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1. Introduction

The security of public-key primitives relies on the assumption that some mathemat-
ical problems cannot be solved in polynomial time. Namely, many of the current
public-key cryptosystems base their security either on the hardness of factoring inte-
gers or computing discrete logarithms over finite cyclic groups. Both these problems
were considered beyond the computational power of any calculator, until Shor [57],
in 1994, proposed Las Vegas polynomial-time algorithms for factoring integers and
computing discrete logarithms on quantum computers.

Within the near future, quantum computers will probably be powerful enough to
run Shor’s algorithm and, consequently, undermine the security of many currently-
deployed public-key schemes. In order to tackle this threat, a new line of cryp-
tographic research, named post-quantum cryptography, has started looking for
mathematical problems, and therefore cryptosystems, that can resist even the
attacks of quantum computers.

The (supposedly) quantum-resistant cryptosystems that have been proposed so
far can be merged into five large families: lattice-based, code-based, hash-based,
multivariate and isogeny-based schemes. In this work, we will restrict our attention
to the latter family, which is derived from classical number-theoretical results and,
despite being the most recent, is particularly appealing as it enjoys short keys and
ciphertexts.

The first isogeny-based cryptosystem was a non-interactive key-exchange proto-
col detailed by Couveignes in a talk given in 1997 [23]. This work had only spread
privately until 2006, and the system was rediscovered independently by Stolbunov
and Rostovtsev [56]. For a given imaginary quadratic order O, the scheme exploits
the free and transitive action of the ideal class group C�(O) on the Fpm -isomorphism
classes of ordinary elliptic curves over Fpm having endomorphism ring isomorphic
to O. Despite its theoretical interest and the introduction of remarkable mathe-
matically driven speed-ups by De Feo et al. [27], this scheme turned out to be
too inefficient to cope with a subexponential quantum attack devised by Childs
et al. [20] exploiting the commutativity of C�(O).

To overcome the efficiency issues, in 2018, Castryck et al. [15] reshaped the
seminal idea of Couveignes, Stolbunov and Rostovtsev using supersingular, rather
than ordinary, elliptic curves. In fact, given a prime p and a supersingular elliptic
curve E over Fp, the ring EndFp(E), whose elements are the Fp-endomorphisms
of E, is an order O in a quadratic field (specifically, Q(

√−p)). Furthermore, the
ideal class group C�(O) acts freely and transitively on the set of (Fp-isomorphism
classes of) supersingular elliptic curves E over Fp for which EndFp(E) is isomorphic
to O. The resulting protocol is named CSIDH, which stands for Commutative
Supersingular Isogeny Diffie–Hellman and is pronounced “sea-side”. CSIDH enjoys
a faster key exchange than the original scheme, since the structure of rational groups
of supersingular elliptic curves over Fp allows the efficient computation of the action
of some class group elements.
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To be more precise, computing the action of an arbitrary element [a] ∈ C�(O)
has subexponential complexity [11, §9.5]. However, the set of rational points E(Fp)
of a supersingular elliptic curve E over Fp has cardinality equal to p + 1 and,
considering a prime p = 4�1�2 · · · �n − 1 with �1, �2, . . . , �n small odd primes, a
special element [Ii] ∈ C�(O) can be associated to each prime �i. The action of such
special elements (respectively, their inverses) can be computed somewhat efficiently,
since it is determined by an isogeny whose kernel is the unique subgroup of E(Fp)
(respectively, Et(Fp), where Et denotes the quadratic twist of E) having order �i.
As a consequence, the action of the elements in C�(O) having the form

∏n
i=1[Ii]ei —

where the integral exponents ei are chosen from some small interval [−B,B] — can
be computed “ideal-by-ideal” working in the base field Fp.

The CSIDH scheme deals only with the actions of such elements. In fact, the
private key of a user is a vector (e1, . . . , en) ∈ [−B,B]n, and a key exchange requires
computing the action of [a] =

∏n
i=1[Ii]ei . This computation consists in calculating

a chain of “atomic” isogenies (one for each occurrence of the factors [Ii]), and it
is the most expensive step of the protocol. Recently, several strategies have been
proposed to speed up this computation [5, 12, 47, 51, 54] and to make its running
time independent of the private key in order to prevent certain kinds of side-channel
attacks [3, 7, 17, 19, 35, 46, 53].

1.1. Our contribution

Isogeny-based cryptography is growing fast. Keeping track of all its developments
has become more difficult, especially for those who approach the subject for the first
time. The need for a unified dissertation is particularly evident for CSIDH, since
its promising features have already motivated many contributions regarding both
its efficiency and its security. Our goal is to gather all those results which center on
efficiency in a self-contained work, focusing on the mathematical ideas lying behind
them rather than on cryptographic and low-level implementation techniques. This
is motivated by the fact that CSIDH itself, as well as almost all cryptosystems
deduced from it, is not as efficient as some other post-quantum counterparts. Our
belief is that a major computational speed-up is likely to come either from some
computational number-theoretical results or a high-level implementation optimiza-
tion, rather than cryptographic and low-level implementation techniques. This work
is then meant as an invitation to the broad number-theoretic community, with the
hope of triggering further research on the topic.a

1.2. Overview

Three main themes will be considered throughout this survey: speed-up of the class-
group-action evaluation, constant-time class-group-action evaluation and computa-
tions in a class group with known structure. Below we provide a short summary of

aThis paper is the extended version of the long abstract [45].
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the results we discuss for each theme. As its aim is that of providing a preview of
the papers surveyed in this work, it refers to some mathematical objects which will
be introduced later in the paper.

1.2.1. Speed-up of the class-group-action evaluation

In the original CSIDH proof-of-concept implementation, computing the action of
some ideal class [Ii] requires an Fp-rational point P lying on the domain curve and
having order divisible by �i. Usually, the order of P is also divisible by some of the
other odd primes �j �= �i dividing p+ 1. As a consequence, the image of P via the
atomic isogeny corresponding to [Ii], say ϕ, can still be used to compute some of
the subsequent atomic isogenies. Using ϕ(P ) is cheaper than determining a new
Fp-rational point, and therefore improving its computation is of great interest.

In [47], Meyer and Reith propose a trick to reduce the number of field opera-
tions for computing ϕ(P ). Furthermore, they highlight how the birational equiv-
alence between Montgomery curves and Twisted Edwards curves can improve the
calculation of the image curve of ϕ.

Costello and Hisil [21] build on [47] to derive more efficient formulas for evalu-
ating isogenies between Montgomery curves. Following the same research direction,
two independent works of Bernstein et al. [5] and Kodera et al. [39] construct new
efficient formulas for computing both ϕ(P ) and the image curve.

In [54], Onuki and Takagi show that
∏n

i=1[Ii]3 = [(1)] (the same was observed
independently in [16] by Castryck et al.) and derive an efficient procedure to com-
pute the action of

∏n
i=1[Ii]. This can be exploited to speed up the computation of

the actions of ideals
∏n

i=1[Ii]ei corresponding to vectors (e1, . . . , en) of Hamming
weight n.

Nakagawa et al. [51] propose using an L1-norm ball as a secret-key space, thus
achieving a secure variant of CSIDH whose average execution cost is minimal among
a specific family of secret-key spaces.

Castryck and Decru [12] use a different approach to speed up the class-group-
action evaluation. In particular, they transpose the CSIDH scheme to a set of super-
singular elliptic curves different from that used in CSIDH. The resulting scheme for
a bespoke prime p is 5.68% faster than the CSIDH protocol for a prime of similar
size.

Finally, Castryck et al. [14] describe a deterministic procedure to obtain a chain
of �-isogenies starting from an elliptic curve with a given �-torsion point. In order
to fully take advantage of the procedure, they use a different secret-key space than
the original CSIDH parameters.

1.2.2. Constant-time class-group-action evaluation

In the CSIDH proof-of-concept implementation proposed in [15], the running time
to compute the action of

∏n
i=1[Ii]ei heavily depends on the private key (e1, . . . , en).
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Consequently, an attacker having access to timing data could retrieve information
about the private key.

To tackle this issue, Bernstein et al. [7] present a constant-time implementation
that, for each private key, executes the same number of field operations, with a
negligible failure probability. Building on some of the techniques introduced in [7],
Meyer et al. [46] devise a no-failure implementation whose number of field opera-
tions is independent of the private key but may vary due to the randomness used. In
particular, in their implementation, a fixed number of isogenies is computed for each
of the small odd primes �1, . . . , �n, and a key space lying in (Z≥0)n is considered.

The implementation proposed by Onuki et al. in [53] retains some of the tech-
niques from [46] while allowing secret keys to have negative entries. In particular,
for the computation of each atomic isogeny, two points — one on the domain curve
and one on its twist — are used.

Hutchinson et al. [35] and Chi-Domı́nguez and Rodŕıguez-Henŕıquez [19] inde-
pendently extend to the CSIDH setting the optimal strategies introduced in [36],
gaining a further speed-up for the constant-time evaluation.

Finally, in [3], Banegas et al. design CTIDH, which is a new constant-time
evaluation of the CSIDH group action based on a suitably tailored key space.

1.2.3. Computations in an ideal class group with known structure

The similarities of CSIDH with the standard Diffie–Hellman protocol have led
researchers to use it as a building block for new isogeny-based cryptosystems and,
in particular, digital signatures.

Stolbunov [59] was the first to propose an isogeny-based digital signature scheme
(working with ordinary elliptic curves), but the security of his protocol requires the
ideal class group C�(O) to have a suitable structure. The same assumption on C�(O)
is also needed when translating the scheme to the CSIDH setting. Unfortunately,
for primes p of cryptographic size, computing the structure of C�l(O) is prohibitive.
Therefore, alternative solutions to make the signature scheme safe have been pro-
posed [26], but none of them seem efficient enough to be used in practice.

Finally, in 2019, Beullens et al. [8] made a record class group computation and
explicitly found the structure of C�(O) for one set of CSIDH parameters, named
CSIDH-512. Starting from this result, they were able to design the first practical
isogeny-based digital signature, named CSI-FiSh.

For CSIDH-512, C�(O) is a cyclic group for which a generator g is known. There-
fore, it is isomorphic to Z/NZ, where N = |C�(O)|. Thus, each vector (e1, . . . , en)
can be represented by an integer in {0, . . . , N−1}. Such unique representation guar-
antees that no information is leaked when producing a CSI-FiSh signature. How-
ever, the verification algorithm requires computing the action of an element [g]a,
with a ∈ Z/NZ. In order to make this computation feasible, it is necessary to find
a vector (f1, . . . , fn) with small integral coordinates such that [g]a =

∏n
i=1[Ii]fi .

In [8], a lattice-based strategy to find a vector of this kind is proposed.
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1.3. Roadmap

The remainder of the paper is organized as follows. In Section 2, some preliminary
results on elliptic curves and isogenies are reviewed. Section 3 describes the CSIDH
key-exchange protocol and details its original proof-of-concept implementation. In
Section 4, we discuss the techniques that have been proposed so far to speed up the
execution of CSIDH. In Section 5, some constant-time CSIDH implementations are
described. Section 6 focuses on the CSIDH-512 set of parameters. Finally, Section 7
draws some conclusions.

2. Preliminaries

In this section, we recall some basic notions and results about elliptic curves over
finite fields. In doing this, at the beginning we will denote by K a perfect field such
that char(K) /∈ {2, 3}, and then we will specialize to the case K = Fp, where Fp is
the finite field with p elements and p > 3 is a prime. For more details about elliptic
curves over finite fields, we refer the interested reader to [24, 30, 48, 58]. Later on,
we focus on the class group action which the CSIDH key exchange is based on. As
evaluating this action is the heaviest computational task within an execution of the
cryptosystem, we recall a few models of elliptic curves that have been used to speed
it up (see Section 3).

2.1. Elliptic curves

An elliptic curve over K is a projective algebraic curve whose affine equation, up to
K-birational equivalence, is a nonsingular affine Weierstrass equation of the form

E : y2 + a1xy + a3y − (x3 + a2x
2 + a4x+ a6)︸ ︷︷ ︸

F (x,y)

= 0 (1)

with a1, a3, a2, a4, a6 ∈ K. By nonsingular we mean that(
∂F

∂x
(P ),

∂F

∂y
(P )
)
�= (0, 0)

for all pairs P ∈ K ×K satisfying Eq. (1), where K denotes the algebraic closure
of K. Given a second elliptic curve E′ over K,

E′ : y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6,

we say that E and E′ are isomorphic over K (or K-isomorphic) if E′ can be
obtained from E by a change of variables of the form(

x

y

)
�→
(
u2 0

u2s u3

)(
x

y

)
+

(
r

t

)
with u ∈ K∗, r, s, t ∈ K

and dividing the resulting equation by u6. Every elliptic curve E is given by a short
Weierstrass equation

E : y2 = x3 +Ax+B (2)

up to K-birational equivalence.
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A binary operation, for which the additive notation is usually adopted, can be
defined over the set containing the affine points of an elliptic curve E and a formal
point ∞, making it an abelian group. Given two elliptic curves

E : y2 = x3 +Ax+B and E′ : y2 = x3 +A′x+B′

overK, an isogeny ϕ : E → E′ is a non-constant rational map which is furthermore,
a group homomorphism.b We say that ϕ is separable if K(E) is a separable field
extension of ϕ∗(K(E′)), where

• K(E) is the fraction field of K[x, y]/(y2 − x3 − Ax − B) and K(E′) is defined
analogously.
• ϕ∗ is the pullback map sending f ∈ K(E′) into ϕ∗(f) = f ◦ ϕ ∈ K(E).

Furthermore, the degree of ϕ is defined as the dimension of K(E) over ϕ∗(K(E′)),
and we denote it by deg(ϕ). For a separable isogeny ϕ, the relation deg(ϕ) =
|Ker(ϕ)| holds [64, Theorem 12.8].

2.2. Supersingular elliptic curves

An endomorphism of an elliptic curve E is an isogeny from E to itself. We denote
by End(E) the set containing all the endomorphisms of E together with the zero
map. This set is a ring with respect to pointwise addition and composition. An
elliptic curve E is called supersingular if End(E) is non-commutative, otherwise it
is called ordinary. In particular, when E is a supersingular elliptic curve, End(E)
is an order in a quaternion algebra [58, Theorem V.3.1].

Although some of the results discussed below hold for general fields, for the sake
of simplicity we will assume K = Fp, where p > 3 is a prime, until the end of the
section.

An elliptic curve E : y2 = x3 + Ax + B over Fp is supersingular if and only if
the subgroup of its rational points, i.e.

E(Fp) = {(x0, y0) ∈ Fp × Fp | y2
0 = x3

0 +Ax0 +B} ∪ {∞},

has cardinality p+ 1 [65, Theorem 4.1]. Furthermore, given a supersingular elliptic
curve E over Fp, an elliptic curve E′ over Fp is isogenous to E (i.e. there exists an
isogeny E′ → E) if and only if E′ is supersingular too [62, §3].

By definition, each coordinate of an isogeny ϕ : E → E′ is the fraction of two
polynomials in Fp[x, y]; if the coefficients of such polynomials lie in Fp, then ϕ is
said to be defined over Fp. We denote by EndFp(E) the subring of End(E) containing
the zero map and all endomorphisms of E which are defined over Fp.

bMore generally, if E and E ′ are curves, and α : E → E and β : E ′ → E′ are K-birational equiva-
lences, we say that Φ: E → E ′ is an isogeny (between curves) if β ◦ Φ ◦ α is an isogeny.
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2.3. Class-group action

From now on, we assume that E is a supersingular elliptic curve over Fp, with
p > 3.

The ring EndFp(E) is isomorphic to an order in the imaginary quadratic field
Q(
√−p) [28, Theorem 2.1]. In particular, we have either EndFp(E) 
 Z[

√−p] or
EndFp(E) 
 OQ(

√−p). In the former case we say that E lies on the floor, otherwise
we say that E lies on the surface.c We note that floor and surface coincide when
p equals 1 modulo 4. CSIDH deals only with supersingular elliptic curves on the
floor, and works with primes p of the form p = 4�1 · . . . · �n − 1, where �1, . . . , �n
are distinct odd primes. In this case, the group E(Fp) has two possible structures,
namely:

Z4 × Z�1 × · · · × Z�n or Z2 × Z2 × Z�1 × · · · × Z�n .

Theorem 2.7 from [28] implies that E lies on the floor if and only if the former rela-
tion holds. Therefore, the number of 2-torsion points in E(Fp) determines whether
E lies on the floor or on the surface.

We denote by E��p(O, π) the set of all supersingular elliptic curves E over Fp

(up to Fp-isomorphism) such that there exists an isomorphism between O and
EndFp(E) mapping

√−p to the Frobenius endomorphism π : (x, y) �→ (xp, yp).
Under this isomorphism, in particular, an ideal a ⊂ O can be viewed as a set of
endomorphisms.

The ideal class group C�(O) acts freely and transitively on E��p(O, π) [15, The-
orem 7] as follows: given [a] ∈ C�(O), we define [a] � [E] — or E/a or a � E for
simplicity — to be the codomain of the unique (up to Fp-isomorphism) isogeny
ϕa : E → E/a with kernel ∩α∈a Ker(α). One can check that this definition does not
depend on the representative chosen for [a]. On the other hand, we remark that ϕa

does depend on such choice, and its degree equals the norm of a.
The general approach to compute the action of a random element [a] ∈ C�(O)

is the following:

• Find an ideal b ⊂ O that can be written as a product of ideals
∏

i bei

i such
that the norm of each bi is at most M and [b] = [a] (such b always exists for
M = O(log p) by [11, §9.5]).
• Compute the chain of isogenies

E0

ϕb1−→ · · · ϕbn−→ En

using Vélu’s formulas (which will be presented later in this section).

With no further assumption on O, however, finding a suitable b takes subexpo-
nential time. The state-of-the-art algorithm, presented in [9], also ensures that the
exponents ei are suitably small. Another possible problem is that the kernels of

cThis terminology, first introduced by Kohel [40], is borrowed from ordinary isogeny graphs, which
have a volcano structure (see e.g. [60]).
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b1, . . . , bn, needed to apply Vélu’s formulas, might lie in large extensions of Fp.
We will now see how CSIDH circumvents these issues by means of an appropriate
choice of parameters.

Namely, the CSIDH scheme sets O = Z[
√−p] for p = 4�1 ·. . .·�n−1, and exploits

the action � of C�(Z[
√−p]) on E��p(Z[

√−p], π) to construct a key exchange. By con-
struction, each small odd prime �i dividing p+1 splits in O, i.e. �iO can be written
as a product of two distinct prime ideals Ii and Īi. Precisely (see e.g. [48, Theorem
3.41]), Ii = (�i,

√−p − 1) and Īi = (�i,
√−p + 1). We stress that [Īi] = [Ii]−1

since IiĪi = �iO, which is principal. The action of these ideals can be efficiently
evaluated. In fact, for all i = 1, . . . , n and [E] ∈ E��p(O, π), the curves E/Ii and
E/Īi are the image curves of the separable isogenies with domain E and kernels

E(Fp) ∩ E[�i] and {P ∈ E(Fp2) |π(P ) = −P} ∩ E[�i],

respectively. The images E/Ii and E/Īi are uniquely defined, modulo Fp-
isomorphism, by their kernel [58, Theorem III.4.1]. Furthermore, they can be explic-
itly computed from a point P lying on E(Fp) or E(Fp2) and having order �i. This is
usually done by means of Vélu’s formulas, which we gather in Theorem 1 for ellip-
tic curves in short Weierstrass form. Here we specialize the formulas to the CSIDH
setting; a more general version of the formulas below can be found in [32, §25.1.1].
Vélu’s formulas can be also adapted to other models of elliptic curves (see Theo-
rem 3 and [50]).

Theorem 1 (Vélu’s formulas). Let E : y2 = x3 + Ax + B be an elliptic curve
over K, and P ∈ E(K) a point of odd order �. Choose a set S ⊂ 〈P 〉 such that

• � = 1 + 2 · |S|,
• 〈P 〉 = {∞} ∪ S ∪ {−Q | Q ∈ S},
e.g. S = {P, [2]P, . . . , [ �−1

2 ]P}. For each point Q = (xQ, yQ) ∈ S define

A′ = A− 10 ·
∑
Q∈S

(3x3
Q +A) and B′ = B − 14 ·

∑
Q∈S

(2y2
Q + xQ(3x3

Q +A))

as parameters of an elliptic curve E′ in short Weierstrass form. Then

ϕ : E → E′

(x, y) �→ (x′, y′)

with

x′ = x+
∑
Q∈S

(
2 · (3x

3
Q +A)

x− xQ
+
(

2yQ

x− xQ

)2
)
,

y′ = y − 2 ·
∑
Q∈S

(
4y2

Q

y

(x− xQ)3
+ (3x3

Q +A)
y

(x − xQ)2

)

is a separable isogeny with kernel 〈P 〉.
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The computational cost of finding the image of a given point in the domain and
the parameters of the image curve, using the above formulas, is Θ(�). Optimizing
Vélu’s formulas is an effective strategy to speed up the CSIDH class-group-action
evaluation, as we are going to show in Section 4.

2.4. Other models of elliptic curves

The short Weierstrass equation (2) is not the only possible way to represent an
elliptic curve up to K-isomorphism: alternative models are often used in order to
speed up computations. Throughout this section, we will consider three of them:
Montgomery curves, Tate curves and Edwards curves.

2.4.1. Montgomery

A Montgomery curve over K is an algebraic curve defined by an affine equation of
the form

EA,B : By2 = x3 +Ax2 + x (3)

with B �= 0 and A2 �= 4. Each Montgomery curve over K is K-birationally equiva-
lent to an elliptic curve over K in short Weierstrass form with the following param-
eters [22, §2.4]: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
A′ = B2

(
1− A2

3

)
,

B′ =
B3A

3

(
2A2

9
− 1
)
.

The next result from [52] deals with the converse, specialized to the case K = Fq

where q is a prime power.

Proposition 1. Let E′ : y2 = x3+A′x+B′ be an elliptic curve in short Weierstrass
form over Fq. Then E′ is Fq-birationally equivalent to a Montgomery curve E over
Fq if and only if E′ has an Fq-rational 2-torsion point (α, 0) and 3α2 +A′ = s2 for
some s ∈ Fq.

If that case, the parameters of E are{
A = 3αs,
B = s.

The main reason why Montgomery curves are often preferred over elliptic curves
in Weierstrass form is that they allow for faster scalar multiplications. In fact, given
a point P of a Montgomery curve, say P = (xP , yP ), and a positive integer m, the
Montgomery ladder [22, §3] provides efficient formulas to compute the x-coordinate
of [m]P given xP (and E).

Furthermore, the following theorem [15, Proposition 8] shows how, in the CSIDH
setting, Montgomery curves allow representing each element of E��p(Z[

√−p], π)
with a single element of the base field Fp.
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Theorem 2. Let p > 3 be a prime such that p ≡ 3 (mod 8) and E a supersingular
elliptic curve over Fp. Then, E lies on the floor if and only if there exists A ∈ Fp

such that E is Fp-isomorphic to the Montgomery curve EA,1 : y2 = x3 + Ax2 + x.
Moreover, if such A exists, it is unique.

Since [E] ∈ E��p(O, π) is the class of supersingular elliptic curves that are Fp-
isomorphic to E, all the curves therein are Fp-isomorphic to the same Montgomery
curve EA,1. Therefore, [E] can be identified with A.

The following result (see [21, Theorem 1; 44, Theorem 1]) adapts Vélu’s formulas
to Montgomery curves.

Theorem 3. Consider a point P ∈ EA,1(Fp)\{∞} of odd order � = 2d + 1 on a
Montgomery curve EA,1 : y2 = x3 +Ax2 + x defined over Fp. Define

σ =
d∑

i=1

x[i]P , σ̃ =
d∑

i=1

(1/x[i]P ) and ω =
d∏

i=1

x[i]P ,

where x[i]P denotes the x-coordinate of the point [i]P . Then, the Montgomery curve

EA′,1 : y2 = x3 + A′x2 + x

with

A′ = (6σ̃ − 6σ + a) · ω2

is the codomain of the separable isogeny φ : EA,1 → EA′,1 of degree � and kernel
〈P 〉, whose coordinates are given by the map

φ : (x, y) �→ (f(x), ωyf ′(x)),

where

f(x) = x ·
d∏

i=1

(
x · x[i]P − 1
x− x[i]P

)2

(4)

and f ′(x) is its derivative.

2.4.2. Tate

A Tate curve over K is an algebraic curve defined by an affine equation

E : y2 + (1− C)xy −By = x3 −Bx2

with

(1− C)4B3 − (1− C)3B3 − 8(1− C)2B4 + 36(1− C)B4 − 27B4 + 16B5 �= 0.

The main advantage of using Tate curves is that the parameters B and C can be
chosen in such a way that [m]P = ∞ for P = (0, 0) and some small integer m ≥
4. Namely, the latter condition is equivalent to imposing a polynomial condition
fm(B,C) = 0 [34, §4.4]. For example, the condition [5]P = ∞ is equivalent to
B − C = 0.
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In the CSIDH setting, Tate curves — in particular the fact that P = (0, 0) is
a torsion point of suitable order — are used to speed up isogeny computations, as
we are going to show in Section 4.6.

2.4.3. Twisted Edwards

A twisted Edwards curve over K is an algebraic curve defined by an affine equation

E : ax2 + y2 = 1 + dx2y2 (5)

with a, d distinct nonzero elements. When a = 1, we simply call E an Edwards curve
and denote it by Ed. Each twisted Edwards curve is K-birationally equivalent to a
Montgomery curve [4, Theorem 3.2] with parameters⎧⎪⎪⎨

⎪⎪⎩
A = 2 · a+ d

a− d,

B =
4

a− d.
The above formulas can be easily inverted to compute the twisted Edwards curve
corresponding to a given Montgomery curve:⎧⎪⎪⎨

⎪⎪⎩
a =

A+ 2
B

,

d =
A− 2
B

.

The main advantage of twisted Edwards curves consists in having efficient formulas
to compute the image curve corresponding to a given isogeny [50, Corollary 1]. We
gather them below.

Theorem 4. Consider a point P ∈ E(Fp)\{∞} of odd order � = 2s+1 on a twisted
Edwards curve E : ax2 + y2 = 1 + dx2y2 defined over Fp. Define

B =
s∏

i=1

y[i]P and d̂ = B8

(
d

a

)�

, (6)

where y[i]P denotes the y-coordinate of the point [i]P . Then, there exists a separable
isogeny ϕ : E → E′ with kernel 〈P 〉, where E′ : x2 + y2 = 1 + d̂x2y2.

Twisted Edwards curves will be considered only to compute the codomain of
isogenies of given kernels (see Section 4.1), rather than evaluating these isogenies
on given points.

2.5. Finite field arithmetic

Additions, multiplications and — more rarely — inversions over Fpn are essentially
the only operations involved in CSIDH. As a reference for the rest of this paper,
we summarize their computational costs in the following table, setting q = pn. We
refer the interested reader to [61] for further details.
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Computation time Reference

Addition O(log q) [38, p. 171]
Multiplication O(log q log log q) [33]
Inversion O(log q(log log q)2) [63, Theorem 11.10]

3. CSIDH

In this section, we describe the original CSIDH key-exchange protocol [15] and
detail its proof-of-concept implementation.

3.1. The key-exchange protocol

As anticipated, the isogeny-based key exchange CSIDH [15] is obtained from the
action � of C�(O) on E��p(O, π), with O = Z[

√−p], for a fixed CSIDH prime
p = 4�1 · . . . · �n − 1. Since — as we have already remarked — evaluating the
action of a random element [a] ∈ C�(O) has subexponential complexity, the scheme
deals only with the action of the elements of the form

∏n
i=1[Ii]ei , where the ideals

Ii are defined as in Section 2.3 and the integral exponents ei are chosen from
some small interval [−B,B], with B a positive integer. In fact, evaluating these
actions corresponds to calculating sequences of efficient actions, i.e. sequences of
small-degree isogenies, as we have seen in Section 2.3. Thus, a first rough estimate
suggests that computing the action of an element

∏n
i=1[Ii]ei requiresO(Bn�n) time.

In addition to the prime p (which, in turn, determines n), the public parameters
of the CSIDH protocol specify the value of the small positive integer B and a
starting elliptic curve E0 : y2 = x3 + x, which is defined over Fp, supersingular [64,
Theorem 4.37], and lies on the floor [15, Proposition 8].

The set of private keys is [−B,B]n: each vector (e1, . . . , en) represents an ele-
ment [a] =

∏n
i=1[Ii]ei in C�(O). The public key corresponding to the private

key (e1, . . . , en) is defined as E0/a. Based on heuristic observations [15, p.4],
the set of public keys is assumed to be E��p(O, π) — equivalently, the equality
{∏n

i=1[Ii]ei | (e1, . . . , en) ∈ [−B,B]n} = C�(O) is assumed to hold.
Below we recall how the key exchange between two users, Alice and Bob,

works. At the beginning, Alice and Bob have key pairs ((e1, . . . , en), E0/a) and
((f1, . . . , fn), E0/b), respectively. Here a =

∏n
i=1[Ii]ei and b =

∏n
i=1[Ii]fi . Then

the interaction proceeds as follows:

• Alice and Bob exchange their public keys.
• Alice computes [a] � [E0/b] = [a][b] � [E0].
• Bob computes [b] � [E0/a] = [b][a] � [E0].

The commutativity of C�(O) guarantees that both users obtain the same element
of E��p(O, π), which, thanks to the assumption O = Z[

√−p] and Theorem 2, can
be represented by a single element in Fp. Furthermore, given a Montgomery curve
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EA,1, Theorem 3 explains how to compute the action of [Ii] on [EA,1] ∈ E��p(O, π).
In particular, a point Q ∈ EA,1(Fp) having order divisible by �i is used to compute
the isogeny ϕ with domain EA,1 and a group G ⊆ EA,1(Fp) of order �i as kernel.
Namely, G = 〈P 〉, where P = [ord(Q)/�i]Q.d As we have seen in Section 2.3,
EA,1/Ii is exactly the image of such an isogeny. We remark that the point ϕ(Q)
has order ord(Q)/�i and therefore can potentially be used to compute the action of
another element [Ij ], with j �= i. Both EA,1/Ii and ϕ(Q) can be calculated using
the formulas in Theorem 3.

In order to compute the action of an element [Ii]−1, let us consider a Mont-
gomery curve EA,1 representing an element in E��p(O, π). Since the action � is
free and transitive, there exists a unique [c] in C�(O) such that [EA,1] = [c] � [E0],
where E0 is the elliptic curve of equation y2 = x3 + x. It is possible to show [15,
Remark 5] that E−A,1 is the Montgomery curve representing [c]−1 � [E0]. As
a consequence, the result of the action of [Ii]−1 on [EA,1] is [E−A′,1], where
[EA′,1] = [Ii] � [E−A,1] = ([Ii][c]−1) � [E0]. In fact, we have

[Ii]−1 � [EA,1] = ([Ii]−1[c]) � [E0] = ([Ii][c]−1)−1 � [E0].

If a random x ∈ Fp is sampled, then either x is the x-coordinate of a point Q
in EA,1(Fp), or −x is the x-coordinate of Q ∈ E−A,1(Fp), depending on whether
x3 + Ax2 + x is a quadratic residue modulo p or not.e In the former case, Q can
be used to obtain a point P in EA,1(Fp) having order �i, for some i ∈ {1, . . . , n}.
Hence, with such point P , the action of [Ii] on [EA,1] can be computed. In the
latter case, Q can be used to obtain a point in E−A,1(Fp) having order �i, for some
i ∈ {1, . . . , n}, and compute the action of [Ii] on [E−A,1], from which the action of
[Ii]−1 on [EA,1] is then easily deduced as explained above.

The complete procedure to compute the action of a vector (e1, . . . , en) on [E0]
or a public key [EA,1] is detailed in Algorithm 4, which was first depicted in the
original CSIDH paper. Algorithms 1–3 are the subroutines used to sample a rational
point on a given Montgomery curve (RationalPoint), compute the codomain of an
isogeny with given kernel (IsoImage) and evaluate an isogeny with given kernel at
some point (IsoEval), respectively. In the following pages, we will often refer to these
subroutines, since nearly all the CSIDH optimizations and variants build on them.

When A and K are given, we remark that Algorithms 2 and 3 use the same
x-coordinates of suitable elements in 〈K〉, as shown in Theorem 3. Therefore, such
coordinates can be computed just once and passed on to both the algorithms. In
other words, they are supposed to share states. We also stress that their running
time, as one can deduce from Theorem 3, is Θ(�) with � = |〈K〉|. Finally, Algo-
rithm 4 is expected to end as we observe that, for a uniformly random rational
point P ∈ EA,1(Fp), the probability that its order is not divisible by �i is 1/�i.

dWe highlight that, starting from a different point Q′ ∈ EA,1(Fp), whose order is divisible by �i,
yields the same group G. Therefore, the resulting isogeny ϕ does not depend on the choice of Q.
eThis follows from the fact that −1 is not a quadratic residue modulo p, since the considered
prime p is congruent to 3 modulo 4.
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Algorithm 1. RationalPoint.
Input: A ∈ Fp.
Output: (x, s), where x is the x-coordinate of a point in Es·A,1(Fp)\{∞} and

s ∈ {−1, 1}.
1: Sample a random x ∈ Fp.
2: Set s← 1 if x3 +Ax2 + x is a square in Fp, else s← −1.
3: return (x, s)

Algorithm 2. IsoImage.
Input: A ∈ Fp and a point K ∈ EA,1(Fp).
Output: A′ ∈ Fp such that EA′,1 is the codomain of the isogeny with kernel 〈K〉.
1: return A′ as defined in Theorem 3.

Algorithm 3. IsoEval.
Input: A ∈ Fp and two points K,P ∈ EA,1(Fp).
Output: ϕ(P ), where ϕ is the isogeny with kernel 〈K〉.
1: return (f(x), ωyf ′(x)) as defined in Theorem 3.

3.2. Parameter choices

As a reference for the rest of this paper, the following table gathers some of the pro-
posed parameter choices for CSIDH. More details and motivations for such choices
will be provided in the next sections.

Name p Secret-key space Reference

CSIDH-512 4 · 3 · 5 · . . . · 373︸ ︷︷ ︸
first 73 odd primes

· 587− 1 [−5, 5]74 §4.1-3, [15]

[−202, 202]× · · · × [−1, 1]7 §4.6, [14]
[0, 10]74 §5.1, [46]

SIMBA5,11 [0, 13]26 × · · · × [0, 5] §5.2, [46]
SIMBA3,8 [−5, 5]× · · · × [−1, 1] §5.3, [53]
CSURF-512 12 · 2 · . . . · 389︸ ︷︷ ︸

first 77 primes
except 347 and 359

−1 [−137, 137]× · · · × [−4, 4]25 §4.5, [12]

CSIDH-1024 4 · 3 · 5 · . . . · 733︸ ︷︷ ︸
first 129 odd primes

· 983− 1 [−2, 2]130 [15]

[−1, 1]130 [18]
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Algorithm 4. Evaluating the class group action.
Input: A ∈ Fp, (e1, . . . , en) ∈ Zn.
Output: A′ ∈ Fp such that [EA′,1] = ([I1]e1 · . . . · [In]en) � [EA,1].
1: while some ei �= 0 do
2: (x, s)← RationalPoint(A).
3: S ← {i | sign(ei) = s}
4: if S �= ∅ then
5: Set P as a point on Es·A,1(Fp) whose x-coordinate is s · x.
6: k← ∏

i∈S �i
7: P ← [p+1

k ]P
8: if P �=∞ then
9: for i ∈ S do

10: K ← [ k
�i

]P
11: if K �=∞ then
12: A← IsoImage(A,K)
13: P ← IsoEval(A,K,P )
14: k ← k

�i

15: ei ← ei − s
16: end if
17: end for
18: A← s ·A
19: end if
20: end if
21: end while
22: return A

4. Speed-Up of the Class-Group-Action Evaluation

In this section, we discuss the techniques that have been proposed so far to speed
up the execution of CSIDH. Some of them consist in using more efficient versions
of IsoEval and IsoImage, based on optimized variants of Vélu’s formulas (Secs. 4.1–
4.3). The other speed-ups are obtained by varying the original CSIDH parame-
ters (Secs. 4.4–4.6).

4.1. Optimizing IsoImage — twisted Edwards curves

While Montgomery curves enjoy efficient formulas for evaluating isogenies, twisted
Edwards curves are well-suited for an efficient computation of image curves. This
fact is exploited in [47], taking advantage of the correspondence between Mont-
gomery curves and twisted Edwards curves (see Section 2.4.3). The gist of their
method is to determine a twisted Edwards curve Fp-birationally equivalent to EA,1,
then compute the twisted Edwards image curve corresponding to the action of [Ii],
and finally convert such curve to an Fp-birationally equivalent Montgomery curve,
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which is exactly EA′,1 = EA,1/Ji. This procedure saves some field multiplications
with respect to the formulas in Theorem 3, and is particularly effective for the
largest values of �i.

4.2. Optimizing IsoEval — projective arithmetic

Despite providing a practical method to calculate the action of a special element
[Ii] ∈ C�(O), the formulas from Theorem 3 involve several inversions in Fp, which
negatively affect the running time of the resulting algorithm. A natural way to avoid
these inversions is to use projective arithmetic, as already observed in [15, §8].

Given a Montgomery curve EA,1 : y2 = x3+Ax2+x over a field K, its projective
form is given by the equation

E∗
A,1 : Y 2Z = X3 +AX2Z +XZ2.

We recall that every point (x, y) ∈ EA,1 corresponds to a point in E∗
A,1, namely

[x : y : 1]. Conversely, a point [u : v : z] ∈ E∗
A,1 with z �= 0 corresponds to

(u/z, v/z) ∈ EA,1. The unique point [u : v : z] in E∗
A,1 having z = 0 is equal to

[0 : 1 : 0] and corresponds to the point at infinity ∞ in EA,1. This bijection allows
the extension of the group law of EA,1 to E∗

A,1.
It is possible to projectivize Theorem 3 as follows. Consider a Montgomery curve

EA,1 : y2 = x3 + Ax2 + x over Fp, and a point P ∈ EA,1(Fp) of order � = 2d + 1.
We denote by ϕ the isogeny with domain EA,1 and kernel 〈P 〉. Let Q be any point
of EA,1, and denote by [xi : yi : zi], [x : y : z] and [x′ : y′ : z′] the coordinates
of the projective points corresponding to [i]P , Q and ϕ(Q), respectively. Then we
have [21, §5]

x′ = x

(
d∏

i=1

(x · xi − z · zi)

)2

, z′ = z

(
d∏

i=1

(x · zi − xi · z)
)2

. (7)

The above formulas are exploited in [15]. In particular, after computing xi and zi

for i = 1, . . . , d, the values x · xi − z · zi and x · zi − xi · z are obtained at the cost
of 4d field multiplications and 2d field additions.

Costello and Hisil [21] also highlight the possibility of trading 2d field multiplica-
tions for 2d+2 extra field additions, obtaining an efficiency improvement. Namely,
the formulas in (7) are replaced by

x′ = x

(
d∏

i=1

[(x− z)(xi + zi) + (x+ z)(xi − zi)]

)2

, (8)

z′ = z

(
d∏

i=1

[(x− z)(xi + zi)− (x+ z)(xi − zi)]

)2

. (9)
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4.3. Further optimizations of IsoEval and IsoImage

Given an elliptic curve E and an �-torsion point P of E, Vélu’s formulas provide
an explicit expression for both a curve E′ and an isogeny ϕ : E → E′ having kernel
〈P 〉 (see Section 2.3). However, Algorithm 4 only requires the value of ϕ at some
points, together with the equation of the image curve. In fact, the expression of
ϕ as a rational function is unnecessary to evaluate the group action in CSIDH.
Starting from this remark, the two independent papers that we discuss below, [5;
39], propose efficient methods to evaluate an isogeny of odd degree �.

4.3.1. Square-root Vélu’s formulas

The first method, introduced by Bernstein et al. in [5], starts with a Montgomery
curve, so that the formulas from Theorem 3 can be used. In particular, the rational
function f(x) defined in (4) can be written as

f(x) = x� ·
(
hS(1/x)
hS(x)

)2

,

where S = {1, 2, . . . , (�− 1)/2} and, for any finite set of integers S′ containing no
multiples of �,

hS′(x) =
∏
s∈S′

(x− x[s]P )

with x[i]P being the x-coordinate of the point [i]P .
Thus, in order to compute the image of ϕ, the isogeny with kernel 〈P 〉, on some

point Q, the goal is to evaluate the polynomial hS in an efficient way, i.e. with
complexity Õ(

√
�) instead of O(�). To do so, two subsets I and J of S satisfying

the following properties are constructed:

• the sizes of I and J are close to
√
�;

• I + J and I − J are as large as possible (that is, they both have size |I| · |J |);
• S\T is small, where

T = ((I + J) ∪ (I − J)).

Then the core idea is that of effectively computing hT in terms of hI and hJ using
resultant-based computations. Consequently, hS is obtained as hS = hT · hS\T .
Explicit expressions for I, J and hT are provided in [5, §4].

Additionally, the proposed efficient evaluation of the isogeny ϕ can also be
exploited to find the parameter A′ of the image curve. In fact, by Theorem 3, one
can just evaluate ϕ at some 2-torsion point (α, 0) with α ∈ F∗

p2 and set A′ =
−(f(α)+1/f(α)). Alternatively, making use of Theorem 4, the image curve can be
written as a twisted Edwards curve with

d̂ =
(
hS(1)
hS(−1)

)8(
A− 2
A+ 2

)�

,
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where A is the coefficient of the Montgomery curve EA,1 from which the isogeny ϕ
is originating.

The resulting algorithm is asymptotically faster than the conventional algorithm
based on Vélu’s formulas from Theorem 3. Indeed, as anticipated, its computational
cost is Õ(

√
�) instead of O(�). This motivates the name square-root Vélu. The

authors implement both their algorithm and the conventional one, observing a
computational speed-up for � ≥ 113 (see [5, A.3]). A more recent optimization of
the same algorithm, realized by Adj et al. in [1], pushes this threshold down to 89.

4.3.2. 2-ADD-Skip method

Kodera et al. [39] suggest a different method to evaluate an �-degree isogeny of
kernel 〈P 〉 and produce its image curve. The gist of this method is to avoid the
explicit computation of all the points P, [2]P, . . . , [(�− 1)/2]P .

More precisely, the authors start with a Montgomery curve E and an �-torsion
point P of E, and remark that, for any pair of distinct integers m,n, the x-
coordinates of [m + n]P and [m − n]P can be expressed in terms of [m]P and
[n]P . The resulting formulas can be plugged into the map

f(x) = x ·
d∏

i=1

(
x · x[i]P − 1
x− x[i]P

)2

defined in Theorem 3, in such a way that the explicit computation of [m+n]P and
[m − n]P is no longer required. This reason motivates the name 2-ADD-Skip for
the proposed method. Indeed, whenever two distinct points [m]P, [n]P have already
been computed, there is no need to compute [m± n]P explicitly. Thus, once some
starting points are found using the conventional addition and doubling formulas
(see e.g. [22, §3]), most of the remaining factors of f(x) can be computed taking
advantage of the 2-ADD-Skip method. For example, in [39, §4.2] it is shown that
starting with P, [2]P and [3]P is an effective choice. A similar approach is adopted
to compute the image curve. In particular, formula (6) for twisted Edwards curves
can be recursively constructed making use of the 2-ADD-Skip method.

In [39, §5], the authors observe that their algorithm is not asymptotically faster
than Bernstein, De Feo, Leroux and Smith’s algorithm [5]. However, it requires a
smaller number of field operations to compute some of the prime-degree isogenies
when working with the CSIDH-512 set of parameters.

4.4. The secret-key space

Every subset A of Zn determines a set of ideal classes

ICA =

{
n∏

i=1

[Ii]ei

∣∣∣∣∣(e1, . . . , en) ∈ A
}
⊆ C�(Z[

√−p]).

We say that A covers C�(Z[
√−p]) if the equality ICA = C�(Z[

√−p]) holds. Given
A ⊂ Zn, it is usually challenging to prove that A covers C�(Z[

√−p]). Therefore,
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weaker conditions (for example, |A| ≥ |C�(Z[
√−p])|) are considered instead. From

now on, with the name CSIDH we will also refer to all the variants of the original
scheme that consider alternative secret-key spaces A ⊂ Zn that are heuristically
assumed to cover C�(Z[

√−p]).
In the original CSIDH proof-of-concept implementation, the secret-key space is

the set [−B,B]n, where B is a small positive integer for which the inequality (2B+
1)n ≥ |C�(Z[

√−p])| holds. In [15, §7.1], some heuristic arguments are presented to
corroborate the assumption that this choice suffices to cover the entire ideal class
group C�(Z[

√−p]).
Secret-key spaces have been targeted to improve the security and the efficiency

of CSIDH, as we are going to show in the next two sections.

4.4.1. Collisions

A priori, collisions may happen when considering [−B,B]n as secret-key space.
That is, there might exist two distinct vectors (e1, . . . , en), (e′1, . . . , e

′
n) ∈ [−B,B]n

such that [I1]e1 · . . . · [In]en = [I1]e
′
1 · . . . · [In]e

′
n . Onuki and Takagi [54] provide a

family of them, showing that collisions actually exist. In particular, in [54, Theorem
3] it is proved that the element [I1] · . . . · [In] has order 3 in C�(Z[

√−p]) (the same
was independently observed in [16, Lemma 8]), when p is a prime from a CSIDH
set of parameters. Equivalently, the vectors

. . . , (e1 − 3, . . . , en − 3), (e1, . . . , en), (e1 + 3, . . . , en + 3), . . .

represent the same ideal class. Therefore, if the secret-key space is [−B,B]n for some
B ≥ 3, then some keys represent the same elements in C�(Z[

√−p]). An effective
workaround is the use of a different secret-key space having the form [−B1, B1] ×
· · · × [−Bn, Bn], where at least one Bi is less than 3.

As a consequence, both the action of [I1] · . . . · [In] and that of its inverse can
be evaluated efficiently [54, Theorem 7].

Theorem 5. Let A ∈ Fp such that [EA,1] ∈ E��p(Z[
√−p], π). Then

[I1] · . . . · [In] � [EA,1] = [EA′,1] and [I1]−1 · . . . · [In]−1 � [EA,1] = [EA′′,1],

where

A′ = −2 · A+ 6
A− 2

and A′′ = 2 · A− 6
A+ 2

.

The above formulas can be exploited in Algorithm 4 whenever S (line 3) has
cardinality n, i.e. whenever we need to evaluate the action of elements

∏n
i=1[Ii]ei

such that no component of (e1, . . . , en) is zero.

4.4.2. Optimized variants

A subsetA ⊂ Zn which covers C�(Z[
√−p]) does not need to be of the form [−B,B]n

for some positive integer B. Nakagawa et al. [51] deal with the problem of determin-
ing an optimal subset Aopt ⊂ Zn which minimizes Ee∈A[T (e)] among the subsets
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A ⊂ Zn such that |A| ≥ |C�(Z[
√−p])|. Here, T (e) denotes the number of field multi-

plications required to compute the action of [I1]e1 ·. . .·[In]en , where e = (e1, . . . , en),
while Ee ∈ A[T (e)] denotes the expected value of T (e) taken over a uniform choice
of e ∈ A.

In [51], a procedure to tackle the above-mentioned optimization problem is pre-
sented. In particular, restricting its attention to sets A such that A = {e ∈ Zn |
T (e) ≤ r} for some r ∈ Z≥0, the procedure computes an approximate lower bound
for all r such that {e ∈ Zn |T (e) ≤ r} has cardinality greater than or equal to
|C�(Z[

√−p])|. A concrete value for the approximate lower bound of r, denoted by
ropt, is provided for CSIDH-512, whose parameters consist of the 512-bit prime p
of the form p = 4 · �1 · . . . · �74 − 1, where �1 through �73 are the first 73 odd primes
and �74 = 587. In this case, ropt = 336428, while the average computational cost
Topt in Aopt = {e ∈ Zn |T (e) ≤ ropt} is Topt ∼ 332000.

However, uniformly sampling from the proposed optimal key space Aopt appears
to be very hard. Therefore, in [51] a “transposition” of this set is provided. To be
more precise, it is proven that the average value of T (e) for e varying in the L1-ball
in Zn with center (0, . . . , 0) and radius 152 is 355804, which is only 1.08 times bigger
than Topt. Hence, there is the option of replacing Aopt with this L1-ball, in order to
easily sample from the chosen secret-key space while retaining (almost) the same
efficiency provided by the secret-key space Aopt.

4.5. CSIDH on the surface

The CSIDH protocol and its optimizations focus on supersingular elliptic curves
over Fp (where p is a prime) that lie on the floor. This choice is due to the possibility
of representing each element of E��p(Z[

√−p], π) with a unique element of the base
field Fp (see Theorem 2).

In [12], Castryck and Decru exhibit a new elliptic curve model that allows trans-
posing the above-mentioned property, and consequently the CSIDH scheme, to
supersingular elliptic curves on the surface. Moreover, they propose a new 512-bit
prime and a suitable secret-key space which produces a speed-up of about 5.68%
with respect to CSIDH instantiated with the CSIDH-512 set of parameters.f The
proposed prime is p = 23 · 3 · �1 · . . . · �74 − 1, where the �i’s are the 74 consecu-
tive primes from 3 to 389 skipping 347 and 357. The secret keys are sampled from
[−137, 137]× [−4, 4]3× [−5, 5]46× [−4, 4]25. The following theorem [12, Proposition
4] ensures that each Fp-isomorphism class in E��p(OQ(

√−p), π) can be identified by
a unique element of Fp.

Theorem 6. Let p be a prime such that p ≡ 7 (mod 8) and E a supersingular
elliptic curve over Fp. Then, E lies on the surface if and only if there exists A ∈ Fp

fNote that the comparison is made with the original proof-of-concept CSIDH implementation,
without taking into account some of the improvements seen in this section.
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such that E is Fp-isomorphic to the elliptic curve y2 = x3 +Ax2 − x. Moreover, if
such A exists, it is unique.

4.6. Radical isogenies

As suggested by Algorithm 4, generating a point to compute an isogeny of assigned
degree is a costly operation. In fact, not only does it require some scalar multipli-
cations, but it may also fail. This problem is particularly relevant when isogenies
of small degrees must be computed. To mitigate this issue, Castryck et al. [14]
describe a deterministic procedure to obtain a chain of �-isogenies starting from an
elliptic curve with a given �-torsion point. For � ≤ 37, this method — improved in
the follow-up paper by Castryck et al. [13] — achieves a computational speed-up
compared to the standard method (that is, calling RationalPoint to sample a new
�-torsion point for each �-isogeny).

In more detail, the procedure is given as input a supersingular elliptic curve E
defined over Fp and such that P = (0, 0) is an �-torsion point (for � > 3, the Tate
curve from Section 2.4.2 can be used). The goal is to determine the coordinates of
an �-torsion point P ′ ∈ E′ = E/〈P 〉 such that composing the isogeny ϕ : E → E′

with kernel 〈P 〉 and the isogeny ψ : E′ → E′/〈P ′〉 with kernel 〈P ′〉 yields a cyclic
isogeny of degree �2. Castryck, Decru and Vercauteren prove that the coordinates
of P ′ can be expressed as an algebraic combination of the coefficients of E and an
�th root of a suitable element ρ ∈ Fp. Explicit formulas are derived in [13, §4–5] for
� ≤ 37. Once P ′ has been computed, it can be “transformed” into (0, 0) by finding an
isomorphism E′ → Ẽ mapping P ′ to (0, 0). The whole process can be then iterated
arbitrarily many times. The coordinates of P ′ (and consequently the coordinates
of Ẽ), though, lie in Fp( �

√
ρ), which is in general larger than Fp. Nonetheless, it is

possible to control the field of definition of P ′ by choosing a suitable prime p [14, §5].
For example, in [14, §6] the prime p mentioned in Section 4.5 is used.

In order to fully take advantage of the procedure, the following secret-key space
is proposed:

[−202, 202]× [−170, 170]× [−95, 95]× [−91, 91]× [−33, 33]× [−29, 29]

× [−6, 6]20 × [−5, 5]14 × [−4, 4]10 × [−3, 3]10 × [−2, 2]8 × [−1, 1]7.

The class-group-action evaluation is then hybrid: first, isogenies corresponding to
the primes 2, 3, . . . , 37 are computed via the described procedure. Then, the remain-
ing indices are exhausted by following Algorithm 4. This variant of CSIDH achieves
an average speed-up of 26% compared to the CSIDH implementation which exploits
the optimization presented in Section 4.3.1.

5. Constant-Time Class-Group-Action Evaluation

The security of the CSIDH scheme relies on the hardness of the decisional Diffie–
Hellman (DDH) problem for the CSIDH group action — that is, given E0 and two
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public keys [a] � [E0] and [b] � [E0], distinguishing [a] � ([b] � [E0]) from the action
[c] � [E0] of a random element [c]. In analogy with the classical Diffie–Hellman key-
exchange protocol, the DDH problem for CSIDH is assumed to be, in general, no
easier than the following parallelization problem [23, §2]: computing [a] � ([b] � [E0])
given E0 and two public keys [a]� [E0] and [b]� [E0]. Montgomery and Zhandry [49]
recently showed that this parallelization problem is, in turn, quantumly equivalent
to the following vectorization problem: recovering the private key [a] from the knowl-
edge of E0 and [a] � [E0].g Therefore we will focus on the vectorization problem,
also known as Group Action Inverse Problem (GAIP), which we formalize below.

Definition 1 (Group Action Inverse Problem (GAIP)). Let [E0] be an ele-
ment in E��p([Z(

√−p], π), where p > 3 is a prime. Given [E] sampleder uniformly
at random from E��p(Z[

√−p], π), the GAIPp problem consists in finding the unique
element [a] ∈ C�(Z[

√−p]) such that [a] � [E0] = [E].

The best known classical algorithm to solve the GAIPp problem has time com-
plexity O(

√
N), where N = |C�(Z[

√−p])| ∼ √p, while the best known quantum
algorithm is Kuperberg’s algorithm for the hidden shift problem [41, 42]. The latter
has a subexponential complexity, but its concrete estimate is still an active area of
research [18, 55].

The original proof-of-concept implementation of CSIDH (and those of the sub-
sequent improvements discussed in the previous section) falls prey to side-channel
attacks. For example, timing attacks to Algorithm 4 give some information about
the private keys. This is mainly due to the fact that different private keys require a
different number of isogeny computations. Two possible strategies to mitigate this
leakage have been proposed so far:

(1) In the first one [7], the computational cost for the evaluation of the action
of any element

∏n
i=1[Ii]ei with (e1, . . . , en) ∈ [−B,B]n is always the same,

independently of (e1, . . . , en) and the randomness used; this strategy has a
negligible failure probability.

(2) In the second strategy [46], the computational cost for the evaluation of the
action of

∏n
i=1[Ii]ei is independent of (e1, . . . , en) itself, but might vary depend-

ing to the randomness used.

Both the strategies are labeled as “constant-time”, despite being substantially
different. We stress that they address only a certain type of side-channel attacks.
In fact, other attacks — based for example on power traces or electromagnetic
measurements — require even more involved countermeasures and have so far not
been considered much in the isogeny literature.

gMore precisely, they prove this equivalence for a family of group-action-based key exchanges.
On the other hand, they show that the same cannot hold generically for the DDH problem for
group-action-based key exchanges.
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The gist of constant-time implementations is to perform some extra “dummy”
operations that do not affect the output of the algorithm. We consider a first exam-
ple from [47]: for each prime �i in the definition of p, the number of �i-isogenies to
compute when evaluating the action of

∏n
i=1[Ii]ei is fixed to the maximum value,

i.e. B, independently of (e1, . . . , en). In other words, if |ei| < B, then B − |ei|
extra artificial isogenies of degree �i are computed. Moreover, to prevent cache-
based side-channel attacks, even the literal addresses of instructions executed by
the implementation should be independent of the secret key. This means that, in
order to avoid conditional branching, isogenies and artificial isogenies (of a given
degree i) need to be computed by calling the same “physical” code in memory. Since
the artificial isogenies are useless for the computation of the action of

∏n
i=1[Ii]ei ,

they are called dummy isogenies [47].
However, the computational costs for evaluating the actions of two elements∏n

i=1[Ii]ei and
∏n

i=1[Ii]e
′
i of C�(Z[

√−p]) might differ even when |ei| = |e′i| for every
i ∈ {1, . . . , n}, and therefore even when computing dummy isogenies. For example,
Meyer and Reith [47, §6] note that the running time for computing the action of∏n

i=1[Ii]5 when working with the CSIDH-512 set of parametersh is higher than
the running time for computing the action of

∏n
i=1[Ii](−1)i+15. The reason for this

discrepancy is that, once a random x-coordinate is sampled (line 2 of Algorithm 4),
it can be used only to compute isogenies for those indices belonging to the set S
(line 3 of Algorithm 4). For the element

∏n
i=1[Ii]5, when s = −1, the set S is always

empty — and so the sampled x cannot be used — while when s = 1 the set S can
contain up to n elements. When |S| = n, the scalar factor in line 7 is 4, while the
scalar factors in line 10 of Algorithm 4 are (p + 1)/(4�i) for each i ∈ {1, . . . , n},
whose size is close to the size of p. For the element

∏n
i=1[Ii](−1)i+15, in comparison,

the scalar factors in lines 7 and 10 have similar sizes to that of
√
p.

In light of the above observation, Meyer et al. [46] propose replacing the sym-
metric set of private keys [−B,B]n with the asymmetric set [0, 2B]n. We stress
that this choice should not affect the hardness assumption on the GAIP problem,
as the heuristic assumption that [−B,B]n covers C�(Z[

√−p]) extends to [0, 2B]n

(if (e1, . . . , en), (e′1, . . . , e
′
n) ∈ [−B,B]n are such that

∏n
i=1[Ii]ei =

∏n
i=1[Ii]e

′
i , then

also (e1 + 5, . . . , en + 5), (e′1 + 5, . . . , e′n + 5) ∈ [0, 2B]n determine the same element
of C�(Z[

√−p]), and viceversa).
The following sections detail some further constant-time implementations of the

CSIDH scheme.

5.1. Redesigning RationalPoint — Elligator 2

Given a Montgomery curve EA,1 : y2 = x3 +Ax2 +x, defined over Fp and such that
[EA,1] ∈ E��p(Z[

√−p], π), the constant-time implementation of CSIDH presented

hThey do not use the improvement described in Section 4.4.1. Otherwise, using Theorem 5, the
computation would have been trivial.
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Algorithm 5. Elligator2.
Input: The coefficient A ∈ F∗

p of a Montgomery curve EA,1, s ∈ {1,−1}.
Output: x-coordinate of a rational point in Es·A,1.
1: Uniformly sample an element u from {2, . . . , p−1

2 }.
2: v ← A

u2−1

3: Set e as the Legendre Symbol of v3 +Av2 + v over p.
4: if e == s then
5: return v

6: else
7: return −v −A
8: end if

in [7] efficiently samples x-coordinates of random rational points lying on EA,1,
or on E−A,1. In particular, the method exploits the fact that, given x0 ∈ Fp and
y0 = (x3

0 +Ax2
0 + x0)

p+1
4 ,

y4
0 = (x3

0 +Ax2
0 + x0)p+1 = (x3

0 +Ax2
0 + x0)2.

Then y2
0 = ±(x3

0 + Ax2
0 + x0) and, consequently, either (x0, y0) is a point of EA,1,

or (−x0, y0) is a point of the curve E−A,1, which is used to compute the action of
elements [Ii]−1 (see Section 3.1).

The details of this method to sample x-coordinates of rational points in EA,1

or in E−A,1 are depicted in Algorithm 5. It is called the Elligator 2 map, and it
was designed by Bernstein et al. in [6]. We note that the algorithm takes as input
a Montgomery curve EA,1, with A ∈ F∗

p and s ∈ {−1, 1}, and it returns the x-
coordinate of a point on Es·A,1. The Elligator 2 map can be extended to the case
A = 0, i.e. the case where EA,1 is the curve E0, setting v = u (instead of v = A

u2−1 ).
A constant-time implementation of CSIDH that relies on the Elligator 2 map

is detailed in Algorithm 6 [7, Algorithm 6.1]. For every i ∈ {1, . . . , n}, the same
loop is repeated ri times (for some positive integer ri). If, after the ri steps, the
computation of the action of [Ii]ei is incomplete, the algorithm fails. The parameters
ri can be tuned to increase/decrease the success probability of the algorithm.

The algorithm takes constant time as any of the conditions “w← w′ if b” means
that w′ and b are computed anyways.

The role of the Elligator 2 map in Algorithm 6 is to sample the x-coordinate of a
point P in EA,1 or E−A,1. However, it may happen that [p+1

�i
]P =∞, i.e. the order

of P is not divisible by �i. We recall that, given a uniformly random rational point
P ∈ EA,1(Fp), the probability that its order is not divisible by �i is 1/�i. Moreover,
among the (p− 3)/2 points that could be sampled by the Elligator 2 map, at most
(p+ 1)/�i have order not divisible by �i. Then, the probability that the Elligator 2
map samples a point P whose order is not divisible by �i is upper bounded by(

2
�i

)
p+ 1
p− 3

∼ 2
�i
.
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Algorithm 6. Constant-time class-group-action evaluation.
Input: The coefficient A ∈ F∗

p of a Montgomery curve EA,1, (e1, . . . , en) ∈
[−B,B]n and positive integers r1, . . . , rn.

Output: A′ ∈ Fp s.t. [EA′,1] =
∏n

i=1[Ii]ei � [EA,1] or failure

1: for i ∈ {1, . . . , n} do
2: for j ∈ {1, . . . , ri} do
3: s← sign(ei) with sign(ei) ∈ {−1, 0, 1}
4: P ← Elligator2(A, s)
5: Q← [p+1

�i
]P

6: Compute A′, with EA′,1 
 EA,1/〈Q〉, if Q �=∞
7: A← s · A′ if Q �=∞ and s �= 0
8: ei ← ei − s if Q �=∞
9: end for

10: end for
11: if (e1, . . . , en) == (0, . . . , 0) then
12: return A
13: else
14: return failure

15: end if

In [7], it is claimed that the heuristic probability is almost exactly 1/�i, i.e. it is
heuristically close to the uniform one.

In terms of efficiency, the most expensive step in Algorithm 5 is the com-
putation of A/(u2 − 1) in line 2, since it requires a field inversion. A possible
workaround [7, §4.3] consists in replacing the random sampling in line 1 by a pre-
computed list of values 1/(u2 − 1), for u ∈ {2, . . . , p−1

2 }, to be used in line 2.
In [46, §5.3], Meyer et al. claim that pre-computing 1/(u2 − 1) for 10 values of
u is heuristically enough to ensure that, for each i, at least one of the output
points has order divisible by �i. They use this variant of the Elligator 2 map
together with dummy isogenies and the asymmetric key-space [0, 2B]n to obtain
an implementation of CSIDH whose running time is independent of the private
key. Since their algorithm is no-failure, if the 10 precomputed values for the Elli-
gator 2 map do not give rise to points that can be exploited to compute the
remaining isogenies, then their algorithm retreats to the original Elligator 2 map
which samples (almost) random points. However, this step makes the evaluation
of the action of an element

∏n
i=1[Ii]ei not independent of (e1, . . . , en). In fact,

the time required by the Elligator 2 map (initially running the variant with pre-
computations and then, if necessary, the original one) to produce suitable rational
points on the current supersingular curve EA,1 depends on A, which itself depends
on (e1, . . . , en).

To fix this issue, which was noticed in [17], Cervantes-Vázquez et al. propose
a projective Elligator 2 map which uses randomness while still avoiding inversions
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[17, §3]. We observe that this projective variant leaves unchanged the probability
of finding a point with a fixed order.

5.2. Simba

In [46], Meyer et al. propose a further technique to speed up their previous constant-
time implementation of CSIDH [47]. This technique consists in splitting {1, . . . , n}
into subsets, and working separately within each of them. To informally explain
the technique and its relevance, we take into consideration Algorithm 4. Despite
being substantially different from the algorithm in [46] (partially discussed in the
previous section), the scalar multiplications the two algorithms perform are quite
similar, and therefore Algorithm 4 is well-suited for the exposition.

Assume that the secret-key space is [0, 2B]n, and set s = 1. Then the set S
(line 3) gathers all the positive indices corresponding to isogenies that are yet to
be computed. As the following examples show, the size of S affects the cost of the
point multiplications [(p + 1)/k]P (line 7) and those of the form [k/�i]P executed
within the for-loop (line 10), where k =

∏
i∈S �i.

Suppose that, after j iterations of the while loop, the input vector has been
updated into a vector (e1, . . . , en) having Hamming weight equal to n (equivalently,
none of its entries are zero). Therefore, S = {1, . . . , n}, k = (p+1)/4 and (p+1)/k =
4. This means that one point multiplication, namely [(p + 1)/k]P , is really cheap,
while many of the others, i.e. [k/�1]P, [k/(�1�2)]P, . . . , are quite expensive, being
their scalar factors close to k. On the other hand, if (e1, . . . , en) has Hamming weight
equal to �n/2�, the sizes of the scalar factors could be more balanced. Suppose
that S is equal to {2, 4, . . . , h}, where h = n if n is even, h = n − 1 otherwise.
Then both (p + 1)/k and k/�2 are approximately equal to

√
p (with the other

scalar factors k/(�2�4), k/(�2�4�6), . . . which progressively decrease). It is then easy
to see that the computational cost for the scalar multiplications within a single
loop determined by S = {1, . . . , n} is bigger than that for the scalar multiplications
within two complementary loops determined by S1 = {1, 3, . . .} and S2 = {2, 4, . . .},
respectively.

In [46], Meyer et al. propose splitting the set {1, 2, . . . , n} into multiple batches
S1, . . . , Sm, with m < n being a positive integer, in order to artificially recreate the
conditions of the second example discussed above. This is obtained by introducing
a for-loop (indexed by j ∈ {1, . . . ,m}) before the construction of S, and defining S
as the set S = {i ∈ Sj | ei > 0} within each iteration of this loop.

This proposal gives rise to two natural questions: which is the optimal value for
m? And what is the optimal distribution of the indices in the subsets S1, . . . , Sm?
For the CSIDH-512 parameters, setting Sj = {j,m + j, 2m + j, . . .}, a heuristic
analysis shows that the optimal choice for m is 5 (see [46, §5.3]).

We conclude this section noticing that, given an elliptic curve EA,1, the proba-
bility that a random rational point has order divisible by a small prime �i is low.
Therefore, it is expected that, after some rounds, every batch contains only a few
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indices i such that ei is not zero (assuming that the small indices are distributed
across the batches). As soon as this happens, it is convenient to merge the batches.
The algorithm incorporating the subdivision in m batches and the merging of those
batches after μ rounds is named SIMBAm,μ.

An alternative asymmetric private-key space in which, for each i ∈ {1, . . . , n},
ei belongs to a tailored interval [0, Bi] instead of a fixed interval [0, 2B] is also taken
into consideration in [46].

5.3. CSIDH keeping two points

The use of an asymmetric key space was introduced to avoid the information leakage
due to the fact that a random x-coordinate determines the value of s ∈ {−1, 1} and
allows computing only the isogenies corresponding to the elements of (e1, . . . , en)
whose sign coincides with s. An alternative remedy consists in exploiting the Elliga-
tor 2 map and the fact that it simultaneously generates points on both the elliptic
curves EA,1 and E−A,1.

Building on this idea, Onuki et al. [53] introduce a new secret-key-independent
implementation of CSIDH, which works with a secret-key space whose vectors have
both negative and positive entries. The implementation considered in [53] for bench-
marking — which uses both dummy isogenies and SIMBA — is slightly faster, for
the CSIDH-512 set of parameters, than that in [46] for the same set of parameters.
In particular, the SIMBA parameters giving the most efficient implementation are
m = 3 and μ = 8. Furthermore, each secret exponent ei is chosen from a bespoke
interval [−Bi, Bi], where the vector (B1, . . . , Bn) is defined as follows:

[5, 6, 7, 7, 7, 7, 8, 8, 8, 9, 10, 10, 10, 10, 9, 9, 9, 8, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4,

4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1].

5.4. Optimal strategies

In [36, §4], Jao and De Feo present an optimal strategy approachi for com-
puting isogenies within the isogeny-based SIDH scheme. Hutchinson et al. [35]
extend this approach to the constant-time implementations in [46; 53] using linear-
programming techniques. The result is an implementation for the CSIDH-512 set
of parameters which is 5.06% faster than the 2-torsion points variant in [17] that
adopts all the improvements enlisted so far (point-evaluation speed up, use of
twisted Edwards curves, projective Elligator map and SIMBA algorithm).

Chi-Domı́nguez and F. Rodŕıguez-Henŕıquez have independently extended the
use of strategies to the CSIDH scheme [19], achieving a moderate speed-up with

iThe word “optimal” here refers to the number of field operations as the goal of the approach is
to minimize this number.
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respect to the implementation proposed in [35], even without embracing the use of
the SIMBA algorithm.

5.5. CTIDH

In [3], Banegas et al. introduce a new constant-time implementation of CSIDH,
called CTIDH. The gist of CTIDH is to partition into batches the primes (�1, . . . , �n)
forming the chosen prime p. Once the number of batches B is fixed, the sequence
of batch sizes is denoted by N = (N1, . . . , NB) ∈ (Z≥0)B, where

∑B
i=1Ni = n.

Unlike the constant-time implementations we have presented so far, there is no
fixed number of isogenies to compute for each prime �i. For each batch, a bound
mi is imposed instead. In particular, the secret-key space is⎧⎨

⎩((e1,1, . . . , e1,N1), . . . , (eB,1, . . . , eB,NB))

∣∣∣∣∣∣
Ni∑
j=1

|ei,j | ≤ mi for 1 ≤ i ≤ B
⎫⎬
⎭.

For the ith batch (of size Ni), mi isogenies are computed via the square-root
Vélu’s formulas, which are well-suited for a constant-time procedure. More pre-
cisely — as one can see from Section 4.3.1 — the computations used for an �j-
isogeny starting from an elliptic curve EA,1 can be used to obtain an �i-isogeny
from the same curve EA,1, where �i < �j . Therefore, to compute an isogeny of
degree �i in the batch, the coefficients for the isogeny with maximal degree L are
calculated first. Then, only the ones necessary to compute the isogeny of degree �i
are used.

It is worth noting that the above algorithm is not readily independent from the
secret key, since the probability of failure (due to a point of non-suitable order)
may still leak some information. To overcome this problem, the success probability
is “artificially” tweaked as shown in [3, §5.2.1].

The generation of optimal parameters B, (N1, . . . , NB) and (m1, . . . ,mB) repre-
sents a complicated optimization problem. The approach proposed in [3, §6] finds a
“local” optimum with respect to an initial choice of (N ′

1, . . . , N
′
B) and (m′

1, . . . ,m
′
B).

The resulting implementation gives better performance compared to the constant-
time implementations we have presented so far.

6. Computations in a Class Group with Known Structure

The set of distinct primes �1, . . . , �n uniquely determines the prime p in a set
of parameters for CSIDH. It also determines the order Z[

√−p] in the imaginary
quadratic field Q(

√−p). The core of CSIDH is the action of the ideal class group
C�(Z[

√−p]) on the supersingular elliptic curves E over Fp lying on the floor, i.e.
such that EndFp(E) 
 Z[

√−p]. This fact motivates a more in-depth study of the
structure of C�(Z[

√−p]).
The cardinality of C�(Z[

√−p]), called class number of Z[
√−p], is finite. The

best known algorithms for the class number computation have sub-exponential
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complexity with respect to the discriminant of the quadratic field Q(
√−p) (which is

equal to p in the CSIDH setting, being p ≡ 3 (mod 4)). This makes the computation
of |C�(Z[

√−p])| extremely heavy for primes of cryptographic size.
The impracticality of computing the class number of an order exploited by

CSIDH for some set of parameters implies that the structure of the ideal class
group C�(Z[

√−p]) remains unknown. In particular, the fact that [−B,B]n cov-
ers C�(Z[

√−p]), along with the fact that a uniform sampling in [−B,B]n deter-
mines a uniform distribution in C�(Z[

√−p]), can only be assumed on the basis of
heuristic arguments. Moreover, it is not known, a priori, what are the collisions in
{∏n

i=1[Ii]ei | (e1, . . . , en) ∈ [−B,B]n}.
This scenario does not represent a substantial problem for CSIDH and its secu-

rity, but it is a major obstacle for the design of efficient CSIDH-based digital sig-
nature schemes. As a result, the construction of the first practical isogeny-based
digital signature scheme, CSI-FiSh [8], required a record class number computation
for determining the structure of C�(Z[

√−p]) for the CSIDH-512 set of parameters,
mentioned in Section 4.4.2.

The class number computation executed by Beullens et al. in [8] determined
that, for the prime p = 4 · �1 · . . . · �74 − 1 in the CSIDH-512 set of parameters, it
holds that

|C�(Z[
√−p])| = N = 3 · 37 · 1407181 · 51593604295295867744293584889

· 31599414504681995853008278745587832204909

∼ 2257.136.

As a consequence, C�(Z[
√−p]) is a cyclic group,j and it is shown that the element

[I1] = [(3,
√−p−1)], which we denote by g, is a generator. Furthermore, the discrete

logarithm of [Ii] to the base g is known for every i ∈ {2, . . . , 74}.
Since C�(Z[

√−p]) is isomorphic to the additive group Z/NZ, where N is the
class number of Z[

√−p], each of its elements can be identified with an integer
in {0, . . . , N − 1}. In particular, we denote by e the integer corresponding to the
secret key (e1, . . . , en), i.e. ge =

∏n
i=1[Ii]ei . As we discuss below, the existence of

a canonical representation for elements of C�(Z[
√−p]) is essential for the CSIDH-

based digital signature CSI-FiSh [8].
CSI-FiSh is a Fiat–Shamir signature, i.e. it is obtained by turning an isogeny-

based interactive identification protocol, sketched by Stolbunov in his Ph.D. the-
sis [59], into a non-interactive one by means of the Fiat–Shamir transformation [31].
The two actors of the interactive protocol are a prover, producing a proof σ by
means of their private key (e1, . . . , en), and a verifier, who uses the prover’s public
key [ES ] =

∏n
i=1[Ii]ei � [E0] — where [E0] is a fixed element of E��p(Z[

√−p], π) —
to verify the validity of the proof σ.

jWe observe that 3, 37, 1407181, 51593604295295867744293584889, 315994145046819958530082
78745587832204909 are primes, and that C�(Z[

√−p]) is an abelian group.
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According to Stolbunov’s proposal, while producing the proof σ, the prover
samples a random ephemeral private key (r1, . . . , rn) and computes the commitment
[Ecom] =

∏n
i=1[Ii]ri � [E0], which will be part of the proof. Furthermore, depending

on the value of a flag bit b, the proof will contain also (r1, . . . , rn) when b = 0
or (e1 − r1, . . . , en − rn) otherwise. To verify the validity of σ, the verifier checks
that

∏n
i=1[Ii]ri � [E0] is equal to [Ecom] (part of the proof) in the first case, or that∏n

i=1[Ii]ei−ri � [Ecom] is equal to [ES ].
Unfortunately, the simple scheme sketched above is flawed, as the vector (e1 −

r1, . . . , en − rn) leaks information about the private key (e1, . . . , en). For example,
the mean of the distribution of this vector equals the mean of the distribution
of (−r1, . . . ,−rn), shifted by the secret vector (e1, . . . , en). In order to fix this
issue, an initial remedy was proposed by De Feo and Galbraith in [26]. It consists
in adopting a redundant representation of class group elements and performing
rejection sampling. The result is a scheme whose proof generation and verification
are quite inefficient.

The class number computation for the CSIDH-512 set of parameters has allowed
Beullens, Lange and Vercauteren to produce a much better fix. Namely, (e1 −
r1, . . . , en− rn) is replaced by its canonical representative in Z/NZ, that we denote
by rsp. The reception of rsp, however, constitutes a problem for the verifier, since
they need to compute the action [grsp] � [Ecom] which, in general, has exponential
complexity. In order to obtain an equivalent representation (f1, . . . , fn) of rsp in
[−B,B]n or in a slightly bigger set [−B′, B′]n (i.e. [grsp] =

∏n
i=1[Ii]fi), a lattice-

based solution is applied. The resulting signature scheme, CSI-FiSh, enjoys practical
efficiency in both signature generation and verification, while maintaining the short
signature size offered by SeaSign. It should be stressed, however, that CSI-FiSh is
tailored to the CSIDH-512 set of parameters, and that generalizing it to other sets
of parameters for which the prime p is bigger than that of CSIDH-512 appears to
be out of reach. A tight security variant retaining almost the same efficiency of
CSI-FiSh is proposed in [37].

6.1. Efficient smooth representation of grsp

As already mentioned, the practical efficiency of CSI-FiSh is granted by the possi-
bility of representing [grsp] as

∏n
i=1[Ii]fi , for some (f1, . . . , fn) ∈ [−B′, B′]n, in an

efficient way. Since CSI-FiSh is specific for the CSIDH-512 set of parameters, in the
following, we will use the concrete values 74 and 5 for n and B, respectively.

We observe that the cost for computing the action corresponding to a vector
(f1, . . . , f74) ∈ Z74 highly depends on the number of atomic isogenies to be com-
puted, i.e. on the L1-norm

∑74
i=1 |fi|. Hence, in order to find a representative vector

for rsp that leads to an efficient class-group-action evaluation, a strategy (possibly
not the optimal one) is to compute a vector close to (rsp, 0, . . . , 0) in the lattice

Λ =

{
(z1, . . . , z74) ∈ Z74

∣∣∣∣∣
n∏

i=1

[Ii]zi = [(1)]

}
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with respect to the L1-norm. We remark that the knowledge of a reduced basis for
the lattice Λ (obtained by computing a Hermite normal form for it) is a side-product
of the class number computation executed in [8].

A lattice vector z that is close to (rsp, 0, . . . , 0) can be first obtained by applying
the Babai’s Nearest Plane algorithm [2]. In order to find a closer lattice vector,
Beullens et al. [8] suggest the use of a second algorithm [29, 43]. Namely, on input
the vector f ′ = (rsp, 0, . . . , 0)− z together with a list of 10,000 short vectors of Λ,
the algorithm outputs a lattice vector z′ that is close to f ′. Thus, z+ z′ is a lattice
vector close to (rsp, 0, . . . , 0), since (rsp, 0, . . . , 0) − (z + z′) = f ′ − z′. Such vector
z + z′ is expected to be closer to (rsp, 0, . . . , 0) than z.

7. Conclusions

The isogeny-based protocol CSIDH exploits the action of the ideal class group of a
quadratic order on a set of supersingular elliptic curves for the exchange of crypto-
graphic keys. CSIDH enjoys short keys and ciphertexts, requires small bandwidth
and has a fairly good running time. However, the scheme is still far from being
competitive with other post-quantum cryptosystems (for example those based on
lattices) in terms of efficiency, mainly due to the high computational cost of the
class group action.

Since the proposal of the CSIDH scheme in 2018, several papers focusing on
improving the computation of the class group action and making it independent of
the secret key have appeared. Furthermore, a record class group computation led
to the first practical isogeny-based signature scheme. In this paper, we reviewed the
mathematical and algorithmic aspects of some of these contributions in a unified
dissertation.

The above-mentioned advancements have led to slightly more efficient imple-
mentations of CSIDH and some secret-key-independent variants. In addition, since
the writing of this survey some other relevant papers on the topic have also appeared
(e.g. [10, 25]). However, none of them have determined a significant break-through.
This might be due to the fact that all have as a backbone the original CSIDH
proof-of-concept implementation. We speculate that a major contribution would
need a change of paradigm, likely coming from number-theoretic results. We hope
that this work would contribute to trigger further research on the topic.
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