − λ j

(
L(μ) −U (ε) − αε − (1 + α)ε

)
rn−1

]
σ 1
j .
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We can therefore choose ε > 0 small enough so that the constant multiplying λ j

is strictly negative; as λ j → +∞, this provides the desired contradiction with the
minimality of u j . ��
The result of Lemma 4.2 together with the Lipschitz continuity assumption (2.16) of
the term N (·) easily yields the quasi-minimality of solutions to (4.1).

Proposition 4.3 Let u be a solution to the minimum problem (4.1). Then, u is a quasi-
minimizer for the surface energy G , according to Definition 4.1.

A standard truncation argument shows that quasi-minimizers are bounded.

Proposition 4.4 (Boundedness) Let u ∈ A�,M. Then, hu ∈ L∞(QL).

Proof The boundedness is a consequence of the finiteness of the volume of�hu and of
the following elimination-type property: there exists ε > 0 and t0 > 0, depending on
n, � and on the surface tension coefficients, such that if u ∈ A�,M and |�hu ∩ {xn >

t̄}| < ε for some t̄ > 0, then |�hu ∩ {xn > t̄ + t0}| = 0.
To show this, define m(t) := |�hu ∩ {xn > t}|, suppose that m(t̄) < ε and notice

that for a.e. t > 0 it holds m′(t) = −Hn−1(�
(1)
hu

∩ {xn = t}). By comparing with the
configuration v := uχ{xn≤t}, using the quasi-minimality of u and choosing ε small

enough, by standard computations one obtains the differential inequality m(t)
n−1
n ≤

−Cm′(t) for a.e. t > t , that allows to conclude that m(t) = 0 for t > t + Cε
1
n by

integration. ��

4.2 Partial Regularity of Quasi-Minimizers in Dimension 2

From now on, we assume that the dimension of the space is n = 2. We also assume
that the surface tension coefficients satisfy the strict triangle inequalities

σAB < σA + σB, σA < σB + σAB, σB < σA + σAB . (4.45)

Under these assumptions we will show a series of regularity properties satisfied by a
quasi-minimizer u of the surface energy G , according to Definition 4.1. Notice that
for u ∈ A�,M we have a uniform bound

sup
u∈A�,M

(
|�hu | + H1(�hu )

)
≤ C

for a constant C depending on M , � and on the surface tension coefficients. In two
dimensions, this bound immediately yields boundedness from above of the film, that
is there exists M > 0 (depending on M , � and on the surface tension coefficients)
such that

�hu ⊂ [0, L] × [0, M] for all u ∈ A�,M . (4.46)

The first regularity fact that we establish is an elimination property for the empty
region above the film, in the spirit of Leonardi (2001).
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Proposition 4.5 (Infiltration for V ) Let u ∈ A�,M. There exists ε1 > 0, depending
on �, M, and on the surface tension coefficients, such that if for some z0 ∈ R

2 and
r ∈ (0, 1)

|V #
u ∩ Qr (z0)| < ε1r

2, (4.47)

where Qr (z0) := z0 + rQ and Q := (− 1
2 ,

1
2 ) × (− 1

2 ,
1
2 ), then

|V #
u ∩ Q r

2
(z0)| = 0. (4.48)

Proof Let C− := (− 1
2 ,

1
2

) × (−∞, 1
2

)
and, for z0 ∈ R

2 and r > 0, set C−
r := rC−,

C−
r (z0) := z0 +C−

r . Along the proof, to lighten the notation we will drop the subscript
u from the sets (2.11) of the partition determined by u and from the corresponding
interfaces (2.13)–(2.14). The proof is divided into two steps.
Step 1: infiltration in strips. We first show that there exists ε̃1 > 0, depending on �

and on the surface tension coefficients, such that for every z0 ∈ R
2 and r ∈ (0, 1) the

following implication holds:

|V # ∩ C−
r (z0)| < ε̃1r

2 �⇒ |V # ∩ C−
3
4 r

(z0)| = 0. (4.49)

We assume for notation convenience, and without loss of generality, that C−
r (z0) ⊂

(0, L) × R; the general case is obtained by periodicity. For s ∈ [0, r ] we let m(s) :=
|V ∩C−

s (z0)|, so that m(r) ≤ ε̃1r2 by the assumption. The function m(s) is monotone
nondecreasing, with

m′(s) = 1

2
H1(∂C−

s (z0) ∩ V (1)) forL 1 − almost every s > 0. (4.50)

Fix now s ∈ (0, r) such that (4.50) holds and H1(Ju ∩ ∂C−
s (z0)) = 0 (notice that

L 1-almost every s > 0 has this property). We define a competitor by “filling” the
empty region in C−

s (z0) above the substrate by the phase A or B. More precisely,
assume that

H1(�B ∩ C−
s (z0)) ≤ H1(�A ∩ C−

s (z0)) (4.51)

and define

us(z) :=
{
1 if z ∈ V ∩ C−

s (z0),

u(z) otherwise

(which corresponds to fill the region V ∩ C−
s (z0) by the phase A). The proof in the

other case, when one has the opposite inequality in (4.51), follows similarly by filling
V ∩ C−

s (z0) by the phase B.
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We then have Aus = A ∪ (V ∩ C−
s (z0)), Bus = B, and Aus ∪ Bus is the subgraph

of an admissible profile; therefore us ∈ X is an admissible configuration and by
quasi-minimality of u we find

G (u) ≤ G (us) + �
(|Aus�A| + |Bus�B|)

≤ G (u) − σAH1(�A ∩ C−
s (z0)) + (σAB − σB)H1(�B ∩ C−

s (z0))

+ σAH1(V (1) ∩ ∂C−
s (z0)) + (σAS − σS)H1(SV ∩ C−

s (z0)) + �m(s).

(4.52)

Observe now that by (4.51)

−σAH1(�A ∩ C−
s (z0)) + (σAB − σB)H1(�B ∩ C−

s (z0))

≤ −σAH1(�A ∩ C−
s (z0)) + max{σAB − σB, 0}H1(�A ∩ C−

s (z0))

= −2c1H1(�A ∩ C−
s (z0)) ≤ −c1

(H1(�A ∩ C−
s (z0))

+ H1(�B ∩ C−
s (z0))

)

where we set c1 := − 1
2 max{σAB −σB −σA,−σA} > 0 thanks to the strict triangular

inequality between the coefficients. Hence,

−σAH1(�A ∩ C−
s (z0)) + (σAB − σB)H1(�B ∩ C−

s (z0)) − σSH1(SV ∩ C−
s (z0))

≤ −min{c1, σS}
(H1(�A ∩ C−

s (z0)) + H1(�B ∩ C−
s (z0)) + H1(SV ∩ C−

s (z0))
)

= −min{c1, σS}P(V ; C−
s (z0)) = −min{c1, σS}

(
P(V ∩ C−

s (z0)) − 2m′(s)
)

≤ −c2|V ∩ C−
s (z0)| 12 + c3m

′(s) = −c2m(s)
1
2 + c3m

′(s),
(4.53)

where we used the isoperimetric inequality in the last inequality, and c2, c3 are positive
constants depending on the surface tension coefficients. Furthermore, by the geometry
of the set V we have H1(SV ∩ C−

s (z0)) ≤ H1(V (1) ∩ ∂C−
s (z0)), hence

σAH1(V (1) ∩ ∂C−
s (z0)) + σASH1(SV ∩ C−

s (z0)) ≤ (σA + σAS)H1(V (1) ∩ ∂C−
s (z0))

= 2(σA + σAS)m
′(s).

(4.54)

By inserting (4.53)–(4.54) into (4.52) and setting c4 := c3 + 2(σA + σAS), we find

c2m(s)
1
2 ≤ c4m

′(s) + �m(s) ≤ c4m
′(s) + �m(s)

1
2m(r)

1
2

≤ c4m
′(s) +

√
ε̃1�m(s)

1
2 r .

The previous estimate holds for almost every s ∈ (0, r) obeying (4.51), but one can
obtain the same estimate also for almost every s satisfying the opposite inequality
(with possibly different constants c2, c4). Therefore

(
c2 −

√
ε̃1�

)
m(s)

1
2 ≤ c4m

′(s) for a.e. s ∈ (0, r).
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Then, by choosing ε̃1 > 0 small enough, depending on � and on the surface tension
coefficients, we obtain that

m(s)
1
2 ≤ Cm′(s) for a.e. s ∈ (0, r),

for a constant C > 0 depending only on the surface tension coefficients. From this, it
is easy to obtain by integration that m( 34r) = 0, which proves the implication (4.49).
Step 2. We now claim that there exists ε1 > 0 such that

|V # ∩ Qr (z0)| < ε1r
2 �⇒ |V # ∩ C−

3
4 r

(z0)| < ε̃1

(3
4
r
)2

, (4.55)

where ε̃1 is given by the previous step. Once this claim is proved, the conclusion of the
proposition follows easily by combining this property with Step 1. Let us now prove
(4.55). As before by periodicity we can assume Qr (z0) ⊂ (0, L) × R. We denote
by Q′

r (z0) := z0 + (− r
2 ,

r
2 ) × {− r

2 } the bottom side of the square Qr (z0). We first
observe that, by the geometry of the set V , we have

H1(V (1) ∩ Q′
r (z0)) ≤ |V ∩ Qr (z0)|

r
≤ ε1r . (4.56)

Then (assuming without loss of generality that ε1 < 1
8 ) we can find ρ ∈ ( 34r , r) such

that the two points z0 + (−ρ
2 ,− r

2 ), z0 + (
ρ
2 ,− r

2 ), onQ′
r (z0), are not points of density

one for V . We then consider the strip U := C−
ρ (z0)\Qr (z0) and, by the choice of ρ,

it follows that the lateral boundary of U is outside V (1), hence

H1(V (1) ∩ ∂U ) ≤ H1(V (1) ∩ Q′
r (z0))

(4.56)≤ ε1r . (4.57)

We can further assume that

H1(Ju ∩ ∂C−
ρ (z0)) = 0, (4.58)

since this is valid for L 1-almost every ρ ∈ (0, r). To continue, we assume that

H1(�A ∩U ) ≤ H1(�B ∩U ) (4.59)

and we construct a competitor by filling the region V ∩ U by the phase B (the proof
in the other case, when one has the opposite inequality in (4.59), follows similarly by
filling V ∩U by the phase A): we define

ũ(z) :=
{

−1 if z ∈ V ∩U ,

u(z) otherwise.
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Since ũ ∈ X is admissible, by quasi-minimality of u we find, similarly to (4.52),

G (u) ≤ G (u) + (σAB − σA)H1(�A ∩U ) − σBH1(�B ∩U )

+ σBH1(V (1) ∩ ∂U ) + (σBS − σS)H1(SV ∩U ) + �|V ∩U |, (4.60)

and in turn, arguing similarly to the proof of (4.53), using the assumption (4.59),

(σAB − σA)H1(�A ∩U ) − σBH1(�B ∩U ) − σSH1(SV ∩U )

≤ −c2|V ∩U | 12 + c1H1(V (1) ∩ ∂U ),

where c1, c2 are strictly positive constants depending on the surface tension coeffi-
cients. By inserting this inequality into (4.60) we obtain

c2|V ∩U | 12 ≤ (c1 + σB)H1(V (1) ∩ ∂U ) + σBSH1(SV ∩U ) + �|V ∩U |.

Now observe that, by the geometry of the set V , we have H1(SV ∩U ) ≤ H1(V (1) ∩
Q′

r (z0)); hence from the previous inequality and (4.57) it follows that

c2|V ∩U | 12 ≤ (c1 + σB + σBS)ε1r + �|V ∩U |.

Finally, observe that by using the uniform bound (4.46) and the vertical geometry of V
we have |V ∩U | ≤ MH1(V (1) ∩ Q′

r (z0)) ≤ ε1Mr , so that by inserting this estimate
in the previous inequality we obtain

c2|V ∩U | 12 ≤ (c1 + σB + σBS)ε1r + ε1�Mr ,

that is, |V ∩ U | ≤ Cε21r
2 for some constant C > 0 depending on �, M and on the

surface tension coefficients (recall that the bound M in (4.46) depends only on these
quantities). Eventually

|V ∩ C−
3
4 r

(z0)| ≤ |V ∩U | + |V ∩ Qr (z0)| ≤ Cε21r
2 + ε1r

2 ≤ ε̃1

(3
4
r
)2

,

provided that we choose ε1 small enough. This completes the proof of (4.55). ��
We also have a dual statement for the region occupied by the film. The proof follows

by the same argument used in the proof of Proposition 4.5. However, since we can
obtain this result as a consequence of the stronger property proved in Proposition 4.8,
we omit the proof.

Proposition 4.6 (Infiltration for A∪B) Let u ∈ A�,M. There exists ε2 > 0, depending
on �, M, and on the surface tension coefficients, such that if for some z0 ∈ R

2 and
r ∈ (0, 1) such that Qr (z0) ∩ S = ∅ we have

|�#
hu ∩ Qr (z0)| < ε2r

2, (4.61)

123



   93 Page 44 of 53 Journal of Nonlinear Science            (2022) 32:93 

then

|�#
hu ∩ Q r

2
(z0)| = 0. (4.62)

Remark 4.7 It is worth to notice that, in the proof of Proposition 4.5 (and also of
Proposition 4.6), the constraint of being subgraphs prevents us to construct competitors
bymeans of local variations in a squareQr (z0), but imposes to consider the full vertical
region below or above the square. Notice also that, if a single set �h is a quasi-
minimizer of the perimeter in the class of subgraphs, a standard argument (Giusti
1984, Theorem 14.8) shows that it is actually a quasi-minimizer among all possible
competitors of finite perimeter, without the constraint (we will exploit this fact in the
proof of Proposition 4.12). However, in our case we have a partition of the subgraph
into two sets A, B of finite perimeter, and this argument fails due to the presence of
different types of interfaces between the phases.

We continue by proving that a quasi-minimizer satisfies an interior ball condition.
The proof of this result follows a strategy devised in Chambolle and Larsen (2003)
(see also Fonseca et al. 2007; Fusco and Morini 2012) and adapted to our setting. For
the reader’s convenience, we report here the details of the main nontrivial technical
changes that have to be made. Since we are in dimension 2, the function h−

u (see (2.1))
is a lower semicontinuous representative of hu ; in the following it will be convenient
to identify hu with h−

u , so that in particular the subgraph �#
hu

is an open set. From
now on, we work under this convention.

Proposition 4.8 (Interior ball) Let u ∈ A�,M and let ρ0 <
min{σA,σB }

�
. Then, for every

z̄ ∈ �#
hu

there exists an open ball Bρ0(z0) such that

Bρ0(z0) ⊂ {
(x, y) ∈ R

2 : y < hu(x)
}
, ∂Bρ0(z0) ∩ �#

hu = {z̄}. (4.63)

Proof We divide the proof into two steps. To simplify the notation, we drop the sub-
scripts on the various objects depending on u, which is fixed along this proof. We also
denote by

�−
h := {

(x, y) ∈ R
2 : y < h(x)

}
(4.64)

where h = hu is the profile associated with the configuration u. Recall that, by the
convention of identifying h with its lower semicontinuous representative h−, the set
�−

h is open.
Step 1. We claim that for every ball Bρ0(z0) ⊂ �−

h , where ρ0 is as in the statement,
the set ∂Bρ0(z0) ∩ �#

h consists of at most one point.
Suppose on the contrary that there exists a ball Bρ(z0) ⊂ �−

h , z0 = (x0, y0),
such that ∂Bρ(z0) ∩ �#

h contains at least two points a = (xa, ya), b = (xb, yb), with
xa ≤ xb, h−(xa) ≤ ya ≤ h+(xa), h−(xb) ≤ yb ≤ h+(xb). We will prove that this
is not possible if ρ ≤ ρ0. By periodicity, we assume without loss of generality that
Bρ(z0) ⊂ (0, L) × R.
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Fig. 5 The construction in the proof of Proposition 4.8

We define (see Fig. 5) �a,b to be the arc on �h connecting a with b, and γa,b to
be the arc on ∂Bρ(z0) ∩ {y ≥ y0} connecting a with b. Notice that by construction
�a,b lies above γa,b. We also let D to be the region enclosed by �a,b and γa,b (i.e., the
bounded component of R2\(�a,b ∪ γa,b)). Also let

LA := H1(�a,b ∩ �A), LB := H1(�a,b ∩ �B), L := LA + LB = H1(�a,b),

�A := H1(γa,b ∩ ∂∗(A ∩ Bρ(z0))
)
, �B := H1(γa,b) − �A, � := �A + �B = H1(γa,b).

We construct a competitor by removing the set D from the subgraph �h : more
precisely, we define ũ := uχDc . In this way ũ is an admissible configuration, Aũ =
A\D, Bũ = B\D, and the profile hũ coincides with h outside [xa, xb], and its graph
on [xa, xb] is given by γa,b. Then, by using the quasi-minimality of u we obtain

G (u) ≤ G (ũ) + �|D| = G (u) − σAL A − σB LB

− σABH1(�AB ∩ D) + σA�A + σB�B + �|D|,

hence

σA(L A − �A) + σB(LB − �B) + σABH1(�AB ∩ D) ≤ �|D|. (4.65)

To continue, we distinguish between two cases.
Case 1: assume that �A ≤ L A, �B ≤ LB . In this case we obtain from (4.65)

min{σA, σB}(L − �) ≤ �|D|. (4.66)

We estimate the difference L − � as in (Fusco and Morini (2012), Lemma 6.6); we
reproduce the argument here for the reader’s convenience. Assume first that h is
Lipschitz continuous. Since �a,b and γa,b are the graphs on [xa, xb] of h and hũ ,
respectively, and h(xa) = hũ(xa), h(xb) = hũ(xb), we have

123



   93 Page 46 of 53 Journal of Nonlinear Science            (2022) 32:93 

L − � = H1(�a,b) − H1(γa,b) =
∫ xb

xa

(√
1 + (h′(x))2 −

√
1 + (h′

ũ(x))
2
)
dx

≥ −
∫ xb

xa

(
h′
ũ(x)√

1 + (h′
ũ(x))

2

)′(
h(x) − hũ(x)

)
dx = 1

ρ
|D|.

By combining this inequality with (4.66), we see that necessarily ρ ≥ min{σA,σB }
�

.
Therefore, any ball Bρ0(z0) ⊂ �−

h can touch the graph �#
h at most once.

If h is not Lipschitz, thenwe can approximate h by a sequence of Lipschitz functions
gk as in (Fusco and Morini (2012), Lemma 6.2), write the previous inequality for gk
and obtain the same conclusion by passing to the limit.
Case 2: assume that �A > L A, �B ≤ LB (the other case, �A ≤ L A and �B > LB , is
completely analogous). In this case, thanks to the triangle inequality σA < σB + σAB

(see (4.45)), we find by (4.65)

(σB + σAB)(L A − �A) + σB(LB − �B) + σABH1(�AB ∩ D) ≤ �|D|,

and in turn

σB(L − �) + σAB(L A − �A + H1(�AB ∩ D)) ≤ �|D|.

One can check that

LA − �A + H1(�AB ∩ D) ≥ 0 (4.67)

(this inequality follows essentially by (Maggi (2012), Ex. 15.14)). Therefore, using
(4.67) it follows thatσB(L−�) ≤ �|D| and in particular (4.66) holds.We can therefore
repeat the same argument as in the previous case.
Step 2. By the result in Step 1, the existence of an interior ball at every point of �#

h can
be proved by following the same lines as in (Chambolle and Larsen (2003), Lemma 2)
or (Fonseca et al. (2007), Proposition 3.3, Step 2). ��

As a consequence of the interior ball condition proved in Proposition 4.8, we obtain
the Lipschitz regularity of the free profile �#

hu
of a quasi-minimizer u outside a finite

set. The proof is an adaptation of the strategy of (Chambolle and Larsen (2003),
Lemma 3).

Proposition 4.9 (Lipschitz regularity)Let u ∈ A�,M. There exists a finite set� ⊂ QL,
with Jhu ⊂ �, such that hu is locally Lipschitz in QL\� and has left and right
derivatives at every point of QL\�, that are, respectively, left and right continuous.

Proof We denote by h := hu the admissible profile associated with the configuration
u. For z ∈ �#

h , we let

n(z) := {
ν ∈ S

1 : Bρ0(z + ρ0ν) ⊂ �−
h

}
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where ρ0 > 0 is given by Proposition 4.8 and �−
h is defined in (4.64). In view of

Proposition 4.8, n(z) �= ∅ for all z ∈ �#
h . Notice also that, if ν ∈ n(z) for some z, then

necessarily ν · e2 ≤ 0 (or otherwise �#
h would not be an extended graph). We define

the singular set

� := πx
({
z ∈ �h : e1 ∈ n(z) or − e1 ∈ n(z)

}) ⊂ QL , (4.68)

where πx denotes the projection on the x-axis, and by �# its periodic extension.
Similarly to (Chambolle and Larsen (2003), Lemma 3), one can show that the set

n(z) is a closed (possibly degenerate) arc on S
1 with length strictly smaller than π .

In turn, this allows to show that � is a finite set with Jh ⊂ �, and that h is locally
Lipschitz in R\�#. ��
Remark 4.10 The points in the singular set � identified in Proposition 4.9 are of two
possible kinds: they are either jump points of the function hu , or continuity points of hu
at which the left or the right derivative of hu is infinite. At the upper point (x, h+

u (x))
of a jump x ∈ Jhu , the graph has a vertical tangent. Notice also that the graph of hu
does not contain cusp points as a consequence of the infiltration property and the inner
ball condition (see Step 1 in the proof of Proposition 4.9).

Remark 4.11 Let u ∈ A�,M . Since the set �#
h = {(x, y) ∈ R

2 : 0 < y < h(x)}
is open, A is a quasi-minimizer of the perimeter in �#

h in the classical sense.
Thus, it is possible to apply standard regularity results (see (Maggi 2012, Theo-
rems 26.5 and 28.1)) to obtain that �AB

u is a locally a C1,α-curve in �#
h for every

α ∈ (0, 1/2), and that it coincides with ∂A ∩ ∂B in �#
h .

Finally, we show that the graph as a better regularity around points of ∂∗A ∪ ∂∗B.
Notice that if hu(x0) = 0, then (x0, hu(x0)) /∈ ∂∗A ∪ ∂∗B, or otherwise Vu would
have Lebesgue density zero at that point, which is not permitted by the infiltration
property in Proposition 4.5.

Proposition 4.12 Let u ∈ A�,M. If x0 ∈ QL\� is such that (x0, hu(x0)) ∈ ∂∗A∪∂∗B,
then hu is of class C1,α in a neighborhood of x0, for every α ∈ (0, 1/2).

Proof To simplify the notation, we denote by h := hu the admissible profile asso-
ciated with the configuration u, and we remove the subscript u from the sets of the
corresponding partition. Recalling (4.45), we let

δ := min{σAB + σA − σB, σAB, σA} > 0. (4.69)

Step 1. Fix x0 as in the statement and let z0 := (x0, h(x0)). Thanks to Proposition 4.9
we can find r0 > 0 (depending on x0) such that h is Lipschitz continuous in (x0 −
r0, x0 + r0), with Lipschitz constant � ∈ (0,∞). For s > 0, set Rs := z0 + sR, where
R := (−1, 1) × (−2�, 2�). Then,

�h ∩ ∂±Rs = ∅ (4.70)
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for all s ∈ (0, r0), where ∂±Rs := z0 + (−s, s) × {±2�s}. Moreover, by possibly
reducing the value of r0, we can also assume that Rs ∩ S = ∅.

We now prove an infiltration-type property, similar to Proposition 4.5, for the two
phases A, B at the point z0. Precisely, we claim that there exists ε > 0 (depending on
z0) such that if

|A ∩ Rr | ≤ εr2, (4.71)

for some 0 < r < r0, then

|A ∩ Rr/2| = 0. (4.72)

The same property holds if the set A is replaced by the set B.
For s ∈ (0, r0) set m(s) := |A ∩ Rs |. Then, forL 1-a.e. s ∈ (0, r0) we have that

m′(s) = 2�H1(A(1) ∩ (∂+Rs ∪ ∂−Rs)) + H1(A(1) ∩ ∂Rs\(∂+Rs ∪ ∂−Rs))

(4.73)

and that

H1(∂Rs ∩ (∂∗A ∪ ∂∗B)) = 0. (4.74)

We claim that there exist C1,C2 > 0 such that for s ∈ (0, r0) satisfying (4.73) and
(4.74), the following differential inequality is true:

C1m(s)
1
2 ≤ C2m

′(s) + 3�m(s). (4.75)

Once (4.75) is established, (4.72) will follow by a standard argument by using (4.71)
and choosing ε sufficiently small, as in the last part of Step 1 in the proof of Proposi-
tion 4.5.

We are thus left with proving (4.75). The idea is to construct a suitable competitor
and to use the quasi-minimality inequality for u; we have to pay attention that the
competitor satisfies the graph constraint. If

H1(�A ∩ Rs) > H1(�AB ∩ Rs) (4.76)

then we set (see Fig. 6)

As := A\Rs, Bs := (B\Rs) ∪ (B ∩ Rs)
G , (4.77)

where for a measurable set E ⊂ Rs we define

EG := {
(x, y) ∈ Rs : h(x0) − 2�s ≤ y ≤ h(x0) − 2�s + H1(Ex )

}
, (4.78)
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Fig. 6 The construction of the competitor in the caseH1(�A ∩ Rs ) > H1(�AB ∩ Rs ): we remove A∩ Rs
and we “move down” B ∩ Rs

with Ex := {t ∈ R : (x, t) ∈ E}. In the case where

H1(�A ∩ Rs) ≤ H1(�AB ∩ Rs) (4.79)

we set instead

As := A\Rs, Bs := B ∪ (A ∩ Rs) . (4.80)

Note that the configuration vs = χAs − χBs is an admissible competitor for the quasi-
minimality inequality in Definition 4.1. In the first case, this follows from (4.70), while
in the second case the free profile of the configuration is left unchanged. Denote by
hs : QL → [0,∞) the admissible profile such that �hs = As ∪ Bs .

Assume that (4.76) holds, and thus As and Bs are defined as in (4.77). Then, by an
argument similar to (Giusti (1984), Lemma 14.7) one can prove that

H1 (∂∗Bs ∩ Rs
) ≤ H1(∂∗B ∩ Rs) + H1(A(1) ∩ ∂−Rs). (4.81)

Moreover, one can check that

|h+
s (x0 − s) − h−

s (x0 − s)| + |h+
s (x0 + s) − h−

s (x0 + s)| ≤ H1(A(1) ∩ ∂Rs)
(4.73)≤ m′(s),

(4.82)

and that

|Bs�B| ≤ 2|A ∩ Rs | = 2m(s). (4.83)
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The quasi-minimality of u, together with (4.73), (4.74), (4.81), (4.82), and (4.83),
yields

σAH1(�A ∩ Rs) + σBH1(�B ∩ Rs) + σABH1(�AB ∩ Rs)

≤ σBH1(∂∗Bs ∩ Rs) + max{σA, σAB}H1(A(1) ∩ ∂Rs)

+ max{σA, σB}(|h+
s (x0 − s) − h−

s (x0 − s)| + |h+
s (x0 + s) − h−

s (x0 + s)|)

+ �m(s) + �|Bs�B|
≤ σBH1(�B ∩ Rs) + σBH1(�AB ∩ Rs) + 3max{σA, σB , σAB}m′(s) + 3�m(s).

(4.84)

By using (4.69), (4.76), and the isoperimetric inequality, we estimate

σAH1(�A ∩ Rs) + (σAB − σB)H1(�AB ∩ Rs)

≥ σAH1(�A ∩ Rs) + min{σAB − σB, 0}H1(�A ∩ Rs)

≥ δH1(�A ∩ Rs) ≥ δ

2
H1(�AB ∩ Rs) + δ

2
H1(�A ∩ Rs)

= δ

2

(
P(A ∩ Rs) − H1(A(1) ∩ ∂Rs)

)
≥ C

(
m(s)

1
2 − m′(s)

)
.

(4.85)

By inserting (4.85) into (4.84) we obtain the desired inequality (4.75) in the case where
assumption (4.76) holds.

Assume now that (4.79) is in force, and thus As and Bs are defined as in (4.80). In
this case, the quasi-minimality inequality for u yields, using also (4.73) and (4.74),

σAH1(�A ∩ Rs) + σABH1(�AB ∩ Rs) ≤ σBH1(�A ∩ Rs) + σABH1(A(1) ∩ ∂Rs) + 2�m(s)

≤ σBH1(�A ∩ Rs) + σABm
′(s) + 2�m(s). (4.86)

By using (4.69), (4.79), and the isoperimetric inequality, we estimate (with similar
computations as those used to get (4.85))

(σA − σB)H1(�A ∩ Rs) + σABH1(�AB ∩ Rs) ≥ C
(
m(s)

1
2 − m′(s)

)
. (4.87)

By inserting (4.87) into (4.86) we obtain the desired inequality (4.75) also in the case
where assumption (4.79) holds.
Step 2. We conclude as follows. Let x0 be as in the statement, and let z0 :=
(x0, h(x0)) ∈ ∂∗A ∪ ∂∗B. Assume z0 ∈ ∂∗B. Let r0 > 0 be as in Step 1, so that
h is Lipschitz continuous in (x0 − r0, x0 + r0) with Lipschitz constant �. Let also
ε > 0 be given by Step 1. Then, since z0 ∈ ∂∗B∩∂∗V , it is possible to find r ∈ (0, r0)
such that |A ∩ Rr (z0)| < εr2. From Step 1 we get that |A ∩ Rr/2| = 0. This implies
that in Rr/2 there are only the sets V and B. In particular, we also have ∂+Rr/2 ⊂ B(0),
∂−Rr/2 ⊂ B(1) (recall (4.70)), and B ∩ Rr/2 is the subgraph of a function of bounded
variation.

Let now E ⊂ Rr/2 be any set of finite perimeter such that E�B ⊂⊂ Rr/2, and
let EG be the set defined in (4.78). We can test the quasi-minimality inequality with

123



Journal of Nonlinear Science            (2022) 32:93 Page 51 of 53    93 

the competitor obtained by replacing the phase B ∩ Rr/2 by EG , which is admissible
since it satisfies the graph constraint. We therefore find

σBP(B; Rr/2) ≤ σBP(EG; Rr/2) + �|(EG�B) ∩ Rr/2|. (4.88)

We observe now that, similarly to (4.81), we have P(EG; Rr/2) ≤ P(E; Rr/2);
moreover (since B ∩ Rr/2 = (B ∩ Rr/2)

G ) we also have

|(EG�B) ∩ Rr/2| = |EG�(B ∩ Rr/2)
G | = |EG | + |(B ∩ Rr/2)

G | − 2|EG ∩ (B ∩ Rr/2)
G |

≤ |E | + |B ∩ Rr/2| − 2|E ∩ (B ∩ Rr/2)| = |E�(B ∩ Rr/2)|.

Then, inserting the previous inequalities inside (4.88) we find

P(B; Rr/2) ≤ P(E; Rr/2) + �

σB
|(E�B) ∩ Rr/2|

for every set of finite perimeter E ⊂ Rr/2 such that E�B ⊂⊂ Rr/2. This shows that B
is a quasi-minimizer of the perimeter inside Rr/2 in the classical sense, that is without
the graph constraint. Thus, the regularity of �h ∩ Rr/2 = ∂∗B ∩ Rr/2 follows from
classical regularity results for quasi-minimizers of the perimeter (see, for instance,
(Maggi 2012, Theorems 26.5 and 28.1)). This concludes the proof. ��

By collecting all the previous statements, we obtain the properties listed in Theo-
rem 1.1.

Proof of Theorem 1.1 The infiltration property (i) follows by Proposition 4.5 and
Proposition 4.6. The Lipschitz regularity (ii) and the characterization of the singu-
lar set (iii) are proved in Proposition 4.9 and Remark 4.10. The internal regularity of
the interface (iv) is discussed in Remark 4.11. The C1,α-regularity of the graph (v) is
proved in Proposition 4.12. ��
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