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Abstract

The thesis is divided into two parts concerning different topics. The
first is solving a multi-period portfolio decision problem, and the second,
more theoretical, is a numerical comparison of uncertainty measures within
evidence theory.
Nowadays, portfolio problems are very common and present in several fields
of study. The problem is inspired by a real-world infrastructure manage-
ment case in the energy distribution sector. The problem consists of the
optimal selection of a set of activities and their scheduling over time. In
scheduling, various constraints and limits that the company has to meet
must be considered, and the selection must be based on prioritizing the
activities with a higher priority value. The problem is addressed by Port-
folio Decision Analysis: the priority value of activities is assigned using
the Multi-Attribute Value Theory method, which is then integrated with
a multi-period optimization problem with activities durations and con-
straints. Compared to other problems in the literature, in this case, the ac-
tivities have different durations that must be taken into account for proper
planning. The planning obtained is suitable for the user’s requirements
both in terms of speed in providing results and in terms of simplicity and
comprehensibility.
In recent years, measures of uncertainty or entropy within evidence theory
have again become a topic of interest in the literature. However, this has
led to an increase in the already numerous measures of total uncertainty,
that is, one that considers both conflict and nonspecificity measures. The
research aims to find a unique measure, but none of those proposed so far
can meet the required properties. The measures are often complex, and
especially in the field of application, it is difficult to understand which is
the best one to choose and to understand the numerical results obtained.



Therefore, a numerical approach that compares a wide range of measures
in pairs is proposed alongside comparisons based on mathematical proper-
ties. Rank correlation, hierarchical clustering, and eigenvector centrality
are used for comparison. The results obtained are discussed and com-
mented on to gain a broader understanding of the behavior of the measures
and the similarities and non-similarities between them.

Keywords
Portfolio decision analysis, investment planning, evidence theory, uncer-
tainty measures
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Chapter 1

Introduction

The organization and scheduling of projects are everyday problems for busi-
nesses, professionals, and technicians. It is a process that involves numer-
ous stakeholders and burdens the so-called decision-makers, that is, those
who have to finalize the planning of interventions, activities, economic in-
vestments, and the use of materials and resources. Recent decades have
increased the difficulties of this type of operation. Enterprises have become
increasingly large and complex, and often the activities they deal with are
interdependent and involve several experts. For example, these situations
are found in many different sectors such as energy, military, healthcare, in-
frastructure, and business. In general, the ultimate goal of project schedul-
ing is optimization. The concept of optimization covers several areas, such
as resource utilization, economic and financial aspects, and compliance
with regulatory criteria or a company’s mission. One of the sciences that
have addressed these purposes over the past 70 years is Operations Re-
search (OR). Through transposing problems into mathematical terms and
solving algorithms, this subject can optimize the outcome by taking into
account the factors involved. Since the end of World War II, during which
OR was invented, numerous studies have been conducted. However, the
increasing complexity of decision-making processes does not always yield
satisfactory results. For this reason, the study of resource allocation has
led to the use of various expertise. In particular, the development in the
last decade of Portfolio Decision Analysis (PDA) has enabled the integra-
tion of Decision Analysis with Operations Research. The applications of
PDA are many and are found in various fields, so the scope of study is very
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broad although still young, and allows problems with hundreds of activi-
ties to be addressed. However, since these are mainly applications to real
situations, many variables may be encountered, e.g., different objectives to
be optimized, constraints, and characteristics of activities. For this reason,
there is still a wide scope of study to enable comprehensive support for
practical applications.

One of the elements that can make resource management and allocation
problems more complex is uncertainty. In the case of PDA, this is the un-
certainty associated with the consequences of actions chosen from among
the possible ones. In decision analysis, several methods are used to ac-
count for this element within problems, and there are several techniques to
avoid it. However, uncertainty remains one of the literature’s most studied
aspects and is sometimes still little known. Uncertainty is often related
to a lack of information, for example, the consequences of an investment
depend on the performance of financial markets about which we do not
have accurate predictions. One of the theories for studying different types
of information-related uncertainty is evidence theory, a generalization of
probability theory. Evidence theory or Dempster-Shafer theory (DST) was
introduced by Dempster [25] and developed by Shafer [125] in 1976 and al-
lows for the expression of concepts such as ignorance and the representation
of both random uncertainty, which is intrinsic to an event, and epistemic
uncertainty, which instead depends on the lack of information. While the
former has been extensively studied in the literature and applied to real
systems thanks to probability theory, the latter still requires scientific ef-
forts. In addition, the ability to express total ignorance allows one to deal
with special situations, an extreme example but one that can be declined
to commonly used situations is to imagine having to answer the question
“Is there life on a distant planet?” The answers can only be two, “yes”
or “no”, with the functions provided by DST, it is possible to answer that
we have no information to choose from either. However, in other simpler
situations it is possible to commune the level of knowledge and informa-
tion possessed that allows us to understand how much we know about a
phenomenon. In DST, it is possible to study different aspects of uncer-
tainty, particularly nonspecificity, and conflict which take into account the
amount of information and possible conflicts between them. In particu-
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lar, the measurement of uncertainty is also called entropy. Attempts to
quantify entropy have been going on for the past 40 years, and recently
this study has again attracted the attention of many researchers. However,
the result found in the literature is a multitude of measurements that are
difficult to compare with each other. Therefore, given the wide applica-
tion of DST even in the real world, there seems to be an implicit demand
to compare measures to rationally and consciously choose which ones to
employ and how to compare them.

1.1 Structure of the Thesis

The thesis is organized as follows. Section 1.2 lists the research questions
that led to the two publications. Chapter 2 describes the first publication
on the topic of Portfolio Decision Analysis. Specifically, the sections from
2.1 to 2.2.5 explain the theory behind the problem addressed. While Sec-
tion 2.4 describes the content of Publication I and is divided into problem
description, problem solution, and results. Section 3 describes Publication
II on the topic of evidence theory. Specifically, from Section 3.1 to Section
3.5 the theoretical part is outlined, while Section 3.6 describes in detail the
second publication divided into the explanation of the measures considered
and their comparison and finally the results.

1.2 Research Questions

To adequately understand the objectives of the research, these are de-
scribed here as research questions that subdivide the topics discussed.

• Question 1. How can Portfolio Decision Analysis be applied to a
real-world multi-period problem? Several real-world applications of
PDA exist in the literature, but some possible problem characteristics
have not yet been addressed.

• Question 2. How to create a specific optimization model for a given
request and make it user-friendly? Complex mathematical models are
often used with the risk of excluding end users from understanding
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and managing the results. Seeking a simpler model while maintaining
accuracy and correctness could lead to more interactions between the
theoretical and real worlds with dual benefits.

• Question 3. How to choose and evaluate measures of uncertainty or
entropy within evidence theory? There are a variety of measures for
calculating total uncertainty in the field of evidence theory. So far,
however, no measure has yet been found that satisfies all the charac-
teristics and can therefore be classified as unique. To understand how
to deal with this huge quantity, it is necessary to approach it numeri-
cally by affixing a new evaluation to the theoretical one on properties
that have already been widely developed.

The first two questions are addressed by Publication I, 2.4, in which a
model of a multi-period problem is developed. In particular, regarding
Question 2, the section 2.4.3 highlights the need to make the model usable
by experts in the company for which the model is intended and shows how
it is possible to meet this requirement.
Question 3 is addressed by Publication II, 3.6, in which a variety of uncer-
tainty measures within Dempster-Shafer theory are listed and compared
with each other numerically. In particular, several methods of compari-
son are used that provide a broader overview of the results of uncertainty
measures.



Chapter 2

Portfolio decision analysis: a case
study

2.1 Introduction

Situations in which portfolio decisions need to be made can occur in a
variety of fields. Companies are often faced with this type of problem:
choosing a subset of alternatives, i.e. actions to be executed and invest-
ments, to achieve economic, strategic, and ethical goals. Each alternative
uses different kinds of resources: economic, raw materials, or labor. In
general, all resources are limited in usable quantity or simultaneous use.
This type of problem can be complicated by the presence of multiple ob-
jectives, the need to plan actions over time, obligatory time for execution,
and additional constraints specific to the different fields of interest.
Companies face portfolio decision problems involving multiple stakehold-
ers, consequently, the responsibility of each decision-maker (DM) can be
very high and requires increasing operational expertise. Over the years,
the demand for support from decision-makers has increased, so research
on this topic, which has its origins in the fields of Operations Research
and Decision Analysis, has continued to advance and expand into different
fields.

Publication I draws on the need for companies to have decision support for
project planning and resource allocation. We speak of support because the
tool to be developed must be able to assist and not replace the decision-
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maker. The role of DMs has become increasingly complicated in recent
years because of the increasing size of companies and the multiplicity of
resources available to them. In addition, the business objectives that need
to be achieved tend to be increasingly varied and depend on the type of
company, e.g., private, public, or nonprofit [68]. Although the situation
is complex, a decision maker or an expert has a deep knowledge of the
business reality, has experience in analyzing the consequences of planning
alternatives, and understands the limits and potential of the business. But
as is pointed out by Cognitive Psychology, decision-makers often make
mistakes [39, pp. 36].

2.2 Background

Scheduling activities that optimize the use of resources and achieve the
goals set or desired by a company is a complicated and delicate task that
cannot simply rely on the intuition and experience of decision-makers. This
problem falls into the category that we can classify as “resource allocation
decisions” or “portfolio selection”. In practice, it involves selecting a sub-
set of alternatives from those available in the decision-making situation
that is useful in achieving the firm’s or DM’s objective and that satisfies
the constraints imposed. These are alternatives or actions that require the
consumption of a portion of the almost always limited resources, which
may be economic or physical. The choice of the subset of alternatives will
lead to consequences that must lead to the achievement of the goal. The
consequences of a choice are not always certain, in which case we speak of
uncertainties.
The problem facing decision-makers can prove complicated because of the
presence of single or multiple objectives, the number of alternatives and
constraints, and the presence of uncertainties about the consequences of ac-
tions. Precisely because of this complexity, the focus of research in this field
has grown increasingly on trying to provide support for a formal method
through a mathematical model that could, based on human experience, be
as objective as possible. This latter aspect has been the goal of a variety
of studies that aim to eliminate potential psychological aspects that may
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influence human judgment and have important repercussions on the suc-
cess of the analysis.
The use of analytical tools is part of prescriptive analytics, which focuses
on providing help to the decision-maker based on known data and using
various mathematical models aimed at predicting the consequences of ac-
tions and thus making the best choices. These characteristics mean that
the difference between prescriptive analytics and predictive analytics is
very blurred, especially when the application moves from a theoretical sit-
uation to a practical decision support case. Both analyses cannot exclude
the involvement of experts and therefore base the correction of any errors
or biases on studies of descriptive analysis, which deals with describing
what happens in a decision-making process and has enabled the develop-
ment of debiasing methods [99]. The approach to understanding errors
and biases in human judgments began in the late 1960s with a series of
papers later collected in [134]. The findings of those years were revolu-
tionary and spread to many areas to explain how a person can’t develop
judgments rationally and according to the normative rules of probability
theory [46]. Specifically, in decision analysis and risk analysis, cognitive
biases and motivational biases have been studied, i.e. systematic errors
in human judgment [138] and errors due to self-interest in outcomes or
specific desires for consequences and outcomes [99]. The analysis of biases
also made it possible to study methods and arrangements to limit them
and minimize their effect [99, 110].

The first approach to portfolio problems is found in the field of Operations
Research (OR), which, with the knapsack problem, allows the optimization
of the choice of a set of alternatives from a reference set. We will then pro-
ceed with a brief introduction of operations research to better understand
the topic.

2.2.1 Operations Research

The foundation of Operations Research dates back to World War II [53, pp.
1], when several groups of scientists were involved by British and Amer-
ican military organizations [132]. The research groups involved different
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types of specialists, e.g. physicists, mathematicians, statisticians [124], en-
gineers, and other figures as in the group called “Blackett’s circus” which
also included physiologists, astrophysicists, and a surveyor [43]. The use
of scientists in military operations, initially, involved requesting support
for the use and understanding of a new device: the radar technology [124].
But the capabilities of these teams proved to exceed expectations, and
in the military’s urgency to improve its strategies and make operations
more precise, scientists were involved in increasing numbers in different
fields. The discoveries made were quickly utilized giving the opportunity
to analyze consequences and collect data in quantities and from real situa-
tions [132, 91]. The scientists’ work often occurred in areas geographically
close to the operations and in close coordination with military officers [124].
Some examples of scientific challenges were described by those who actively
participated during the war years. For example, Professor A. Charlesby
mentions that he studied the improvement of bombing accuracy and op-
timization of the airfield where planes refueled after bombing; the airfield
was congested because of the speed with which planes were able to ac-
complish the action and return to base. Instead, T. E. Easterfield was
concerned with calculating how many spare engines would be needed to
ensure proper maintenance of the planes if the war moved to the Far East
[124].
The impression gained from these new studies was that of an interdisci-
plinary subject following new and interesting directions [43], so much so
that some of the scientists who had participated in military research were
encouraged to use the material produced in future research in the civilian
area. Cooperation with the armed forces continued in the following years,
plus many companies in various industries (e.g., electrical equipment man-
ufacturers and railways) saw it as an interesting opportunity to improve
their production strategies. It also became a subject taught in universities
[43]. The origin of the name Operations Research recalls its connection
with the military world: the term ”operations,” coined by Sir R. Watt and
A.P. Rowe, is intended to separate normal scientific research from that car-
ried out in collaboration with the armed forces. As mentioned, in the early
1950s, the application of Operations Research methods spread to various
sectors, both public and private, which due to their increasing size, had



11 CHAPTER 2. PORTFOLIO DECISION ANALYSIS: A CASE STUDY

more and more difficulties in managing the available resources in the most
functional way.
Under this thrust comes the application of OR to business management.
These early years show the natural adaptability of the subject, which is
not dedicated to a specific field but can be applied to fields as diverse as
economics, urban planning, engineering, and medicine. The key point is
that the mathematical model that is created by analysts reflects the real
situation by summarizing through formulas the most important aspects.
Solutions to the problem must be doubly in accordance with reality and
mathematical analysis. To this end, it is very important to always provide
specific analyses and experiments, i.e., sensitivity analyses, that evaluate
the results and validate the model in both aspects. In short, the goal of
Operations Research is to provide organizations with a decision-support
tool that is concrete and easy to understand while at the same time being
able to process a large amount of data and give objective answers that
point to optimality. In this context, it becomes clear how setting precise
objectives is the basis for solving these problems. For-profit organizations
often have economic aims, measured, for example, by Net Present Value,
but public or nonprofit organizations have different objectives that need to
be measured differently, and it is often in the latter case where there are
multiple objectives.
Objectives are modeled in the form of an objective function that quanti-
tatively measures how close one gets to the final goal. The other classic
elements of a mathematical model of Operations Research are decision
variables, which represent the quantities that must be determined by the
problem resolution in order for it to be optimal; constraints, which insert a
maximum or minimum limit to the decision variables or their combinations
and represent the number of resources available and/or limits imposed; and
finally, parameters, which are the quantities used by the constraints and
require precision in their determination.
This method of approaching decision-making and resource management
problems has the advantage of leading to an objective solution by concisely
describing all the fundamental aspects of the problem to be addressed. In
addition, by applying certain strategies it is possible to avoid the biases
typical of human decision-making. The experts and decision-makers who
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receive the results of this analysis must be able to understand them, so it
is essential to maintain the connection with reality at all stages and the
right balance between accuracy and complexity. This last point is impor-
tant and supported by the fact that the absolute optimum is not always
demanded by companies, which, on the contrary, are satisfied even with
results sufficiently close to it, as emphasized by Herbert Simon with his
concept of “satisficing” [49].

2.2.2 Knapsack problem

After this brief, general introduction to Operations Research, we can focus
on one of the problems it addresses called the “Knapsack Problem” [96]
which is part of integer and combinatorial optimization.
The basic problem involves choosing some items from a given set where
each item is characterized by a cost or dimension, wj, and a value, pj.
The goal is to maximize the value obtainable from the sum of the chosen
items while remaining below a maximum budget or size, c constraint. The
decision variables are constrained to be integer and binary. The problem
is mathematically presented as follows:

maximize
n∑

j=1

pjxj (2.1)

subject to
n∑

j=1

wjxj ≤ c (2.2)

xj ∈ {0, 1} ∀j (2.3)

where: xj(j = 1, . . . , n) are the items.

The knapsack problem has been the subject of extensive studies since the
1950s as evidenced by the two monographs [96][67] entirely based on the
problem, solutions, and variants, and the extensive recent work comprising
two publications [13][14] in which it is demonstrated that the application
and theoretical use of the problem has not stopped even in recent years.
Some real-world applications can also be found, for example in budget allo-
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cation and production management problems [52]. The knapsack problem
is also often employed as a subproblem of more complex questions [37].
The constant research has produced remarkable results in the discovery of
a large number of exact algorithms for variations of the knapsack problem
[14][37]. However, still, many solutions are based on heuristics [102][44]
and meta-heuristics [41].
In addition, the real-world application involves the presence of several con-
straints such as time duration of activities [81], variation of the budget
limit over time [90], and precedence relations between projects [102] that
further complicate the resolution and lead to requiring high and onerous
commitment from analysts [162]. Research on the knapsack problem has
produced many variations from the basic problem, from classical ones (e.g.
subset sum problem) to those involving the addition of different constraints
(e.g. multiple choice knapsack problem, precedence constrained knapsack
problem) to more complex problems (e.g. multiple knapsack problem, mul-
tidimensional knapsack problem, quadratic knapsack problem). In the ar-
eas of activity planning [162] and resource allocation [24], some research
has been conducted, but as reported by [78] these issues require continu-
ous updating with new information and consequently repetition of results.
This process complicates solution methodologies, prompting experts to re-
quest simpler methods of tackling the problem.
The knapsack problem is NP-Complete [15], which means that there is no
algorithm that gives the solution in polynomial time and can become very
complex to solve, for example the Multiple-Choice Multi-Dimension Knap-
sack Problem, a variant of the basic problem, is an NP-Hard problem [5],
but as reported by Dudziński and Walukiewicz [37] great progress has been
made to be able to solve most problems efficiently. However, the more one
tries to make the problem realistic by adding different constraints, the more
complex the problem turns out to be. There is still a strong limitation in
using the knapsack problem for problems with many alternatives and real
constraints, for example, portfolio decision problems, where it is essential
to involve experts and decision-makers, whose input into goal setting is
crucial, especially in cases where they are not limited to purely financial
purposes. Some attempts in the question field have been made, for example
in the studies of Vaezi and Sadjadi [135], Kuchta et al. [79], Tavana et al.



2.2. BACKGROUND 14

[130]. Practical examples can be taken from the studies of Barbati et al.
[9] and Nesticò et al. [103] who both proposed an application of portfolio
decision-making using the knapsack problem in urban planning.

It can be said that in general, organizations aim to achieve the greatest
possible benefit from carrying out a set of activities or investments with
the least possible use of resources. Quantifying this benefit complicates
goal setting and consequently the calculation of the objective function.
There are several cases where Net Present Value [16, 78, 120] or project
profit values [94] can be used in the objective function, but when this is
not possible, the prioritization of alternatives becomes more challenging to
quantify. The cause of this complexity is the influence of several objectives
that have to be quantified and condensed into a single prioritization value.
To sum up, several needs are placed before us, of calculating an appro-
priate prioritization value, involvement of experts, decision-makers, and if
necessary different stakeholders, and the creation of a tool that is useful for
decision support but at the same time is also inclusive for those who are
involved in the process but are not familiar with mathematical algorithms.
All these needs have recently led to the development of a branch of decision
analysis, Portfolio Decision Analysis, which applies the formal methods of
Decision Analysis to optimization problems. As defined by Salo et al. [122]:

PDA has well-established roots that go back to the very origins
of operations research. It is based on sound approaches for prob-
lem structuring, preference elicitation, assessment of alternatives,
characterization of uncertainties and engagement of stakeholders.

Before looking at the most relevant aspects, it is worth explaining what
decision analysis is and what tools are used in both DA and PDA.

2.2.3 Decision Analysis

Decision Analysis originated in the 1960s as a branch of Operations Re-
search in response to the need to assist decision-makers in making decisions
in complex situations involving many stakeholders with different, poten-
tially conflicting goals and where the consequences of choices may be un-
certain. The normative aspect of DA has its basis in Decision Theory of
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which the analysis turns out to be the prescriptive application. DT pro-
vides rules and axioms to guide decision-maker’s choices toward consistent
decisions even when there is uncertainty about consequences. The methods
proposed by DA make it possible to follow the rules of the theory leading
to consistent and coherent choices.
It was Howard in 1965 [55] who first combined the theoretical and practical
aspects and first named and defined DA specifying it later:

Decision Analysis results from combining the fields of systems
analysis and statistical decision theory.

Research work in this field was also later carried on by many other re-
searchers who focused their attention on the development of various meth-
ods. Including, citing some of the most widely used methods, the Multi-
Attribute Utility Theory (MAUT) and the Multi-Attribute Value The-
ory (MAVT) formulated by Keeney and Raiffa in 1976 [66], ELECTRE
[115, 116], TOPSIS [156], Analytic Hierarchy Process (AHP) [119] and
Analytic Network Process (ANP) [118]. Alongside these tools, there are
also graphical approaches such as decision trees and influence diagrams.

The two “sister” theories MAUT and MAVT differ from each other in
the consideration or not of risk and uncertainty and are part of the Multi-
Criteria Decision Analysis (MCDA) methods, identifying the best alterna-
tive by utility or value function. MAVT will be explained in more detail
in the next section.
Also in the context of MCDA is the family of methods called ELECTRE.
They are mainly used when the purpose is to exclude alternatives unsuit-
able for the objectives. They are part of the outranking methods, in which
the rules of intransitivity do not apply, i.e., the information obtained is
accepted even if some of the pairs of alternatives compared are incompa-
rable.
The TOPSIS method ranks the available alternatives based on a com-
parison with an ideal, unrealistic solution. This gives a distance of each
alternative from the desired one. In the case of a multi-criteria problem,
the analyst must consider the importance, the weight, of each criterion and
calculate the geometric distance accordingly.
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AHP has found considerable success in recent years; it can be used in both
single-criteria and multi-criteria choices and has a simple structure that
makes it less complex than other methods. It evaluates the relative mea-
sures of one alternative against another, but unlike the previous method,
it is most useful when searching for the best alternative among those avail-
able. It is a useful tool when attributes are difficult to measure, as in the
case of ”intangible” attributes. The term ”hierarchy” in the name indicates
how this procedure creates a hierarchy of attributes and then evaluates the
alternatives, compared in pairs for each attribute, through a weighted av-
erage. ANP is a generalization and, as the name reminds us, the decision
problem is visualized as a network. Like the previously described method,
the comparison is done in pairs until the weights are defined and the alter-
natives are finally ranked.
The influence diagram is intended to give a global view of the problem, this
leads to sacrificing some details in favor of a broader view. The decision
tree and the decision matrix, two very similar tools, so much so that one
can easily switch between them, are generally used toward the end of the
decision-making process. Graphical modeling can be useful in supporting
decision-makers for more direct visualization of a complex system, e.g., the
decision tree allows decision possibilities to be grouped together making it
easy to understand.

In this context, we will only delve into the use of Multi-Attribute Value
Theory, a methodology used in Publication I to which this introduction
relates by referring to other applications for a more in-depth discussion of
other techniques that can be used. The choice of this method stems from
the observation that experts rely on different criteria to reach an outcome,
and therefore a method belonging to MCDA was needed. In addition,
MAVT has a general approach of involving experts in defining value func-
tions and identifying attributes while allowing a simple understanding of
the process and outcome.
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2.2.4 Multi-Attribute Value Function

Multi-Attribute Value Function is subject to the assumption that the
decision-making process occurs under conditions of certainty. It allows
the decision maker’s preferences to be represented by combining them for
each attribute into a single function and returning a value that character-
izes each alternative.
Before discussing value functions in more detail, it is essential to under-
stand what the term attribute means. It is a value that characterizes each
alternative by quantifying the level of achievement of the goal; it can be
interpreted as an assessment of the consequences triggered by choosing
one alternative over another. Based on this definition, it follows that the
decision-maker’s choice of one alternative over the other will depend heav-
ily on the attributes, must therefore be chosen carefully, and, depending
on the case, may be natural (e.g., “minimize the time it takes to transport
goods.” can be quantified with the attribute “hours taken to transport
goods”) or it must be constructed or researched in cases where no natural
attribute exists or are challenging to use and attributes are defined that
fall into the artificial or proxy categories [64], where the former is adopted
when a natural attribute does not exist (e.g., measuring satisfaction or
fear) and the construction of a scale is necessary, while the latter are at-
tributes that do exist and are therefore more similar to natural attributes,
but measure the level achieved indirectly (e.g., “minimize the number of
outages due to breakdowns” can be quantified with “hours of machinery
repair work” that does not directly count the number of breakdowns).
To properly define a set of attributes, a set of properties must be considered
according to [66, pp. 50–53]:

• completeness: the attributes of the set are such that they consider
the problem in its entirety;

• operational: the attributes should be simple to use in the set without
requiring excessive effort from those involved;

• decomposable: the attributes are such that it is possible to decom-
pose the problem to make it simpler;
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• nonredundant: attributes evaluate consequences, therefore they must
be chosen such that the impacts of the chosen alternatives are not cal-
culated twice;

• minimal: attributes should be as few as possible and should be able
to directly assess the level of achievement of a goal.

There are other desirable properties of attributes suggested by Keeney and
Gregory [65] that are sufficient for good attributes and add some useful
features; according to the authors, attributes should be direct, understand-
able, complete (of all possible consequences that may result from choosing
an alternative) and unambiguous.

Returning to analyzing the value function, this can be seen as a math-
ematical function through which to represent the preferences expressed by
decision-makers. Like any mathematical tool, it is subject to rules. It
must be implemented through methods designed specifically to account
for preferences about consequences. The value function v makes alterna-
tives easily comparable by assigning a numerical value to each of them, i.e.
let A = {a, b, c, . . . } be a finite set of alternatives, when alternative a is
preferable to alternative b, the value of alternative a will be greater than
the value of alternative b:

v(a) > v(b)⇔ a ≻ b
a, b ∈ A analogous for ≺ and ∼

In multi-attribute situations, it is necessary to determine a value function
for each attribute, called single attribute value function. In this case, the
value function assigns to each alternative a combination of values derived
from the value functions of the individual attributes. Each alternative can
be described by a vector xi = (x1i , ..., x

m
i ) ∈ X1 × · · · × Xm, whose jth

component xji is the jth attribute level of the ith alternative. The simplest
form of the value function in multi-attribute conditions is the additive
form. The additive model is very simple to use, which is why numerous
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applications of it can be found in the literature [133, 131, 42]:

v(v1(x
i
1), . . . , vm(x

i
m)) =

m∑
j=1

wjvj(x
i
j) (2.4)

where: vj(x
i
j) is the value of the single attribute value function when the

level of the attribute j is equal to xij for the alternative i, and wj’s are the
scaling constants or weights, they are in the interval [0, 1] and

∑m
j=1wj = 1.

Scaling constants quantify the relative importance of attributes.

A measurable value function, expressed as in Eq. 2.4, must satisfy two
conditions to correctly express the concept. The two conditions are called:
mutual preferential independence and mutual differential independence.
The first indicates that the decision maker’s preference for a subset of at-
tributes is independent of the levels of the complementary subset, a state-
ment valid for any subset. The second indicates that if two alternatives
differ in the level of only one attribute, the value required to switch from
one to the other is always the same, regardless of the level of the other
attributes, and this must hold for each attribute toward the complemen-
tary subset. If the decision-maker cannot define the value function of a
single attribute without information on the level of one or more different
attributes, the above conditions do not apply. A different form of value
function should be used. It must be able to correctly represent correlations
and preferences; if this is not possible, the objectives are analyzed again
and defined differently.
Single attribute value function determination methods aim to create a
mathematical tool that reliably accounts for the decision-maker’s prefer-
ences. Each method works differently, but in general, the decision maker
is asked to express his preference over several comparisons of alternatives,
and his statements are used to determine value functions through punc-
tual values. Considering a continuous function, points that are not directly
elicited can be inferred using mathematical tools (e.g., a piecewise linear
function, an exponential function). Some of the most widely used methods
are the direct evaluation method, the standard difference sequence tech-
nique, and the bisection method [40, pp. 115–120]. The difference between
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Figure 2.1: Example of value function. On the horizontal axis are shown the values from
the least, x−, to the greatest, x+, that the attribute can assume. On the vertical axis
are represented, normalized between [0, 1], the values of the value function. In this case,
the best conjunction of identification points with one of the methods of creating a value
function is a piecewise linear function.

these methods concerns what is required of the decision-maker. A consis-
tency check of the results is always recommended at the end of the process
[144]. In addition, the functions obtained should be monotone, otherwise,
they can be simplified by splitting them into two parts and adapting the
demands made on the decision-maker. Figure 2.1 shows the characteristics
of a generic single attribute value function. Scale constants can be deter-
mined by methods that interpret the decision-maker preferences through
questions that seek trade-offs, i.e. values for which alternatives are equiva-
lent. Other methods help the decision-maker rank the attributes until the
relative values of the scale constants are obtained. Some examples of these
methods are the trade-off method, the swing method, and the direct ratio
method [40, pp. 135–141], just to cite a few of them.
As mentioned in Section 2.2 all decisions involving humans are affected by
cognitive biases. In determining scaling constants, it is important to pay
attention to, e.g., the range effect and the splitting effect [40, pp. 154–
155]. The former concerns insensitivity to the range in which the relative
attribute moves, but the larger the range, the higher the constant should
be [137]. The second relates to the objectives, those described in more
detail get a higher scaling constant value from the decision maker [145].
The direct involvement of decision-makers and experts leads other Multi-
Attribute Value Theory procedures to be affected by biases as well. Among
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these, one of the most important is the anchoring bias, which is the ten-
dency of humans to focus their attention on initial information and to make
their judgments while keeping that datum as a basis [113].

2.2.5 Portfolio Decision Analysis

Now that some of the best-known methods of decision analysis have been
described, we can focus on the analysis of portfolio decisions. PDA is
a branch of Operations Research and Decision Analysis, in which it has
its roots and methods; it can be interpreted as a combination of Decision
Analysis methods with optimization problems and the use of mathematical
algorithms.

As its name reminds us, PDA deals with decision problems in which a sub-
set of alternatives, or portfolios, must be selected from a larger set to satisfy
identified objectives. Specifically, PDA problems generally have some com-
mon characteristics: a large number of alternatives, multi-criteria, a large
number of stakeholders, and, in addition to classic constraints, interdepen-
dencies between alternatives are often present. It is the latter aspect that
makes the problems addressed by the PDA very complex because, without
it, a ranking of alternatives could be made followed by selection based on
the value obtained until the budget is exhausted. Examples of interdepen-
dencies between alternatives are situations where there is a precedence link
between activities or a constraint that does not allow some activities to be
performed if others are performed. In these contexts, an analytical and
formal approach to portfolio selection such as PDA allows for a system-
atic method with greater transparency that enables easier understanding
of the process to decision-makers and the possibility of reiteration. PDA
has evolved mainly in the last few decades, but already after the first ex-
periments with Decision Analysis in the late 1970s [61], one can find the
use of methods that can be counted among those of PDA even though
they were not yet recognized then. It is necessary to wait until the 1990s
and 2000s for more illustrative procedures of applying Decision Analysis
to portfolio and resource allocation problems to become established. The
evolution of software and the increased ease of access to spreadsheets al-
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lowed the expansion of these procedures into companies as well, and the
application became especially popular in the pharmaceutical and energy
industries [122, pp. 12]. With the beginning of the new millennium, the
concept of PDA is being defined with a problem structure involving elic-
itation of preferences, ranking of alternatives set and collaboration with
stakeholders, experts, and decision-makers, and the use of the resulting
data in mathematical algorithms.
At present, the application of PDA has expanded in many areas because
of the problem structure that can be encountered in many decision-making
situations and the concrete possibility of support for decision-makers of-
fered by the procedures. This last point is crucial because the complexity
of portfolio decisions, unlike single-choice decisions, comes not only from
the constraints but also from the number of possible choices. To better
understand this statement, one can think of a situation in which one has
to choose which activities to do or not to do in a known set of 30 projects;
the number of possible portfolios is huge, amounting to 230. Typically,
decision-makers find themselves working with hundreds of projects. Add
to this the complication of possible interactions and the need to consider
the preferences and goals of decision-makers and stakeholders, and it comes
naturally to understand the importance of having a systematic decision
support tool at one’s disposal.
The fields in which PDA has been applied are many: in [123] the focus
is on the selection and extraordinary planning of alternatives for urban
development planning, in [80] the topics are those of the energy industry
and environmental protection with different objectives on which to focus
the optimization problem, in the field of environmental management, [82]
provides guidance on the use of PDA, while [98, 97] and [95] on different
fields, civil infrastructure, and nuclear industry respectively, address the
problem from the perspective of safety and risk. The recent survey by
Liesiö et al. [87] highlights the wide scope and numerous fields in which
PDA has been applied in recent years.

The applications of PDA are numerous, but in a few cases the problem
is addressed by considering the time dimension; in some cases (e.g., [10]
and [123]) one of the purposes of the analysis is to select a portfolio of
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activities with an indication of when they should be performed, but their
duration is not part of the optimization problem. For this reason, it is
possible to deepen the study in this way.

2.3 Applications in civil engineering

The applications of PDA can also be extended to civil engineering, among
the different areas one of the most interesting ones is related to infrastruc-
ture maintenance. In fact, this is a very sensitive issue in recent years due
to the aging of infrastructures as for example in Europe, where in many
countries there are infrastructures showing signs of deterioration caused
by time, e.g. in France, UK and Germany [47] to the Italian situation
highlighted by the tragic collapse of the Morandi Bridge [32]. This situa-
tion requires greater attention and planning of maintenance rehabilitation
based on their current condition. To explore this topic further, we describe
a practical application to the case of the Finnish Transport Agency (FTA).
The study was performed by Mild et al. [98].

The problem

The problem addressed is the scheduling of bridge maintenance activities,
and selecting an optimal portfolio of structures from those in need of work
within 3 years. The method used is Robust Portfolio Modelling (RPM)
from which the Core Index is derived. The problem is subject to constraints
due to limited resources, has to consider numerous selection criteria, and
the number of works managed is large, considering between 200 and 600
bridges. In addition, the choice to use RPM since the information may
be incomplete. Finally, it is crucial to allow the company to reiterate
the model several times by updating it with both the subjective data of
the experts and the improvement changes made to the works, such as
performing maintenance activities that change the current state of the
work.
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Robust Portfolio Modelling

Robust Portfolio Modelling [89] is a decision-making method for analyzing
multi-criteria portfolio problems. It allows incomplete information on the
relative importance of criteria to be handled. Specifically, a feasible set of
weights is defined in which the relative weights of the criteria are described
by linear constraints and the values of the alternatives by ranges large
enough to contain the true value. The model also allows a comparison of
portfolios with a dominance concept and consequently the selection of a
set of non-dominated portfolios [88].
From this set, it is possible to deduce the Core Index, which allows the set
of alternatives to be divided into three categories: (i) core projects that are
found in all non-dominated portfolios, (ii) exterior projects that are not
found in any non-dominated portfolios, and (iii) borderline projects that
are found in only a few [89, 98].
This avoids the solution of indicating which projects to choose and which
not and allows for greater flexibility. In addition, an advantage of this
classification is the possibility of excluding exterior projects, which will
retain their status even with more accurate information.

The solution

The process included a series of meetings with the company’s experts for
the appropriate development of the model. Holistic knowledge of the infras-
tructure and bridges enabled the technicians to evaluate the initial results
of the model and make recommendations for improving it.

Four basic criteria are identified: minimize maintenance costs, minimize
user costs, maximize safety, and maximize customer satisfaction. The value
function used by the model is additive.
The authors also define an approximate approach because the size of the
problem does not allow the use of the exact linear programming algorithm.
Please refer to the publication [98] for further discussion. The result pro-
vided to the company is the list of bridges under analysis flanked by their
respective Core Index values. Although these are not prioritization val-
ues, the experts reacted to the list by considering the Core Index in this
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way. Although not formally correct, the authors believe that this use, as
a business decision support, is functional and useful and supported by the
Core Index definition if one considers all non-dominated portfolios as an
optimal choice with equal probability.

Over the years the model has been used several times, demonstrating flexi-
bility and adequate simplicity without excessive reduction in mathematical
correctness. The flexibility also allows consideration of uncertainty about
the actual costs of projects that may vary.

2.4 Publication I

2.4.1 The Problem

The published article is based on the creation of a support tool for the com-
pany SET s.p.a., which is the main operator of the electricity distribution
network in the Province of Trento, Italy, with an extension of 12000 km of
network. The company is responsible for supplying energy to 160 munic-
ipalities and 330000 both public and private users who use their services.
The need for support in decision-making arises from the fact that it has to
schedule a large number of different activities over a large time frame, i.e.,
5 years. The planning has objectives that are not exclusively economic.
The company’s goals are to ensure high-quality service by decreasing the
amount and duration of interruptions in energy supply. To achieve these
objectives, the network must ensure adequate maintenance and should be
suitable for both the customers and the area where the energy is sup-
plied. In addition, there are environmental and regulatory requirements
that cannot be overlooked. To respond adequately, the company divides
its activities into three macro categories: new connections, quality improve-
ment, and load adjustment interventions. The first category includes all
those interventions that are carried out primarily at the request of users
or energy suppliers; this characteristic means that the type and number of
interventions in this category depend on the development of the area. The
other two categories are strongly related to the improvement of the quality
of the network or its maintenance. These are interventions that have as end
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users inhabitants of rural or mountainous areas who, consequently, need
specific interventions. Also included in these categories is the upgrading of
some lines for user needs.
The description of activities highlights the nonprofit purpose of the com-
pany. The financial aspect appears in the planning problem only as an
annual budget constraint. Before analyzing the planning problem mathe-
matically, it is appropriate to specify the general situation to identify the
different parts of the modeled problem. The decision situation consists of
368 activities to be carried out in the next 5 years; the company considers
some activities more important than others according to a value defined as
“priority”. Optimal planning includes the greatest number of high-priority
activities with the constraint of keeping costs below a predetermined an-
nual budget. However, budget is not the only constraint decision makers
have to worry about; they also have to consider the availability of work
teams, which are not always sufficient to be able to work simultaneously
on several activities and depend on the companies contracting the work;
linked to this constraint is the need to consider the duration of each activity.
Furthermore, the activities are interconnected, some cannot be performed
unless preceded by other specific executions; added to this some work must
be compulsorily performed from a certain date or the work must be fin-
ished by a deadline.

In short, the problem is characterized by a large set of activities from
which to select the optimal portfolio, known costs and execution times,
and possible constraints and interrelationships with other activities. The
optimization problem must consider the constraints and is highly depen-
dent on the priority assigned to each activity. The opportunity for dialogue
with two experts, engineers from the company’s Operations and Techno-
logical Innovation department, enabled us to understand how priority was
a value assigned in a non-systematic way, but based on the experts’ sensi-
tivity and taking into account the relevant characteristics of the activities
and the consequences of their execution. Based on the characteristics just
described, we were convinced of the need to apply a Portfolio Decision
Analysis that could accurately identify the value of the priorities of each
activity on a solid basis and was able with an optimization model to pro-
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vide an appropriate result for the company. In this way, the input data
required by the analysis will be less and the decision support provided to
the company will be more successful.

2.4.2 The Solution

Priority values

The calculation of the priority of alternatives is addressed through the
Multi-Attribute Value Theory. This theory has already been used in in-
frastructure management [63, 161, 160]. Together with its sister theory,
Multi-Attribute Utility Theory turns out to be the most widely used in
decision-making models [87]. MAUT is used in the case of uncertainty. In
the problem under consideration, uncertainty could be caused by changes
in demands, the inclusion of new projects, or changes in some features.
This type of uncertainty is overcome by running the optimization program
at regular intervals with improved information. This method of reiteration
is only possible by keeping the model simple enough that the company can
also use it quickly and correctly.
The priority of activities is a fundamental value for the company’s goals
and consequently plays an important role in the objective function that
will be made explicit later. The business idea is that the higher the pri-
ority of an activity, the greater should be the probability that it will be
chosen before activities with lower priority.
To deal with a typical MAVT problem, it is necessary to define a finite set
of n alternatives A = {A1, A2, . . . , An}, provided in this case by the com-
pany, a finite set of m attributes C = {C1, C2, . . . , Cm}, to be defined with
the cooperation of the experts, together with the single attribute value
functions whose combination will define the value function. The defini-
tion of these elements in the specific problem addressed in Publication I
required 4 interviews with two experts. The approach followed in this con-
text was inspired by Value Focused Thinking [64] by discussing with the
decision-makers what the values were, i.e., what was interesting for them
to achieve [62], to identify the fundamental objectives.
The interviews were conducted with both experts present at the same time.
Initially, we focused on the company, the characteristics of the activities
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carried out, and, in general, how the company’s planning is managed, to
adequately identify the situation in which to carry out the analysis. We
collected all the data useful for the analysis that could be easily provided
by the company. In particular, the set of activities to be scheduled with
their costs and durations. Having identified the problem, four fundamental
objectives were identified: maximizing the number of users connected to
the network, maximizing the quality of service, minimizing service inter-
ruptions, and minimizing delays in the execution of activities. Focusing on
the objectives, the attributes that can quantify the level of achievement of
each by the alternatives are:

Number of benefiting users: the higher the value of the invest-
ment, the greater the number of users who benefit from the execution
of a specific activity.

Quality improvement: the company must comply with local and
national regulations that require specific standards. The degree to
which requirements are met assesses the quality of the service pro-
vided.

Resilience improvement: it is an attribute related to the tendency
of the network to be subject to damage and service disruptions. Most
of these situations are caused by extreme events, so the company has
defined a formulation that considers the return time of events and
allows for calculating the improvement in network resilience. The
greater the resilience, the greater the ability to withstand extreme
events (e.g., replacing overhead lines with underground lines).

Setup time: every activity requires a set-up time before it can be
started. Activities with a shorter set-up time are those of greatest
interest to the company. Set-up time is generally easy for the company
to calculate, but it can vary due to external factors, so it may be
subject to uncertainty. However, because it can be easily repeated
with the additional information held by experts, it does not require
specific attention in the model.

The attributes explicated above were analyzed to ensure that the proper-
ties necessary to obtain an appropriate set of criteria were met [65].
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The information described is sufficient to move on to the next step: the
definition of single attribute value functions. Experts were asked to iden-
tify the intervals [xj, xj] where xj and xj are the worst and best values
in terms of desirability, respectively. Then, using the method of the Mid-
Value Splitting technique, we define which xi corresponds to the 0.50, 0.25,
and 0.75 values of the value function, i.e., the values in the middle of the
function and the middle of the two consequent halves. Proceeding with this
method for each attribute, four value functions are obtained to measure the
value of the attribute for each level reached by each activity. The obtained
functions have different shapes to best represent experts’ preferences. It is
interesting to observe the S-shaped trend of the value functions of the at-
tributes ”Resilience improvement” and ”Quality improvement.” This rep-
resentation makes it clear that activities with an intermediate value are
preferable for the company, i.e., activities that balance cost and improve-
ment as opposed to activities that require a high use of resources to achieve
high levels of improvement.
At this point, it is necessary to calculate the weights or scaling constants,
wj, of each attribute. The method chosen is the Trade-Off, which requires
knowledge of the single attribute value functions and the assumption that
the value function is additive. The first step in this process is to rank the
four attributes in order of preference. The ranking makes it possible to
identify between which pairs of attributes it is correct to make the direct
comparison predicted by the chosen method, e.g., if experts find it compli-
cated to compare and rank resilience and quality improvements, these two
attributes will not be compared, but their weight value will be deduced
by comparing them with the other attributes. The Trade-Off method in-
volves comparing pairs of alternatives in which all but two attribute levels
are equal. From this comparison, experts must indicate the attribute lev-
els that make the two alternatives presented equally satisfactory. In this
context, it is possible to require more comparisons than the minimum re-
quired, i.e., m− 1 equations, to have redundant information and decrease
or highlight a possible inconsistency error [138, pp. 290] [66, pp. 22]. From
the required tradeoffs, it is also possible to see any inconsistencies in the
choice of additive form for the value function. For example, in the case
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study, experts indicated that in the case where resilience or quality im-
provements were at the lowest level, no level of the other attributes would
be sufficient to give a value greater than 0 to the activity. In the present
case, however, we were able to maintain the additive form assumption of
the value function, since in the real case activities with a zero improvement
value are not included in the set of alternatives to be performed.
Once the results of the scaling constants are obtained, the value of each
alternative is calculated with the equation 2.4.

Optimization problem

At this point, we have all the necessary information to develop the op-
timization problem whose objective is to plan activities over 5 years by
favoring early execution of activities with a high priority value. The for-
mulation of the objective function is inspired by a similar approach devel-
oped in [102] with maximization of the sum of the discounted values of the
activities:

maximize
∑
i∈A

∑
t∈T

νi
(1 + r)t

xi,t. (2.5)

where: A = {1, . . . , n} is the set of activities; T = {1, . . . ,m} is the set
of periods or time horizon; xi,t is a binary variable that when equal to 1
indicates that task i will be executed at time t; νi is the priority of task i
and r > 0 is a discount factor.

The constraints set in the problem concern realistic situations made ex-
plicit by the company’s experts. They will be described in detail in the
following. The company created the set of alternatives considering that
each of them can be executed only once in the given period T :∑

t∈T

xi,t ≤ 1 ∀i ∈ A. (C1)

SET s.p.a. is aware that the available resources and time will not be
sufficient to carry out all the activities in the set A, so the constraint (C1)
is in the form of inequality. In any case, all activities initiated must be
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completed:

lixi,t ≤
min{t+li−1,|T |}∑

k=t

zi,k ∀i ∈ A, t ∈ T. (C2)

where: li ∈ N+ is the execution time of activity i; zi,k is a binary variable
that is equal to 1 when the ith activity is being executed in the kth period.
The constraint C2 via the term min{t+ li − 1, |T |} requires the complete
execution in li periods corresponding to the duration of the activity.

The resources available to the company are of two types, one financial,
i.e. an annual budget for each contractor of which part b̃k can be allo-
cated to specific types of activities, and another operational, i.e., labor
teams that can work simultaneously. This last constraint depends on the
availability of contractors performing certain activities. Consequently, we
defined three constraints:∑

i∈A

∑
t∈Tk

cixi,t ≤ bk k ∈ {1, . . . , p}. (C3)

where: bk > 0 ∀k = 1, . . . , p is the budget associated at the kth period; ci
is the cost of activity i and in the formulation, it is considered to be paid
at the beginning of the task. C3 is the budget constraint where the time
horizon T has as many subperiods, T1, . . . , Tp, as there are years in which
activities are to be planned.∑

i∈Ak

∑
t∈T

cixi,t ≥ b̃k k ∈ {1, . . . , r}. (C4)

where: b̃k > 0 ∀k = 1, . . . , r is the smallest fraction of the budget that
must be invested in specific activities.
C4 is the constraint that allows a budget to be associated with specific
subsets of A defined as A1, . . . , Ar ⊂ A.∑

i∈Aj

zi,t ≤ uj ∀j ∈ E, t ∈ T. (C5)
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where: uj ∈ N+ are the teams that can work simultaneously for every jth
contractor; E = {1, . . . , q} is the indexed set of contractors.

Some of the activities may have intercorrelations with each other, par-
ticularly in this case they are characterized by precedence constraints. We
define R ⊂ A×A the set of pairs (i, j) such that (i, j) ∈ R indicates that
i cannot start if the execution of j is not completed.

xi,k ≤ θi,j,k

max{k−lj ,1}∑
t=1

xj,t ∀(i, j) ∈ R, k ∈ T. (2.6)

In the constraint 2.6 the parameter θi,j,k is introduced for modeling the
precedence correlation and defined as:

θi,j,k =

{
1, if k > lj

0, if k ≤ lj
∀k ∈ T.

The constraint 2.6 can be explained by reasoning about the value assumed
by θi,j,k, which governs whether or not activity i subject to the precedence
constraint can be scheduled:

• when θi,j,k = 0, i.e., if k ≤ lj and thus xi,k ≤ 0, activity i in fact has
not yet elapsed the period required to complete activity j

• when θi,j,k = 1, the planning of activity j turns out to be earlier than
at least lj periods before the start of i.

The last 3 constraints deal with “time” issues: some activities must be run
within a deadline, some cannot be run during specific periods (e.g., winter
or summer), and finally, some have imposed a start period. The latter
constraint also takes into account all those activities that have already
been scheduled the moment there is new information and the model is run
again. These constraints can be modeled respectively:

di−li∑
t=1

xi,t = 1 ∀i ∈ Ad (C7)
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where Ad ⊂ A is the set of activities with a deadline; di ∈ T ∀i ∈ Ad are
the deadlines.

zi,t = 0 ∀(i, t) ∈ S (C8)

where: S ⊂ A × T is the subset of pairs (i, t) in which t indicates the
periods when activity i cannot be execute.

xi,t = 1 ∀(i, t) ∈ S ′ (C9)

where: S ′ ⊂ P ×T is the of pairs (i, t) such that the ith project must start
in period t. The constraint C9 forces execution in the indicated period by
imposing value 1 on the variable xi,t in period t. Thus, the form of the
optimization model is:

maximize
∑
i∈A

∑
t∈T

νi
(1 + r)t

xi,t

subject to
∑
t∈T

xi,t ≤ 1 ∀i ∈ A

lixi,t ≤
min{t+li−1,|T |}∑

k=t

zi,k ∀i ∈ A, t ∈ T∑
i∈A

∑
t∈Tk

cixi,t ≤ bk k ∈ {1, . . . , p}∑
i∈Ak

∑
t∈T

cixi,t ≥ b̃k k ∈ {1, . . . , r}∑
i∈Aj

zi,t ≤ uj ∀j ∈ E, t ∈ T

xi,k ≤ θi,j,k

max{k−lj ,1}∑
t=1

xj,t ∀(i, j) ∈ R k ∈ T

di−li∑
t=1

xi,t = 1 ∀i ∈ Ad
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zi,t = 0 ∀(i, t) ∈ S

xi,t = 1 ∀(i, t) ∈ S ′

xi,t, zi,t ∈ {0, 1} ∀i ∈ A, t ∈ T

Sensitivity analysis

The sensitivity analysis of the problem focused on two elements: the value
of the discount rate r > 0 in the objective function 2.5 and the convergence
of the optimization problem.

The discount rate is a difficult value to estimate. Still, it plays a central
role within the objective function because it pushes forward the execution
of tasks with a higher priority. Since we could not perform discount rate
studies, partly because of the need to be able to run the model multiple
times, we directed the analysis to understand the impact that variation in
the value of r has on the final result. As for the possible values to assign
to r, these are subjective values that depend on how much you want the
discount to weigh. In this case, they can be equated with risk-free because
we are talking about investments in the public.
To prove that the variation of r values does not significantly inside the
final result, in Table 2.1, are shown the values of the Jaccard similarity
coefficient are given 1. The convergence time of the optimization prob-

Table 2.1: Comparisons between solutions obtained with different discount rates. Values
in the table are the Jaccard similarity coefficients of the two sets of activities selected by
optimizing with two different discount rates: 1 indicates that the two solutions contain the
same activities. Between parentheses, we give the average difference, in months, between
the start of the same activity in models with different values of the discount rate.

r
r

0.01 0.02 0.04 0.10

0.01 1 0.98 (1.6) 0.99 (1.3) 0.97 (3.3)
0.02 1 0.99 (1.4) 0.97 (2.7)
0.04 1 0.97 (3.1)
0.10 1

1The Jaccard similarity coefficients is the ratio of the intersection and union of two matrices J(A,B) =
|A ∩B|
|A ∪B|

. In this case, the matrices are those of the variable zi,t.
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lem turns out to be relevant for reasons such as offering the possibility to
reiterate the problem as needed by changing the input data and provid-
ing a tool conveniently usable by users. Following the idea of satisficing
solution of the aforementioned Herbert Simon [49], the goal is to opera-
tionalize the optimization process with an appropriate runtime by arriving
at a near-optimal solution. To evaluate the convergence of the algorithm,
the Lagrangian duality gap was used, i.e., the difference between the pri-
mal and dual problems [53, pp. 230], the distance of which decreases as the
optimal solution approaches. In particular, such gap shall decrease as the
algorithm approaches the global optimum. Figure 2.2 presents a graphical
analysis of the relative Lagrangian duality gap as a function of the run-
ning time, after the first 20 minutes of computations. It can be seen that
in around one hour the relative gap was reduced to the 0.1% (blue line),
which guarantees that the incumbent solution is near optimal. The result
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Figure 2.2: Evolution of the relative duality gap: the blue line represents the gap trend
for the complete set of 368 activities while the other lines represent instances of subsets
with fewer activities. The green line represents the gap trend for the set of 368 activities
in 3 years.

of the analysis was also tested on larger sets of tasks and different time
horizons showing in each case that a satisfactory solution could be reached
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after about an hour. It is considered in agreement with the experts that
the time required is adequate.

2.4.3 Results

The results obtained were calculated based on the actual information pro-
vided by the company: 368 activities, 7 contractors, 9 work groups, 5
activities with a scheduled start, 17 with due dates, 107 with limitations
on the time in which they can be performed, and 39 precedence relation-
ships. Each activity is also characterized by a cost ci, a duration li, and
a priority value νi ∈ [0, 1] defined through MAVT. The interrelationships
among activities do not allow reduction into subproblems; in fact, the exe-
cution of some activities subject to the precedence constraint is entrusted
to different contractors.
The analysis of the model has been developed with the language AMPL
and Gurobi 9.1.0 on a computer with an Intel Core i5 dual-core processor,
2.5 GHz, 8 GB of RAM, running macOS Catalina version 10.15.7.

The model’s ability to provide useful results for the company’s purposes
is confirmed by comparison with end users. The final results were presented
in the form of easily understandable graphs. Specifically, Figure 2.3a and
Figure 2.3b depict two Gantt charts showing the scheduling of activities
associated with two contractors over 5 years. The two schedules use one
and two operations teams, respectively, as is evident from the overlap of
activities in Figure 2.3b. In both graphs, it can be seen that activities
with a higher priority (darker colors) are brought forward compared to
those with a lower priority (lighter colors) unless there are constraints
that dictate that certain activities must be performed at certain times. A
comparison of the two graphs shows that the contractor who has two teams
available, Figure 2.3b succeeds in completing all assigned activities before
the 5-year limit. For this reason, it is also interesting to investigate the
results from the perspective of the resources used. Figure 2.4a depicts the
utilization of operational teams, highlighting how they are always used by
the model at their maximum efficiency, considering that two contractors,
with whom two teams are associated, conclude project execution before
the end of the time horizon. Figure 2.4b shows the budget utilization, it
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Figure 2.3: Scheduling and priorities of Contractors 4 and 5. The colored bar on the right
side of the graph represents the values collected by the activities each month.

can be seen that the limit is never reached. Based on these considerations,
it is believed that the model can also be used for resource reallocation, e.g.,
increasing the number of operational teams or assigning more activities to
contractors who finish executions early.
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Figure 2.4: Resources utilization within the time horizon

From the results obtained, it can be seen that the number of activities
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and the number of constraints and interrelationships would make it im-
practical to separate the four core objectives. The approach used, with
the contextual aggregation of attributes into a single priority value, makes
the model simple and operational and facilitates better understanding by
experts, who are successfully involved in the process.



Chapter 3

Entropy measures in
Dempster-Shafer Theory

3.1 Introduction

In everyday life, we are used to dealing with uncertainty, making imme-
diate or reasoned decisions, aware that we have information affected by
uncertainty. Based on weather forecasts, simple choices such as taking
an umbrella or wearing a hat have a low risk of causing harm, but more
important decisions require more attention. There are also physical and
geological phenomena that cannot be predicted except with enormous un-
certainty, such as the prediction of earthquakes or sea quakes, volcanic
eruptions, and major weather phenomena. The past and the future thus
involve uncertainty, which man has always tried to address by studying
the evidence and comparing the conditions under which past events oc-
curred with those that are present or may occur in the future. Sometimes
situations are classified to assess risk but aware of uncertainty, as in the
case of landslides which are classified according to their state of activity,
inactivity, or quiescence, based on a comparison of current conditions with
past conditions in which a ground movement phenomenon occurred. These
classifications allow action to be taken based on expected risk, but the in-
formation on which they are based cannot be considered certain.
Similarly, archaeologists and historians look for historical truth in artifacts
and documents, but inferences are made about what has survived to the
present day, so there is a lack of complete information about some events

39
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that occasionally leads to correct theories when evidence comes to light.
It is clear from these examples that while uncertainty has always been a
consciously accepted part of everyday life, in science it is instead a problem
that must be addressed, but this was not always the case. Before the 20th
century, the general idea was that uncertainty and science did not meet;
anything that could not be described accurately in mathematical terms
was set aside, leading to significant limitations in discoveries [74].
The first approaches to uncertainty in science occur through probability
theory, with the limitations it entails. It will take another 50 years for
greater knowledge: thanks to the rapid development of technology during
and after World War II scientists have the opportunity to solve increas-
ingly complex problems, requiring more general mathematical theories, and
along with them the concept of uncertainty expands.

Before analyzing the theories that arise from this new thinking, it is im-
portant to focus on the meaning given to uncertainty. To simplify the
concept, one can reason about the simple question of guessing a person’s
age. One may have several pieces of information that help to narrow the
field, such as ”he is young,” and ”he graduated two years ago,” but it is
still not possible to state an exact age with certainty because there is a
lack of information. The link between uncertainty and information is the
basis of so-called ”uncertainty-based information.” Lack of information can
present itself in various ways: information may have been provided that
is too general or incomplete, thus not achieving the desired goal. A clas-
sic example is the diagnosis of a disease: as long as the set of symptoms
does not indicate a specific course of action, the physician must evaluate
several options that may or may not have a chance of being true. This
example is also useful to understand in practice how uncertainty decreases
through increased information; the actions that can be performed must be
relevant examinations to indicate the right diagnosis. In other fields, one
can talk about relevant experiments or the discovery of a historical doc-
ument containing more accurate information than previously possessed.
Uncertainty-based information is calculated as the difference between the
uncertainty before the action execution and the uncertainty after it. The
measure of information is useful in comparing different systems.
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Figure 3.1: Types of uncertainty

3.1.1 Generalized Information Theory

Generalized Information Theory (GIT), a term introduced in 1991 [71], is
the product of two generalizations that emerged in the 1980s: the move
from classical measure theory to monotone measure theory and the move
from classical set theory to fuzzy set theory [73]. GIT collects all uncer-
tainty theories that are generalizations of the two classical theories, namely
probability, and possibility. Uncertainty theories have in common the def-
inition of a functional U that measures the amount of uncertainty and
satisfies several axioms. The first functional found is within probability
theory and is called Shannon’s entropy [126].
The different theories are important because they enable us to handle dif-
ferent types of uncertainty and to express “ignorance”, in the sense of the
absence or incompleteness of information such that the correct answer in
a set can be identified without doubt. The different types of uncertainty
have been summarized by Klir and Yuan [77] in Figure 3.1 which repre-
sents the uncertainty types that can be described by classical set theory,
fuzzy set theory, possibility theory, and evidence theory. We can identify
the following types of uncertainty:

• nonspecificity: related to the cardinality of the set, the larger the
set in which the correct answer lies the greater the uncertainty; the
more relevant information you have the more you can reduce the set;

• discord: expresses a conflict between sets whose information is in
conflict with each other;
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• fuzziness: related to the vagueness of established boundaries and the
difficulty of making clear and precise distinctions [70].

3.2 Classical Uncertainty Theories

Before addressing generalized uncertainty theories, in which the study of
uncertainty is broader, we recall some of the concepts of classical uncer-
tainty theories, which originated in the first half of the 20th century and
are based on probability and possibility theories. In particular, this sec-
tion will focus on the measures that first addressed the issue of uncertainty
measurement.

Classical probability-based uncertainty theory

Generally, in a decision problem, the available alternatives can be included
in a finite set X of mutually exclusive alternatives that may represent
answers to the problem. This determines the fact that only one of the
alternatives will be the correct answer to the question. Within set X we
know that there is the correct answer to the question (e.g., a person’s age),
but with uncertainty, we do not know exactly what it is.
Probability theory allows us to describe random events, and the uncertainty
about which alternative is correct to the question is expressed through the
probability distribution function:

p : X → [0, 1]

where ∑
x∈X

p(x) = 1

Probability distribution function associates with each element x of the set
X a value in [0, 1] that represents the probability that it is the correct
answer. The so-called probability measure of a subset A of X will be
equivalent to the sum of the values associated with each element belonging
to A. The probability of the union of two disjoint subsets is equal to the
sum of their probabilities; it thus satisfies the additivity property.
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Shannon Entropy

The problem of how to measure the amount of uncertainty is addressed by
Shannon [126] who defines Shannon Entropy:

Hs(p) = −
∑
x∈X

p(x) log2 p(x) (3.1)

where p(xi) is the probability of xi ∈ X. It attains its maximum when the
probability is uniform and the uncertainty is maximum.

This formula is often referred to as the conflict measure because rewriting
the function as:

Hs(p) = −
∑
x∈X

p(x) log2

1−∑
y ̸=x

p(y)

 (3.2)

and
Con(X) =

∑
y ̸=x

p(y)

where Con(X) ∈ [0, 1] ∀x ∈ X is the sum of the probabilities of the
elements that are in open contrast to the probability that x occurs or is

the correct answer. As this term increases, so does − log2

[
1−

∑
y ̸=x p(y)

]
and thus the measured uncertainty.

Classical possibility-based uncertainty theory

The classical-based uncertainty theory based on possibility theory, is older
than the one based on probability theory [74]. Possibility theory differs
from probability theory in having two set functions (i.e. possibility function
and necessity function) and also does not satisfy the additive property.
Moreover, while probability describes precise but conflicting phenomena
and it is therefore possible to derive a measure of uncertainty that evaluates
the conflict, in possibility theory the phenomena are not contradictory but
imprecise [36]. In this context, nonspecificity can be measured. Possibility
function, Pos(A), whereA ∈ P (X), P (X) is the power set ofX, takes value
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0 when there is no relevant evidence that a possible alternative exists in
A, while it takes the value 1 when there is complete certainty.
Thus:

Pos : P (X)→ [0, 1]

And fulfills the following criteria:

Pos(∅) = 0

Pos(X) = 1

Similarly, we define necessity function as the function that describes the
situation in which an element contained in A ∈ P (X) must be the correct
alternative.
It is deduced that there cannot be a situation such that Pos(A) = 0 and
Nec(A) = 1 and that the logical connection between the two functions is
dictated by the fact that if it is not possible for the correct alternative to
be contained in the complementary of A, A, then it must mandatorily, i.e.
necessarily, be in A:

Nec(A) = 1− Pos(A) ∀A ⊂ X (3.3)

From this expression, it is evident that, unlike probability, the functions of
possibility and necessity are not self-dual. In addition:

Pos(A ∪B) = max(Pos(A), Pos(B))∀A,B ∈ P (X), (3.4)

means that the possibility function is subadditive. The dual function that
allows the complete description of the situation, the necessity function,
turns out to be superadditive.

On the basis of the properties described, necessity and possibility mea-
sures are respectively particular lower and upper probability measures for
which there always exists:

Nec(A) ≤ Pr(A) ≤ Pos(A)

To better understand how possibility theory works, a numerical example
is proposed. Let it be the case where a physician needs to figure out
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what disease his patient is suffering from. We have X = {A,B,C}. The
distribution of possibilities is for example:

Pos({A}) = 0.3 Pos({B}) = 1 Pos({C}) = 0.2

The possibility function is not sufficient to completely describe the un-
certainty of a situation, which is why the necessity function is needed.
Therefore, we obtain Table 3.1.

set Pos Nec
{A} 0.3 0
{B} 1 0.7
{C} 0.2 0
{A,B} 1 0.8
{A,C} 0.3 0
{B,C} 1 0.7
{A,B,C} 1 1

Table 3.1: Numerical example: possibility and necessity function

Hartley measure

The measurement of uncertainty, in particular of nonspecificity is studied
by Hartley [51] for finite sets. Hartley’s measure is defined as:

H(A) = log2 |A| (3.5)

Hartley’s formula depends on the cardinality of the set of possible alterna-
tives and thus indicates nonspecificity, i.e. the larger the set, the more pos-
sible alternatives and the less relevant information we have, consequently
the uncertainty will be greater. Uncertainty of 0 corresponds to full speci-
ficity, that is when the set of alternatives consists of only one element.

3.3 Uncertainty measures

We saw earlier how, with the advent of GIT, broader and more general
methods of describing uncertainty were sought. Following the theme of
the second publication, we will focus on one of two generalizations: from



3.3. UNCERTAINTY MEASURES 46

classical measure theory to monotone measurement theory, first mentioned
by Choquet in [18].
A monotone measure, f , must be a function that, given a nonempty family
of subsets E of a universal set X, is f : E → [0,∞]. It must satisfy certain
requirements such as f(∅) = 0 and especially monotonicity so that, for any
set belonging to E, if A ⊆ B, then f(A) ≤ f(B). There are two other
conditions, called “continuity from above” and “continuity from below,”
which provide, for decreasing and increasing sequences of nested subsets,
that the limit of the monotone measure of the latter is the monotone mea-
sure of their intersection and union, respectively. For finite universal sets,
the latter two conditions are always satisfied.
From this generalization comes the Dempster-Shafer theory or evidence
theory, one of the theories that have attracted more attention due to el-
ements such as basic probability assignment that allow for a better repre-
sentation of uncertainty in information and its adaptivity [29].

3.3.1 Evidence theory

Evidence theory was proposed by Dempster [25] as a formalization of lower
and upper probabilities and then developed by Shafer [125]. Like possibility
theory, this theory is based on a pair of dual measures that are referred to
as Belief and Plausibility measures.
To define these measures, consider a nonempty set X = {x1, x2, . . . , xn}
containing a finite number n of exhaustive and mutually exclusive elements,
X is generally called, in this context, frame of discernment (FOD) and the
related power set is P (X). Belief measure Bel is defined as:

Bel : P (X)→ [0, 1]

such that:

Bel(∅) = 0;

Bel(X) = 1;

for every family of A1, . . . , An of subsets ofX and for every positive integer



47 CHAPTER 3. ENTROPY MEASURES IN DEMPSTER-SHAFER THEORY

n,

Bel(A1 ∪ · · · ∪ An) ≥
∑

I⊂{1,...,n},I ̸=∅

(−1)|I|+1Bel

(⋂
i∈I

Ai

)
. (3.6)

From the last condition, it is denoted that Belief is superadditive.
The dual measure is the Plausibility measure, Pl, defined as:

Pl : P (X)→ [0, 1]

such that:

Pl(∅) = 0

Pl(X) = 1

for every family of A1, . . . , An of subsets ofX and for every positive integer
n,

Pl(A1 ∩ · · · ∩ An) ≤
∑

I⊂{1,...,n},I ̸=∅

(−1)|I|+1Pl

(⋃
i∈I

Ai

)
. (3.7)

From the last condition, it is denoted that Plausibility is subadditive.
The two conditions of superadditivity and subadditivity allow this theory
to express synergy and incompatibility between subsets [72].
As seen above for possibility theory the duality between the two measures
is expressed as:

Bel(A) = 1− Pl(A) (3.8)

Both measures can be expressed in terms of a function, m, called basic
probability assignment (BPA) or basic mass assignment, defined as:

m : P (X)→ [0, 1]

such that:

m(∅) = 0∑
A∈P (X)m(A) = 1
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Every set for which m(A) > 0 is referred to as a focal element while the set
of all focal elements associated with its BPA is called body of evidence. The
BPA is a function that assigns a value between 0 and 1 to each element
in the power set. The value is based on evidence that supports that the
answer to the problem can be found in a particular subset.
An application example of how this function can be used is given by the
study of [48], in which the purpose is to identify the points with a higher
potential for fire initiation in an area of Chile. The BPA value, for each
square into which the area is divided, is derived from the surveys and in-
formation collected, thus defining the portion of evidence that supports
the assertion that fire may start there. It is important to emphasize that
the value of BPA is relative only to the reference subset A and not to its
elements or subsets.

The importance of BPA is mainly related to its relationships with Belief
and Plausibility measures, which can be expressed as:

Bel(A) =
∑

B|B⊆A

m(B) ∀A ∈ P (X), (3.9)

through which one can better understand how this measure quantifies the
level of confidence that the element representing the truth or the answer
is within a subset A. This is through the sum of all the evidence and
information held that supports the claim, i.e., the BPA value of the set
itself and all its subsets.

Pl(A) =
∑

B|A∩B ̸=∅

m(B) ∀A ∈ P (X), (3.10)

through which it is clarified that the plausibility of an item to be the cor-
rect answer derives not only from relevant information that fully supports
it but also from evidence that does not contradict it.
Consequently, it will always be the case that Bel(A) ≤ Pl(A)∀A ∈ P (X)
so it is more believable that an element is in the subset A the less plausible
the opposite.
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The evidence theory proves very useful in expressing a concept that was
not possible in the other theories: total ignorance. This can be done with
the vacuous mass function for which m?(X) = 1.
An example can be made by imagining the early scientists of antiquity
struggling with the question of whether the Earth was flat or round; until
the earliest studies, i.e. the earliest evidence, they could not assign a belief
of positive value to either option, even though they knew that one of the
two possibilities, i.e., the universal set, could be the correct one.
It is worth noting that evidence theory is a generalization of probability
theory and possibility theory. Examining some special cases shows the
relationship between these theories. When the focal elements are all the
singletons of the set X, i.e. only the singletons (x1, x2, . . . , xn) are assigned
m > 0, we have the case where Bel = Pl = Pr, i.e. the distribution of
BPAs corresponds to a probability distribution function because the dif-
ference between the two is eliminated, i.e. that the former is defined on
the power set while the latter is defined on the set X. When the set of
focal elements, F = (A1, A2, . . . , Ai), is composed of subsets that form a
nested sequence, i.e. A1 ⊂ A2 ⊂ · · · ⊂ Ai, then the rules followed by Belief
and Plausibility measures coincide with necessity and possibility measures,
respectively.

To better understand these two special cases, Tables 3.2a and 3.2b rep-
resent two numerical examples. From these considerations can be deduced

set m Bel Pl
{A} 0.3 0.3 0.3
{B} 0.2 0.2 0.2
{C} 0.5 0.5 0.5
{A,B} 0 0.5 0.5
{A,C} 0 0.8 0.8
{B,C} 0 0.7 0.7
{A,B,C} 0 1 1

(a) Atomic events

set m Bel Pl
{A} 0.3 0.3 1
{B} 0 0 0.7
{C} 0 0 0.5
{A,B} 0.2 0.5 1
{A,C} 0 0.3 1
{B,C} 0 0 0.7
{A,B,C} 0.5 1 1

(b) Nested subsets

Table 3.2: Numerical examples of special cases in evidence theory.

not only the generality of the Theory of Evidence, which allows represent-
ing events subject to both random and epistemic uncertainty [33], but also
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the possibility of representing imprecise and inconsistent elements, i.e.,
where information may conflict with each other, as is often found when
data are collected from experiments and different sources [36, p. 13].

Evidence theory has several practical applications such as the interpre-
tation of seismic parameters [6], decision support on road safety [112],
and construction project management [129], quantify uncertainty in multi-
criteria decision making [147], in multi-sensor data fusion for fault diagnosis
[142], and in pattern classification [148]. Some practical applications also
concern civil engineering such as the study of earthquake damage produced
on structures [7] and the probability of deterioration of bridges [4].

3.4 Applications in civil engineering

Evidence theory has several applications in the field of civil engineering and
particularly in the field of structures and safety. We have already pointed
out how uncertainty can affect various aspects of everyday life and experts’
judgment [74]. For this reason, applying evidence theory in fields where
reliance on expert opinion is imperative can be very useful. In particular,
civil engineering, unlike other disciplines, depends heavily on the decisions
of the designer and his or her experience [77, p. 419], the presence of un-
certainty in this field can be traced back to various processes, from design
to evaluation of the level of safety following deterioration of materials and
structures [136, p. 404]. Nowadays, engineering problems are increasingly
broad and complex, and as a result, it is more and more important to take
into account the different types of uncertainty [20]. Probability theory is
widely used in this field, but as we have seen, it cannot take into account
certain types of uncertainty.
In particular, the ability of evidence theory to consider two types of un-
certainty, to represent ignorance and lack of information not on individual
items but also on sets can help in the management of uncertainty in the
specific field of civil engineering [20]. In addition, another important fea-
ture of this theory is that of combining evidence, i.e., the possibility of
combining information from different sources (e.g., different experts, mul-
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tiple tests) and with different basic probability assignments, m1 and m2.
The standard way to appropriately aggregate information and obtain a
combined BPA is the Dempster’s rule of combination [74, pp. 170-173]:

m1,2(A) =

∑
B∩C=Am1(B) ·m2(C)

1−K
(3.11)

where:
K =

∑
B∩C=∅

m1(B) ·m2(C)

Thus, evidence theory allows, in addition to the concept of total ignorance,
to take into account the concept of interactivity [20], i.e. the influence that
two disjoint events can have on each other in the presence of both, and the
extension to consider situations of nonadditive effects as well. However,
there are limitations in using evidence theory, one of them being the com-
plexity of mathematical models [93].

One of the approaches, based on evidence theory, and widely used in civil
engineering is Evidential Reasoning (ER). This method is developed for
multi-criteria decision analysis methods under uncertainty [153]. To sup-
port the decision maker in making choices, the “degree of belief ” is used.
This value, in a range [0, 1], is to be assigned by the decision maker, based
on his or her knowledge and information. It represents the amount of belief
that an alternative, ai, reaches a certain level for each attribute [128].

Through this concept and the use of an extended decision matrix, it is
possible to consider decision-making situations with imprecise, missing,
and uncertain information [117] due to the generalization of evidence the-
ory and its ability to represent ignorance [117]. Moreover, ER approach
can also assume a hierarchical pattern of attributes [151], imagining that
there is a general attribute at the top and several levels of other sets of
attributes below [154]. The elements that define an evidential reasoning
approach are defined below. Let A = {A1, A2, . . . , Ai, . . . , AN} be the fi-
nite set of alternatives and C = {C1, C2, . . . , Cj, . . . , CM} be the finite set
of criteria or attributes whose relative weight, i.e., relative importance, is
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denoted by wj and satisfy the condition:

M∑
j=1

wj = 1 and 0 ≤ wj ≤ 1, j = 1, . . . ,M.

Each attribute uses a degree scaleG = {G1, G2, . . . , Gl, . . . , GL} by which it
defines the level it could reach for each selected alternative. Each cell of the
extended decision matrix will have as its element S(Ai(Cj)) = {(βl,j, Gl)}.
Where βl,j are the degrees of beliefs, i.e., how much the decision maker
believes the alternative Ai can bring to the Gl level of an attribute Cj.
For example, the first element of the extended decision matrix is explicitly
defined as:

S(A1(C1)) = {(β11, G1), (β21, G2), . . . , (βl1, Gl)}

The next step is to transform degrees of belief into BPAs by applying the
following equations [112]:

ml,j = mj(Gl) = wj × βl,j ∀l = 1, . . . , L, j = 1, . . . ,M (3.12)

where ml,j is the basic probability assigned to the attribute j located at
level l.

mG,j = mj(G) = 1−
L∑
l=1

ml,j = 1−wj

L∑
l=1

βl,j ∀l = 1, . . . , L, j = 1, . . . ,M

(3.13)
where mG,j is the BPA that aggregates all levels, thus the one assigned to
the set of levels G, mG,j, can be divided into two parts:

mG,j = mj(G) = 1− wj j = 1, . . . ,M (3.14)

m̃G,j = m̃j(G) = wj

(
1−

L∑
l=1

βl,j

)
l = 1, . . . , L, j = 1, . . . ,M (3.15)

where mG,j expresses the relative importance of attribute j, while m̃G,j

expresses the lack or incompleteness of information held by the expert
who defined the degrees of beliefs. ER algorithms can take into account
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several axioms that allow for consistent aggregation in terms of accuracy
and amount of information among different levels [154].
The analytical algorithm is summarized here, which turns out to be more
flexible and simpler than the recursive algorithm [141]. The analytical ER
algorithm aggregates attributes that are part of a hierarchical structure
[152].

ml = k

[
M∏
j=1

(ml,j +mG,j + m̃G,j)−
M∏
j=1

(mG,j + m̃G,j)

]
(3.16)

where k is the normalization factor:

k =

[
L∑
l=1

M∏
j=1

(ml,j +mG,j + m̃G,j)− (L− 1)
M∏
j=1

(mG,j + m̃G,j)

]−1
(3.17)

where ml is the aggregation of the BPAs of the various elements for each
grade of set {G}.

m̃G = k

[
M∏
j=1

(mG,j + m̃G,j)−
M∏
j=1

mG,j

]
(3.18)

mG = k

[
M∏
j=1

mG,j

]
(3.19)

where m̃G and mG aggregate the factors m̃G,j and mG,j relative to the
entire set G. Then the newly aggregated BPAs are transformed back by
normalization to obtain the belief structure to be included in the matrix:

βl =
ml

1−mG
(3.20)

βG =
m̃G

1−mG
(3.21)

where βl is the belief degree for each level l on the attribute at the top of
the hierarchy and βG is the belief degree of set {G} and shows the accuracy
with which the data is provided, any deficiency or absence, i.e., the level
of ignorance. When βG is equal to 0 it means the information is complete,
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the greater it is, the less information, the greater the ignorance about the
data.

3.4.1 Practical example of ER

Saleh Abu Dabous [121] In the publication “A flexible bridge rating method
based on analytical evidential reasoning and Monte Carlo simulation”,
Saleh Abu Dabous [121], address the problem of classifying the condition of
civil structures, specifically road bridges. They emphasize how very often
experts conduct a visual inspection of bridges thus subjectively assigning
the state rating of different bridge elements. Using an approach based on
evidence theory allows for the uncertainties associated with a subjective
process to be taken into account. The authors proceed to an exhaustive
literature review and then focus on finding a method that is suitable for the
actual situation and flexible to adapt to different realities. They note dif-
ficulties in finding a standard method of inspection and classification. The
ER approach allows all major bridge elements to be considered hierarchi-
cally and uncertainty to be incorporated into the analysis. In addition, the
authors incorporate into the process a technique for comparing elements
that allows the flexibility of being able to apply the method to different
types of existing bridges.

The procedure followed starts by hierarchically dividing the bridge into
several corresponding elements as shown in Figure 3.2 In this case, the set
of attributes is the set of bridge elements. The condition, i.e., the degree,
of the different elements combined through the ER approach algorithm will
provide the overall condition of the bridge taking into account the uncer-
tainty due to subjective classification.
The first step is to assign relative weights, wj, to all attributes. In the case
taken as an example, this procedure is done by comparing the different
subsets of attributes in pairs and defining matrices in which the results of
the comparisons are reported. The weight of each element is equal to the
number of times it “wins” the comparison divided by the total number of
comparisons.
The second step involves defining the levels that can be attained, it is de-
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Figure 3.2: Bridge elements.

fined as G = {poor, fair, good, excellent}. At this point, degrees of beliefs
must be assigned by an expert, i.e., how much the expert, based on the
information he or she has from visual inspection and testing of materials,
believes that the different items are in the different conditions described by
the set G. In the example given in [121], this procedure is carried out with a
Monte-Carlo simulation that generates several possible scenarios based on
the health index (HI) implemented by the Department of Transportation
in California [114], but it is also possible to subject it to the evaluation of
different inspectors by combining their opinions through Dempster’s rule
of combination [20, 8].

Once in possession of all the necessary information, they proceed with
the application of the analytic algorithm as described by Equations 3.12-
3.21. Please refer to [121] for all computational details, while the results
obtained on the overall bridge structure are reported here. After aggregat-
ing the ratings of the deck, superstructure, and substructure, the rating of
the complete structure turns out to be in poor, fair, and good condition
with 26.93%, 42.66% and 30.41%, probability, respectively. These results
take into account the fact that the bridge considered in the calculations
turns out to be in good condition as far as the main structures are con-
cerned, but also that the superstructure is in poor condition, indicating
that maintenance is generally needed.
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3.5 Generalized uncertainty measures

The two measures of uncertainty seen so far have been defined in proba-
bility and possibility theory; in evidence theory, some attempts have been
made to generalize them as a function of m.
Hartley’s generalized measure was proposed by Dubois and Prade [35]:

Hd(m) =
∑
A∈F

m(A) log2 (|A|) . (3.22)

The nonspecificity measure is presented as a weighted average of the Hart-
ley measure for all focal elements, where the weights are the BPA values.

Concerning Shannon’s generalization of entropy, several formulations were
proposed in the early 1980s, but each of them is deficient in terms of cer-
tain properties. The property that is most frequently not satisfied is the
subadditivity [74].

Höhle [54] proposed the so called confusion measure that represents the
conflict between evidences only when B ∩ A = ∅.

HO(m) = −
∑
A∈F

m(A) log2Bel(A), (3.23)

While Yager [149] proposed the dissonance measure that includes a broader
definition of conflict, but does not correctly scale the level of conflict.

Hy(m) = −
∑
A∈F

m(A) log2 Pl(A), (3.24)

In the early 1990s the measure of discord was proposed by Klir [71], as an
improvement of the previous two formulas:

Hk(m) = −
∑
A∈F

m(A) log2

(∑
B∈F

m(B)
|A ∩B|
|B|

)
(3.25)
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In this case, the logarithm argument describes the conflict between rele-
vant evidence related to focal elements. The conflict is appropriately scaled
through the denominator cardinality.

Equation 3.25 is further improved by Klir and Parviz [76] to adequately
represent the conflict between subset A and the other focal elements with
Equation 3.26, named strife.

Hp(m) = −
∑
A∈F

m(A) log2

(∑
B∈F

m(B)
|A ∩B|
|A|

)
. (3.26)

Before the research moved on to focus on a measure that can describe
both uncertainties, two other measures were presented. The first uses the
commonality function, defined by Shafer [125] as:

Q(A) =
∑

B|A⊆B

m(B) (3.27)

The entropy proposed by Smets [127] measures the information contained
in the BOE:

Ht(m) = −
∑
A∈F

c(A) log2Q(A), (3.28)

where we set c(A) = 1 which is, according to Smets [127, p. 37], the “most
natural choice”.

The proposal of Nguyen [104] is probably the most direct extension of
Shannon’s entropy:

Hn(m) = −
∑
A∈F

m(A) log2m(A). (3.29)

It is since the early 1990s that research in this field has focused on measures
that attempt to describe both nonspecificity and conflict. The second
publication focuses on this context.
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3.6 Publication II

3.6.1 The Problem

Publication II focuses on a numerical comparison of the many formulations
that have crowded the research field of entropy measures in recent years.
In particular, in the last 40 years, and more specifically in the last 5 years,
a large number of measures have been proposed. Their goal is the correct
description and calculation of uncertainty within evidence theory, in an
attempt, not entirely successful, to define a formulation that is also able
to satisfy some properties. Currently, due to a large number of options, it
is very complicated to use one measure over another, and thus the choice
in a real application context can be difficult to implement.
At present, the study of numerical comparison is useful to properly analyze
what has been done so far. In recent years, some measures have already
been compared but only on specific cases or certain properties. In addi-
tion, this comparison could be useful in the choice of uncertainty measure
that affects concrete and real applications, such as in multicriteria decision
making [147], multisensor data fusion for fault diagnosis [142], and model
classification [148]. Therefore, the main objective is to present a numer-
ical study comparing uncertainty measures by verifying their differences
and similarities, as a support for a more informed choice of uncertainty
measures.

3.6.2 Mathematical properties

Mathematical properties of uncertainty measures have been proposed by
Klir and Wierman [69]. The numerical analyses conducted in this paper do
not focus on these properties, but given their importance in defining the
measures, it is useful to mention at least the five most important properties
[3].

1. Probabilistic consistency : measure must degenerate into Shannon en-
tropy when the distribution of BPAs, m(A), represents a probability
distribution, i.e., when all focal elements are singletons.

2. Set consistency : When the distribution of BPAs is such that it focuses
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on a single subset, i.e., m(A) = 1, it means that there are no conflicts
between subsets because all the evidence points to the presence of the
sought-after element in A, consequently the measure must degenerate
into Hartley’s measure.

3. Subadditivity : the total uncertainty when m is a joint BPA on the
Cartesian productX×Y andmX andmY are the respective associated
marginal BPAs, cannot be greater than the sum of the uncertainties
of mX and mY , i.e:

H(m) ≤ H(mX) + H(mY )

4. Additivity : the total uncertainty when m is a joint BPA on the Carte-
sian product X × Y and mX and mY are the respective associated
marginal BPAs, is equal to the sum of the uncertainties of mX and
mY , if and only if the marginal representations are noninteractive:

H(m) = H(mX) + H(mY )

5. Monotonicity : When it is possible to order the values of evidence,
meaning, in evidence theory, m1 and m2 defined on the FOD X are
such that Bel2(A) ≤ Bel1(A) ∀A ⊆ X, then H is monotone if and only
if

H(m1) ≤ H(m2)

3.6.3 Recent measures

The search for a unique measure of entropy in the field of evidence the-
ory is still one of the active topics in the literature [74, p.417]. Over the
years, as shown in Figure 3.3, many options have been proposed. Some of
the best-known ones have been studied in Publication II, including those
expressed earlier in Section 3.5. Figure 3.3 shows the years in which the
measures were published and indicates the names of the researchers who
proposed them. It can be seen that the study of entropy measurement
has covered the last 40 years, and in the last 7 years, it has returned as
a topic of interest. From 1982 to 1987, there are concentrated attempts
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Figure 3.3: Timeline of the seminal papers for various uncertainty measures.

to generalize Hartley’s measure and Shannon’s entropy. As we shall see
in this Section, the measure proposed by Lamata and Moral [83] marks
the boundary between measures that address only one type of uncertainty
and those that seek to describe both nonspecificity and conflict in a single
formula. There is a lack of proposals between 1996 and 2015 in which only
the measure of Jousselme et al. [59] is present. In more recent years, we
have seen a large number of proposals, some of which find inspiration in ex-
isting measures, trying to obtain the satisfaction of the desired properties;
however, as pointed out by Dezert and Tchamova [31], the latest proposals
have no longer focused efforts on the analysis of formal properties.

After this temporal overview, we move on to analyze the mentioned mea-
sures.

Lamata and Moral

Lamata and Moral [83] are the first to introduce a global measure that
is designed to represent and calculate both types of uncertainty found in
evidence theory. The proposed measure turns out to be the sum of the
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entropies of Yager [149] and Dubois and Prade [35].

Hl(m) =

Hy(m)+Hd(m)︷ ︸︸ ︷
−
∑
A∈F

m(A) log2

(
Pl(A)

|A|

)
. (3.30)

Pal et al.

Following the logic of the sum of two measures describing two types of
uncertainty, Pal et al. [106, 107] also define total uncertainty as the sum
of the measures of Nguyen [104] and Dubois and Prade [35].

Hb(m) =

Hd(m)+Hn(m)︷ ︸︸ ︷
−
∑
A∈F

m(A) log2

(
m(A)

|A|

)
. (3.31)

Harmanec and Klir

Aggregate Uncertainty is introduced by Harmanec and Klir [50] to measure
total uncertainty and can be expressed in terms of belief measures, plau-
sibility measures, or basic probability assignments due to their one-to-one
correspondence.

AU(m) = max
p∈P(m)

{
−

n∑
i=1

p(xi) log2 p(xi)

}
, (3.32)

where p(xi) are all probability distributions satisfying the following criteria:

p(xi) ∈ [0, 1] ∀xi ∈ X and
∑n

i=1 p(xi) = 1;

Bel(A) ≤
∑

xi∈A p(xi) ∀A ⊆ X.

Thus AU arises as an optimization problem whose aim is to find the max-
imum Shannon entropy in a set of probability distributions dominating a
given belief function [74, p. 231].
Solving the optimization problem would be very complex, but thanks to
the study of some relatively simple algorithms it turns out to be a useful
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measure. In particular, in the publication we adopted the algorithm pro-
posed by Huynh and Nakamori [56], improvement of the one proposed by
Liu et al. [92].

George and Pal

George and Pal [45] depart from the trends of the early 1990s by return-
ing to the search for a measure of uncertainty that describes only conflict.
Their reasoning is based on the idea that the difference between two ele-
ments in the BOE can be seen as a distance, rather than seeking a gener-
alization of Shannon’s entropy. The result is a definition of discord as an
average conflict of every evidence,

TC(m) =
∑
A∈F

m(A)
∑
B∈F

m(B)

(
1− |A ∩B|
|A ∪B|

)
. (3.33)

Jousselme et al.

The proposed Jousselme et al. [59], called Ambiguity Measure, is a mea-
sure of total uncertainty. The name comes from the definitions of Klir and
Yuan [77] in Figure 3.1. The proposed measure is similar to the one pro-
posed more than 10 years earlier by Harmanec and Klir [50], it is in fact a
measure designed to improve some shortcomings of the former. Moreover,
the attempt of the measure is to satisfy the properties proposed by Klir
and Wierman [69].
Also in this case, the basis is Shannon entropy and the distribution of belief
is transformed into a probability distribution. Specifically, the authors use
the pignistic transformation, proposed by Dubois and Prade [34]:

Bet(xi) =
∑

A|xi∈A

m(A)

|A|
∀i = 1, . . . , n.

The result of the transformation is that each basic probability assignment
relative to a focal element, m(A) is redistributed uniformly over the sin-
gletons, xi ∈ A.
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Accordingly, the proposed measure is:

AM(m) = −
n∑

i=1

Bet(xi) log2Bet(xi). (3.34)

Yang and Han

Yang and Han [155] propose a measure of total uncertainty based on
the distance between belief intervals, meant as [Bel(A),Pl(A)], in which
they recognize the presence of both uncertainties and which does not re-
quire switching from evidence theory measures to probability distribution.
Specifically, the distance between the belief interval of each singleton from
the interval representing the largest uncertainty, i.e. [0, 1], is used. The
greater the distance between the two, the lower the total uncertainty.
The proposed measure is:

TUI(m) = 1− 1

n

√
3

n∑
i=1

dI([Bel(xi),Pl(xi)], [0, 1]), (3.35)

where
√
3 is the normalization factor and

dI ([Bel(xi),Pl(xi)], [0, 1]) =

=

√[
Bel(xi) + Pl(xi)

2
− 0 + 1

2

]2
+

1

3

[
Pl(xi)− Bel(xi)

2
− 1− 0

2

]2
.

Deng and Wang

Taking advantage of the idea of using belief distance to measure total
uncertainty, Deng and Wang [30] propose an improvement of TUI(m), ex-
ploiting the Hellinger distance that is applicable in both probability theory
and evidence theory.

DU(m) =
n∑

i=1

(
1−

√(√
Bel(xi)− 0

)2
+
(
1−

√
Pl(xi)

)2)
. (3.36)
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Li et al.

A further variant on total uncertainty measures based on the distance
between belief intervals is proposed by Li et al. [86]. The authors use
Euclidean distance by defining:

dE ([Bel(xi),Pl(xi)] , [0, 1]) =
√

[Bel(xi)− 0]2 + [Pl(xi)− 1]2.

A linear distance transformation is performed and summed with respect
to all elements of the FOD, resulting in the measurement:

TU(m) =
n∑

i=1

(
2

1 + dE
− 1

)
. (3.37)

It is denoted that Deng et al. [27] also use Euclidean distance to define a
measure of total uncertainty.

Wang and Song

Wang and Song [140] point out that it is complex to determine what is
the correct distance to use to adequately describe uncertainty. In addition,
the authors emphasize the need to develop a measure of uncertainty that
can be used in both evidence theory and probability theory. The defined
measure is based on Shannon entropy and central values of intervals,

Bel(xi) + Pl(xi)

2
,

to measure discord and on the difference Bel(A)− Pl(A) to measure non-
specificity:

SU(m) =
n∑

i=1

[
−Bel(xi) + Pl(xi)

2
log2

Bel(xi) + Pl(xi)

2
+

Pl(xi)− Bel(xi)

2

]
.

(3.38)
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Deng

Deng [28] proposes a measure of total uncertainty that takes inspiration
from the measure of Pal et al. [106]

Hg(m) = −
∑
A∈F

m(A) log2

(
m(A)

2|A| − 1

)
. (3.39)

The formula can be divided into two parts, one for each type of uncertainty.
The measure is based on focusing more attention, and thus an increase in
uncertainty, as the nonspecificity increases, so when the cardinality of A
increases [1]. While the conflict part coincides with the proposal of Nguyen
[104].
The properties of measurement have been extensively and critically ana-
lyzed by Abellán [1] e [100].

Pan and Deng

The proposal of Pan and Deng [108] uses both the concept of central values
from the Wang and Song [140] measure and the Deng [28] measure to define
a new entropy measure:

Hbel(m) = −
∑
A∈F

Bel(A) + Pl(A)

2
log2

Bel(A) + Pl(A)

2(2|A| − 1)
. (3.40)

Jiroušek and Shenoy

Jiroušek and Shenoy [57] propose a measure of entropy that is different
from the others. For this reason, they introduce a list of six properties
that the measure should have. The properties are identified partly on the
basis of Shannon’s entropy and partly on the requirements needed to be
aligned with evidence theory. The properties identified by the authors are
half the same as those proposed by Klir and Wierman [69].
Like other total uncertainty measures, this one consists of two parts, one
being Shannon entropy in which probabilities are obtained by plausibility
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transformation,

PlT(xi) =
Pl(xi)∑n
j=1 Pl(xj)

∀xi ∈ X,

the other is the measure defined by Dubois and Prade [35]. The entropy
measure obtained turns out to be:

Hj(m) =

Hs(PlT)︷ ︸︸ ︷∑
xi∈X

PlT(xi) log2

(
1

PlT(xi)

)
+

Hd(m)︷ ︸︸ ︷∑
A∈F

m(A) log2(|A|) . (3.41)

The use of a probabilistic transformation may resemble the formula of
Jousselme et al. [59], so much so that the authors compare the two different
transformations used showing that the plausibility transformation is better
in use within evidence theory.

Zhou, Tang and Jiang

Zhou et al. [163] are the first authors to include the cardinality of the FOD
in the entropy measure and to take into account the relationship between
the cardinality of the focal elements and the FOD. The inspiration for the
formula comes from the entropy of Deng [28].

EMd(m) = −
∑
A⊆X

m(A) log2

(
m(A)

2|A| − 1
e

|A|−1
|X|

)
(3.42)

Compared with Deng’s formula, the only addition is the element |A|−1|X| .

Cui et al.

Other new formulations decide to take into account the cardinality of the
FOD, in this case also Cui et al. [21] define a measure of entropy based
on the measure of Deng [28], in fact, the defined measure degenerates into
Deng entropy when the intersection between the focal elements is equal to
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the empty set.

E(m) = −
∑
A⊆X

m(A) log2

 m(A)

2|A| − 1
exp

∑
B∈F
B ̸=A

|A ∩B|
2|X| − 1


 . (3.43)

Yan and Deng

The proposal of Zhou et al. [163] is modified by Yan and Deng [150] with
the inclusion of the belief measure and the replacement of the cardinality
of the FOD with the number of singletons with Pl > 0, indicated with |S|.

HMd(m) = −
∑
A⊆X

m(A) log2

(
m(A) + Bel(A)

2(2|A| − 1)
e

|A|−1
|S|

)
(3.44)

Qin et al.

Qin et al. [111] propose a new measure of uncertainty in which the car-
dinality of the FOD, |X|, is entered to scale the cardinality of the focal
elements with respect to it in the formula of Dubois and Prade [35] while
conflict is measured by Nguyen [104].

Hq(m) =
∑
A∈F

|A|
|X|

m(A) log2(|A|) +
∑
A∈F

m(A) log2

(
1

m(A)

)
, (3.45)

Li and Pan

Li and Pan [85] propose a measure that sums the measure of Nguyen [104],
and that of Dubois and Prade [35]. The latter is in this case multiplied by
the cardinality of the FOD to account for the impact of the universal set,
X. The resulting measure is expressed as:

HB&F (m) =
∑
A∈F

m(A) log2
|A||X|

m(A)
. (3.46)
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Zhou and Deng

Zhou and Deng [164] propose a measure of entropy based on a probability
transformation which takes inspiration from the theory of fractals:

EFB = −
∑
A∈F

mF (A) log2mF (A) (3.47)

where mF is defined as follows,

mF (A) =
∑

B|A⊆B

m(B)

2|B| − 1
.

Other measures

In recent years there has been a lot of research on entropy measurements,
the measurements presented are not the only ones in the literature, there
are a few others ranging from the more technical, e.g. Wen et al. [146] and
Zhao et al. [159], to parametric ones, e.g. Zhang et al. [158] and Wang et al.
[139]. In particular, the latter were excluded from the analysis because the
need to set an a priori value would have made the comparison complex.

3.6.4 Mathematical properties on analyzed measures

Having described all the measures that will be analyzed below, let us take
a quick look at which mathematical properties they satisfy, among those
listed in Section 3.6.2. Section 3.3 summarizes the main properties and
their satisfaction or non-satisfaction, as well as a classification according
to the type of uncertainty measured, i.e., discordance or conflict and non-
specificity, and the method of computation used, i.e., generalized entropy
measures or belief intervals.
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Eq. Proponent P. cons. S. cons. Add. Subadd. Monot. Source Type Content

(3.23) Höhle Y N Y N N [109, 111] D EB
(3.24) Yager Y N Y N N [109, 111] D EB
(3.28) Smets N N Y N N [109] D EB
(3.29) Nguyen Y N Y N N [109, 111] D EB
(3.22) Dubois and Prade N Y Y Y Y [109, 111] NS EB
(3.25) Klir and Ramer Y Y Y N Y [109, 111] TU EB
(3.26) Klir and Parviz Y Y Y N Y [109, 111] TU EB
(3.30) Lamata and Moral Y Y Y N Y [57] TU EB
(3.31) Pal et al. Y Y Y N Y [109] TU EB
(3.32) Harmanec and Klir Y Y Y Y Y [109, 1] TU EB
(3.33) George and Pal Y Y Y N N [29, 109] TU
(3.34) Jousselme et al. Y Y Y N Y [109, 75] TU EB
(3.35) Yang and Han N N N N N [26, 2] TU IB
(3.36) Deng and Wang N N ? ? Y [30] TU IB
(3.37) Li et al. N N N N ? [86] TU IB
(3.38) Wang and Song Y Y ? ? N [140, 26] TU EB, IB
(3.39) Deng entropy Y N N N N [1] TU EB
(3.40) Pan and Deng Y ? N N Y [108, 109] TU EB
(3.41) Jirousek and Shenoy Y N Y N Y [57, 111] TU EB
(3.42) Zhou et al. N N N N N [100] TU EB
(3.43) Cui et al. N N N N N [100] TU EB
(3.44) Yan and Deng Y Y N N ? [150] TU EB
(3.45) Qin at al. Y N N ? ? [111] TU EB
(3.46) Li and Pan Y ? N N ? [85] TU EB
(3.47) Zhou and Deng Y N Y Y ? [164] TU EB

Table 3.3: Measures of uncertainty and their properties: a review of the literature. Y: the property is satisfied, N: the
property is not satisfied, ?: the property was not studied or evidence seems inconclusive. The column ‘source’ refers to the
publications where the satisfaction of the properties is discussed. In the column ‘Content’, measures are labelled according
the category they belong to, i.e., total uncertainty (TU), discord (D), non specificity (NS). The last column indicates
whether the measure is based on the entropy formulation (EB) and/or is based on uncertainty intervals (IB).
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Looking at Table 3.3 it is clear how the measure of Harmanec and Klir
[50] is the only one that satisfies all the properties, also confirmed by Moral-
Garćıa and Abellán [101]. Despite this, the measure is among the most
complex to use and insensitive to the variation of m [140]. It is interesting
to mention the proposal of Moral-Garćıa and Abellán [101] to pay spe-
cial attention to certain desiderata that uncertainty measures must satisfy.
These recommendations are based on the sensitivity and practical use of
uncertainty measures.

Nowadays, the context of the properties of uncertainty measures is still
much debated, the most recent proposals have fewer in-depth studies than
the previous ones, and some authors, e.g. Yang and Han [155] and Deng
and Wang [30] question some properties by emphasizing the importance of
requirements specifically suited to evidence theory.

3.6.5 The problem and the methodology

The purpose of the publication is to numerically analyze the differences and
similarities among all the measures mentioned. Numerical analysis requires
a method for generating the universal set, focal elements, and appropriate
BPAs. To this end, the procedure involves defining all necessary elements:

1. a priori definition of the n cardinality of X;

2. the set of focal elements, F , consists of subsets randomly selected by
the FOD. The selection stops when the union of the focal elements
equals the set X;

3. the definition of BPAs follows the proposal of Burger and Destercke
[12] by assigning m to each focal element using the Dirichlet function
with parameter vector 1|F|.

Using the Dirichlet function makes it possible to obtain a uniform distri-
bution ofm on the focal elements and to satisfy, without further procedure,
the rule that the sum of the values of the BPAs is equal to 1.
The simulation starts from the definition of n, then the procedure is re-
peated s = 10, 000 times. Each repetition corresponds to measuring the
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uncertainty as a function of the BPAs by all the formulas presented. The
simulation is summarized in Algorithm 1. The analysis of uncertainty

Algorithm 1 The simulation procedure to compare the selected uncertainty measures.

X ← {x1, . . . , xn} ▷ Define the frame of discernment
N ← s ▷ Initialize N
Q← {q1, . . . , qm} ▷ Define a list of entropy measures
D ← ∅ ▷ Create an empty dataset
i← 1
while i ≤ N do

R← ∅
while

⋃
A∈R A ⊊ X do

A← sample(2X \R) ▷ Sample a set A ⊆ 2X \R
R← R ∪ {A}

end while
F ← ∅
B ← Dirichlet(|R|) ▷ Sample |R| values using Dirichlet so that

∑
b∈B b = 1

for b ∈ B do
F ← F ∪ {⟨A, b⟩}

end for
D ← D ∪ {⟨q1(F), . . . , qm(F)⟩} ▷ Compute a new array of entropy measures
i← i+ 1

end while

measures is based on three procedures that will be described below:

• Similarity analysis through comonotonicity;

• Hierarchical clustering;

• Centrality analysis.

Some of them are also used by other authors such as Jousselme and Maupin
[58].

3.6.6 Results

Similarity analysis

Similarity analysis is conducted by looking for comonotonicity between the
measures through the use of Spearman rank correlation coefficient ρ [157],
which provides a value in [−1, 1] based on the ordering of the uncertainty
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of the pairs of uncertainty measures analyzed. More precisely, when the
value is ρ(a,b) = 1 denotes perfect positive comonotonicity, ρ(a,b) = −1
denotes perfect negative comonotonicity, and ρ(a,b) = 0 no comonotonic-
ity. Intermediate values denote intermediate degrees of comonotonicity.
In practice, when comparing two measurements, two lists of uncertainty
values a,b ∈ Rs are obtained from the simulation. The values ai, bi are ini-
tially transformed into ranks R(ai), R(bi), i.e., the values are ranked from
smallest to largest with numbers from 1 to i as shown in Table 3.4. The

ai bi R(ai) R(bi)

2 6 1 3
9 2 3 1
7 5 2 2

Table 3.4: Example of rank transformation of two variables using Spearman rank corre-
lation coefficient ρ

values obtained are entered into the following formula:

ρ(a,b) =
cov(R(a), R(b))

σR(a)σR(b)

where cov is the covariance of the two ranking vectors and σ is the standard
deviation e R(a), R(b) are the vectors containing the values R(ai), R(bi).

The choice of this coefficient, unlike Pearson’s linear correlation, is use-
ful for accounting for nonlinear relationships between the values of uncer-
tainty measures. Comonotonicity allows us to assess the similarity between
two uncertainty measures compared based on the order given to the BPAs
from least to most uncertain. The results of this analysis obtained by fix-
ing n = 4 are depicted in Figure 3.4. It is emphasized that the measures
defined by Equations 3.22-3.26, Equations 3.28-3.29 and Equation 3.33 be-
cause they are all measures of conflict or nonspecificity only, and, in this
context, comparison with measures of total uncertainty would not be use-
ful.

The analysis represented in this way is very broad and widespread, so
it may be useful to focus on specific confrontations for better evaluation.
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Lamata & Moral 0.071 0.461 0.672 0.154 0.478 0.571 0.286 0.555 -0.201 0.646 0.814 0.64 0.639 0.539 0.687 0.487

Pal et al. 0.737 0.384 0.931 0.774 0.236 0.682 0.505 0.715 0.293 0.406 0.318 0.505 0.672 0.391 0.588

Deng 0.849 0.79 0.955 0.748 0.62 0.926 0.535 0.779 0.709 0.815 0.919 0.985 0.846 0.961

Jirou ek & Shenoy 0.408 0.826 0.906 0.565 0.957 0.183 0.969 0.819 0.959 0.979 0.902 0.993 0.908

Qin et al. 0.769 0.236 0.532 0.518 0.693 0.281 0.449 0.336 0.551 0.727 0.408 0.668

Yan & Deng 0.695 0.714 0.886 0.46 0.766 0.773 0.774 0.891 0.956 0.835 0.879

Li et al. 0.472 0.929 0.187 0.954 0.62 0.977 0.868 0.784 0.908 0.818

Harmanec & Klir 0.601 0.451 0.532 0.508 0.525 0.599 0.616 0.57 0.556

Li & Pan 0.36 0.943 0.725 0.958 0.965 0.944 0.953 0.948

Pan & Deng 0.138 -0.002 0.203 0.286 0.415 0.168 0.47

Deng & Wang 0.761 0.968 0.924 0.833 0.973 0.837

Jousselme et al. 0.725 0.833 0.785 0.846 0.685

Yang & Han 0.938 0.858 0.962 0.879

Zhou & Deng 0.959 0.977 0.953

Cui et al. 0.902 0.964

Wang & Song 0.893
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Figure 3.4: Pairwise scatter plots for pairs of uncertainty measures and their values of
Spearman rank correlation coefficient for n = 4. To enhance readability the scatter plots
refer to s = 300 whereas, for greater stability, the values in the upper triangular part were
obtained with s = 10, 000.

Figure 3.5a presents a comparison between the measures of Jiroušek and
Shenoy [57] and Wang and Song [140]. The two measures have a value
of ρ ≈ 0.99, so according to the chosen coefficient these are two measures
with almost identical order of values and high similarity. However, these
are two measures based on very different concepts, the first on Shannon’s
measures, through the plausibility transformation, and Dubois and Prade,
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Figure 3.5: Three representative scatter plots with s = 1000.

the second on the central values of belief intervals. Moreover, it is clear
from Table 3.3 that the two measures are also very different in the prop-
erties they satisfy. The numerical result thus emphasizes that in practice
these two measures can be used indifferently.

Figure 3.5b represents two measures with a negative ρ value, ρ ≈ −0.204.
The value also turns out to be very close to 0, so it can be asserted that
the two measures appear to be unrelated; even visually the graph presents
a cloud of points. A practical application of them could therefore lead to
conflicting measures that are difficult to compare. The two measures also
appear very different from the point of view of the basis on which they are
developed, and it is complicated to find an adequate explanation for this
behavior.

Figure 3.5c highlights the peculiar behavior of the measure of Harmanec
and Klir [50]. As mentioned earlier this measure has been criticized in the
literature for its insensitivity to changes in m, the presence in the scatter
plot of a maximum value (right vertical alignment) that attracts the closest
values seems to confirm this feature once again. Indeed, when comparing
with the other measurements, we see that values of uncertainty that turn
out to be very different, for the equation of Harmanec and Klir [50] all have
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the same maximum value. The magnitude of the measurement insensitiv-
ity had never been studied, but from the numerical comparison, it appears
to be non-negligible.

Interpretation uncertainty values

As pointed out by Klir [74, p. 8], uncertainty measures should provide a
useful and intuitive quantitative value for an understanding of the amount
of uncertainty present. Thus from a numerical simulation, we expect to
obtain a set of values that are comparable to each other.
Take, for example, the values obtained for n = 4 from the measurements
of Jousselme et al. [59] and Lamata and Moral [83], together with their
distributions in the diagonal in Figures 3.4 and analyzable in Figure 3.6.
Considering a value of 1.25, out of a range of values contained in [0, 2],
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(a) The barchart of the values ob-
tained using the uncertainty measure
by Jousselme et al. [59].
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(b) The barchart of the values ob-
tained using the uncertainty measure
by Lamata and Moral [83].

Figure 3.6: Two representative barcharts with n = 4 and s = 10, 000.

we would be tempted to consider it among the high values, because it lies
beyond the middle of the range. But looking at the distribution in Figure
3.6a we see that it is part of the decile containing the least uncertain mass
assignments and consequently should be considered a low value. Compari-
son with the distribution of values depicted in Figures 3.6b, relating to the
same range of values, underscores the importance of comparing the values
and distributions obtained. Indeed, for the measure of Lamata and Moral
[83], as well as for others in Figure 3.4, the value 1.25 represents a high
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uncertainty. One could solve this problem by returning the distributions to
the normal distribution so that a simpler and more meaningful comparison
of the measurements could be made.

According to the considerations in this section, when it is necessary to
calculate the amount of uncertainty related to a BOE, several measures
need to be evaluated. The choice of measures must be careful, since two
similar measures may not provide meaningful results, whereas if two dif-
ferent measures both provide a result of higher or lower uncertainty, they
may reinforce the concept.

Hierarchical clustering

The second method selected to analyze the measures is hierarchical clus-
tering. It places different items, in our case measures of uncertainty, into
different clusters, starting with the individual elements and joining them
as we go along according to certain criteria. The result is a grouping in
each cluster of items with common characteristics. Visually, a dendrogram
is usually used to represent the results.
The data required for this type of analysis may be those contained in a
distance matrix, which is square and symmetrical and reports the distances
between pairs of elements. In the present case, the Spearman rank correla-
tion coefficient can be used for the measurements. If we denote with ρHi,Hj

the value of the Spearman index calculated for two measures of uncertainty
Hi and Hj, then we can consider dij = |1 − ρHi,Hj

| < 2 a measure of their
dissimilarity.
Linkages between measures are based on the following criteria:

• Single linkage: the value at which the two clustersX and Y are merged
corresponds to the minimum distance between an element of X and
one of Y , i.e., min{dij|i ∈ X, j ∈ Y }

• Complete linkage: the value at which the two clusters X and Y are
merged corresponds to the maximum distance between an element of
X and one of Y , i.e., max{dij|i ∈ X, j ∈ Y }

• Average linkage: the value at which the two clusters X and Y are
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merged corresponds to the average distance between elements belong-
ing to the two clusters, i.e.,

1

|X||Y |
∑
i∈X

∑
j∈Y

dij

• Ward linkage: the value at which two clusters X and Y are merged
corresponds to the cluster distance. The distance between two clusters
X and Y is

d(X, Y ) =

√
|Y |+ |Z|

T
d(Y, Z)2 +

|Y |+ |W |
T

d(Y,W )2 − |Y |
T

d(Z,W )2,

where X is the newly joined cluster consisting of Z and W , Y is the
cluster to be merged with, T = |Y | + |Z| + |W |. When two clusters
contain each a single element, d(X, Y ) = dXY . The Ward variance
minimization algorithm [143] is used to perform clustering1.

The results of applying the criteria to all the measures considered in Figure
3.4 are shown in Figure 3.7.

The outcomes of the dendrograms turn out to be peculiar and different
from what might be expected; in fact, the measures seem to cluster by
year of proposal, but not by type, i.e. by base from which they were de-
veloped. In particular, it is noticeable that the most recent measures are
part of a single cluster this result is probably a consequence of evolving
the measurements and gradually basing new measurements on the latest
findings.

Centrality analysis

In the context of Social Network Analysis (SNA), measures of centrality
have been developed with the aim of quantifying connections between ac-
tors [84]. There are different approaches to define what is considered cen-
trality [84, 105]. Particularly in the context in which we want to exploit
this method, the most suitable approach is eigenvector centrality. This ap-

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
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Figure 3.7: A comparison of dendrograms obtained using different clustering heuristics.
The values on y-axis correspond to the distance between clusters according to the chosen
heuristic. Aside from the name of a measure, there is the EB/IB classification reported
from Table 3.3; all measures express total uncertainty.

proach considers a central element when the elements directly connected
to it have many connections to other elements. Declined to measures of
uncertainty, mean being able to consider all measures that have elements
in common with measures that therefore become central. As defined by
Bonacich and Lloyd [11], the centrality values of each element taken into
account are the items of the vector w solving the eigensystemAw = λmaxw
where λmax is the Perron-Frobenius eigenvalue of A. Note that w is unique
up to multiplication by a positive scalar. While A is the adjacency matrix.
In the uncertainty measure case, the Spearman rank correlation coefficient,
always in the range [−1, 1], can be considered a degree of distance between
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the different measures, and the matrix in Figure 3.4 as a weighted adja-
cency matrix, A. One can interpret the values of ai,j, elements of A, by
considering that the higher they are, the more similar the two measures
to which they refer. Figure 3.8 reports the normalized centrality of the
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Figure 3.8: A bar chart representing the values of normalized eigenvector centrality of
each uncertainty measure.

eigenvectors for all the uncertainty measures considered in this study
The results that can be extrapolated from this analysis are: certainly the
most obvious, related to the measures with high values of centrality, symp-
tomatic of being the one most “supported,” and thus being able to rep-
resent the other measures. But as we were able to reflect earlier, even
measures that report a low centrality value and thus are more distant, can
provide a measure that allows for greater strength in the results obtained.
Another observation of the results relates to measures with a negative cen-
trality value. All the measures related to them are measures of conflict
uncertainty alone. This result suggests that when considering a measure
of total uncertainty, the addition of the nonspecificity measure has an im-
pact in the opposite direction from the conflict measure: the lower the
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nonspecificity the higher the conflict, and vice versa. This behavior is
illustrated in Figure 3.9 where the measure of Dubois and Prade [35] is
compared with four measures of conflict and the Spearman coefficients are
negative. In addition, it can be seen that, with few exceptions, the most
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Figure 3.9: The measure of non-specificity by Dubois and Prade [35] compared with four
measures of conflict. The respective Spearman coefficients are -0.488, -0.933, -0.705, and
-0.525.

recent data have high centrality values. This may be symptomatic of a
recent “convergence” of research toward a shared definition of a measure
of uncertainty. Among the measures with the highest centrality values, the
measure of nonspecificity of Dubois and Prade [35] stands out. One reason
may be that the formulation of this uncertainty measure is incorporated
in many of the more recent measures.

Sensitivity analysis

All analyses performed were carried out with n = 4, as this is the most
usual value in applications in the literature. But for a broader view, a sen-
sitivity analysis of 30 values of Spearman’s coefficient of randomly chosen
pairs of measures was also performed.
The analysis was performed for cases with n = 3, . . . , 8 and the new simi-
larities were eventually collected and compared. The results in Figures 3.10
are qualitative, but allow us to identify trends in the coefficients. There is
no particular change in comparisons between measures, with some excep-
tions such as the lower levels tending to have a decrease.
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Figure 3.10: Sensitivity analysis for randomly selected similarity values between uncer-
tainty measures. Each line represents the similarity of a different pair of uncertainty
measures and how it changes with respect to the cardinality of the FOD.
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Chapter 4

Discussion and conclusions

4.1 Research results and prospective future

Chapters 2 and 3 addressed two problems, one more practical, related di-
rectly to a company in the energy distribution network sector, and another
more theoretical. In the first case, the problem is in the context of re-
source allocation and scheduling of projects with a known time duration.
The request for decision-making support was made directly by the com-
pany, which consequently provided us with all the data necessary to apply
the solution to a realistic problem. The company had several constraints,
including an annual budget and manpower constraints. The projects that
had to be scheduled were characterized by time duration, cost, and ex-
ecution priority. The company’s goal was to obtain a decision-support
program that would be able to optimize prioritization, that is, to sched-
ule the start of activities by prioritizing those with higher priority. In
the course of defining the optimization program, it became clear how the
creation of prioritization support could help make the process even more
methodical and rapid. The solution to the problem therefore took place in
two stages: the first in which thanks to multi-attribute value theory, one
of the foremost methodologies of PDA, we defined a value function that
thanks to some simple input data can associate a priority value with each
project, and the second in which the optimization program was defined
and used. The result obtained is easily usable by the company due to the
speed of calculation of the program, which allows a reiteration of the same
whenever new, or more accurate, information is available. The optimiza-
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tion of activity scheduling is satisfactory both with the period required, 5
years, and with the amount of activity provided 368, and with variations
in this data.
The model presented seems to be easy to use and intuitive even for those
without specific skills. This aspect could prompt further research on this
feature to enable greater dialogue between scientific research and the real
world of business, with the goal of benefit for both parties. In addition, the
use of multi-period PDA has many potentials; it can be used in different
areas, including, for example, the so-called Sustainable Development Goals
(SDGs) [23]: the relevant SDGs can be used as targets while the indicators
can be considered the attributes.

The second problem that was addressed concerned the measures of un-
certainty or entropy within evidence theory, which currently appear to be
in such large numbers that it is difficult to make an informed choice taking
into account all their characteristics and properties. The second publica-
tion aims to numerically compare different measures to provide a useful
tool for application. To achieve this goal, a descriptive list of selected mea-
sures was made. The comparison between measures is made on the results
of Monte Carlo simulations using rank correlation, hierarchical clustering,
and eigenvector centrality. The results obtained provided insight into when
two measures may give conflicting or similar results and the need to iden-
tify an appropriate threshold for each measure to understand the degree of
uncertainty expressed. Several comparisons can be found in the literature,
but no one had yet approached the problem from the numerical point of
view, which proved very useful in better understanding entropy measure-
ments.

In the future, it would be interesting to further investigate the comparison
of new measures with a numerical approach both to adequately under-
stand similarities and dissimilarities and to understand whether the new
measures perform better in calculating entropy. This will also make it eas-
ier to choose in the application field. Uncertainty measures are used in
various practical fields among which the most frequent are Multi-sensor
information fusion and Fault diagnosis, but also in Decision-making [29].
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In addition, the application of evidence theory in the field of bridge inspec-
tion and maintenance in civil engineering has been presented in depth in
the thesis.

A possible inspiration that would be interesting to explore from the very
two main themes of this thesis is to address a multiperiod problem, such
as the one described in Chapter 2, by considering uncertainty, for example
of setup time attribute, and addressing it through the Demspter-Shafer
Theory uncertainty measure. An example of research in this direction is
the study of Cinfrignini et al. [19].

4.2 Research questions discussion

To summarize the research results more specifically, the research questions
in Section 1.2 are recalled in this section.

• Question 1. The real-world adaptation of the problem posed in
Publication I required that we address issues such as accounting for
the duration of different activities in a multi-period problem. It was
then demonstrated that the mathematical models could be adapted
to real-world needs by creating a model suited to a company’s needs
until a positive result was achieved in terms of both input processing
time and output produced.

• Question 2. Also in Publication I, it was shown how collaboration
with the company technicians involved was fundamental to the suc-
cessful development of the model. Using models that were too sophis-
ticated or not suited to the understanding of the company technicians
would have limited the results obtained. Even more important was
making it possible for technicians to interpret the results obtained.
Special attention was paid to the choice of which graphs to create and
what type of outputs to allow a generalized, objective view of the re-
sults obtained. The benefit was twofold: not only did the technicians
find the results valuable and the model created useful because of the
ease of finding the inputs and the comprehensibility of the results, but
also allowed the author to be assured of having an objective positive
view of the results and the model.
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• Question 3. Publication II addresses with numerical simulations the
problem of how to choose among different measures of uncertainty ex-
isting in the literature. The result obtained does not make it possible
to select one measure as better than the others, but it does make it
possible to understand the similarity or dissimilarity of the results of
the measures and thus provides the tools to more consciously evaluate
the choice of how to measure uncertainty.

4.3 Research process and limitations

The first publication continued work begun in a master’s thesis project in
the field of industrial engineering, with an expansion of topics that led to
the use of portfolio decision analysis. The knowledge required prompted
the author to obtain the necessary background to address the topics (since
previous studies were in the field of civil engineering). The study started
with theory and a review of current literature to the concrete application of
which process was reported in the publication. This provided knowledge of
different techniques that can be applied to structures and civil engineering.
The research described in the publication was applied to a very specific
real case with business constraints and requirements and was validated
by experts. However, it was not possible to see its practical effects and
actual use in subsequent years. One limitation of the research is that it
has not been possible to see how it is actively used by the company and
whether the results of budget and labor management have been taken into
account. One limitation to the possibility of understanding how the model
works is the time factor, since it is a model with 5 years, it has not yet
been possible to see a general effect. Despite this, an occasional check
in the last few years would have allowed the author to understand the
short-term effects of the model and the actual possibility of the company
using it several times as information increased or characteristics of the
activities changed. Also being able to view the outcome in terms of the final
budget could be essential to focus more attention on obtaining that output
and the program’s ability to take economic aspects into account. Another
limitation was testing the generality of the model. In theory, the model was
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developed to be applied to different realities, but, in particular, the MAVT
part requires interaction with the company’s experts. To understand in
the real world whether the application to different companies in the same
or a similar application sector is indeed easy and fast, it would have been
interesting to have different data and to be able to propose it to different
realities.

The second publication ranged in a more theoretical area. However,
one of the goals was to offer support for practical applications, as well as
to highlight the need for a study comparing measures of uncertainty in
evidence theory, the quantity of which is rapidly increasing. In fact, since
the publication of the article, in less than two months, four more research
papers [22, 38, 17, 60] defining as many new measures have been published.
In preparation for Publication II, an extensive literature search was con-
ducted to understand the state of the art in the field of entropy measures in
evidence theory and to select appropriate measures for study. The search
is intended to offer support in the selection of appropriate measures by
providing a more practical and useful tool for understanding the behavior
of each measure relative to others. However, the research was limited to
the numerical study of measures; it would have been interesting to see its
application in a more practical field in which uncertainty measures play
an essential role. The study of the theory of evidence has enabled the au-
thor to broaden his knowledge of various mathematical theories in addition
to the already well-known theory of probability. Again, the deepening of
knowledge has enabled the author to understand and study applications
to civil engineering that have great potential but are currently underuti-
lized. Without this intensive deepening of the literature, it would have
been impossible to understand theories such as probabilistic research that
can instead support civil infrastructure condition monitoring.

4.4 Conclusions

The topics covered in the thesis are very different from each other but
have allowed the author to broaden her knowledge in different fields. Fur-
thermore, the skills learned through research have made it possible to un-
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derstand how it can also be applied to a field such as civil engineering.
Precisely from this point of view, it could be interesting to investigate
some aspects, in particular, in recent years, in many European countries
and in particular in Italy there has been a substantial increase in attention
to the maintenance of engineering structures that require planning of ac-
tivities and automated ways to take current conditions into account. Given
the large number of roads, bridges, and buildings, it is clearly very difficult
for them to be adequately managed by manual methods. Therefore, the
acquired knowledge is helpful to the author for future applications in work
and practice.
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[37] K. Dudziński and S. Walukiewicz. Exact methods for the knapsack
problem and its generalizations. European Journal of Operational
Research, 28(1):3–21, 1987.



93 BIBLIOGRAPHY

[38] P. Dutta and S. Shome. A new belief entropy measure in the weighted
combination rule under dst with faulty diagnosis and real-life medical
application. International Journal of Machine Learning and Cyber-
netics, 14:1179–1203, 2023.

[39] W. Edwards, R. Miles Jr, and D. Von Winterfeldt. Advances in
Decision Analysis: From Foundations to Applications. Cambridge
University Press, 2007.
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[101] S. Moral-Garćıa and J. Abellán. Required mathematical properties
and behaviors of uncertainty measures on belief intervals. Interna-
tional Journal of Intelligent Systems, 36(8), 2021.

[102] E. Moreno, D. Espinoza, and M. Goycoolea. Large-scale multi-
period precedence constrained knapsack problem: a mining appli-
cation. Electronic Notes in Discrete Mathematics, 36:407–414, 2010.
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1985.

[116] B. Roy. The outranking approach and the foundations of electre
methods. Theory and Decision, 31:49–73, 1991.

[117] E. Ruspini, J. Lowrance, and T. Strat. Understanding evidential
reasoning. International Journal of Approximate Reasoning, 6(3):
401–424, 1992.

[118] T. Saaty. Decision Making with Dependence and Feedback: The An-
alytic Network Process. RWS Pubblications, 1996.

[119] T. L. Saaty. How to make a decision: the analytic hierarchy process.
European Journal of Operational Research, 48(1):9–26, 1990.

[120] E. G. Sakka, D. V. Bilionis, D. Vamvatsikos, and C. J. Gantes. On-
shore wind farm siting prioritization based on investment profitability
for greece. Renewable Energy, 146:2827–2839, 2020.



101 BIBLIOGRAPHY

[121] G. A. K. Saleh Abu Dabous. A flexible bridge rating method based on
analytical evidential reasoning and monte carlo simulation. Advances
in Civil Engineering, 2018, 2018.

[122] A. Salo, J. Keisler, and A. Morton. Portfolio Decision Analysis:
Improved Methods for Resource Allocation. Springer-Verlag, 2011.

[123] M. Sarnataro, M. Barbati, and S. Greco. A portfolio approach for the
selection and the timing of urban planning projects. Socio-Economic
Planning Sciences, page 100908, 2020.

[124] F. L. Sawyer, A. Charlesby, T. E. Easterfield, and E. E. Treadwell.
Reminiscences of Operational Research in World War II by some of
its practitioners. The Journal of the Operational Research Society,
40(2):115–136, 1989.

[125] G. Shafer. A Mathematical Theory of Evidence. Princeton University
Press, 1976.

[126] C. E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27(3):379–423, 1948.

[127] P. Smets. Information content of an evidence. International Journal
of Man-Machine Studies, 19(1):33–43, 1983.

[128] M. Sönmez, J. Yang, and G. Holt. Addressing the contractor selec-
tion problem using an evidential reasoning approach. Engineering,
Construction and Architectural Management, 8(3):198–210, 2001.

[129] A. Taroun and J. Yang. Dempster-Shafer theory of evidence: po-
tential usage for decision making and risk analysis in construction
project management. The Built & Human Environment Review, 4
(1), 2011.

[130] M. Tavana, K. Khalili-Damghani, and A. Abtahi. A fuzzy multidi-
mensional multiple-choice knapsack model for project portfolio selec-
tion using an evolutionary algorithm. Annals of Operations Research,
206:449–483, 2013.



BIBLIOGRAPHY 102

[131] A. Theeranuphattana, K. Do Ba, and J. Tang. An integrated ap-
proach to measuring supply chain performance. Industrial Engineer-
ing & Management Systems, 11(1):54–69, 2012.

[132] W. Thomas. The heuristics of war: scientific method and the founders
of operations research. The British Journal for the History of Science,
40(2):251–274, 2007.

[133] P. Tsai and F. Lin. An application of multi-attribute value theory
to patient-bed assignment in hospital admission management: an
empirical study. Journal of Healthcare Engineering, 5(4):439–456,
2014.

[134] A. Tversky and D. Kahneman. Judgment under uncertainty: Heuris-
tics and biases. Cambridge University Press, 1982.

[135] F. Vaezi and A. Sadjadi, SJ. Makui. A portfolio selection model
based on the knapsack problem under uncertainty. PLoS ONE, 14
(5), 2019.

[136] S. G. Vick. Degrees of Belief: Subjective Probability and Engineering
Judgment. American society of civil engineers, 2002.

[137] R. von Nitzsch and M. Weber. The effect of attribute ranges on
weights in multiattribute utility measurements. Management Sci-
ence, 39(8):937–943, 1993.

[138] D. von Winterfeldt and W. Edwards. Decision Analysis and Behav-
ioral Research. Cambridge University Press, 1986.

[139] D. Wang, J. Gao, and D. Wei. A new belief entropy based on Deng
entropy. Entropy, 21(10):987, 2019.

[140] X. Wang and Y. Song. Uncertainty measure in evidence theory with
its applications. Applied Intelligence, 48:1672–1688, 2017.

[141] Y. Wang and T. Elhag. Evidential reasoning approach for bridge
condition assessment. Expert Systems with Applications, 34(1):689–
699, 2008.



103 BIBLIOGRAPHY

[142] Z. Wang and F. Xiao. An improved multisensor data fusion method
and its application in fault diagnosis. IEEE Access, 7:3928–3937,
2018.

[143] J. H. Ward Jr. Hierarchical grouping to optimize an objective func-
tion. Journal of the American statistical association, 58(301):236–
244, 1963.

[144] M. Weber and K. Borcherding. Behavioral influences on weight judg-
ments in multiattribute decision making. European Journal of Oper-
ational Research, 67(1):1–12, 1993.

[145] M. Weber, F. Eisenfuhr, and D. von Winterfeldt. The effects of
splitting attributes on weights in multiattribute utility measurement.
Management Science, 34(4):431–445, 1988.

[146] K. Wen, Y. Song, C. Wu, and T. Li. A novel measure of uncertainty
in the Dempster-Shafer theory. IEEE Access, 8:51550–51559, 2020.

[147] F. Xiao. EFMCDM: Evidential fuzzy multicriteria decision making
based on belief entropy. IEEE Transactions on Fuzzy Systems, 28(7):
1477–1491, 2019.

[148] F. Xiao, J. Wen, and W. Pedrycz. Generalized divergence-based
decision making method with an application to pattern classification.
IEEE Transactions on Knowledge and Data Engineering, 2022.

[149] R. R. Yager. Entropy and specificity in a mathematical theory of
evidence. International Journal of General Systems, 9(4):249–260,
1983.

[150] H. Yan and Y. Deng. An improved belief entropy in evidence theory.
IEEE Access, 8:57505–57516, 2020.

[151] J. Yang. Rule and utility based evidential reasoning approach for
multiattribute decision analysis under uncertainties. European Jour-
nal of Operational Research, 131:31–61, 2001.



BIBLIOGRAPHY 104

[152] J. Yang and P. Sen. A general multi-level evaluation process for
hybrid madm with uncertainty. IEEE Transactions on Systems, Man,
and Cybernetics, 24(10):1458–1473, 1994.

[153] J. Yang and M. Singh. An evidential reasoning approach for multiple-
attribute decision making with uncertainty. IEEE Transactions on
Systems, Man, and Cybernetics, 24(1):1–18, 1994.

[154] J. Yang and D. Xu. On the evidential reasoning algorithm for multiple
attribute decision analysis under uncertainty. IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans, 32
(3):289–304, 2002.

[155] Y. Yang and D. Han. A new distance-based total uncertainty measure
in the theory of belief functions. Knowledge-Based Systems, 94:114–
123, 2016.

[156] K. P. Yoon and C. L. Hwang. Multiple Attribute Decision Making:
An Introduction. Sage publications, 1995.

[157] J. H. Zar. Spearman rank correlation: overview. Wiley StatsRef:
Statistics Reference Online, 2014.

[158] Y. Zhang, F. Huang, X. Deng, and W. Jiang. A new total uncer-
tainty measure from a perspective of maximum entropy requirement.
Entropy, 23(8), 2021.

[159] Y. Zhao, D. Ji, X. Yang, L. Fei, and C. Zhai. An improved belief en-
tropy to measure uncertainty of basic probability assignments based
on deng entropy and belief interval. Entropy, 21(11), 2019.

[160] J. Zheng and J. Lienert. Stakeholder interviews with two MAVT
preference elicitation philosophies in a Swiss water infrastructure de-
cision: Aggregation using SWING-weighting and disaggregation us-
ing UTAGMS. European Journal of Operational Research, 267(1):
273–287, 2018.

[161] J. Zheng, C. Egger, and J. Lienert. A scenario-based MCDA frame-
work for wastewater infrastructure planning under uncertainty. Jour-
nal of Environmental Management, 183(3):895–908, 2016.



105 BIBLIOGRAPHY

[162] T. Zhong and R. Young. Multiple choice knapsack problem: Exam-
ple of planning choice in transportation. Evaluation and Program
Planning, 33(2):128–137, 2010.

[163] D. Zhou, Y. Tang, and W. Jiang. A modified belief entropy in
Dempster-Shafer framework. PLOS ONE, 12(5), 2017.

[164] Q. Zhou and Y. Deng. Fractal-based belief entropy. Information
Sciences, 587:265–282, 2022.




