EXPLICIT EQUATIONS AND BOUNDS FOR THE NAKAI-NISHIMURA-DUBOIS-EFROYMSON DIMENSION THEOREM

Riccardo Ghiloni
Department of Mathematics, University of Trento, 38050 Povo, Italy

Abstract

The Nakai-Nishimura-Dubois-Efroymson dimension theorem asserts the following: "Let R be an algebraically closed field or a real closed field, let X be an irreducible algebraic subset of R^{n} and let Y be an algebraic subset of X of codimension $s \geq 2$ (not necessarily irreducible). Then, there is an irreducible algebraic subset W of X of codimension 1 containing $Y^{\prime \prime}$. In this paper, making use of an elementary construction, we improve this result giving explicit polynomial equations for W. Moreover, denoting by \bar{R} the algebraic closure of R and embedding canonically W into the projective space $\mathbb{P}^{n}(\bar{R})$, we obtain explicit upper bounds for the degree and the geometric genus of the Zariski closure of W in $\mathbb{P}^{n}(\bar{R})$. In future papers, we will use these bounds in the study of morphism space between algebraic varieties over real closed fields.

Key words: Dimension theorems, Irreducible algebraic subvarieties, Upper bounds for the degree of algebraic varieties, Upper bounds for the geometric genus of algebraic varieties.

1 The theorems

Let R be an algebraically closed field or a real closed field. Equip each affine space R^{n} with the Zariski topology. By algebraic subset of R^{n}, we mean a closed subspace of R^{n}. Let X be such a subset of R^{n}. A point p of X is nonsingular of dimension d if the ring of germs of regular functions on X at p is a regular local ring of dimension d. The dimension $\operatorname{dim}(X)$ of X is the largest dimension of nonsingular points of X and $\operatorname{Nonsing}(X)$ indicates the set of all nonsingular points of X of dimension $\operatorname{dim}(X)$. If $X=\operatorname{Nonsing}(X)$, then X is called nonsingular. We denote by $\mathcal{I}_{R^{n}}(X)$ the ideal of $R\left[x_{1}, \ldots, x_{n}\right]$ of polynomials vanishing on X. By an algebraic subset of X, we mean a closed subspace of X. As usual, the codimension of an algebraic subset Y of X is the difference between $\operatorname{dim}(X)$ and $\operatorname{dim}(Y)$. Let
Z be an open subset of X and let S be a non-void subset of Z. We indicate by $\mathcal{R}(Z)$ the ring of regular functions on Z and by $\mathcal{I}_{Z}^{\mathcal{R}}(S)$ the ideal of $\mathcal{R}(Z)$ of regular functions vanishing on S. The previous notions can be defined similarly in the projective case.

The results presented below improve in several directions the Nakai-Nishimura-Dubois-Efroymson dimension theorem [9], [3] (see also [8]).

Theorem 1.1 Let X be an irreducible algebraic subset of R^{n}, let Y be an algebraic subset of X of codimension $s \geq 2$ and let f_{1}, \ldots, f_{ν} be generators of $\mathcal{I}_{R^{n}}(Y)$ in $R\left[x_{1}, \ldots, x_{n}\right]$. Then, there exist polynomials g_{1}, \ldots, g_{s-1} in $R\left[x_{1}, \ldots, x_{n}\right]$ with the following properties:
a) For each $k \in\{1, \ldots, s-1\}$ and for each $j \in\{1, \ldots, \nu\}$, there is a linear polynomial $p_{k j}$ in $R\left[x_{1}, \ldots, x_{n}\right]$ such that $g_{k}=\sum_{j=1}^{\nu} p_{k j} f_{j}$.
b) Denote by X^{*} the set $\operatorname{Nonsing~}(X) \backslash Y$ and, for each $k \in\{1, \ldots, s-1\}$, define $Y_{k}:=\left\{x \in X \mid g_{1}(x)=\cdots=g_{k}(x)=0\right\}$ and $Y_{k}^{*}:=Y_{k} \cap X^{*}$. Then, for each $k \in\{1, \ldots, s-1\}, Y_{k}$ is an irreducible algebraic subset of X of codimension k containing Y such that $Y_{k}^{*} \neq \emptyset, Y_{k}^{*} \subset \operatorname{Nonsing}\left(Y_{k}\right)$ and $\mathcal{I}_{X^{*}}^{\mathbb{R}}\left(Y_{k}^{*}\right)$ is generated in $\mathcal{R}\left(X^{*}\right)$ by the restrictions of g_{1}, \ldots, g_{k} to X^{*}.

When R is a real closed field, we can say some more about the polynomials $p_{k j}$. We recall that the topology of R^{n} induced by the ordering structure on R is called euclidean topology.

Theorem 1.1'. Let R be a real closed field and let X, Y, s and f_{1}, \ldots, f_{ν} be as above. Let $\left(x_{k j i}\right)_{k \in\{1, \ldots, s-1\}, j \in\{1, \ldots, \nu\}, i \in\{0,1, \ldots, n\}}$ be the coordinates of $R^{(s-1) \nu(n+1)}$. Then, it is possible to determinate by a constructive argument an element $a=\left(a_{k j i}\right)_{k, j, i} \in R^{(s-1) \nu(n+1)}$ such that, for each euclidean neighborhood \mathcal{U} of a in $R^{(s-1) \nu(n+1)}$, there is $\left(b_{k j i}\right)_{k, j, i} \in \mathcal{U}$ which satisfies the following assertion: For each $k \in\{1, \ldots, s-1\}$, define the polynomial g_{k} in $R\left[x_{1}, \ldots, x_{n}\right]$ by

$$
g_{k}(x):=\sum_{j=1}^{\nu}\left(b_{k j 0}+\sum_{i=1}^{n} b_{k j i} x_{i}\right) f_{j}(x) .
$$

Then, using such polynomials g_{1}, \ldots, g_{s-1}, point b$)$ of Theorem 1.1 is verified.
Let X be an algebraic subset of R^{n} of dimension r. First, suppose $r<$ n. We define the complete intersection degree cideg $\left(X, R^{n}\right)$ of X in R^{n} as the minimum integer c such that there are a point $p \in \operatorname{Nonsing}(X)$ and polynomials P_{1}, \ldots, P_{n-r} in $\mathcal{I}_{R^{n}}(X)$ with independent gradients at p and $c=$ $\prod_{i=1}^{n-r} \operatorname{deg}\left(P_{i}\right)$. Moreover, we define the upper degree udeg $\left(X, R^{n}\right)$ of X in R^{n} as the minimum integer u such that there is a finite set of non-zero generators
f_{1}, \ldots, f_{ν} of $\mathcal{I}_{R^{n}}(X)$ in $R\left[x_{1}, \ldots, x_{n}\right]$ with $u=\max _{j \in\{1, \ldots, \nu\}} \operatorname{deg}\left(f_{j}\right)$. If $r=n$, then we consider cideg $\left(X, R^{n}\right)$ and $\operatorname{udeg}\left(X, R^{n}\right)$ equal to 1 . Ler \bar{R} be the algebraic closure of R. We identify canonically R^{n} with a subset of $\mathbb{P}^{n}(\underline{R})$ and $\mathbb{P}^{n}(R)$ with a subset of $\mathbb{P}^{n}(\bar{R})$ so each subset of R^{n} is a subset of $\mathbb{P}^{n}(\bar{R})$ also.

Theorem 1.2 Let X be an irreducible algebraic subset of R^{n} of dimension r, let $c:=\operatorname{cideg}\left(X, R^{n}\right)$, let Y be an algebraic subset of X of codimension $s \geq 2$ and let $u:=\operatorname{udeg}\left(Y, R^{n}\right)$. Then, there is a chain of inclusions $Y \subset$ $Y_{s-1} \subset \cdots \subset Y_{1} \subset Y_{0}=X$ such that, for each $k \in\{0,1, \ldots, s-1\}, Y_{k}$ is an irreducible algebraic subset of X of codimension $k, \emptyset \neq Y_{k} \cap(\operatorname{Nonsing}(X) \backslash$ $Y) \subset \operatorname{Nonsing}\left(Y_{k}\right)$ and, setting \bar{Y}_{k} equal to the Zariski closure of Y_{k} in $\mathbb{P}^{n}(\bar{R})$, the degree $\operatorname{deg}\left(\bar{Y}_{k}\right)$ of \bar{Y}_{k} in $\mathbb{P}^{n}(\bar{R})$ and the geometric genus $p_{g}\left(\bar{Y}_{k}\right)$ of \bar{Y}_{k} satisfy the following inequalities:

$$
\operatorname{deg}\left(\bar{Y}_{k}\right) \leq c(u+1)^{k}
$$

and

$$
p_{g}\left(\bar{Y}_{k}\right) \leq\binom{ c(u+1)^{k}-1}{r-k+1}
$$

where the binomial coefficient $\binom{a}{b}$ is considered null if $a<b$.
Let X be an algebraic subset of $R^{n}\left(\right.$ resp. $\left.\mathbb{P}^{n}(R)\right)$. An algebraic subset of X of dimension 1 is called algebraic curve of X.

Corollary 1.3 Let X be an irreducible algebraic subset of R^{n} of dimension $r \geq 1$ and let F be a finite subset of X formed by m distinct points. Define $c:=\operatorname{cideg}\left(X, R^{n}\right)$. Then, there is an irreducible algebraic curve D of X containing F such that $\emptyset \neq D \cap(\operatorname{Nonsing}(X) \backslash F) \subset \operatorname{Nonsing}(D)$ and, setting \bar{D} equal to the Zariski closure of D in $\mathbb{P}^{n}(\bar{R})$, it holds:

$$
\operatorname{deg}(\bar{D}) \leq c(m+1)^{r-1}
$$

and

$$
p_{g}(\bar{D}) \leq \frac{1}{2}\left(c(m+1)^{r-1}-1\right)\left(c(m+1)^{r-1}-2\right) .
$$

In the next theorem, we will improve Corollary 1.3 in the case F is a single point. Before stating this result, we recall some classical notions and give a definition. Let S be a subset of R^{n}. S is said to be a cone of R^{n} with vertex $p \in R^{n}$ if, for each $q \in S \backslash\{p\}$, the affine line through p and q is contained in
S. Moreover, S is said to be nondegenerate in R^{n} if it is not contained in any affine hyperplane of R^{n}. Similar definitions can be given in the projective case also. Indicate by \mathbb{N} the set of all non-negative integers. We call Castelnuovo function the function Castel : $(\mathbb{N} \backslash\{0\}) \times(\mathbb{N} \backslash\{0\}) \longrightarrow \mathbb{N}$ defined as follows: for each (d, n) with d or n equal to $1, \operatorname{Castel}(d, n):=0$ and, for each (d, n) with $d \geq 2$ and $n \geq 2, \operatorname{Castel}(d, n):=\frac{1}{2} a(a-1)(n-1)+a b$ where a and b are the unique non-negative integers such that $d-1=a(n-1)+b$ and $b \in\{0,1, \ldots, n-2\}$. We use this nomenclature because, when $d=n=1$ or $d, n \in \mathbb{N} \backslash\{0,1\}, \operatorname{Castel}(d, n)$ is the well-known Castelnuovo bound for the genus of a nondegenerate irreducible complex algebraic curve of $\mathbb{P}^{n}(\mathbb{C})$ of degree d.

Theorem 1.4 Let X be a nondegenerate irreducible algebraic subset of R^{n} of dimension $r \geq 1$ and let p be a point of X such that X is not a cone of R^{n} with vertex p. Define $c:=\operatorname{cideg}\left(X, R^{n}\right)$ and denote by d^{*} the degree of the Zariski closure of X in $\mathbb{P}^{n}(\bar{R})$. Then, there exists a non-void Zariski open subset Ω of $\operatorname{Nonsing~}(X) \backslash\{p\}$ with the following properties: for each $q \in \Omega$, there is an irreducible algebraic curve D_{q} of X containing p and q such that $D_{q} \cap(\operatorname{Nonsing}(X) \backslash\{p\}) \subset \operatorname{Nonsing}\left(D_{q}\right)$ and, setting \bar{D}_{q} equal to the Zariski closure of D_{q} in $\mathbb{P}^{n}(\bar{R})$, it holds:

$$
\operatorname{deg}\left(\bar{D}_{q}\right)=d^{*}
$$

and

$$
p_{g}\left(\bar{D}_{q}\right) \leq \operatorname{Castel}\left(d^{*}, n-r+1\right) \leq \operatorname{Castel}(c, n-r+1) .
$$

Remark 1.5 Suppose R is a real closed field. An algebraic subset of $\mathbb{P}^{n}(\bar{R})$ is said to be defined over R if it is the vanishing set of some homogeneous polynomials in $R\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. Let D be an irreducible algebraic curve of \mathbb{R}^{n}. It is well-known that there is a nonsingular irreducible algebraic curve \widetilde{D} of some $\mathbb{P}^{N}(\bar{R})$ defined over R such that the real part $\widetilde{D} \cap \mathbb{P}^{n}(R)$ of \widetilde{D} is birationally isomorphic to D. Such a curve \widetilde{D} is unique up to biregular isomorphism. In this way, it is possible to define the genus $g(D)$ of D as the genus of \widetilde{D}. Remark that, if \bar{D} is the Zariski closure of D in $\mathbb{P}^{n}(\bar{R})$, then $g(D)=p_{g}(\bar{D})$ so, in the statements of Corollary 1.3 and Theorem 1.4, $p_{g}(\bar{D})$ and $p_{g}\left(\bar{D}_{q}\right)$ can be replaced by $g(D)$ and $g\left(D_{q}\right)$ respectively.

In future papers, we will use the previous bounds in the study of morphism space between algebraic varieties over real closed fields (see the announcement [4] and [5]). For example, the following result is a consequence of Theorem 1.4.

Theorem 1.6 ([5]) Let R be a real closed field (resp. algebraically closed field). Let X be a nondegenerate irreducible algebraic subset of R^{n} of dimension $r \geq 1$, let $c:=\operatorname{cideg}\left(X, R^{n}\right)$ and let Y be an algebraic subset of R^{m} of positive dimension. Indicate by e (Y) the minimum genus (resp. geometric genus) of an irreducible algebraic curve of Y. Then, if Castel $(c, n-r+1)<$ $e(Y)$, every regular map from X to Y is constant.

2 The proofs

We will give the proofs only in the case R is a real closed field. When R is an algebraically closed field, the proofs are similar, but very easier. We need some preliminaries. Fix a real closed field R. The ring $R[i]=R[X] /\left(X^{2}+1\right)$ in an algebraically closed field (see section 1.2. of [2]) so $\bar{R}=R[i]$. For convenience, we will use the symbol C in place of \bar{R}. Let Z be a Zariski locally closed subset of $\mathbb{P}^{n}(R)$ (resp. $\mathbb{P}^{n}(C)$). The notions of $\operatorname{dim}(Z)$, Nonsing (Z), algebraic subset of Z and codimension of an algebraic subset of Z can be defined as in the case Z is Zariski closed in $\mathbb{P}^{n}(R)$ (resp. $\mathbb{P}^{n}(C)$). Denote by $\operatorname{Sing}(Z)$ the set $Z \backslash \operatorname{Nonsing}(Z)$. Indicate by $\sigma_{n}: \mathbb{P}^{n}(C) \longrightarrow \mathbb{P}^{n}(C)$ the conjugation map and identify canonically $\mathbb{P}^{n}(R)$ with the fixed point set of σ_{n}. Let S be a subset of $\mathbb{P}^{n}(C)$. Define the real part $S(R)$ of S by $S(R):=S \cap \mathbb{P}^{n}(R)$. Recall that S is said to be defined over R if it is σ_{n}-invariant, i.e, $\sigma_{n}(S)=S$. Suppose that S has this property and fix a subset T of some $\mathbb{P}^{m}(C)$. A map $f: S \longrightarrow T$ is said to be defined over R if $\sigma_{m} \circ f=\left.f \circ \sigma_{n}\right|_{S}$. Remark that, if f is a regular morphism defined over R, then $f(S(R)) \subset T(R)$ and the restriction of f from $S(R)$ to $T(R)$ is a regular morphism.

Let k be the field R or the field C. Let $\mathcal{L}=\left(v_{0}, v_{1}, \ldots, v_{r}\right)$ be a $(r+1)-$ uple of independent vectors of k^{n+1}. For each $l \in\{0,1, \ldots, r\}$, write $v_{l}:=$ $\left(v_{0 l}, v_{1 l}, \ldots, v_{n l}\right)$ and define the linear polynomial p_{l} in $k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ by $p_{l}(x):=\sum_{i=0}^{n} v_{i l} x_{i}$. Let L be the $(n-r+1)$-dimensional linear subspace of $\mathbb{P}^{n}(k)$ defined as the vanishing set of $p_{0}, p_{1}, \ldots, p_{r}$. The regular map $\pi_{\mathcal{L}}: \mathbb{P}^{n}(k) \backslash L \longrightarrow \mathbb{P}^{r}(k)$ defined by $\pi_{\mathcal{L}}([x]):=\left[p_{0}(x), p_{1}(x), \ldots, p_{r}(x)\right]$ is called a projection of $\mathbb{P}^{n}(k)$ with center L. Remark that $\pi_{\mathcal{L}}$ is uniquely determinated by L up to composition with a projective automorphism of $\mathbb{P}^{r}(k)$. For simplicity, we indicate $\pi_{\mathcal{L}}$ by π_{L} and say that π_{L} is the projection of $\mathbb{P}^{n}(k)$ with center L. Moreover, if $k=C$ and L is defined over R, then we assume that $\pi_{L}: \mathbb{P}^{n}(C) \backslash L \longrightarrow \mathbb{P}^{r}(C)$ is defined over R also. Let now X be an algebraic subset of $\mathbb{P}^{n}(k)$ of dimension r and let $p \in \operatorname{Nonsing}(X)$. Let $\sigma: k^{n+1} \backslash\{0\} \longrightarrow \mathbb{P}^{n}(k)$ be the natural projection and let $p^{\prime} \in \sigma^{-1}(p)$. Choose homogeneous polynomials P_{1}, \ldots, P_{n-r} in $k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ vanishing on X
with independent gradients at p^{\prime} and, for each $j \in\{1, \ldots, n-r\}$, define the linear polynomial $g_{j}(x)$ in $k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ by $g_{j}(x):=\sum_{i=0}^{n} x_{i} \cdot\left(\partial P_{j} / \partial x_{i}\right)\left(p^{\prime}\right)$. We define the projective tangent space $\mathbb{P} T_{p}(X)$ of X at p in $\mathbb{P}^{n}(k)$ as the vanishing set of g_{1}, \ldots, g_{n-r}. It is easy to verify that $\mathbb{P} T_{p}(X)$ does not depend on the choice of p^{\prime} and P_{1}, \ldots, P_{n-r} and has dimension r. Moreover, it always contains p.

Lemma 2.1 Let N and P be linear subspaces of $\mathbb{P}^{n}(C)$ of dimensiond and r respectively and let $\pi_{N}: \mathbb{P}^{n}(C) \backslash N \longrightarrow \mathbb{P}^{n-d-1}(C)$ be the projection of $\mathbb{P}^{n}(C)$ with center N. Indicate by h the dimension of $N \cap P$ where $h=-1$ if $N \cap P=\emptyset$. Then, $\pi_{N}(P \backslash N)$ is a linear subspace of $\mathbb{P}^{n-d-1}(C)$ of dimension $r-h-1$.

Proof. Easy exercise of Linear Algebra.

Lemma 2.2 Let X be an algebraic subset of $\mathbb{P}^{n}(R)$ of dimension $r<n$, let $p \in \operatorname{Nonsing}(X)$ and let X_{C} be the Zariski closure of X in $\mathbb{P}^{n}(C)$. Then, it is possible to determinate by a constructive argument a linear subspace L of $\mathbb{P}^{n}(R)$ of dimension $n-r-1$ such that the Zariski closure of L in $\mathbb{P}^{n}(C)$ is disjoint from X_{C} and, denoting by $\pi_{L}^{*}: \operatorname{Nonsing}(X) \longrightarrow \mathbb{P}^{r}(R)$ the restriction to Nonsing (X) of the projection of $\mathbb{P}^{n}(R)$ with center L, p is a regular point of π_{L}^{*}.

Proof. It suffices to find a $(n-r)$-dimensional linear subspace N of $\mathbb{P}^{n}(C)$ defined over R such that $N \cap \mathbb{P} T_{p}\left(X_{C}\right)=\{p\}$ and $N \cap X_{C}$ is finite. We will prove, by induction on $d \in\{0,1, \ldots, n-r\}$, that there is a d-dimensional linear subspace N_{d} of $\mathbb{P}^{n}(C)$ defined over R such that $N_{d} \cap \mathbb{P} T_{p}\left(X_{C}\right)=\{p\}$ and $N_{d} \cap X_{C}$ is finite. The case $d=0$ is evident. Let $d \in\{1, \ldots, n-r\}$. By induction, there is a $(d-1)$-dimensional linear subspace N_{d-1} of $\mathbb{P}^{n}(C)$ with the prescribed properties. Let $\pi_{d-1}: \mathbb{P}^{n}(C) \backslash N_{d-1} \longrightarrow \mathbb{P}^{n-d}(C)$ be the projection of $\mathbb{P}^{n}(C)$ with center N_{d-1} and, for each $z \in \mathbb{P}^{n-d}(C)$, let $N_{d, z}$ be the d-dimensional linear subspace of $\mathbb{P}^{n}(C)$ defined by $N_{d, z}:=N_{d-1} \sqcup$ $\pi_{d-1}^{-1}(z)$. Define $Z:=\left\{z \in \mathbb{P}^{n-d}(C) \mid N_{d, z} \cap \mathbb{P} T_{p}\left(X_{C}\right) \neq N_{d-1} \cap \mathbb{P} T_{p}\left(X_{C}\right)\right\}=$ $\pi_{d-1}\left(\mathbb{P} T_{p}\left(X_{C}\right) \backslash N_{d-1}\right)$. Since $N_{d-1} \cap \mathbb{P} T_{p}\left(X_{C}\right)=\{p\}$, Lemma 2.1 ensures that $\operatorname{dim}(Z)=r-1$. Let X_{C}^{*} be the Zariski closure of $\pi_{d-1}\left(X_{C} \backslash N_{d-1}\right)$ in $\mathbb{P}^{n-d}(C)$. If $\operatorname{dim}\left(X_{C}^{*}\right)<n-d$ (for example, when $d<n-r$), then the set $\mathbb{P}^{n-d}(R) \backslash\left(Z \cup X_{C}^{*}\right)$ is non-void. Fix a point z in such a set. It is easy to see that $N_{d, z}$ has the desired properties. Suppose $d=n-r$ and $\operatorname{dim}\left(X_{C}^{*}\right)=r$, i.e., $X_{C}^{*}=\mathbb{P}^{r}(C)$. Let W^{*} be the Zariski closure of $\pi_{d-1}\left(\operatorname{Sing}\left(X_{C}\right) \backslash N_{d-1}\right)$ in $\mathbb{P}^{r}(C)$ and let $\Omega:=X_{C} \cap \pi_{d-1}^{-1}\left(\mathbb{P}^{r}(C) \backslash W^{*}\right)$. Remark that $\operatorname{dim}\left(W^{*}\right)<r$ so Ω is a non-void Zariski open subset of Nonsing $\left(X_{C}\right) \backslash N_{d-1}$. Applying Sard's
theorem to the restriction of π_{d-1} to Ω, we find a point $z \in \mathbb{P}^{r}(R) \backslash\left(Z \cup W^{*}\right)$ such that $N_{d, z} \cap\left(X_{C} \backslash N_{d-1}\right) \subset \Omega$ and $N_{d, z}$ intersects transversally Ω in $\mathbb{P}^{n}(C)$. In particular, $N_{d, z}$ is defined over $R, N_{d, z} \cap \mathbb{P} T_{p}\left(X_{C}\right)=\{p\}$ and $N_{d, z} \cap X_{C}$ is finite.

Lemma 2.3 Let X_{C} be an irreducible algebraic subset of C^{n}, let Y_{C} be an algebraic subset of X_{C} of codimension $s \geq 1$ and let p be a nonsingular point of Y_{C} of some dimension. Denote by $\rho_{C}: \widetilde{X}_{C} \longrightarrow X_{C}$ the blowing up of X_{C} with center Y_{C}. Then, $\operatorname{dim}\left(\rho_{C}^{-1}(p)\right) \geq s-1$.

Proof. Let $r:=\operatorname{dim}\left(X_{C}\right)$. Let $\pi: P \longrightarrow C^{n}$ be the blowing up of C^{n} with center Y_{C}. We may suppose that P is an irreducible Zariski locally closed subset of some $\mathbb{P}^{N}(C)$ and ρ_{C} is the strict transform of X_{C} along π so $\widetilde{X}_{C} \subset P, \pi\left(\widetilde{X}_{C}\right)=X_{C}$ and the restriction of π from \widetilde{X}_{C} to X_{C} coincides with ρ_{C}. Pick a Zariski open neighborhood U of p in C^{n} such that $U \cap Y_{C}$ is a nonsingular irreducible algebraic subset of U of some dimension $d \leq r-s$. Remark that: $\operatorname{dim}(P)=n, \pi^{-1}(U)$ is a Zariski open subset of $\operatorname{Nonsing}(P)$, \widetilde{X}_{C} is an irreducible algebraic subset of P of dimension r and $\pi^{-1}(p)$ is a nonsingular irreducible algebraic subset of $\pi^{-1}(U)$ of dimension $n-d-1$. Since ρ_{C} is surjective and $\rho_{C}^{-1}(p)=\widetilde{X}_{C} \cap \pi^{-1}(p)$, we have that $\operatorname{dim}\left(\rho_{C}^{-1}(p)\right) \geq$ $r+(n-d-1)-n=r-d-1 \geq s-1$.

The following is a strong version of Theorem 1.1'. Recall that the ordering structure on R induces, in a natural way, a topology on R^{n} and $\mathbb{P}^{n}(R)$ (and hence on any of their subsets) called euclidean topology.

Theorem 1.1". Let X be an irreducible algebraic subset of R^{n}, let Y be an algebraic subset of X of codimension $s \geq 2$, let f_{1}, \ldots, f_{ν} be generators of $\mathcal{I}_{R^{n}}(Y)$ in $R\left[x_{1}, \ldots, x_{n}\right]$, let $X^{*}:=\operatorname{Nonsing}(X) \backslash Y$ and let U be a nonvoid euclidean open subset of X^{*}. Let $\left(x_{k j i}\right)_{k \in\{1, \ldots, s-1\}, j \in\{1, \ldots, \nu\}, i \in\{0,1, \ldots, n\}}$ be the coordinates of $R^{(s-1) \nu(n+1)}$. Then, it is possible to determinate by a constructive argument an element $a=\left(a_{k j i}\right)_{k, j, i} \in R^{(s-1) \nu(n+1)}$ such that, for each euclidean neighborhood \mathcal{U} of a in $R^{(s-1) \nu(n+1)}$, there is $\left(b_{k j i}\right)_{k, j, i} \in \mathcal{U}$ which satisfies the following assertion: For each $k \in\{1, \ldots, s-1\}$, define the polynomial g_{k} in $R\left[x_{1}, \ldots, x_{n}\right]$ by

$$
g_{k}(x):=\sum_{j=1}^{\nu}\left(b_{k j 0}+\sum_{i=1}^{n} b_{k j i} x_{i}\right) f_{j}(x),
$$

the polynomial map $G_{k}: X \longrightarrow R^{k}$ by $G_{k}(x):=\left(g_{1}(x), \ldots, g_{k}(x)\right)$ and the subset Y_{k} of X by $Y_{k}:=G_{k}^{-1}\left(0_{k}\right)$ where 0_{k} is the origin of R^{k}. Then, for each $k \in\{1, \ldots, s-1\}, Y_{k}$ is an irreducible algebraic subset of X of codimension
k containing $Y, Y_{k} \cap U \neq \emptyset$ and 0_{k} is a regular value of the restriction of G_{k} to X^{*}.

Proof. Let $r:=\operatorname{dim}(X)$. Let X_{C} and Y_{C} be the Zariski closures of X and Y in C^{n} respectively and let $f_{1, C}, \ldots, f_{\nu, C}$ be the polynomials f_{1}, \ldots, f_{ν} viewed as elements of $C\left[x_{1}, \ldots, x_{n}\right]$. Define

$$
X_{C}^{\prime}:=\operatorname{Zcl}_{C^{n} \times \mathbb{P}^{\nu-1}(C)}\left\{\left(x,\left[f_{1, C}(x), \ldots, f_{\nu, C}(x)\right]\right) \in C^{n} \times \mathbb{P}^{\nu-1}(C) \mid x \in X_{C} \backslash Y_{C}\right\}
$$

and $\rho_{C}^{\prime}: X_{C}^{\prime} \longrightarrow X_{C}$ by $\rho_{C}^{\prime}(x,[y]):=x$ where $\mathrm{Zcl}_{C^{n} \times \mathbb{P}^{\nu-1}(C)}$ indicates the Zariski closure operator of $C^{n} \times \mathbb{P}^{\nu-1}(C)$. Let $N:=\nu(n+1)-1$, let $\left(y_{j i}\right)_{j \in\{1, \ldots, \nu\}, i \in\{0,1, \ldots, n\}}$ be the coordinates of $C^{\nu(n+1)}$ and let $\left[\left(y_{j i}\right)_{j, i}\right]$ be the corresponding homogeneous coordinates of $\mathbb{P}^{N}(C)$. Let $\psi_{C}: C^{n} \times$ $\mathbb{P}^{\nu-1}(C) \longrightarrow \mathbb{P}^{N}(C)$ be the restriction to $C^{n} \times \mathbb{P}^{\nu-1}(C)$ of the Segre embedding $\mathbb{P}^{n}(C) \times \mathbb{P}^{\nu-1}(C) \ni\left(\left[\left(x_{i}\right)_{i}\right],\left[\left(y_{j}\right)_{j}\right]\right) \longmapsto\left[\left(x_{i} y_{j}\right)_{j, i}\right] \in \mathbb{P}^{N}(C)$, let $\widetilde{X}_{C}:=\psi_{C}\left(X_{C}^{\prime}\right)$ and let $\varphi_{C}: \widetilde{X}_{C} \longrightarrow X_{C}^{\prime}$ be the inverse of the restriction of ψ_{C} from X_{C}^{\prime} to \widetilde{X}_{C}. Define: the regular map $\rho_{C}: \widetilde{X}_{C} \longrightarrow X_{C}$ defined over R by $\rho_{C}:=\rho_{C}^{\prime} \circ \varphi_{C}, \widetilde{X}$ as the real part of \widetilde{X}_{C} and the regular map $\rho: \widetilde{X} \longrightarrow X$ as the restriction of ρ_{C} from \widetilde{X} to X. Evidently, ρ_{C} is the blowing up of X_{C} with center Y_{C} and ρ is the blowing up of X with center Y. In particular, \widetilde{X}_{C} (resp. \widetilde{X}) is an irreducible Zariski locally closed subset of $\mathbb{P}^{N}(C)\left(\right.$ resp. $\left.\mathbb{P}^{N}(R)\right)$ of dimension r. Let $\eta: X \backslash Y \longrightarrow \widetilde{X}$ be the regular map such that $\rho(\eta(x))=x$ for each $x \in X \backslash Y$, i.e., the map which sends $x \in X \backslash Y$ into $\left[\left(x_{i} \cdot f_{j}(x)\right)_{j, i}\right] \in \mathbb{P}^{N}(R)$ where x_{0} is considered equal to 1. Fix $p \in U$ and define $p^{*}:=\eta(p)$ and $U^{*}:=\eta(U) \subset \operatorname{Nonsing}(\widetilde{X})$. By Lemma 2.2, it is possible to determinate by a constructive argument a $(N-r-1)$-dimensional linear subspace L of $\mathbb{P}^{N}(R)$ such that the Zariski closure L_{C} of L in $\mathbb{P}^{N}(C)$ is disjoint from \widetilde{X}_{C} and, denoting by π_{L}^{*} the restriction to $\operatorname{Nonsing}(\widetilde{X})$ of the projection $\pi_{L, C}: \mathbb{P}^{N}(C) \backslash L_{C} \longrightarrow \mathbb{P}^{r}(C)$ of $\mathbb{P}^{N}(C)$ with center L_{C}, p^{*} is a regular point of π_{L}^{*}. Thanks to this property, we can choose an euclidean neighborhood V^{*} of p^{*} in U^{*} such that $E^{*}:=\pi_{L}^{*}\left(V^{*}\right)$ is an euclidean open subset of $\mathbb{P}^{r}(R)$ and the restriction of π_{L}^{*} from V^{*} to E^{*} is a diffeomorphism. Define $e^{*}:=\pi_{L}^{*}\left(p^{*}\right)$. For each $k \in\{1, \ldots, s-1\}$, choose a point $\beta_{k}=\left(\beta_{k 0}, \beta_{k 1}, \ldots, \beta_{k r}\right) \in R^{r+1} \backslash\{0\}$ in such a way that, defining the hyperplane $H_{k, C}$ of $\mathbb{P}^{r}(C)$ by the linear equation $\sum_{l=0}^{r} \beta_{k l} z_{l}=0$, the following is true: each $H_{k, C}$ contains e^{*} and, for each $k \in\{2, \ldots, s-1\}$, $H_{k, C}$ is transverse to $\bigcap_{h=1}^{k-1} H_{h, C}$ in $\mathbb{P}^{r}(C)$. Let us write explicitly $\pi_{L, C}$. For each $l \in\{0,1, \ldots, r\}$, choose an element $\left(\alpha_{l j i}\right)_{j, i} \in R^{\nu(n+1)}$ such that, defining the linear polynomial $\xi_{l}\left(\left(y_{j i}\right)_{j, i}\right):=\sum_{j, i} \alpha_{l j i} y_{j i}, L_{C}$ is the vanishing set
of $\xi_{0}, \xi_{1}, \ldots, \xi_{r}$ in $\mathbb{P}^{N}(C)$. Define the point $a=\left(a_{k j i}\right)_{k, j, i} \in R^{(s-1) \nu(n+1)}$ by setting $a_{k j i}:=\sum_{l=0}^{r} \beta_{k l} \alpha_{l j i}$ for each $k \in\{1, \ldots, s-1\}, j \in\{1, \ldots, \nu\}$ and $i \in\{0,1, \ldots, n\}$. We will prove that such a point of $R^{(s-1) \nu(n+1)}$ has the desired properties. By repeated applications of Bertini's theorem to $\left.\pi_{L, C}\right|_{\tilde{X}_{C}}$ and $\left.\pi_{L, C}\right|_{\text {Nonsing }\left(\tilde{X}_{C}\right) \backslash \rho_{C}^{-1}\left(Y_{C}\right)}$ (see Theorem 6.3, 2) and 4) of [7], page 67), for each $k \in\{1, \ldots, s-1\}$, we find a point $\beta_{k}^{\prime}=\left(\beta_{k 0}^{\prime}, \beta_{k 1}^{\prime}, \ldots, \beta_{k r}^{\prime}\right)$ of $R^{r+1} \backslash\{0\}$ arbitrarily close to β_{k} with respect to the euclidean topology such that, defining the hyperplane $H_{k, C}^{\prime}$ of $\mathbb{P}^{r}(C)$ by the linear equation $\sum_{l=0}^{r} \beta_{k l}^{\prime} z_{l}=0$, the following four properties are verified:

1) for each $k \in\{2, \ldots, s-1\}, H_{k, C}^{\prime}$ is transverse to $\bigcap_{h=1}^{k-1} H_{h, C}^{\prime}$ in $\mathbb{P}^{r}(C)$,
2) $E^{*} \cap \bigcap_{h=1}^{s-1} H_{h, C}^{\prime} \neq \emptyset$,
3) for each $k \in\{1, \ldots, s-1\}, Y_{k, C}^{\prime}:=\widetilde{X}_{C} \cap \pi_{L, C}^{-1}\left(\bigcap_{h=1}^{k} H_{h, C}^{\prime}\right)$ is an irreducible algebraic subset of \widetilde{X}_{C} of codimension k,
4) for each $k \in\{1, \ldots, s-1\}$, the restriction of $\pi_{L, C}$ to $\operatorname{Nonsing}\left(\widetilde{X}_{C}\right) \backslash$ $\rho_{C}^{-1}\left(Y_{C}\right)$ is transverse to $\bigcap_{h=1}^{k} H_{h, C}^{\prime}$ in $\mathbb{P}^{r}(C)$.

For each $k \in\{1, \ldots, s-1\}$, denote by Y_{k}^{\prime} the real part of $Y_{k, C}^{\prime}$ and by Y_{k} the Zariski closure of $\rho\left(Y_{k}^{\prime}\right)$ in X. Fix $k \in\{1, \ldots, s-1\}$. From 2) and 4), it follows that $V^{*} \cap \operatorname{Nonsing}\left(Y_{k, C}^{\prime}\right) \neq \emptyset$ so, using 3) also, we have that Y_{k}^{\prime} is an irreducible algebraic subset of \widetilde{X} of codimension k and Y_{k} is an irreducible algebraic subset of X of codimension k. Let us show that $Y \subset Y_{k}$. Denote by Nonsing ${ }^{(*)}(Y)$ the set of all nonsingular points of Y of some dimension. By Lemma 2.3, we know that, for each $p \in \operatorname{Nonsing}^{(*)}(Y)$, the dimension of the algebraic subset $\rho_{C}^{-1}(p)$ of $\mathbb{P}^{N}(C)$ is at least $s-1$. Let $N_{k, C}$ be the linear subspace of $\mathbb{P}^{N}(C)$ of codimension k defined by $N_{k, C}:=L_{C} \sqcup \pi_{L, C}^{-1}\left(\bigcap_{h=1}^{k} H_{k, C}^{\prime}\right)$. Remark that, for each $p \in \operatorname{Nonsing}^{(*)}(Y), \rho_{C}^{-1}(p) \cap Y_{k, C}^{\prime}=\rho_{C}^{-1}(p) \cap N_{k, C}$ so, being $\operatorname{dim}\left(N_{k, C}\right) \geq N-s+1$, it follows that $\rho_{C}^{-1}(p) \cap Y_{k, C}^{\prime} \neq \emptyset$. Since $\rho_{C}\left(Y_{k, C}^{\prime}\right) \cap X \subset Y_{k}$, Nonsing $^{(*)}(Y) \subset \rho_{C}\left(Y_{k, C}^{\prime}\right)$ and Nonsing $^{(*)}(Y)$ is Zariski dense in Y, we have that $Y \subset Y_{k}$ as desired. We can now complete the proof. Let $\pi_{L}: \mathbb{P}^{N}(R) \backslash L \longrightarrow \mathbb{P}^{r}(R)$ be the projection of $\mathbb{P}^{N}(R)$ with center L. Remark that $Y_{k} \backslash Y=\eta^{-1}\left(Y_{k}^{\prime}\right)=\bigcap_{h=1}^{k}\left(\pi_{L} \circ \eta\right)^{-1}\left(H_{k, C}^{\prime}\right)$ and, for each $h \in\{1, \ldots, k\},\left(\pi_{L} \circ \eta\right)^{-1}\left(H_{h, C}^{\prime}\right)$ coincides with the set of points $x=\left(x_{1}, \ldots, x_{n}\right) \in X \backslash Y$ such that

$$
\sum_{j=1}^{\nu}\left(\left(\sum_{l=0}^{r} \beta_{h l}^{\prime} \alpha_{l j 0}\right)+\sum_{i=1}^{n}\left(\sum_{l=0}^{r} \beta_{h l}^{\prime} \alpha_{l j i}\right) x_{i}\right) \cdot f_{j}(x)=0 .
$$

For each $k \in\{1, \ldots, s-1\}, j \in\{1, \ldots, \nu\}$ and $i \in\{0,1, \ldots, n\}$, define $\left(b_{k j i}\right)_{k, j, i} \in R^{(s-1) \nu(n+1)}$ by $b_{k j i}:=\sum_{l=0}^{r} \beta_{k l}^{\prime} \alpha_{l j i}$, the linear polynomial g_{k} in

$$
R\left[x_{1}, \ldots, x_{n}\right] \text { by }
$$

$$
g_{k}(x):=\sum_{j=1}^{\nu}\left(b_{k j 0}+\sum_{i=1}^{n} b_{k j i} x_{i}\right) f_{j}(x)
$$

and the polynomial map $G_{k}: X \longrightarrow R^{k}$ by $G_{k}(x):=\left(g_{1}(x), \ldots, g_{k}(x)\right)$. Remark that $\left(b_{k j i}\right)_{k, j, i}$ is arbitrarily close to a in $R^{(s-1) \nu(n+1)}$. Fix $k \in$ $\{1, \ldots, s-1\}$. We have that $Y_{k} \backslash Y=G_{k}^{-1}\left(0_{k}\right)$. Moreover, the explicit form of G_{k} ensures that $Y \subset G_{k}^{-1}\left(0_{k}\right)$ so $Y_{k}=G_{k}^{-1}\left(0_{k}\right)$. From property 2), it follows that $Y_{k} \cap U \neq \emptyset$ and, from properties 1) and 4), it follows that 0_{k} is a regular values of $\left.G_{k}\right|_{X^{*}}$.

Lemma 2.4 Let X be an irreducible algebraic subset of R^{n} of dimension r and let X_{C} be the Zariski closure of X in $\mathbb{P}^{n}(C)$. Define $c:=\operatorname{cideg}\left(X, R^{n}\right)$. Then, $\operatorname{deg}\left(X_{C}\right) \leq c$ and $p_{g}\left(X_{C}\right) \leq\binom{ c-1}{r+1}$.

Proof. Define $d^{*}:=\operatorname{deg}\left(X_{C}\right)$ and $g^{*}:=p_{g}\left(X_{C}\right)$. Let $p \in \operatorname{Nonsing}(X)$ and let $P_{1}, \ldots, P_{n-r} \in \mathcal{I}_{R^{n}}(X)$ with independent gradient at p such that $c=\prod_{i=1}^{n-r} \operatorname{deg}\left(P_{i}\right)$. Let $P_{1}^{*}, \ldots, P_{n-r}^{*}$ be the homogeneous polynomials of $R\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ obtained by homogenization of P_{1}, \ldots, P_{n-r} respectively and let $P_{1, C}^{*}, \ldots, P_{n-r, C}^{*}$ be the polynomials $P_{1}^{*}, \ldots, P_{n-r}^{*}$ viewed as elements of $C\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. By the properties of P_{1}, \ldots, P_{n-r}, it follows at once the existence of a Zariski open neighborhood Z of p in $\mathbb{P}^{n}(C)$ such that $X_{C} \cap$ Z is the vanishing set of $\left.P_{1, C}^{*}\right|_{Z}, \ldots,\left.P_{n-r, C}^{*}\right|_{Z}$. Remark that $X_{C} \backslash Z$ is a proper algebraic subset of X_{C} so $\operatorname{dim}\left(X_{C} \backslash Z\right)<\operatorname{dim}\left(X_{C}\right)=r$. By the Noether Normalization Theorem, there is a $(n-r-1)$-dimensional linear subspace L of $\mathbb{P}^{n}(C)$ disjoint from X_{C} such that the restriction $\pi: X \longrightarrow$ $\mathbb{P}^{r}(C)$ of the projection $\pi_{L}: \mathbb{P}^{n}(C) \backslash L \longrightarrow \mathbb{P}^{r}(C)$ of $\mathbb{P}^{n}(C)$ with center L is a finite-to-one surjective regular map. Let W be the Zariski closure of $\pi\left(\left(X_{C} \backslash Z\right) \cup \operatorname{Sing}\left(X_{C}\right)\right)$ in $\mathbb{P}^{r}(C)$. Evidently, we have that $\operatorname{dim}(W)<r$. Applying Sard's theorem to $\left.\pi\right|_{X_{C} \backslash \pi^{-1}(W)}$, we find a point $z \in \mathbb{P}^{r}(C) \backslash W$ such that the $(n-r)$-dimensional linear subspace $N_{z}:=L \sqcup \pi_{L}^{-1}(z)$ of $\mathbb{P}^{n}(C)$ intersects transversally Nonsing $\left(X_{C}\right)$ in $\mathbb{P}^{n}(C)$ and $N_{z} \cap X_{C} \subset X_{C} \backslash \pi^{-1}(W) \subset$ Nonsing $\left(X_{C}\right)$. It is well-known that the cardinality of $N_{z} \cap X_{C}$ is exactly d^{*}. Let $\left\{Q_{j}=0\right\}_{j=1}^{r}$ be linear polynomial equations for N_{z} in $\mathbb{P}^{n}(C)$. The points of $N_{z} \cap X_{C}$ are the solutions of the following system of equations: $\left\{P_{i, C}^{*}=0\right\}_{i=1}^{n-r}$ and $\left\{Q_{j}=0\right\}_{j=1}^{r}$. In this way, Bezout's theorem ensures that $d^{*} \leq \prod_{i=1}^{n-r} \operatorname{deg}\left(P_{i, C}^{*}\right)=c$. It remains to prove that $g^{*} \leq\binom{ c-1}{r+1}$. If X is an affine subspace of R^{n}, then $g^{*}=0$ so there is nothing to prove. Suppose X is not an affine linear subspace of R^{n}. Recall that, by the Castelnuovo-Harris Bound Theorem [6], we know that $g^{*} \leq\binom{ a}{r+1}(m-r)+\binom{a}{r} b$ where m is the minimum dimension of a linear subspace of $\mathbb{P}^{n}(C)$ containing X_{C} and a and
b are the unique non-negative integers such that $d^{*}-1=a(m-r)+b$ and $b \in\{0,1, \ldots, m-r-1\}$. By elementary considerations, it is easy to see that $\binom{a}{r+1}(m-r)+\binom{a}{r} b \leq\binom{ d^{*}-1}{r+1} \leq\binom{ c-1}{r+1}$.

Proof of Theorem 1.2. Let P_{1}, \ldots, P_{n-r} be polynomials of $\mathcal{I}_{R^{n}}(X)$ such that $c=\prod_{i=1}^{n-r} \operatorname{deg}\left(P_{i}\right)$ and, for some $p \in \operatorname{Nonsing}(X)$, their gradients $\nabla P_{1}(p), \ldots, \nabla P_{n-r}(p)$ at p are independent. Let U be the Zariski open subset of X formed by points $x \in X^{*}:=\operatorname{Nonsing}(X) \backslash Y$ such that $\nabla P_{1}(x), \ldots, \nabla P_{n-r}(x)$ are independent. Fix a finite set of non-zero generators f_{1}, \ldots, f_{ν} of $\mathcal{I}_{R^{n}}(Y)$ in $R\left[x_{1}, \ldots, x_{n}\right]$ such that $u=\max _{j \in\{1, \ldots, \nu\}} \operatorname{deg}\left(f_{j}\right)$. For each $k \in\{1, \ldots, s-$ $1\}$, let g_{k} be a polynomial in $R\left[x_{1}, \ldots, x_{n}\right]$, let $G_{k}: X \longrightarrow R^{k}$ be a polynomial map and let Y_{k} be a subset of X with the properties described in the statement of Theorem 1.1". Fix $k \in\{1, \ldots, s-1\}$. The fact that $Y_{k} \cap U \neq \emptyset$ and 0_{k} is a regular value of $\left.G_{k}\right|_{X^{*}}$ implies that $\operatorname{cideg}\left(Y_{k}, R^{n}\right) \leq$ $\left(\prod_{i=1}^{n-r} \operatorname{deg}\left(P_{i}\right)\right) \cdot(u+1)^{k}=c(u+1)^{k}$. Theorem 1.2 now follows from Lemma 2.4.

Lemma 2.5 Let X be a nondegenerate irreducible algebraic subset of $\mathbb{P}^{n}(R)$ of dimension $r<n$, let $q \in \operatorname{Nonsing}(X)$ and let N be a linear subspace of $\mathbb{P}^{n}(R)$ of dimension $d \in\{0,1, \ldots, n-r-1\}$ such that $N \cap \mathbb{P} T_{q}(X)=\{q\}$. Let $\pi_{N}: \mathbb{P}^{n}(R) \backslash N \longrightarrow \mathbb{P}^{n-d-1}(R)$ be the projection of $\mathbb{P}^{n}(R)$ with center N. Then, the Zariski closure of $\pi_{N}(X \backslash N)$ in $\mathbb{P}^{n}(R)$ has dimension r.

Proof. It suffices to prove the following version of the lemma: "Let X be as above, let $q \in X$, let N be a linear subspace of $\mathbb{P}^{n}(R)$ of dimension $d \in\{0,1, \ldots, n-r-1\}$ and let $\pi_{N}: \mathbb{P}^{n}(R) \backslash N \longrightarrow \mathbb{P}^{n-d-1}(R)$ be the corresponding projection. Suppose that there is a Nash submanifold M of $\mathbb{P}^{n}(R)$ of dimension r containing q such that M is connected with respect to the euclidean topology, $M \subset X$ and $N \cap \mathbb{P} T_{q}(M)=\{q\}$ where, making use of Nash functions, $\mathbb{P} T_{q}(M)$ can be defined similarly to the projective tangent space $\mathbb{P} T_{p}(X)$ presented at page 6 (for the notions of Nash function and Nash submanifold of $\mathbb{P}^{n}(R)$, see [10] and [2]). Then, the restriction $\pi_{N}^{*}: M \backslash N \longrightarrow$ $\mathbb{P}^{n-d-1}(R)$ of π_{N} to $M \backslash N$ has rank r ". First, consider the case $d=0$. Indicate by $\pi_{q}: \mathbb{P}^{n}(R) \backslash\{q\} \longrightarrow \mathbb{P}^{n-1}(R)$ the projection of $\mathbb{P}^{n}(R)$ with center $\{q\}$ and by $\pi_{q}^{*}: M \backslash\{q\} \longrightarrow \mathbb{P}^{n-1}(R)$ its restriction to $M \backslash\{q\}$. We must prove that the rank $\operatorname{rnk}\left(\pi_{q}^{*}\right)$ of π_{q}^{*} is r. Suppose on the contrary that $\operatorname{rnk}\left(\pi_{q}^{*}\right)<r$. This condition implies that M is contained in $\mathbb{P} T_{q}(M)$. Since X is irreducible, it follows that $X \subset \mathbb{P} T_{q}(M)$ which is impossible because X is assumed to be nondegenerate in $\mathbb{P}^{n}(R)$. Let us complete the proof by induction on $n \geq r+1$. Let $n=r+1$. Since d must be null, we just know that $\operatorname{rnk}\left(\pi_{\{q\}}^{*}\right)=r$. Let $n>r+1$ and $d \in\{1, \ldots, n-r-1\}$. Fix $y \in N \backslash\left(M \cup \mathbb{P} T_{q}(M)\right)$
and denote by $\pi_{y}^{*}: M \longrightarrow \mathbb{P}^{n-1}(R)$ the restriction to M of the projection $\pi_{y}: \mathbb{P}^{n}(R) \backslash\{y\} \longrightarrow \mathbb{P}^{n-1}(R)$ of $\mathbb{P}^{n}(R)$ with center $\{y\}$. By Lemma 2.1, we know that π_{y}^{*} is an immersion at q so, restricting M around q if needed, we may suppose that: $N \cap M=\{q\}, \pi_{y}^{*}$ is an immersion and $M^{*}:=\pi_{y}^{*}(M)$ is a Nash submanifold of $\mathbb{P}^{n-1}(R)$ of dimension r. Let X^{*} be the Zariski closure of $\pi_{y}(X \backslash\{y\})$ in $\mathbb{P}^{n-1}(R)$, let $q^{*}:=\pi_{y}(q)$ and let $N^{*}:=\pi_{y}(N \backslash\{y\})$. It is easy to see that X^{*} is a nondegenerate irreducible algebraic subset of $\mathbb{P}^{n-1}(R)$ of dimension $r, q^{*} \in M^{*} \subset X^{*}, N^{*}$ is a linear subspace of $\mathbb{P}^{n-1}(R)$ of dimension $d-1$ and $\mathbb{P} T_{q^{*}}\left(M^{*}\right)=\pi_{y}\left(\mathbb{P} T_{q}(M)\right)$. In particular, we have that $N^{*} \cap \mathbb{P} T_{q^{*}}\left(M^{*}\right)=\left\{q^{*}\right\}$. Let $\pi_{N^{*}}: \mathbb{P}^{n-1}(R) \backslash N^{*} \longrightarrow \mathbb{P}^{n-d-1}(R)$ be the projection of $\mathbb{P}^{n-1}(R)$ with center N^{*} and let $\pi_{N^{*}}^{*}: M^{*} \backslash N^{*} \longrightarrow \mathbb{P}^{n-d-1}(R)$ be the restriction of $\pi_{N^{*}}$ to $M^{*} \backslash N^{*}$. By induction, it follows that $\operatorname{rnk}\left(\pi_{N^{*}}^{*}\right)=r$. Since $\pi_{N}^{*}=\left.\pi_{N^{*}}^{*} \circ \pi_{y}^{*}\right|_{M \backslash N}$, we have that $\operatorname{rnk}\left(\pi_{N}^{*}\right)=\operatorname{rnk}\left(\pi_{N^{*}}^{*}\right)=r$.

Proof of Theorem 1.4. We subdivide the proof into three steps.
Step I. We may suppose that X is an algebraic subset of $\mathbb{P}^{n}(R)$. Let $\pi_{p}: \mathbb{P}^{n}(R) \backslash\{p\} \longrightarrow \mathbb{P}^{n-1}(R)$ be the projection of $\mathbb{P}^{n}(R)$ with center $\{p\}$. Since X is not a cone of $\mathbb{P}^{n}(R)$ with vertex p, the Zariski closure X^{*} of $\pi_{p}(X \backslash\{p\})$ in $\mathbb{P}^{n-1}(R)$ has dimension r. Let W_{1}^{*} be the Zariski closure of $\operatorname{Sing}\left(X^{*}\right) \cup \pi_{p}(\operatorname{Sing}(X) \backslash\{p\})$ in $\mathbb{P}^{n-1}(R)$. Remark that $\operatorname{dim}\left(W_{1}^{*}\right)<r$ so $A:=X \cap \pi_{p}^{-1}\left(X^{*} \backslash W_{1}^{*}\right)$ is a non-void Zariski open subset of Nonsing $(X) \backslash\{p\}$. Let $\pi_{p}^{*}: A \longrightarrow \operatorname{Nonsing}\left(X^{*}\right)$ be the restriction of π_{p} from A to Nonsing $\left(X^{*}\right)$ and let W_{2}^{*} be the Zariski closure in $\mathbb{P}^{n-1}(R)$ of the set of critical values of π_{p}^{*}. By Sard's theorem, we know that $\operatorname{dim}\left(W_{2}^{*}\right)<r$. Define the non-void Zariski open subset Ω of $\operatorname{Nonsing}(X) \backslash\{p\}$ by $\Omega:=\left(\pi_{p}^{*}\right)^{-1}\left(\operatorname{Nonsing}\left(X^{*}\right) \backslash W_{2}^{*}\right)$. Remark that, for each $q \in \Omega$, the line L_{q} of $\mathbb{P}^{n}(R)$ containing p and q has the following property: $L_{q} \cap(X \backslash\{p\})$ is a finite subset of $\operatorname{Nonsing}(X) \backslash\{p\}$ and, for each $y \in L_{q} \cap(X \backslash\{p\}), L_{q} \cap \mathbb{P} T_{y}(X)=\{y\}$. Fix $q \in \Omega$.

Step II. Let X_{C} be the Zariski closure of X in $\mathbb{P}^{n}(C)$. We will prove that, for each $d \in\{1, \ldots, n-r\}$, there is a d-dimensional linear subspace N_{d} of $\mathbb{P}^{n}(C)$ defined over R such that, defining $F_{d}:=X_{C} \cap N_{d}$ and $F_{d, R}$ as the real part of F_{d}, the following is true: F_{d} is finite, contains $\{p, q\}$ and generates N_{d} in $\mathbb{P}^{n}(C)$ (i.e., the smallest linear subspace of $\mathbb{P}^{n}(C)$ containing F is N_{d}). Moreover, $F_{d, R} \backslash\{p\} \subset \operatorname{Nonsing}(X)$ and, for each $y \in F_{d, R} \backslash\{p\}$, $N_{d} \cap \mathbb{P} T_{y}\left(X_{C}\right)=\{y\}$. Let us proceed by induction on d. Let $d=1$. It suffices to define N_{1} equal to the Zariski closure of L_{q} in $\mathbb{P}^{n}(C)$. Let $d \in\{2, \ldots, n-r\}$. By induction, there is a $(d-1)$-dimensional linear subspace N_{d-1} of $\mathbb{P}^{n}(C)$ with the prescribed properties. Let $\pi_{d-1}: \mathbb{P}^{n}(C) \backslash N_{d-1} \longrightarrow \mathbb{P}^{n-d}(C)$ be the projection of $\mathbb{P}^{n}(C)$ with center N_{d-1} and, for each $z \in \mathbb{P}^{n-d}(C)$, let $N_{d, z}$ be the d-dimensional linear subspace of $\mathbb{P}^{n}(C)$ defined by $N_{d, z}:=N_{d-1} \sqcup$ $\pi_{d-1}^{-1}(z)$. Define $Z:=\bigcup_{y \in F_{d-1, R} \backslash\{p\}}\left\{z \in \mathbb{P}^{n-d}(C) \mid N_{d, z} \cap \mathbb{P}_{y}\left(X_{C}\right) \neq N_{d-1} \cap\right.$
$\left.\mathbb{P} T_{y}\left(X_{C}\right)\right\}=\bigcup_{y \in F_{d-1, R} \backslash\{p\}} \pi_{d-1}\left(\mathbb{P} T_{y}\left(X_{C}\right) \backslash N_{d-1}\right)$. Since $N_{d-1} \cap \mathbb{P} T_{y}\left(X_{C}\right)=$ $\{y\}$ for each $y \in F_{d-1, R} \backslash\{p\}$, by Lemma 2.1, we know that $\operatorname{dim}(Z)=r-1<$ $n-d$. Let X_{C}^{*} be the Zariski closure of $\pi_{d-1}\left(X_{C} \backslash N_{d-1}\right)$ in $\mathbb{P}^{n-d}(C)$ and let $\pi_{d-1}^{*}: X \backslash N_{d-1} \longrightarrow \mathbb{P}^{n-d}(R)$ be the restriction of π_{d-1} from $X \backslash N_{d-1}$ to $\mathbb{P}^{n-d}(R)$. Lemma 2.5 ensures that the Zariski closure of $\pi_{d-1}^{*}\left(X \backslash N_{d-1}\right)$ in $\mathbb{P}^{n-r}(R)$ has dimension r. In particular, it follows that $\operatorname{dim}\left(X_{C}^{*}\right)=r$. Let W_{1}^{*} be the Zariski closure of $\operatorname{Sing}\left(X_{C}^{*}\right) \cup \pi_{d-1}\left(\operatorname{Sing}\left(X_{C}\right) \backslash N_{d-1}\right)$ in $\mathbb{P}^{n-d}(C)$, let $A:=X_{C} \cap \pi_{d-1}^{-1}\left(X_{C}^{*} \backslash W_{1}^{*}\right)$ and let W_{2}^{*} be the Zariski closure in $\mathbb{P}^{n-d}(C)$ of the set of critical values of the restriction of π_{d-1} from A to Nonsing $\left(X_{C}^{*}\right)$. By Sard's theorem, it follows that $\operatorname{dim}\left(W_{2}^{*}\right)<r$ so $\operatorname{dim}\left(Z \cup W_{1}^{*} \cup W_{2}^{*}\right)<r$ also. In this way, the set $\pi_{d-1}^{*}\left(X \backslash N_{d-1}\right) \backslash\left(Z \cup W_{1}^{*} \cup W_{2}^{*}\right)$ is non-void. Fix a point z in such a set. It is easy to see that $N_{d, z}$ has the desired properties. The induction is complete.

Step III. We have just proved the existence of a $(n-r)$-dimensional linear subspace N of $\mathbb{P}^{n}(C)$ defined over R such that, defining $F:=X_{C} \cap N$ and F_{R} as the real part of F, the following is true:
a) F is finite, contains $\{p, q\}$ and generates N in $\mathbb{P}^{n}(C)$,
b) $F_{R} \backslash\{p\} \subset \operatorname{Nonsing}(X)$ and, for each $y \in F_{R} \backslash\{p\}, N \cap \mathbb{P} T_{y}\left(X_{C}\right)=\{y\}$.

Let $\pi_{N}: \mathbb{P}^{n}(C) \backslash N \longrightarrow \mathbb{P}^{r-1}(C)$ be the projection of $\mathbb{P}^{n}(C)$ with center N and let $\pi_{N}^{\prime}: X_{C} \backslash N \longrightarrow \mathbb{P}^{r-1}(C)$ be its restriction to $X_{C} \backslash N$. Following the argument used in the proof of Lemma 2.5, it is easy to see that $\pi_{N}(X \backslash N)$ contains a non-void euclidean open subset of $\mathbb{P}^{r-1}(R)$. Applying Bertini's theorem to π_{N}^{\prime} and to $\left.\pi_{N}^{\prime}\right|_{\operatorname{Nonsing}\left(X_{C}\right) \backslash N}$, we find a point $z \in \pi_{N}(X \backslash N)$ such that, defining $N_{z}:=N \sqcup \pi_{N}^{-1}(z)$ and $D_{C}^{\prime}:=N_{z} \cap\left(X_{C} \backslash N\right), D_{C}^{\prime}$ is an irreducible algebraic curve of $X_{C} \backslash N$ defined over $R, D_{C}^{\prime} \cap X \neq \emptyset$ and $D_{C}^{\prime} \cap\left(\operatorname{Nonsing}\left(X_{C}\right) \backslash N\right) \subset \operatorname{Nonsing}\left(D_{C}^{\prime}\right)$. Let $D_{C}:=N_{z} \cap X_{C}$. Remark that D_{C} coincides with the Zariski closure of D_{C}^{\prime} in X_{C} because $D_{C} \backslash D_{C}^{\prime}$ is equal to F (which is finite) and each irreducible component of D_{C} has dimension greater than or equal to $r+(n-r+1)-n=1$. In this way, D_{C} is an irreducible algebraic curve of X_{C} defined over R and containing F. Bearing in mind previous properties a) and b) of F and F_{R}, we have that D_{C} generates N_{z} in $\mathbb{P}^{n}(C)$ and $D_{C} \cap(\operatorname{Nonsing}(X) \backslash\{p\}) \subset$ Nonsing $\left(D_{C}\right)$. In particular, denoting by D_{q} the real part of D_{C}, it follows that D_{q} is an irreducible algebraic curve of X containing $\{p, q\}$ such that $D_{q} \cap(\operatorname{Nonsing}(X) \backslash\{p\}) \subset \operatorname{Nonsing}\left(D_{q}\right)$ and the Zariski closure \bar{D}_{q} of D_{q} in $\mathbb{P}^{n}(C)$ is equal to D_{C}. Since $\bar{D}_{q}=N_{z} \cap X_{C}$, by applying Bezout's theorem, we obtain that $\operatorname{deg}\left(\bar{D}_{q}\right)=\operatorname{deg}\left(X_{C}\right)=d^{*}$. Moreover, by the Castelnuovo Bound Theorem (see [6] or [1], page 116), we have that $p_{g}\left(\bar{D}_{q}\right) \leq \operatorname{Castel}\left(d^{*}, \operatorname{dim}(N)\right)=\operatorname{Castel}\left(d^{*}, n-r+1\right)$. It remains to prove that $\operatorname{Castel}\left(d^{*}, n-r+1\right) \leq \operatorname{Castel}(c, n-r+1)$. Lemma 2.4 ensures
that $d^{*} \leq c$ so, by a direct calculation, it is easy to verify the truthfulness of the previous inequality.

Acknowledgements. I thank Edoardo Ballico who suggested me remarkable simplifications to the original proof of Theorem 1.1'.

References

[1] E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris, Geometry of algebraic curves, Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 267. Springer-Verlag, New York, 1985.
[2] J. Bochnak, M. Coste and M.-F. Roy, Real algebraic geometry, Translated from the 1987 French original. Revised by the authors. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36. Springer-Verlag, Berlin, 1998.
[3] D. Dubois and G. Efroymson, A dimension theorem for real primes, Canad. J. Math. 26 (1974), no. 1, 108-114.
[4] R. Ghiloni, On the space of real algebraic morphisms, Rend. Mat. Acc. Lincei, Ser. 9, 14 (2003), no. 4, 307-317.
[5] R. Ghiloni, Elementary structure of morphism space between real algebraic varieties, (to apper) available at http://www.uniregensburg.de/Fakultaeten/nat_Fak_I/RAAG/preprints
[6] J. Harris, A bound on the geometric genus of projective varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 35-68.
[7] J.-P. Jouanolou, Théorèmes de Bertini et applications, (French) [Bertini theorems and applications] Progress in Mathematics, 42. Birkhaüser Boston, Inc., Boston, MA, 1983.
[8] W. Kucharz, A note on the Dubois-Efroymson dimension theorem, Canad. Math. Bull. 32 (1989), no. 1, 24-29.
[9] Y. Nakai and H. Nishimura, On the existence of a curve connecting given points on an abstract variety, Mem. Coll. Sci. Univ. Kyoto, Ser. A, Math. 28, (1954), no. 3, 267-270.
[10] A. Tognoli, Algebraic geometry and Nash functions, Institutiones Mathematicae, Vol. 3, Academic Press, London-New York, 1978.

