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Abstract 
 

 

Research in materials science field is often driven by the necessity to 

overcome problems in fast, reliable and possibly cost effective ways. Many times the 

starting point to find a solution is a literature survey, to understand if someone 

already encountered a similar problem and proposed an answer, or if some authors 

developed a material that can be used to solve the issue. The work performed within 

this thesis however fits in another type of approach, i.e. research for the research's 

sake. 

In this kind of approach the efforts are not dedicated directly to solve a given, 

precise and detailed problem, but to invent and develop new types of materials, 

characterizing them so that other researchers can take benefits from both the 

synthetic way and the measured properties of the new material produced. 

In particular, this PhD thesis deals with the combination of two "exotic" class of 

materials, which are aerogels and polymer derived ceramics. 

Aerogel is actually a shape, more than a material, from the proper chemical 

point of view. This kind of shape, anyway, is so peculiar that many of the properties 

are common to all the aerogels' products, similarly to what happen for other class of 

materials like conductivity for metals, hardness for ceramics and high specific 

strength for polymers. These common properties are: low density, high specific 

surface and predominantly mesoporous microstructure. 

Polymer derived ceramic (PDC) denotes a family of ceramic materials that can 

be obtained by a controlled thermolysis of a polymeric precursor. These polymers 

are usually Si based and contain functional groups that allow to control the final 

chemistry of the ceramic produced, along with the great advantage that the shape 

can be set already in the polymeric state.  

Successfully combining the two techniques, i.e. to produce polymer derived 

ceramic aerogel, is the core of this thesis. 

Preference was given to the use of commercially available pre-ceramic 

polymers so ceramic aerogels belonging to the SiOCN system were produced, 

starting from polycarbosilane (SMP-10), polysilazane (PSZ-20) and polysiloxane 

(PMHS). 

A reliable procedure was set up to produce aerogels with different composition 

and microstructure, leading to a wide range of properties in terms of density, specific 

surface, high temperature stability, electrochemical functionality etc., as will be better 

depicted through the thesis. 

Additionally, some application of the materials produced were tested, in which 

the aerogel shape, combined with the proper chemistry, was expected to give 

interesting results.  
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Chapter I 
 

Introduction 
 

1.  
 

1.1 Aerogels 

 

Aerogels are highly porous materials, in which the volume is occupied for the most 

part by small, open and highly interconnected pores. These pores are sub-

micrometric and therefore cannot be seen at naked eye, the material appears indeed 

very homogenous and solid, even though it's usually made of air by more than 90% 

in volume. The first, and most known, aerogel type is the silica one; produced in 

1931 by S. S. Kistler [1] and made of pure amorphous silica. These types of aerogels 

are transparent with a typical blue nuance when observed on dark background, due 

to Rayleigh scattering of the light, as can be appreciated in figure 1-1. 

 

 

Figure 1-1: Silica aerogel disk produced as a reference 

Many other types of aerogels were produced after the pioneer work of Kistler, with 

research devoted to both changing the chemistry of the solid part and to modify the 

drying route. Up to now, metal oxides, carbides, nitrides and chalcogenides, along 

with organic and carbonaceous aerogels were produced and studied. An interesting 

handbook reassuming most of the aerogel synthetic ways, properties and 

applications was edited in 2011 [2]; it should be noted that at that time, no polymer 

derived ceramics aerogels were mentioned, since they had not yet been produced. 
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1.1.1 Production 

Many different ways are proposed in literature to produce aerogel materials, with 

some efforts devoted to study the gel formation pathway and many others focused 

on modifying the drying procedure. Indeed, two main steps can be defined in the 

production of an aerogel, the gel formation and its drying.  

1.1.1.1 Gel formation 

 

To produce metal oxides gels at least three routes are well studied, all of them taking 

advantage of the soft chemistry process, that enables the processing of solid 

materials at room temperature from a liquid phase.  

The oldest technique is using a solution of sodium metasilicate, Na2SiO3, in water. 

The water is acidified with HCl, and the sodium metasilicate reacts producing NaCl 

and SiO2 trough the reaction: 

 

𝑁𝑎2𝑆𝑖𝑂3 + 2 𝐻𝐶𝑙 + 𝑥 𝐻2𝑂 → 2𝑁𝑎𝐶𝑙 + 𝑆𝑖𝑂2 +  𝑥 + 1 𝐻2𝑂. 

 

The water produced, and the one already present in the starting solution, is used to 

control the porosity of the gel, while the silica builds the solid skeleton creating the 

gel structure. This route is very cheap since all the chemicals are widely available but 

needs long processing time, due to the necessity of removing first the NaCl ions 

through multiple washing with deionized water, followed by a substitution of the 

water with alcohol or acetone to perform the supercritical drying. It has mostly an 

historical importance since it was the process used by Kistler to produce the first 

aerogels.  

A more widely applied route is the sol-gel one, that takes advantage of metal 

alkoxides as metal oxides precursors. The synthesis starts with the hydrolysis of the 

metal alkoxide as in: 

 

𝑀 − 𝑂𝑅 + 𝐻2𝑂 → 𝑀 − 𝑂𝐻 + 𝑅𝑂𝐻 

 

that is usually promoted by acids and performed in diluted condition using the same 

alcohol that will be produced by the hydrolysis reaction. Further, the metal hydroxide 

can condense: 

 

𝑀 − 𝑂𝐻 + 𝑂𝐻 − 𝑀 → 𝑀 − 𝑂 − 𝑀 + 𝐻2𝑂 

 

producing the metal oxide solid phase, that usually is in form of colloidal particles 

suspended in the liquid phase. When the concentration of the colloidal particles is 

sufficiently high a continuous solid skeleton is built, producing the typical colloidal gel 

structure. 
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The last method, named epoxide-initiated (or -assisted) gelation, uses a solution of 

metal salts, like chloride or nitrate, and initiate the formation of the metal oxide with a 

proton scavenger, commonly an organic epoxide. The pH increase leads to the 

subsequent formation of the metal hydroxide and, later on, to the metal oxide, very 

similarly to what happens in the classical sol-gel route. The main difference from the 

classical sol-gel technique is the starting precursor, that being a simple metal salt 

open the possibility to produce gels of many metal oxides, whose alkoxides may be 

hardly available.  

Some other routes to metal sulphides and nitrides gels are actually present, see for 

example the thio or hydrazide sol–gel processes reviewed by A. L. Hector [3], but 

much less applied or applied only for very special synthesis. 

Another very wide field of aerogel materials is represented by the organic ones, in 

which polymeric carbon-based precursors are used to produce the gel. The 

preliminary work was done by R. W. Pekala and his coworkers and published for the 

first time in 1989 [4]. These gels were produced reacting resorcinol and 

formaldehyde, producing a network formed by the aromatic rings of the resorcinol 

bonded by ether bridges, as summarized in figure 1-2. This type of aerogels, along 

with other similar system like melamine-formaldehyde [5] and polyacrylonitrile [6], 

can be heat treated in inert atmosphere to convert them into conductive 

carbonaceous aerogel and graphitic aerogel. 

 

 

Figure 1-2: Resorcinol formaldehyde gel chemistry [4] 

Up to date, many other polymeric aerogels were produced using both natural and 

synthetic polymers, like cellulose [7], lignin [8], agar [1] and polysaccharides in 

general [9], polyurethane [10], polystyrene [11] and polypyrrole [12], among many 

others. 

N. Leventis and coworkers opened the way to produce metallic aerogels by 

carbothermal reduction of metal oxides, using precursors for both carbon and metal 

oxides and heat treating the intimately mixed system [13]. With the same technique it 

was possible also to produce metal carbides for those oxides that cannot be reduced 
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to pure metallic material by carbothermal reduction. In the case of noble metals, it's 

possible to produce directly the metallic gel and supercritically dry it, as proposed in 

[14]. 

1.1.1.2 Drying 

  

The peculiarity of the aerogel production route consists in the distinct drying 

procedure, which is performed bringing the liquid present in the pores to supercritical 

conditions and removing it as a supercritical fluid. This "trick" allows to remove the 

liquid without crossing the equilibrium line of liquid and vapor phase, so no meniscus 

is formed inside the pores. The presence of the meniscus is indeed accompanied by 

the development of stresses; for the liquid these are related to the dimension of the 

pore, the surface tension and the contact angle, through the Young–Laplace 

equation: 

 

𝑝𝑐 =
2𝛾𝐶𝑜𝑠(𝜃)

𝑅
 

 

in which 𝛾 is the surface tension of the liquid, θ is the contact angle between solid 

and liquid, R is the radius of the pore (assumed to be cylindrical, as in figure 1-3) and 

pc is the capillarity pressure experienced by the liquid, the direction of this pressure 

is parallel to the cylinder axis.  

 

Figure 1-3: pr and pa acting on the pore walls 

The walls of the pore on the other side experience both a radial pressure, that can 

be expressed as: 

𝑝𝑟 = 𝛾𝑆𝑒𝑛(𝜃) 

 

and an axial pressure, expressed as: 

𝑝𝑎 = 𝛾𝐶𝑜𝑠(𝜃). 
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This pressure, applied to the surface of the pore walls, may lead to a closure of the 

pores during a conventional drying. Indeed, it must be considered that the specific 

surface area (SSA) of these gels is in the order of hundreds of m2/g, with a total 

porosity around 90 %vol and density usually about 0.1-0.2  g/cm2
 ; meaning an 

average pore size in the range 10 - 200 nm. High values of specific surface means 

high total resulting pressure, that can be hardly tolerated by the low amount of solid 

material present. In other words, small pores give rise to high SSA values, increasing 

the total force applied to the skeleton which builds up the pore walls. During a 

common evaporative drying the surface tension leads to cracks and/or densification, 

a gel dried with this route is often called xerogel. 

The path followed during a supercritical drying procedure, summarized in figure 1-4, 

avoids the formation of the meniscus, therefore no capillary stresses arise and crack-

free dry gels can be obtained, in which the solid skeleton of the gel is preserved 

along with the small pores present among the particles.  

 

 

Figure 1-4: Supercritical drying path 

In principle, most of the liquids used for gelation and present in the pores after the 

gel formation can be brought to supercritical condition. Unfortunately, these 

conditions are usually reached at high temperature and high pressure, that can be 

prohibitive in a practical reactor, mostly for safety reasons (solvents are typically 

flammable or toxic). In addition, sometimes the supercritical phase can react with the 

solid phase as in the case of supercritical water, that is able to readily dissolve some 

metal oxides. To overcome these problems, a widely used liquid for supercritical 

drying of gels is CO2, that possess a practical critical temperature of 31 °C and a 

critical pressure of 74 bars in addition to be non flammable and non toxic. 

Accordingly, the liquid of the gel is first exchanged with liquid CO2 in an autoclave 

through some washing steps; once CO2 fully substituted the starting liquid it's 
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brought above the critical conditions and removed as supercritical phase with a 

controlled pressure release rate. If the starting liquid in the gel is not miscible with 

liquid CO2, for example in the case of water, an intermediate liquid exchange step is 

introduced with a liquid miscible with both the starting one and the carbon dioxide. 

Research efforts are dedicated to speed up the overall process, that on laboratory 

scale can last more than one week, by using a constant stream of already 

supercritical CO2 and proper reactor design. 

Other research works try to obtain the same aerogel microstructure avoiding the 

supercritical fluid approach, by acting on the surface tension of the liquid in order to 

minimize the stresses due to the meniscus presence. This technique uses drying 

control chemical additives (DCCA) that allow to produce aerogel-like materials with a 

much simpler evaporative drying. These additives reduce the surface tension of the 

liquid and diminish the forces experienced by the solid skeleton during the 

evaporative drying. With this route the microstructure of the gel shows typically 

smaller pores and higher density compared to material obtained with the supercritical 

way, due to the interaction of the DCCA with the gelling solution [15] and to the rising 

of some stresses related to the meniscus formation. Anyway, mesopores are 

preserved and the gel is able to sustain the drying and survive as a monolith, being 

called ambigel. Some authors also modify the surface of the solid skeleton, so that 

part of the shrinkage experienced during controlled evaporative drying can be 

recovered with a "spring back" phenomenon, triggered by a moderate temperature 

treatment (100-200°C) and made possible by the absence of chemical bond 

formation on the pore walls [16] [17]. 

 

 

Figure 1-5: Xerogel, ambigel and aerogel route difference [18]. 
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These three types of dried gel structures, aerogel, ambigel and xerogels are 

summarized in figure 1-5. 

To be precise, also freeze-drying is sometimes considered a way to produce 

aerogels. The technique consists in removing the liquid phase first solidifying it and 

then sublimating the solid. This kind of drying may allow the production of monolithic 

materials called cryogels, even though most of the times just porous powders are 

obtained. Additionally, the formation of crystals while freezing the liquid modify the 

gel structure, introducing anisotropy and much bigger pores compared to those 

originally present in the gel, making the products very different from the more 

general aerogel structure.  

1.1.2 Properties 

Aerogels are composed by two phases, the solid skeleton and gas/pore system. The 

properties of an aerogel are given by the ratio between these two phases, their 

connectivity, their morphology and the chemistry of the backbone.  As well depicted 

by G. Reichenauer in [2], "a first visual and manual inspection of an aerogel usually 

already provides quite a bit of information: is the material transparent or translucent, 

is it brittle or ductile, how easily can the sample be deformed, how does it sound 

when you drop a piece of the aerogel under investigation on your table?" 

All these first eye properties are the result of the interaction between the density, the 

pore size distribution and the properties of the solid part. To produce a transparent 

aerogel it is not enough to have a transparent solid phase, the second condition to 

be fulfilled is the absence of large pores, precisely pores whose size is comparable 

with the wavelength of the visible light. The sound produced when dropped is 

affected, as a first approximation, by the bulk density and the elastic modulus of the 

solid. Though silica aerogel are fragile, robust aerogels are obtained if the silica 

backbone is covered with a cross-linked polymer as in [19], pointing out the 

importance of the bridges between the solid particle to increase the mechanical 

strength. 

More detailed information about the properties can be retrieved by structural and 

chemical characterization. The most popular characterization techniques applied to 

aerogels are devoted to understand the microstructure (SEM, N2 physisorption), the 

mechanical properties (flexure and compression test) and the chemistry (FT-IR, 

NMR, XPS). Other characterization methods are applied when a particular 

application is investigated.  

Some typical properties, related to the highly  porous nature of aerogel materials are: 

 low density (0.01-0.5 g/cm3), 

 high specific surface area (SSA, 100-1000 m2/g), 

 low thermal conductivity (0.015-0.050 W/mK), 

 small pores (10-500 nm). 

While some other important properties depend on the solid part: 
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 electrically conductive aerogels can be produced by carbonization of 

 various carbon precursors [4],  

 mechanically strong aerogels (2-8 MPa) are produced if polyimides are 

 used to build the backbone  [20],  

 silica aerogels possess very low dielectric constant (k<2) [21] and high 

 acoustic impedance (10-4 - 10-5 kg m2 /s). 

 transparent aerogels with high transmittance can be produced, for 

 example with SiO2 (Tr > 90% for 1 cm thick sample [22]) and cellulose 

 (Tr>85% for 0.5 cm thick sample [23]). 

These features are not only rare for other types of solids, but can also be tuned 

changing the chemical precursors, their ratio and the processing route (time, 

temperature, amount of solvent) used to produce the aerogel. 

 

1.1.3 Applications 

Aerogels are used, or their use was proposed, in a very wide number of fields, all of 

which take advantage of the combination of the porous microstructure and the 

versatile composition of the solid part. 

As major fields, catalysis, thermal insulation, electrochemistry and gas storage can 

be defined, while other niches like Cherenkov detectors, acoustic coupling, 

thickening agents, nontoxic pesticides, hypervelocity particle capture, special 

electronic parts, artistic samples, special molds for aluminum, drug delivery systems, 

personal care products, optical and electrical sensors, special filters, nuclear waste 

confinement, nano-thermites and water purification find benefits from the particular 

aerogel properties as collected in many review articles [24] [25] [2] [26] [27].  

Regarding commercial products anyway, mainly thermal insulation is exploited and 

applied to architectural, petrochemical and clothing fields, with two companies that 

produce mostly SiO2 based aerogel blankets, specifically for low (-200°C) and high 

(650°C) temperature: Cabot Corporation [28] and  Aspen Aerogels [29]. Another 

company, Oros apparel [30], sells an aerogel insulated jacket (of composition not 

better defined than "SolarCore aerogel") after a Kickstarter campaign to raise funds 

to start the production. A fourth company, named Aerogel Technologies LLC [31], 

sells products of the first three and additional polyurea and polyimide aerogels 

possessing much better mechanical properties (MPa range), but lower maximum 

temperature (80-300°C) and slightly higher thermal conductivity than SiO2 aerogels. 

Aerogel Technologies sells also monoliths of silica, resorcinol-formaldehyde and 

carbon aerogels, along with art pieces like those produced by Ioannis Michalous 

[32]. Further commercialization of aerogels is hindered by the relatively high price of 

these materials with respect to competitors, that often show worse properties but are 

much cheaper. In those cases in which the properties cannot be matched by other 
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existing materials (usually due to limitations in space and weight) the aerogels are 

applied, funding the R&D that allows to compete on a wider playground. 

 

1.2 Polymer derived ceramics (PDC) 

 

The use of a polymer as a precursor for a non-oxide ceramic material was for the 

first time reported more than 50 years ago from Chantrell and Popper [33]. Some 

years later a patent was deposited by W. Verbeek [34] to produce ceramic fibers 

(and other "shaped articles") made of homogeneous mixture of silicon carbide and 

silicon nitride through the pyrolysis of a polysilazane precursor. About in the same 

years, Yajima published a procedure to produce a polycarbosilane that could be 

melt-spun to produce SiC fibers after pyrolysis [35]. The PDC route is somehow 

similar to the sol-gel route, i.e. the object is shaped at low temperature and the final 

chemistry is controlled by the precursors chemistry, with a main difference that 

carbide and boride ceramics can be produced (sol-gel is developed for mainly 

oxides, nitrides and chalcogenides) and that a thermal treatment (pyrolysis) is 

needed to convert the polymer into the ceramic material. 

Some review papers and books were published, trying to summarize the vast field of 

PDC materials in terms of chemistry, properties and applications. [36] [37] [38] [39] 

[40] [41] [42] [43] [44] [45] [46] [47]. 

 
Figure 1-6: General composition of organosilicon polymers [32] 
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Typically, pre-ceramic polymers are Si based polymers, with composition and 

relative general name summarized in figure 1-6. 

Polymers based on boron and aluminum, precursor for BCN and AlCN, can also be 

produced but are much less common, and used mostly for research purpose and in 

limited amounts. 

 

1.2.1 Production 

The production of organosilicon polymers starts from silicon chlorides, that are 

obtained by reaction of silicon with Cl2 or HCl at high temperature. The silicon source 

can be either metallic silicon, ferrosilicon alloys, silicon carbide or mixtures of silica 

and carbon. The Si-Cl and Si-H bonds are fairly reactive and can be used to 

introduce different functionalities, expressed in figure 1-7 as Si-R. 

 

 

Figure 1-7: Typical routes to different organosilicon polymers [32] 

The chlorosilane monomers can be polymerized with different compounds to obtain 

polysiloxanes, polysilazanes, polysilanes, polycarbosilanes and 

polysilylcarbodiimides and further functionalized to introduce extra elements like 

boron, hafnium etc., as reviewed in [38]. 

Apart from the chemistry, which is controlling (together with the pyrolysis 

atmosphere) the composition of the final ceramic, an important feature of a pre-

ceramic polymer is the pyrolysis yield, i.e. the %mass of ceramic material obtained 
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after the thermolysis in inert environment. To reach high yield values (typically 70-

80%), the polymer should be of sufficiently high molecular weight to avoid 

volatilization during shaping and cross-linking; cages, rings and branched structure 

also help to reduce the production of volatile fragments during pyrolysis [48]. 

Regarding the possibility to shape the component, the polymer should be either 

liquid, meltable or soluble in a solvent; the presence of latent reactivity is useful to 

cross-link the polymer in order to set the shape.  

The ceramic is obtained, as previously introduced, by a thermal treatment in inert 

atmosphere called pyrolysis, typically, after a treatment above 1000°C an 

amorphous ceramic material is produced. During this treatment the polymer 

experiences a mass loss, due to the production of volatile molecules like small 

silanes, hydrogen, methane and other hydrocarbons, and a shrinkage related to the 

change from a polymer, with a typical density of ~ 1 g/cm3, to a silicon-based 

ceramic having a density of ~ 2-3 g/cm3. During the pyrolysis treatment many factors 

can play a role on the properties of the ceramic material obtained. Among them, the 

type of gas used (inert, reactive, vacuum) [49] [50], the heating rate, maximum 

temperature reached and dwelling time, the presence of fillers and their composition, 

shape and dimensions [51] [52] can modify the chemistry and the microstructure of 

the PDC produced.  

 

1.2.2 Properties 

Si-based PDCs are a wide family of ceramic materials; changing the starting 

organosilicon polymers is possible to produce amorphous Si-C, Si-C-N, Si-O-C along 

with nanocomposites of the previous ceramics and amorphous carbon. It's also 

possible to introduce boron  [53], hafnium [54], zirconium [55] and aluminum [56] , 

creating a lot of different materials with tunable properties. This is to point out that, 

as previously seen with aerogels properties, a proper discussion on PDC properties 

can be very long as one should consider all the specific compositions and features. 

For the readers' sake just a brief summary of the general properties of the most 

studied PDC system, will be presented. 

Typically, the dispersion of the elements in the ceramics obtained by PDC route is so 

good that after pyrolysis the material is an amorphous ceramic, showing high 

resistance to crystallization and to creep, good hardness, high resistance to chemical 

attack and toward oxidation. In some cases, PDCs start to crystallize around 1200-

1300°C (Si-C, Si-O-C) [57], [58], [59] while in others the crystallization temperature 

can reach very high values, as in the case of Si-B-C-N which crystallize above 

1700°C [53]. Aside the remarkable high temperature properties, Si based PDCs also 

possess various functional features like piezoelectricity [60], electrical conductivity  

and semiconductivity [61] [62], ferromagnetism [63], transparency [64] [65], lithium 

host capacity [66] and photoluminescence [67]. 
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1.2.3 Applications 

A key advantage of using the PDC process to produce ceramic materials is the 

versatility of shaping technologies that can be used. Indeed, nearly all the techniques 

developed for conventional polymeric materials were applied to pre-ceramic 

polymers. Among these, thin layer technologies like tape casting [68], dip- and spin- 

coating [69] [67], spraying [70], ink jetting [ref], UV lithography [71]  allow to produce 

high tech coatings and microcomponents. Ceramic matrix composites (CMC) can be 

produced by impregnation of a fiber fabric with the ceramic precursor and 

subsequent pyrolysis (PIP process, polymer impregnation and pyrolysis), multiple 

PIP cycle allow obtaining a dense CMC [72]. In addition, the fibers can even be 

produced by PDC route so fully ceramic CMC are obtained. Ceramic nanopowders 

can be obtained by emulsion process [73] while dense components are produced by 

warm pressing [74]; direct blowing of pre-ceramic polymers allows producing ceramic 

foams [75] and layers of pre-ceramic polymer with proper filler materials can be used 

to join ceramic monoliths [76]. The polymer to ceramic transformation can be 

stopped at intermediate temperature (450-800°C) to take advantage of the 

microporosity formed during the ceramization reactions for gas sorption or separation 

application [77]. Micro- and meso- porous materials can also be obtained by etching 

the PDC with HF to remove silica nanodomains [78] or with Cl2 to selectively remove 

Si atoms [79]. 

Thanks to such a versatile shaping approach, PDC are applied as structural and 

thermo-structural components in harsh/high temperature environment, as in the case 

of CMCs and fibers [80], and micro mechanical system (MEMS) [44]. Additionally, 

functional application like optical and electrical sensors [81], catalyst support [82], 

gas separation membranes [77] and gas storage [83], lithium batteries anodes [84], 

anti-graffiti coatings [85], high temperature sealant [86], heating elements [87] and 

brake pads binder [88]. 

On the market is present a wide range of siloxanes, also called silicones, that can be 

used as precursors for SiOC ceramics. (Note that not all the silicones can be used 

since, as previously stated, apart from the chemistry the polymeric precursor should 

have reactive moieties that can be used to cross-link the polymeric chains and 

decrease their volatilization during pyrolysis). Polycarbosilanes are also on market, 

with widely known SMP-10 product from Starfire Systems Inc. and polysilazanes 

from KiON Defense Technologies. Other ceramic precursors were commercialized in 

the past, like Nippon Carbon or Sigma Aldrich polycarbosilanes, or are produced by 

specialized companies to be directly used to manufacture fibers as in the case of 

Nicalon, Sylramic and Tyranno Si(O)C fibers.  
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1.3 Motivation of the work 

 

We are interested in producing silicon carbide, oxycarbide and carbonitride aerogels. 

In literature, metal carbides aerogels are produced only by carbothermal reduction, 

heat treating at high temperature in inert atmosphere aerogels composed by a 

mixture of oxides and carbon; if nitrogen and/or ammonia atmosphere is used, 

carbonitrides aerogels can be obtained. Taking advantage of the PDC process to 

produce these kinds of aerogels is believed to greatly enhance the versatility and 

simplify the production route. Silicon oxycarbides areogels on the other side can be 

produced by classical sol-gel technique and the PDC route in this case could be 

beneficial to expand the chemical composition range of this kind of materials. 

In this thesis the objective was to produce gels made of pre-ceramic polymers, like 

polysiloxane, polycarbosilane and polysilazane, to dry them with supercritical CO2 

method, and heat treat them in controlled atmosphere to obtain the relative silicon 

carbide, carbonitride or oxycarbide. This method started to be developed in the 

Ceramic and Glass Laboratory of the University of Trento right before the beginning 

of this PhD thesis work [89]. 



 

15 

Chapter II 
 

Experimental 
 

2.  
 

 

In this chapter, a brief description of the experimental part will be given, starting with 

some details about the equipments used to obtain the PDC aerogels, the reagents 

and the characterization methods; to move in the end to the synthesis procedure. 

 

2.1 Equipments 

 

2.1.1 Parr digestion vessel 

As will be illustrated in the last paragraph of this chapter, the synthesis route requires 

a mild temperature (150°C) to increase the cross-linking rate of the polymers. 

Unfortunately, the solvents used to produce the gels possess a boiling point at 

ambient pressure well below that temperature (56-81°C) so a way has to be found to 

keep the solvent liquid during the cross-linking and formation of the gel. The solution 

adopted is to perform the gelation in a closed vessel, in this manner during heating 

part of the solvent will evaporate and the pressure will rise to match the vapor 

pressure of the solvent, maintaining it liquid. The vessel should be able to stand the 

pressure, the temperature and be non-reactive with any of the chemicals used. Parr 

digestion vessels (Parr Instrument Company) are widely used for this kind of tasks, 

as shown in figure 2-1 they consist of a chrome plated bronze jacket that provide the 

mechanical strength required, an inner chemically inert PTFE 

(polytetrafluoroethylene) liner and a sealing cap provided with a spring, able to 

release unpredicted high pressure build up. 

The used model is a Parr Digestion Vessel 4749, with an inner cup capacity of 23 

mL, a maximum temperature allowed of 250°C and a maximum pressure of 125 bar.  
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Figure 2-1: Parr digestion vessel schematics and spare part list 

 

2.1.2 CO2 autoclave and thermo bath  

Once the gels are obtained, the starting solvent must be substituted with liquid CO2, 

through multiple washing, before bringing the CO2 above the critical point to remove 

it as supercritical fluid. To perform these washing steps and supercritical drying 

(SCD) it's needed an autoclave that can withstand the high pressure (100 bar) 

involved and whose temperature can be precisely controlled, at least within 1°C, and 

changed at will. Some commercial autoclaves specifically designed for CO2 SCD 

exist on the market, for example automatic critical point drier provided by Tousimis®, 

manual autoclave from Structure Probe Inc. and reactor systems for industrial 

volumes provided by Parr Instruments Company and Amar Equipments Pvt Ltd. 

Unfortunately, all the commercial devices are pretty expensive (>10000 €) and 

designed for drying well know samples with less devotion to research custom 

features.  

For these reasons, a custom autoclave was built by the UniTN department of physics 

machine shop, using schematics, ideas and solutions from the web [29], from 

professors R.Campostrini, G.D.Sorarù, V.M.Sglavo and V.Fontanari along with work 

experience of technician P.Gennara.  

The autoclave, shown in figure 2-2, has the great advantage of possessing two glass 

windows, that allow to see through to evaluate the liquid level and, most importantly, 

to follow samples behavior during all the liquid exchange steps and drying (figure 2-

3). Valves, pipings and joints were purchased from Swagelok® while the CO2 tank 

(figure 2-4) was provided with a deep drain tube to extract directly the liquid CO2. 
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The design of the autoclave provided the possibility to change the temperature of the 

device connecting it to a thermostated water bath (figure 2-4).  

The thermobath was not only used to bring the whole system above the critical 

temperature of CO2 to perform the SCD, but also to fill the autoclave with liquid CO2. 

Indeed, there's no reason for the liquid CO2 to fill the autoclave since no pump is 

connected to the system and, in absence of other external factors, the equilibrium 

pressure would be quickly reached on both the branches of the system. However, by 

using the thermobath to cool the autoclave below room temperature it's possible to 

create a stable difference in pressure between the CO2 tank (which is at room 

temperature) and the autoclave, allowing the draining of liquid from the tank for the 

exchange steps.  

 

 

Figure 2-2: CO2 supercritical autoclave 
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Figure 2-3:  Three fully visible samples immersed in liquid CO2 

 

 

Figure 2-4 : Thermostated water bath and liquid CO2 tank 
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2.1.3 Tubular furnaces 

To convert the pre-ceramic aerogels into silicon carbide, oxycarbide and carbonitride 

aerogels a thermal treatment in inert environment (pyrolysis) is needed. Tubular 

furnaces allow to control the atmosphere inside the tube and are often applied for 

this kind of treatments. Within this work, two types of tubular furnaces were used, the 

most used one is a Lindbergh Blue high temperature furnace with an alumina tube, 

shown in figure 2-5, capable of reaching 1600°C as a maximum temperature and 

connected to argon, nitrogen and synthetic air lines. The second one is a Gero 

tubular furnace limited to 1100°C and equipped with a silica tube, that was used for 

special treatments with Cl2 and H2 gas flow in the Technical University of Dresden 

(TUD). 

 

 

Figure 2-5: High temperature tubular furnace Lindbergh Blue 

 

2.1.4 Graphite furnace 

For high temperature stability test a high temperature graphite furnace (Astro model 

1000-4560-FP30, Thermal Technology LLC, figure 2-6) was used, connected to 

argon line and to flowing water cooling. The original graphite/boron carbide 

thermocouple was calibrated with a C type thermocouple and a Ircon Ultimax® 

pyrometer. 
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Figure 2-6: Astro high temperature graphite furnace 

 

2.2 Reagents 

 

Three commercially available liquid pre-ceramic polymers were chosen to produce 

ceramic aerogels belonging to the Si-C-N-O system, all of them bearing Si-H 

moieties in order to be cross-linked by the hydrosilylation reaction. 

 

2.2.1 Polycarbosilane SMP-10 

Starfire's SMP-10 allylhydropolycarbosilane (also known as AHPCS) imposed itself 

as the world's most used polycarbosilane thanks to some key features that allow 

good processability and final properties of the ceramic. First of all it's a low viscosity 

liquid that can be used in PIP (polymer infiltration and pyrolysis) process, filling all 

the voids and pores without the need to be melted. Second, as can be seen in the 
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structural formula drawn by L.Interrante in [90] and reported in figure 2-7, it 

possesses allyl moieties that can be used to thermally cross-link it at a moderate 

temperature, that can be also lowered with the addition of a peroxide radical initiator. 

Third, the presence of abundant Si-H groups makes possible to keep the Si/C molar 

ratio close to 1. The combination of branched structure, high presence of reactive 

group and low amount of carbon allow to obtain, after pyrolysis, a nearly 

stoichiometric SiC with high mass yield of ~80%.  

 

 

Figure 2-7: Structural formula of AHPCS as resulted from GPC and NMR studies [90] 

 Some properties of the polymer are reported in table 2-1 as specified in Starfire's 

datasheet. 

 

Properties of StarPCSTM SMP-10 

Density 0.998 g/cm3 

Appearance Clear, Amber liquid 

Viscosity 40 to 100 cPs at 25°C 

Compatible Solvents Hexanes, Tetrahydrofuran, Toluene, Insoluble in water 

Flash Point 89°C 

Moisture Absorption <0.1% in 24 hours at room temperature, moisture sensitive 

Surface Tension 30 dynes/cm2 

Storage Vacuum container or inert environment; Refrigerated 

Cross-linking 180-400°C 

Table 2-1: SMP-10 general properties 
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The polymer was characterized with NMR and FT-IR analysis, the results are 

reported in figures 2-8, 2-9 and 2-10. Assignments of the peaks in the NMR and FT-

IR spectra were done based on literature [91] [92] [93]. 

 

 

Figure 2-8: 29Si NMR spectrum of virgin SMP-10 

 

Figure 2-9: 1H NMR spectrum of virgin SMP-10 

 

Figure 2-10: FT-IR transmission spectrum of virgin SMP-10 



 

23 

The spectra reveals a structure very similar to the one reported in figure 2-7 which is 

also close, in Si-H and C=C moieties ratio, to the average composition reported by 

Starfire's vendor and presented in figure 2-11. 

 

 

Figure 2-11: Average composition of SMP-10 as declared by Starfire's vendor 

 

Thermogravimetry was performed on the neat SMP-10, cross-linked at 150°C with 

the addition of 10 ppm of Pt catalyst (Karstedt's catalyst), in Argon flow with a 

heating rate of 10°/min (figure 2-12). The Pt catalyst promotes the hydrosilylation 

cross-linking as will be shown later on. It can be seen that most of the weight loss is 

experienced below 1000°C, reaching a total value slightly above 20%. This mass 

loss is attributed to evolution of H2, CH4, SiH4 and CH3SiH3 produced by 

dehydrocoupling and redistribution reactions among Si-C, C-H and Si-H bonds. [93] 

 

 

Figure 2-12 :TG curve measured on cross-linked SMP-10 
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2.2.2 Polysilazane PSZ-20 

Ceraset® PSZ-20 is a liquid polymeric precursor for Si-C-N ceramics sold by Clariant 

GmbH and originally developed by KiON Defense Technology. Some properties 

extracted from the Clariant's datasheet are reported in table 2-2. 

 

Properties of Ceraset® PSZ 20 

Density 1.0-1.1 g/cm3 

Appearance Pale yellow liquid 

Viscosity 180  to 750 cPs at 20°C 

Compatible Solvents Dry aprotic solvents (alkanes, ethers, esters) 

Flash Point 63°C 

Moisture Absorption Moisture sensitive, quick processing in air possible 

Storage Refrigerated (4°C), 6 months shelf life 

Cross-linking 100-250°C 

Table 2-2: General properties of PSZ-20 

The structure of this polymer, similarly to SMP-10 polycarbosilane, contains both 

C=C and Si-H groups, as can be seen from the figure 2-13 reported in the technical 

bulletin provided by KiON [94], that allow a the cross-linking of the polymer. 

 

 

Figure 2-13: Average composition of PSZ-20 

The characterization with NMR and FT-IR (spectra in figure 2-14, 2-15, 2-16) 

confirmed the average structure provided by the company.  
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Figure 2-14: 29Si NMR spectrum of PSZ-20 

The SiO4 units presence evidenced by the peak at -110 ppm in the 29Si spectrum 

indicates the reactivity of the polymer towards atmospheric moisture. It should be 

noted that the acquisition of 29Si spectrum took more than one day while the open air 

use for the synthesis was maintained in seconds-to-minutes range, indeed, no silica 

traces were observed in the FT-IR spectrum. Assignments of the peaks in the NMR 

and FT-IR spectra were done accordingly to literature [95] [96] [97]. 

 

 

Figure 2-15: 1H NMR spectrum of PSZ-20 
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Figure 2-16: FT-IR spectrum of PSZ-20 

Thermogravimetry (figure 2-17) was performed, as for the SMP-10 polymers, after 

cross-linking the PSZ-20 at 150°C with the addition Karstedt's catalyst. Argon flow 

was used. PSZ-20 experiences a mass loss due to evolution of oligomers (low 

temperature, first step) higher than SMP-10, but a final mass loss lower than the 

polycarbosilane. Additionally, at temperature higher than 1400°C  the TG curve 

shows a new mass loss step related to the decomposition of silicon nitride, with 

production of silicon carbide and nitrogen gas as depicted by the equation:  

 

𝑆𝑖3𝑁4 + 3𝐶 → 3𝑆𝑖𝐶 + 2𝑁2 

 

as in reference [98]. The decomposition at 1400°C is visible if argon is used as a 

inert gas, while is hindered/delayed in nitrogen flow [99]. From literature, the evolved 

products in the case of silazanes pyrolysis are similar to those found for 

polycarbosilanes, with the addition of N containing molecules like ammonia or small 

organic amines deriving from transamination reactions and N2 at high temperature 

[100]. 
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Figure 2-17: TG in argon flow of Pt cross-linked PSZ-20 

 

2.2.3 Polysiloxane PMHS 

 

PolyMethylHydroSiloxane (PMHS), is a transparent liquid silicone oil possessing low 

viscosity and widely used as mild reducing agent in organic chemistry. Differently 

from SMP-10 and PSZ-20, it's not a proprietary silicon based polymer, it possesses a 

linear structure and does not bear C=C moieties. Some properties are reported in 

table 2-3, collected from various datasheet (Sigma-Aldrich, Alfa Aesar) and from 

reference literature. The polymer used in this thesis work was purchased from Alfa 

Aesar and possessed a viscosity of 25 cPs and a purity of 97%. To be used as a 

pre-ceramic polymer it must be modified to be properly cross-linked prior to pyrolysis. 

A first method was used by Lu [101] who converted part of the Si-H in Si-OH, the Si-

OH groups can then condense and produce oxygen bridges that render the polymer 

infusible. A pyrolysis in nitrogen at 700°C of this condensation cross-linked PMHS 

gives a yield of 73%. Another method, developed by Blum [102] is to use the Si-H 

bonds to cross-link and functionalize the polymer with a vinyl bearing siloxane or with 

divinylbenzene (DVB). Depending on the amount of DVB used, SiOC ceramic are 

obtained after pyrolysis with different yield and free carbon content [103].  

NMR characterization was not performed since the structure, reported in figure 2-18, 

is well established in siloxane field.  
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Properties of PMHS 

Density 1.0  g/cm3 

Appearance Transparent liquid 

Viscosity 10  to 50 cPs at 20°C 

Compatible Solvents Hydrocarbons, ethers, acetone, alcohols but MeOH 

Flash Point 204°C 

Moisture Absorption Slightly moisture sensitive 

Storage Cool, dry storage, no special requirements 

Cross-linking Oxidation, Hydrosilylation 

Table 2-3 : General properties of PMHS 

 

Figure 2-18:Average structural formula of PMHS 

A control FT-IR spectrum (figure 2-19) was acquired which confirms very well the 

structure proposed above. 

 

 

Figure 2-19: FT-IR spectrum of PMHS polymer 
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2.2.4 Cross-linkers, DVB and TVS 

As was presented before, all the used ceramic precursors bear Si-H functional 

groups that can be used to cross-link them by means of hydrosilylation reaction. This 

type of addition reaction, as shown in the equation below, is free of by-products and 

can be efficiently catalyzed by Pt compounds, allowing the curing of the pre-ceramic 

resins at low-to-mild temperature (RT to 200°C) 

 

𝑆𝑖 − 𝐻 + 𝐶 = 𝐶 →  𝑆𝑖 − 𝐶 − 𝐶 

 

The first cross-linker investigated was divinylbenzene (DVB), being an aromatic ring 

with two vinyl groups in ortho or meta positions as shown in figure 2-20. It was 

bought from Sigma Aldrich, technical grade, 80% mixture of isomers with 

ethylvinylbenzene and diethylbenzene. Even though it contains 1% of polymerization 

inhibitor it must be stored in a cold place (2-8°C), indeed after some days at room 

temperature it turns from a clear liquid into a transparent solid resin. 

 

 

Figure 2-20: Structural formula of DVB 

The FT-IR spectrum of DVB is reported in figure 2-22 and confirms the structure, 

evidences of the mixture of o- and m- disubstituted benzene are noted, the 

assignment of the peaks was done from reference literature [104]. 

The second cross-linker used was tetravinylsilane (TVS), a tetrafunctional Si-based 

molecule which structure is reported in figure 2-21. 

 

 

Figure 2-21: Structural formula of TVS 

It was purchased from Fluorochem ltd. with a declared purity of 97% and stored in 

the same conditions as DVB, even though its reactivity was noticed to be lower (no 

solid formation if left out from the fridge for some days). The corresponding FT-IR 
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spectrum is reported in figure 2-23, the assignments were done based on literature 

[105] and confirm the structure of figure 2-21. 

 

 

Figure 2-22: FT-IR spectrum of DVB 

 

Figure 2-23 FT-IR spectrum of TVS 
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2.2.5 Solvents and catalyst 

The solvents requirements in this works were: ability to dissolve all the reagents, 

inertness with regard to the reagents, in particular to Si-H groups, and possibly 

mixable with liquid CO2. Cyclohexane is a very low polarity aprotic solvent that 

perfectly matches all these requirements so it was used in high quantities and from 

different sources, i.e. Sigma Aldrich, Exacta-Optech and Alfa Aesar, the purity being 

always higher than 99.5%. Acetone is an aprotic highly polar solvent and was used 

only to produce some PMHS/DVB gels to investigate the role of the solvent in the 

gelation and drying processes. Similarly, tetrahydrofuran (THF) was used to produce 

some SMP-10 gels with a polar solvent since the polycarbosilane could not be easily 

dissolved in acetone. 

 

 Acetone Cyclohexane THF 

Boiling point (°C) 56 81 66 

Density (g/cm3) 0.79 0.77 0.88 

Dipole moment (D) 2.7 0 1.8 

Dielectric constant (er) 20.7 2.0 7.6 

Surface tension (mJ/m2) 25.2 25.0 26.4 

Vapor pressure 150°C (bar) 10.7 6.7 8.0 

Table 2-4 : General properties of the solvents used 

Both THF and acetone were purchased from Sigma Aldrich with a purity >99.5%; 

THF contained 250 ppm of BHT as peroxide inhibitor. Some properties of these 

three liquids are reported in table 2-4. The hydrosilylation reaction, even though 

thermodynamically favored, do not proceed in absence of catalyst at low 

temperature, indeed the exploit of this reaction started after the discovery of the very 

efficient hexachloroplatinic acid catalyst by J.L.Speier [106] [107] [108]. Another very 

powerful Pt catalyst is the so called "Karstedt's catalyst" that consist of a Pt(0) 

organometallic compound in which the platinum atoms are coordinated with the vinyl 

groups of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane as shown in figure 2-24. 

 

 

Figure 2-24: Structural formula of Karstedt's catalyst complex 
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This catalyst is even more active than the hexachloroplatinic acid and can be 

dissolved in organic non polar solvent, making it the most used hydrosilylation 

catalyst in the silicone industry [109] [110]. It was purchased from Sigma-Aldrich in a 

xylene solution containing 2% of Pt. For practical dosing this solution was further 

diluted 1:19 in xylene to obtain a practical 0.1% Pt catalyst solution. 

 

2.3 Characterization methods 

 

Here will be presented some details of the characterization techniques used. 

2.3.1 Density measurements 

To characterize highly porous materials like aerogels, the first, important and 

(usually) simple method is to measure the "bulk" density (also called geometrical 

density), defined as the ratio between the weight and the geometrical volume 

occupied. This is not an intrinsic property of a material but depends on the amount of 

porosity and the true density (also, skeleton density) of the solid material, as 

depicted in figure 2-25. 

 

 

Figure 2-25: Concept definition of bulk and true density 

If the sample is a monolith with a regular shape like a cylinder or a parallelepiped, 

the task is easily accomplished with a caliper and an analytical scale. For this 

reason, care was taken to produce regular cylindrical aerogels sample of appropriate 

volume (>1-2 cm3) to minimize the errors done by caliper measuring. 

The true density was measured by helium picnometry with a Micromeritics 

instrument (model 1035). Helium picnometry allows indeed to measure the real 

volume occupied by the solid part of the sample, if closed porosity is absent. The 

general scheme of a picnometer is shown in figure 2-26 in which Vs is the volume of 

the sample, Vc is the volume of the chamber without the sample, Vr is a reference 

volume and M represents the manometer. 
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Figure 2-26: General scheme of a picnometer 

The working principle is the following: 

 in isothermal state, the chamber containing the sample is pressurized with 

helium, which amount is given by the volume occupied (Vc-Vs) and the pressure 

reached (P1) by the well know gas equation PV=nRT; 

 the helium is expanded in a reference volume (Vr) and the equilibrium 

pressure is measured (P2); 

 being known Vr and Vc, and P1 and P2 is possible to calculate Vs through 

the equation: 

 

𝑉𝑠 = 𝑉𝑐 −
𝑉𝑟

(
𝑃1
𝑃2

−1)
. 

 

The calculated Vs represents the volume that cannot be occupied by helium gas, so 

the real volume of the solid part of the sample, plus the volume occupied by closed 

porosity, if present. If this value is used to calculate the density, the true density of 

the solid is computed. 

 

2.3.2 Porosity measurements 

Measuring the porosity means to quantify the amount of pores present in the sample. 

The quantity is usually expressed in volumetrical percent (%vol) or in a kind of 

"inverted" density expressed as cm3 of pores per gram of material (cm3/g or cc/g). 

The total amount of pore volume can be quickly computed from bulk (𝜌𝑏 ) and 

skeleton (𝜌𝑠)  density values, by applying the equation: 

 

%𝑣𝑜𝑙𝑝𝑜𝑟𝑒𝑠 = 1 −
 𝜌𝑏

𝜌𝑠
. 
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This value accounts just the total pore volume, giving no information about the size 

of the pores present in the material. To estimate the pore size distribution (PSD), 

nitrogen physisorption and mercury porosimetry methods can be used. 

Mercury is non-wetting liquid (contact angle between 135° and 142° with most 

solids) that can be pushed (intruded) inside the pores of a material by applying an 

external pressure. The volume of liquid intruded vs applied pressure (𝑃𝑒𝑥𝑡 ) is used 

to compute the volume of pores with a certain size (𝐷𝑝 ), through the equation: 

 

𝐷𝑝 =
1470 𝑘𝑃𝑎 ·𝜇𝑚

𝑃𝑒𝑥𝑡
. 

 

With mercury porosimetry the distribution of the size of the pores in a range from 

hundreds of micron to 2-3 nm can in principle be measured; it should be noted 

anyway that mercury necessitate high pressure to fill the smallest pores, this can 

modify the actual size of the pores or even cause the breaking of the sample.  

Nitrogen physisorption on the other side, instead of pushing a liquid inside the pores, 

take advantage of the adsorption of gas on the surface and of the thermodynamically 

favored condensation of it in small pores. A general scheme of a physisorption 

instrument is reported in figure 2-27.  

 

Figure 2-27: General schematics of a physisorption measurement instrument [111] 

The measurement is carried out by first evacuating the sample to low pressure, then 

the sample chamber is brought to liquid nitrogen temperature and a known amount 

of nitrogen gas is inserted in the sample chamber. Once the equilibrium pressure is 

reached, the amount of nitrogen (moles or cm3 at STP) vs pressure is measured. 
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Then, another dose of nitrogen is inserted and so on, measuring a series of points 

that build a nitrogen physisorption isotherm curve, as those reported in figure 2-28 

representing the possible types of isotherms as from IUPAC definition [112]. The 

type of hysteresis (difference between adsorption and desorption curve) is also 

important, and for this reason four types of hysteresis loops are specifically defined 

by IUPAC and reported in figure 2-29. 

 

 

Figure 2-28: Types of physisorption isotherms as from IUPAC specification [112]. 

 

Figure 2-29: Types of hysteresis loop as from IUPAC specification [73]. 
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By interpolation of the points in the p/p0 range 0.05-0.30 with the BET equation 

(Brunauer, Emmett, Teller) it's possible to calculate the specific surface area (SSA). 

The BET equation is:  

 

𝑝

𝑣(𝑝0 −  𝑝)
=

1

𝑣𝑚𝑐
+

(𝑐 − 1)

𝑣𝑚𝑐

𝑝

𝑝0
 

 

where p and p0 are the equilibrium and saturation pressure of the gas, v is the 

volume adsorbed, c is the so called  BET constant and vm is the monolayer adsorbed 

gas quantity; vm is estimated by the interpolation and used to calculate the surface of 

the sample, being known the molar volume of the gas and the adsorption cross-

section of the gas molecules. The value of surface so calculated is divided by the 

mass of sample to obtain the SSA value. 

Additionally, by applying the BJH (Barrett-Joyner-Halenda) method to the nitrogen 

isotherms, the distribution of the pores (PSD) in the range 3-200 nm can be 

computed using the Kelvin equation, that predicts the anticipated condensation of 

nitrogen in the pores within this range. The PSD can also be calculated by applying 

more complex computational procedure called density functional theory; in particular, 

quenched solid density functional theory (QSDFT) was also applied in some cases to 

obtain information about distribution of pore size by using the dedicated kernel of the 

program AsiQwin of Quantachrome Instruments.  

Physisorption was extensively applied to characterize the porosity of the aerogels 

produced within this thesis, while mercury porosimetry resulted in unreliable results 

so only data calculated from nitrogen isotherms will be presented in the manuscript. 

The used gas porosimeters were an ASAP 2010 system (Micromeritics), a 

Quadrasorb SI surface area analyzer (Quantachrome Instruments) and an Autosorb 

analyzer (Quantachrome Instrument). Autosorb was also used to measure the CO2 

absorption capacity at 0°C of N-doped carbide derived carbon aerogels. 

 

2.3.3 Chemical composition and phase analysis 

To evaluate the chemical composition and the chemical bonds present in the 

produced aerogels, Fourier-Transform Infrared (FT-IR), Nuclear Magnetic 

Resonance (NMR) and X-ray Photoelectron (XPS) spectroscopies were used. NMR 

was mainly used to characterize the starting polymers and an unexpected reaction 

between the PSZ-20 and CO2 while FT-IR was more extensively applied to 

investigate the chemical bonds. The spectrometer used for NMR was an 

AVANCE400 (Bruker Instruments) with 4 mm probe-head operating at a proton 

frequency of 400.13 MHz. XPS was used only to characterize the chemistry of N-
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doped carbide derived carbons, using a Kratos Axis Ultra DLD instrument equipped 

with a hemispherical analyzer and a monochromatic Al Kα (1486.6 eV) x-ray source. 

FT-IR spectra were acquired in transmission mode with KBr pellet with a FT-IR 

Nicolet Avatar 330 (Thermo Electron) spectrometer and in diffused reflectance mode 

(DRIFT) with a VERTEX 70/70v FT-IR instrument (Bruker). NMR spectra were 

acquired by Dr. Emanuela Callone and XPS spectra by Dr. Lia Vanzetti.  

Phase analysis was performed with X-ray Diffraction (XRD) on powders of ceramic 

aerogels with a Rigaku D/Max diffractometer (Rigaku, Tokyo, Japan) in the Bragg–

Brentano configuration, using Cu Kα radiation and a monochromator in the diffracted 

beam, in the range 20° - 80° (2θ) with a 0.05°step and 5 s acquisition time. For 

smaller samples, an EQUINOX 3500, (Inel, France) equipped with a curved real-time 

detector was used, using Cu Kα radiation and 15 min acquisition time. 

2.3.4 Thermal analysis 

The thermal evolution of the pre-ceramic aerogels to Si-C-N-O aerogels was 

followed also by thermogravimetry (TG) and differential thermal analysis (DTA) with 

a Netzsch STA 409 instrument. When inert gas was required, the whole instrument 

chamber was evacuated to 0.1 bar and refilled with argon three times before starting 

the measurements. The amount of sample for every run was around 20 mg for 

aerogels and 80 mg for dense samples. 

2.3.5 Microstructure 

The peculiar microstructure of an aerogel is visible only at high magnification, indeed 

if an optical microscope is used the sample would appear homogeneously dense 

even at the maximum magnification. This points out the need of using a Scanning 

Electron Microscope (SEM) to resolve the small pores from the solid part that builds 

the aerogel skeleton. Among the various SEM available, field emission gun (FE-) 

SEMs are able to reach very good values of resolution thanks to the smaller spot 

size that can be focused to probe the sample. The instrument used to investigate the 

microstructural features of the aerogels produced was a FE-SEM Zeiss Supra-60 

equipped with secondary, backscattered and in-lens electron detectors. The samples 

were prepared depositing coarse aerogel powders on silver paste and sputtering 

them with Au-Pd alloy to assure sufficient conductivity. 

2.3.6 Electrochemistry 

SiOC aerogels and N-doped Carbide Derived Carbon (CDC) aerogels were 

characterized for electrochemical applications. In particular, SiOCs were tested as 

anode for Li-ion batteries and N-doped CDCs as electric double layer capacitor 
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(EDLC) electrodes. For Li-ion a Swagelok® type cell was assembled in a glove box 

using metallic lithium as counter electrode and LiPF6, 1M in ethylene-diethyl 

carbonate mixture (1:1 ratio) was used as electrolyte. Galvanostatic charge-

discharge measurements at different current densities were performed with a 

multipotentiostat (BioLogic Science instruments) by Dr. Vallachira Sasikumar 

Pradeep. For EDLC characterization, two symmetrical electrodes were prepared with 

the aerogel samples, soaked with 1M aqueous H2SO4 and separated by a glass fiber 

filter. Cyclic voltammetry and galvanostatic charge-discharge experiments were 

performed with an Ivium Stat electrochemical interface & impedance analyzer (Ivium 

Technologies) by Dr. Guang-Ping Hao. In both the cases the load of active material 

was around 2-4 mg/cm2. 

 

2.4 Synthesis procedure 

 

The developed procedure to produce PDC aerogels is general and can be applied 

not only to the pre-ceramic polymers shown in this thesis; indeed BCN and AlCN 

aerogels were also prepared using the very same technique with the additional care 

of using a glove box for the preparation of the gels [113]. 

2.4.1 Gels preparation 

The first step to prepare a gel is to decide the recipe that will be used, in terms of the 

ratios: solvent/polymer, polymer/cross-linker, catalyst/polymer, time and temperature 

for cross-linking along with the chemistry of the single components. All these 

parameters affect the final properties of the ceramic aerogel produced and can be 

used to control the microstructure and the chemistry of the solid part. 

The production route started with weighting on an analytical scale (precision 0.01 g) 

the desired amounts of solvent and polymer directly in the PTFE liner of the Parr 

digestion vessel. The two liquids were then mixed with a stirring plate until a 

homogenoeus solution was obtained and the desired quantity of cross-linker was 

then added by putting again the liner on the analitical scale. Again, the solution was 

stirred until homogenization and the proper amount of catalyst solution was added, 

using a micropipette and keeping the solution stirred under a gentle flow of argon, to 

protect the catalyst bottle and the gelling solution from excessive contamination from 

atmospheric moisture. The stirrer plate and the analitical scale were placed under 

the fume hood to avoid the breathing of the vapors of the substances used. 

At the addition of the catalyst solution, some bubbling started, especially in the case 

PMHS composition and when acetone was used as solvent. The solution was mixed 

for 10 minutes, then the stir bar was removed and the PTFE cup was sealed in the 
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digestion vessel. The vessel was put in a oven pre-heated at the desired 

temperature for the time selected for the cross-linking. After extraction from the oven, 

the vessel was allowed to cool freely to room temperature. The gels were extracted 

as cylindrical monoliths and placed in a glass vase with a screw cap and filled with 

fresh solvent in a quantity equal to 8-10 times the gel volume. With some recipes the 

gels were already cracked or it was necessary to cut them to remove them from the 

cup. In these cases, coarse and irregularly shaped pieces were obtained. The typical 

appearance of the gels is shown in the pictures in figure 2-30. 

The bath of fresh solvent was renewed once a day for three days to remove 

unreacted polymer, cross-linker and catalyst, so that in the pores of the gel only 

solvent mixable with liquid CO2 was present before the insertions in the SCD 

autoclave. 

 

 

 

Figure 2-30: Typical appearance of the as-produced gels 

 

2.4.2 Solvent exchange and drying 

For drying the gels, and obtain the relative pre-ceramic aerogels, the starting solvent 

must be replaced by liquid CO2 before removing it as a supercritical fluid. To do this, 

the gel samples were put in a glass sample holder, always kept soaked (figure 2-31) 

with the solvent, and loaded in the chamber of the autoclave (figure 2-32) priorly 

cooled to 15°C by the thermostated water bath. 
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Figure 2-31: Gels soaked with solvent and sample holder for SCD 

 

Figure 2-32: Loading of the samples in the SCD autoclave 

The autoclave was then pressurized by opening the valve between the chamber and 

the CO2 tank, paying attention of increasing the pressure slowly, to avoid possible 

damages to the samples due to sudden pressure rise. The pressure was increased 

by steps of 5 bars, with 5-10 minutes of homogenization between each step until the 

condensation pressure for CO2 at 15°C was reached (~50 bar). At this point, liquid 
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CO2 came directly from the tank or dew drops of liquid CO2 started to form on the 

inner walls of the autoclave chamber. The liquid level was let rise slowly up the limit 

of the sample carrier (also called boat), stopping it at a height above the boat to 

assure the constant soaking of the gels (figure 2-33). 

At least 10 hours of homogenization time was given before proceeding to the first 

solvent exchange step. This procedure allows to enrich step after step the liquid 

present in the autoclave with CO2 and wash away the original solvent. It is performed 

by removing the liquid in the autoclave from the bottom, keeping just that present in 

the boat to maintain the gels soaked. To do this, first the inlet valve is slightly open, 

in order to maintain the pressure inside the autoclave high enough to avoid the 

boiling of the liquid, (an effect that would be caused by the pressure drop 

subsequent to the removal of the liquid). Then the bottom on-off valve is opened, 

limiting the flow with the metering valve, and the excess liquid is removed from the 

bottom. At last, the outlet valve is closed and the inlet one is widely opened to allow 

the liquid CO2 inside the autoclave, reaching again the desired level before closing 

the inlet valve. These washings were repeated at least twice a day for 5 days in 

order to substitute all the starting solvent with liquid CO2. 

 

 

Figure 2-33: Detail of the samples in the autoclave filled with solvent and liquid CO2 

The amount of residual solvent was evaluated by collecting all the removed liquid for 

every step by condensing it through a polyethylene bottle, which got very cold due to 

CO2 evaporation/sublimation, and observing the liquid left after CO2 sublimation. 

When no traces of residual solvent were observed, and in any case not before 8 
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washing cycles, the autoclave was brought for one hour to 29 °C, by means of the 

thermostated bath, and then to 45°C. The supercritical transition was observed 

around 31°C and the pressure rose up to 100 bar at 45°C. After one hour the outlet 

metering and bleeding valves, put on top right of the autoclave, were opened and the 

gas flow was set around 2-300 mL/min by a bubbler connected to the bleeding valve. 

It usually took roughly 10 hours to reach room pressure, and multiple setting of the 

bleeding valve to maintain the constant flow required. Once the pressure was lower 

than 10 bar also the temperature was lowered in order to remove the samples at 

room temperature. An example picture of the samples before and after SCD is 

shown in figure 2-34. 

The gels were weighted, measured with a caliper and kept in plastic vials in a 

desiccator before further characterization or treatments. 

 

 

Figure 2-34: Picture of gels before (top) and after (bottom) SCD 
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2.4.3 Pyrolysis and post treatments 

To obtain the ceramic aerogels, a pyrolysis is needed to convert the pre-ceramic 

network into the corresponding ceramic one. The polymeric aerogels were then put 

in a sample holder, made of the same material as the tube of the tubular furnace, 

and loaded in the middle of the selected furnace. The importance of careful purging 

of the furnace with inert gas was noted, due to the high reactivity of the pre-ceramic 

aerogels with oxygen and moisture already at mild temperature (120-150°C) as will 

be explained in section 3.1.2. Alumina tubular furnace possesses a inner volume of 

the tube equal to 9 liter, so very long purging (>10 hours with flow of 200 mL/min) 

was needed to assure the removal of starting atmospheric air before starting the 

heating. In the case of fused quartz furnace, the tube was much smaller (volume 

<1L) and 90 minutes with a flow of 150 mL/min were considered to be enough. For 

graphite furnace, vacuum could be applied so 3 cycles of vacuum to argon were 

performed before heating. The schedule for the pyrolysis treatment consisted in a 

ramp with a fixed heating rate up to the maximum temperature, a soaking time at the 

desired temperature, and a free cooling of the furnace. The actual temperature 

inside the furnace was checked from time to time with an external S type 

thermocouple and the controller of the furnace was set in order to reach a correct 

temperature with an error within 10°C from the desired actual value. The exhaust 

gases were bubbled in a silicone oil bubbler and directed to the fume hood to be 

filtered and disposed. A trap to avoid the risk of bubbler oil sucking inside the furnace 

in case of shortage of the inlet gas was added after an episode of gas cut during the 

cooling branch of the thermal schedule. 

Post treatment with Cl2 gas was performed to produce N-doped CDC aerogel, using 

a fused quartz tubular furnace connected to Ar, Cl2 and H2 gas. The whole furnace 

was kept under a fume hood together with the chlorine bottle used for the 

chlorination. Additional details for this treatment will be given in the section 3.4.2.
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Chapter III 
 

Results and discussion 
 

3.  

3.1 Si-C system 

Part of this section was published in " Zera, E., Campostrini, R., Aravind, P. R., 

Blum, Y., & Sorarù, G. D. (2014). Novel SiC/C aerogels through pyrolysis of 

polycarbosilane precursors. Advanced Engineering Materials, 16(6), 814-819" 

 

Silicon carbide is probably the most widely used non-oxide ceramic material, 

possessing very high values of elastic modulus, hardness, specific strength, thermal 

stability, oxidation resistance, chemical inertness and thermal conductivity; it 

possesses low thermal expansion and it is a semiconductor with wide band-gap. 

Thanks to these properties, it is used in high temperature and harsh environments 

like components for gas turbines, kilns, heat exchangers, bearings, nuclear fuel 

cladding etc. Its natural occurrence is extremely rare and most the SiC used in the 

industry is artificially made by the Acheson process. This process consists of 

reacting SiO2 and C in a high temperature electric furnace, the carbothermal 

reduction of silica produces carbon monoxide and silicon carbide, whose purity and 

crystalline size depends on the position inside the furnace. Objects made by silicon 

carbide are usually sintered at high temperature (~2000°C) with addition of sintering 

aids, or produced by infiltrating liquid silicon in a green object made by a mixture of 

carbon and SiC powders. These techniques strongly limit the shaping possibility and 

great advantages were introduced with the use of polycarbosilanes. 

Often SiC derived by polymers is produced with an excess of carbon, making the 

ceramic black, electrically conductive and lowering the resistance to oxidation. 

The Si-C system was extensively studied since ceramic aerogels made by silicon 

carbide could benefit of its outstanding thermal and mechanical properties. Efforts 

were dedicated to understand how to tune the chemistry and the microstructure of 

these aerogels and to measure some properties related to possible application. 

 

3.1.1 Production details 

As previously mentioned, to produce aerogels belonging to the silicon-carbon system 

SMP-10 polycarbosilane was used as pre-ceramic polymer. The recipe to produce 

the pre-ceramic gels took care of setting: 
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 - the starting dilution (as %vol of solvent), 

 - cross-linker type 

 - the ratio between Si-H and C=C moieties, 

 - the cross-linking temperature, 

 - the cross-linking time, 

 - the amount of catalyst (as weight ratio between Pt and SMP-10). 

The amount of solvent is easily computed once the volume of SMP-10 and that of 

the cross-linker are known, by assuming no ΔV of the components upon mixing. The 

solvent used for SMP-10 was mainly cyclohexane. 

Taking as reference the average composition of figure 2-11, a mean amount of 41 

mmol of Si-H groups per gram of SMP-10 can be calculated. In the same way, 15 

mmol of C=C groups are contained in 1 gram of DVB, while 29 mmol of C=C come 

from 1 gram of TVS. These quantities allowed to calculate the weight ratio between 

SMP-10 and cross-linker once the ratio between Si-H and C=C was set. The allyl 

groups of the SMP-10 and the impurities in DVB were not considered for the 

computation. 

The influence of the above mentioned parameters was investigated, and some of 

them were fixed in order to study the free carbon amount in the ceramic material, the 

bulk density, the SSA and the microstructural stability at high temperature.  

As a result of the optimization, devoted to diminish the shrinkage during SCD, to 

increase the SSA and the total porosity of the gels; the time, temperature and 

catalyst amount for the gel production were fixed and in particular: 

 - the cross-linking time was set for DVB (5 hours) and for TVS (7 days),  

 - the Pt/SMP-10 weight ratio was 8*10-5 (for DVB) to 80*10-5 (for TVS), 

 - the cross-linking temperature was set at 150°C. 

 

3.1.2 TVS and DVB cross-linkers (and purging time) 

The role of cross-linker was studied since this could allow to modify the carbon 

amount in the ceramic aerogel, along with the microstructure, without modifying so 

much the starting synthesis parameter. Additionally, cross-linking SMP-10 with TVS 

was never reported in literature so this study could also have led to interesting side 

results. For the following discussion, TVS refers to TVS cross-linked SMP-10 

aerogels, and similarly DVB will refer to DVB cross-linked SMP-10 aerogels. 

Accordingly, TVS and DVB cross-linked SMP-10 aerogels were produced by gelling 

a solution of polymer and cross-linker with 90%vol of cyclohexane, Si-H/C=C ratio of 

1 and following the parameters depicted above. The white, monolithic polymeric 

aerogels showed similar appearance even though pretty different density and 

shrinkage values were measured, as reported in table 3-1.  
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 TVS DVB 

SCD Linear shrinkage (%) 14 ± 8 5 ± 1 

Density (mg/cc) 129 ± 33 69 ± 6 

Skeleton density (g/cc) 1.04 1.09 

Gel yield (%) 87 ± 14 69 ± 7 

SSA (m2/g) 960 447 

N2 Pore Volume (cc/g) 4.41 1.19 

Total Pore Volume (cc/g) 6.79 15.76 

Table 3-1: Shrinkage, density and gel yield values of SMP-10 gels obtained with TVS and 
DVB cross-linker 

The higher gel yield, calculated with respect to the sum of SMP-10 and cross-linker, 

and the higher shrinkage during SCD led to a nearly doubled density in the case of 

TVS with respect to DVB. 

From the FT-IR spectra obtained on the as-produced aerogels (figure 3-1), is 

possible to notice that despite of the gel formation, and of the very long time for 

cross-linking in the case of TVS, still a very intense peak related to Si-H bonds is 

present. The DVB and TVS aerogels spectra are very similar, differing mostly by the 

presence of aromatic ring peaks in the case of DVB (refer to figure 2-22), with an 

indication of unreacted C=C visible from the small but distinct peaks relative to =C-H 

around 3050 cm-1.  

 

Figure 3-1 : FT-IR spectra of DVB and TVS aerogels with liquid SMP-10 as reference 

Both this observations point out an incomplete cross-linking reaction that leaves 

unreacted Si-H and C=C groups, which will react during the subsequent thermal 
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treatment but could also be used to modify the surface of the gel in the wet state to 

functionalize the surface of the final aerogel. 

The microstructure of the polymeric aerogels and the amount of the porosity was 

studied by means of, N2 physisorption and density measurements, some data are 

reported in table 3-1. The N2 pore volume was calculated from the adsorption 

isotherm at 0.99 relative pressure while total pore volume was computed from bulk 

and skeleton density by applying the equation: 

 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑟𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 =  
1

𝜌𝑏
 −  

1

𝜌𝑠𝑘
 . 

 

Nitrogen isotherms reveal a much higher SSA and pore volume for the TVS aerogel, 

despite its higher density compared to the DVB one. This can be rationalized 

reminding that nitrogen physisorption allows to study the pores up 50-200 

nanometers, so the pores within the size range 200 nm - 1 μm, which presence is 

confirmed by FE-SEM micrographs (reported here just for the pyrolized DVB and 

TVS aerogels), cannot be probed and do not contribute to the total pore volume 

measured with this technique. Therefore, from the total pore volume and the N2 

physisorption results it clearly appears that, for DVB aerogel, most of the pores are 

bigger than 200 nm while for TVS more than half of them are below 100 nm in size. 

The isotherms measured on the two aerogels are reported in figure 3-2, along with 

the pore size distribution obtained both from BJH (desorption branch, figure 3-4) and 

QSDFT (N2 on carbon cylindrical/spherical pores, adsorption branch, figure 3-3) 

methods. 

 

 

Figure 3-2: N2 physisorption isotherms of TVS and DVB aerogels 
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Figure 3-3: QSDFT PSD calculated for TVS and DVB aerogel 

 

Figure 3-4 : BJH PSD calculated for TVS and DVB aerogel 

As can be seen from figures 3-3 and 3-4, different methods to compute the PSD can 

give different results, mostly arising from the model used in the case of small pores, 

and from the hysteresis loop for the bigger dimension range. Anyway, for both the 

TVS and DVB aerogels a broad, hierarchical distribution of pores in the whole 

measured range can be appreciated, with a relative maximum centered around 50 

nm.  
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The two aerogels were pyrolized at different maximum temperature to evaluate the 

ceramic aerogel properties and the stability at increasing temperature. Maximum 

values were chosen to understand: the changes upon polymer to ceramic 

transformation (1000°C), potential carbothermal reduction effects (1500°C, important 

if oxygen impurities are present), and the resistance to crystallization/sintering 

(2000°C).  The first data collected, reported in table 3-2 and consisting of mass loss, 

shrinkage, SSA and pore volume, were indicating a high oxygen content in the 

aerogels produced at 1000°C, visible as a strong evolution of mass loss from 

1000°C to 1500°C due to carbothermal reduction of SiO2 by means of free C. 

 

 

 

Figure 3-5 : FT-IR spectra of TVS (top) and DVB (bottom) aerogels  
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TVS 

1000°C 

TVS 

1500°C 

DVB 

1000°C 

DVB 

1500°C 

Linear shrinkage (%) 32 Debris 46 55 

Mass loss (%) 22 58 52 79 

SSA (m2/g) 313 160 96 400 

N2 Pore Volume (cc/g) 0.82 1.29 0.31 0.69 

Table 3-2: First data collected on pyrolized TVS and DVB aerogels at 1000°C and 1500°C, 
mass loss and shrinkage are relative to the polymeric aerogel. 

Also the FT-IR spectra (figure 3-5) clearly show Si-O related peaks (1100 and 450 

cm-1) in the samples obtained at 1000°C. 

The carbothermal reduction is a two step reaction that proceed as the equations: 

 

𝑆𝑖𝑂2𝑠 + 𝐶𝑠-→ 𝑆𝑖𝑂𝑔 + 𝐶𝑂𝑔  

𝑆𝑖𝑂𝑔 + 2𝐶𝑠 → 𝑆𝑖𝐶𝑠 + 𝐶𝑂𝑔 . 

 

The reaction leads to a mass loss due to the evolution of CO gas and eventually 

unreacted SiO gas. If over-stoichiometric C/SiO2 ratio is assumed, it can be 

calculated that every gram of SiO2 leads to a weight loss of 0.58 g, explaining the 

mass loss measured. Additionally, the loss of solid material creates new porosity as 

it is measured by N2 physisorption (table 3-2). The new porosity formed in the case 

of TVS leads to a lowering of the SSA value while for DVB material an increase in 

SSA value is measured. The reason for the high content of oxygen in the material 

obtained at 1000°C was deeply investigated, and for DVB pre-ceramic aerogel 

elemental analysis was performed by Mikroanalytisches Labor Pascher (An der 

Pulvermühle 1, D-53424 Remagen), revealing an oxygen content of 1.3 %wt, with 

7.3 %wt of Si, 7.9 %wt H and C to 100%. At 1000°C the composition changes to: Si 

22.4 %wt, C 60.4 %wt and O 17.2 %wt, pointing to a strong enrichment of O during 

pyrolysis treatment. After some trials and errors the reason was found in the 

insufficient purging time for the relatively big alumina tube of Lindbergh furnace, as 

anticipated in section 2.4.3. Indeed, as shown from the TG curves reported in figure 

3-6, the aerogels can easily react with O2 already at low temperature (150-200°C), 

creating Si-OH and Si-O-Si moieties that enrich dramatically the precursor with 

oxygen, also thanks to the high SSA values of the polymeric aerogels and to the high 

presence of unreacted Si-H groups. 
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Figure 3-6 : TG curves of DVB aerogel heated in air 

From this point on, care was taken to purge for sufficient time all the tubular furnaces 

used for the pyrolysis treatments. The features of the ceramic aerogels obtained 

from SMP-10 cross-linked with TVS and DVB, and properly pyrolized at increasing 

temperature, are then reported in table 3-3, isotherms and PSD are reported in 

figures 3-7, 3-8, 3-9 and 3-10. 

 

 TVS 

1000°C 

TVS 

1500°C 

TVS 

2000°C 

DVB 

1000°C 

DVB 

1500°C 

DVB 

2000°C 

Linear shrinkage (%) 32 37 52 54 56 59 

Mass loss (%) 18 23 35 65 68 70 

SSA (m2/g) 276 271 135 111 146 130 

N2 Pore Volume (cc/g) 1.13 1.03 0.81 0.41 0.44 0.53 

Density (g/cc) 0.45 0.46 0.92 0.25 0.28 0.33 

Table 3-3 : Features of TVS and DVB aerogels pyrolyzed at increasing temperature mass 
loss and shrinkage are relative to the polymeric aerogel. 
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Figure 3-7 : N2 physisorption isotherms of TVS ceramic aerogels 

 

Figure 3-8 : BJH PSD calculated for TVS ceramic aerogels 
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Figure 3-9 : N2 physisorption isotherms of DVB ceramic aerogels 

 

Figure 3-10 : BJH PSD calculated for DVB ceramic aerogels 
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The first striking result is that, despite the very high temperature reached, high SSA 

values and low density of the ceramic aerogels are maintained. Such a stability of an 

aerogel was measured before only for pure, non graphitizable, carbon aerogels 

[114]. This is thought to be due to the peculiar properties of SiC that resist to 

sintering even at temperature as high as 2000°C. Another clear result is the higher 

stability of the DVB aerogels compared to the TVS ones in the range 1500-2000°C. 

Indeed, hints of densification are noted as an increase in shrinkage and density, 

accompanied by a not well understood increase in mass loss. The FE-SEM pictures, 

figure 3-11, confirm the densification, showing the sintering of some particles for the 

TVS aerogels treated at 2000°C while DVB aerogel exhibits a still microstructure. 

The reason for this different behavior could probably be found in the higher SSA and 

bulk density shown by the TVS 1500°C aerogel, that lead to an increased driving 

force (SSA) and kinetic (𝜌𝑏 ) for sintering. 

 

 

Figure 3-11 : FE-SEM micrographs of pyrolized DVB and TVS aerogels 

The x-ray diffraction patterns (figure 3-13, 3-14) and the FT-IR spectra (Figure 3-12) 

confirmed the composition of the skeleton to be a mixture of silicon carbide, 

amorphous at low temperature and β-phase at high temperature, and free carbon. A 

higher content of carbon in the DVB aerogel is readily visible at 1000°C in the XRD 

pattern, while become less apparent when silicon carbide starts to crystallize. In FT-
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IR spectra, the free carbon presence is revealed by a small broad peak around 1600 

cm-1 while Si-C bonds resonance give rise to the main peak centered at 830 cm-1. 

 

 

Figure 3-12: FT-IR spectra of pyrolized TVS and DVB aerogels 

 

Figure 3-13:  XRD pattern of TVS aerogels 
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Figure 3-14: XRD patterns of DVB aerogels 

The amount of free carbon was evaluated by a TG in air on the aerogels obtained at 

1500°C and presented in figure 3-15. As visible, in air flow the SiC/C aerogels show 

a first weight loss, starting around 600°C and due to the combustion of the free 

carbon, followed by a weight gain due to the oxidation of the remaining SiC. It should 

be noted that, being the size of the particles building the skeleton in the nano range, 

the mass gain due to SiC oxidation is reaching a nearly theoretical value (50% mass 

increase from SiC to SiO2) already below 1400°C. The oxidation in tubular furnace 

with air flow at 600°C for 1 h of bulk samples of aerogels treated at 2000°C showed 

very similar weight losses, being 34% for TVS and 55% for DVB. After oxidation both 

the aerogels are broken in debris suggesting that the high carbon content is limiting 

the possible application of these aerogels at high temperature in oxidizing 

environment. 

It is therefore demonstrated the possibility to produce SiC/C aerogels that, even after 

a thermal treatment at 2000°C (in inert environment), still possess high porosity (up 

to 89%), high specific surface area (130 m2/g) and hierarchical pore structure from 

μm to nm scale. The free carbon amount can be changed, along with the 

microstructure and the thermal stability, with the use of TVS rather than DVB as 

cross-linker. 
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Figure 3-15 : TG curves in air flow of TVS and DVB aerogels previously pyrolized at 
1500°C in argon 

 

3.1.3 Ratio between DVB and SMP-10 

In the previous section the ratio between Si-H and C=C moieties was kept equal to 

one, in order to promote a fast cross-linking and to evaluate differences given by the 

use of different cross-linkers. In this section on the contrary, the cross-linker used 

was DVB and the ratio between the reactive groups was varied. To mitigate the 

effect of a slower cross-linking, the dilution was decreased to 70%vol while the 

solvent (cyclohexane), the amount of catalyst (8x10-5 Pt/SMP-10 weight ratio), time 

and temperature for cross-linking (6h at 150°C) were similar to those used in the 

previous section. The reason for this study was to investigate if it's possible to 

decrease the amount of carbon in the final ceramic by lowering the quantity of cross-

linker, and how this affects the microstructural features of the aerogels produced. Six 

samples were produced with increasing ratio between Si-H and C=C, the starting 

compositions of the gelling solution are summarized in table 3-4. 

As shown in table 3-5, the shrinkage and consequently the density of the pre-

ceramic aerogels varied with the ratios investigated. 
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Si-H/C=C 
SMP-10   

(g) 

DVB 

(g) 

Cyclohexane 

(g) 

0.1% Karstedt 

(uL) 

32 3.00 0.25 5.94 279 

16 2.75 0.46 5.88 256 

8 2.35 0.79 5.78 218 

4 1.90 1.27 5.88 177 

2 1.35 1.81 5.90 126 

1 0.85 2.28 5.88 80 

Table 3-4: Starting composition of the gelling solution for the Si-H/C=C ratio 
investigation 

The shrinkage increased as the amount of DVB was decreased, pointing out that a 

lower cross-linking degree was detrimental to the preservation of the gel structure 

during the SCD procedure. Additionally, thanks to the glass windows present in the 

autoclave, it was possible to identify the source of shrinkage in the first enrichment of 

the cyclohexane with liquid CO2, so even before the first complete "washing". The 

effect is shown in figure 3-16, where two pieces of the wet gels produced with ratios 

of 4 and 8 are followed during the SCD procedure. It's visible the higher shrinkage 

for the sample 8 during the first CO2 enrichment; after the first step the sample's 

dimensions are constant. 

 

 

Figure 3-16: Evolution of 4 (left) and 8 (right) gels during the first liquid CO2 insertion. a) 
liquid phase is pure cyclohexane. b) CO2 enriched cyclohexane (30 bar). c) cyclohexane - 

liquid CO2 mixture. d) supercritical CO2. 
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Si-H/C=C 
ρPoly 

(g/cm3) 

ΔLSCD 

(%) 

ΡSiC/C 

(g/cm3) 

ΔLPyro 

(%) 

ΔmPyro 

(%) 

 free C 

(wt%) 

32 0.40 43 0.86 30 32 5 

16 0.50 37 1.02 30 32 11 

8 0.39 28 0.80 32 39 31 

4 0.28 17 0.58 37 46 44 

2 0.22 8 0.51 44 62 54 

1 0.21 4 0.56 55 74 62 

Table 3-5 : Some properties measured on the aerogels produced at different Si-H/C=C 
ratios. ρPoly: bulk density of polymeric aerogels; ΔlLSCD: linear shrinkage after SCD; ρSiC/C, 

ΔlPyro,, ΔmPyro: bulk density, linear shrinkage and mass loss after pyrolysis 

This demonstrate that the shrinkage, in this case, is not due to an incorrect SCD 

procedure, as it could be concluded if no glass windows were present, but to some 

stresses that arise during the cyclohexane to CO2 liquid exchange procedure.  

Non negligible shrinkage values due to solvent exchange and SCD with CO2 are 

already reported in literature for lignin [115] [116], tin oxide [117], APTES/RF [118], 

RF [119], and SiO2 aerogels [120]. The shrinkage is ascribed to a series of reasons, 

some of which are intrinsic of the system, like surface potential of the particles [117], 

difference in the solid-liquid interfacial energy [117] and hydrogen bonding 

capabilities of the solid [115], while others are connected to the experimental 

procedure like depressurization rate of SC CO2 [119] or the presence of an interface 

between the two liquids [120]. These last reasons can be avoided with a proper 

drying procedure (slow depressurization and slow liquid exchange). In our case we 

observed a shrinking of the samples only during the first liquid exchange, in which 

the cyclohexane was diluted approximately to 50% with liquid CO2 within 1 day. This 

was already observed in [89] where acetone was exchanged with CO2 in PMHS/DVB 

gels and ascribed to the impossibility for CO2 to swell the polymer network at the 

same extent as acetone. This explanation fits well with the experimental results: it's 

known that the swelling degree of a polymer is inversely proportional to the cross-

links density, and it can be expected that higher initial content of DVB leads to a 

more cross-linked final gel. In addition, a more cross-linked network can withstand 

higher stresses without being damaged or deformed, contributing to lower the 

observed shrinkage. 

The bulk density of the polymeric aerogels, on the other side, is affected by two kind 

of effects: the first one is the shrinkage, higher values of ΔL lead to density higher 

than the target one (being around 0.30 g/cc in this case); the second one is the 

incomplete reaction between DVB and SMP-10 that tends to lower the final density. 

In this way it's possible to explain the measured densities of samples 1-2-4, which 
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are even below the expected value. Unfortunately, the measurement of the gel yield, 

that would clarify this interpretation, was not possible due to the loss of some 

fragments of the gels before the SCD procedure. 

The pre-ceramic aerogels were subsequently pyrolized at 1500°C in flowing argon 

for 1h to get the SiC/C ceramic aerogels; the measured mass loss, shrinkage and 

bulk density are reported in table 3-5. It can be seen that the trend for the density is 

very similar to the polymeric aerogels, while the shrinkage trend is now inverted 

compared to that measured during SCD. During pyrolysis, high quantity of DVB 

leads to increased mass loss, due to the easier loss of aromatic compounds, that 

also enhances the shrinkage due to ceramization. Eventually, high quantity of DVB 

enrich also the SiC aerogel with free carbon, which content was measured as the 

weight loss upon oxidation in synthetic air flow at 600°C for 1h (reported in table 3-

5). Additionally, from figure 3-20 it can be seen that if the amount of carbon is higher 

that 31% (sample 8) the oxidation leads to a complete fragmentation of the ceramic 

aerogel. The appearance of the aerogels before and after the pyrolysis treatment 

and the oxidation of free carbon are shown in figure 3-17, 3-18, 3-19 and 3-20. 

 

Figure 3-17 : Appearance of the polymeric aerogels before the pyrolysis treatment

 
Figure 3-18 :  Appearance of the polymeric aerogels after the pyrolysis treatment 
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Figure 3-19 : Appearance of the ceramic aerogels before the oxidation treatment 

 

Figure 3-20: Appearance of the ceramic aerogels after the oxidation treatment  

The microstructure of the aerogels, studied by N2 physisorption, is also strongly 

affected by the moiety ratio used in the synthesis, as can be seen from the isotherms 

and the PSD curves (reported in figures 3-21 to 3-26) and from the calculated SSA 

and pore volume (table 3-6). 

Concerning the pre-ceramic aerogels, a decrease in the DVB amount leads to a 

monotonic decrease of the SSA value and to a general decrease of the pore volume. 

This is consistent with a better preservation of the gel structure for the aerogels 

produced with nearly stoichiometric ratio between the active cross-linking moieties, 

as already commented for the shrinkage and density values. PSDs show generally 

higher amount of small mesopores for the aerogels produced with high DVB content. 
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Figure 3-21 : N2 isotherms measured on the polymeric aerogels produced with different 
Si-H/C=C ratios. 

 

Figure 3-22 : BJH cumulative PSD curves for the polymeric aerogels produced with 
different Si-H/C=C ratios. 
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Figure 3-23 : N2 isotherms measured on the aerogels produced with different Si-H/C=C 
ratios and pyrolyzed at 1500°C. 

 

Figure 3-24 : BJH cumulative PSD curves for the aerogels produced with different Si-
H/C=C ratios and pyrolyzed at 1500°C. 
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Figure 3-25 : N2 isotherms measured on the aerogels produced with different Si-H/C=C 
ratios, pyrolyzed at 1500°C and oxidized at 600°C in synthetic air flow for 1 h. 

 

Figure 3-26 : BJH cumulative PSD curves for the aerogels produced with different Si-
H/C=C ratios, pyrolyzed at 1500°C and oxidized at 600°C in synthetic air flow for 1 h. 
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Si-H/C=C 
SSAPoly 

(m2/g) 

VPore Poly 

(cm3/g) 

SSASiC/C 

(m2/g) 

VPore SiC/C 

(cm3/g) 

SSASiC 

(m2/g) 

VPore SiC 

(cm3/g) 

32 33 0.12 49 0.19 46 0.19 

16 55 0.40 120 0.14 72 0.23 

8 147 0.75 222 0.40 53 0.49 

4 371 1.43 313 0.92 46 0.30 

2 512 2.16 201 0.87 66 0.45 

1 671 1.42 111 0.57 77 0.46 

Table 3-6: SSA and pore volume measured with N2 physisorption on the aerogels 
produced with different Si-H/C=C ratios. Poly refers to pre-ceramic aerogels, SiC/C refers 

to aerogels pyrolized at 1500°C and SiC refers to aerogels pyrolized at 1500°C and 
oxidized in air at 600°C. 

After pyrolysis the trend of the porosity features changes, showing a maximum in 

SSA and pore volume for sample 4, thanks to the combination of starting pre-

ceramic microstructure, mass loss and shrinkage during ceramization. Interestingly, 

the pore size distributions reveal the formation of small pores for the samples 

produced with high amount of SMP-10, that contribute to increase the SSA for the 

sample 32, 16 and 8. Finally, after carbon removal the values are generally 

decreased, showing no clear trend, with SSA values scattered around 60 m2/g and 

additional pore formation for the aerogels 16 and 8, which sustained the oxidation 

without breaking in debris. Sample 32 shows nearly no effects upon oxidation at 

600°C thanks to the very low amount of free carbon present. 

Therefore, depending on the possible application needs and concerns, the features 

of the SiC/C aerogels can be tuned also by changing the starting SMP-10/DVB ratio. 

It was revealed that, increasing the DVB amount a better preservation of the original 

gel structure could be granted during the SCD procedure, leading to lower shrinkage 

and density of the polymeric aerogel. Upon pyrolysis, on the other side, high 

contents of DVB lead to increased mass loss and shrinkage, modifying the starting 

aerogel microstructure and causing a loss of SSA and mesoporosity, even though 

the low density values are maintained. Additionally, the SMP-10/DVB ratio can be 

used to tune the free carbon amount in the SiC/C aerogel, with very low content of 5 

%wt for sample 32 and high content of 62%wt for sample 1. 

 

3.1.4 Pure SMP-10 aerogels 

The task of producing pure SMP-10 was undertaken in the last part of the PhD 

research work, even if only limited efforts could be dedicated to the study. Anyway, 

the question spontaneously arise: "is it possible to produce pure SiC aerogels?". 
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The first problem was to obtain a wet gel using no additional cross-linker for the 

stoichiometric SiC precursor, SMP-10. The possibility was investigated and some 

pure SMP-10 wet gels were obtained by using a high amount of catalyst (4x10-4 

Pt/SMP-10 weight ratio), 90%vol cyclohexane and cross-linking for 1 week at 150°C. 

These gels were yellow/opaque and the mechanical properties were barely sufficient 

to maintain the shape and to allow the manipulation of the gel to load it in the SCD 

autoclave. A very strong shrinkage was noted as soon as the cyclohexane started to 

be substituted with liquid CO2 and a nearly complete densification was observed by 

measuring a density of the SCD gel close to 1 g/cc. Later, an attempt to strengthen 

the network of the pure SMP-10 gel was tried, by treating a fragment of the gel in a 

solution of cyclohexane and DVB (1-1 weight ratio of SMP-10 gel to DVB, 90%vol of 

cyclohexane, Pt/SMP-10 8x10-4, 3 days at 100°C).  

 

 

Figure 3-27 : Appearance of SMP-10 gels before and after SCD 

The gel changed appearance to white and no extra gel was formed in the solution 

around the original fragment. The strengthened SMP-10 gel was then SC dried, 

showing negligible shrinkage during the procedure. The very different behavior of the 

virgin and the strengthened SMP-10 gels during SCD is illustrated by figure 3-27. 
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The pyrolysis treatment was simulated in the thermobalance and the measured 

curves are reported in figure 3-28. As can be seen, the pure SMP-10 (aero)gel 

shows the same behavior as dense cross-linked SMP-10, which TG is shown in 

figure 2-12, while the DVB treated aerogel shows and increased mass loss and 

some evidences of an extra mass loss, probably due to oxygen contamination 

present in the aerogel. 

 

 

Figure 3-28 : TG curves in flowing argon of the pure and DVB treated SMP-10 aerogels 

The microstructure of the two aerogels pyrolized at 1500°C are shown in figure 3-29. 

It appears that the pure SMP-10 aerogel, despite the high density, still possess some 

porosity, being composed by particles in the size range 100-500 nm. The DVB 

treated aerogels on the other side, shows a microstructure much closer to that 

already observed for the aerogels investigated in the previous sections, formed by 

particles smaller than 100 nm and with a much higher porosity. Unfortunately, the 

use of DVB again strongly increased the amount of free carbon, as was measured 

by a TG in air flow on the aerogels pyrolyzed at 1500°C in flowing argon (figure 3-

30). Interestingly the oxidation of the pure SMP-10 aerogel led to a weight gain of 

nearly 20%, meaning that even if the microstructure is coarse, the building of the 

SiO2 passivation layer on the small SiC particle consumes approximately 1/3 of the 

original SiC, similarly to what already commented in section 3.1.2. 
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Figure 3-29 : Microstructure of pure and DVB treated SMP-10 aerogels pyrolized at 
1500°C 

 

Figure 3-30 : TG curves in air flow of the aerogels pyrolized at 1500°C 

Another approach to try to reduce the shrinkage of the pure SMP-10 gel during SCD, 

and obtain a proper, low density SMP-10 aerogel, was to use a different solvent to 

reduce the swelling effect that is believed to be responsible for the shrinkage.  

To do so, tetrahydrofuran (THF) was used as a gelling solvent, thanks to the ability 

to readily dissolve SMP-10 with the difference of being a highly polar molecule, that 

could interact differently with the SMP-10 with respect to cyclohexane. It must be 

noted that, by this time, the SMP-10 was already out of the shelf-life (even if was 

properly kept in an argon filled flask stored at low temperature) and the viscosity was 
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greatly increased up to "honey-like" values. A gel was obtained using 1 gram of aged 

SMP-10, 8 grams of THF (90%vol), 105 μL of catalyst 0.1%Pt (Pt/SMP-10 9x10-5), 

100°C overnight and 1 day at 150°C. (The experiment was recently repeated with 

fresh SMP-10 and the gel was obtained after 2 days at 200°C.) 

The SCD of this gel showed a linear shrinkage of 40%, still high but much lower 

compared to the gel produced with cyclohexane. In spite of the relatively high 

shrinkage, a bulk density of 0.25 g/cc was measured and was considered acceptably 

low compared to the previous results. The aerogels were pyrolized at 1200°C and 

1500°C, bulk density, mass loss and shrinkage are reported in Table 3-7. 

From the evolution from 1200°C to 1500°C of the mass loss, it was suspected a 

contamination with oxygen of the pre-ceramic polymer. Another unexpected result is 

the change in color from black (1200°C) to grey (1500°C) shown in figure 3-32. Both 

Lindbergh and Astro furnaces were used to pyrolyze the aerogels at 1500°C 

showing identical results and excluding an effect of the pyrolysis atmosphere.  

The grey color can be an evidence of high purity crystalline SiC with no free C 

present, supporting the carbothermal reduction interpretation of the mass loss since 

the free carbon present at 1200°C could be completely consumed by the reaction. 

FT-IR analysis was performed (figure 3-31) and confirms the presence of a very 

small amount of Si-O (shoulder at 1050 cm-1) and C=C (broad feature at 1600 cm-1) 

bonds in the aerogel obtained at 1200°C.  

The FE-SEM images (figure 3-33) reveal a highly porous microstructure, still aerogel-

like but with a shift of pores and particles toward bigger size compared to the 

microstructure of the previously seen SiC/C aerogels. The SSA is indeed much 

reduced compared to the previous Si/C aerogels, consistent with particles size in the 

range 100 (RT) to 80 nm (1200-1500°C), which are the dimensions that can be 

estimated also from the FE-SEM micrographs. The pores are for the vast majority 

out of the range measurable from N2 physisorption, so the N2 pore volume appears 

highly underestimating the total pore volume that can be expected by the relatively 

low bulk density measured and from the FE-SEM images. 

 

Temperature 
Ρbulk 

(g/cm3) 

ΔL 

(%) 

ΔmP 

(%) 

SSA 

(m2/g) 

N2 pore 

volume (cc/g) 

RT 0.25 40a - 32 0.11 

1200°C 0.60 26b 32b 20 0.06 

1500°C 0.56 38b 37b 14 0.03 

Table 3-7: Bulk Density, linear shrinkage and mass loss of the pure SMP-10 aerogels 
produced using THF as solvent. a)with respect to wet gel, b) with respect to pre-ceramic 

aerogel. 
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Figure 3-31: FT-IR spectra of pure SMP-10 aerogels obtained using THF as solvent and 
pyrolized at 1200° and 1500°C 

 

Figure 3-32 : Appearance of cm size SMP-10 aerogels produce using THF as solvent 
(top) and pyrolized at 1200°C (bottom left) and 1500°C (bottom right) 
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Figure 3-33 : FE-SEM images of the microstructure of pure SMP-10 aerogels at rt, 1200°C 
and 1500°C. 

It is then demonstrated the possibility to produce gels of pure SMP-10 

polycarbosilane. When THF is used as solvent the wet gels can be SC dried with low 

shrinkage producing low density SMP-10 aerogels. These can be converted to pure 

SiC aerogels upon pyrolysis at 1500°C. The SiC aerogels produced show lower SSA 

compared to SiC/C ones and reduced mesoporosity but can offer a much higher 

resistance in oxidative environment (up to 1000°C) and possibility of 

electronic/optical application thanks to the absence of free carbon. It is also expected 

that with more research devoted to the optimization of the recipe, SiC aerogel with 

higher meso pore volume and SSA can be produced, that would be very interesting 

as catalyst support. 

 

 

3.2 Si-O-C system 

Part of this section will be published in " Sasikumar, P. V., Zera, E., Graczyk-Zajac, 

M., Riedel, R., & Sorarù, G.D., (2016) Structural Design of Polymer Derived SiOC 

Ceramic Aerogels for High-rate Li-ion Storage Applications. Journal of the American 

Ceramic Society, Manuscript accepted for publication" 

 

Silicon oxycarbide is a complex material in which the silicon atoms are bonded at the 

same time to oxygen and carbon. It can be represented as an amorphous silica 

network in which some oxygen atoms are substituted with carbon. The stoichiometric 

composition of oxycarbide is SiCxO2(1-x) with x<1, but very often additional carbon is 

present and constitutes a free-carbon additional phase. A broad range of 

compositions can be produced varying x and the free carbon amount, affecting the 

mechanical and chemical properties of the material.  
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Additionally, depending on the pyrolysis temperature, the oxycarbide can be either 

amorphous (up to 1250 °C) or phase separated in nanodomains of SiO2, SiC and C. 

Intriguingly, the structure of these glasses is still an open debate, and efforts are 

dedicated to understand how Si, O, and C are arranged, especially in the ceramics 

synthesized at low temperature.  

The interest for this kind of materials is driven by the fact that the mixed bonds 

confer to the material interesting functional properties, like the possibility to 

intercalate lithium ions [84], piezoresistivity [121], gas sensing [122], luminescence 

[123] and bioactivity [124], in addition to increased mechanical and chemical strength 

compared to the parent amorphous silica [57] [125]. SiOC aerogels were produced 

to combine the porous features of the aerogel structure with the high lithium uptake 

of the SiOC phase, in order to enhance the capacity at high charge/discharge rate.  

The effects of the porosity was studied by using two different solvents, i.e. 

cyclohexane and acetone, that, as will be shown, give rise to very different 

microstructure. Additionally, two different atmosphere were used, Ar or Ar/H2, since a 

slightly reducing pyrolysis atmosphere was demonstrated to increase the 

performance of the SiOC anode. 

 

3.2.1 Production details 

The composition of the SiOC aerogels was aimed to be the one already studied in a 

previous PhD thesis in the group of Prof. Sorarù by V.S.Pradeep [66]. The recipe 

was then tuned to have 200 %wt of DVB compared to PMHS as precursor for the 

solid part of the aerogel, while the amount of solvent was set at 80 %vol, to give rise 

to a high amount of porosity. To obtain the gels, 15μL of 2%Pt catalyst per gram of 

PMHS were used and the solution was cross-linked at 150°C for 6 hours.  

 

3.2.2 Solvent effects on the microstructure 

The appearance of the gels obtained using acetone and cyclohexane is shown in 

figure 3-34. Wet cyclohexane gels are translucent while acetone gels are opaque 

white. 

During SCD procedure both the gels show a non negligible shrinkage, higher in the 

case of cyclohexane (33%) than for acetone sample (13%); similarly to the SMP-10 

gels, this shrinkage is experienced in the first part of the liquid exchange procedure. 

Both the gels were white after SCD, the acetone aerogel presented a density equal 

to 0.29 g/cc while in the case of cyclohexane the value was measured to be 0.67 

g/cc.  
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Figure 3-34: Appearance of PMHS/DVB gels synthesized with acetone (top) and 
cyclohexane (bottom) 

The obtained siloxane aerogels were divided into two batches and pyrolized, one in 

pure argon and one in a H2/argon mix (3% H2), with a heating rate of 5°C/min up to 

900°C, for 1h of dwell time for pure Ar and 7h for H2/Ar mixture. The time, 

temperature and atmosphere of pyrolysis were chosen accordingly to those already 

optimized (for dense samples) by V.S.Pradeep [66] for increasing the lithium 

capacity of high carbon SiOC material. The samples were labeled as AcAr, AcH2, 

CyAr and CyH2 depending on the solvent, (Ac for acetone, Cy for cyclohexane) and 

the pyrolysis atmosphere.  

Some features of the 4 samples after pyrolysis are reported in table 3-8; the 

shrinkage and the bulk density during pyrolysis are reported only for the samples 

obtained in Ar flow since the aerogels pyrolyzed in H2/Ar consisted of irregular 

fragments. FE-SEM images showing the microstructure are presented in figure 3-35 

while N2 isotherms and BJH PSD curves are reported in figure 3-36 and 3-37. 
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 Linear 

shrinkage 

(%) 

Mass loss 

(%) 

Bulk 

density 

(g/cc) 

BET 

SSA 

(m2/g) 

N2 pore 

volume 

(cc/g) 

AcAr 35 45 0.65 186 0.76 

AcH2 - 50 - 162 0.58 

CyAr 32 44 0.98 95 0.18 

CyH2 - 50 - 77 0.13 

Table 3-8: Features of cyclohexane and acetone SiOC/C aerogels produced in different 
pyrolysis atmosphere 

 

 
 

Figure 3-35: Microstructure of cyclohexane and acetone SiOC/C aerogels produced in 
different pyrolysis atmosphere 

By using different solvents for the gel production, very different microstructures can 

be obtained as concerning particles dimension and pore size. This is thought to be 

due to two concurrent effects. The first is, as already commented for SMP-10 aerogel 

obtained using THF and cyclohexane as solvents (section 3.1.4), the different 

swelling ability of polar/apolar liquids, that lead to different shrinkage during the 

solvent to CO2 exchange, as measured also in this case. The second is that the type 

of solvent can also modify the path for the formation of the gel, and in particular the 

dimension of the nanoparticles that build up the skeleton of the gel. 
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Figure 3-36 : N2 physisorption isotherms of cyclohexane and acetone SiOC/C aerogels 
produced in different pyrolysis atmosphere 

 

Figure 3-37 : BJH PSD of cyclohexane and acetone SiOC/C aerogels produced in 
different pyrolysis atmosphere 

When a "better" solvent is used, the cross-linked polymeric nuclei can phase 

separate later, so the growth step is delayed and the particles are smaller compared 
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to those produced with a "worse" solvent. In this case, cyclohexane is considered to 

be a better solvent from the fact that it swells much more the PMHS/DVB network, 

causing a higher shrinkage during SCD. The better swelling ability was confirmed by 

measuring the expansion/contraction of a dense cross-linked PMHS/DVB square 

sample soaked in the two respective solvents.  

Regarding the effects of the different atmosphere treatments on the microstructure, it 

can be observed that the -H2 aerogels show some extent of sintering of the particles, 

clearly visible in the FE-SEM picture for AcH2 sample, and suggested by a lowering 

of SSA and pore volume values measured by N2 physisorption for both AcH2 and 

CyH2. The chemical analysis of the aerogels revealed a free carbon amount close to 

40 %wt for all the 4 samples, with 60 %wt of mixed SiOC phase. 

3.2.3 Li-ion capacity 

To perform the electrochemical tests, the aerogel samples were milled in agate 

mortar and sieved to <42μm. To measure the lithium charge/discharge capacity, a 

standard procedure was used to produce the electrodes that were characterized 

using lithium metal as counter electrode [126], average loads of 2 mg of active 

material per cm2 of electrode were calculated. Fifty charge/discharge cycles were 

performed for every rate tested (1C, 2C, 5C, 10C, 20C), after the whole cycling test 

the measurements at 1C were repeated to evaluate the aging of the material. The 

specific capacity vs cycling and charge/discharge rate is summarized in figure 3-38. 

A charge rate of C corresponds to a specific current of 360 mA/g.  

From the results, summarized in table 3-9, it can be clearly seen that the 

microstructure strongly affects the electrochemical behavior of the SiOC aerogels. 

The same nominal SiOC composition, with dense microstructure and tested at 1C 

rate, showed approximately 300 mAh/g [66] while up to doubled capacity are 

measured for the optimized AcH2 sample even after the whole cycling test. In the 

table are also reported the first charge (QC) and the first discharge (QD) capacities, 

with the efficiency of the first cycle reported as h.  

The low efficiency of the first cycle is thought to be due to the formation of a 

relatively thick solid electrolyte interphase layer (SEI), that lowers even more the 

already fairly low first cycle efficiency of SiOC anodes (measured to be 63-67% for 

this composition [66]). After the first cycle, anyway, the efficiency is greatly increased 

as can be seen from the stable values reported in figure 3-38. It also appears evident 

the beneficial effect of the H2/argon treatment, that was reported to increase the 

capacity by 150 mAh/g at 1C rate by deactivating the free carbon radicals present in 

the material [66].  

Regarding the role played by the porosity, the small pores present in the 

cyclohexane aerogels do not increase the reversible capacity, but help to maintain a 
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very high stability of the anode, showing up to a remarkable 96% of the original 1st 

discharge capacity after the whole cycling test (consisting of 250 charge discharge at 

various rate). The bigger pores of the acetone samples on the other side 

impressively increased the capacity.  

At 1C rate the combined effects of high mesopore volume (more than 50 %vol) and 

lower C radicals concentration (given by the H2/argon treatment) push the 1st 

discharge capacity of the AcH2 sample to more than 900 mAh/g. High values of 

capacity are maintained even at a rate of 10 to 20C, where the role of mesopores 

seems to be more important, given the leading values of the AcAr sample that also 

possess higher pore volume and SSA than AcH2. The value obtained at 20C for 

AcAr (306 mAh/g) means that a capacity not far from the theoretical one for graphite 

(372 mAh/g, the most used anode material) could be reached with just a 2.5 minutes 

charge. 

 

Sample 
QC 

(mAh/g) 

QD 

(mAh/g) 

η 

(%) 

Q10C 

(mAh/g) 

Q20C 

(mAh/g) 

Q1C_rep 

(mAh/g) 

Q1C_rec 

(%) 

AcAr 1496 763 51 346 306 570 75 

AcH2 1846 919 50 330 261 604 66 

CyAr 939 332 35 121 100 307 93 

CyH2 961 495 52 234 165 477 96 

Table 3-9 : Summary of the results of lithium uptake experiment for SiOC aerogels 

 

3-38 : Lithium specific capacity vs specific current and cycle number for SiOC aerogels 
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By applying the PDC aerogel production route to an optimized siloxane composition, 

SiOC/C aerogels were produced and tested as anodes for lithium ion batteries. The 

use of different solvents led to very different microstructures in terms of SSA, pore 

volume and pore size distribution. These differences were explained by the 

combination of smaller particle size, obtained with cyclohexane solvent, and lower 

shrinkage during SCD procedure, in the case of acetone. The differences in 

microstructure ruled the different electrochemical behavior, increasing the stability 

(cyclohexane series) or the total capacity (acetone series) of the SiOC anode. The 

pyrolysis in 3% H2/argon mixture was confirmed to increase the capacity at moderate 

charge rate. 

 

 

3.3 Si-C-N system 

Part of this section was published in " Zera, E., Perolo, A., Campostrini, R., Li, W., & 

Sorarù, G. D. (2015). Synthesis and characterization of polymer-derived SiCN 

aerogel. Journal of the European Ceramic Society, 35(12), 3295-3302." and in " 
Zera, E., Nickel, W., Kaskel, S., & Sorarù, G. D. (2016). Out-of-furnace oxidation of 

SiCN polymer-derived ceramic aerogel pyrolized at intermediate temperature (600–

800° C). Journal of the European Ceramic Society, 36(3), 423-428." 

 

In polysilazane derived silicon carbonitride, similarly to silicon oxycarbide, the silicon 

atoms are bonded at the same time to nitrogen and to carbon. The presence of 

nitrogen substituting oxygen increases the stability of the amorphous network with 

respect to SiOC and temperature up to 1400°C can be reached without 

crystallization. Also in this case the presence of mixed bonds grants to the material 

functional properties like piezoresistivity [60], luminescence [123], [67], lithium 

intercalation [127] along with mechanical and thermal properties in between silica 

and silicon carbide [128]. As for SiOC, the properties can be tailored with a control of 

the chemistry of the ceramic precursor and of the pyrolysis temperature [41].  

The proof of concept of the possibility to produce non-oxide ceramic aerogels by the 

PDC technique was extended also to polysilazane/SiCN system, applying the same 

conditions used to produce for SMP-10/DVB aerogels to obtain PSZ-20/DVB 

aerogels. During the study of these aerogels it was also discovered a reaction 

between the silazane and the supercritical CO2 and, later on, the reactivity of the 

ceramic aerogels obtained with a pyrolysis at intermediate temperature towards the 

atmospheric air. Both these two (unexpected) reactions lead to an uncontrolled 

enrichment of oxygen in the ceramic material, decreasing the stability at high 

temperature. In particular, the finding of the high reactivity of the intermediate 

temperature pyrolyzed ceramic, being confirmed also for SiC aerogels, is thought to 
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be a general feature of PDCs obtained with a pyrolysis in the range 600-800°C, 

which are widely used to produce ceramic membranes for gas separation. 

 

3.3.1 Production details 

For the investigation of the general features of SiCN aerogels produced by PDC 

technique, two gels were produced with different amount of solvent, nominally 70 

and 90 %vol. In details, the ratio between Si-H and C=C moieties was kept equal to 

1, so for every gram of PSZ-20, 0.6 grams of DVB were used. The solvent used was 

cyclohexane, the weight ratio Pt/PSZ-20 was 6*10-5 and the cross-linking was 

performed at 150°C for 20 hours. The aerogels were obtained after SCD procedure 

and pyrolyzed at different temperature in argon (<1200°C) or in nitrogen (>1200°C). 

3.3.2 General features of SiCN aerogels 

The silazane aerogels showed a gel yield around 50% and SCD linear shrinkage  

lower than 10%, similarly to SMP-10/DVB aerogels. The N2 physisorption isotherms 

with the corresponding BJH PSD of the two PSZ/DVB aerogels in the polymeric form 

and after pyrolysis at 1000°C are reported in figure 3-39 and 3-40. In table 3-10 are 

summarized the values of SSA, density and pore volume relative to the four 

samples. 

 

 
SSA 

(m2/g) 

N2 pore volume 

(cc/g) 

Bulk density 

(g/cc) 

90-rt 539 1.53 0.05 

70-rt 627 1.36 0.13 

90-1000 149 0.64 0.14 

70-1000 75 0.25 0.37 

Table 3-10: SSA, N2 pore volume and bulk density of PSZ/DVB and SiCN aerogels 

As can be seen, changing the starting amount of solvent allows to change the bulk 

density of the aerogels. A less expected result, anyway, is that the SSA of the 

polymeric aerogels is not much different, and even higher for the more dense 70 

sample. Additionally, a higher hysteresis for the samples of the 70 series is noticed, 

which is classically imputed to the presence of ink-bottle shaped pores or, better, to 

big pores interconnected by smaller pores, all of them being in the meso- range.  

 



 

82 

 

Figure 3-39 : N2 isotherms measured on PSZ/DVB and SiCN aerogels 

 

Figure 3-40 : BJH cumulative pore size distribution calculated for on PSZ/DVB and SiCN 
aerogels 

After pyrolysis, a stronger evolution of the microstructure is observed with a much 

sharper decrease in SSA for the denser aerogel. These results are very similar to 

those already presented for SMP-10/DVB aerogels produced with 70% and 90 %vol 
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of solvent (section 3.1.2 and 3.1.3), suggesting that the use of DVB leads to nearly 

identical results in terms of microstructure.  

Concerning the chemistry of the aerogels produced, the FT-IR spectra (figure 3-41) 

indicate the presence of Si-N (900 cm-1), Si-O (1100-1000 cm-1) and Si-C (830 cm-1) 

bonds after pyrolysis, with the usual presence of free carbon giving rise to the broad 

peak centered at 1600 cm-1. 

Increasing the temperature of pyrolysis, the aerogel remains amorphous up to 

1400°C (in nitrogen atmosphere, to prevent the loss of nitrogen as reported from 

literature [41]), with large silicon nitride crystals appearing at 1500°C as shown by 

the XRD pattern (figure 3-42) and FE-SEM image (figure 3-43). 

 

 

Figure 3-41 : FT-IR spectra of PSZ/DVB aerogel and the relative SiCN aerogels pyrolized 
at different temperature 

These large crystals could probably be formed due to silica presence, that by the 

carbonitridation reaction (depicted below) leads to Si3N4 formation by gaseous 

intermediate products, allowing the formation of crystals of much larger size 

compared to those typically obtained (by solid state diffusion) at this temperature. 

Carbonitridation reaction proceed as: 

 

3 𝑆𝑖𝑂2 + 6 𝐶 → 3 𝑆𝑖𝑂(𝑔) + 6 𝐶𝑂(𝑔) 

3 𝑆𝑖𝑂(𝑔) + 3 𝐶𝑂(𝑔) + 2 𝑁2 (𝑔) → 𝑆𝑖3𝑁4 + 3 𝐶𝑂2 (𝑔). 
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The source of oxygen is (partially) explained by the next subsection of the chapter. 

Crystalline silicon carbide presence, on the other side, is difficultly ruled out by XRD, 

due to the overlap of the major peak (2θ ~36°) with Si3N4 peaks. 

 

 

Figure 3-42 : XRD patterns of SiCN aerogels pyrolized at increasing temperature 

 

Figure 3-43 : FE-SEM micrographs of SiCN aerogel pyrolized at 1500°C, showing the 
presence of large crystals 
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3.3.3 CO2 reaction with silazane 

The first indication of a reaction between the silazane gel and CO2 is given by the 

differences in the FTIR spectra collected for the PSZ/DVB aerogel and xerogel, 

shown in figure 3-44. 

 

 

Figure 3-44 : FT-IR spectra of PSZ/DVB aero- and xero- gels 

 

Figure 3-45: Pathway for the insertion of CO2 in the silazane chains 
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It is indeed evident the presence of some extra peaks in the spectrum of the SCD 

material, that were assigned to OSi-H bond (2280 cm-1), C=O (1700 cm-1) and Si-O 

(1040 cm-1). These bonds could be formed due to the reaction of Si-NH-Si bonds 

with CO2, through the reaction pathway proposed in figure 3-45. 

By 13C MAS (Magic Angle Spinning) NMR a ratio between CH3 and C=O groups 

equal to ~3% was measured and, since all the Si atoms have a methyl groups 

bonded (figure 2-13), an O/Si ratio of 0.06 can be assumed to be derived from SCD 

procedure.  

 

3.3.4 Out-of-furnace reaction of SiCN aerogels 

The first time a PSZ/DVB aerogel was pyrolized at 800°C (with the aim of studying 

the increase of SSA related to polymer to ceramic transformation performed at 

intermediate temperature), it was noticed to glow once exposed to the laboratory air, 

even though the sample was extracted from the furnace at room temperature. The 

experiment was reproduced with identical results so a wrong manipulation was 

excluded and a deeper investigation was dedicated to understand the phenomenon. 

The PSZ/DVB aerogels produced with 70 %vol of solvent were pyrolized at 

increasing temperatures (450, 600, 800 and 1000°C) in argon flow and characterized 

by means of N2 physisorption (table 3-11 and figures 3-47, 3-48 and 3-49) and 

DRIFT spectroscopy (figure 3-46) along with mass loss and shrinkage 

measurements (table 3-11). 

A discrepancy between the mass loss values measured in situ (by thermogravimetry, 

figure 3-50) and those measured ex situ (reported in table 3-11), weighting a bulk 

sample before and after the pyrolysis treatment, is evident. Additionally, lower values 

of loss are measured for samples treated at 600 and 800°C with respect to the 

aerogel treated at 450°C. This can be explained by a weight gain after the removal 

of the samples from the furnace, which is thought to be due to a room temperature 

oxidation of the pyrolized aerogel.  

 

Temperature 
(°C) 

Mass 
Loss (%) 

SSA 
(m2/g) 

Micro pore 
volume (cc/g) 

Linear 
shrinkage (%) 

25 0 634 0,093 0 

450 63 725 0,160 25 

600 52 367 0,092 25 

800 58 240 0,069 30 

1000 66 75 0,005 50 

Table 3-11: Mass loss, SSA, micropore volume and shrinkage measured on PSZ/DVB 
aerogel pyrolized at increasing temperature 
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Figure 3-46 : DRIFT spectra of PSZ/DVB aerogel pyrolized at increasing temperature 

 

Figure 3-47 N2 physisorption isotherms of PSZ/DVB aerogel pyrolized at increasing 
temperature 
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Figure 3-48 : BJH cumulative pore size distribution of PSZ/DVB aerogel pyrolized at 
increasing temperature 

 

Figure 3-49 : QSDFT cumulative pore size distribution of PSZ/DVB aerogel pyrolized at 
increasing temperature 
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Figure 3-50 : TG curve in argon flow of the PSZ/DVB aerogel 

The DRIFT spectra measured (figure 3-46) on the pyrolized aerogels reveal indeed 

the formation of Si-OH groups (3644 cm-1) in the 600°C treated materials, and of Si-

O-Si (1084 and 460 cm-1) in those treated at 800°C. The reactivity of sol-gel derived 

precursor for silicon oxycarbide pyrolized in this range of temperature was already 

observed, reported and explained by Singh [129] in 1997. Even if traces of the 

effects of this reactivity are often reported in the PDC literature, it was never clearly 

pointed out that this could be the reason of (sometimes high) unexpected oxygen 

presence in SiC and SiCN obtained from pre-ceramic polymers, even if extra care 

was taken during manipulation of the polymer and its pyrolysis (glove box use, etc.).  

Singh proposed that, in the case of SiOC, the presence of carbon enhances the 

stability of the SSA of the gels, and additionally observed (in situ) no detectable 

surface hydroxyl groups at temperature over 800°C. He concluded then that: "It is 

therefore clear that the Si-OH groups indicated by the spectra of the 800°C -and 

900°C- foils must have formed due to a reaction of the surface with moisture during 

exposure to the ambient" [129].  

The reason behind this reactivity (that leads to the pyrophoric behavior observed 

with aerogels) could be found in the formation of radicals like Si•, Si-CH2•, CH3•, H• 

during the cleavage of Si-CH3 and C-H bonds with production of H2 and CH4 as 

already proposed in [130] for siloxanes. Carbon radicals in the ceramic material have 

been observed with ESR [131] [132] while silicon radicals were never, probably due 

to their high reactivity towards oxidation of the ceramic product.  
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The formation of transient microporosity in the pyrolysis of PDC is well known in 

literature and was confirmed also in this case by N2 physisorption. The creation of 

pores is related to the formation of the gaseous decomposition products [77]. The so 

produced pores are stable up to a certain temperature, until densification takes place 

(see linear shrinkage data in table 3-11) leading to a closure of the pores with a loss 

of specific surface, as shown in the evolution of pore size distribution presented in 

figure 3-48 and 3-49. 

To extend the concept of this reactivity at intermediate temperature to other systems, 

a check was performed pyrolizing an SMP-10/DVB aerogel at 800°C and the same 

behavior was observed. It is therefore believed that this out-of-furnace oxidation is 

not restricted to the system studied (PSZ-20/DVB aerogels) but a more general 

feature of PDC pyrolized in this intermediate temperature range. 

 
 

3.4 N-doped CDC aerogels 

Part of this section was published in " Zera, E., Nickel, W., Hao, G. P., Vanzetti, L., 

Kaskel, S., & Sorarù, G. D. (2016). Nitrogen doped carbide derived carbon aerogels 

by chlorine etching of a SiCN aerogel. Journal of Materials Chemistry A, 4(12), 4525-

4533." 

 

Aerogels are, by synthesis, hierarchical porous materials with pore size covering the 

whole meso-range up to macro-range, as already presented by SEM images and by 

N2 physisorption. On the other side, the micro-range of the porosity (pores < 2nm) is 

usually not so well developed and mostly lost upon pyrolysis at higher temperature 

as seen in the previous section.  

A strategy to increase the micropore volume, and the SSA, can be the selective 

removal of silicon atoms with a high temperature (500-1000°C) Cl2 treatment. The 

selective removal of metal atoms from a carbide leaves a highly microporous 

carbonaceous material, called carbide derived carbon (CDC), which pore size can be 

controlled changing the etching temperature and the carbide phase [133].  

The use of CDCs is widely studied in various energy related applications like: 

supercapacitors [134], CO2 sequestration [135], Li-ion batteries [136], hydrogen and 

methane storage [137]. The CDC route applied to PDC aerogels firstly by Oschatz in 

2014 to produce CDC aerogels from SiC [138], obtaining a fully hierarchical porous 

carbon with very high specific surface and a well developed transport pores system. 

On the other side, the chlorination of SiCN ceramic was first tried on dense samples 

by Yeon, obtaining a CDC with micro and meso pores, thanks to the combination of 

Si-C and Si-N presence [79], no nitrogen was evidenced in the CDC produced.  

More recently (and concurrent with the experimental work performed for this section) 

Ewert etched a mesoporous SiCN (pyrolized at 900°C) with chlorine and reported a 
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strong decrease of the nitrogen present in the hierarchical N-doped CDC when the 

etching temperature was increased from 800 to 1000°C [139].  

In this section the idea of combining SiCN aerogels and CDC technique to obtain a 

nitrogen doped CDC aerogel was exploited, and the N-doped CDC aerogels 

successfully obtained were characterized for CO2 sequestration and as electrode for 

aqueous based supercapacitor. 

 

3.4.1 Production of N-doped CDC carbon aerogel 

For this study, PSZ/DVB aerogels produced with 70 %vol of cyclohexane were used, 

using the recipe illustrated in section 3.3.2. The polysilazane/DVB aerogels were cut, 

put in a quartz boat and placed in a horizontal tubular furnace (Gero RES-E 230/3) 

equipped with fused quartz tube. The outlet bubbler was filled with NaOH (20g for 

200 mL of water) aqueous solution to deactivate unreacted Cl2 gas. The tube was 

first flushed with Argon (99.999% Ar, Air Liquide) for 1.5 h at a flow of 150 mL/min. 

After the purging, the furnace was switched on and heated with a rate of 450 °C/h up 

to the pyrolysis/chlorination temperature.  

To perform the chlorine etching, after one hour holding in Argon flow at the desired 

temperature (pyrolysis) the inlet gas was changed to a mixture of Cl2 (99.8% Cl2, Air 

Liquide, 80 mL/min) and Ar (70 mL/min), maintaining the same temperature. The 

etching time varied with the temperature as is reported in table 3-12. Indeed the 

kinetic of the etching reaction strongly depends on the temperature, so longer times 

were used for samples etched at low temperature. After the etching, the inlet gas 

was changed back to pure Ar and the temperature set at 600 °C (with the exception 

of the 450CDC sample, in which the temperature was maintained constant to avoid 

further evolution of the material) and kept constant for 1h. Then, the outlet tube was 

connected to a silicone oil bubbler and pure hydrogen (99.9% H2, Air Liquide) was 

connected to the gas inlet. The H2 flow was maintained for a time depending from 

the etching time (compatibly with laboratory schedules), and finally the furnace 

heating was turned off, connecting the inlet gas back to pure to Ar.  

The pyrolysis and chlorination in the range 450-1000°C were performed 

subsequently in the same fused quartz tubular furnace in order to avoid the 

previously mentioned out-of-furnace oxidation of the aerogels (section 3.3.4). Due to 

limited maximum temperature of the chlorination furnace, the pyrolysis at 1200°C 

was performed in a different furnace, the SiCN aerogel in this case was briefly 

exposed to the atmosphere (at room temperature) before undergoing the same 

etching process as the 1000CDC sample. 
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Pyrolysis (Ar) Cl2 Etching H2 treatment 

450CDC 450 °C -1h 450 °C - 5h 450 °C - 3h 

600CDC 600 °C -1h 600 °C - 3h 600 °C - 3h 

800CDC 800 °C - 1h 800 °C - 2h 600 °C - 2h 

1000CDC 1000 °C - 1h 1000 °C - 1h 600 °C - 1h 

1200CDC 1200 °C - 1h 1000 °C - 1h 600 °C - 1h 

Table 3-12 Time-temperature for the various stage to produce N-doped CDC aerogel 

 

3.4.2 General features of N-doped CDC carbon aerogel 

The DRIFT spectra (figure 3-51) obtained on the chlorinated aerogels reveal the 

disappearance of all the H related peaks (Si-H, C-H, N-H) and of all those related to 

Si, with the exception of the 450°C treated sample, which still shows Si-O (1100 and 

450 cm-1), Si-N (970 cm-1) and Si-C (810 cm-1) peaks. The samples 600 to 1200 

CDC show two broad peaks assigned to C=C bonds (~1600 cm-1) of substituted 

aromatic structures and to the superimposition of C-O (1250 cm-1) and C-N bonds 

(~1280 cm-1) [104]. 

 

 

Figure 3-51 : DRIFT spectra of the chlorinated aerogels 
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The sample produced at 450°C was considered to be non etched and no further 

efforts were dedicated to its characterization. Additionally, the amount of sample 

produced at 1200°C was very low and for this reason thermogravimetry 

measurements were avoided for this sample in order to have enough material for the 

electrochemical tests.  

The FE-SEM pictures presented in figure 3-52 show that the typical aerogel structure 

is preserved after the chlorine etching, confirming that the transformation from 

carbide to carbonaceous material is fully conformal [133]. 

 

 

Figure 3-52 : FE-SEM images of 600,800,1000 and 1200CDC aerogels 

The TG/DTA measurements in synthetic air flow (figure 3-53, 100 mL/min, 10 °/min) 

on the 600, 800 and 1000°C produced aerogels show the complete combustion of 

the CDCs in the range 500-700 °C confirming the successful removal of silicon, 

which presence would lead to some residue. Interestingly, the mass loss is 

anticipated for the samples produced at lower temperature, revealing also two 

separate signals on the DTA trace which ratio changes with the production 

temperature. This suggests a different reactivity of the CDC produced, probably due 

to differences in composition (as will be shown with XPS) and in the ordering of the 

carbon. 
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Figure 3-53: TG/DTA curves in flowing synthetic air of CDC aerogels produced at 600, 

800 and 1000°C 

 

Figure 3-54 : TG/DTA curves in flowing argon of CDC aerogels produced at 600, 800 and 
1000°C 

The TG/DTA measurements in flowing argon (figure 3-54, 100 mL/min, 10 °/min) 

also reveal an increasing stability of the N-doped CDC aerogels at increasing 

synthesis temperature, with a clear weight loss of the 600CDC sample even in 

completely inert environment.  
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Additionally, the DTA trace shows an evident exothermic peak around 1050°C for 

the 600 and 800CDC samples, the same peak can barely distinguished for the 

1000CDC aerogel. From literature, the carbide derived carbons produced at low 

temperature are composed by many different phases, some of which still possess a 

certain amount of sp3 carbon [140]. Increasing the temperature above 1000°C, and 

especially if N is present, strongly lowers the stability of sp3 carbon [141], leading to 

the formation of graphitic structures [140]. The exothermic peak could therefore be 

given by the release of heat related to this sp3 to sp2 transition.  

XPS spectra (figure 3-55) confirm the presence of nitrogen in the CDC aerogels 

along with some residual chlorine, which lowers with increasing synthesis 

temperature, and some oxygen. Traces of residual Si are also detected for the 

600CDC and 1000CDC samples. N 1s core spectra (figure 3-56) were recorded and 

two distinct components can be easily distinguished and assigned to nitrogen 

bonded to carbon in quaternary (Nq) and pyridinic (Npy) sites. The chemical 

compositions resulting from the survey spectra are reported in table 3-13 with the 

last column showing the calculated ratio between quaternary and pyridinic N.  

 

 

Figure 3-55: XPS survey spectra of the N-CDC aerogels produced 

These results clearly reveal a bond rearrangement of N and C upon removal of 

silicon. Indeed, carbon and nitrogen are not bonded together in low temperature 

polysilazane derived SiCN [41] so new C-N bonds are formed when the Si "bridges" 

are removed with chlorine. Additionally, C-N bonds are not stable at high 
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temperature and nitrogen start be lost at T>800°C, with preferential loss from 

pyridinic and pyrrolic sites, with mostly quaternary N detectable at high temperature 

[142] [143]. As a result, a drastic decrease of %at of N is measured by XPS, 

consistently with Ewert's results [139].  

 

 

Figure 3-56: N 1s core spectra of the N-CDC aerogels produced 

 
O 

(%at) 

N 

(%at) 

C 

(%at) 

Cl 

(%at) 

Si 

(%at) 
Nq/Npy 

600CDC 7.9 9.7 75 5.5 2 1.3 

800CDC 2.3 6.7 88.3 2.6 0.1 1.3 

1000CDC 3.7 2.5 91.2 1.5 1.2 2.9 

1200CDC 3.8 2 93.1 0.9 0.2 4.3 

 
Table 3-13: Summary of XPS chemical composition of the N-CDC aerogels produced  

Core spectra also confirms the preferential loss of pyridinic nitrogen. Chlorine is 

present, in spite of the hydrogen treatment, with a lowering content at increasing 

etching temperature. This could be ruled out as an effect of high Cl2/carbide ratio 

combined with low temperature, that shifts the so called "range III" (which represents 

the onset of carbon formation from carbide, see [140]) to higher temperature, 

partially stabilizing the formation of C-Cl moieties. At last, non negligible amounts of 
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oxygen are also detected but its source, being a kind of ubiquitous element not only 

in PDC but also in N-doped carbons and CDCs, is still not fully understood.  

The removal of silicon creates also a huge amount of micropores, which contributes 

to increase the SSA well above 1000 m2/g, as measured with N2 physisorption and 

summarized in table 3-14. The N2 isotherms and the pore size distribution, calculated 

applying QSDFT to low pressure adsorption isotherms measured with Autosorb 

machine, are presented in figures 3-57 and 3-58. 

 

 SSA 
(m2/g) 

μ-PV 
(cc/g) 

m-PV 
(cc/g) 

600CDC 1724 0.48 0.64 

800CDC 1468 0.44 0.59 

1000CDC 1887 0.54 0.97 

1200CDC 1473 0.43 0.61 

Table 3-14 : SSA and micro and meso pore volume calculated with N2 physisorption for 
N-doped CDC aerogels 

 

Figure 3-57 : Low pressure nitrogen physisorption isotherms measured with Autosorb 
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Figure 3-58 : Cumulative pore size distribution obtained applying QSDFT on the low 
pressure nitrogen isotherms measured on N-doped CDC aerogels 

It can be seen that these CDC aerogels can be regarded as truly hierarchically 

porous materials, possessing meso-macro pores thanks to the aerogel structure, and 

micropores deriving from the selective removal of silicon through CDC technique.  

The trend for pore volume and SSA is not monotonic, and shows two local maxima 

at 600 and 1000°C. These results can be interpreted as a combination of many 

effects given by the behavior of the silazane aerogel during pyrolysis and etching. 

The viscous flow at 800°C close some pores present in the aerogel structure, 

leading to a reduced pore volume already before the etching and explaining the 

decrease in SSA and pore volume from 600 to 800°C. At 1000°C the viscosity is 

increased and this effect is limited [144]. At the same time the increased skeleton 

density leads to the formation of smaller pores during etching [138] while the 

evolution of nitrogen increases the total pore volume. This combination of smaller 

pore size and higher pore volume explains the increase in the SSA value from 800 to 

1000°C. At 1200°C Si3N4 domains start to be formed, leading to larger pores after 

etching [79] thus reducing the microporosity and the SSA value. This increase in size 

of the pores produced by the etching enlarge the mesopores of the aerogel structure, 

bringing part of them out of the measurable range with nitrogen physisorption 

technique; explaining the lower pore volume measured for the 1200CDC sample. 
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3.4.3 CO2 adsorption and EDLC capacity 

As applications for the produced N-doped CDC aerogels, CO2 sequestration and 

EDLC electrodes were tested, trying to evaluate the possibly beneficial effects of N 

presence in the carbon material combined with the hierarchical pore structure. In 

figure 3-59 are reported the physisorption isotherms measured with CO2 at 0°C and 

up to 1 bar (760 torr). 

 

 

Figure 3-59 : CO2 adsorption desorption isotherms measured at 0°C 

The isotherms reveal a fully reversible pick up of CO2 along with high values of gas 

adsorbed per gram of material. In this case anyway, no strong effects of the much 

higher nitrogen presence in the 600 and 800CDC aerogels is evidenced. Indeed, the 

best performing material (1000CDC) contains just 2.5% of N compared to 9.5% of 

the 600CDC sample. The reason for this negligible effect of N could be found, again, 

with a combination of different contributes.  

From literature [145] the ultra-micropores, i.e. pores smaller than 0.8 nm, are thought 

to be responsible for the major role in adsorption of CO2 at 0°C and 1 bar. As shown 

by figure 3-58, all these aerogels possess approximately the same specific volume of 

ultra-micropore so, in principle, should absorb about the same quantity of CO2. Basic 

nitrogen, on the other side, should help the interaction of the walls of the pores with 

acidic CO2, leading to a higher pick up of the gas.  



 

100 

Anyway, as shown from XPS, only moderately basic pyridinic groups and nearly 

neutral quaternary nitrogen groups are present in these N-doped carbons. 

Additionally, high amount of acidic C-Cl moieties, which can be regarded as 

detrimental for CO2 adsorption for the very same reason why basic C-N moieties are 

considered beneficial, are present in the low temperature obtained CDCs. As a 

result, similar behaviors are obtained for the four materials, with a slightly higher 

amount of CO2 adsorbed from 1000 and 800CDC aerogels that show a good 

compromise between N and Cl content.  

Concerning the EDLC tests, the hierarchical porous structure of N-CDC aerogels 

helps fast diffusion of the electrolyte ions, increasing the performance of EDLC at 

high charge-discharge rate. Additionally, nitrogen containing functional groups can 

initiate some redox reactions with the ions of the electrolyte, giving rise to 

pseudocapacitance and increasing the overall specific capacitance (Cspec). The 

capacitance-voltage (CV) curves obtained with a scan rate of 10 mV/s and using the 

produced N-doped CDC aerogels as electrodes are reported in figure 3-60. The 

curves clearly reveal the pseudocapacitive behavior (bump of Cspec at  -0.5 and 0.5 

V) of the samples produced at 600 and 800 °C as a result of the higher quantity of 

doping atoms in these two materials.  

 
Figure 3-60 : Cyclic voltammetry curves measured on the EDLC produced with the N-

doped CDC aerogels as electrodes, 10mV/s scan rate, 1M H2SO4 electrolyte 

The remarkably high specific Cspec for the four materials tested at 10 mV/s are 

summarized in table 3-15. Since the capacitance value strongly depends from the 

SSA, the Cspec normalized on the area of the active material are also reported. These 
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normalized values can depend from the pore dimension and from the chemistry of 

the surface [146]. In our case we noticed a nearly constant value up to 1000°C, with 

a drop from 8.8 to 7.9 μF/cm2 between 1000 and 1200°C, probably as an effect of 

the decrease in small micropore volume in addition to the lower pseudocapacitance 

noticed.  

 

Cspec 600CDC 800CDC 1000CDC 1200CDC 

F/g 152 129 164 116 

μF/cm2 8.8 8.8 8.7 7.9 

Table 3-15 : Specific capacities evaluated from CV curves at scan rate of 10 mV/s 

The 600CDC sample was investigated more in details since it's the first CDC 

material produced from SiCN at such a low temperature and the one containing the 

highest quantity of heteroatoms. The CV curves obtained at increasing scan rate are 

presented in figure 3-61, while the calculated specific capacitance is summarized in 

table 3-16. It's possible to notice the effect of pseudocapacitance up to a rate of 200 

mV/s, while at 1000 mV/s the curve's shape becomes typical of a capacitor with 

some internal resistance, with the total capacitance decreasing down to 70 F/g. The 

macro- mesoporous structure of the aerogel helps to maintain the high values even 

at scan rate as high as 200 mV/s, by providing transport pores that allow easy 

access of the ions to the active surface.  

 
Figure 3-61: CV curves at different scan rates measured on the 600CDC sample 
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 10 mV/s 100 mV/s 2000 mV/s 1000 mV/s 

Cspec (F/g) 152 135 127 70 

Table 3-16: Specific capacity of 600CDC aerogel at increasing scan rate 

The Cspec retention with increasing charging/discharging rate was also evaluated by 

galvanostatic measurement at increasing current density. From the curves obtained, 

and shown in figure 3-62, it's possible to calculate the Cspec at constant discharge 

current (reported in table 3-17). Also these results indicate a very good capacity 

retention, with just a moderate ohmic drop at the highest current tested, and high 

values of specific capacitance, placed among the highest measured for CDCs 

materials. 

 

 

Figure 3-62: Galvanostatic charge/discharge curves measured at increasing specific 
currents for the 600CDC aerogel 

 1  A/g 10 A/g 20 A/g 

Cspec (F/g) 165 140 123 

 
Table 3-17 : Specific capacities evaluated from galvanostatic curves at increasing 

specific currents for the 600CDC aerogel 

The stability of Cspec was evaluated by charging/discharging the EDCL produced with 

the 600CDC aerogel for 5000 times with a current density of 10 A/g (figure 3-63). 

The charge/discharge curves of the 1st, 2500th and 5000th cycle are highlighted in 

the inset of figure 3-63. 
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Figure 3-63 : Stability of the 600CDC sample in galvanostatic charge/discharge test at a 
specific current of 10 A/g. 

As shown, no change in the specific capacitance after 5000 cycles at high current 

density of 10A/g can be appreciated. The excellent cycling stability, which is a 

fundamental requirement for a candidate material to be used in real capacitors, was 

actually followed up to 10 000 cycles, with a capacitance retention higher than 99%. 
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Chapter IV 
 

Conclusions and Future perspectives 

 

 

Conclusions 

 

The production of aerogels with composition within the Si-C-N-O system was 

investigated, by using the polymer-derived ceramic technique combined with CO2 

supercritical drying of wet gels. The gels were obtained by cross-linking in highly 

diluted conditions the ceramic precursors, taking advantage of the hydrosilylation 

reaction between Si-H and C=C moieties. 

The influence of many parameters on the properties of the aerogels were 

investigated, in order to tune the microstructural and compositional features of the 

final ceramic materials.  

Particular efforts were dedicated to change the amount of carbon in SiC/C aerogels 

and to understand how to control the density, specific surface area, pore size and 

thermal stability of the produced ceramics. The use of the tetrafunctional 

tetravinylsilane as cross-linker replacing the more conventional divinylbenzene 

allows to produce aerogels with lower carbon amount and higher SSA values, with 

the drawback of decreased stability of the microstructure at high temperature 

(2000°C) and increased bulk density. Lowering the amount of DVB on the other side 

causes higher shrinkage during supercritical drying procedure, which increases the 

bulk density, and at the same time diminish the content of carbon in the pyrolized 

aerogels.  

Pure SMP-10 gels can be produced and the behavior during supercritical drying 

procedure is strongly affected by the solvent used for the gelation. Indeed, the use of 

cyclohexane leads to a nearly complete densification during solvent to CO2 

exchange while the use of tetrahydrofuran allows to limit the shrinkage and preserve 

the porous structure. The pyrolysis of this pure SMP-10 aerogel at 1500°C in argon 

creates a porous material with aerogel structure composed by pure SiC.  

SiOC/C aerogels were produced with a composition optimized for the use as Li-ion 

battery anode. The use of two different gelling solvent created very different 

microstructure dominated by small- (cyclohexane solvent) or big- (acetone solvent) 

mesopores. The smaller pores revealed beneficial effects by increasing the stability 

of the capacity after the long cycling test while the microstructure created by the use 

of acetone led to a great increase in the overall Li-capacity and its preservation even 

at very high charge discharge rates.  
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The application of the developed technique to polysilazanes allowed to produce for 

the first time SiCN aerogels, possessing similar microstructural characteristics to 

polycarbosilane derived aerogels. These SiCN aerogels were demonstrated to be 

amorphous up to 1400 °C in nitrogen atmosphere. The research within this 

composition led also to the recognition of the reactivity of silazanes toward CO2 and 

of the PDC pyrolized at intermediate temperature toward atmospheric room 

temperature oxidation.  

Finally, it was demonstrated the possibility to produce nitrogen doped carbide 

derived carbon aerogels etching at mild temperature amorphous SiCN aerogels. In 

this case, the microstructure allowed to complete the etching already at  temperature 

as low as 600°C, helping to maintain nitrogen in the final carbonaceous material. 

These N-doped CDC aerogels possessed a hierarchical microstructure over the 

whole micro- meso- macro- range of porosity. When used as electrodes in aqueous 

based electric double layer capacitors they showed remarkable specific capacitance, 

thanks to the presence of heteroatoms giving rise to pseudocapacitance, which was 

measured to be stable at high specific current and after long time cycling, as a 

beneficial effect of the hierarchically porous microstructure. 

 

Future perspectives 

 

The next step for PDC aerogels, apart from further expanding the possible chemical 

compositions, is to start taking advantage of the peculiar properties possessed and 

exploiting them for applications that could benefit from them. The possible 

playground of Si-C-N-O aerogels is very wide, and could cover many energy related 

specific fields. Pure SiC aerogels possessing high permeability and high thermal 

conductivity of the skeleton, along with sub-micron pores, are promising catalyst 

support for endo/exothermic reaction even in very harsh environment. SiC/C on the 

other side could be used for adsorption of organic and inorganic pollutants, thanks to 

their high SSA, the high thermal stability allowing the thermal regeneration of the 

material. SiOC aerogels were tested here as anode for Li-ion batteries, with very 

good results, but also additional tests to use these materials as electrical and optical 

sensors are ongoing, that would benefit from the peculiar properties of silicon 

oxycarbides. In the same way SiCN aerogels could find their way taking advantage 

of the functional properties introduced by N presence, along with the possibility to 

produced N-doped CDC aerogels that revealed to possess an intriguing chemical 

composition combined with the unique microstructure of CDC aerogels. 
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List of commonly used abbreviation and acronyms 

 

PDC: Polymer Derived Ceramics 
SMP-10: Commercial polycarbosilane 
PMHS: Commercial polysiloxane 
PSZ-20: Commercial polysilazane 
SiC: Silicon Carbide 
SiOC: Silicon Oxycarbide 
SiCN: Silicon Carbonitride 
DVB: Divinylbenzene 
TVS: Tetravinylsilane 
THF: Tetrahydrofuran 
RT: Room Temperature 
SSA: Specific Surface Area 
SCD: Supercritical Drying 
CDC: Carbide Derived Carbon 
NMR: Nuclear Magnetic Resonance 
FT-IR: Fourier Transform Infrared Spectroscopy 
DRIFT: Diffuse Reflectance Infrared Fourier Transform Spectroscopy  
TG: Thermogravimetry 
DTA:  Differential Thermal Analysis 
FE-SEM: Field Emission (Gun) Scanning Electron Microscope 
XRD: X-ray Diffraction 
XPS: X.ray Photoelectron Spectroscopy 
PSD: Pore Size Distribution  
BJH: Barrett-Joyner-Halenda (method for calculating PSD) 
QSDFT: Quenched Solid Density Functional Theory (method for calculating PSD) 
EDLC: Electric Double Layer Capacitor 
Cspec:: Specific Capacitance 
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