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Multiterminal transport spectroscopy of subgap states in Coulomb-blockaded superconductors
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Subgap states are responsible for the low-bias transport features of hybrid superconducting-semiconducting
devices. Here we analyze the local and nonlocal differential conductance of Coulomb-blockaded multiterminal
superconducting islands that host subgap states with different spatial structures. The emerging patterns of their
transport spectroscopy are used to characterize the possible topological nature of these devices and offer the
possibility of controlling their transport properties. We develop a next-to-leading order master equation to
describe the multiterminal transport in superconductors with both strong Coulomb interactions and multiple
subgap states, coupled with metallic leads. We show that the nonlocal differential conductance characterizes the
spatial extension of the subgap states and signals the presence of degenerate bound states with a finite support
on different parts of the device. Additionally, it displays sharp sign changes as a function of the induced charge
of the superconductor, signaling energy crossings among its lowest excited states.
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I. INTRODUCTION

Hybrid systems fabricated with superconducting and semi-
conducting materials are considered a key ingredient for
the development of quantum technologies and have demon-
strated a potential for quantum information storage and
processing [1–4]. In particular, the advent of topological
superconductors has raised the hope of realizing protected
quantum devices, robust to decoherence induced by local per-
turbations [5].

In one dimension, topological superconductors host Majo-
rana subgap modes [6], predicted to be non-Abelian anyons
and to give rise to several nonlocal properties [7–10]. These
Majorana modes are exponentially localized at the system
edges but, importantly, each pair of them defines a nonlocal
quasiparticle state, with vanishing energy in the ideal case.
In this context, distinguishing between local and nonlocal
subgap states becomes relevant for identifying devices that are
potentially in the topological regime.

Subgap states dominate the transport properties of su-
perconducting devices at low voltage bias and they can be
experimentally detected with tunneling spectroscopy. In par-
ticular, zero-energy Majorana modes in grounded topological
superconductors reveal themselves through a quantized con-
ductance peak at zero bias [11–14]. However, also trivial
states can mimic similar transport features in local spec-
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troscopy, see for example Refs. [15–24]. This motivated
further analyses of the nonlocal conductance in multiter-
minal setups, where the device couples to a grounded
superconductor [25–32], with experiments performed in
nanowires [33–38], and devices based on two-dimensional
electron gases [39–42].

When the superconductor is not grounded but exhibits a
strong charging energy, the intricate interplay between super-
conductivity and many-body interactions yields a rich phe-
nomenology. In the topological regime, Coulomb-blockade
effects provide effective tools to initialize, read out, and mea-
sure coherence times in topological qubits, thus constituting
a key element to design platforms for quantum information
devices [43–53].

Transport properties of floating superconducting islands
have been extensively studied experimentally in semicon-
ducting nanowires, with the goal of extracting quasiparticle
poisoning times [54,55], showing the doubling of Coulomb
peaks in the high-field regime [56–59], and investigating
the exponential protection [56] and spin polarization [60]
of subgap states. These systems have been explored us-
ing interferometry [61] and reflectometry techniques [62,63].
However, most of the studies so far, both experimental
and theoretical, focused on local conductance measurements
of two-terminal devices; nonlocal transport properties of
multiterminal Coulomb-blockaded devices remain largely un-
explored.

A more complex typology of devices is based on two
nanowires coupled via a floating superconductor, sharing a
common charging energy. In the case where the device cou-
ples to more than two leads, the topological Kondo effect is
predicted to appear, and its realization would be an unequiv-
ocal signature of the Majorana nonlocality [64–66]. As such,
systems with Coulomb-blockaded double nanowires are at the
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focus of recent experiments [67,68] and theoretical investiga-
tions [69].

In this work we propose multiterminal quantum transport
measurements as a way to distinguish between local and
nonlocal subgap states in Coulomb-blockaded superconduct-
ing devices. We focus on two geometries, namely a single
and a double superconducting nanowire device. We employ
a second-order master equation approach that allows for
studying both sequential and cotunneling transport in super-
conducting devices with strong Coulomb interaction, multiple
subgap states, and the coupling to two or more metallic leads.
In particular, we show that sequential transport at low bias
voltages is blocked whenever the lowest-energy subgap state
does not couple two of the leads. Indeed, even though the
Coulomb interaction is highly nonlocal, transport is dom-
inated by the local projection of subgap states, providing
indications about their spatial structure. Moreover, a three-
terminal Coulomb-blockaded device displays abrupt changes
in the current direction at fixed bias potential as a function
of the charge ng induced on the superconducting island, due
to energy crossings in the excitation spectrum, similarly to
nonsuperconducting Coulomb-blockaded quantum dots [70].
Concerning the double nanowire geometry, we investigate
the local and nonlocal conductance associated with different
spatial structures of the subgap states, aiming to facilitate the
interpretation of future experiments.

The rest of the paper is organized as follows. In Sec. II we
present the effective zero bandwidth model we use to describe
the low-energy behavior of the devices and the formalism
used to compute the sequential and cotunneling current sig-
nals. In Sec. III we investigate both the two-terminal and
three-terminal conductance of a single nanowire with one or
multiple subgap states. In Sec. IV we analyze the transport
signatures associated with different structures of the subgap
states in the double nanowire geometry. We draw our con-
clusions and discuss future developments in Sec. V. The
Appendixes contain more supporting results and a detailed
derivation of the tunneling rates calculation.

II. MODEL AND METHODS

We consider a superconducting island coupled to normal
metallic electrodes, given by the Hamiltonian

H = HL + HI + HT, (1)

where the leads are described by

HL =
∑
ν,k,σ

(ξνkσ − μν )c†
νkσ

cνkσ , (2)

with the electron energy ξνkσ and the annihilation operator
cνkσ referring to an electron in lead ν with momentum k and
spin σ ∈ {↑,↓}. We assume that each lead remains in internal
equilibrium, described by a Fermi-Dirac distribution nF with
chemical potential μν and temperature T .

The superconducting island is described by

HI =
∑
j,σ

ε jσ γ
†
jσ γ jσ + Eel(N ), (3)

FIG. 1. (a) Sketch of a Coulomb-blockaded hybrid supercon-
ducting nanowire device, hosting a subgap state (red). In this
example, the nanowire couples to two leads (indicated with L and
R). (b) Single-particle energies of the island, containing a subgap
state at energy ε (black line), quasiparticle excitations above the gap
�, and the lead states displaying Fermi-Dirac distributions (yellow)
at different chemical potentials. (c) Lowest eigenenergies in the
presence of interactions as a function of the offset charge ng = αVg

with α being the lever arm. Blue (orange) lines correspond to states
with an odd (even) number of electrons in the island. We show an
example where the nanowire hosts a spinless subgap state, where the
solid and dashed lines correspond to the ground state and the excited
state in each charge sector.

where j labels a state with energy ε jσ , and the Bogoliubov–de
Gennes (BdG) operators read

γ jσ = u jd jσ − ρσ v je
−iφd†

jσ̄ . (4)

Here d and d† are annihilation and creation operators of elec-
trons in the island, u j and v j are the BdG coefficients for the
subgap states, φ is the superconducting phase operator, such
that e−iφ annihilates a Cooper pair in the island, and ρσ = ±
for σ =↑,↓.

The electrostatic repulsion term is given by

Eel(N ) = EC(N − ng)2, (5)

where ng is the dimensionless gate-induced charge offset and
N is the (excess) electron number operator, accounting for the
fermionic occupation of the states and the number of Cooper
pairs on the island. Figure 1(a) sketches the device described
by this model, in the case of only two leads and a single
nanowire. Figures 1(b) and 1(c) represent the superconduct-
ing quasiparticle spectrum and the many-body energy levels,
respectively.

Finally, the tunneling between leads and the superconduct-
ing island is described by the Hamiltonian

HT =
∑

ν,k, j,σ

(tνkσ c†
νkσ

d jσ + H.c.), (6)

where t is the tunneling amplitude. The corresponding tun-
neling rates are defined as �ν, j,σ = 2πρFν |tν, j,σ |2, and we
consider them k independent (wide-band limit), where ρFν is
the density of states at the Fermi level of the lead ν.

In this work we employ a zero-bandwidth approximation
for the superconducting island, meaning that we consider
only two relevant energy levels ε0,↑ = ε and ε1,σ = � > ε.

235425-2



MULTITERMINAL TRANSPORT SPECTROSCOPY OF … PHYSICAL REVIEW B 106, 235425 (2022)

The first represents a low-energy spin-polarized subgap state
whose spatial structure and degeneracy will be the main focus
of our work. The state at energy � is a spin-degenerate level
and represents an effective description of the proximitized
superconducting continuum which extends through the whole
hybrid device. This approximation models a short nanowire
where the quasiparticle spectrum above the proximity induced
superconducting gap displays a quantization determined by
the finite system size. The corresponding lowest energy ex-
citation can mediate elastic cotunneling processes through
the device. A possible alternative is to consider a number of
degenerate states at energy �, each coupled to a single lead.
Each of these states models a metallic quasiparticle continuum
with a strong relaxation towards the bottom of the continuum
band. With this choice, the states at energy � cannot mediate
elastic cotunneling transport. Throughout the rest of the paper
we focus on the first scenario, where each nanowire hosts a
single extended superconducting continuum, to avoid an ex-
cessive increase of the computational run time. However, this
choice does not qualitatively influence the transport features at
low bias, where the conductance is dominated by the subgap
states. See Fig. 6 in Appendix B for a comparison of the
two cases.

A. Formalism

In this work we focus on the regime where �ν, j,σ � T .
In this weak coupling limit, a perturbation theory in the tun-
neling amplitude provides accurate results. Since we are not
interested in the thermal excitations of the superconducting
device, we additionally consider temperatures much smaller
than the remaining energy scales. To compute the tunneling
rates, we use the T -matrix formalism, describing the transi-
tion probability between two states:

�i→ f = 2π |〈 f |T |i〉|2Wi f δ(Ei − E f ), (7)

where Wi f weights the rate through thermal distributions of
the electrons in the leads, δ is the Dirac delta functional en-
suring energy conservation between the initial and final states
(Ei = E f ), and

T = HT + HT
1

Ei − HL − HI + i0+ T , (8)

which can be truncated at the desired order. In Eq. (7), and in
the rest of the paper, we set h̄ = 1. The linear term in Eq. (8)
describes the sequential tunneling; the higher order terms
define, among other processes, the cotunneling contributions,
which become progressively more important when the tunnel
amplitudes t increase. In Appendix A we provide expressions
for the sequential and the (second-order) cotunneling rates,
used in this work to evaluate the transport through the super-
conducting islands.

The quantum state of the island is described by |a〉 =
|N, NC, n〉, where NC is the number of Cooper pairs in the
island and n is a vector representing the occupation of the
subgap and continuum excited states. The time derivative of
the occupation probability of a given state is given by the
master equation

Ṗa =
∑

b

[−�a→bPa + �b→aPb]. (9)

Here we assume that coherences between different states in
the superconducting island are negligible; indeed, we consider
either model without near degeneracies where coherences
cannot develop or with no coupling between degenerate states,
due to different parity or spatial support. In the stationary
limit, the system does not evolve in time and Ṗstat

b = 0.
These conditions, together with the normalization

∑
b Pstat

b =
1, form a linear system of equations for the occupation prob-
abilities of the island states. Using the resulting stationary
distribution, the current flowing from lead ν to the device is
determined by the island transition rate to other states as

Iν =
∑
a,b

⎡
⎣s�seq

ν,b→a +
∑
ν ′ 
=ν

δn(ν) �cot
ν,ν ′,b→a

⎤
⎦Pstat

b , (10)

where we take s = +1 (s = −1) for electrons tunneling in
(out) of the island and we set the electron charge to unity.
Here δn(ν) is the net charge transferred from lead ν in a
cotunneling process, and the sum runs over all the possible
rates connecting the island state |b〉 with any state |a〉 (see
Appendix A 2 for more detail on the cotunneling rates �cot).

In Eqs. (9) and (10) we are considering processes that
change the island occupation by ±1 electron, while neglect-
ing local and crossed Andreev reflection processes [71]. This
approximation is justified when the charging energy is the
dominant energy scale, in particular Ec � �, meaning that
there is a large energy penalty for changing the charge of the
device by 2e. Throughout the rest of the paper we will indeed
consider this strongly Coulomb-blockaded regime.

III. SINGLE NANOWIRE GEOMETRY

In this section we focus on resolving the spatial structure
of subgap states in a single nanowire device coupled to two
or three normal metallic leads. Regarding the spatial profile
of the subgap state, we consider three situations: (i) a single
subgap state delocalized at both ends of the nanowire but
vanishing in its bulk, which we refer to as a “Majorana-like
scenario,” (ii) two degenerate subgap states each localized
close to one end of the device, and (iii) an extended subgap
state that couples to all leads independently from their po-
sition. In all these cases we consider that the subgap states
are strongly spin-split, behaving as effectively spinless. This
situation can be achieved by a strong magnetic field or by
proximity with ferromagnetic materials, and corresponds to
standard models to achieve the topological regime [72]. Our
goal is to distinguish between these possible scenarios based
on the structure of the cotunneling steps and the nonlocal
conductance.

A. Two-terminal device

We first focus on a two-terminal device, with leads coupled
to the nanowire ends, which can host either a single subgap
state or two degenerate ones located at the ends, see Figs. 2(a)
and 2(b). For simplicity we choose a symmetric voltage drop
at the contacts between the device and L and R leads by setting
their chemical to μL = +V/2 and μR = −V/2, where V is the
voltage bias.
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FIG. 2. Sketches of a nanowire coupled to two leads, hosting an
extended (a) and two local states (b). (c) and (d) The differential
conductance (in logscale) corresponding to cases (a) and (b), respec-
tively, for subgap states with energies ε = 0.3�. We show results for
� = 0.2EC and � = 5 × 10−5EC. The color tics denote the dominant
inelastic cotunneling processes, appearing at V = 2� (blue), V =
� ± ε for the even/odd Coulomb valley (red), and V = 2ε, � + ε

(green). (e)–(j) Examples of the different cotunneling processes.

If the subgap levels have zero energy ε = 0, which is the
case for ideal Majorana zero energy modes, the Coulomb-
blockade structure is qualitatively similar in the two cases
(data not shown). Instead, when ε 
= 0, the most evident dif-
ference is the strong reduction of the conductance peaks at
V = 0 in the case of local states. This can be seen by compar-
ing the conductance at V ∼ 0 and half-integer ng in Figs. 2(c)
and 2(d). Indeed, when the subgap states do not couple to both
leads, transport is suppressed at small biases because the sub-
gap states cannot support resonant tunneling of electrons. This
results in a much weaker conductance for |V | < 2ε, � − ε

with respect to the situation where the subgap state connects
both ends of the nanowire. However, zero-bias tunneling is
still possible through elastic cotunneling, with an amplitude
∼�L�R [71].

We also observe a clear difference in the structure of the
cotunneling steps, highlighted by the colored tics in Figs. 2(c)
and 2(d). In the case of an extended state, two inelastic co-
tunneling steps appear at V = � ± ε for the even and the

odd valleys, corresponding to transitions to the lowest ex-
cited states (red tics) [60]. In the even valley it corresponds
to the splitting of a Cooper pair, whose electrons end up in
the subgap and the continuum of states. In the odd valley the
lowest excitation corresponds to promoting the electron in the
subgap state to the continuum. There are two additional steps
due to the breaking of a Cooper pair into two electrons that
enter the quasiparticle continuum (blue tics).

In the case with two states with local support, each coupled
to a single lead, the number of cotunneling steps increases
and, in particular, the threshold for inelastic cotunneling in the
even-parity valleys decreases substantially. Indeed, the lowest
excited state with even parity has an energy given by the sum
of the energies of the two subgap states [see Fig. 2(j)]. In the
case considered in the figure with the two states having the
same energy, this threshold is 2ε. We note that this process
does not require the creation of a quasiparticle excitation
above the superconducting gap, reducing the conductance step
onset with respect to the nondegenerate situation.

B. Three-terminal device

Next, we analyze a three terminal device, where two leads
(L and R) couple to the nanowire ends and the third (M) probes
the center of the device. Therefore, the M lead acts as a probe
of the subgap support at the middle of the wire, distinguishing
local and nonlocal states. The L and R leads are biased, with a
chemical potential μL = +V/2 and μR = −V/2, respectively,
while we consider that M is grounded (μM = 0). The goal is
to use the nonlocal conductance GM = dIM

dV to detect whether
the subgap state extends inside the device or is localized only
on the edges. These two scenarios are sketched in Figs. 3(a)
and 3(b). Furthermore, we explore the situations where the
subgap states’ energy ε is zero, Figs. 3(c) and 3(d), or finite,
Figs. 3(e) and 3(f).

While the local conductance (through L and R) shows little
dependence on the presence of a third lead and how it couples
with the device (data not shown), the nonlocal conductance
displays interesting features. First, notice that GM is an odd
function of the voltage bias V , thanks to the symmetry R ↔ L
we impose in our model: an inversion of the bias only changes
the direction of the current flow between the L and R lead,
while the current IM remains insensitive to the sign of V
since the lead is always grounded. Hence, the differential
conductance (GM = dIM

dV ) is an odd function of the voltage
bias. When the lead does not couple to the subgap state, the
conductance at V = 0 is suppressed, as clearly seen by com-
paring left and right panels in Fig. 3. Even though this effect
is somehow trivial because low bias transport only involves
the lowest energy level in a gapped system, its consequence
is of great importance: The middle lead probes the density
of states inside the wire. Hence, the M lead can resolve the
spatial profile of subgap states and detect whether they have a
nonvanishing projection on a specific portion of the device.

The nonlocal conductance also shows a peculiar sign de-
pendence on ng, illustrated by the sharp GM jumps in Fig. 3.
These sign changes appear whenever there is a crossing be-
tween ground states or excited states with different parities,
corresponding to the crossing of the parabolas in Fig. 1(c)
(see Appendix B for more details). Their dependence on V ,
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FIG. 3. Nonlocal differential conductance GM = dIM
dV through a

grounded lead coupled to the middle of the wire. (a) and (b) Situa-
tions where the middle lead does not and does couple to the subgap
state (red blobs). (c) and (d) The nonlocal conductance for a case
where the subgap state energy is ε = 0, while (e) and (f) show
cases for ε = 0.3�. (c) and (e) The subgap state structure shown
in (a) while (d) and (f) correspond to (b). The remaining parameters
are the same as in Fig. 2 and all the tunnel couplings are considered
to be equal.

instead, arises from the necessity of having a chemical po-
tential on the L and R leads large enough to populate the
excited states coupled also with the M lead. This behavior can
be better understood by considering the energy dependence
of the superconducting island states on ng and the sequential
tunneling rates (see Appendix A 1 for their derivation). For
instance, the rates describing the tunneling of an electron from
the M lead to an empty quasiparticle state γ j is �M,i→ f =
�M |u j |2nF(E f − Ei ), where i and f label the initial and final
states with energy Ei and E f . �M |u j |2 is the effective tunneling
rate in the wide-band limit multiplied by the local projector
on the particlelike component of γ j . Since the temperature is
small, the Fermi factor nF is a steplike function, activating the
tunneling process mainly when E f − Ei < 0. The opposite is
true when we examine the process for extracting one electron
from the occupied quasiparticle state γ j , meaning that it is
activated when E f − Ei > 0. Hence, the sign of the

current in the M lead changes abruptly when ng tunes the
energy levels of the device across the resonance Ei = E f , as
adding/removing electrons from M becomes more favorable.
We show more details in Fig. 5.

In conclusion, a three-terminal Coulomb-blockaded device
has a highly tunable differential conductance alongside the
standard transport suppression inside the Coulomb diamonds.
As shown in Figs. 3(c)–3(f), this is a robust feature that re-
quires neither the presence of a zero energy subgap state nor
a third lead coupled only to the superconducting continuum,
even though the latter is useful to have an extended bias
window where the M lead is effectively decoupled from the
device.

IV. DOUBLE NANOWIRE

In this section we extend the analysis of the nonlo-
cal conductance to double nanowire setups; two parallel
semiconductor nanowires are covered by the same floating
superconducting island. The common superconductor allows
the exchange of Cooper pairs between the wires, making them
share a common charging energy, but it does not allow the tun-
neling of excitations above the gap from one wire to the other.
In this context we therefore introduce two separate states
at energy � to model the quasiparticle continua in the two
wires. In contrast, we assume that subgap states can delocalize
between the two wires. This setup for the device is inspired by
recent experimental achievements [68,73–75] and the scope
of exploring the topological Kondo effect when the system
couples to more than two leads [64–66]. We consider that the
nanowire ends couple to three different leads, as sketched in
Figs. 4(a), 4(d), 4(g), and 4(j). As before, we consider that the
L/R leads are symmetrically biased, while M is grounded. A
different biasing condition is shown in Fig. 7 in Appendix B.

Regarding the spatial structure of subagap states, we iden-
tify four possible situations: 1© two subgap states that extend
along a single nanowire, 2© a subgap state localized at each
lead-device interface, 3© a common subgap state that couples
with all three terminals, and 4© two subgap states localized
respectively at the left and right ends of the double nanowire
device. These scenarios are sketched in Figs. 4(a), 4(d), 4(g),
and 4(j), while the panels below each sketch show the related
local GL and nonlocal GM differential conductances. In all
cases we consider degenerate subgap states with energy ε =
0.3�. Subgap states with different energies would be easily
detected by the different sizes of the Coulomb diamonds. The
differences between the four cases are summarized in Table I.

Let us start from case 1©, where each nanowire hosts a sin-
gle subgap state with support on both ends. In this case there
is no probe at the middle of any of the wires. Therefore, the
transport features cannot distinguish between trivial extended
states or nonlocal Majorana-like subgap states. The associated
local conductance GL = dIL

dV , and the nonlocal one GM = dIM
dV ,

are reported in Figs. 4(b) and 4(c), respectively. Sequential
tunneling processes contribute to the current between L and
R at low bias, while they are suppressed for the M lead. A
single sequential tunneling line is observed in GL at low bias
voltages; in the odd valleys, the stationary distribution Pstat

has indeed a significant contribution from the configuration
where a quasiparticle is frozen in the subgap state in the lower
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FIG. 4. Double wire system coupled via a trivial superconductor allowing the exchange of Cooper pairs, so the system has a common
charging energy. 1© One subgap state connects to L and R, while another couples to M (a). (b) and (c) The local conductance through the lead L
and the nonlocal conductance through the grounded M lead, respectively. 2© Situation for three local states coupled to the different leads, 3© an
extended state coupled to all the leads, and 4© a local state that couples to R, while L and R couple to a different extended state. The parameters
are the same as in Fig. 2.

wire. This is due to the imbalance between the �M rates for
incoming and outgoing particles at small temperatures. When
the lower wire subgap state is occupied, the superconducting
island cannot be excited by removing this quasiparticle via
sequential tunneling through leads L or R, thus suppressing
the leading-order transport mechanism in GL. This is evident
when comparing the odd valleys in Figs. 2(c) and 4(b): In
proximity of the charge degeneracy points the sequential tun-
neling lines moving towards the odd valleys disappear and
cotunneling becomes the dominating process at low bias. Also
the weak conductance through the M lead at low bias voltage
is due to cotunneling processes, where the device exchanges
one electron with either L or R, and M, keeping the total
charge on the superconducting island constant.

In case 2©, when a trivial subgap state localizes at the
interface with each lead, the conductance is suppressed for

|V | < ε. This is due to the local support of the subgap states,
which cannot directly mediate sequential transport between
different leads. Therefore, transport is dominated by elastic
cotunneling at low bias voltages. The nonlocal conductance
GM , Fig. 4(f), displays feint resonances in the even valleys.
The reason behind this is that tunneling processes between
the superconducting island and the M lead involve (virtual)
changes of the number of Cooper pairs in the island. The sign
of the current depends on the charge difference between the
ground and the lowest excited state.

Case 3© corresponds to a single subgap state coupled with
all three leads. Therefore, the same Coulomb structure is
present in the local and the nonlocal conductance, although
the latter is an odd function of the bias V and exhibits sign
changes when there are level crossings in the many-body
spectrum of the superconducting device. The sequential
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TABLE I. Summary of the main transport features for the four situations shown in Fig. 4.

1© 2©
Sequential tunneling absent in GM Sequential tunneling absent in all terminals
2 cotunneling steps 3 cotunneling steps

3© 4©
Sequential tunneling present in all terminals Sequential tunneling absent in GR

2 cotunneling steps 3 cotunneling steps
Negative differential conductance in GL

tunneling of electrons dominates transport, leading to strong
conductance features at the charge degeneracy points for small
bias voltages. Qualitatively, the signal of the M lead is equiv-
alent to that shown in Fig. 3(f) for a single nanowire with an
extended bound state.

The last possibility we analyze, case 4©, corresponds to two
degenerate subgap states, localized one in the left part and one
in the right part of the device. This situation is of particular
interest, as it might correspond to a double nanowire geometry
where Majorana modes localized at each device ends strongly
hybridize due to their small spatial separation. The local con-
ductance GL displays a parity dependent negative differential
conductance (NDC) region at small bias, see Fig. 4(k). This
is caused by a quasiparticle being trapped in the subgap state
coupled to the R lead, blocking the current between the L and
M leads. The appearance of the NDC region for either positive
or negative bias is due to the electronlike or holelike excitation
trapped in the right subgap state. In this regime, sequential
transport through the right lead is suppressed, leading to a
current reduction (not shown). For |V | > 2ε, the sequential
transport channel to the right lead is open again, therefore
making |GL| 
= |GM |. It also provides a relatively fast relax-
ation mechanism for the trapped quasiparticles in the right
lead and the NDC region disappears.

The four cases show conductance steps inside the Coulomb
valleys at finite voltage values. These steps appear when V
matches the system excitation energy, opening the inelastic
cotunneling channel: exchange of two electrons between the
leads and the island, leaving it in an excited state (although
keeping the island charge invariant). Depending on whether a
bound state couples simultaneously to the L and R leads, cases

1© and 3©, or not, cases 2© and 4©, the number of cotunneling
steps vary from 2 to 3 (colored tics in Fig. 4). A similar
behavior has been described for the single wire situation, see
discussion around Fig. 2.

Finally, we show in Appendix B another biasing situation,
where L and M are symmetrically biased and R is grounded.
We find that local and nonlocal transport can distinguish be-
tween the considered four situations also in that case.

V. CONCLUSIONS

In this paper we analyzed how the transport features of
a multiterminal superconducting device with strong charging
energy depend on the number and spatial structure of subgap
bound states. In particular, we investigated the role of the
spatial extent of the subgap states, which might not couple
to all the leads attached to the device; we showed that the
nonlocal differential conductance in multiterminal devices al-

lows for a qualitative characterization of their spatial profiles
for biases below the superconducting gap. We considered a
zero bandwidth model to describe the low-energy features
of a superconducting floating island consisting of a proxim-
itized single semiconducting nanowire or a pair of parallel
nanowires. These systems are indeed known to host subgap
states that determine the transport properties of the device.
We focused on a situation where the charging energy EC is the
dominant energy scale, and we adopted a second-order mas-
ter equations approach which allows us to characterize both
the sequential tunneling of single electrons and the inelastic
cotunneling events.

The sequential tunneling signal, dominating for small
leads-device tunneling strength, gives information on the
energy and spatial structure of the subgap states medi-
ating transport. When two leads are not coupled by the
lowest-energy states, the zero bias conductance is strongly
suppressed, leaving only a faint cotunneling feature. In this
way, transport can determine whether a state has support
on the two ends of the wire. In the same way, additional
leads can be added to gain spatial resolution inside the wire.
Therefore, the absence of sequential tunneling conductance
at low bias is a way to discriminate between trivial extended
states and possible topological states with only support at
the ends of the wires. Moreover, the number and voltage of
inelastic cotunneling steps allow us to determine the number
and the energies of the subgap states. The cotunneling signal is
therefore another indicator that can be used to characterize the
spatial structure of the subgap states. The described features
hold for an arbitrary number of discrete subgap states with
energy |ε| > T, �. For ε < T, �, instead, different subgap
state configurations may result in the same qualitative trans-
port features, thus hindering their spatial characterization.

Finally, electron transport in multiterminal Coulomb-
blockaded devices results in an interesting pattern of peaks
with positive and negative differential nonlocal conductance,
depending on the induced charge ng and on the voltage
bias V . This allows us to switch the direction of the cur-
rent flowing in the grounded lead, or suppress it, without
changing the potential difference between the source and the
drain but only by tuning the induced charge on the whole
superconducting island.

We presented results based on a perturbative analysis of
the transport properties, valid when the temperature is larger
than the coupling between the leads and the device. Comple-
mentary methods are needed to describe the low-temperature
and strong-coupling regimes, where electron correlations ef-
fects are important, in the nonequilibrium situation [76–78].
The master equation approach we presented, however, is less
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FIG. 5. (a) Many-body eigenenergies of the island for a spinless
state at zero energy (� = 0.2EC). (b) Many-body energies for a
subgap state at finite energy ε = 0.3�. (c) Differential conductance
through a middle lead that does not couple to the subgap state [see
the sketch in Fig. 3(a)]. Here we consider only the sequential tun-
neling contribution to the current. (d) The corresponding results for
ε = 0.3�. The lines in the lower panels correspond to the excitation
threshold denoted by the arrows in the upper ones. In (a) and (b) se-
quential tunneling via the M lead connects only states with different
parity and charge occupation in the states at �. These processes
always involve a relaxation from a higher energy state to a lower
energy one, thus explaining the changes in sign of the differential
conductance when two parabolas cross. The remaining parameters
are the same as in Fig. 2.

computationally intensive and provides a clear picture of the
transport mechanisms as long as nonperturbative effects can
be neglected.
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APPENDIX A: TUNNELING RATES

1. Sequential tunneling rates

In this article we focus on the limit where the charging en-
ergy is the largest energy scale [EC � max(|�|, |V | ≡ |μL −
μR|)]. In this regime, transport is dominated by processes

where one electron is exchanged between the superconducting
island and the leads. For � much smaller than any other energy
scale, sequential tunneling processes yield the most prominent
features in the conductance, providing the usual Coulomb
diamond structure. The sequential rates are given by

�
seq
ν,|N,NC,n〉→|N+1,NC,n′〉 = �ν |u j |2nF(E f − Ei − μν ),

�
seq
ν,|N,NC,n〉→|N−1,NC,n′〉 = �ν |u j |2nF(μν + E f − Ei ),

(A1)
�

seq
ν,|N,NC,n〉→|N+1,NC+1,n′〉 = �ν |v j |2nF(E f − Ei − μν ),

�
seq
ν,|N,NC,n〉→|N−1,NC−1,n′〉 = �ν |v j |2nF(μν + E f − Ei ),

where nF is the Fermi-Dirac distribution function and μν is the
chemical potential of the lead ν = L, R, M. Here we have used
the wide-band approximation, where the tunneling rates are
energy independent and �ν = 2πρF |tν |2, with the lead density
of states at the Fermi level ρF. These rates induce transi-
tions between charge states differing by one electron, denoted
through the vectors n and n′ accounting for the fermionic
occupation of the island states.

2. Cotunneling rates

Inside the Coulomb-blockaded region, inelastic cotunnel-
ing creates a series of steps in the differential conductance,
where the voltage bias corresponds to energy differences be-
tween different states of the superconducting island. These are
processes where one electron is transferred between two leads,
leaving the island in an excited state. We also consider the
elastic cotunneling that, instead, describes processes in which
the island energy is conserved, and gives rise to the conduc-
tance background inside the diamond. However, we disregard
local and crossed Andreev processes, where the island charge
changes by 2e, as they are suppressed by the strong charging
energy in the system. The corresponding rates are given by
Eq. (7), where

Fν,ν ′ (ω1) ≡ |〈 f |T |i〉|2

=
∣∣∣∣∣∣
∑
m1,ν

〈 f |HT(ν)|m1〉〈m1|HT(ν ′)|i〉
Em1 − Ei − ω1

+
∑
m2,ν

〈 f |HT(ν ′)|m2〉〈m2|HT(ν)|i〉
Em2 − E f + ω1

∣∣∣∣∣∣
2

. (A2)

Here HT(ν) describes the tunneling between the lead ν and the
island, ν ′ denotes a lead different from ν, and m1,2 are virtual
intermediate states. To derive this expression we have imposed
energy conservation, which leads to a function dependent on
the energy of the tunneling electron from/to one of the leads,
ω1. The cotunneling rate can be written as

�cot
ν,ν ′,i→ f = 2π

∫
dω1 Fν,ν ′ (ω1) nF(ω1 − μL )

× nF(μR + E f − Ei − ω1). (A3)

This expression for the cotunneling rates is divergent when
the denominator in Eq. (A2) vanishes. To avoid the diver-
gent behavior, we regularize the divergences as explained
in Ref. [79]. The resulting integral can be formally solved
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FIG. 6. Two-terminal conductance for different subgap and above gap states situations. (a) and (c) The situation where a bound state
extends from left to right (red), while the state at higher energy can be either extended (a) or local (c). (b) and (d) The corresponding local
conductance. (e) and (g) The situation where the island hosts local subgap states, whose corresponding conductance is shown in (f) and (h).
Notice the NDC region appearing in (d): They correspond to a particle blocked in one of the two states at energy � and unable to tunnel out
from the device on the other side, thus suppressing transport. Below the energy threshold required to populate the superconducting continuum
(|V | = 2�), transport is dominated by the properties of the subgap state alone: The low-bias peaks of (b) and (d) are almost identical and so
are those of (f) and (h).

analytically [80], which leads to a complicated expression
involving special functions. We find that for T/EC � 10−3,
it is computationally more efficient to expand the Fermi dis-
tribution function into a sum of complex Matsubara-Ozaki
frequencies [81]

nF(ω − μ) =
∑

α

rα

1

ω − μ + iβα

, (A4)

where βα and rα are the approximated Matsubara frequencies
and residues, respectively. Finally, Eq. (A3) can be evaluated
using the residue theorem, yielding to a rather compact ex-
pression

�cot
ν,ν ′,i→ f = 8π Im

∞∑
α=0

rα{nF(μR + E f − Ei − μL + iβα )

× [Fν,ν ′ (μL −iβα )−Fν,ν ′ (μR+E f − Ei+iβα )]}.
(A5)

This sum can be truncated at α ≈ 100 Matsubara-Ozaki fre-
quencies for the parameters used in the calculations.

APPENDIX B: SUPPORTING RESULTS

In this Appendix we present additional results to support
the chosen modeling of the considered devices and describe
some details of the transport features presented in the main
text. In particular, we first focus on the processes describing
the transport of the three-terminal single-nanowire devices,
which determine the transport across the lead M; then we
address the comparison between different modeling of the

quasiparticle states above the superconducting gap; finally,
we consider a different choice of the voltage drop across the
double-nanowire devices.

1. Features of the current across the lead M
in the three-terminal nanowire

To understand the three-terminal transport features in a
Coulomb-blockaded superconducting device, it is useful to
compare the conductance dependence on the voltage bias
and on the induced charge with the low-energy many-body
spectrum. In Fig. 5 we report the eigenvalue structure and
the nonlocal conductance GM = dIM

dV , close to the charge de-
generacy point, for the device sketched in Fig. 3(a): A single
Coulomb-blockaded nanowire hosting a subgap state that does
not couple with the grounded lead M. The lowest energies of
states with odd and even parity are represented by the continu-
ous blue and orange lines, respectively, in Figs. 5(a) and 5(b).
These states are connected via sequential tunneling involving
a particle transfer to or from the subgap state, which does not
contribute to the current flowing through the M lead. Hence
GM is suppressed at low bias, as can be seen in Figs. 5(c)
and 5(d). The current in the M lead is activated only when
V is large enough to populate excited states (via the L or the
R leads) that can then relax to a lower energy state through
a tunneling event between the superconducting continuum
and the lead M. These processes correspond to transitions
between a dashed line (i.e., states with excited quasiparticles
in the superconducting continuum) and a continuous line with
different parity (colors) in Figs. 5(a) and 5(b). These events
are highlighted by the oblique lines in Figs. 5(c) and 5(d),
representing energy thresholds for populating states that can
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FIG. 7. Upper left panels: Sketch of the double wire system. 1© One bound state connects L and R, while M connects to another one (a).
(b) and (c) The conductance through the grounded M lead. 2© Three local states coupled to the different leads. 3© An extended state coupled to
all the leads. 4© A local state that couples to R, while L and R couple to another extended state. The parameters are the same as in Fig. 2. The
conductance we show for lead M is GM = dIM

dVR
, hence it is always negative, with the exception of some small regions.

contribute to the current through M. The sign of the cur-
rent, and hence of the conductance, changes at the crossing
between energy levels with different parity. This phenomenol-
ogy is independent from the energy ε of the subgap states,
whether it is zero, as in Figs. 5(a) and 5(c), or finite, as in
Figs. 5(b) and 5(d). The latter situation only has a slightly
richer structure of the Coulomb diamonds due to the energy
difference between the first excited states in the even and odd
sectors.

Another interesting effect shown in Fig. 3 is the sign
mismatch between the sequential tunneling and the cotun-
neling contribution close to the lower edge of the Coulomb
diamonds. This can be seen at V = �, where cotunneling
(blurred signal) gives rise to negative conductance while
sequential tunneling (sharp lines) contributes with positive
conductance when ng approaches 5.5 from below. Both can

be understood by considering the processes mediated by tun-
neling through the M lead for specific values of ng and V .
When V > 0 and ng → 5.5, the lowest energy excitation that
can relax through the central lead is the odd parity state with
a quasiparticle in the superconducting continuum that couples
with an incoming electron to create a Cooper pair. This pro-
cess is thus associated with a positive (ingoing) current from
lead M. Instead, the lowest energy inelastic cotunneling step
in the odd valley corresponds to the excitation of a quasipar-
ticle from the subgap state to the continuum, mediated by the
virtual occupation of the even parity state with no quasipar-
ticle present. In this second-order process, the only tunneling
event through the M lead is the destruction of a Cooper pair
into the high-energy quasiparticle and an outgoing electron,
which carries a negative particle current and, thus, nega-
tive conductance. Similar arguments explain the sign change
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between sequential tunneling and cotunneling in other regions
of the Coulomb diamonds.

2. One- vs two-state approximation to model the Bogoliubov
quasiparticle continuum

Concerning the modeling of the quasiparticle continuum
above the gap, in Fig. 6 we compare the two-terminal conduc-
tance for a nanowire with a single quasiparticle state at energy
� coupled with both leads and with two degenerate quasipar-
ticle states at the same energy with finite supports on each end,
as sketched in the upper panels. The nanowire hosts one or two
subgap states at energy ε. As long as the voltage bias is smaller
than � − ε, transport is dominated by the properties of the
subgap state and the spatial structure of the superconducting
continuum does not affect the qualitative features in conduc-
tance of the device. When the bias is larger and the states at
energy � become accessible via sequential tunneling events,
the “broken” continuum can trap a quasiparticle in one of the
two edges of the device, suppressing transport and inducing
a negative differential conductance region in the Coulomb
diamonds. Notice, however, how this NDC is qualitatively
different from that appearing in all data presented in the main

text, as it is a sequential tunneling feature appearing in the
local conductance of two-terminal devices.

3. Example of the multiterminal transport
with different voltage drops

Finally, in Fig. 7 we present the conductance results for
the double nanowire geometry with a different bias choice
with respect to the data shown in Fig. 4 in the main text:
here we bias symmetrically leads L and M, while lead R is
left grounded. The main difference with respect to Fig. 4 is
that now the biased leads are not connected by a single super-
conducting continuum at energy �. In particular, notice the
different natures of the NDC regions appearing in Figs. 7(b)
and 7(h): In the former, it is due to a quasiparticle trapped in
the subgap state connected to lead M and, indeed, it is not
reflected in GM . In the latter, it corresponds to a quasiparticle
trapped in one of the two superconducting continua, in the
upper or in the lower nanowire. This second case is similar
to the data presented in Fig. 6(d), where the NDC is due to
the broken superconducting continuum on a single nanowire,
although the conductance in Fig. 7(h) is not symmetric in V
because of the presence of the third terminal.
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Kanne, M. Marnauza, D. Olsteins, J. Nygård, and K. Grove-
Rasmussen, Asymmetric Little–Parks oscillations in full shell
double nanowires, Sci. Rep. 11, 19034 (2021).

[76] P. Schmitteckert, Nonequilibrium electron transport using the
density matrix renormalization group method, Phys. Rev. B 70,
121302(R) (2004).

[77] R. Seoane Souto, A. E. Feiguin, A. Martín-Rodero, and A. L.
Yeyati, Transient dynamics of a magnetic impurity coupled to
superconducting electrodes: Exact numerics versus perturbation
theory, Phys. Rev. B 104, 214506 (2021).

[78] C.-M. Chung, M. M. Wauters, and M. Burrello, Matrix prod-
uct state simulations of quantum quenches and transport in
Coulomb blockaded superconducting devices, Phys. Rev. B
106, 094308 (2022).

[79] S. Koller, M. Grifoni, M. Leijnse, and M. R. Wegewijs, Density-
operator approaches to transport through interacting quantum
dots: Simplifications in fourth-order perturbation theory, Phys.
Rev. B 82, 235307 (2010).

[80] J. Koch, F. von Oppen, Y. Oreg, and E. Sela, Ther-
mopower of single-molecule devices, Phys. Rev. B 70, 195107
(2004).

[81] T. Ozaki, Continued fraction representation of the Fermi-Dirac
function for large-scale electronic structure calculations, Phys.
Rev. B 75, 035123 (2007).

235425-13

https://doi.org/10.1103/PhysRevB.106.L201305
https://doi.org/10.21468/SciPostPhys.12.5.161
https://doi.org/10.1038/nphys3461
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1038/nature17162
https://doi.org/10.1103/PhysRevLett.121.256803
https://doi.org/10.1103/PhysRevB.97.041411
https://doi.org/10.1126/science.aav3392
https://doi.org/10.1103/PhysRevB.105.L041304
https://doi.org/10.1038/s41467-020-16988-x
https://doi.org/10.1103/PhysRevApplied.11.064011
https://doi.org/10.1063/1.5116377
https://doi.org/10.1103/PhysRevLett.109.156803
https://doi.org/10.1103/PhysRevLett.113.076401
https://doi.org/10.1088/1367-2630/16/1/015010
https://doi.org/10.1002/adfm.202107926
https://doi.org/10.1021/acs.nanolett.2c01161
https://doi.org/10.1103/PhysRevB.101.195420
https://doi.org/10.1103/PhysRevB.77.045329
https://doi.org/10.1103/PhysRevB.93.235431
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1021/acs.nanolett.1c01956
https://doi.org/10.1103/PhysRevResearch.3.033240
https://doi.org/10.1038/s41598-021-97780-9
https://doi.org/10.1103/PhysRevB.70.121302
https://doi.org/10.1103/PhysRevB.104.214506
https://doi.org/10.1103/PhysRevB.106.094308
https://doi.org/10.1103/PhysRevB.82.235307
https://doi.org/10.1103/PhysRevB.70.195107
https://doi.org/10.1103/PhysRevB.75.035123

