

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

Lazy Satisfiability Modulo Theories

Roberto Sebastiani

April 2007

Technical Report # DIT-07-022

.

Journal on Satisfiability, Boolean Modeling and Computation 1 (2006)

Lazy Satisfiability Modulo Theories

Roberto Sebastiani ∗ roberto.sebastiani@dit.unitn.it

Dept. of Information and Communication Technologies (DIT), University of Trento, Italy.

Abstract

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a
first-order formula with respect to some decidable first-order theory T (SMT (T)). These
problems are typically not handled adequately by standard automated theorem provers.
SMT is being recognized as increasingly important due to its applications in many domains
in different communities, in particular in formal verification. An amount of papers with
novel and very efficient techniques for SMT has been published in the last years, and some
very efficient SMT tools are now available.

Typical SMT (T) problems require testing the satisfiability of formulas which are boolean
combinations of atomic propositions and atomic expressions in T , so that heavy boolean
reasoning must be efficiently combined with expressive theory-specific reasoning. The dom-
inating approach to SMT (T), called lazy approach, is based on the integration of a SAT
solver and of a decision procedure able to handle sets of atomic constraints in T (T -solver),
handling respectively the boolean and the theory-specific components of reasoning.

Unfortunately, neither the problem of building an efficient SMT solver, nor even that
of acquiring a comprehensive background knowledge in lazy SMT, is of simple solution.

In this paper we present an extensive survey of SMT, with particular focus on the lazy
approach. We survey, classify and analyze from a theory-independent perspective the most
effective techniques and optimizations which are of interest for lazy SMT and which have
been proposed in various communities; we discuss their relative benefits and drawbacks;
we provide some guidelines about their choice and usage; we also analyze the features for
SAT solvers and T -solvers which make them more suitable for an integration.

The ultimate goals of this paper are to become a source of a common background
knowledge and terminology for students and researchers in different areas, to provide a
domain-independent reference guide for developers of SMT tools, and to stimulate the
cross-fertilization of techniques and ideas among different communities.

Keywords: Propositional Satisfiability (SAT), Satisfiability Modulo Theories (SMT),
Decision Procedures

∗ This survey work has benefited from the collaboration of and important discussions with Alessandro
Armando, Clark Barrett, Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Anders Franzen,
Leonardo de Moura, Fausto Giunchiglia, Enrico Giunchiglia, Alberto Griggio, Robert Nieuwenhuis, Al-
bert Oliveras, Silvio Ranise, Marco Roveri, Ofer Strichman, Aaron Stump, Armando Tacchella, Cesare
Tinelli, Stefano Tonetta, Moshe Y. Vardi, Michele Vescovi, to whom I am very grateful. A particular
thank goes to all past and present members of the KSAT and MathSAT teams.
Some material discussed here was presented at the ESSLI’02 course and IJCAI’03 and CADE’03
Tutorials “SAT Beyond Propositional Satisfiability”, whose slides can be downloaded from
www.dit.unitn.it/˜rseba/DIDATTICA/Tutorials/Slides tutorial cade03.pdf, and at the course
“Efficient Boolean Reasoning” at 2003, 2004 and 2005 International Doctorate School on ICT of
Trento and at 2006 International BIT School on ICT in Brixen, whose slides are available at
www.dit.unitn.it/˜rseba/DIDATTICA/SAT BASED06/.

c©2006 Delft University of Technology and the authors.

Contents

1 Introduction 6

1.1 Satisfiability Modulo Theories - SMT . 6

1.2 Lazy SMT = SAT + T -solvers . 6

1.3 Motivations and goals of the paper . 8

1.4 Content of the paper . 9

2 Theoretical background 10

2.1 Background on first-order logic and theories 10

2.1.1 Combination of theories . 11

2.2 Truth assignments and propositional satisfiability in T 12

2.3 Enumerators and T -solvers . 14

3 Basics on SAT solvers 16

3.1 Modern DPLL . 16

3.2 The Abstract-DPLL logical framework . 19

4 Basics on theory solvers 22

4.1 Important features of T -solvers . 22

4.1.1 Model generation . 22

4.1.2 Conflict set generation . 22

4.1.3 Incrementality and Backtrackability 23

4.1.4 Deduction of unassigned literals . 23

4.1.5 Deduction of interface equalities . 24

4.2 Some relevant theories and T -solvers . 24

4.2.1 Equality and Uninterpreted Functions 24

4.2.2 Linear arithmetic . 25

4.2.3 Difference logic . 25

4.2.4 Unit-Two-Variable-Per-Inequality . 26

4.2.5 Bit vectors . 27

4.2.6 Other theories of interest . 27

4.3 Layered T -solvers . 28

5 Integrating DPLL and T -solvers 30

5.1 A basic integration schema . 30

5.2 The offline approach to integration . 31

5.3 The online approach to integration . 32

5.4 The Abstract-DPLL Modulo Theories logical framework: DPLL(T) 35

6 Optimizing the integration of DPLL and T -solvers 37

6.1 Normalizing T -atoms. 38

6.2 Static learning . 38

6.3 Early pruning . 39

6.3.1 Selective or intermittent early pruning 40

6.3.2 Weakened early pruning . 40

2

6.3.3 Eager early pruning . 41
6.4 T -propagation . 41
6.5 T -backjumping . 42
6.6 T -learning . 44
6.7 Splitting on demand . 45
6.8 Clustering . 46
6.9 Reduction of assignments to prime implicants 46
6.10 Pure-literal filtering . 46
6.11 T -deduced-literal filtering . 47

7 Discussion 48
7.1 Guidelines and tips . 48

7.1.1 Some general guidelines . 48
7.1.2 Offline vs. online integration . 49
7.1.3 To T -propagate or not to T -propagate? 49

7.2 Problems of using modern DPLL in SMT 50
7.2.1 Generating partial assignments . 50
7.2.2 Avoiding ghost literals . 51
7.2.3 Drawbacks of modern T -backjumping 52
7.2.4 Implementing T -propagation . 53
7.2.5 DPLL Branching heuristics for SMT 53

8 Lazy SMT for combinations of theories 55
8.1 Ackermann’s expansion . 55
8.2 Nelson-Oppen Combination . 56
8.3 Delayed Theory Combination . 59
8.4 Discussion . 63

9 Related approaches for SMT 65
9.1 Alternative Enumerators for lazy SMT 65

9.1.1 Why DPLL? . 65
9.1.2 OBDD-based SMT solvers . 65
9.1.3 Circuit-based techniques . 66

9.2 The rewrite-based approach for building T -solvers 66
9.3 The eager approach to SMT . 68
9.4 Mixed eager/lazy approaches . 69

3

List of Figures

1 Schema of a modern DPLL engine. 16
2 Example of learning and backjumping based on the 1st UIP stategy. 19
3 The Abstract-DPLL logical framework. 20
4 Example of a layered T -solver . 29
5 Basic architectural schema of a lazy SMT (T) procedure. 30
6 A simplified offline integration schema for lazy SMT (T) procedures. 31
7 An online schema of T -DPLL based on modern DPLL. 32
8 Boolean search tree in the scenario of Example 5.2. 34
9 The Abstract-DPLL Modulo Theories logical framework 35
10 Boolean search tree in the scenario of Example 6.3 42
11 Boolean search tree in the scenarios of Examples 6.4 and 6.5 43
12 Boolean search trees in the scenarios of Example 7.3. 53
13 SMT (T1 ∪ T2) via NO. 56
14 SMT (T1 ∪ T2) via Dtc. 56
15 Search tree for the formula of Example 8.2 57
16 The NO search tree for the formula of Example 8.3 58
17 An offline schema of Dtc for SMT (T1 ∪ T2). 60
18 The Dtc search tree for Example 8.5 . 62

4

1. Introduction

In this paper we present an extensive survey of Satisfiability Modulo Theories (SMT), with
particular focus on the currently-most-effective approach to SMT, the lazy approach.

1.1 Satisfiability Modulo Theories - SMT

Satisfiability Modulo Theories is the problem of deciding the satisfiability of a first-order
formula with respect to some decidable first-order theory T (SMT (T)). Examples of theo-
ries of interest are, those of Equality and Uninterpreted Functions (EUF), Linear Arithmetic
(LA), both over the reals (LA(Q)) and the integers (LA(Z)), its subclasses of Difference
Logic (DL) and Unit-Two-Variable-Per-Inequality (UT VPI), the theories of bit-vectors
(BV), of arrays (AR) and of lists (LI). These problems are typically not handled ad-
equately by standard automated theorem provers —like, e.g., those based on resolution
calculus— because the latter cannot satisfactorily deal with the theory-specific interpreted
symbols (i.e., constants, functions, predicates). 1.

SMT is being recognized as increasingly important due to its applications in many
domains in different communities, ranging from resource planning [WW99] and temporal
reasoning [ACG99] to formal verification, the latter including verification of pipelines and of
circuits at Register-Transfer Level (RTL) [BD94, PICW04, BBC+06a], of proof obligations
in software systems [RD03], of compiler optimizations [BFG+05], of real-time embedded
systems [ACKS02, dMRS02a, ABCS03].

An amount of papers with novel and very efficient techniques for SMT has been pub-
lished in the last years, and some very efficient SMT tools are now available (e.g., Ario

[SS05], BarceLogic [NO05a], CVCLite [BB04], DLSAT [MNAM02], haRVey [RD03],
MathSAT [BBC+05a], Sateen [KS06], SDSAT [GTG06] Simplify [DNS05], TSAT++

[ACGM04], UCLID [LS04], Yices [DdM06], Verifun [FJOS03], Zapato [BCLZ04]). An
amount of benchmarks, mostly derived from verification problems, is available at the SMT-
LIB official page [RT06b, RT06c]. A workshop devoted to SMT 2. and an official competition
on SMT tools 3. are run yearly.

1.2 Lazy SMT = SAT + T -solvers

All applications mentioned above require testing the satisfiability of formulas which are
(possibly-big) boolean combinations of atomic propositions and atomic expressions in some
theory T , so that heavy boolean reasoning must be efficiently combined with expressive
theory-specific reasoning.

On the one hand, in the last decade we have witnessed an impressive advance in the ef-
ficiency of propositional satisfiability techniques, SAT [SS96, BS97, MMZ+01, GN02, ES04,
EB05]). As a consequence, some hard real-world problems have been successfully solved
by encoding them into SAT. SAT solvers are now a fundamental tool in most formal ver-
ification design flows for hardware systems, both for equivalence, property checking, and

1. E.g., even handling a simple formula in LA(Z) like (x ≤ y) → (x ≤ y + 1024) could be a problem for
a resolution-based theorem prover, because it would need an axiomatic formalization of the interpreted
symbols “1024”, “+” and “≤”. See, e.g., [RT06a] for some more discussion on this issue.

2. SMT’07, previously called “PDPAR”. See http://www.lsi.upc.edu/∼oliveras/smt07/.
3. SMT-COMP05/06 [BdMS05]. See http://www.csl.sri.com/users/demoura/smt-comp/.

5

http://www.lsi.upc.edu/~oliveras/smt07/
http://www.csl.sri.com/users/demoura/smt-comp/

ATPG [BCCZ99, McM02, SBSV96]; other application areas include, e.g., the verification of
safety-critical systems [SS90, Bor97], and AI planning in its classical formulation [KMS96],
and in its extensions to non-deterministic domains [CGT03, HB05]. Plain boolean logic,
however, is not expressive enough for representing many other real-world problems (in-
cluding, e.g., the verification of pipelined microprocessors, of real-time and hybrid control
systems, and the analysis of proof obligations in software verification); in other cases, such
as the verification of RTL designs or assembly-level code, even if boolean logic is expressive
enough to encode the verification problem, it does not seem to be the most effective level
of abstraction (e.g., words in the data path are typically treated as collections of unrelated
boolean variables).

On the other hand, decision procedures for much more expressive decidable logics
have been conceived and implemented in different communities, like, e.g., automated the-
orem proving, operational research, knowledge representation and reasoning, AI planning,
CSP, formal verification. In particular, since the pioneering work of Nelson & Oppen
[NO79, NO80, Opp80] and Shostak [Sho79, Sho84], efficient procedures have been con-
ceived and implemented which are able to check the consistency of sets/conjunctions of
atomic expressions in decidable F.O. theories. (We call these procedures, Theory Solvers
or T -solvers.) To this extent, most effort has been concentrated in producing T -solvers of
increasing expressiveness and efficiency and, in particular, in combining them in the most
efficient way (e.g., [NO79, NO80, Opp80, Sho79, Sho84, FORS01, BDS02b, SR02]). These
procedures, however, deal only with conjunctions of atomic constraints, and thus cannot
handle the boolean component of reasoning.

In the last ten years new techniques for efficiently integrating SAT solvers with logic-
specific or theory-specific decision procedures have been proposed in different communities
and domains, producing big performance improvements when applied (see, e.g., [GS96a,
Hor98, PS98, ACG99, WW99, dMRS02a, BDS02a, ABC+02a, Tin02, FJOS03, GHN+04,
BBC+05a, SS06b]). Most such systems have been implemented on top of SAT techniques
based on variants of the DPLL algorithm [DP60, DLL62, SS96, BS97, MMZ+01, GN02,
ES04, EB05]. 4.

In particular, the dominating approach to SMT (T), which underlies most state-of-the-
art SMT (T) tools, is based on the integration of a SAT solver and one (or more) T -solver(s),
respectively handling the boolean and the theory-specific components of reasoning: the SAT
solver enumerates truth assignments which satisfy the boolean abstraction of the input
formula, whilst the T -solver checks the consistency in T of the set of literals corresponding
to the assignments enumerated. This approach is called lazy, in contraposition of the
eager approach to SMT (T), consisting on encoding a SMT formula into an equivalently-
satisfiable boolean formula, and on feeding the result to a SAT solver (see, e.g., [VB99,
BLS02, SSB02, Str02, SLB03]). All the most extensive empirical evaluations performed in
the last years [GHN+04, dMR04, NO05a, BBC+05b, BdMS05, SMT05, SMT06] confirm
the fact that currently all the most efficient SMT tools are based on the lazy approach.

4. Notice that the idea of integrating decision procedures and DPLL, and many techniques for optimizing
this integration, were conceived and implemented in the domain of modal and description logics [GS96a,
GS96b, Hor98, PS98, GGST98], and have been imported into the SMT domain only lately [ACG99].

6

1.3 Motivations and goals of the paper

The writing of this survey paper is motivated by the following facts.

First, the problem of efficiently combining modern SAT solvers and state-of-the-art
decision procedures into a lazy SMT solver is not of simple solution. In fact, the efficiency
of a combined procedure does not come straightforwardly from the efficiency of its two
components: a naive integration of extremely-efficient SAT solvers and T -solvers may end
up into very inefficient tools if the integration is not done properly. For instance, a naively-
integrated SAT solver may cause big amounts of redundant calls to the T -solver (see §6).

Moreover, with lazy SMT the choice of the suitable procedures for the SAT solvers or
T -solvers is not always straightforward. In fact, the features which make a SAT solver or a
T -solver suitable for an efficient integration are often different from those which make them
efficient as standalone solvers. For instance, some features which contribute to improve
the efficiency of a modern DPLL solver may have some drawbacks when used within a lazy
SMT solver (see §7.2); moreover, some features of a T -solver which allow for maximizing
the synergy with the SAT solver (see §4.1) are often more important than the efficiency of
the T -solver itself.

Second, acquiring a comprehensive background knowledge in lazy SMT from the liter-
ature may be a complicate task. In fact, the information on techniques of interest is scat-
tered into a plethora of papers from heterogeneous research communities (e.g., Automated
Reasoning, CSP, EDA, Formal Verification, Knowledge Representation & Reasoning, Plan-
ning, Operational Research, SAT), because lazy SMT borrows ideas and techniques from
many disciplines (e.g., automated reasoning in modal & description logics, F.O. theorem
proving, graph algorithms, linear and integer programming, SAT, ...), some of which have
hardly anything to do with logic or even with symbolic computation. For instance, for
theories involving arithmetic (e.g., LA(Q), LA(Z), DL) the most efficient T -solvers are
based on numerical algorithms borrowed from linear programming, integer programming
and shortest-path (see §4.2), which have been adapted to work in a logic context.

Moreover, in many papers the description of the integration techniques is mixed up with
(and often hidden by) lots of domain-specific information, and it is described with domain-
specific notation and terminology, so that it may prevent or discourage researchers from
other areas to access it. On the whole, there has been a general lack of cross-fertilization
among different communities, which is witnessed by the fact that some techniques have been
“reinvented” from scratch several times in different contests. For instance, the technique
called “T -backjumping” (see §6) has been invented for description logics [Hor98], and then
“reinvented” in both the communities of resource planning [WW99] and formal verification
[SBD02, dMRS02b], in different moments and without cross-citations.

In this paper we survey, classify and analyze from a theory-independent perspective
the most effective techniques and optimizations which are of interest for lazy SMT and
which have been proposed in various communities; we discuss their relative benefits and
drawbacks; we provide some guidelines about their choice and usage; we also analyze the
features for SAT solvers and T -solvers which make them more suitable for an integration.

People with a background in SAT may learn from this paper how to extend SAT solvers
to work with much more expressive logics; people with a background on decision procedures
may learn how to handle boolean reasoning efficiently; people with background on neither

7

area may learn about lazy SMT from scratch. To this extent, the paper is written with
a didactic style, explaining basic concepts from scratch and presenting many examples, so
that to be at the reach also of students and of researcher from other communities.

The ultimate goals of this paper are to become a source of a common background
knowledge and terminology for students and researchers in different areas, to provide a
domain-independent reference guide for developers of SMT tools, and to stimulate the
cross-fertilization of techniques and ideas among different communities.

1.4 Content of the paper

The rest of the paper is organized as follows.

• In §2 we provide the necessary theoretical background. We recall some basic concepts
about first-order logic and theories, and provide some formal definitions and results
which justify the correctness and completeness of lazy SMT procedures.

• In §3 we report some basic concepts about SAT, surveying the main techniques and
optimizations of modern DPLL solvers which are of interest for lazy SMT.

• In §4 we report some basic concepts about T -solvers. We discuss the features of
T -solvers which are most important for lazy SMT, and briefly survey the most inter-
esting theories and their relative T -solvers.

• In §5 we introduce the basic integration schemata between DPLL and T -solvers.

• In §6 we survey and analyze the most effective techniques and optimizations avail-
able in the literature, which allow for optimizing the interaction between DPLL and
T -solver.

• In §7 we provide some guidelines and tips about the choice and usage of such tech-
niques. We also overview a list of problems one may encounter while implementing a
lazy SMT tool on top of a modern DPLL implementation, and propose some solutions.

• In §8 we address the case where where T is the combination of two or more different
theories. We present and discuss the main techniques for integration two or more
T -solvers into a lazy SMT tool.

• In §9 we present the related work. First, we present and discuss possible alternatives
to the usage of DPLL in lazy SMT. Then we survey and discuss the main alternative
approaches for SMT, including the rewrite-based approach, the eager approach, and
some recent attempt of combining the lazy and eager approaches.

8

2. Theoretical background

In this section we recall some basic theoretical concepts, mostly from [SV98, GS00, Seb01,
ABC+02b, BBC+06b], providing the theoretical background and terminology for this paper.

2.1 Background on first-order logic and theories

In order to make the paper self-contained, we recall some basic notions and terminology
about first-order theories. We assume the usual syntactic notions of first-order logic with
equality as defined, e.g., in [DJ90].

In the following, let Σ be a first-order signature containing function and predicate sym-
bols with their arities, and V be a set of variables. A 0-ary function symbol c is called a
constant. A 0-ary predicate symbol A is called a boolean atom. A Σ-term is either a variable
in V or it is build by applying function symbols in Σ to Σ-terms. If t1, . . . , tn are Σ-terms
and P is a predicate symbol, then P (t1, . . . , tn) is a Σ-atom. If l and r are two Σ-terms,
then the Σ-atom l = r is called a Σ-equality and ¬(l = r) (also written as l 6= r) is called a
Σ-disequality. A Σ-formula ϕ is built in the usual way out of the universal and existential
quantifiers ∀,∃, the boolean connectives ∧,¬, and Σ-atoms. We use the standard boolean
abbreviations: “ϕ1 ∨ϕ2” for “¬(¬ϕ1 ∧¬ϕ2)”, “ϕ1 → ϕ2” for “¬(ϕ1 ∧¬ϕ2)”, “ϕ1 ← ϕ2” for
“¬(¬ϕ1 ∧ ϕ2)”, “ϕ1 ↔ ϕ2” for “¬(ϕ1 ∧ ¬ϕ2) ∧ ¬(ϕ2 ∧ ¬ϕ1)”, “⊤” [resp. “⊥”] for the true
[resp. false] constant. A Σ-literal is either a Σ-atom (a positive literal) or its negation (a
negative literal). The set of Σ-atoms and Σ-literals occurring in ϕ are denoted by Atoms(ϕ)
and Lits(ϕ) respectively. We call a Σ-formula quantifier-free if it does not contain quanti-
fiers, and a sentence if it has no free variables. A quantifier-free formula is in conjunctive
normal form (CNF) if it is written as a conjunction of disjunctions of literals. A disjunction
of literals is called a clause.

Notationally we use the Greek letters ϕ, ψ to represent Σ-formulas, the capital letters
Ai’s and Bi’s to represent boolean atoms, and the Greek letters α, β, γ to represent Σ-atoms
in general, the letters li’s to represent Σ-literals. If l is a negative Σ-literal ¬β, then by
“¬l” we conventionally mean β rather than ¬¬β. We sometimes write a clause in the form
of an implication:

∧

i li →
∨

j lj for
∨

i ¬li ∨
∨

j lj and
∧

i li → ⊥ for
∨

i ¬li.
We also assume the usual first-order notions of interpretation, satisfiability, validity,

logical consequence, and theory, as given, e.g., in [End72]. We write Γ |= ϕ to denote that
the formula ϕ is a logical consequence of the (possibly infinite) set Γ of formulae. A Σ-theory
is a set of first-order sentences with signature Σ. All the theories we consider are first-order
theories with equality, which means that the equality symbol = is a predefined predicate and
it is always interpreted as a relation which is reflexive, symmetric, transitive, and it is also
a congruence. Since the equality symbol is a predefined predicate, it will not be included
in any signature Σ considered in this paper. A Σ-structure I is a model of a Σ-theory T
if I satisfies every sentence in T . A Σ-formula is satisfiable in T (or T -satisfiable) if it is
satisfiable in a model of T . We write Γ |=T ϕ to denote T ∪Γ |= ϕ. Two Σ-formulas ϕ and ψ
are T -equisatisfiable iff ϕ is T -satisfiable iff ψ is T -satisfiable. We call Satisfiability Modulo
(the) Theory T , SMT (T), the problem of establishing the T -satisfiability of Σ-formulae,
for some background theory T . The SMT (T) problem is NP-hard, since it subsumes the
problem of checking the satisfiability of boolean formulae.

9

In this paper we restrict our attention to quantifier-free Σ-formulae on some Σ-theory
T . 5. We call a theory solver for T (T -solver) any procedure establishing whether any
given finite conjunction of quantifier-free Σ-literals (or equivalently, any given finite set of
Σ-literals) is T -satisfiable or not.

Henceforth, for simplicity and if not specified otherwise, we may omit the “Σ-” prefix
from term, formula, theory, models, etc. Moreover, by “formulas”, “atoms” and “literals”
we implicitly refer to quantifier-free formulas, atoms and literals respectively.

2.1.1 Combination of theories

A theory T is stably-infinite iff for each T -satisfiable formula ϕ, there exists a model of T
whose domain is infinite and which satisfies ϕ. A conjunction Γ of literals is convex in a
theory T iff for each disjunction

∨n
i=1 xi = yi (where xi, yi are variables and i = 1, ..., n) we

have that Γ |=T
∨n
i=1 xi = yi iff Γ |=T xi = yi for some i ∈ {1, ..., n}. A theory T is convex

iff all the conjunctions of literals are convex in T . Notice that any convex theory whose
models are non-trivial (i.e., the domains of the models have all cardinality strictly greater
than one) is stably-infinite.

In the sequel, let Σ1 and Σ2 be two disjoint signatures (i.e., Σ1 ∩ Σ2 = ∅) and T i will
be a theory in Σi for i = 1, 2. We consider Σ := Σ1 ∪ Σ2 and T := T1 ∪ T2. We call
SMT (T1 ∪ T2) the problem of establishing the T1 ∪ T2-satisfiability of Σ1 ∪ Σ2-formulae. 6.

A Σ1 ∪ Σ2-term t is an i-term iff either it is a variable or it has the form f(t1, ..., tn),
where f is in Σi. Notice that a variable is both a 1-term and a 2-term. A non-variable
subterm s of an i-term t is alien if s is a j-term, and all superterms of s in t are i-terms,
where i, j ∈ {1, 2} and i 6= j. An i-term is i-pure if it does not contain alien subterms.
An atom (or a literal) is i-pure if it contains only i-pure terms and its predicate symbol is
either equality or in Σi. A Σ1 ∪ Σ2-formula ϕ is said to be pure if every atom occurring in
the formula is i-pure for some i ∈ {1, 2}. Intuitively, ϕ is pure if each atom can can be seen
as belonging to one theory Ti only.

Every non-pure Σ1 ∪ Σ2-formula ϕ can be converted into an T1 ∪ T2-equisatisfiable one
by recursively replacing each alien subterm t by a new variable vt and adding the equality
vt = t to ϕ. E.g.:

(f(x+ 3y) = g(2x− y)) =⇒ (f(vx+3y) = g(v2x−y))∧ (vx+3y = x+ 3y)∧ (v2x−y = 2x− y).

This process is called purification, and the size of the resulting formula is linear in that of
ϕ. If ϕ is a pure Σ1 ∪ Σ2-formula, then v is an interface variable for ϕ iff it occurs in both
1-pure and 2-pure atoms of ϕ. An equality (vi = vj) is an interface equality for ϕ iff vi, vj
are interface variables for ϕ. Henceforth we denote the interface equality (vi = vj) by “eij”.

5. Notice that in SMT (T), the variables are implicitly existentially quantified, and hence equivalent to
Skolem constants.

6. For simplicity in this paper we refer to combinations of two theories only, but all the discourse can be
easily generalized to combination of many signature-disjoint theories T 1 ∪ ... ∪ T n.

10

2.2 Truth assignments and propositional satisfiability in T
We consider a generic quantifier-free decidable First-Order Theory T on a signature Σ.
Notationally, we will often use the prefix “T -” to denote “in the theory T ”: e.g., we call a
“T -formula” a formula in (the signature of) T , “T -model” a model in T , and so on.

We call a truth assignment µ for a T -formula ϕ a truth value assignment to all the
T -atoms of ϕ. A truth assignment is total if it assigns a value to all atoms in ϕ, partial
otherwise. Syntactically identical instances of the same T -atom are always assigned identical
truth values; syntactically different T -atoms, e.g., (t1 ≥ t2) and (t2 ≤ t1), are treated
differently and may thus be assigned different truth values.

To this extent, we introduce a bijective function T 2B (“Theory-to-Boolean”) and its in-
verse B2T := T 2B−1 (“Boolean-to-Theory”), s.t. T 2B maps boolean atoms into themselves
and non-boolean T -atoms into fresh boolean atoms —so that two atom instances in ϕ are
mapped into the same boolean atom iff they are syntactically identical— and distributes
with sets and boolean connectives. T 2B and B2T are also called boolean abstraction and
boolean refinement respectively.

We represent a truth assignment µ for ϕ as a set of T -literals

{α1, . . . , αN ,¬β1, . . . ,¬βM , A1, . . . , AR,¬AR+1, . . . ,¬AS}, (1)

αi’s, βj ’s being Σ-atoms and Ai’s being boolean propositions. Positive literals αi, Ak mean
that the corresponding atom is assigned to true, negative literals ¬βi, ¬Ak mean that the
corresponding atom is assigned to false. If µ2 ⊆ µ1, then we say that µ1 extends µ2 and
that µ2 subsumes µ1. Sometimes we represent a truth assignment (1) also as the formula
given by the conjunction of its literals:

α1 ∧ . . . ∧ αN ∧ ¬β1 ∧ . . . ∧ ¬βM ∧A1 ∧ . . . ∧AR ∧ ¬AR+1 ∧ . . . ∧ ¬AS . (2)

Notationally, we use the Greek letters µ, η to represent truth assignments.

We say that a total truth assignment µ for ϕ propositionally satisfies ϕ, written µ |=p ϕ,
if and only if T 2B(µ) |= T 2B(ϕ), that is, for all sub-formulas ϕ1, ϕ2 of ϕ:

µ |=p ϕ1, ϕ1 ∈ Atoms(ϕ) ⇐⇒ ϕ1 ∈ µ,
µ |=p ¬ϕ1 ⇐⇒ µ 6|=p ϕ1,
µ |=p ϕ1 ∧ ϕ2 ⇐⇒ µ |=p ϕ1 and µ |=p ϕ2.

We say that a partial truth assignment µ propositionally satisfies ϕ if and only if all the
total truth assignments for ϕ which extend µ propositionally satisfy ϕ. (Henceforth, if not
specified, when dealing with propositional T -satisfiability we do not distinguish between
total and partial assignments.)

Intuitively, if we consider a T -formula ϕ as a propositional formulas in its atoms, then
|=p is the standard satisfiability in propositional logic. Thus, for every ϕ1 and ϕ2, we
say that ϕ1 |=p ϕ2 if and only if µ |=p ϕ2 for every µ s.t. µ |=p ϕ1. We say that ϕ is
propositionally satisfiable if and only if there exist an assignment µ s.t. µ |=p ϕ. We also
say that |=p ϕ (ϕ is propositionally valid) if and only if µ |=p ϕ for every assignment µ for ϕ.
Thus ϕ1 |=p ϕ2 if and only if |=p ϕ1 → ϕ2, and |=p ϕ iff ¬ϕ is propositionally unsatisfiable.

Notice that |=p is stronger than |=T , that is, if ϕ1 |=p ϕ2, then ϕ1 |=T ϕ2, but not vice
versa. E.g., (x1 ≤ x2) ∧ (x2 ≤ x3) |=LA (x1 ≤ x3), but (x1 ≤ x2) ∧ (x2 ≤ x3) 6|=p (x1 ≤ x3).

11

Example 2.1. Consider the following LA(Q)-formula ϕ and it boolean abstraction T 2B(ϕ):

ϕ := {¬(2x2 − x3 > 2) ∨A1}
∧ {¬A2 ∨ (x1 − x5 ≤ 1)}
∧ {(3x1 − 2x2 ≤ 3) ∨A2}
∧ {¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1}
∧ {A1 ∨ (3x1 − 2x2 ≤ 3)}
∧ {(x2 − x4 ≤ 6) ∨ (x5 = 5− 3x4) ∨ ¬A1}
∧ {A1 ∨ (x3 = 3x5 + 4) ∨A2}

T 2B(ϕ) := {¬B1 ∨A1}
∧ {¬A2 ∨B2}
∧ {B3 ∨A2}
∧ {¬B4 ∨ ¬B5 ∨ ¬A1}
∧ {A1 ∨B3}
∧ {B6 ∨B7 ∨ ¬A1}
∧ {A1 ∨B8 ∨A2}

We consider the partial truth assignment µ:

{¬(2x2 − x3 > 2),¬A2, (3x1 − 2x2 ≤ 3),¬(3x1 − x3 ≤ 6), (x2 − x4 ≤ 6), (x3 = 3x5 + 4)},

which is the boolean refinement of the assignment T 2B(µ) = {¬B1,¬A2, B3,¬B5, B6, B8}.
(Notice that the two occurrences of (3x1 − 2x2 ≤ 3) in rows 3 and 5 of ϕ are both assigned
true.) µ is a partial assignment which propositionally satisfies ϕ (i.e., T 2B(µ) |= T 2B(ϕ)),
as it assigns to true one literal of every disjunction in ϕ.

We say that a collection M := {µ1, . . . , µn} of (possibly partial) assignments proposi-
tionally satisfying ϕ is complete if and only if,

|=p ϕ↔
∨

µj∈M

µj. (3)

Property 2.2. [SV98] A collection M := {µ1, . . . , µn} of partial assignments proposition-
ally satisfying ϕ is complete if and only if, for every total assignment η s.t. η |=p ϕ, there
exists µj ∈M s.t. µj ⊆ η.

Proof.
[If] For every η s.t. η |=p ϕ, µj ⊆ η for some µj ∈ M. Thus, η |=p µj, and hence
η |=p

∨

µj∈M
µj. Thus, |=p ϕ→

∨

µj∈M
µj. Vice versa, as µj |=p ϕ for every µj ∈ M, then

|=p ϕ←
∨

µj∈M
µj. Thus M is complete.

[Only if] Let M be complete. As η |=p ϕ, then η |=p

∨

µj∈M
µj. Hence η |=p µj for some

µj ∈M, so that η ⊇ µj .

M can be seen thus as a compact representation of the whole set of total assignments
propositionally satisfying ϕ.

Proposition 2.3. [SV98] Let ϕ be a T -formula and let M := {µ1, . . . , µn} be a complete
collection of truth assignments propositionally satisfying ϕ. Then, ϕ is T -satisfiable if and
only if µj is T -satisfiable for some µj ∈M.

Proof.
[If] I |=T µ for some T -model I and µ |=p ϕ, so that µ |=T ϕ. Thus I |=T ϕ.

[Only if] I |=T ϕ for some T -model I. Let

µI := {α s.t. α ∈ Atoms(ϕ) and I |=T α} ∪ {¬β s.t. β ∈ Atoms(ϕ) and I |=T ¬β}.

12

By construction, µI is a total truth assignment s.t. µI |=p ϕ and µI is T -consistent. By
definition of M, there exists a µj ∈ M s.t. µj ⊆ µI and µj |=p ϕ. µj is T -consistent
because µI is T -consistent.

Finally, we notice the following fact.

Proposition 2.4. [Seb01] Let α be a non-boolean atom occurring only positively [resp.
negatively] in ϕ. Let M be a complete set of assignments satisfying ϕ, and let

M′ := {µj \ {¬α}| µj ∈M} [resp. {µj \ {α} | µj ∈M}].

Then (i) for every µ′j ∈M′, µ′j |=p ϕ, and (ii) ϕ is T -satisfiable if and only if there exist a
T -satisfiable µ′j ∈M′.

Proof. (sketch) (i) As µ′j = µj \{¬α} for some µj and µj |=p ϕ and α occurs only positively
in ϕ, it is easy to show by induction on ϕ that µ′j |=p ϕ.
(ii) [If] I |=T µ′j for some T -model I and µ′j |=p ϕ by (i), so that µ′j |=T ϕ. Thus I |=T ϕ.
[Only if] If ϕ is T -satisfiable, then there is a T -satisfiable µj ∈ M s.t. µj |=p ϕ because
M is complete. Let µ′j := µj \ {¬α}. Then µ′j ∈ M′ and µ′j is T -satisfiable because µj is
T -satisfiable.

2.3 Enumerators and T -solvers

By proposition 2.3, the problem of establishing the T -satisfiability of ϕ can be decomposed
into two orthogonal components: one boolean component, consisting in searching for (up to
a complete set of) propositional models µ’s propositionally satisfying ϕ, and one theory-
dependent component, consisting in checking the T -consistence of µ (that is, for the set of
T -literals in µ). This suggests that an SMT (T) solver can be seen as a combination of two
basic ingredients: a Truth Assignment Enumerator and a Theory Solver for T .

We call a Truth Assignment Enumerator (Enumerator henceforth) a total function
which takes as input a T -formula ϕ and returns a complete collection M := {µ1, . . . , µn}
of assignments propositionally satisfying ϕ.

As in §2.1, we call a Theory Solver for T (T -solver) a procedure which takes as input a
collection of T -literals µ and decides whether µ is T -satisfiable; optionally, it can return a
T -model satisfying µ, or Null if there is none. (It can return also some other information,
which we will discuss in §4.1.)

Examples of calls to T -solver for different theories T are: 7.

DL: DL-solver({(x− y = 3), (y − z ≤ 4),¬(x − z ≤ 8)}) returns Unsat;

EUF : EUF-solver({a = b, b = f(c),¬(g(a) = g(f(c)))}) returns Unsat;

LA(Q): LA(Q)-solver({(x− 2y = 3), (4y − 2z < 9),¬(x− z ≤ 7)}) returns Sat;

LA(Z): LA(Z)-solver({(x− 2y = 3), (4y − 2z < 9),¬(x− z ≤ 7)}) returns Unsat;

BV: BV-solver({(w[31:0]>>16) != 016:w[31:16] }) returns Unsat;

7. These theories will be described in details in §4.2.

13

AR: AR-solver({ ¬(a1=a2,), ¬(read(M,a2)=read(write(M,a1,x),a2)) }) returns Unsat.

Notice that T can be a combination of sub-theories, and hence T -solver be a combined
solver, as, e.g., in [NO79, Sho79, FORS01, BDS02b, SR02].

Remark 2.5. For better readability, in all the examples of this paper we will use the the-
ory of linear arithmetic on rational numbers (LA(Q)) because of its intuitive semantics.
Nevertheless, analogous examples can be built with all other theories of interest.

14

1. SatValue DPLL (Bool formula ϕ, assignment & µ) {
2. if (preprocess(ϕ, µ)==Conflict);

3. return Unsat;

4. while (1) {
5. decide next branch(ϕ, µ);
6. while (1) {
7. status = deduce(ϕ, µ);
8. if (status == Sat)

9. return Sat;

10. else if (status == Conflict) {
11. blevel = analyze conflict(ϕ, µ);
12. if (blevel == 0)

13. return Unsat;

14. else backtrack(blevel,ϕ, µ);
15. }
16. else break;
17. } } }

Figure 1. Schema of a modern DPLL engine.

3. Basics on SAT solvers

A SAT solver is a procedure which decides whether an input boolean formula ϕ is satisfiable,
and returns a satisfying assignment if this is the case. Notice the difference between a
SAT solver and a truth assignment enumerator: the former has to find only one satisfying
assignment —or to decide there is none— while the latter has to find a complete collection
of satisfying assignments.

Most state-of-the-art SAT procedures are evolutions of the Davis-Putnam-Longeman-
Loveland (DPLL) procedure [DP60, DLL62].

3.1 Modern DPLL

Unlike with “classic” representation of DPLL [DP60, DLL62], modern DPLL implementa-
tion are non-recursive, and are based on very efficient, destructive data structures to handle
boolean formulas and assignments. They benefit of sophisticated search techniques, smart
decision heuristics, highly-engineered data structures and cute implementation tricks, and
smart preprocessing techniques. (We refer the reader to [ZM02] for an overview.) A high-
level schema of a modern DPLL engine, adapted from [ZM02], is reported in Figure 1. The
boolean formula ϕ is in CNF; the assignment µ is initially empty, and it is updated in a
stack-based manner.

preprocess(ϕ, µ) simplifies ϕ into a simpler and equi-satisfiable formula, and updates
µ if it is the case. 8. If the resulting formula is unsatisfiable, then DPLL returns Unsat.

8. More precisely, if ϕ, µ, ϕ′, µ′ are the formula and the assignment before and after preprocessing
respectively, then ϕ′ ∧ µ′ is equisatisfiable to ϕ ∧ µ.

15

In the main loop, decide next branch(ϕ, µ) chooses an unassigned literal l from ϕ
according to some heuristic criterion, and adds it to µ. (This operation is called decision, l
is called decision literal end the number of decision literals in µ after this operation is called
the decision level of l.)

In the inner loop, deduce(ϕ, µ) iteratively deduces literals l deriving from the current
assignments (i.e., ϕ ∧ µ |=p l) and updates ϕ and µ accordingly; this step is repeated until
either µ satisfies ϕ, or µ falsifies ϕ, or no more literals can be deduced, returning Sat,
Conflict and Unknown respectively. (The iterative application of boolean deduction steps in
deduce is also called Boolean Constraint Propagation, BCP.)

In the first case, DPLL returns Sat. If the second case, analyze conflict(ϕ, µ) detects
the subset η of µ which caused the conflict (conflict set) and the decision level blevel to
backtrack. If blevel==0, then a conflict exists even without branching, so that DPLL

returns Unsat. Otherwise, backtrack(blevel,ϕ, µ) adds ¬η to ϕ (learning) and backtracks
up to blevel (backjumping), updating ϕ and µ accordingly. In the third case, DPLL exits
the inner loop, looking for the next decision.

We look at these steps with some more detail.

preprocess implements simplification techniques like, e.g., detecting and inlining boolean
equivalences among literals, applying resolutions steps to selected pairs of clauses, detecting
and dropping subsumed clauses (see, e.g., [Bra01, BW03, EB05]). It may also apply BCP
if this is the case.

decide next branch implements the key non-deterministic step in DPLL, for which
many heuristic criteria have been conceived. Old-style heuristics like MOMS and Jeroslow-
Wang [JW90] used to select a new literal at each branching point, picking the literal occur-
ring most often in the minimal-size clauses (see, e.g., [HV95]). The heuristic implemented
in SATZ [LA97] selects a candidate set of literals, perform BCP, chooses the one leading
to the smallest clause set; this maximizes the effects of BCP, but introduces big overheads.
When formulas derive from the encoding of some specific problem, it is sometimes useful to
allow the encoder to provide to the DPLL solver a list of “privileged” variables on which
to branch on first (e.g., action variables in SAT-based planning [GMS98], primary inputs
in bounded model checking [Str00]). Modern DPLL solvers adopt evolutions of the VSIDS
heuristic [MMZ+01, GN02, ES04], in which decision literals are selected according to a
score which is updated only at the end of a branch, and which privileges variables occur-
ring in recently-learned clauses; this makes decide next branch state-independent (and
thus much faster, because there is no need to recomputing the scores at each decision) and
allows it to take into account search history, which makes search more effective and robust.

deduce is mostly based on the iterative application of unit propagation. Highly-engineered
data structures and cute implementation tricks (like the two-watched-literal scheme [MMZ+01])
allow for extremely efficient implementations. Other forms of deductions (and formula sim-
plification) are, e.g., pure literal rule (now obsolete), on-line equivalence reasoning [Li00],
and variable and clause elimination [EB05].

It is important to notice that most modern implementations DPLL solver do not return
Sat when all clauses are satisfied, but only when all variables are assigned truth values. 9. As

9. This is mostly due to the fact that the two-watched-literal scheme [MMZ+01] does not allow for an easy
check of clause satisfaction. (E.g., if a non-watched literal l in the clause C ∨ l is true, then the clause
it satisfied but DPLL is not informed of this fact.)

16

a consequence, modern SAT solvers typically return total truth assignments, even though
the formulas are satisfied by partial ones. (We will further discuss this issue in §7.2.1.)

analyze conflict and backtrack work as follows [SS96, BS97, ZMMM01]. Each non-
decision literal l in µ is tagged by a link to the clause Cl causing its unit-propagation (called
the antecedent clause of l). When a conflict occurs on a clause C (called the conflicting
clause), a conflict clause is computed starting from C by iteratively resolving the current
clause C with the antecedent clause Cl of one non-decision literal l occurring in C. De-
pending on the strategy adopted, this process may terminate, e.g., as soon as C contains
no non-decision literal of the current decision level (the last UIP strategy) or at most one
non-decision literal of the current decision level (the 1st UIP strategy).

Graphically, building a conflict set/clause corresponds to (implicitly) building and ana-
lyzing the implication graph corresponding to the current assignment. An implication graph
is a DAG s.t. each node represents a variable assignment (literal), the node of a decision lit-
eral has no incoming edges, all edges incoming into a non-decision-literal node l are labeled

with the antecedent clause s.t. Cl, s.t. l1
Cl7−→ l,...,ln

Cl7−→ l if and only if Cl = ¬l1∨...∨¬ln∨l.
When both l and ¬l occur in the implication graph, we have a conflict, and a partition of
the graph with all decision literals on one side and the conflict on the other represents a
conflict set. A node l in an implication graph is an unique implication point (UIP) for the
last decision level iff any path from the last decision node to both the conflict nodes passes
through l; the most recent decision node is an UIP (last UIP); the most-recently-assigned
UIP is called the 1st UIP. E.g., the last [resp. 1st] UIP strategy corresponds to using as
conflict set the partition corresponding to the last [resp. 1st] UIP and decision literals.

After analyze conflict has computed the conflict clause C and added it to the formula,
backtrack pops all assigned literals out of µ up to a decision level blevel deriving from
C, which is computed by analyze conflict according to different strategies. In the most
modern implementations, DPLL backtracks to the highest point in the stack where one
literal l in the learned clause ¬µ′ is not assigned, and unit propagates l. We refer the reader
to [ZMMM01] for an overview on backjumping and learning strategies.

Example 3.1. Consider a boolean formula containing the clauses c1 . . . c9 in Figure 2, and
assume at some point µ := {. . . ,¬A9, . . . ,¬A10, . . . ,¬A11, . . . , A12, . . . , A13, . . . , A1}. After
applying BCP on c1 . . . c8 a conflict on c6 occurs. Starting from the conflicting clause c6,
the conflict clause/set is computed by iteratively resolving the current clause C with the
antecedent clause of one non-decision literal l in C, until it contains at most one non-
decision literal assigned at the current decision level (1st UIP):

c4
︷ ︸︸ ︷

¬A4 ∨A5 ∨A10

c5
︷ ︸︸ ︷

¬A4 ∨A6 ∨A11

conflicting clause
︷ ︸︸ ︷

¬A5 ∨ ¬A6

¬A4 ∨ ¬A5 ∨A11
(A6)

¬A4
︸︷︷︸

1st UIP

∨A10 ∨A11
︸ ︷︷ ︸

decision lits

(A5)

This corresponds to the 1st UIP cut of the implication graph in Figure 2. Then DPLL

learns the conflict clause c10 := A10 ∨ A11 ∨ ¬A4, and backtracks up to below ¬A11, it
unit-propagates ¬A4 on c10, and proceeds.

17

c1 : {¬A1 ∨A2}
√

c2 : {¬A1 ∨A3 ∨A9}
√

c3 : {¬A2 ∨ ¬A3 ∨A4}
√

c4 : {¬A4 ∨A5 ∨A10}
√

c5 : {¬A4 ∨A6 ∨A11}
√

c6 : {¬A5 ∨ ¬A6} ×
c7 : {A1 ∨A7 ∨ ¬A12}

√

c8 : {A1 ∨A8}
√

c9 : {¬A7 ∨ ¬A8 ∨ ¬A13}
...

last UIP 1st UIP

Conflict!

A5
A6

A5

A6

c6

c5

¬A6

c5

c4

c4

A4

c3

c3

A4

¬A4

A2
A3

A2

A3

c2

c2

c1

A1

A1

¬A11

A12

A13

¬A10

¬A9

A12

A13

¬A9 ¬A11

¬A10

=⇒Conflict set: {¬A10,¬A11, A4}, learn c10 := A10 ∨A11 ∨ ¬A4

Figure 2. Example of learning and backjumping based on the 1st UIP stategy.

Learning must be used with some care, because it may cause an explosion in the size
of ϕ. To avoid this problem, modern DPLL tools implement techniques for discharging
learned clauses when necessary [SS96, BS97]. Moreover, in order to avoid getting stuck
into hard portions of the search space, most DPLL tools restart the search from scratch
in a controlled manner [GSK98]; the clauses which have been learned avoid exploring the
same search tree again. Clause discharging and restarts are substantially orthogonal to our
discussion on SMT and come for free by using state-of-the-art DPLL solvers, so that they
will not be discussed any further.

Modern DPLL procedures can be used as truth assignment enumerators, by modifying
rows 8-9 in Figure 1 so that, when a satisfying assignment µ, is generated, DPLL stores µ
and backtracks. This issue will be discussed in §5.3.

3.2 The Abstract-DPLL logical framework

[Tin02, NOT05, NO05a, NOT06] proposed an abstract rule-based formulation of DPLL

(Abstract DPLL) and of DPLL-based lazy SMT systems (Abstract DPLL Modulo Theo-
ries, or DPLL(T)), which are represented as control strategies applied to a set of formal
rules. This allows for expressing and reasoning about most variants of these procedures in
a formal way.

In the Abstract-DPLL framework, DPLL is modeled as a transition system. A state is
either fail or a pair 〈µ | ϕ〉, ϕ being a CNF boolean formula and µ being a set of annotated
literals, representing the current truth assignment. All DPLL steps are seen as transitions
in the form 〈µ | ϕ〉 ⇒ 〈µ′ | ϕ′〉, and are applications of the conditioned transition rules
described in Figure 3. 10.

10. The formalization of the rules in [NOT05, NO05a, NOT06] changes slightly from paper to paper. Here
we report the most-recent one from [NOT06]. We have adapted the notation to that used in this paper.

18

Unit Propagate: 〈µ | ϕ,C ∨ l〉 ⇒ 〈µ, l | ϕ,C ∨ l〉 if

{
µ |= ¬C
l is undefined in µ

Decide: 〈µ | ϕ〉 ⇒ 〈µ, ld | ϕ〉 if

{
ld or ¬ld occurs in ϕ
ld is undefined in µ

Fail: 〈µ | ϕ,C〉 ⇒ fail if

{
µ |= ¬C
µ contains no decision literals

Backjump: 〈µ, ld, µ′ | ϕ,C〉 ⇒ 〈µ, l′ | ϕ,C〉 if

µ, ld, µ′ |= ¬C
there is some clause C ′ ∨ l′ s.t. :
ϕ,C |= C ′ ∨ l′ and µ |= ¬C ′

l′ is undefined in µ
l′ or ¬l′ occurs in ϕ or
in µ ∪ {ld} ∪ µ′

Learn: 〈µ | ϕ〉 ⇒ 〈µ | ϕ,C〉 if

{
all atoms in C occur in ϕ or in µ
ϕ |= C

Discharge: 〈µ | ϕ,C〉 ⇒ 〈µ | ϕ〉 if
{
ϕ |= C

Restart: 〈µ | ϕ〉 ⇒ 〈∅ | ϕ〉

Figure 3. The Abstract-DPLL logical framework from [NOT06]. ld denotes a decision literal.

In the Backjump rule, C and C ′ ∨ l′ represent the conflicting and the conflict clause respectively.

The first five rules represent respectively the unit-propagation step of deduce, the literal
selection in decide next branch, the failure step of row 12-13 in Figure 1, the backjumping
and learning mechanisms of analyze conflict and backtrack. The last two rules represent
the discharging and restart mechanisms described, e.g., in [BS97] and [GSK98].

The only non-obvious rule is Backjump, which deserves some more explanation: if a
branch µ ∪ {ld} ∪ µ′ falsifies one clause C (the conflicting clause), and a conflict clause
C ′ ∨ l′ 11. can be computed from C s.t. the corresponding conflict set ¬(C ′ ∨ l′) falsifies
ϕ ∧ C, ¬C ′ ⊆ µ, l′ 6∈ µ, and l′ or ¬l′ occur in ϕ or in µ ∪ {ld} ∪ µ′, then it is possible to
backjump up to µ, and hence unit-propagate l′ on the conflict clause (C ′ ∨ l′).

Example 3.2. Consider the problem in Example 3.1 and Figure 2. The execution can be
represented in Abstract-DPLL as follows:

...
〈..,¬A9, ..,¬A10, ..,¬A11, .., A12, .., A13, .. |c1, ..., c9〉 ⇒ (Decide A1)
〈..,¬A9, ..,¬A10, ..,¬A11, .., A12, .., A13, .., A1 |c1, ..., c9〉 ⇒ (UnitP. A2)
〈..,¬A9, ..,¬A10, ..,¬A11, .., A12, .., A13, .., A1, A2 |c1, ..., c9〉 ⇒ (UnitP. A3)
...
〈..,¬A9, ..,¬A10, ..,¬A11, .., A12, .., A13, .., A1, A2, A3, A4, A5, A6|c1, ..., c9〉 ⇒ (Learn c10)
〈..,¬A9, ..,¬A10, ..,¬A11, .., A12, .., A13, .., A1, A2, A3, A4, A5, A6|c1, ..., c9, c10〉⇒ (Backjump)
〈..,¬A9, ..,¬A10, ..,¬A11,¬A1 |c1, ..., c9, c10〉⇒ (...)
...

11. Also called the backjump clause in [NOT06].

19

c1, ..., c10 being the clauses in Figure 2.

If a finite sequence 〈∅ | ϕ〉 ⇒ 〈µ1 | ϕ1〉 ⇒ . . . ⇒ fail is found, then the formula
is unsatisfiable; if a finite sequence 〈∅ | ϕ〉 ⇒ . . . ⇒ 〈µn | ϕn〉 is found so that no rule
can be further applied, then the formula is satisfiable. Different strategies in applying
the rules correspond to different variants of the algorithm. [NOT05, NOT06] provides a
group of results about termination, correctness and completeness of various configurations.
Importantly, notice that only the first four rules are strictly necessary for correctness and
completeness [NOT05]. We refer the reader to [NOT05, NO05a, NOT06] for further details.
The Abstract-DPLL Modulo Theories/DPLL(T) framework will be described in §5.4.

20

4. Basics on theory solvers

As stated in §2, in its simplest form a T -solver is a procedure establishing whether any
given finite set/conjunction of quantifier-free Σ-literals is T -satisfiable or not. Starting
from the pioneering works by Nelson, Oppen and Shostak [NO79, NO80, Sho79, Sho84],
many algorithms have been conceived for T -solvers in many theories of interest. In this
section we discuss the features of T -solvers which are most important for SMT (T), and
briefly survey the most interesting theories and the relative T -solvers.

As it will be made clear in the next sections, two main features of a T -solver concur in
achieving the maximum efficiency of a SMT (T) solver: the effectiveness of its synergical
interaction with the DPLL solver, and its efficiency in time and memory. The effectiveness
of the interaction depends on the capability of the T -solver of producing, exchanging and
exploiting fruitful information with DPLL, and will be discussed in §4.1. The efficiency
in time and memory of T -solver strongly depends on the theory T . (E.g., the problem of
deciding the T -satisfiability of sets of literals is O(n · log(n)) for EUF and NP-complete for
LA(Z).) This will be briefly discussed in §4.2 for some theories of interest.

4.1 Important features of T -solvers

In this section we overview the main capabilities of a general T -solver which are of interest
for their usage within an SMT procedure.

4.1.1 Model generation

A key issue for T -solver, whenever it is invoked on an T -consistent assignment µ, is its
ability to produce a T -model I for µ witnessing its consistency, i.e., I |=T µ. Substantially
most T -solvers for all theories of interest are able to produce a model on demand.

Example 4.1. Let µ be {¬(2v2− v3 > 2), (3v1 − 2v2 ≤ 3), (v3 = 3v5 + 4)}. A LA(Q)-solver
decides that µ is LA(Q)-satisfiable, and may return I := {v1 = v2 = v3 = 0, v5 = −4/3}.

Notice that sometimes producing a model may require extra computation effort. This
is mostly due to the fact that the T -solvers may perform satisfiability-preserving transfor-
mations on the input literals, which must be reversed when building the model.

4.1.2 Conflict set generation

Given a T -unsatisfiable assignment µ, we call a theory conflict set (simply “conflict set”
when this causes no ambiguity) a T -unsatisfiable sub-assignment µ′ ⊆ µ; we say that
µ′ is a minimal theory conflict set if all strict subsets of µ′ are T -consistent. 12. (E.g.,
in Example 2.1, (4) is a minimal conflict set for µ.) A key efficiency issue for T -solver,
whenever it is invoked on an T -inconsistent assignment µ, is its ability to produce the
(possibly minimal) conflict set of µ which has caused its inconsistency.

Example 4.2. Consider the LA(Q)-formula ϕ in Example 2.1, and suppose LA(Q)-solver
is called on µ. As µ is not LA(Q)-satisfiable, LA(Q)-solver will return Unsat, and may also

12. Theory conflict sets are also called reasons, proofs or infeasible sets by some authors; minimal theory
conflict sets are also called irreducible infeasible sets in [YM06].

21

return a (minimal) conflict set causing the conflict:

{(3x1 − 2x2 ≤ 3),¬(2x2 − x3 > 2),¬(3x1 − x3 ≤ 6)}. (4)

For instance, there exist conflict-set-producing variants for the Bellman-Ford algorithm
for DL, [CG99], for the Simplex LP procedures for LA(Q) [BB01] and for the congruence
closure algorithm for EUF [NO03]. (See §4.2.)

4.1.3 Incrementality and Backtrackability

It is often the case that T -solver is invoked sequentially on incremental assignments, in a
stack-based manner, like in the following trace (left column first, then right) [BBC+05a]:

T -solver (µ1) =⇒ Sat Undo µ4, µ3, µ2

T -solver (µ1 ∪ µ2) =⇒ Sat T -solver (µ1 ∪ µ′2) =⇒ Sat

T -solver (µ1 ∪ µ2 ∪ µ3) =⇒ Sat T -solver (µ1 ∪ µ′2 ∪ µ′3) =⇒ Sat

T -solver (µ1 ∪ µ2 ∪ µ3 ∪ µ4) =⇒ Unsat ...

Thus, a key efficiency issue of T -solver is that of being incremental and backtrackable. 13.

Incremental means that T -solver “remembers” its computation status from one call to the
other, so that, whenever it is given in input an assignment µ1 ∪ µ2 such that µ1 has just
been proved T -satisfiable, it avoids restarting the computation from scratch by restarting
the computation from the previous status. Backtrackable means that it is possible to undo
steps and return to a previous status on the stack in an efficient manner.

For instance, there are incremental and backtrackable versions of the congruence closure
algorithm for EUF [NO03], of the Bellman-Ford algorithm for DL [CG99, NO05a], and of
the Simplex LP procedure for LA(Q) [BB01, DdM06]. (See §4.2.)

4.1.4 Deduction of unassigned literals

For many theories it is possible to implement T -solver so that, when returning Sat, it can
also perform a set of deductions in the form η |=T l, s.t. η ⊆ µ and l is a literal on a
not-yet-assigned atom in ϕ. We say that T -solver is deduction-complete if it can perform
all possible such deductions, or say that no such deduction can be performed.

Example 4.3. Consider the LA(Q)-formula ϕ in Example 2.1, and suppose LA(Q)-solver
is called on {¬(2x2 − x3 > 2),¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4)} (1st, 4th and 7th rows in
ϕ); then LA(Q)-solver returns Sat and may perform and return the deduction

{¬(2x2 − x3 > 2),¬(3x1 − x3 ≤ 6)} |=LA(Q) ¬(3x1 − 2x2 ≤ 3). (5)

For instance, for EUF , the computation of congruence closure allows for efficiently
deducing positive equalities [NO03]; for DL, a very efficient implementation of a deduction-
complete T -solver has been presented by [NO05a, CM06a]; for LA the task is much harder,
and only T -solvers capable of incomplete forms of deduction have been presented [DdM06].
(See §4.2.)

Notice that, in principle, every T -solver has deduction capabilities, as it is always possi-
ble to call T -solver(µ∪{¬l}) for every unassigned literal l. We call this technique, plunging
[DNS05]. In practice, apart from some application [ACG99], plunging is very inefficient.

13. The latter feature is also called resettable in other contests (e.g., in [NO79]).

22

4.1.5 Deduction of interface equalities

Similarly to deduction of unassigned literals, for most theories it is possible to implement
T -solver so that , when returning Sat, it can also perform a set of deductions in the form
µ |=T e (if T is convex) or in the form µ |=T

∨

j ej (if T is not convex) s.t. e, e1, ..., en
are equalities between variables occurring in µ. In accordance with the notation in §2.1.1,
and because typically e, e1, ..., en are interface equalities, we call these forms of deductions
eij-deductions, and we say that a T -solver is eij-deduction-complete if it can perform all
possible such deductions, or say that no such deduction can be performed.

Example 4.4. If an eij-deduction complete LA(Z)-solver is given as input a consistent
assignment {. . . , (v1 ≥ 0), (v1 ≤ 1), (v3 = 0), (v4 = 1), . . .}, then it will deduce from it the
disjunction of equalities (v1 = v3) ∨ (v1 = v4).

Notice that, unlike with the deduction of unassigned literal described in §4.1.4, here the
deduced equalities need not occur in the input formula ϕ.

eij-deduction is often (implicitly) implemented by means of canonizers [Sho84]. Intu-
itively, a canonizer canonT for a theory T is a function which maps a term t into another
term canonT (t) in canonical form, that is, canonT maps terms which are semantically
equivalent in T into the same term. Thus, if xt1 , xt2 are interface variables labeling the
terms t1 and t2 respectively, then the interface equality (xt1 = xt2) can be deduced in T if
and only if canonT (t1) and canonT (t2) are syntactically identical.

4.2 Some relevant theories and T -solvers

We briefly overview some of the theories of interest, with some information about the relative
T -solvers. (See also [MZ03].)

As stated in §2, all the theories we consider are first-order theories with equality, in
which “=” is a predefined predicate and it is always interpreted as a relation which is
reflexive, symmetric, transitive, and it is also a congruence. Thus, the following equality
(6) and congruence (7) axioms are implicit in all theories, for every function symbol f and
predicate symbol P :

∀x. (x = x), ∀x, y. (x = y → y = x), ∀x, y, z. ((x = y ∧ y = z)→ x = z) (6)

∀x1, ..., xn, y1, ..., yn. ((
∧n
i=1 xi = yi)→ f(x1, ..., xn) = f(y1, ..., yn))

∀x1, ..., xn, y1, ..., yn. ((
∧n
i=1 xi = yi)→ (P (x1, ..., xn)↔ P (y1, ..., yn))).

(7)

For simplicity and w.l.o.g., we can assume that identities like t = t are simplified into ⊤
and atoms like t1 = t2 have been sorted s.t. t1 ≺ t2 for some total order ≺. Thus the first
two axioms in (6) are useless.

4.2.1 Equality and Uninterpreted Functions

The theory of Equality and Uninterpreted Functions (EUF) 14. is the quantifier-free F.O.
theory with equality with no restrictions on Σ. Semantically, no axioms other than (6)
and (7) are provided. If Σ contains no uninterpreted functions or predicates, then (7) are

14. Simply called “the theory of equality” by some authors (e.g., [MZ03]).

23

not needed, and we denote the resulting restricted theory by E . EUF is stably-infinite and
convex. The EUF-satisfiability of sets of quantifier-free literals is decidable and polynomial
[Ack54].

An E-solver can be simply implemented on top of the standard Union-Find algorithm
(see, e.g., [NO05b]). Efficient EUF-solvers have been implemented on top of congruence-
closure data structures, they are incremental and backtrackable, can efficiently perform
conflict-set generation and deduction of (positive) unassigned equalities and of interface
equalities (see, e.g., [DNS05, NO03, NO05b]). The algorithm in [NO03] extends EUF with
offset values (that is, it can represent expression like (t1 = t2 + k), t1, t2 being EUF
terms and k being a constant integer value) and it is probably the most efficient algorithm
currently available.

4.2.2 Linear arithmetic

The theory of Linear Arithmetic (LA) on the rationals (LA(Q)) and on the integers (LA(Z))
is the quantifier-free F.O. theory with equality whose atoms are written in the form (a1 ·
x1 + ... + an · xn ⊲⊳ a0), s.t. ⊲⊳ ∈ {≤, <, 6=,=,≥, >}, the ais are (interpreted) constants,
each labeling one value in Q and Z respectively. The atomic expressions are interpreted
according to the standard semantics of linear arithmetic on Q and Z respectively. (See, e.g.,
[MZ03] for a more formal definition of LA(Q) and LA(Z).)

LA(Q) is stably-infinite and convex. The LA(Q)-satisfiability of sets of quantifier-free
literals is decidable and polynomial [Kha79]. The main algorithms used are variant of
the well-known Simplex and Fourier-Motzkin algorithms. Efficient incremental and back-
trackable algorithms for LA(Q)-solvers have been conceived, which can efficiently perform
conflict-set generation and deduction of unassigned equalities and of interface equalities
(see, e.g., [BMSX97, dRS04, DNS05, RS04, DdM06]).

LA(Z) is stably-infinite and non-convex. 15. TheLA(Z)-satisfiability of sets of quantifier-
free literals is decidable and NP-complete [Pap81]. Many algorithms have been conceived,
involving techniques like Euler’s reduction, Gomory-cuts application, Fourier-Motzkin al-
gorithm, branch-and-bound [LD60]. Notably, the Omega library [Ome] provides a LA(Z)-
solver based on a combination of Euler’s reduction, Fourier-Motzkin algorithm, and smart
optimizations like real and dark shadow [Pug91]. Incremental and backtrackable algorithms
for LA(Z)-solvers have been conceived, which can perform conflict-set generation and de-
duction of interface equalities (see, e.g., [BGD03, DdM06]).

There are two main relevant sub-theories of LA: the theory of differences and the Unit-
Two-Variable-Per-Inequality theory.

4.2.3 Difference logic

The theory of differences (DL) 16. on the rationals (DL(Q)) and the integers (DL(Z)) is
the sub-theory of LA(Q) [resp. LA(Z)] whose atoms are written in the form (x1−x2 ⊲⊳ a),

15. E.g., let µ be {x − z ≥ 0, x − z ≤ 1, x0 − z = 0, x1 − z = 1}. Thus, µ |=LA(Z) ((x = x0) ∨ (x = x1)), but
µ 6|=LA(Z) (x = x0) and µ 6|=LA(Z) (x = x1).

16. Also called difference logic or separation logic. Notice the overlapping with the notion of “separation
logic” defined in [Rey02], where this term indicates an extension of Hoare logic for reasoning about
programs that use shared mutable data structures.

24

s.t. ⊲⊳ ∈ {≤, <, 6=,=,≥, >}, and the a is an (interpreted) constant labeling one value in Q

and Z respectively. All such literals can be easily rewritten in terms of positive difference
inequalities (x− y ≤ a) only. 17.

DL(Q) is stably-infinite and convex. The DL(Q)-satisfiability of sets of quantifier-free
difference inequalities is decidable and polynomial. The main algorithms encode the problem
into that of finding negative cycles into a weighted oriented graph, called constraint graph,
using variants of the well-known Bellman-Ford a shortest-path algorithm [CG99]. 18. Effi-
cient incremental algorithms for DL(Q)-solvers have been conceived, which can efficiently
perform conflict-set generation [CG99], deduction of unassigned literals [NO05a, CM06a]
and of interface equalities (see, e.g., [LM06]).

DL(Z) is stably-infinite and non-convex. 19. As with DL(Q), the DL(Z)-satisfiability of
sets of quantifier-free difference inequalities is decidable and polynomial, whilst problem the
deduction of (disjunctions of) interface equalities is NP-complete [LM05]. The algorithms
used for DL(Z)-solvers are the same as for DL(Q) [CG99, NO05a, CM06a], except for the
fact that we are not aware of any specialized algorithm for DL(Z)-solvers able to efficiently
deduce disjunctions of interface equalities. Interesting results have also been obtained by
implementing “mixed” techniques combining a lazy approach with “eager” encodings of
DL(Z) into SAT [WIGG05, GTG06, KS06].

4.2.4 Unit-Two-Variable-Per-Inequality

The Unit-Two-Variable-Per-Inequality (UT VPI) theory is a subcase of LA(Z) whose atoms
can be written in the form (±x2 ± x1 ≤ c). Notice that DL(Z) is a sub-theory of UT VPI.
UT VPI is stably-infinite and non-convex. 20. The DL(Q)-satisfiability of sets of quantifier-
free difference inequalities is decidable and polynomial, and UT VPI is the most expressive
sub-theory of LA(Z) with this feature (see [HS97]).

Many UT VPI-solvers are based on the iterative transitive closure [HS97]: as soon as a
new constraint is added into the system, all possible consequences of the input are computed,
until either a pair of contradictory constraints are generated, or a fixpoint is reached. [LM05]
proposed instead one non-incremental though asymptotically faster algorithm based on
negative cycle detection on an extended constraint graph. 21. This algorithm can efficiently
perform conflict-set generation and deduction of unassigned equalities, and some form of

17. First, all literals are straightforwardly rewritten into boolean combinations of difference inequalities, by
applying rules like, e.g., (x − y > a) =⇒ ¬(x − y ≤ a), (x − y 6= a) =⇒ (¬(x − y ≤ a) ∨ ¬(y − x ≤ −a)).
Negated differences are then rewritten into positive ones by applying ¬(x− y ≤ a) =⇒ (y − x ≤ −a− 1)
(DL(Z) case) or ¬(x − y ≤ a) =⇒ (y − x ≤ −a − ǫ) (DL(Q) case), for a sufficiently small ǫ [ACGM04].
Notice that negated equalities may require being split into the disjunction of two difference inequalities.

18. Intuitively, a node of the graph represents univocally one variable xi, and a labeled arc x1
a

7−→ x2

represents the difference inequality (x2−x1 ≤ a), meaning “the length of the shortest path from x1 to x2

is smaller or equal to a”. The graph represents an inconsistent set of difference inequalities if it contains

a cycle x0
a07−→ x1

a17−→ ...
an−1

7−→ xn
an7−→ x0 s.t.

Pn

i=0 ai < 0, corresponding to a DL-inconsistent subset
Sn−1

i=0 {xi+1 − xi ≤ ai} ∪ {x0 − xn ≤ an}.
19. Same example as in Footnote 15..
20. Same example as in Footnote 15..
21. Intuitively, the set of UT VPI constraints is encoded into an equisatisfiable set of DL(Z) problems by

introducing two variables x+ and x− for each original variable x, representing x and −x respectively,
and encoding each constraint with a pair of DL(Z) constraint (e.g., (x+ − y− ≤ a) and (y+ − x− ≤ a)
for (x + y ≤ a)).

25

deduction of interface equalities. As with DL(Z), we are not aware of any specialized
algorithm for UT VPI-solvers able to efficiently deduce disjunctions of interface equalities.

4.2.5 Bit vectors

The theory of fixed-width bit vectors (BV) 22. is a F.O. theory with equality which aims at
representing Register Transfer Level (RTL) hardware circuits, so that components such as
data paths or arithmetical sub-circuits are considered as entities as a whole, rather than
being encoded into purely propositional sub-formulae (“bit blasting”).

In BV terms indicate fixed-width bit vectors, and are built from variables (e.g., x[32]

indicates a bit vector x of 32 bits) and constants (e.g., 0[16] denotes a vector of 16 0’s) by
means of interpreted functions representing standard RTL operators: word concatenation
(e.g., 0[16] ◦ z[16]), sub-word selection (e.g., (x[32][20 : 5])[16]), modulo-n sum and multiplica-
tion (e.g., x[32]+32 y[32] and x[16]·16 y[16]), bitwise-operators andn , orn, xorn, notn (e.g.,
x[16]and16 y[16]), left and right shift <<n, >>n (e.g., x[32]<<4). Atomic expressions can be
built from terms by applying interpreted predicates like ≤n, <n (e.g., 0[32] ≤32 x[32]) and
equality.
BV is non-convex and non-stably infinite. The BV-satisfiability of sets of quantifier-free

literals is decidable and NP-complete. Different approaches for BV-satisfiability have been
proposed: some authors (e.g, [FDK98, ZKC01, BD02, PICW04, BBC+06a]) encode bits,
bit vectors and (most of) their operators into LA(Z); [BCF+07] propose a layered (see §4.3)
BV-solver base on a hierarchy of rewriting steps, and a final call to a LA(Z)-solver; others
[BD94, CMR97, MR98, BDL98] provide canonizers and T -solvers explicitly for (sub-theories
of) BV, which are integrated by means of Nelson-Oppen/Shostak-style schema (see §8.2).
The quest for suitable algorithms for efficient BV-solvers is currently a hot research topic.

4.2.6 Other theories of interest

We very briefly recall some other theories of interest, in particular in the filed of software
verification. Here we provide only a very high-level description, and point the reader to the
reported bibliography (e.g., to [MZ03]) for a more detailed description.

The theory of arrays (AR) 23. aims at modeling the behavior of arrays/memories. The
signature consists in the two interpreted function symbols write and read, s.t. write(a, i, e)
represents (the state of) the array resulting from storing an element e into the location of
address i of an array a, and read(a, i) represents the element contained in the array a at
location i. AR is formally characterized by the following axioms (see [MZ03]):

∀a.∀i.∀e. (read(write(a, i, e), i) = e), (8)

∀a.∀i.∀j.∀e. ((i 6= j)→ read(write(a, i, e), j) = read(a, j)), (9)

∀a.∀b. (∀i.(read(a, i) = read(b, i))→ (a = b)). (10)

(8) and (9), called McCarthy’s axioms, characterize the intended meaning of write and
read, whilst (10), called the extensionality axiom, requires that, if two arrays contain the

22. We should better say the theories of bit vectors, because many variants of BV have been proposed.
Like in [MZ03], here we simply aim at summing up into one theory the main concepts related to these
theories. The same comment holds also for the theories mentioned in §4.2.6.

23. See Footnote 22..

26

same values in all locations, than they must be the same array. Theories of arrays are called
extensional if they include (10), non-extensional otherwise. The AR-satisfiability of sets
of quantifier-free literals is decidable and NP-complete [SDBL01]. AR is typically handled
in combination with other theories, by means of Nelson-Oppen/Shostak-style integration
schema (see §8.2). Decision procedures for AR have been presented, e.g., in [NO79, DNS05,
SDBL01]. We refer the reader to [SDBL01] for an overview.

The theory of lists (LI) aims at modeling the behavior of lists. The signature consists
in the three interpreted function symbols cons, car, cdr representing the standard LISP
constructor and selectors for lists. LI is formally characterized by the following axioms
(see [MZ03]):

∀x. (cons(car(x), cdr(x)) = x), (11)

∀x.∀y. (car(cons(x, y)) = x), ∀x.∀y. (cdr(cons(x, y)) = y), (12)

∀x.(car(x) 6= x), ∀x.(cdr(x) 6= x), ∀x.(car(car(x)) 6= x), ∀x.(car(cdr(x)) 6= x),(13)

(11) and (12), called construction and selection axioms respectively, characterize the in-
tended meaning of cons, car and cdr, whilst (the infinite sequence of) the acyclicity axioms
(13) force the list to be acyclic. The LI-satisfiability of sets of quantifier-free literals is
decidable and linear in time [Opp80]. LI is a subcase of the theory of recursive datatypes
(RDT), which introduce more general kinds of constructors and selectors, and for which de-
cision procedures have been developed. We refer the readers, e.g., to [Opp80, BST06, BE06]
for more details.

4.3 Layered T -solvers

In many calls to T -solver, a general solver for T is not needed: very often, the unsatisfiability
of the current assignment µ can be established in less expressive, but much easier, sub-
theories. Thus, T -solver may be organized in a layered hierarchy of solvers of increasing
solving capabilities [ABC+02a, BBC+05a, SS05, CM06b, BCF+07]. If a higher level solver
finds a conflict, then this conflict is used to prune the search at the boolean level; if it does
not, the lower level solvers are activated.

The general idea consists in stratifying the problem over N layers L0, L1, . . . , LN−1 of
increasing complexity, and searching for a solution “at a level as simple as possible”. In our
view, each level considers only an abstraction of the problem which interprets a subgrammar
G0, G1, . . . , GN−1 of the original problem, GN−1 being the grammar G of the problem. Since
Ln refines Ln−1, if the problem does not admit a solution at level Ln, then it does not at
L0, . . . , Ln−1. If indeed a solution S exists at Ln, either n equals N − 1, in which case S
solves the problem, or a refinement of S must be searched at Ln+1. In this way, much of
the reasoning can be performed at a high level of abstraction. This results in an increased
efficiency in the search of the solution, since low-level searches, which are often responsible
for most of the complexity, are avoided whenever possible.

The simple and general idea above maps to an N -layered architecture of the solver. In
general, a layer Ln is called by layer Ln−1 to refine a (maybe partial) solution S of the
problem. Ln must check for unsatisfiability of S and (a) return failure if no refinement can
be found, or (b) invoke Ln+1 upon a refinement S′, unless n equals N − 1. An explanation
for failure can be added in case (a), to help higher levels “not to try the same wrong solution

27

FM ELIM
Branch and

cut

unsat

sat

unsat

sat

int’s

sat

reals
sat

unsatunsat unsatunsat

satsatsat

unsat

sat

Congruence
Closure

time

out
Belman−Ford Simplex Disequality

Handler

DL LA(Q) LA(Z)EUF

Figure 4. Example of a layered T -solver: the LA(Z)-solver in MathSAT [BBC+05b].

twice”. The schema can be further enhanced by allowing each layer Li infer novel equalities
and inequalities and to pass them down to the next layer Li+1, so that to better drive its
search [SS05, SS06a, CM06b].

For example, Figure 4 describes the control flow of the LA(Z)-solver in MathSAT

[BBC+05b]. Four logical components can be distinguished. First, the current assignment µ
is passed to the EUF -solver, which implements the congruence closure algorithm in [NO03].
The solver considers as uninterpreted all arithmetical functions and predicates in the atoms,
detecting inconsistencies due to the properties of equality and to the congruence properties
(e.g., {(x = y), (z = x + w), (v = y + w), (z 6= v)}). Second, T -solver tries to find a
conflict over the DL inequalities by means of a Bellman-Ford procedure. Third, if this
solver does not find a conflict, T -solver tries to find a conflict over the equalities and
inequalities in LA(Q) by means of a Simplex procedure; if this is not enough, an ad hoc
device is invoked which applies also to disequalities. Finally, if the current assignment is
also satisfiable over the reals and the variables are to be interpreted over the integers, Euler
reduction and a simple form of branch-and-cut are carried out, to search for solutions over
the integers. If branch-and-cut does not find either an integer solution or a conflict within
a small, predetermined amount of search, the Omega constraint solver [Pug91, Ome], based
on Fourier-Motzkin elimination, is called on the current assignment.

28

Sat/Unsat

Sat/Unsat

Enumerator

[I: model]

ϕp: boolean formula
[Cp: boolean clauses]
[lp: boolean literals] [µ′: conflict set]

[η |=T l: deductions]

[I: model]

T -solver

ϕ: T -formula

µ: list of T -literals

µp: boolean assignment

Figure 5. Basic architectural schema of a lazy SMT (T) procedure.

5. Integrating DPLL and T -solvers

Different representations and variants of SMT procedures integrating DPLL and T -solvers
have been presented. Following [FJOS03], we partition all such procedures into two main
categories: the offline procedures, in which DPLL is used as a SAT solver which is reinvoked
from scratch each time an assignment is found T -unsatisfiable (e.g., [BDS02a, dMRS02b]),
and the online procedures, in which DPLL is modified to be used directly as an enumerator
(e.g., [GS96a, WW99, ACG99, ABC+02a, FJOS03, GHN+04, BBC+06b]). We also recall
from [NOT05, NO05a] the Abstract-DPLL Modulo Theories DPLL (T) logical framework,
which allows for expressing and reasoning about most variants of lazy DPLL-based proce-
dures in a formal way.

In §5.1 we present a general, high-level integration schema between DPLL and T -solver.
In §5.2 and §5.3 we present the offline and online integration schemata respectively. (The
offline and online schemata will be further discussed in §7.1.2.) Finally, in §5.4 we recall
the main concepts of the Abstract-DPLL Modulo Theories logical framework.

5.1 A basic integration schema

A basic architectural schema of a typical lazy DPLL-based SMT (T) procedure, which we
generically call T -DPLL henceforth, is reported in Figure 5. T -DPLL takes as input a T -
formula ϕ, and builds its boolean abstraction ϕp =def T 2B(ϕ). (Notationally, we frequently
use the superscript p to denote boolean abstractions, i.e., given a T -expression e, we write
ep to denote T 2B(e).) Notice that both T 2B and B2T can be implemented so that to
require constant time to map a literal from one representation to the other. 24.

ϕp is given in input to Enumerator, which enumerates truth assignments in a complete
collection {µp1, .., µpn} for ϕp. Each time a new µp is generated, its corresponding list of T -
literals µ =def B2T (µp) is fed to T -solver. (If µ contains also boolean literals, then they
are dropped because they do not contribute to the T -satisfiability of µ.) If µ is found T -
satisfiable, then the procedure returns Sat, possibly returning also the model I produced.
If not, a new assignment is generated by Enumerator. The process is repeated until

24. In practice, it is often necessary or convenient that B2T maps literals rather than atoms, i.e., that
B2T (¬Ai) is syntactically different from ¬B2T (Ai). E.g., if T is DL(Z), we may have that B2T (Ai) =
(x − y ≤ 3) and that B2T (¬Ai) = (y − x ≤ −4).

29

1. SatValue T -DPLL (T -formula ϕ) {
2. ϕp = T 2B(ϕ);
3. while (DPLL(ϕp, µp) == Sat) {
4. if (T -solver(B2T (µp)) == Sat)

5. return Sat;

6. ϕp = ϕp ∧ ¬µp;
7. };
8. return Unsat;

9. };

Figure 6. A simplified offline integration schema for lazy SMT (T) procedures.

either one T -satisfiable assignment is found, or no more assignments are generated by
Enumerator. In the former case ϕ is T -satisfiable, in the latter it is not.

As discussed in §4.1, T -solver can also return one or more theory conflict set(s) µ′ (if
µ is T -unsatisfiable) or one or more deduction(s) η |=T l (if µ is T -satisfiable). If so,
boolean clauses like Cp =def T 2B(¬µ′) or Cp =def T 2B(¬η ∨ l), and deduced boolean
literals lp =def T 2B(l), can be passed back to Enumerator, so that to drive its boolean
search. Moreover, T -solver can be invoked also on intermediate assignments during their
construction, so that to prune the boolean search. These issues will be discussed in detail
in §6 and §7.

5.2 The offline approach to integration

Offline schemata for integrating DPLL and T -solver have been independently proposed
by [BDS02a] and by [dMRS02b]. 25. In its naivest form, the idea works as described in
Figure 6.

The propositional abstraction ϕp of the input formula ϕ is given as input to a SAT
solver, which either decides that ϕp is unsatisfiable, and hence ϕ is T -unsatisfiable, or it
returns a satisfying assignment µp; in the latter case, B2T (µp) is given as input to T -solver.
If B2T (µp) is found T -consistent, than ϕ is T -consistent. If not, ¬µp is added as a clause
to ϕp 26., and the SAT solver is restarted from scratch on the resulting formula. Notice
that here DPLL is used as a black-box SAT solver, and that the loop 3.-7. works as a
(non-redundant) Enumerator, because step 6. prevents DPLL from finding the same
assignment more than once.

A way more efficient form is when T -solver is able to return the conflict set η which
caused the T -inconsistency of B2T (µp). If this is the case, then T 2B(¬η) is added as a
clause to ϕ instead of ¬µp. As typically the former is way smaller than the latter, this
drastically reduces the search space. This and other optimizations will be discussed in §6.

25. The offline approach is also called lemmas on demand approach in [dMRS02b].
26. ¬µp is called blocking clause, because it blocks the future generation of every assignment containing µp,

or cube, because it represents a (hyper-)cube of counter-assignments.

30

1. SatValue T -DPLL (T -formula ϕ, T -assignment & µ) {
2. if (T -preprocess(ϕ, µ) == Conflict);

3. return Unsat;

4. ϕp = T 2B(ϕ); µp = T 2B(µ);
5. while (1) {
6. T -decide next branch(ϕp, µp);
7. while (1) {
8. status = T -deduce(ϕp, µp);
9. if (status == Sat) {
10. µ = B2T (µp);
11. return Sat; }
12. else if (status == Conflict) {
13. blevel = T -analyze conflict(ϕp, µp);
14. if (blevel == 0)

15. return Unsat;

16. else T -backtrack(blevel,ϕp, µp);
17. }
18. else break;
19. } } }

Figure 7. An online schema of T -DPLL based on modern DPLL.

5.3 The online approach to integration

Several procedures exploiting the online integration schema have been proposed in different
communities and domains (see, e.g., [GS96a, WW99, ACG99, ABC+02a, FJOS03, GHN+04,
BBC+06b]). In the online integration schema, T -DPLL is a variant of the DPLL procedure,
modified to work as an enumerator of truth assignments, whose T -satisfiability is checked
by a T -solver.

Figure 7 represent the schema of an online T -DPLL procedure based on a modern
DPLL engine, like that of Figure 1. The input ϕ and µ are a T -formula and a reference to
an (initially empty) set of T -literals respectively. The DPLL solver embedded in T -DPLL

reasons on and updates ϕp and µp, and T -DPLL maintains some data structure encoding
the set Lits(ϕ) and the bijective mapping T 2B/B2T on literals. 27.

T -preprocess simplifies ϕ into a simpler formula, and updates µ if it is the case, so
that to preserve the T -satisfiability of ϕ ∧ µ. If this process produces some conflict, then
T -DPLL returns Unsat. T -preprocess combines most or all the boolean preprocessing
steps described in §3.1 with some theory-dependent rewriting steps on the T -literals of ϕ.
(The latter will be described in details in §6.1. and §6.2.)

Example 5.1. Suppose that initially ϕ = (x > 0) ∧ (A1 ∨ (x ≤ 0)) ∧ (¬A1 ∨ (x ≤ 0)), and
µ = ∅. Then T -preprocess may rewrite the literal (x > 0) into ¬(x ≤ 0), so that ϕ is

27. Hereafter we implicitly assume that all functions called in T -DPLL have direct access to Lits(ϕ) and
to T 2B/B2T , and that both T 2B and B2T require constant time for mapping each literal.

31

rewritten into ¬(x ≤ 0)∧ (A1 ∨ (x ≤ 0))∧ (¬A1 ∨ (x ≤ 0)), and hence find a boolean conflict
by applying BCP. Thus ϕ is T -unsatisfiable.

T -decide next branch plays the same role as decide next branch in DPLL (see Fig-
ure 1), but it may take into consideration also the semantics in T of the literals to select.
(This will be discussed with more details in §7.2.5.)

T -deduce, in its simplest version, behaves similarly to deduce in DPLL: it iteratively
deduces boolean literals lp deriving propositionally from the current assignment (i.e., s.t.
ϕp ∧µp |=p l

p) and updates ϕp and µp accordingly, until one of the following facts happens:

(i) µp propositionally violates ϕp (µp ∧ϕp |=p ⊥). If so, T -deduce behaves like deduce in
DPLL, returning Conflict.

(ii) µp propositionally satisfies ϕp (µp |=p ϕp). If so, T -deduce invokes T -solver on
B2T (µp): if the latter returns Sat, then T -deduce returns Sat; otherwise, T -deduce
returns Conflict.

(iii) no more literals can be deduced. If so, T -deduce returns Unknown. A slightly more
elaborated version of T -deduce can invoke T -solver on B2T (µp) also at this interme-
diate stage: if T -solver returns Unsat, then T -deduce returns Conflict. (This enhance-
ment, called early pruning, will be discussed with more details in §6.3.)

A much more elaborated version of T -deduce can be implemented if T -solver is able to
perform deductions of unassigned literals η |=T l s.t. η ⊂ µ, as in §4.1.4. If so, T -deduce can
iteratively deduce also literals ld which can be inferred in T (i.e., s.t. B2T (µp) |=T B2T (ld)).
(This enhancement, called T -propagation, will be discussed with more details in §6.4.)

T -analyze conflict is an extensions of analyze conflict of DPLL in §3.1: if the
conflict produced by T -deduce is caused by a boolean failure (case (i) above), then T -analyze conflict

produces a boolean conflict set ηp and the corresponding value of blevel, as described in
§3.1; if instead the conflict is caused by a T -inconsistency revealed by T -solver (case (ii) or
(iii) above), then T -analyze conflict produces as a conflict set the boolean abstraction ηp

of the theory conflict set η produced by T -solver (i.e., ηp := T 2B(η)), or computes a mixed
boolean+theory conflict set by a backward-traversal of the implication graph starting from
the conflicting clause ¬T 2B(η) (see §6.5). If T -solver is not able to return a theory conflict
set, the whole assignment µ may be used, after removing all boolean literals from µ. Once
the conflict set ηp and blevel have been computed, T -backtrack behaves analogously to
backtrack in DPLL: it adds the clause ¬ηp to ϕp and backtracks up to blevel. (These
features, called T -backjumping and T -learning, will be discussed with more details in §6.5
and §6.6.)

On the whole, T -DPLL differs from the DPLL schema of Figure 1 because it exploits:

• an extended notion of deduction of literals: not only boolean deduction (µp∧ϕp |=p l
p),

but also theory deduction (B2T (µp) |=T B2T (lp));

• an extended notion of conflict: not only boolean conflict (µp∧ϕp |=p ⊥), but also theory
conflict (B2T (µ) |=T ⊥), or even mixed boolean+theory conflict (B2T (µp∧ϕp) |=T ⊥).
See 6.5.

32

¬B3

A1

A2

B2

¬B2

¬A2

B3

c8 : B5 ∨ ¬B8 ∨ ¬B2

T

¬B5

B8

B6

¬B1

Figure 8. Boolean search (sub)tree in the scenario of Example 5.2. (A diagonal line, a vertical line

and a vertical line tagged with “T ” denote literal selection, unit propagation and T -propagation

respectively; a bullet “•” denotes a call to T -solver.)

Example 5.2. Suppose T -DPLL implements all the enhancements described above, and
consider the LA(Q)-formula ϕ in Example 2.1, (which we report here for convenience):

c1 : ϕ = {¬(2x2 − x3 > 2) ∨A1}
c2 : {¬A2 ∨ (x1 − x5 ≤ 1)}
c3 : {(3x1 − 2x2 ≤ 3) ∨A2}
c4 : {¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1}
c5 : {A1 ∨ (3x1 − 2x2 ≤ 3)}
c6 : {(x2 − x4 ≤ 6) ∨ (x5 = 5− 3x4) ∨ ¬A1}
c7 : {A1 ∨ (x3 = 3x5 + 4) ∨A2}

ϕp = {¬B1 ∨A1}
{¬A2 ∨B2}
{B3 ∨A2}
{¬B4 ∨ ¬B5 ∨ ¬A1}
{A1 ∨B3}
{B6 ∨B7 ∨ ¬A1}
{A1 ∨B8 ∨A2}

Look as Figure 8. Suppose T -decide next branch selects, in order, ¬B5, B8, B6,¬B1 (in
c4, c7, c6, and c1). T -deduce cannot unit-propagate any literal. By the enhanced version
of step (iii), it invokes T -solver on B2T ({¬B5, B8, B6,¬B1}):

{¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4), (x2 − x4 ≤ 6),¬(2x2 − x3 > 2)}.
The enhanced T -solver not only returns Sat, but also it deduces ¬(3x1 − 2x2 ≤ 3) (c3 and
c5) as a consequence of the first and last literals. The corresponding boolean literal ¬B3,
is added to µp and propagated (T -propagation). Hence A1, A2 and B2 are unit-propagated
from c5, c3 and c2.

By step (iii), T -deduce invokes T -solver on B2T ({¬B5, B8, B6,¬B1,¬B3, A1, A2, B2}):
{¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4), (x2−x4 ≤ 6),¬(2x2−x3 > 2),¬(3x1−2x2 ≤ 3), (x1 − x5 ≤ 1)}
which is inconsistent because of the 1st, 2nd, and 6th literals, so that returns Unsat, and
hence T -deduce returns Conflict. Then T -analyze conflict and T -backtrack learn the
corresponding boolean conflict clause

c8 =def B5 ∨ ¬B8 ∨ ¬B2

33

T -Propagate: 〈µ | ϕ〉 ⇒ 〈µ, l | ϕ〉 if

µ |=T l
l is undefined in µ
l or ¬l occurs in ϕ

T -Backjump: 〈µ, ld, µ′ | ϕ,C〉 ⇒ 〈µ, l′ | ϕ,C〉 if

µ, ld, µ′ |=p ¬C
there is some clause C ′ ∨ l′ s.t. :
ϕ,C |=T C ′ ∨ l′ and µ |=p ¬C ′

l′ is undefined in µ
l′ or ¬l′ occurs in ϕ or
in µ ∪ {ld} ∪ µ′

T -Learn: 〈µ | ϕ〉 ⇒ 〈µ | ϕ,C〉 if

{
all atoms in C occur in ϕ
ϕ |=T C

T -Discharge: 〈µ | ϕ,C〉 ⇒ 〈µ | ϕ〉 if
{
ϕ |=T C

Figure 9. The Abstract-DPLL Modulo Theories logical framework from [NOT06]. ld denotes

a decision literal. In the T -Backjump rule, C and C ′ ∨ l′ represent the conflicting and the conflict

clause respectively.

and backtrack, popping from µp all literals up to {¬B5, B8}, and then unit-propagate ¬B2

on c8 (T -backjumping and T -learning). Then, starting from {¬B5, B8,¬B2}, also ¬A2 and
B3 are unit-propagated on c2 and c3 respectively, and the search proceeds from there.

5.4 The Abstract-DPLL Modulo Theories logical framework: DPLL(T)

As hinted in §3.2, [Tin02, NOT05, NO05a, NOT06] proposed an abstract rule-based for-
mulation of DPLL-based lazy SMT systems, the Abstract DPLL Modulo Theories, also
known as DPLL(T). This allows for expressing and reasoning about most variants of these
procedures in a formal way. In particular, [GHN+04, NO05a] used such a framework to
describe new DPLL-based procedures.

The Abstract-DPLL Modulo Theories extends the Abstract-DPLL framework of §3.2
by adding the set of rules Figure 9 [NOT05] to these of Figure 3. (Notice that here all
literals, assignments and formulas are in the language of T , and that here the symbol
“|=” in Figure 3 must be interpreted as “|=p”.) The first three rules match the notion of
T -propagation, T -backjumping and T -learning introduced in §5.3 (but see also §6.4, §6.5
and §6.6). The fourth rule matches the fact that T -learned clauses may be discharged
when necessary, in order to avoid an explosion in size of the input formula. 28. The only
rule deserving some more explanation is T -Backjump: if a branch µ ∪ {ld} ∪ µ′ falsifies
propositionally one clause C (the conflicting clause), and a conflict clause C ′ ∨ l′ 29. can be
computed from C s.t. the corresponding conflict set ¬(C ′∨ l′) falsifies ϕ∧C in T , ¬C ′ ⊆ µ,

28. As already remarked in §3.2, the formalization of the rules in [NOT05, NO05a, NOT06] changes slightly
from paper to paper. Here we report the most-recent one from [NOT06]. We have adapted the notation
to that used in this paper.

29. Also called the backjump clause in [NOT06].

34

l′ 6∈ µ, and l′ or ¬l′ occur in ϕ or in µ ∪ {ld} ∪ µ′, then it is possible to backjump up to µ,
and hence unit-propagate l′ on the conflict clause (C ′ ∨ l′).

Example 5.3. Consider the formula and the scenario of Example 5.2. The execution can
be represented in Abstract-DPLL Modulo Theories/DPLL(T) as follows:
〈 |ϕ〉
Decide ¬B5, B8, B6,¬B1 ⇒
〈¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4), (x2 − x4 ≤ 6),¬(2x2 − x3 > 2) |ϕ〉
Theory Propagate ¬B3 ⇒
〈¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4), (x2 − x4 ≤ 6),¬(2x2 − x3 > 2),¬(3x1 − 2x2 ≤ 3) |ϕ〉
Unit Propagate A1, A2, B2 ⇒
〈¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4), (x2 − x4 ≤ 6),¬(2x2 − x3 > 2),¬(3x1 − 2x2 ≤ 3), A1, A2, (x1 − x5 ≤ 1)|ϕ〉
T -Learn c8 ⇒
〈¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4), (x2 − x4 ≤ 6),¬(2x2 − x3 > 2),¬(3x1 − 2x2 ≤ 3), A1, A2, (x1 − x5 ≤ 1)|ϕ, c8〉
T -Backjump ⇒
〈¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4),¬(x1 − x5 ≤ 1) |ϕ, c8〉
Unit Propagate ¬A2, B1 ⇒
〈¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4),¬(x1 − x5 ≤ 1),¬A2, (3x1 − 2x2 ≤ 3) |ϕ, c8〉
...

As in Abstract-DPLL, if a finite sequence 〈∅ | ϕ〉 ⇒ 〈µ1 | ϕ1〉 ⇒ . . .⇒ fail is found, then
the formula is unsatisfiable; if a finite sequence 〈∅ | ϕ〉 ⇒ . . .⇒ 〈µn | ϕn〉 is found so that no
rule can be further applied, then the formula is satisfiable. Different strategies in applying
the rules correspond to different variants of the algorithm. [NOT05, NOT06] provide a
group of results about termination, correctness and completeness of various configurations.
We refer the reader to [NOT05, NO05a, NOT06] for further details.

A DPLL(T) system consists of a general DPLL(X) engine, very similar in nature to a
SAT solver, whose parameter “X” can be instantiated with a T -solver for the theory T of
interest. [GHN+04] provides a common application programming interface (API) for the
T -solvers: once the DPLL(X) engine has been implemented, new theories can be dealt with
by simply plugging in new T -solvers which conform to the API. We refer the reader to
[GHN+04] for further details.

35

6. Optimizing the integration of DPLL and T -solvers

In the basic integration schema of §5.1 (and hence in these of §5.2 and §5.3), even assum-
ing Enumerator and T -solver are extremely efficient as a stand-alone procedures, their
combination can be extremely inefficient. This is due to a couple of intrinsic problems.

• Enumerator assigns truth values to (the boolean abstraction of) T -atoms in a blind
way, receiving no information from T -solver about their semantics. This may cause
up to an huge amount of calls to T -solver on assignments which are obviously T -
inconsistent, or whose T -inconsistency could have been easily derived from that of
previously-checked assignments.

• T -solver is used as a memoryless subroutine, in a master-slave fashion. Therefore
T -solver may be called on assignments that are subsets of, supersets of or similar to
assignments it has already checked, with no chance of reusing previous computations.

It is essential to improve the basic integration schema of §5.1 so that the Enumerator

(DPLL) is driven in its boolean search by T -dependent information provided by T -solver,
whilst the latter is able to take benefit from information provided by the former, and it is
given a chance of reusing previous computation.

In this section we describe in detail the most effective techniques which have been pro-
posed in various communities in order to optimize the interaction between DPLL and
T -solver. (Some techniques, like normalizing T -atoms (§6.1), early pruning (§6.3), T -
propagation (§6.4), T -backjumping (§6.5) and T -learning (§6.6), have already been intro-
duced in part in §5.3 and §5.4.) We coarsely distinguish four main categories of techniques.

Preprocessing Rewrite the input T -formula ϕ into an equivalent or equivalently-satisfiable
one which is supposedly easier to solve for T -DPLL. Among them we have normal-
izing T -atoms (§6.1) and static learning (§6.2).

Look-ahead Analyze the current status of the search and get from it as much information
as possible which is useful to prune the remaining search space. Among them we have
early pruning (§6.3), T -propagation (§6.4), and branching heuristics (§7.2.5).

Look-back When recovering from a failure, try to understand the cause of that failure
and use such an information to improve future search. Among them we have T -
backjumping (§6.5) and T -learning (§6.6).

Assignment simplification T -DPLL can provide useful information to make the assign-
ment smaller or simpler for T -solver. Among them we have clustering (§6.8), reduction
of assignments to prime implicants (§6.9), pure-literal filtering (§6.10) and T -literal
filtering (§6.11).

Remark 6.1. The techniques described in this section have been collected from an heteroge-
neous bibliography (including, e.g., some on modal and description logics), “cleaned” from
any information related to the specific theory/logic, and grouped according to the form of
interaction between DPLL and T -solver. To this extent, we remark a few facts. First, tech-
niques focused only on pure boolean reasoning or on pure theory-specific reasoning have been

36

briefly discussed in §3 and §4, and they are not further considered here. Second, the names
we adopted here for the various techniques may differ from those used by some of the au-
thors. (E.g., T -propagation (§6.4) is called forward reasoning in [ACG99], enhanced early
pruning in [ABC+02a], theory propagation in [NOT05, NO05a], theory-driven deduction
or T -deduction in [BBC+05a].) Third, we may present separately techniques which some
authors present as one technique. (E.g., early pruning (§6.3) and T -propagation (§6.4) are
sometimes described as one technique [GHN+04].) Finally, the description of some tech-
nique may differ significantly from that given by some authors. (E.g., [NOT05, NO05a]
describe their procedures in terms of inference rules and control strategies; most authors
instead prefer a pseudo-code description.)

6.1 Normalizing T -atoms.

The idea of normalizing the T -atoms was introduced in the very first DPLL-based proce-
dures for modal logics [GS96a], and it is adopted to some extent in substantially all lazy
SMT procedures.

One potential source of inefficiency for T -DPLL is the occurrence in the input T -formula
of pairs of syntactically-different T -atoms which are T -equivalent (e.g., (x1 +(x3−x2) = 1)
and ((x1 + x3) − 1 = x2)), or s.t. one is T -equivalent to the negation of the other (e.g.
(2x1 − 6x2 ≤ 4) and (3x2 + 2 < x1)). If two T -atoms ψ1, ψ2 are s.t. ψ1 6= ψ2 and
|=T ψ1 ↔ ψ2 [resp. ψ1 6= ¬ψ2 and |=T ψ1 ↔ ¬ψ2], then they are mapped into distinct
boolean atoms B1 =def T 2B(ψ1) and B2 =def T 2B(ψ2), which may be assigned different
[resp. identical] truth values by Enumerator. This may cause the useless generation of
many T -unsatisfiable assignments and the corresponding useless calls to T -solver (e.g., up
to 2|Atoms(ϕ)|−2 calls on assignments like {(2x1 − 6x2 ≤ 4), (3x2 + 2 < x1), ...}).

In order to avoid these problems, it is wise to preprocess atoms so that to map as many
as possible T -equivalent literals into syntactically identical ones. This can be achieved by
applying some rewriting rules, like, e.g.:

• Drop dual operators: (x1 < x2), (x1 ≥ x2) =⇒ ¬(x1 ≥ x2), (x1 ≥ x2).

• Exploit associativity: (x1 +(x2 +x3) = 1), ((x1 +x2)+x3) = 1) =⇒ (x1 +x2 +x3 = 1).

• Sort: (x1 + x2 − x3 ≤ 1), (x2 + x1 − 1 ≤ x3) =⇒ (x1 + x2 − x3 ≤ 1)).

• Exploiting specific properties of T : (x1 ≤ 3), (x1 < 4) =⇒ (x1 ≤ 3) if T is LA(Z).

The applicability and effectiveness of these mappings depends on the theory addressed.
Although rather straightforward, normalizing atoms is an essential step which may dras-

tically reduce the global amount of search [GS96a]. As we described in §5.3, it can be
effectively combined with standard boolean preprocessing (like in Example 5.1).

6.2 Static learning

The following idea was proposed by [ACG99] for a lazy SMT procedure for DL. Similar
such techniques were generalized and used in [ACKS02, BBC+05b, YM06].

On some specific kind of problems, it is possible to quickly detect a priori short and
“obviously T -inconsistent” assignments to T -atoms in Atoms(ϕ) (typically pairs or triplets).
Some examples are:

37

• incompatible value assignments (e.g., {x = 0, x = 1}),

• congruence constraints (e.g., {(x1 = y1), (x2 = y2),¬(f(x1, x2) = f(y1, y2))}),

• transitivity constraints (e.g., {(x− y ≤ 2), (y − z ≤ 4),¬(x− z ≤ 7)}),

• equivalence constraints ({(x = y), (2x − 3z ≤ 3),¬(2y − 3z ≤ 3)}).

If so, the clauses obtained by negating the assignments (e.g., ¬(x = 0) ∨ ¬(x = 1)) can
be added a priori to the formula before the search starts. Whenever all but one literals in
the inconsistent assignment are assigned, the negation of the remaining literal is assigned
deterministically by unit propagation, which prevents the solver generating any assignment
which include the inconsistent one. This technique may significantly reduce the boolean
search space, and hence the number of calls to T -solver, producing very relevant speed-ups
[ACG99, ACKS02, BBC+05b, YM06].

Intuitively, one can think to static learning as suggesting a priori some small and “ob-
vious” T -valid lemmas relating some T -atoms of ϕ, which drive DPLL in its boolean
search. Notice that, unlike the extra clauses added in “per-constraint” eager approaches
[SSB02, SLB03] (see §9.3), the clauses added by static learning refer only to atoms which
already occur in the original formula, so that the boolean search space is not enlarged, and
they are not needed for correctness and completeness: rather, they are used only for pruning
the boolean search space.

6.3 Early pruning

The following family of optimizations, here generically called early pruning – EP,30. was in-
troduced by [GS96a] in procedures for modal logics; [WW99, ABC+02a, BDS02a, GHN+04]
developed similar ideas in procedures for many SMT problems.

In its simplest form, EP is based on the empirical observation that most assignments
which are enumerated by T -DPLL, and which are found Unsat by T -solver, are such that
their T -unsatisfiability is caused by much smaller subsets. Thus, if the T -unsatisfiability
of an assignment µ is detected during its construction, then this prevents checking the
T -satisfiability of all the up to 2|Atoms(ϕ)|−|µ| total truth assignments which extend µ.

This suggests to introduce an intermediate call to T -solver on intermediate assignment
µ, (at least) before each decision. (I.e., in the T -DPLL of Figure 7, this is represented by
the “slightly more elaborated” version of step (iii) of T -deduce.). If T -solver(µ) returns
Unsat, then all possible extensions of µ are unsatisfiable; therefore T -DPLL returns Unsat

and backtracks, avoiding a possibly big amount of useless search.

Example 6.2. Consider the formula ϕ of Example 5.2. Suppose that, after four decisions,
T -DPLL builds the intermediate assignment:

µ = {¬(2x2 − x3 > 2),¬A2, (3x1 − 2x2 ≤ 3),¬(3x1 − x3 ≤ 6)}, (14)

(rows 1, 2, 3 and 5, 4 of ϕ respectively). If T -solver is invoked on µ, it returns Unsat, and
T -DPLL backtracks without exploring any further extension of µ.

30. Also called intermediate assignment checking in [GS96a] and eager notification in [BDS02a].

38

In general, early pruning may introduce a very relevant reduction of the boolean search
space, and consequently of the number of calls to T -solvers. Unfortunately, as EP may
cause useless calls to T -solver, the benefits of the pruning effect may be partly counter-
balanced by the overhead introduced by the extra EP calls. Anyway, we notice that all
EP calls to T -solver are incremental, as described in §4.1.3; thus, if we use an incremental
T -solver, the overhead of the extra calls is much mitigated.

Many variants and improvements of early pruning have been proposed in the literature.
We recall the most important ones.

6.3.1 Selective or intermittent early pruning

Some heuristic criteria can be introduced in order to reduce the number of redundant calls to
T -solver in early pruning steps. One way is avoid invoking T -solver when it is very unlikely
that, since the last call, the new literals added to µ can cause inconsistency. For instance,
this is the case when they are added only literals which either are purely-propositional
[GS96a] or contain new variables [ABC+02a]. Another way is to call T -solver every k
branching steps, k being an user-defined integer parameter [ACGM04].

6.3.2 Weakened early pruning

In order to further reduce the overhead due to early pruning, another idea is to use, for
intermediate checks only, weaker but faster versions of T -solver [BBC+05b]. This is possible
because intermediate checks are not necessary to the correctness and completeness of the
procedure. The notion of “weaker T -solver” depends on the theory T we are dealing with.
Some general ideas are:

• in case of Sat response, avoid reconstructing the satisfying assignments and models
(§4.1.1), which are not used in intermediate checks;

• check only easier-to-check subsets of µ. E.g., as DL is much easier than LA, if µ is
{(x − y ≤ 4), (z − x ≤ −6)(z − y = 0), (x − y = z − w)}, then we may test only the
sub-assignment dealing with DL-literals (e.g., the first three literals in µ, which are
DL-inconsistent) and backtrack if this is inconsistent; 31.

• check µ only on some easier-to-check sub-theory T ′ ⊂ T (i.e., s.t., if ϕ is inconsistent
in T ’ then ϕ is inconsistent in T). For example, as LA(Z)-satisfiability is way harder
than LA(Q)-satisfiability (see [BW01]), we may want to check the consistency of
an assignment on LA(Q) rather than on LA(Z), and backtrack if the LA(Q)-solver
return Unsat.

To these extends, notice that weakened EP fits naturally with layered theory solvers (§4.3)
because, during intermediate checks, it is possible w.l.o.g. to involve only some of the layers.

On the whole, there is a tradeoff between the benefits of reducing the overhead and the
drawbacks of reducing the pruning effect.

31. This situation is the frequent in the domain of bounded model checking for timed systems, where we
have a big majority of DL(Q)-literals, and only very few LA(Q)-literals (see, e.g., [ACKS02]).

39

6.3.3 Eager early pruning

Some DPLL-based SMT procedures for various theories (e.g., [WW99, SBD02, GHN+04,
NO05a]) perform a more eager form of early pruning, in which the theory solver is in-
voked every time a new T -atom is added to the assignment (including those added by unit
propagation). If so, we may avoid performing unit propagations at the cost of extra calls to
T -solver. In some sense, the eager approach privileges theory reasoning wrt. (deterministic)
boolean reasoning.

In some cases (e.g., [SBD02, GHN+04]) T -solver works as a fully-incremental deduction
process, so that an eager interaction with the SAT solver comes natural. However, if this is
not the case, then eager early pruning can be extremely expensive due to the possibly big
amount of calls to T -solver.

6.4 T -propagation

T -propagation 32. was introduced in its simplest form (plunging, see §4.1.4) by [ACG99] for
DL; [ABC+02a] proposed an improved technique for LA; however, T -propagation showed
its full potential in [Tin02, GHN+04, NO05a], where it was applied aggressively.

As discussed in §4.1.4, for some theories it is possible to implement T -solver so that a
call to T -solver(µ) returning Sat can also perform one or more deduction(s) in the form
η |=T l, s.t. η ⊆ µ and l is a literal on a not-yet-assigned atom in ϕ. If this is the case, then
T -solver can return l to T -DPLL, so that T 2B(l) is unit-propagated. This may induce new
literals to be assigned, new calls to T -solver, new assignments deduced, and so on, possibly
causing a beneficial loop between T -propagation and unit propagation.

Notice that T -solver can return the deduction(s) performed η |=T l to T -DPLL, which
can add the deduction clause T 2B(η → l) to ϕp, either temporarily and permanently. The
deduction clause will be used for the future boolean search, with benefits analogous to those
of T -learning (see §6.6).

Example 6.3. Look at Figure 10. Consider the scenario at the end of Example 5.2: the
current branch is {¬B5, B8,¬B2,¬A2, B3}, corresponding to the set of LA(Q)-literals

{¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4),¬(x1 − x5 ≤ 1), (3x1 − 2x2 ≤ 3)}.

Then the T solver may perform another T -propagation step:

{¬(3x1 − x3 ≤ 6), (3x1 − 2x2 ≤ 3)} |=T (2x2 − x3 > 2)

from which B1 is propagated, and hence A1 is unit propagated on c1.
Instead, suppose that, after the first T -propagation of Example 5.2, T -DPLL had added

to ϕp the corresponding deduction clause

c9 : B5 ∨B1 ∨ ¬B3.

If so, then B1 and A1 could have been obtained directly by unit propagation on c9 and c1
respectively, saving one call to T -solver and one T -propagation step.

32. Also called forward reasoning in [ACG99], enhanced early pruning in [ABC+02a], theory propagation in
[NOT05, NO05a] theory-driven deduction or T -deduction in [BBC+05a, BBC+05b].

40

c1 : {¬B1 ∨A1}
c2 : {¬A2 ∨B2}
c3 : {B3 ∨A2}
c4 : {¬B4 ∨ ¬B5 ∨ ¬A1}
c5 : {A1 ∨B3}
c6 : {B6 ∨B7 ∨ ¬A1}
c7 : {A1 ∨B8 ∨A2}

¬B3

A1

A2

B2

¬B2

¬A2

B3

c8 : B5 ∨ ¬B8 ∨ ¬B2

T
B1

A1

T

¬B5

B8

B6

¬B1

¬B3

A1

A2

B2

¬B2

¬A2

B3T
B1

A1

¬B5

B8

B6

¬B1

c8 : B5 ∨ ¬B8 ∨ ¬B2

c9 : B5 ∨B1 ∨ ¬B3

Figure 10. Left: Boolean search tree in the scenario of Example 6.3. Right: same situation, with

learning of deduction clause c9.

As T -propagation is performed during the intermediate calls to T -solver, it is always
related to early pruning. Like with early pruning, T -propagation can be applied either in
a lazy way, before any new branching [ABC+02a, BBC+05a], or, more eagerly, every time
a new T -atom is added to the assignment (including those added by unit propagation)
[ACG99, Tin02, BT03, GHN+04]. As with early pruning, the eager approach benefits of a
more aggressive pruning, but pays for extra overhead.

More generally, there are different strategies by which T -propagation can be applied.
We will further discuss this point in §7.1.3.

6.5 T -backjumping

This technique, which generalizes that of backjumping in standard DPLL, was introduced
by [Hor98, PS98] for description logics; [WW99, dMRS02b, SBD02, ABC+02a, GHN+04,
BBC+05a] adopted variants or improvements of the same idea for many other theories.

As hinted in §5.3, T -backjumping is based on the assumption that, when T -solver is
invoked on a T -inconsistent assignment µ, it is able to return also the conflict set η ⊆ µ
causing the T -unsatisfiability of µ. If so, T -DPLL can use ηp =def T 2B(η) as if it were a
boolean conflict set to drive the backjumping mechanism of DPLL: the conflict clause ¬ηp
is added to ϕp (either temporarily or permanently, see §6.6) and the procedure backtracks
to the branching point suggested by ηp.

Different backtracking strategies are possible. Older tools [Hor98, PS98, WW99] used to
jump up to the most recent branching point s.t. at least one literal lp ∈ ηp is not assigned.
Intuitively, all open subbranches departing from the current branch at a lower decision
point contain η, so that there is no need to explore them; this allows for pruning all these
subbranches from the search tree. (Notice that these strategies do not explicitly require
adding the learned clause ¬ηp to ϕp.) Most modern implementations [GHN+04, BBC+05a]
inherit the backjumping mechanism of current DPLL tools described in §3.1: T -DPLL

41

c1 : {¬B1 ∨A1}
c2 : {¬A2 ∨B2}
c3 : {B3 ∨A2}
c4 : {¬B4 ∨ ¬B5 ∨ ¬A1}
c5 : {A1 ∨B3}
c6 : {B6 ∨B7 ∨ ¬A1}
c7 : {A1 ∨B8 ∨A2}

¬B3

A1

A2

B2

T

¬B5

B8

B6

¬B1

c′8 : B5 ∨ ¬B8 ∨B1

A1

B1

¬B3

A1

A2

B2

¬B2

¬A2

B3T
B1

A1

¬B5

B8

B6

¬B1

c8 : B5 ∨ ¬B8 ∨ ¬B2
c′8 : B5 ∨ ¬B8 ∨B1

Figure 11. Left: Boolean search tree in the scenario of Example 6.4. Right: same situation,

learning both c8 and c′8, as in Example 6.5.

learns the conflict clause ¬ηp and backtracks to the highest point in the stack where one
lp ∈ ηp is not assigned, and unit propagates ¬ld on ¬ηp. Intuitively, DPLL backtracks to
the highest point where it would have done something different if it had known the conflict
clause ¬ηp in advance.

In substance, T -backjumping differs from standard boolean backjumping only for the
notion of conflict set used: whilst a boolean conflict set µ is an assignment which causes a
propositional inconsistency if conjoined to ϕ (i.e, s.t. µ ∧ ϕ |=p ⊥), a theory conflict set is
a set of T -literals which in intrinsically inconsistent in T (i.e, s.t. µ |=T ⊥), no matter ϕ.

As hinted in §5.3, it is also possible to have mixed boolean+theory conflicts sets, i.e.,
assignments η s.t. an inconsistency can be inferred from η∧ϕ by means of a combination of
boolean and theory reasoning (i.e., s.t. η∧ϕ |=T ⊥) [NOT05]. Such conflict sets/clauses can
be obtained starting from the theory conflicting clause T 2B(¬η) by applying the backward-
traversal of the implication graph described in §3.1, until one of the standard conditions
(e.g., 1UIP) is achieved. In this process, a T -propagation can be considered as a unit-
propagation on the corresponding deduction clause (see §7.2.4).

Example 6.4. The scenario depicted in Examples 5.2 and 6.3 represents a form of modern
T -backjumping, in which the conflict clause c8 used is a pure LA(Q) conflict clause (i.e.,
B2T (c8) is LA(Q)-valid).

However, T -analyze conflict could instead look for a mixed boolean+theory conflict
clause by treating c8 as a conflicting clause and backward-traversing the implication graph,
that is, by resolving backward c8 with c2 and c3, (i.e., with the antecedent clauses of B2 and
A2) and with the deduction clause c9 (which “caused” the propagation of ¬B3):

42

c8: theory conflicting clause
︷ ︸︸ ︷

B5 ∨ ¬B8 ∨ ¬B2

c2
︷ ︸︸ ︷

¬A2 ∨B2

B5 ∨ ¬B8 ∨ ¬A2
(B2)

c3
︷ ︸︸ ︷

B3 ∨A2

B5 ∨ ¬B8 ∨B3
(¬A2)

c9
︷ ︸︸ ︷

B5 ∨B1 ∨ ¬B3

B5 ∨ ¬B8 ∨B1
︸ ︷︷ ︸

c′8: mixed boolean+theory conflict clause

(B3)

finding the mixed boolean+theory conflict clause c′8 : B5∨¬B8∨B1. (Notice that, B2T (c′8) =
(3x1 − x3 ≤ 6) ∨ ¬(x3 = 3x5 + 4) ∨ (2x2 − x3 > 2) is not LA(Q)-valid.)

If so (Figure 11, left.), then T -backtrack pops from µp all literals up to {¬B5, B8},
and then unit-propagates B1 on c′8. Then, starting from {¬B5, B8, B1}, also A1 is unit-
propagated on c1.

6.6 T -learning

This technique, which generalizes that of learning in standard DPLL procedures, was intro-
duced by [WW99] for linear arithmetic; [dMRS02b, SBD02, ABC+02a, FJOS03] proposed
the same idea for many other theories. Although T -backjumping and T -learning were
originally conceived in different moments, in modern tools they are always related.

The rationale of T -learning is the same as with standard boolean learning: when a
conflict set η is found, the clause T 2B(¬η) is added in conjunction to ϕp. Since then, T -

DPLL will never again generate any branch containing η. In fact, as soon as |η|− 1 literals
in η are assigned to true, the remaining literal will be immediately assigned to false by unit
propagation on T 2B(¬η).

As with T -backjumping, the only difference wrt. standard DPLL learning is in the
notion of conflict set/clause used: both theory and mixed boolean+theory clauses can be
used. Notice also that theory-conflict clauses and mixed boolean+theory conflict clauses
can be computed and used contemporarily.

Example 6.5. Consider the scenario of Example 6.4 and of Figure 11. If both c8 and c′8
were added to ϕp, then ¬B2, ¬A2 and B3 would be unit-propagated on c8, c2 and c3, and B1

and A1 would be unit-propagated on c′8 and c1, obtaining the same result as in Example 6.3,
although here we do not need assuming that the deduction clause c9 is learned.

Notice that, whilst for T -backjumping the best conflict set is that which forces the highest
jump in the stack, for T -learning the best conflict set is the one which causes the pruning of
most future branches. In practice, these are the shortest conflict sets and those containing
most atoms occurring in future branches (relevant atoms). To this extent, techniques to
force T -solver to return shorter conflict sets have been proposed in [WW00, ACGM04,
dRS04] for different theories.

Like all learning techniques, T -learning must be used with some care, because it may
cause an explosion in size of ϕ. To avoid this, one has to introduce techniques for discarding
learned clauses when necessary [BS97]. Luckily, by using one modern DPLL implementation
from the shelf, one gets this feature for free.

43

As with static learning, the clauses added by T -learning refer only to atoms which
already occur in the original formula, so that no new atom is added. [FJOS03] proposed
an interesting generalization of T -learning, in which at each consistency check more than
one clause may be added, which may contain also new atoms. To overcome the consequent
enlargement of the search space, they proposed to restrict splitting to the original atoms.
[BBC+05c, BBC+06b] used a similar idea to improve the efficiency of Delayed Theory
Combination (see §8.3); [BNOT06] used the same idea in the context of the splitting-on-
demand approach (see §6.7); [WGG06] proposed similar ideas for a SMT(DL) tool, in which
new atoms can be generated selectively according to an ad-hoc heuristic.

6.7 Splitting on demand

A noteworthy case of T -learning in which clauses may contain new atoms is that performed
in the Splitting on demand technique proposed in [BNOT06]. 33. This work is built on
top of the observation that for many theories, in particular for non-convex ones, T -solvers
must perform lots of internal case-splits in order to decide the satisfiability of a set of
literals. Unfortunately most T -solvers cannot handle boolean search internally, so that
they cannot do anything better then doing naive case-splitting on all possible combinations
of the alternatives.

With splitting on demand, whenever the T -solver encounters the need of a case-split,
it gives back the control to the DPLL engine by returning (the boolean abstraction of)
a clause encoding the alternatives, which is learned and split upon by the DPLL engine.
(Notice that the atoms encoding the alternatives in the learned clause may not occur in the
original formula.) This is repeated until the T -solver can decide the T -satisfiability of its
input literals without case-splitting. Therefore the T -solver delegates the boolean search
induced by the case-splits to the DPLL solver, which presumably handles it in a much more
efficient way.

Example 6.6. [BNOT06]. Suppose an AR-solver is given in input a set of literals con-
taining a certain number of equalities in the form

(read(write(a, i, e), j) = read(a, j)), (15)

meaning that storing the value e in the i-th cell of array a does not affect the value of the
j-th cell (see §4.2.6). (15) holds in two possible situations: when the indexes differ: (i 6= j);
when the value of the i-th location in a is already e: read(a, i) = e. Thus, for every literal
like (15), the AR-solver must consider the two alternatives separately. With splitting on
demand, instead, it may return (the boolean abstraction of) the clause

(read(write(a, i, e), j) = read(a, j)) → (¬(i = j) ∨ (read(a, i) = e))) (16)

to the DPLL solver, forcing it to split on one of the last two literals. Notice that the latter
literals do not necessarily occur in the original formula.

Notice that, to this extent, a T -solver invoked on an assignment µ can produce also clauses
in the form T 2B(µ∗ → ∨

i ei) s.t. µ∗ ⊆ µ and the ei’s are interface equalities.

33. A preliminary form of this technique was briefly described in §3.5.1 of [Bar03] and is implemented in
CVC and CVCLite [CVCa, CVCb].

44

6.8 Clustering

This technique was proposed in [BBC+05a] for of EUF and LA, and was implicit in DPLL-
based procedures for modal and description logics (see, e.g., [GS00]).

At the beginning of the search, the set of T -atoms of ϕ is partitioned into a set of disjoint
clusters C1 . . . Ck, s.t. atoms which do not interfere to each-other’s T -satisfiability belong
to different clusters. (I.e., two atoms belong to the same cluster if they share a variable.)
Consequently, every assignment µ can be partitioned into k disjoint sub-assignments µi,
one for each cluster, so that µ is T -satisfiable iff each µi is. Based on this idea, instead of
having a single, monolithic solver, T -solver is instantiated (up to) k different times: each is
responsible for the handling of the reasoning within a single cluster.

The advantage of this “divide-and-conquer” approach is manifold. First, k solvers run-
ning on k disjoint problems are typically faster then running one solver monolithically on
the union of the problems. Second, the solvers are activated in a lazy way: if one returns
Unsat, there is no need to call the others. Third, the construction of smaller conflict sets
becomes easier, and this may result in significant gain in the overall search.

6.9 Reduction of assignments to prime implicants

The following technique was proposed for DL in [ACGM04].

Let µ be an assignment propositionally satisfying the input formula ϕ. Sometimes µ
may not be a prime implicant for ϕ, that is, some of the literals in µ may be unnecessary to
propositionally satisfy ϕ (i.e., µ \ {l} |=p ϕ for some l ∈ µ). The typical case is when more
than two literals in the same clause are satisfied by µ. Thus T -solver may eliminate such
literals l’s from µ.

There are a couple of potential benefits for this behavior. Let µ′ be the reduced version
of µ. First, µ′ might be T -satisfiable despite µ is T -unsatisfiable. If so, T -DPLL can stop.
Second, if both µ′ and µ are T -unsatisfiable, checking the consistency of µ′ rather than that
of µ can be faster and cause smaller conflict sets, so that to improve the effectiveness of
T -backjumping and T -learning.

Example 6.7. Consider the following scenario with the T -formula ϕ in Example 5.2: T -

DPLL generates the following assignment µ, which propositionally satisfies ϕ:

{¬(2x2 − x3 > 2),¬A2, (3x1 − 2x2 ≤ 3),¬(3x1 − x3 ≤ 6),¬A1, (x3 = 3x5 + 4)}.

If T -solver is invoked on µ without reduction, then it will return Unsat due to the conflict set
{¬(2x2−x3 > 2), (3x1−2x2 ≤ 3),¬(3x1−x3 ≤ 6)}. We notice that the literal ¬(3x1−x3 ≤ 6)
is unnecessary for satisfying ϕ, because the 4th clause is satisfied also by ¬A1. Thus, if we
drop it from µ, we obtain a T -satisfiable assignment µ′ s.t. µ′ |=p ϕ, so that T -DPLL can
return Sat without further backtracking.

6.10 Pure-literal filtering

This technique, which we call pure-literal filtering,34. was implicitly proposed by [WW99]
and then generalized by [GGT01, ABC+02a, BBC+05b].

34. Also called triggering in [ABC+02a].

45

The idea is that, if we have non-boolean T -atoms occurring only positively [resp. nega-
tively] in the input formula, we can safely drop every negative [resp. positive] occurrence of
them from the assignment to be checked by T -solver. (The correctness and completeness of
this process is a consequence of Proposition 2.4 in §2.2.) Moreover, if both T -propagation
and pure-literal filtering are implemented, then the filtered literals must be dropped not
only from the assignment, but also from the list of literals which can be T -deduced by
T -solver, so that to avoid the T -propagation of literals which have been filtered away.

We notice first that pure-literal filtering has the same two benefits described for reduc-
tion to prime implicants in §6.9. Moreover, this technique is particularly useful in some
situations. For instance, in DL(Z) and LA(Z) many solvers cannot efficiently handle dise-
qualities (e.g., (x1 − x2 6= 3)), so that they are forced to split them into the disjunction of
strict inequalities (x1 − x2 > 3) ∨ (x1 − x2 < 3). (This is done either off-line, by rewriting
all equalities [resp. disequalities] into a conjunction of inequalities [resp. a disjunction of
strict inequalities], or on-line, at each call to T -solver.) This causes an enlargement of the
search, because the two disjuncts must be investigated separately.

However, in many problems it is very frequent that many equalities (t1 = t2) occur
with positive polarity only. If so, pure-literal filtering avoids adding (t1 6= t2) to µ when
T 2B((t1 = t2)) is assigned to false by T -DPLL, so that no split is needed [ABC+02a].

6.11 T -deduced-literal filtering

This technique has been proposed by [BBC+05b, CM06b] to further reduce the amount of
T -literals given to T -solver.

If the literal l is T -propagated by T -solver, or if l is unit-propagated on a learned T -valid
clause C =def (l1 ∧ · · · ∧ ln) → l 35. s.t. {l1, ..., ln} ⊆ µ, then there is no need to pass l to
T -solver, because µ is T -equisatisfiable to µ∪ {li}. (In order to detect these cases, T -valid
clauses can be marked with a flag when they are learned.) As with pure-literal filtering, if
T -propagation is implemented, then the filtered literal l must be dropped also from the list
of literals which can be T -deduced by T -solver.

Notice that combining different filtering methods requires some care because, in order
to safely apply T -deduced-literal filtering to l, all literals l1, . . . , ln must have been explicitly
passed to T -solver (i.e., they must not have been filtered).

35. I.e., a T -valid clause C s.t. T 2B(C) has been added to ϕp via static learning (§6.2), T -propagation
(§6.4) or T -learning (§6.6).

46

7. Discussion

For most of the techniques described in §6, the applicability and the benefits of their appli-
cation depend on many factors.

First, some techniques require as necessary conditions some of the specific features of
T -solver described in §4.1. E.g., you cannot use T -backjumping and T -learning if your
solver is not capable of producing good-enough conflict sets; the benefits of T -propagation
depend only on the deduction capabilities of T -solver, and on their efficiency.

Second, the effects of the different integration techniques are not mutually independent,
and are thus difficult to evaluate as stand-alone ones. Some techniques can share part of
their benefits. (E.g., in Examples 6.3 and 6.5, the enhanced versions of T -propagation
and T -learning may produce similar effects.) Some other can interact negatively. (E.g.,
pure-literal filtering can reduce the pruning power of early pruning, because it may drop
literals causing T -inconsistencies, and thus some pruning of the boolean search.) Some other
techniques are pairwise related. (E.g., T -propagation is associated with early pruning; both
T -backjumping and T -learning benefit of the conflict sets generated by T -solver, and are
thus implemented together in most solvers.)

Third, and most important, the benefits of many integration techniques, like early prun-
ing and T -propagation, depend on the theory T addressed and, in particular, on the tradeoff
between the cost of T -solving (and T -propagation) and the benefits of reducing boolean
search space. Notice that “reducing the boolean search” means not only reducing the time
spent on boolean reasoning but also, and much more importantly, reducing the size of the
boolean search tree, and consequently the number of calls to T -solver. As discussed in §4,
for some theories (e.g., EUF and DL) T -solving is relatively cheap, so that it is typically
worth performing extra calls to T -solver if this allows for pruning the boolean search; for
some other theories instead (e.g., LA(Z) and BV) T -solving may be very expensive, so that
trading T -solver calls for boolean-search reduction is not always a good deal.

7.1 Guidelines and tips

With very few exceptions, there is no universal, theory-independent recipe for choosing the
right integration techniques to apply. In this section we provide some guidelines and tips,
based on both theoretical analysis and practical experience.

7.1.1 Some general guidelines

There are very few suggestions which can be given for most or even all situations, no matter
which theory T or T -solver we are dealing with.

• Normalize T -atoms in the input formulas according to the lines of §6.1. This is a very
cheap process and may avoid lots of branches and useless calls to T -solver.

• Use some form of early pruning. In fact, T -unsatisfiable branches are typically much
bigger than the conflict sets causing their unsatisfiability, so that using no EP tech-
niques may result into a huge number of branches and useless calls to T -solver.

• Use T -backjumping and T -learning. In fact, if these techniques are not used, many
branches containing the same conflict sets can be enumerated by T -DPLL, causing

47

up to huge amounts of useless calls to T -solver. Despite potential problems of memory
blowup, it is a common experience of the authors of state-of-the-art solvers that both
techniques drastically improve the performance when applied.

All state-of-the-art lazy SMT solvers we are aware of comply to the suggestions above.

7.1.2 Offline vs. online integration

As described in §5.2, in the offline integration schema the SAT solver is restarted from
scratch each time on augmented boolean formulas. On the one hand, this allows for using
a SAT solver from the shelf with minimal or no modification to its source code, whilst the
online approach requires a tighter integration of the source codes of the SAT solver and
T -solver. On the other hand, as remarked in [FJOS03], in the offline approach each call to
the SAT solver may repeat some or much of the search already performed by previous calls.
In the online approach, instead, after each call to T -solver the boolean search recovers from
the point it was interrupted, without redoing any work. Moreover, notice that in the offline
approach (see Figure 6) it is strictly necessary to keep the theory-conflict clauses learned
in order to guarantee the completeness of the approach, whilst in the online approach (see
Figure 7) T -learning is just a technique for improving efficiency, so that theory-conflict
clauses can be learned and discharged at will. To this extent, [FJOS03] showed in an
empirical test a relevant performance superiority of the online approach wrt. the offline
one. 36.

The effect of passing from the “naive” offline SAT solving of §5.2 to its more effective
version exploiting conflict sets is analogous to that of using T -backjumping and T -learning
with online SAT solving, and the effect of the “eager notification” version of the offline
approach described in by [BDS02a] is that of (eager) early pruning. The last improvement,
however, requires a tighter integration of the source code of the SAT solver and T -solver.

In general, the choice between the offline and online schemata relies on a tradeoff between
efficiency and the effort of implementation, in particular that of modifying and integrating
with the source code of a SAT solver. Offline integration is suitable for prototyping, whilst
online integration is recommendable for building more efficient and stable tools.

7.1.3 To T -propagate or not to T -propagate?

As hinted in §4.1, for some theories (e.g., EUF , DL) T -solvers with powerful deduction
capabilities are available, so that T -propagation can be implemented in very efficient ways
[GHN+04, NO05a, DdM06]. In other cases, however, things are not so nice and we have to
seriously take into account the tradeoff between the actual benefits of reducing the boolean
search space and the overhead costs introduced.

Many different application strategies for T -propagation are possible. The main choices
one has to deal with are the following:

36. Notice that one can pass from the offline to the online schema by storing the status of the SAT solver (e.g.,
stack, implication graph) and retrieve it at the next restart. We consider this as a variant implementation
of the online schema, as it shares the same advantages (no repeated boolean search, no need of keeping
all the theory-conflict clauses learned) and drawbacks (requires significant modifications to the source
code of the SAT solver).

48

• apply T -propagation exhaustively [GHN+04, NO05a] (i.e., always try to deduce as
many literals as possible) or more selectively [ABC+02a, WGG06] (e.g., deduce only
easy-to-deduce literals). The former can prune the boolean search space more aggres-
sively at the expense of a bigger computational effort for T -solver, and vice versa;

• privilege T -propagation wrt. unit propagation [NO05a] (e.g., apply T -propagation
until possible, and then apply unit propagation), or vice-versa [BBC+05a]. The former
trades more T -solver work for less BCP effort, and vice versa;

• learn deduction clauses lazily [NO05a] (e.g., only when strictly necessary to backward-
traversing the implication graph) or eagerly [BBC+05a] (e.g., learn either temporarily
or permanently the deduction clauses at every T -propagation performed). Again, the
former trades more T -solver work for less boolean reasoning effort, and vice versa;

• in case of layered T -solvers (§4.3), how to interleave the hierarchical calls to the
different layers and the T -propagation of the literals T -deduced by each layer. E.g.,
when an unassigned literal l is T -deduced at level Li, it may either be returned to the
SAT solver, so that to be unit-propagated, or be passed down to layer Li+1, so that to
produce more information for the lower layers. These issues, combined with the role
of T -deduced-literal filtering (§6.11), have been investigated in detail in [CM06b].

In the Abstract DPLL Modulo Theories framework of §3.2 and §5.4, the different alterna-
tives described above may correspond to different strategies by which to apply the Theory
Propagate rule wrt. other rules like Decide, Unit Propagate, (T)-Learn and (T -)Discharge.

7.2 Problems of using modern DPLL in SMT

As pointed out in §3, a SAT solver is very different from an Enumerator, so that what
makes a DPLL solver efficient is not enough for making an SMT tool efficient, and what
causes only an irrelevant overhead for SAT may be a major source of inefficiency in SMT.
Thus, we overview a list of problems one may encounter while implementing a lazy SMT
tool on top of a modern DPLL implementation, and propose some solutions.

7.2.1 Generating partial assignments

All SMT schemata of §5 are based on the statement (Property 2.3) that ϕ is T -satisfiable
iff a T -satisfiable partial assignment µ propositionally satisfies ϕ. (Notice that it is enough
to assume that µ propositionally satisfies the original formula ϕ, i.e., there is no need that
µ satisfies also the learned clauses. 37.)

In §3.1 we remarked that, due to the two-watched-literal scheme [MMZ+01], in modern
implementations DPLL returns Sat only when all variables are assigned truth values, thus
returning total assignments, even though the formulas can be satisfied by partial ones. Thus,
when a partial assignment µ is found which satisfies ϕ, this causes an unnecessary sequence
of decisions and unit-propagations for assigning the remaining variables.

37. Every clause C which has been learned is such that ϕ |=T C, so that, if µ is T -satisfiable and µ |=p ϕ,
then ϕ is T -satisfiable by Prop. 2.3, and hence ϕ ∧ C is T -satisfiable. Thus, there is no need to check
also that µ |=p C.

49

In SAT, this scenario causes no extra boolean search because every extension of µ satisfies
propositionally ϕ, so that the overhead introduced is negligible.

In SMT, instead, many total assignments extending µ may be T -inconsistent even
though µ is T -consistent, so that many useless boolean branches and calls to T -solvers
may be required (up to 2|Atoms(ϕ)|−|µ| − 1). If early pruning (§6.3) is implemented, then
the problem happens at most once in the search (when a T -satisfiable satisfying partial
assignment is found); however, if weakened early pruning (§6.3.2) is implemented, then the
problem arises also when a partial assignment is generated which is unsatisfiable in T (e.g.,
LA(Z)) but satisfiable in the “weaker” theory T ’ (e.g., LA(Q)). The problem is relevant
also in Delayed Theory Combination (DTC) [BBC+05c], as it will be made clear in §8.3.

Example 7.1. Consider the simple LA(Z)-formula

c1 : ϕ = {(x1 < 1) ∨ (x2 > 1)} ϕp = T 2B(ϕ) = {B1 ∨B2}
c2 : {(x2 < 2) ∨ (x1 > 0)} {B3 ∨B4}.

(17)

Suppose that T -DPLL has generated the (intermediate) partial assignment µp =def {B1, B3}.
As µ =def B2T (µp) is LA(Z)-consistent, this should be enough to state that ϕ is LA(Z)-
satisfiable. However, if T -DPLL enumerates total assignments only, then it may have to
generate and check up to four total assignments extending µ before finding the only LA(Z)-
satisfiable one, i.e., B2T ({B1, B3,¬B2,¬B4}).

Suppose instead that T -DPLL has generated the partial assignment µp =def {B1, B4}.
As µ =def B2T (µp) is LA(Z)-inconsistent, early-pruning would cause a LA(Z)-solver call
on µ, forcing T -DPLL to backtrack. With weakened early pruning s.t. T ’ is LA(Q),
instead, the weaker LA(Q)-solver would be invoked on µ. As µ is LA(Q)-consistent, this
would cause enumerating up to the four total assignments extending µ, which would be found
LA(Z)-inconsistent by the LA(Z)-solver in the complete calls.

In order to overcome these problems, it is sufficient to implement some device monitoring
the satisfaction of all original clauses in ϕ. Although this may cause some overhead in
handling the boolean component of reasoning, this may reduce the overall boolean search
space and the number of calls to T -solver consequently, in particular when weakened early
pruning or Dtc are used.

7.2.2 Avoiding ghost literals

As stated in §3.1, in modern DPLL tools decide next branch selects a new literal accord-
ing to a score which is updated only at the end of every branch, and is never changed until
the end of the next branch. Consequently, decide next branch may select also literals
which occur only in clauses which have already been satisfied (which we call ghost literals).

In SAT, the selection of ghost literals in the assignment µ causes no extra boolean
search, because it interferes neither with BCP nor with the detection of (un)satisfiability
and construction of the implication graph, so that the overhead introduced is negligible.

In SMT, instead, the presence of ghost T -literals in µ may affect the T -satisfiability of
µ, forcing unnecessary backtrackings.

50

Example 7.2. Suppose that T -DPLL implements early pruning and does not implements
T -propagation, and consider again the simple LA(Z)-formulas of Example 7.1:

c1 : ϕ = {(x1 < 1) ∨ (x2 > 1)} ϕp = T 2B(ϕ) = {B1 ∨B2}
c2 : {(x2 < 2) ∨ (x1 > 0)} {B3 ∨B4},

(18)

and the intermediate assignment µp =def {B1}. Suppose decide next branch selects the
literals in lexicographic order B1...B4 without detecting ghost literals: it selects the ghost
literal B2, causing the useless call to T -solver on B2T ({B1, B2}), and hence B3, causing
the call of T -solver on B2T ({B1, B2, B3}), which returns Unsat and forces backtracking on
the conflict clause ¬B2 ∨ ¬B3. If decide next branch realizes that B2 is a ghost literal
and skips it, it will select B3 instead, and find the T -satisfiable assignment B2T ({B1, B3}),
saving one call to T -solver and one T-backjumping and T -learning step.

In order to overcome these problems, it is sufficient to implement some device monitoring
the satisfaction of the (original) clauses in ϕ in which the selected literal occurs. Again,
although this may cause some overhead in handling the boolean component of reasoning,
this may significantly reduce the overall boolean search space and the number of calls to
T -solver consequently.

7.2.3 Drawbacks of modern T -backjumping

As stated in §6.5, older forms of T -backjumping [Hor98, PS98, WW99] used to jump up
to the most recent branching point s.t. at least one literal lp ∈ ηp is not assigned, η being
the theory conflict set; most modern implementations instead (e.g., [GHN+04, BBC+05a])
adopt or inherit the backjumping mechanism of modern DPLL tools, so that T -DPLL

learns the conflict clause ¬ηp and backtracks to the highest point in the stack where one
lp ∈ ηp is not assigned, and unit propagates ¬ld on ¬ηp. In the latter case, the backtrack
mechanism jumps higher.

We notice that, whilst in SAT this is typically a good feature, in SMT this is not
necessarily the case: it may often happen that, after T -backjumping and unit-propagating
on the learned clause, T -DPLL redoes the same decisions and unit propagations as in the
previous branch, until it reaches the same status he would have reached with a “lower” jump
(like, e.g., with the “old” backjumping approach). In SAT, the overhead introduced by this
extra work is negligible. In SMT, instead, it may cause extra useless calls to T -solver and
T -propagations, which may be very expensive.

Example 7.3. Consider the case where the formula ϕ of Example 5.2 is extended with many
other clauses which contain no atoms occurring in c1, ..., c7. We assume a scenario similar
to that of Example 5.2: T -DPLL selects {¬B5, B8, B6, l1, ..., ln,¬B1}, it T -propagates ¬B3

and unit-propagates, A1, A2, B2, causing a conflict and learning the conflict clause c8. (Here
“l1, ..., ln” is a possibly-big sequence of assignments on atoms not occurring in c1, ..., c7,
which we assume do not interact with the other assignments, but may cause a significant
amount of calls to T -solver.)

If T -DPLL adopted an old-style T -backjumping strategy, it would jump up above ¬B1,
unit-propagate ¬B2 on c8 and hence ¬A2 and B3 on c2 and c3. (Figure 12 left.)

With a modern T -backjumping strategy, instead, T -DPLL would jump up above B6 and
hence unit-propagate ¬B2, ¬A2 and B3 on c8, c2 and c3. (Figure 12 right.) By construction,

51

c1 : {¬B1 ∨A1}
c2 : {¬A2 ∨B2}
c3 : {B3 ∨A2}
c4 : {¬B4 ∨ ¬B5 ∨ ¬A1}
c5 : {A1 ∨B3}
c6 : {B6 ∨B7 ∨ ¬A1}
c7 : {A1 ∨B8 ∨A2}
... : 〈 other clauses 〉

¬B3

A1

A2

B2

c8 : B5 ∨ ¬B8 ∨ ¬B2

T
¬B1

¬B5

B8

B6

¬B2

B3

¬A2

l1, ..., ln

¬B3

A1

A2

B2

c8 : B5 ∨ ¬B8 ∨ ¬B2

T
¬B1

¬B2

¬A2

B3

¬B5

B8

B6

B6

l1, ..., ln

l1, ..., ln

Figure 12. Boolean search trees in the scenarios of Example 7.3. Left: “old-style” T -backjumping.

Right: modern T -backjumping.

¬B2, ¬A2 and B3 do not interfere with the T -consistency of B5, B8, B6. If the presence
of ¬B2, ¬A2 and B3 does not influence the literal selection heuristic, then T -DPLL may
select B6 and may redo from scratch the assignments of the previous branch, redoing the
same decisions, unit-propagations and calls of the T -solver than in the previous branch,
until it gets to the same point it would have reached if it would have jumped up to ¬B1, as
in Figure 12 left.

7.2.4 Implementing T -propagation

As remarked in [GHN+04], implementing T -propagation on top of a modern DPLL algo-
rithm can be tricky, because, by construction, the implication graph in DPLL described
in §3.1 does not keep track of T -propagations. Therefore, if a T -propagated literal l is
encountered during the backward traversal of the implication graph (e.g., when building
a boolean conflict set), the information on the T -propagation η |=T l must be recovered
in order to complete the process. In [GHN+04], the set of antecedents η of the deduction
are computed on demand only in these situations. In [BBC+05a], the deduction clause
T 2B(η → l) is always computed and added to ϕp, either temporarily or permanently, and
the process handles a T -propagated literal as if it were the result of a unit-propagation on
the deduction clause.

7.2.5 DPLL Branching heuristics for SMT

In general, good literal-selection heuristics for “pure” DPLL are not necessary good for
T -DPLL-like procedures as well. First, a heuristic which is good to search for one assign-
ment is not necessary good for enumerating up to a complete collection of them. More
importantly, traditional DPLL heuristics are not “theory-aware”, in the sense that they do
not take into account the T -semantics of the literals.

52

So far there seem to be no really-satisfactory proposal in the direction of building theory-
aware heuristics, and most tools simply use standard DPLL heuristics. One of the main
reason for this fact may be that the problem is trickier then one would expect: in order
to be effective, a theory-aware heuristic should not only take into account the T -semantics
of the literal chosen, but also that of all the literals that are assigned as a deterministic
consequence (unit propagation, T -propagation) of that choice. For instance, with some
problems it is often the case that boolean literals are better choices than others, because
they cause longer chains of unit propagations [ACKS02].

Example 7.4. Consider the T -formula ϕ in Example 5.2. Branching on the boolean literal
¬A1 causes the assignment of ¬(2x2−x3 > 2) and (3x1− 2x2 ≤ 3) by unit propagation and
hence of (3x1 − x3 ≤ 6) by T -propagation (rows 1, 5 and hence 3).

Unfortunately, the whole sets of deterministic consequences of a branch choice are diffi-
cult to predict a priori. One possible direction, is to perform all propagations explicitly on
all the candidate literals in turn as in [LA97], but this is likely to be extremely expensive.
Another direction is, as with the pure boolean case, to provide to T -DPLL solver a list of
“privileged” variables on which to branch on first [ACKS02].

53

8. Lazy SMT for combinations of theories

In many practical applications of SMT, the theory T is a combination of two (or more)
theories T1 and T2. (As stated in §2.1.1, we restrict our interest on signature-disjoint stably
infinite theories with equality.) For instance, an atom of the form f(x + 3y) = g(2x − y),
that combines uninterpreted function symbols (from EUF) with arithmetic functions (from
LA(Q)), could be used to naturally model in a uniform setting the abstraction of some
functional blocks in an arithmetic circuit. In the following, we discuss the main approaches
to the development of lazy SMT (T) tools where T is the combination of two or more
different theories. For the sake of simplicity and w.l.o.g., we also assume that the input
formulas are pure (see §2.1.1), although this assumption is not strictly necessary [BDS02b].

8.1 Ackermann’s expansion

When one of the theories T i is EUF , one possible approach to the SMT (T1∪T2) problem is
to eliminate uninterpreted function symbols by means of Ackermann’s expansion [Ack54] so
that to obtain an SMT (T) problem with only one theory. The method works by replacing
every function application occurring in the input formula ϕ with a fresh variable and then
adding to ϕ all the needed functional congruence constraints. The new formula ϕ′ obtained
is equisatisfiable with ϕ, and contains no uninterpreted function symbols.

First, each distinct function application f(x1, . . . , xn) is replaced by a fresh variable
vf(x1,...,xn). Then, for every pair of distinct applications of the same function, f(x1, . . . , xn)
and f(y1, . . . , yn), a congruence constraint

arity(f)
∧

i=1

(ack(xi) = ack(yi))→ (vf(x1,...,xn) = vf(y1,...,yn)), (19)

is added, where ack is a function that maps each function application g(z1, . . . , zn) into the
corresponding variable vg(z1,...,zn), each variable into itself and is homomorphic wrt. the
interpreted symbols. The atom (ack(xi) = ack(yi)) is not added if the two sides of the
equality are syntactically identical; if so, the corresponding implication in (19) is dropped.

Example 8.1. Consider the following EUF ∪ LA(Q) pure formula ϕ:

EUF : (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v6 = f(v2)) ∧ (v7 = f(v5))∧
LA(Q) : (v0 ≥ v1) ∧ (v0 ≤ v1) ∧ (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
Both : (¬RESET5 → (v5 = v8)) ∧ ¬(v6 = v7).

(20)

By replacing every function application with a fresh variable, and adding all the functional
consistency constraints, we obtain the SMT(LA(Q)) formula:

LA(Q) : (v3 = vh(v0)) ∧ (v4 = vh(v1)) ∧ (v6 = vf(v2)) ∧ (v7 = vf(v5))∧
(v0 ≥ v1) ∧ (v0 ≤ v1) ∧ (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
(¬RESET5 → (v5 = v8)) ∧ ¬(v6 = v7)∧

Congruence : ((v0 = v1)→ (vh(v0) = vh(v1))) ∧ ((v2 = v5)→ (vf(v2) = vf(v5))),

(21)

which can be solved by a SMT(LA(Q)) solver. Notice that four new equalities and two
congruence constraints have been added.

54

BOOLEAN MODEL
ENUMERATOR (DPLL)

Atoms

µT1 ∪ µT2Sat/Unsat

∨
eij

T1-solver

T1-deduce

T1-solve

T2-solve

T2-deduce

T2-solver

T1 ∪ T2-solver

Figure 13. SMT (T1 ∪ T2) via NO.

BOOLEAN MODEL
ENUMERATOR (DPLL)

[µ′T1 →
∨

eij] [µ′T2 →
∨

eij]

[T1-deduce] [T2-deduce]

µe µT2µT1
Sat/UnsatSat/Unsat

Atoms ∪ {eij}ij

T1-solve T2-solve

T1-solver T2-solver

Figure 14. SMT (T1 ∪ T2) via Dtc.

Notice that in Example 8.1 we have considered a pure formula ϕ, which might be the result
of purifying some non-pure formula ϕ′. If so, applying Ackermann’s expansion directly to
ϕ′ might result into a more compact formula than (21).

An interesting variant of Ackermann’s expansion has been introduced for eager encodings
(see §9.3) in [BGV99]. This method differs from that in [Ack54] because it replaces each
term with a nested series of if-then-else constraints. This allows for effectively exploiting
the presence of positive equalities. We refer the reader to [BGV99] for details.

8.2 Nelson-Oppen Combination

The first general approach we discuss is based on combining two Ti-solvers into one solver
T1 ∪ T2-solver by means of the Nelson-Oppen combination schema [NO79] or of its variant
due to Shostak [Sho84] 38. (NO hereafter). The T1 ∪ T2-solver is then integrated with DPLL

as described in §5. Here we provide only a high-level description of this approach. The
reader may refer, e.g., to [NO79, Sho79, FORS01, BDS02b, SR02, MZ03] for more details.

A basic architectural schema of SMT (T1 ∪ T2) via NO is described in Figure 13. Let
T1, T2 be two signature-disjoint stably-infinite theories and let T1-solver, T2-solver be their
respective theory solvers s.t. each of them is eij-deduction complete (see §4.1.5). The com-
bined decision procedure T1 ∪ T2-solver is based on a structured interchange of (disjunction
of) interface equalities which are inferred by either Ti-solver and then propagated to the
other, until convergence is reached.

In the case of convex theories, the two Ti-solvers exchange single interface equalities.
We illustrate first the behavior of the NO schema within a SMT tool in the case of convex
theories in the following example. Hereafter, we denote with µT i

the subassignment of µ
containing only i-pure literals.

38. Nowadays there seems to be a general consensus on the fact that Shostak’s method should not be
considered as an independent combination method, rather as a collection of ideas on how to implement
Nelson-Oppen’s combination method efficiently [RS01, BDS02b, DNS05].

55

Branch 1 Branch 2

¬RESET5

v0 = v1

v2 = v5

v3 = h(v0)
v4 = h(v1)
v6 = f(v2)
v7 = f(v5)

v3 = v4

¬(v6 = v7)

v0 ≥ v1

v5 = 0

v0 = v1

v2 = v5

v3 = v4

v2 = v3 − v4

v0 ≥ v1

v5 = v8

v0 ≤ v1

v0 = v1

v3 = v4

v2 = v3 − v4

v3 = h(v0)
v4 = h(v1)
v6 = f(v2)
v7 = f(v5)

v0 = v1

v3 = v4

¬(v6 = v7)

v0 ≤ v1

LA(Q)

EUF ∪ LA(Q)-Satisfiable!

EUF EUF LA(Q)

〈eij-deduction〉

〈eij-deduction〉 〈eij-deduction〉

〈eij-deduction〉〈eij-deduction〉

RESET5

Figure 15. Search tree for the formula of Example 8.2

Example 8.2. [BCF+06b] Consider the following EUF ∪ LA(Q) formula ϕ (see Fig. 15)

EUF : (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v6 = f(v2)) ∧ (v7 = f(v5))∧
LA(Q) : (v0 ≥ v1) ∧ (v0 ≤ v1) ∧ (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
Both : (¬RESET5 → (v5 = v8)) ∧ ¬(v6 = v7).

(22)

v0, v1, v2, v3, v4, v5 are interface variables, v6, v7, v8 are not. (Thus, e.g., (v0 = v1) is an
interface equality, whilst (v0 = v6) is not.) RESET5 is a boolean variable.
After the first run of unit propagations, assume DPLL selects the literal RESET5, resulting
in the assignment µ =def µEUF ∪ µLA(Q) s.t.

µEUF = {(v3 = h(v0)), (v4 = h(v1)), (v6 = f(v2)), (v7 = f(v5)),¬(v6 = v7)}
µLA(Q) = {(v0 ≤ v1), (v0 ≥ v1), (v2 = v3 − v4), (v5 = 0)}, (23)

which propositionally satisfies ϕ. Now, the set of literals µEUF ⊂ µ is given to the EUF-
solver, which reports its consistency and deduces no new interface equality. Then the set
µLA(Q) ⊂ µ is given to the LA(Q)-solver, which reports consistency and deduces the interface
equality v0 = v1, which is passed to the EUF-solver. The new set µEUF ∪{(v0 = v1)} is still
EUF-consistent, but this time the EUF-solver deduces the equality (v3 = v4), which is in
turn passed to the LA(Q)-solver, which deduces (v2 = v5). The EUF-solver is then invoked
again to check the EUF-consistency of the assignment µEUF ∪ {(v0 = v1), (v2 = v5)}: since
this check fails, the Nelson-Oppen method reports the EUF ∪ LA(Q)-unsatisfiability of ϕ
under the whole assignment µ. At this point, then, DPLL backtracks and tries assigning
false to RESET5, resulting in the new assignment µ′ =def µEUF ∪ µ′LA(Q) s.t.

µEUF = {(v3 = h(v0)), (v4 = h(v1)), (v6 = f(v2)), (v7 = f(v5)),¬(v6 = v7)}
µ′LA(Q) = {(v0 ≤ v1), (v0 ≥ v1), (v2 = v3 − v4)(v5 = v8)}, (24)

which is found EUF ∪ LA(Q)-satisfiable (see Fig. 15).

In the case of non-convex theories, the NO schema becomes more complicated, because
the two solvers need to exchange arbitrary disjunctions of interface equalities, which have
to be managed within the decision procedure by means of case splitting and of backtrack

56

v2 = v3

v1 = v4v1 = v3

v5 = v6

v2 = v4

¬(f(v2) = f(v4))
f(v3) = v5
f(v1) = v6

¬(f(v1) = f(v2))

v2 = v3 ∨ v2 = v4

v1 = v3 ∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6
v2 ≤ v6 + 1

v4 = 1
v3 = 0
v5 = v4 − 1

v5 = v6

µEUF

EUF
µLA(Z)

LA(Z)

EUF ∪ LA(Z)-Satisfiable!〈eij-deduction〉

〈eij-deduction〉

〈eij-deduction〉

Figure 16. The NO search tree for the formula of Example 8.3

search. In the latter case, the NO schema performs a number of branches to check the
consistency of a set of literals which depends on how many disjunctions of equalities are
exchanged at each step: if the current set of literals is µ, and one of the T i-solver sends the
disjunction

∨n
k=1(eij)k to the other, the latter must further investigate up to n branches to

check the consistency of each of the µ ∪ {(eij)k} sets separately.

We illustrate the behavior of the NO schema in the case of non-convex theories in the
following example.

Example 8.3. [BCF+06b] Consider the following EUF∪LA(Z) assignment µ =def µEUF ∪
µLA(Z) s.t.

µEUF : ¬(f(v1) = f(v2)) ∧ ¬(f(v2) = f(v4)) ∧ (f(v3) = v5) ∧ (f(v1) = v6)∧
µLA(Z) : (v1 ≥ 0) ∧ (v1 ≤ 1) ∧ (v5 = v4 − 1) ∧ (v3 = 0) ∧ (v4 = 1)∧

(v2 ≥ v6) ∧ (v2 ≤ v6 + 1).

(25)

Here all the variables (v1, . . . , v6) are interface ones. ϕ contains only unit clauses, so after
the first run of unit propagations, DPLL generates the assignment µ which is simply the
set of literals in ϕ. The NO combination schema then runs as depicted in Fig. 16.

First, the sub-assignment µEUF is given to the EUF-solver, which reports its consistency
and deduces no interface equality. Then, the sub-assignment µLA(Z) is given to the LA(Z)-
solver, which reports its consistency and deduces the disjunction (v1 = v3)∨(v1 = v4). Next,
there is a case-splitting and the two equalities (v1 = v3) and (v1 = v4) are passed to the
EUF-solver. The first branch, corresponding to selecting (v1 = v3), is opened: then the set
µEUF ∪{(v1 = v3)} is EUF-consistent, and the equality (v5 = v6) is deduced. After that, the
assignment µLA(Z) ∪ {(v5 = v6)} is passed to the LA(Z)-solver, that reports its consistency
and deduces another disjunction, (v2 = v3)∨ (v2 = v4). At this point, another case-splitting
is needed in the EUF-solver, resulting in the two branches µEUF ∪ {(v1 = v3), (v2 = v3)}
and µEUF ∪{(v1 = v3), (v2 = v4)}. Both of them are found inconsistent, so the whole branch
previously opened by the selection of (v1 = v3) is found inconsistent.

57

At this point, the other case of the branch (i.e. the equality (v1 = v4)) is selected, and
since the assignment µEUF ∪ {(v1 = v4)} is EUF-consistent and no new interface equality
is deduced, the Nelson-Oppen method reports the EUF ∪LA(Z)-satisfiability of ϕ under the
whole assignment µ.

Notice that the ability to carry out eij-deductions is crucial: each solver must be eij-
deduction complete, that is, it must be able to derive the (disjunctions of) interface equalities
eij which are entailed by its current facts ϕ. (Hereafter we assume that all the T i-solver’s
used in a NO schema are eij-deduction complete.)

We also notice that, in a standard NO-style SMT procedure, the DPLL solver is not
aware of the interface equalities eij , so that the latter cannot occur in conflict clauses. There-
fore, in order to construct the T1 ∪ T2-conflict clause, it is necessary to resolve backwards
the last conflict clause with (the deduction clauses corresponding to) the eij-deductions
performed by each Ti-solver.
Example 8.4. Consider the scenario of the left branch in Example 8.2 and Fig. 15. Starting
from the final EUF conflict, and resolving backwards wrt. the deductions performed, it is
possible to obtain a final EUF ∪ LA(Q)-conflict clause as follows:

EUF − conflict : ((v6 = f(v2)) ∧ (v7 = f(v5)) ∧ ¬(v6 = v7) ∧ (v2 = v5))→ ⊥
LA(Q)− deduction : ((v2 = v3 − v4) ∧ (v5 = 0) ∧ (v3 = v4))→ (v2 = v5)
EUF − deduction : ((v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v0 = v1))→ (v3 = v4)
LA(Q)− deduction : ((v0 ≥ v1) ∧ (v0 ≤ v1))→ (v0 = v1)
=⇒
EUF ∪ LA(Q)− conflict : ((v6 = f(v2)) ∧ (v7 = f(v5)) ∧ ¬(v6 = v7) ∧ (v2 = v3 − v4)∧

(v5 = 0) ∧ (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v0 ≥ v1))→ ⊥.
Notice that the novel conflict clause simply causes the propagation of ¬(v5 = 0) and of
¬RESET5, and provides no help for pruning search in the right branch.

8.3 Delayed Theory Combination

A more SAT-related approach for tackling the SMT (T1∪T2) problem, called Delayed Theory
Combination (Dtc), has been proposed in [BBC+05c, BBC+06b]. A basic architectural
schema of Dtc is described in Figure 14.

Again, let T1, T2 be two signature-disjoint stably-infinite theories and let T1-solver,
T2-solver be their respective theory solvers (unlike with NO, they are not required to be
eij-deduction complete). In Dtc, each of the two Ti-solvers interacts only with the boolean
enumerator: there is no direct exchange of information between the Ti-solvers. Their mutual
consistency is ensured by augmenting the input problem with all interface equalities eij ,
even if these do not occur in the original problem: the boolean enumerator is instructed to
assign truth values not only to the atoms in Atoms , but also the interface equalities eij ’s.
Consequently, the enumerated assignments include not only the atoms in the formula, but
also the eij ’s. Both theory solvers receive, from the boolean level, the same truth assignment
µe for eij : under such conditions, the two “partial” models found by each decision procedure
can be merged into a model for the input formula.

A simplified view of the algorithm, in accordance with the offline integration schema of
§5.2, is presented in Fig. 17. Initially (rows 2–4), the formula is purified, the new interface

58

1. SatValue T1 ∪ T2-DPLL (T1 ∪ T2-formula ϕ) {
2. ϕ = Purify(ϕ);
3. Ap = T 2B(Atoms ∪ InterfaceEqualities(ϕ));
4. ϕp = T 2B(ϕ);
5. while (DPLL(ϕp, µp) == Sat){
6. µpT1

∧ µpT2
∧ µpe = µp;

7. (res1,π1) = T1-solver(B2T (µpT1
∧ µpe));

8. (res2,π2) = T2-solver(B2T (µpT2
∧ µpe));

9. if (res1 == Sat && res2 == Sat)

10. return Sat;

11. else if (res1 == Unsat)

12. ϕp = ϕp ∧ ¬T 2B(π1);
13. else if (res2 == Unsat)

14. ϕp = ϕp ∧ ¬T 2B(π2);
15. };
16. return Unsat;
17. };

Figure 17. An offline schema of Dtc for SMT (T1 ∪ T2).

equalities eij ’s are created and added to the set of propositional symbols Ap, and the
propositional abstraction ϕp of ϕ is created. Then, the main loop is entered (rows 5–15):
while ϕp is found propositionally satisfiable by DPLL (row 5), a satisfying truth assignment
µp is selected (row 6). It is important to stress that truth values are associated not only to
atoms in ϕ, but also to the eij’s, even though they do not occur in ϕ. µp is then partitioned
into µpT1

∧µpe∧µpT2
, where B2T (µpi) is the subset of i-pure literals and B2T (µpe) is the subset of

eij-literals in µ. For each Ti, the Ti-relevant part of µp, µpT i
∧µpe, is checked for Ti-consistency

(rows 7–8); each Ti-solver returns a pair (resi, πi), where resi is Unsat iff B2T (µpT i
∧ µpe) is

Ti-unsatisfiable, and Sat otherwise. If both calls to T i-solver return Sat, then the formula is
satisfiable. Otherwise, when resi is Unsat, then πi is a conflict set. Then, ϕp is strengthened
to exclude truth assignments which may fail in the same way (row 11–14), and the loop is
resumed. Unsatisfiability is returned (row 16) when the loop is exited without having found
a model.

The above schema can be improved to many extents: step 8 can be invoked only if res1

is Sat; more importantly, if DPLL returns a partial assignment µ, then it is sufficient that
µe assigns only the eij’s which have an actual interface role in µ. 39.

A more efficient implementation of Dtc [BBC+06b] is based on the online integration
with a modern DPLL engine —exploiting early pruning, T -propagation, T -backjumping
and T -learning— described in §5.3. Let T be T1∪T2. In order to guarantee the correctness
and completeness of Dtc, the T -DPLL algorithm of §5.3 (see Fig. 7) must be modified to
the following extents [BBC+06b]:

39. E.g., if µ is partial and v is an interface variable in ϕ but it occurs in no 1-pure literal in µ, then v has no
“interface role” for µ, so that every interface equality containing v can be ignored by µe. (If µ is total,
then this situation cannot occur.)

59

• T -preprocess must perform also the purification of the input formula ϕ.

• DPLL must be instructed to assign truth values not only to the atoms in Atoms(ϕ),
but also to the interface equalities eij ’s. B2T and T 2B are modified accordingly.

• T -decide next branch is modified to select not only atoms in the original formula,
but also new interface equalities.

• T -deduce, step (ii), is modified to work like Rows 6–14 of Fig. 17: µp is partitioned
into µpT1

∧ µpT2
∧ µpe, and both Ti-solvers are invoked on B2T (µpT2

∧ µpe): if both return
Sat, then T -deduce returns Sat, otherwise it returns Conflict.

• T -analyze conflict and T -backtrack are modified so that to use the conflict set
returned by one Ti-solver for backjumping and learning. Importantly, such conflict
sets may contain interface equalities.

In order to achieve efficiency, the following modifications have been further suggested in
[BBC+05c, BBC+06b, BCF+06b].
T -decide next branch is instructed to hamper the selection of positive new interface

equalities eij ’s, that is,

(i) a new eij is selected only after all original atoms have been assigned;
(ii) when selected, a new eij is assigned a negative value first;
(iii) as described above, only the eij ’s which have an actual interface role in µ are selected.

Intuitively, positive interface equalities are considered only when they are strictly necessary
to guarantee the mutual consistency of the two sub-assignments. An important improve-
ment of (i) is to exploit the issue of partial assignments described in §7.2.1: when the
current partial assignment µ propositionally satisfies the input formula ϕ, the remaining
atoms occurring in ϕ can be ignored and (the negation of) the new eij ’s are selected. One
further variant is to limit (i) only to the new eij ’s which do not occur in learned clauses: the
others can be selected by T -decide next branch with no restriction. Intuitively, the eij ’s
which participate in conflicts gain on-the-field a better consideration from the SAT solver.
T -deduce can be improved in the following ways.

(i) Early pruning or weakened EP is applied before every selection of a new eij .
(ii) If some Ti-solver has deduction or eij-deduction capabilities, then T -propagation is

performed.
(iii) Each Ti-solver is invoked only if at least one literal (which has not been deduced

singularly by Ti-solver itself) has been added to its input since the last call. 40.

(iv) At every early-pruning call on a branch µ which is found both T1- and T2-consistent,
if one Ti-solver performs the eij-deduction µ∗ |=Ti

∨k
j=1 ej , s.t. µ∗ ⊆ µT i

∧ µe, then:

(a) the deduction clause T 2B(µ∗ → ∨k
j=1 ej) is learned;

(b) if k > 1, then ¬e1, ...,¬ek are put on the top of the literal selection list, so that to
be the next ¬eij ’s selected by the literal selection heuristic.

40. This avoids invoking one Ti-solver twice in sequence on the same input. The restriction “which ... itself”
means that, if Ti-solver (µ) returns Sat and deduces eij , then Ti-solver is not invoked on µ ∪ {eij}.

60

f(v1) = v6

¬(f(v1) = f(v2))¬(f(v2) = f(v4))
f(v3) = v5

¬(v1 = v4)

¬(v1 = v3)

v2 = v3

¬(v2 = v3)

¬(v2 = v4)

v1 = v3

v5 = v6

v2 = v4

v1 = v4

¬(v5 = v6)

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6
v2 ≤ v6 + 1

v5 = v4 − 1
v3 = 0
v4 = 1

µEUF : µLA(Z):

LA(Z)-unsat, C13

EUF -unsat, C56

LA(Z)-unsat, C23

EUF -unsat, C14

EUF -unsat, C24

C13 : (µ′LA(Z))→ ((v1 = v3) ∨ (v1 = v4))

C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

C14 : (µ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4))→ ⊥
C24 : (µ′′EUF ∧ (v1 = v3) ∧ (v2 = v3))→ ⊥
C23 : (µ′′LA(Z) ∧ (v5 = v6))→ ((v2 = v3) ∨ (v2 = v4))

Figure 18. The Dtc search tree for Example 8.5 onLA(Z)∪EUF , with no eij -deduction. Here

“Cij” denotes the conflicting clause causing the backjump to (vi = vj).

(v) [If and only if both Ti-solvers are eij-deduction complete.] If an assignment
µ which propositionally satisfies ϕ is found Ti-satisfiable for both Ti’s, and neither
Ti-solver performs any eij-deduction from µ, then T -DPLL stops returning Sat. 41.

T -analyze conflict and T -backtrack can be improved as follows.

(i) Each conflict clause is a mixed boolean+theory conflict clause which is built from the
conflict set returned by one Ti-solver as described in §6.5.

(ii) All the conflict clauses derived by theory conflicts are learned, either temporarily or
permanently.

Example 8.5. [BCF+06b] Consider the EUF ∪LA(Z) formula ϕ (25) and the assignment
µ of Example 8.3. We assume here that both the EUF- and LA(Z)-solver’s have no eij-
deduction capabilities, but that they always return ¬eij-minimal conflict sets. A session of
Dtc is depicted in Fig. 18.

Initially, both µLA(Z) and µEUF are found consistent in each of the theories by the
respective solvers. Then Dtc starts selecting new ¬eij ’s, and proceeds without causing
conflicts, until it selects ¬(v1 = v4) and ¬(v1 = v3), which cause a LA(Z) conflict. The
branch is in the form µ∪⋃

j ¬ej, so that, the ¬eij-minimal conflict set η13 returned is in the

form µ′LA(Z) ∪ {¬(v1 = v3),¬(v1 = v4)}. 42. Dtc learns the corresponding clause C13, and

backjumps up to the highest point which allows for unit-propagating (v1 = v3) on C13, and
performs such unit propagation. Then Dtc selects a chain of new ¬eij ’s without causing
conflicts, until it selects ¬(v5 = v6), which causes a EUF conflict. As EUF is convex,

41. This is identical to the T1 ∪ T2-satisfiability termination condition of NO.
42. Hereafter, µ′

T i
, µ′′

T i
, µ′′′

T i
will denote generic subsets of µT i

, T ∈ {EUF ,LA(Q),LA(Z)}.

61

¬(v5 = v6) is the only ¬eij occurring in the conflict set, so that Dtc learns clause C56,
backtracks over the last chain of ¬eij’s and unit-propagates (v5 = v6).

Again, Dtc selects a chain of new ¬eij ’s without causing conflicts, until it selects ¬(v2 =
v4) and ¬(v2 = v3), which cause a LA(Z) conflict. As before, it learns clause C23, and
backjumps to the highest point where it can unit-propagate (v2 = v3) on C23. Performing
the latter unit propagation causes a EUF conflict, with conflicting clause C24. By resolving
on literals (v2 = v3), (v5 = v6), (v1 = v3) the conflicting clause C24 with the clauses C23,
C56 and C13, (which caused the unit-propagation of (v2 = v3), (v5 = v6) and (v1 = v3)
respectively), Dtc obtains a mixed theory/boolean clause C ′

24 : (µ′LA(Z) ∧ µ′EUF ∧ µ′′LA(Z) ∧
µ′′EUF) → ((v1 = v4) ∨ (v2 = v4)), which allows it for backjumping over all the remaining
¬eij’s of the current chain and unit-propagating (v2 = v4).

The latter causes a new EUF conflict represented by the conflicting clause C14. Then
C14 is resolved with the clauses C ′

24, C13 (which caused the unit-propagation of (v2 = v4) and
(v1 = v3) respectively), obtaining thus the new conflict clause C ′

14 : (µ′LA(Z)∧µ′′LA(Z)∧µ′EUF∧
µ′′EUF ∧ µ′′′EUF)→ (v1 = v4), which allows for backjumping up to µ and for unit-propagating
(v1 = v4).

Finally, Dtc selects a sequence of ¬eij’s (possibly unit-propagating some value due to
the clauses learned) without generating conflicts, so that to conclude that the formula is
T1 ∪ T2-satisfiable.

8.4 Discussion

An essential difference between NO and Dtc is that the former requires the Ti-solvers to
be deduction-complete, whilst the latter allows for using Ti-solver’s with partial or no eij-
deduction capability. In fact, in Dtc part of or all the eij-deductions are substituted by
extra boolean search on the eij ’s performed by the SAT solver. [BCF+06b] shows that:

• under the same hypotheses of NO (stably-infinite theories, incremental, backtrackable
and eij-deduction-complete Ti-solvers) Dtc can be implemented so that to emulate
NO, requiring no extra boolean search;

• if the Ti-solvers are not eij-deduction complete, T -backjumping eliminates the extra
boolean search except for some caused by the presence of redundant negated eij ’s in
the conflict sets. If the Ti-solvers can remove such redundancies, the boolean search
reduces down to at most one extra boolean branch for every eij-deduction avoided.

Another difference is that, in case of non-convex theories, in NO each T -solver must handle
the case-splits caused by the deduction of disjunctions of eij ’s performed by the other
T -solver; in Dtc this is handled directly by the SAT solver (e.g., compare Examples 8.3
and 8.5). Notice that, unlike with splitting on demand [BNOT06] in §6.7, here we refer
to the case-splits which are necessary to handle the deductions performed by the other
T -solver, rather to those which may be necessary to perform such deductions.

Finally, in Dtc the SAT solver is aware a priori of the eij ’s, so that Dtc allows for
learning clauses containing eij ’s, which can be used in subsequent branches to prune search
and avoid redoing the same search/eij -deductions from scratch.

62

We refer the reader to [BBC+05c, BBC+06b] for a more detailed description of Dtc, to
[BCF+06a] for a comparison between Dtc and Ackermann’s expansion on SMT(EUF ∪T),
and to [BCF+06b] for an analytical comparison between Dtc and NO.

63

9. Related approaches for SMT

All the most extensive empirical evaluations performed in the last years [GHN+04, dMR04,
NO05a, BBC+05b, BdMS05, SMT05, SMT06] seem to confirm the fact that currently all
the most efficient SMT tools are based on the lazy approach combining state-of-the-art
DPLL implementations with specialized Ti-solvers. In this section we discuss this fact, and
survey the current alternatives.

9.1 Alternative Enumerators for lazy SMT

Most state-of-the-art lazy SMT tools use DPLL as Enumerator. We first try to motivate
this fact (§9.1.1), and then we survey some promising alternatives (§9.1.2 and §9.1.3).

9.1.1 Why DPLL?

We believe there are a few facts which contribute to the popularity of DPLL as Enumer-

ator in lazy SMT tools.

From a theoretical viewpoint, DPLL has some important properties which make it very
suitable for implementing an Enumerator [GS00, ABC+02b]. First, DPLL performs a
depth-first-search on assignments, so that it requires a polynomial amount of memory. 43.

This is not the case, e.g., of OBDD’s [Bry86]. Second, DPLL allows for implementing
Enumerators which are intrinsically non-redundant, in the sense that they avoid gener-
ating partial assignments which cover areas of the boolean search space which are already
covered by previously-generated assignments. This is not the case, e.g., of semantic tableaux
[Smu68]. We refer the reader to [ABC+02b] for a more detailed explanation on these issues.

From a more practical perspective, a few other facts contribute to the success of DPLL

in lazy SMT. First, most efficient (complete) SAT solvers are DPLL implementations, and
the source code of extremely efficient implementations of DPLL is available from the shelf.
In particular, by integrating a state-of-the-art DPLL solver, one can benefit for free of all
the enhancements briefly described in §3.1. Second, there is a wide and detailed literature on
efficient DPLL solvers, involving both high-level algorithmical issues and implementation
tricks, so that one can achieve all the information needed to successfully implement an
efficient DPLL-based Enumerator in-house. Third, DPLL is more a family of algorithms
than one single algorithm: a plethora of variants of DPLL can be constructed on, e.g.,
different literal selection heuristics, different forms of preprocessing and simplification, and
different strategies for restarts, conflict-set generation, clause learning and discharging. This
gives a wide choice of possibilities for customizing an ad-hoc variant of DPLL.

9.1.2 OBDD-based SMT solvers

In the Model Checking community there has been some work on integrating Ordered Binary
Decision Diagrams - OBDD’s [Bry86] with theory-information in order to handle complex
verification problems. [CABN97] integrated OBDD’s with an (incomplete) quadratic con-
straint solver to verify transition systems with integer data values; [MLAH99] developed
Difference Decision Diagrams (DDDs), OBDD-like data structures handling boolean combi-

43. Here we assume that a proper strategy of clause learning and discharging is implemented to avoid
learning an exponential number of clauses. See §3.

64

nations of temporal constraints, and used them to verify timed systems; [GSZ+98] developed
OBDD-based procedures for EUF ; [YKTB00] developed a library of procedures combining
OBDD’s and a solver for Pressburger arithmetic, and used them to verify infinite-state
systems. 44. [RD03] combine OBDDs with superposition theorem provers (see also §9.2).
In a more general perspective, [Arm03] introduced an optimized way to efficiently integrate
OBDD’s with solvers for decidable theories. Notably, all these approaches adopt a tech-
nique similar to early pruning (§6.3) to reduce the size of the final OBDD. Unfortunately,
all these approaches inherit from OBDD’s the drawback of requiring exponential space in
worst case.

9.1.3 Circuit-based techniques

In the recent years, alternative boolean solvers which are specialized for reasoning di-
rectly on boolean circuits, rather than on CNF formulas, have been proposed (see, e.g.,
[JN00, KGP01, GAG+02, IPC03, TBW04, LHS04, JS05]). Unlike DPLL on CNF-ized
representation of circuits, these techniques benefit from the structure of the circuit repre-
sentation, and can perform efficient boolean constraint propagation, including that of don’t
care values. In particular, [GAG+02] proposed a mixed Circuit-based and DPLL-based
approach, combining the power of DPLL learning with Circuit-based boolean value propa-
gation and structure-driven search; [TBW04] generalized the two-watched-literals technique
to boolean circuits.

[LHS04, JS05] focused on the problem of enumerating complete sets of assignments
for boolean circuit representations: [LHS04] developed a group of very efficient techniques,
including a mixed conflict/success-driven learning scheme, a form of quantified backjumping
and a practical method for storing solutions into OBDD’s; [JS05] developed a technique for
the enumeration of prime clauses, which allow for significantly reducing the overall boolean
search space. Although these techniques were mostly conceived in the context of SAT-based
unbounded model checking [McM02], we believe they may find a natural application in lazy
SMT.

With some noteworthy exception (e.g., [PICW04] extended the circuit-based solver in
[IPC03] to the domain of BV), the application of circuit-based techniques to lazy SMT is
still ongoing research work.

9.2 The rewrite-based approach for building T -solvers

A relatively-recent and promising approach for building T -solvers is that referred as rewrite-
based 45. approach [ARR03, RD03, ABRS05, KRRT05, BGN+06, KRRT06]. The main idea
is that of producing Ti-solvers for (typically finitely-axiomatizable) theories Ti and for their
combinations by customizing an equational FOL theorem prover, in particular one based
on the superposition calculus 46.. This is done by incorporating the axioms of the theory
and by introducing ad-hoc control strategies in order to drive the search.

44. The list of references presented here is not intended to be exhaustive; rather, it aims at providing some
representative samples of the OBDD-based approach in the literature.

45. Also referred as superposition-based approach.
46. The superposition calculus [BG94] is a calculus for reasoning in equational FOL, which combines first-

order resolution with ordering-based equality handling. Most current state-of-the-art theorem provers are
based on the superposition calculus (e.g., the superposition-based equational theorem prover E [Sch02]).

65

The key issue for this approach is proving termination: in order to obtain a T -solver, it
is necessary to prove that theorem-proving strategy is bound to terminate on satisfiability
problem in the theories of interest. In [ARR03] a refutationally-complete rewrite-based
inference system was shown to generate finitely-many clauses on satisfiability problems in a
bunch of theories. [ABRS05, KRRT05, BGN+06, KRRT06] extended these results to some
more theories and, more importantly, showed how to apply the methods also to combinations
of theories. These termination results show that, at least in principle, rewrite-based theorem
provers could be used off-the-shelf as validity checkers. To this extent, [ABRS05] performed
an empirical comparison, showing performances comparable or superior to those of CVC

and CVCLite.

We notice that, for this approach, the desirable features of T -solvers described in §4.1
depend on the specific features of the FOL theorem prover used.

• Model generation (§4.1.1) derives straightforwardly from the capability of the FOL
theorem prover of returning a model when the formula is satisfiable. Unfortunately,
superposition-based theorem provers are not always able to do that.

• Conflict set generation (§4.1.2) is achievable, as most provers are capable of producing
a proof for the unsatisfiability of a set of literals, whose leaves can be grouped into a
conflict set.

• Incrementality (§4.1.3) can be achieved, in principle, by means of an incremental FOL
theorem prover. Unfortunately, incrementality is not a typical item in the agenda of
FOL theorem provers developers. This problem is discussed in [KRRT05], where it is
proposed a solution by means of an incremental congruence-closure algorithm.

• Deduction of unassigned literal (§4.1.4) is still an open problem, as far as we are aware.

• Deduction of interface equalities (§4.1.5) can be implemented by means of the tech-
niques described in [KRRT05, KRRT06].

On the whole the rewrite-based approach has, at least in principle, some very nice
features. First, it is conceptually simple and elegant. Second, it benefits automatically
and nearly for free of the improvements in the technology of superposition-based FOL
theorem provers. Third, the task of proving the correctness is reduced to the (typically
simpler) task of proving the termination for the rules of superposition calculus [ARR03].
Fourth, and probably most important, under some sufficient conditions [ABRS05], a com-
bined T1 ∪ T2-solver can be obtained from T1-solver and T2-solver by providing the union
of the axiomatizations of T1 and T2.

On the negative side, we notice that, in order to get extra functionalities (e.g., incre-
mentality, deduction of unassigned literals) one must put the hands into the code of FOL
theorem provers, which are typically very sophisticated and complicated tools. Finally, the
approach is not completely mature yet and, although promising, the performances are not
yet comparable with those of state-of-the-art lazy tools implementing specialized T -solvers.

66

9.3 The eager approach to SMT

For some theories T , a different approach to the usage of SAT tools for SMT(T) is that of
reducing T -satisfiability to SAT: the input T -formula is translated into an equi-satisfiable
boolean formula, and a SAT solver is used to check its satisfiability. (This approach is often
called eager, in contra-position to the lazy approach described in §5 and §6. 47.)

Effective encodings into SAT have been conceived for a significant amount of first-order
theories of interest for formal verification, including EUF , CLU 48., DL, SUF 49., LA, and
AR [VB99, BLS02, SSB02, Str02, SLB03]. In particular, two main families of encodings
are worth-mentioning:

• in the small-domain encoding, SD [BLS02, TSSP04], for each variable v in a finite
model an appropriate range of values |v| is found. Then each v is encoded into a
vector of ⌈log2(|v|)⌉ boolean variables. Binary arithmetic is then used to transform
teh original input formula into a boolean formula;

• in the per-constraint-encoding [GSZ+98, SSB02, Str02] a new boolean variable Aψ is
introduced for every atom ψ in the input formula ϕ (i.e., Aψ := T 2B(ψ)). Then ϕ is
encoded into a boolean formula ϕp ∧ ϕT , ϕp being T 2B(ϕ) and ϕT being a boolean
formula encoding a set of constraints over the variables in ϕp which mimic the con-
straints induced in T on the corresponding T -atoms. (E.g., transitivity constraints.)
Notice that, unlike with static learning in lazy SMT (§6.2), ϕT may contain many
boolean variables which do not occur in ϕp. E.g., if T is DL and ϕ contains (x ≤ y)
and (y ≤ z) but not (x ≤ z), then the new boolean atom A(x≤z) must be introduced

and ϕEUF will contain the clause (A(x≤y) ∧A(y≤z))→ A(x≤z).

A mixed method [SLB03] combines the strengths of the two encoding schemata, producing
a very significant performance improvements over both of them.

The eager approach, which has been pioneered by the UCLID tool [SLB03, UCL, LS04],
leverages on the accuracy of the encodings and on the effectiveness of propositional SAT
solvers. In particular, it presents some nice features.

• It is relatively easy to implement: once the encoding has been formally defined, the
whole implementation reduces to that of an encoder, as the whole search can be
performed by some state-of-the-art SAT solver.

• The proof of soundness and completeness of the whole procedure reduces to proving
the fact that the encoding is satisfiability preserving.

47. The adjectives “lazy” and “eager” derive from the fact that, in the former approach the theory in-
formation is used “lazily” during the search, as the boolean models are abstracted and checked for
T -consistency one-by-one, whilst in the latter approach the whole theory information is used “eagerly”
from the beginning, as the whole input formula is converted one-shot into a boolean formula, so that its
boolean models are abstracted and searched altogether.

48. CLU is the theory of Counter arithmetic with Lambda expressions and Uninterpreted functions. This
theory generalizes EUF with constrained lambda expressions, ordering, and successor and predecessor
functions [BLS02].

49. SUF is the logic of Separation predicates and Uninterpreted Functions, combining EUF and DL [SLB03].

67

• It benefits automatically and for-free of all improvements in the efficiency of state-of-
the-art SAT solvers.

In particular, the UCLID tool has achieved important results in the formal verification of
pipelined microprocessors (see, e.g., [BGV99, VB99, VB03]).

However, the eager approach often suffers from a blow-up in the encoding to proposi-
tional logic. The bottleneck is even more evident in the case of theories involving arith-
metic, such as DL and LA [SSB02, Str02]. E.g., although SMT(DL) and SMT(LA) are
NP-complete, the encodings proposed in [SSB02] and [Str02] blow up exponentially and
doubly-exponentially respectively, because they mimic the Fourier-Motzkin expansion of
DL constraints and linear inequalities respectively. In fact, in recent papers UCLID has
been totally outperformed by DPLL-based lazy tools [GHN+04, dMR04, BBC+05b, NO05a],
and no eager SMT tool took part at the SMT competitions [BdMS05, SMT05, SMT06]. As
a consequence, there seems to be a general consensus that the eager approach is no more
at the state-of-the-art of SMT tools, at least in terms of efficiency.

9.4 Mixed eager/lazy approaches

Recently, some mixed eager/lazy approaches have been proposed.
In [KOSS04] some of the UCLID authors have explored a mixed eager/lazy approach

for LA, based on an alternation of SD encoding and lazy SMT. In brief, the technique
works as follows. Starting from a small range, the SD encoding ϕ∗ of the input formula ϕ is
produced. If ϕ∗ is satisfiable, then ϕ is T -satisfiable. Otherwise, the unsatisfiable core ψp of
ϕ∗ is produced, and the corresponding T -formula ψ is given in input to a lazy SMT solver.
(Notice that ψ is a subformula of ϕ, possibly much smaller than ϕ.) If ψ is T -unsatisfiable,
then ϕ is T -unsatisfiable. Otherwise, a solution for ϕ is used to compute a new (bigger)
range, and the loop proceeds. The process is guaranteed to terminate because (if ϕ is T -
satisfiable) a sufficiently big range is eventually reached and (if ϕ is T -unsatisfiable) only a
finite number of ψ’s can be generated.

[GTG06] presented SDSAT, a mixed eager/lazy tool for DL. SDSAT works in two
phases: first (allocation phase) it allocates non-uniform SD ranges for each variable (without
performing the SD encoding one-shot); then (solve phase) it uses a lazy refinement approach
for searching a model within the allocated ranges. A novel algorithm for range allocation
is also presented, which much better performances wrt. previous ones.

[KS06] presented a completely-different mixed eager/lazy approach. Within a standard
lazy framework, they proposed a novel T -solver for DL(Z), which is particularly focused on
efficiently handling disequalities. The T -solver is organized according to a layered schema
(§4.3): first, positive equalities are processed, equivalence classes are computed and variable
substitutions are performed, so that to eliminate them from the assignment; the remaining
inequalities are then entered a certain amount of graph-based procedures (including SCC-
partitioning and standard negative-path detection): if a solution is found, it is checked
against the remaining disequalities. If also this technique fails, everything is encoded into
SAT by means of SD encoding and is is solved by an incremental SAT solver (which can
benefit from previous calls on other assignments). This technique showed good performances
wrt. state-of-the-art tools when lots of disequalities come into play.

68

References

[ABC+02a] G. Audemard, P. Bertoli, A. Cimatti, A. Korni lowicz, and R. Sebastiani. A SAT
Based Approach for Solving Formulas over Boolean and Linear Mathematical
Propositions. In Proc. CADE’2002., volume 2392 of LNAI. Springer, July 2002.

[ABC+02b] G. Audemard, P. Bertoli, A. Cimatti, A. Korni lowicz, and R. Sebastiani. In-
tegrating Boolean and Mathematical Solving: Foundations, Basic Algorithms
and Requirements. In Proc. AIARSC’2002, volume 2385 of LNAI. Springer,
2002.

[ABCS03] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying Industrial
Hybrid Systems with MathSAT. In Proc. BMC’04, volume 89/4 of ENTCS.
Elsevier, 2003.

[ABRS05] A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. On a rewriting approach
to satisfiability procedures: extension, combination of theories and an exper-
imental appraisal. In Proc. of FroCoS’2005, volume 3717 of LNCS. Springer,
2005.

[ACG99] A. Armando, C. Castellini, and E. Giunchiglia. SAT-based procedures for
temporal reasoning. In Proc. European Conference on Planning, CP-99, 1999.

[ACGM04] A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea. A SAT-based
Decision Procedure for the Boolean Combination of Difference Constraints. In
Proc. SAT’04, 2004.

[Ack54] W. Ackermann. Solvable Cases of the Decision Problem. North Holland Pub.
Co., Amsterdam, 1954.

[ACKS02] G. Audemard, A. Cimatti, A. Korni lowicz, and R. Sebastiani. SAT-Based
Bounded Model Checking for Timed Systems. In Proc. FORTE’02., volume
2529 of LNCS. Springer, November 2002.

[Arm03] A. Armando. Simplifying OBDDs in Decidable Theories. In Proc. PDPAR’03.,
2003.

[ARR03] A. Armando, S. Ranise, and M. Rusinowitch. A Rewriting Approach to Satis-
fiability Procedures. Journal of Information and Computation — Special Issue
on Rewriting Techniques and Applications (RTA’01), 183(2), June 2003.

[Bar03] C. W. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations
of First-Order Theories. PhD thesis, Stanford University, january 2003.

[BB01] G. J. Badros and A. Borning. The Cassowary Linear Arithmetic Con-
straint Solving Algorith. ACM Transactions on Computer Human Interaction,
8(4):267–306, december 2001.

69

[BB04] C. Barrett and S. Berezin. CVC Lite: A New Implementation of the Coop-
erating Validity Checker. In Proceedings of the 16th International Conference
on Computer Aided Verification (CAV ’04), volume 3114 of LNCS. Springer,
2004.

[BBC+05a] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P.van Rossum, S. Schulz,
and R. Sebastiani. An incremental and Layered Procedure for the Satisfiabil-
ity of Linear Arithmetic Logic. In Proc. TACAS’05, volume 3440 of LNCS.
Springer, 2005.

[BBC+05b] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P.van Rossum, S. Schulz,
and R. Sebastiani. MathSAT: A Tight Integration of SAT and Mathematical
Decision Procedure. Journal of Automated Reasoning, 35(1-3), October 2005.

[BBC+05c] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum,
S. Ranise, and R. Sebastiani. Efficient Satisfiability Modulo Theories via
Delayed Theory Combination. In Proc. CAV 2005, volume 3576 of LNCS.
Springer, 2005.

[BBC+06a] M. Bozzano, R. Bruttomesso, A. Cimatti, A. Franzen, Z. Hanna, Z. Khasi-
dashvili, A Palti, and R. Sebastiani. Encoding RTL Constructs for MathSAT:
a Preliminary Report. In Proc. PDPAR’05, volume 144 of ENTCS. Elsevier,
2006.

[BBC+06b] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum,
S. Ranise, and R. Sebastiani. Efficient Theory Combination via Boolean Search.
Information and Computation, 204(10), 2006.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. CAV’99, 1999.

[BCF+06a] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, A. Santuari, and R. Se-
bastiani. To Ackermann-ize or not to Ackermann-ize? On Efficiently Handling
Uninterpreted Function Symbols in SMT (EUF ∪ T). In Proc. LPAR’06, vol-
ume 4246 of LNAI. Springer, 2006.

[BCF+06b] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. De-
layed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo The-
ories: a Comparative Analysis. In Proc. LPAR’06, volume 4246 of LNAI.
Springer, 2006.

[BCF+07] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, Z. Hanna, A. Nadel,
A. Palti, and R. Sebastiani. A Lazy and Layered SMT(BV) Solver for Hard
Industrial Verification Problems. In Proc. CAV’07, LNCS. Springer, 2007. To
appear.

[BCLZ04] T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic Theorem
Proving for Predicate Abstraction Refinement. In Proc. CAV’04, volume 3114
of LNCS. Springer, 2004.

70

[BD94] J. R. Burch and D. L. Dill. Automatic Verification of Pipelined Microprocessor
Control. In Proc. CAV ’94, volume 818 of LNCS. Springer, 1994.

[BD02] R. Brinkmann and R. Drechsler. RTL-datapath verification using integer linear
programming. In Proc. ASP-DAC 2002, pages 741–746. IEEE, 2002.

[BDL98] C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for bit-vector
arithmetic. In Proc. DAC ’98. ACM Press, 1998.

[BdMS05] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo
Theories Competition. In Proc. CAV’05, volume 3576 of LNCS. Springer, 2005.

[BDS02a] C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order For-
mulas by Incremental Translation to SAT. In 14th International Conference
on Computer-Aided Verification, 2002.

[BDS02b] C. W. Barrett, D. L. Dill, and A. Stump. A generalization of Shostak’s method
for combining decision procedures. In Frontiers of Combining Systems (FRO-
COS), LNAI. Springer, April 2002. S. Margherita Ligure, Italy.

[BE06] M. P. Bonacina and M. Echenim. Rewrite-Based Satisfiability Procedures
for Recursive Data Structures. In Proc. PDPAR’06, ENTCS. Elsevier, 2006.
To appear. Available at http://www.easychair.org/FLoC-06/floc-workshop-
preproceedings.html.

[BFG+05] C. W. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. D. Zuck. TVOC:
A Translation Validator for Optimizing Compilers. In Proc. CAV’05, volume
3576 of LNCS. Springer, 2005.

[BG94] L. Bachmair and H. Ganzinger. Rewrite-Based Equational Theorem Proving
with Selection and Simplification. Journal of Logic and Computation, 3(4),
1994.

[BGD03] S. Berezin, V. Ganesh, and D. L. Dill. An online proof-producing decision
procedure for mixed-integer linear arithmetic. In TACAS’03, volume 2619 of
LNCS, pages 521–536. Springer, 2003.

[BGN+06] M. P. Bonacina, S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decidabil-
ity and Undecidability Results for Nelson-Oppen and Rewrite-Based Decision
Procedures. In Proc. of IJCAR’06, number 4130 in LNAI, 2006.

[BGV99] R.E. Bryant, S. German, and M.N. Velev. Exploiting Positive Equality in a
Logic of Equality with Uninterpreted Functions. In Proc. CAV’99, volume 1633
of LNCS. Springer, 1999.

[BLS02] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and Verifying Systems
Using a Logic of Counter Arithmetic with Lambda Expressions and Uninter-
preted Functions. In Proc. CAV’02, volume 2404 of LNCS. Springer, 2002.

71

[BMSX97] A. Borning, K. Marriott, P. Stuckey, and Y. Xiao. Solving linear arithmetic
constraints for user interface applications. In Proc. UIST’97, pages 87–96.
ACM, 1997.

[BNOT06] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on Demand
in SAT Modulo Theories. In Proc. LPAR’06, volume 4246 of LNAI. Springer,
2006.

[Bor97] A. Borälv. A Fully Automated Approach for Proving Safety Properties in
Interlocking Software Using Automatic Theorem-Proving. In Proceedings of
the Second International ERCIM Workshop on Formal Methods for Industrial
Critical Systems, 1997.

[Bra01] R. Brafman. A simplifier for propositional formulas with many binary clauses.
In Proc. IJCAI01, 2001.

[Bry86] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[BS97] R. J. Bayardo and R. C. Schrag. Using CSP Look-Back Techniques to Solve
Real-World SAT instances. In Proc. AAAI’97, pages 203–208. AAAI Press,
1997.

[BST06] C. Barrett, I. Shikanian, and C. Tinelli. An Abstract Decision Pro-
cedure for Satisfiability in the Theory of Recursive Data Types. In
Proc. PDPAR’06, ENTCS. Elsevier, 2006. To appear. Available at
http://www.easychair.org/FLoC-06/floc-workshop-preproceedings.html.

[BT03] P. Baumgartner and C. Tinelli. The Model Evolution Calculus. In F. Baader,
editor, Proc. CADE-19, number 2741 in LNAI, pages 350–364. Springer, 2003.

[BW01] A. Bockmayr and V. Weispfenning. Solving Numerical Constraints. In Hand-
book of Automated Reasoning, pages 751–842. MIT Press, 2001.

[BW03] F. Bacchus and J. Winter. Effective Preprocessing with Hyper-Resolution and
Equality Reduction. In Proc. Sixth International Symposium on Theory and
Applications of Satisfiability Testing, 2003.

[CABN97] W. Chan, R. J. Anderson, P. Beame, and D. Notkin. Combining constraint
solving and symbolic model checking for a class of systems with non-linear
constraints. In Proc. CAV’97, volume 1254 of LNCS, pages 316–327, Haifa,
Israel, June 1997. Springer.

[CG99] B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms.
Mathematical Programming, 85(2):277–311, 1999.

[CGT03] C. Castellini, E. Giunchiglia, and A. Tacchella. SAT-based planning in complex
domains: Concurrency, constraints and nondeterminism. Artificial Intelligence,
147(1-2):85–117, 2003.

72

[CM06a] S. Cotton and O. Maler. Fast and Flexible Difference Logic Propagation for
DPLL(T). In Proc. SAT’06, volume 4121 of LNCS. Springer, 2006.

[CM06b] S. Cotton and O. Maler. Satisfiability Modulo Theory Chains with DPLL(T).
Unpublished. Available from http://www-verimag.imag.fr/̃ maler/, 2006.

[CMR97] D. Cyrluk, M. Oliver Möller, and H. Ruess. An efficient decision procedure for
the theory of fixed-sized bit-vectors. In Proceedings of CAV’97, volume 1254 of
LNCS, pages 60–71. Springer, 1997.

[CVCa] CVC. http://verify.stanford.edu/CVC.

[CVCb] CVCLite. http://verify.stanford.edu/{CVC,CVCL,SVC}.

[DdM06] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T).
In Proc. CAV’06, volume 4144 of LNCS. Springer, 2006.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, pages 243–320. Elsevier and
MIT Press, 1990.

[DLL62] M. Davis, G. Longemann, and D. Loveland. A machine program for theorem
proving. Journal of the ACM, 5(7), 1962.

[dMR04] L. de Moura and H. Ruess. An Experimental Evaluation of Ground Decision
Procedures. In Proc. CAV’04, volume 3114 of LNCS. Springer, 2004.

[dMRS02a] L. de Moura, H. Rueß, and M. Sorea. Lazy Theorem Proving for Bounded
Model Checking over Infinite Domains. In Proc. of the 18th International
Conference on Automated Deduction, volume 2392 of LNCS, pages 438–455.
Springer, July 2002.

[dMRS02b] L. de Moura, H. Rueß, and M. Sorea. Lemmas on Demand for Satisfiability
Solvers. Proc. SAT’02, 2002.

[DNS05] D. Detlefs, G. Nelson, and J. Saxe. Simplify: a theorem prover for program
checking. Journal of the ACM, 52(3):365–473, 2005.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

[dRS04] L. deMoura, H. Ruess, and N. Shankar. Justifying Equality. In Proc.
PDPAR’04, volume 68 of ENTCS. Elsevier, 2004.

[EB05] N. Een and A. Biere. Effective Preprocessing in SAT Through Variable and
Clause Elimination. In proc. SAT’05, volume 3569 of LNCS. Springer, 2005.

[End72] H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

[ES04] N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and Applications
of Satisfiability Testing (SAT 2003), volume 2919 of LNCS, pages 502–518.
Springer, 2004.

73

[FDK98] F. Fallah, S. Devadas, and K. Keutzer. Functional Vector Generation for HDL
Models Using Linear Programming and 3-Satisfiability. In Proc. DAC’98, pages
528–533, 1998.

[FJOS03] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem Proving Using Lazy
Proof Explication. In Proc. CAV 2003, LNCS. Springer, 2003.

[FORS01] J.C: Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canonizer
and Solver. Proc. CAV’2001, 2001.

[GAG+02] M. K. Ganai, P. Ashar, A. Gupta, L. Zhang, and S. Malik. Combining strengths
of circuit-based and CNF-based algorithms for a high-performance SAT solver.
In Proc. DAC’02. ACM Press, 2002.

[GGST98] E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Tacchella. More evalua-
tion of decision procedures for modal logics. In Proc. Sixth International Con-
ference on Principles of Knowledge Representation and Reasoning (KR’98),
Trento, Italy, 1998.

[GGT01] E. Giunchiglia, F. Giunchiglia, and A. Tacchella. SAT Based Decision Pro-
cedures for Classical Modal Logics. Journal of Automated Reasoning. Special
Issue: Satisfiability at the start of the year 2000, 2001.

[GHN+04] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
DPLL(T): Fast Decision Procedures. In Proc. CAV’04, volume 3114 of LNCS.
Springer, 2004.

[GMS98] E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and the Rest Will Fol-
low: Exploiting Determinism in Planning as Satisfiability. In Proc. AAAI’98,
pages 948–953, 1998.

[GN02] E. Goldberg and Y. Novikov. BerkMin: A Fast and Robust SAT-Solver. In
Proc. DATE ’02, page 142, Washington, DC, USA, 2002. IEEE Computer
Society.

[GS96a] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics
from propositional decision procedures - the case study of modal K. In CADE-
13, LNAI, New Brunswick, NJ, USA, August 1996. Springer Verlag.

[GS96b] F. Giunchiglia and R. Sebastiani. A SAT-based decision procedure for ALC.
In Proc. of the 5th International Conference on Principles of Knowledge Rep-
resentation and Reasoning - KR’96, Cambridge, MA, USA, November 1996.

[GS00] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal log-
ics from propositional decision procedures - the case study of modal K(m).
Information and Computation, 162(1/2), October/November 2000.

[GSK98] C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through
randomization. In Proceedings of the Fifteenth National Conference on Artifi-
cial Intelligence (AAAI’98), pages 431–437, Madison, Wisconsin, 1998.

74

[GSZ+98] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal. BDD Based Procedures for
a Theory of Equality with Uninterpreted Functions. In Proc. CAV’98, volume
1427 of LNCS. Springer, 1998.

[GTG06] M. K. Ganai, M. Talupur, and A. Gupta. SDSAT: Tight integration of small
domain encoding and lazy approaches in a separation logic solver. In Proc.
TACAS’06, volume 3920 of LNCS. Springer, 2006.

[HB05] J. Hoffmann and R. I. Brafman. Contingent Planning via Heuristic Forward
Search witn Implicit Belief States. In Proceedings of the Fifteenth International
Conference on Automated Planning and Scheduling (ICAPS 2005), pages 71–
80. AAAI, 2005.

[Hor98] I. Horrocks. The FaCT system. In H. de Swart, editor, Proc. TABLEAUX-98,
volume 1397 of LNAI, pages 307–312. Springer, 1998.

[HS97] W. Harvey and P. Stuckey. A unit two variable per inequality integer constraint
solver for constraint logic programming. In Australian Computer Science Con-
ference (Australian Computer Science Communications), pages 102–111, 1997.

[HV95] John N. Hooker and V. Vinay. Branching Rules for Satisfiability. Journal of
Automated Reasoning, 15(3):359–383, 1995.

[IPC03] M. K. Iyer, G. Parthasarathy, and K.-T. Cheng. SATORI - A Fast Sequential
SAT Engine for Circuits. In ICCAD ’03: Proceedings of the 2003 IEEE/ACM
international conference on Computer-aided design. IEEE Computer Society,
2003.

[JN00] T. A. Junttila and I. Niemelä. Towards an Efficient Tableau Method for Boolean
Circuit Satisfiability Checking. In Proc. CL’00, volume 1861 of LNCS. Springer,
2000.

[JS05] H. Jin and F. Somenzi. Prime clauses for fast enumeration of satisfying assign-
ments to boolean circuits. In Proc. DAC’05. ACM Press, 2005.

[JW90] R.G. Jeroslow and J. Wang. Solving Propositional Satisfiability Problems.
Annals of Mathematics and Artificial Intelligence, 1(1-4):167–187, 1990.

[KGP01] A. Kuehlmann, M. K. Ganai, and V. Paruthi. Circuit-based Boolean Reasoning.
In Proc. DAC ’01. ACM Press, 2001.

[Kha79] L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Math-
ematics Doklady, 20:191–194, 1979.

[KMS96] H. Kautz, D. McAllester, and B. Selman. Encoding Plans in Propositional
Logic. In Proc. KR’96, 1996.

[KOSS04] D. Kroening, J. Ouaknine, S. Seshia, and O. Strichman. Abstraction-Based
Satisfiability Solving of Presburger Arithmetic. In Proc. CAV’04, volume 3114
of LNCS, pages 308–320. Springer, 2004.

75

[KRRT05] H. Kirchner, S. Ranise, C. Ringeissen, and D.-K. Tran. On Superposition-Based
Satisfiability Procedures and their Combination. In Proc.ICTAC’05, volume
3722 of LNCS. Springer, 2005.

[KRRT06] H. Kirchner, S. Ranise, C. Ringeissen, and D. K. Tran. Automatic Combin-
ability of Rewriting-Based Satisfiability Procedures. In Proc. LPAR’06, volume
4246 of LNAI. Springer, 2006.

[KS06] H. Kim and F. Somenzi. Finite Instantiations for Integer Difference Logic. In
proc FMCAD’06. ACM Press, 2006.

[LA97] C. M. Li and Anbulagan. Heuristics based on unit propagation for satisfia-
bility problems. In Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI-97), pages 366–371, 1997.

[LD60] H. Land and A.G. Doig. An automatic method for solving discrete program-
ming problems. Econometrica, 28:497–520, 1960.

[LHS04] B. Li, M. S. Hsiao, and S. Sheng. A Novel SAT All-Solutions Solver for Efficient
Preimage Computation. In Proc. DATE’04. IEEE Computer Society, 2004.

[Li00] C. M. Li. Integrating equivalency reasoning into davis-putnam procedure. In
AAAI: 17th National Conference on Artificial Intelligence. AAAI / MIT Press,
2000.

[LM05] S. K. Lahiri and M. Musuvathi. An Efficient Decision Procedure for UTVPI
Constraints. In Proc. of 5th International Workshop on Frontiers of Combining
Systems (FroCos ’05), volume 3717 of LNCS. Springer, 2005.

[LM06] S. K. Lahiri and M. Musuvathi. An Efficient Nelson-Oppen Decision Procedure
for Difference Constraints over Rationals. In Proc. Third Workshop on Prag-
matics of Decision Procedures in Automated Reasoning (PDPAR’05), volume
144 of ENTCS. Elsevier, 2006.

[LS04] S. K. Lahiri and S. A. Seshia. The UCLID Decision Procedure. In Proc.
CAV’04, volume 3114 of LNCS, 2004.

[McM02] K. McMillan. Applying SAT Methods in Unbounded Symbolic Model Checking.
In Proc. CAV ’02, number 2404 in LNCS. Springer, 2002.

[MLAH99] J. Moeller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Fully symbolic
model checking of timed systems using difference decision diagrams. In Proc.
Workshop on Symbolic Model Checking (SMC), FLoC’99, Trento, Italy, July
1999.

[MMZ+01] M. W. Moskewicz, C. F. Madigan, Y. Z., L. Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Design Automation Conference, 2001.

[MNAM02] M. Mahfoudh, P. Niebert, E. Asarin, and O. Maler. A Satisfibaility Checker
for Difference Logic. In Proceedings of SAT-02, pages 222–230, 2002.

76

[MR98] M. O. Möller and Harald Ruess. Solving bit-vector equations. In Proceedings
of FMCAD’98, 1998.

[MZ03] Z. Manna and C. Zarba. Combining Decision Procedures. In Formal Methods at
the Crossroads: from Panacea to Foundational Support, volume 2787 of LNCS.
Springer, 2003.

[NO79] C. G. Nelson and D. C. Oppen. Simplification by cooperating decision proce-
dures. TOPLAS, 1(2):245–257, 1979.

[NO80] G. Nelson and D. C. Oppen. Fast Decision Procedures Based on Congruence
Closure. Journal of the ACM, 27(2):356–364, 1980.

[NO03] R. Nieuwenhuis and A. Oliveras. Congruence closure with integer offsets. In In
10th Int. Conf. Logic for Programming, Artif. Intell. and Reasoning (LPAR),
volume 2850 of LNAI, pages 78–90. Springer, 2003.

[NO05a] R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory Propaga-
tion and its Application to Difference Logic. In Proc. CAV’05, volume 3576 of
LNCS. Springer, 2005.

[NO05b] R. Nieuwenhuis and A. Oliveras. Proof-Producing Congruence Closure. In
Proceedings of the 16th International Conference on Term Rewriting and Ap-
plications, RTA’05, volume 3467 of LNCS. Springer, 2005.

[NOT05] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and Abstract
DPLL Modulo Theories. In Proc. LPAR’04, volume 3452 of LNCS. Springer,
2005.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo
Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to
DPLL(T). Journal of the ACM, 53(6):937–977, November 2006.

[Ome] Omega. http://www.cs.umd.edu/projects/omega.

[Opp80] D.C. Oppen. Reasoning about Recursively Defined Data Structures. Journal
of the ACM, 27(3):403–411, 1980.

[Pap81] C. H. Papadimitriou. On the complexity of integer programming. JACM,
28(4):765–768, 1981.

[PICW04] G. Parthasarathy, M. K. Iyer, K.-T. Cheng, and L.-C. Wang. An efficient finite-
domain constraint solver for circuits. In Proc. DAC’04. ACM Press, 2004.

[PS98] P. F. Patel-Schneider. DLP system description. In Proc. DL-98, pages 87–89,
1998.

[Pug91] W. Pugh. The Omega test: a fast and practical integer programming algo-
rithm for dependence analysis. In Supercomputing ’91: Proceedings of the 1991
ACM/IEEE conference on Supercomputing, pages 4–13, New York, NY, USA,
1991. ACM Press.

77

[RD03] S. Ranise and D. Deharbe. Light-Weight Theorem Proving for Debugging
and Verifying Units of Code-. In Proc. of the International Conference on
Software Engineering and Formal Methods SEFM03. IEEE Computer Society
Press, 2003.

[Rey02] J. Reynolds. Separation logic: a logic for shared mutable data structures, 2002.

[RS01] H. Rueßand N. Shankar. Deconstructing Shostak. In Proc. LICS ’01. IEEE
Computer Society, 2001.

[RS04] Rueß and Natarajan Shankar. Solving linear arithmetic constraints. Technical
Report CSL-SRI-04-01, SRI International, Computer Science Laboratory, 333
Ravenswood Ave, Menlo Park, CA, 94025, January 2004. revised, August 2004.

[RT06a] S. Ranise and C. Tinelli. Satisfiability Modulo Theories. In Trends and Con-
troversies - IEEE Intelligent Systems Magazine, 21(6):71–81, 2006.

[RT06b] S. Ranise and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-
LIB). www.SMT-LIB.org, 2006.

[RT06c] S. Ranise and C. Tinelli. The SMT-LIB Standard: Version 1.2. Technical re-
port, Department of Computer Science, The University of Iowa, 2006. Available
at www.SMT-LIB.org.

[SBD02] A. Stump, C. W. Barrett, and D. L. Dill. CVC: A Cooperating Validity
Checker. In Proc. CAV’02, number 2404 in LNCS. Springer Verlag, 2002.

[SBSV96] P. Stephan, R. Brayton, , and A. Sangiovanni-Vincentelli. Combinational Test
Generation Using Satisfiability. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 15:1167–1176, 1996.

[Sch02] S. Schulz. E - A Brainiac Theorem Prover. Journal of AI Communications,
15(2/3), 2002.

[SDBL01] A. Stump, D. L. Dill, C. W. Barrett, and J. Levitt. A Decision Procedure
for an Extensional Theory of Arrays. In Proc LICS ’01, pages 29–37. IEEE
Computer Society, 2001.

[Seb01] R. Sebastiani. Integrating SAT Solvers with Math Reasoners: Foundations
and Basic Algorithms. Technical Report 0111-22, ITC-IRST, Trento, Italy,
November 2001. http://sra.itc.it/tr/Seb01.pdf.

[Sho79] R. Shostak. A Pratical Decision Procedure for Arithmetic with Function Sym-
bols. Journal of the ACM, 26(2):351–360, 1979.

[Sho84] R.E. Shostak. Deciding Combinations of Theories. Journal of the ACM, 31:1–
12, 1984.

[SLB03] S. A. Seshia, S. K. Lahiri, and R. E. Bryant. A Hybrid SAT-Based Deci-
sion Procedure for Separation Logic with Uninterpreted Functions. In Proc.
DAC’03, 2003.

78

[SMT05] SMT-COMP’05: 1st Satisfiability Modulo Theories Competition, 2005.
http://www.csl.sri.com/users/demoura/smt-comp/2005/.

[SMT06] SMT-COMP’06: 2nd Satisfiability Modulo Theories Competition, 2006.
http://www.csl.sri.com/users/demoura/smt-comp/.

[Smu68] R. M. Smullyan. First-Order Logic. Springer-Verlag, NY, 1968.

[SR02] N. Shankar and Harald Rueß. Combining shostak theories. Invited paper for
Floc’02/RTA’02, 2002.

[SS90] G. Stalmarck and M. Saflund. Modelling and Verifying Systems and Software
in Propositional Logic. Ifac SAFECOMP’90, 1990.

[SS96] J. P. M. Silva and K. A. Sakallah. GRASP - A new Search Algorithm for
Satisfiability. In Proc. ICCAD’96, 1996.

[SS05] H. M. Sheini and K. A. Sakallah. A Scalable Method for Solving Satisfiability
of Integer Linear Arithmetic Logic. In Proc. SAT’05, volume 3569 of LNCS.
Springer, 2005.

[SS06a] H. M. Sheini and K. A. Sakallah. A Progressive Simplifier for Satisfiability
Modulo Theories. In Proc. SAT’06, volume 4121 of LNCS. Springer, 2006.

[SS06b] H. M. Sheini and K. A. Sakallah. From Propositional Satisfiability to Satis-
fiability Modulo Theories. Invited lecture. In Proc. SAT’06, volume 4121 of
LNCS. Springer, 2006.

[SSB02] O. Strichman, S. Seshia, and R. Bryant. Deciding separation formulas with
SAT. In Proc. of Computer Aided Verification, (CAV’02), LNCS. Springer,
2002.

[Str00] O. Strichman. Tuning SAT checkers for Bounded Model Checking. In Proc.
CAV00, volume 1855 of LNCS, pages 480–494. Springer, 2000.

[Str02] O. Strichman. On Solving Presburger and Linear Arithmetic with SAT. In
Proc. of Formal Methods in Computer-Aided Design (FMCAD 2002), LNCS.
Springer, 2002.

[SV98] R. Sebastiani and A. Villafiorita. SAT-based decision procedures for normal
modal logics: a theoretical framework. In Proc. AIMSA’98, volume 1480 of
LNAI. Springer, 1998.

[TBW04] C. Thiffault, F. Bacchus, and T. Walsh. Solving Non-clausal Formulas with
DPLL Search. In proc. 7th Int. Conference on Theory and Applications of
Satisfiability Testing (SAT 2004, LNCS. Springer, 2004.

[Tin02] C. Tinelli. A DPLL-based Calculus for Ground Satisfiability Modulo Theories.
In Proc. JELIA-02, volume 2424 of LNAI, pages 308–319. Springer, 2002.

79

[TSSP04] M. Talupur, N. Sinha, O. Strichman, and A. Pnueli. Range Allocation for
Separation Logic. In Proc. CAV’04, volume 3114 of LNCS. Springer, 2004.

[UCL] UCLID. http://www-2.cs.cmu.edu/∼uclid.

[VB99] M. N. Velev and R. E. Bryant. Exploiting Positive Equality and Partial Non-
Consistency in the Formal Verification of Pipelined Microprocessors. In Design
Automation Conference, pages 397–401, 1999.

[VB03] M. N. Velev and R. E. Bryant. Effective use of Boolean satisfiability procedures
in the formal verification of superscalar and VLIW microprocessors. Journal
of Symbolic Computation, 35(2):73–106, 2003.

[WGG06] C. Wang, A. Gupta, and M. Ganai. Predicate learning and selective theory
deduction for a difference logic solver. In DAC ’06: Proceedings of the 43rd
annual conference on Design automation. ACM Press, 2006.

[WIGG05] C. Wang, F. Ivancic, M. K. Ganai, and A. Gupta. Deciding Separation
Logic Formulae by SAT and Incremental Negative Cycle Elimination. In Proc.
LPAR’05, volume 3835 of LNCS, pages 322–336. Springer, 2005.

[WW99] S. Wolfman and D. Weld. The LPSAT Engine & its Application to Resource
Planning. In Proc. IJCAI, 1999.

[WW00] S. Wolfman and D. Weld. Combining linear programming and satisfiability
solving for resource planning. Knowledge Engineering Review, 2000.

[YKTB00] T. Yavuz-Kahveci, M. Tuncer, and T. Bultan. A Library for Composite Sym-
bolic Representation. In Proc. TACAS2001, volume 2031 of LNCS. Springer
Verlag, 2000.

[YM06] Y. Yu and S. Malik. Lemma Learning in SMT on Linear Constraints. In Proc.
SAT’06, volume 4121 of LNCS. Springer, 2006.

[ZKC01] Z. Zeng, P. Kalla, and M. Ciesielski. LPSAT: a unified approach to RTL
satisfiability. In Proc. DATE ’01. IEEE Press, 2001.

[ZM02] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In
Proc. CAV’02, number 2404 in LNCS, pages 17–36. Springer, 2002.

[ZMMM01] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict
driven learning in boolean satisfiability solver. In ICCAD, pages 279–285, 2001.

80

	Introduction
	Satisfiability Modulo Theories - SMT
	Lazy SMT = SAT + T-solvers
	Motivations and goals of the paper
	Content of the paper

	Theoretical background
	Background on first-order logic and theories
	Combination of theories

	Truth assignments and propositional satisfiability in T
	Enumerators and T-solvers

	Basics on SAT solvers
	Modern DPLL
	The Abstract-DPLL logical framework

	Basics on theory solvers
	Important features of T-solvers
	Model generation
	Conflict set generation
	Incrementality and Backtrackability
	Deduction of unassigned literals
	Deduction of interface equalities

	Some relevant theories and T-solvers
	Equality and Uninterpreted Functions
	Linear arithmetic
	Difference logic
	Unit-Two-Variable-Per-Inequality
	Bit vectors
	Other theories of interest

	Layered T-solvers

	Integrating DPLL and T-solvers
	A basic integration schema
	The offline approach to integration
	The online approach to integration
	The Abstract-DPLL Modulo Theories logical framework: DPLL(T)

	Optimizing the integration of DPLL and T-solvers
	Normalizing T-atoms.
	Static learning
	Early pruning
	Selective or intermittent early pruning
	Weakened early pruning
	Eager early pruning

	T-propagation
	T-backjumping
	T-learning
	Splitting on demand
	Clustering
	Reduction of assignments to prime implicants
	Pure-literal filtering
	T-deduced-literal filtering

	Discussion
	Guidelines and tips
	Some general guidelines
	Offline vs. online integration
	To T-propagate or not to T-propagate?

	Problems of using modern DPLL in SMT
	Generating partial assignments
	Avoiding ghost literals
	Drawbacks of modern T-backjumping
	Implementing T-propagation
	DPLL Branching heuristics for SMT

	Lazy SMT for combinations of theories
	Ackermann's expansion
	Nelson-Oppen Combination
	Delayed Theory Combination
	Discussion

	Related approaches for SMT
	Alternative Enumerators for lazy SMT
	Why DPLL?
	OBDD-based SMT solvers
	Circuit-based techniques

	The rewrite-based approach for building T-solvers
	The eager approach to SMT
	Mixed eager/lazy approaches

