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Abstract—We present a new method to acquire the 3-D
information from a Single-photon avalanche diode (SPAD)-
based direct-Time-of-Flight (d-ToF) imaging system which
does not require the construction of a histogram of times-
tamps and can withstand high-flux operation regime. The
proposed acquisition scheme emulates the behavior of an
SPAD detector with no distortion due to dead time, and
extracts the ToF information by a simple average operation
on the photon timestamps ensuring ease of integration in a
dedicated sensor and scalability to large arrays. The method
is validated through a comprehensive mathematical analysis,
whose predictions are in agreement with a numerical Monte
Carlo model of the problem. Finally, we show the validity of
the predictions in a real d-ToF measurement setup under
challenging background conditions well beyond the typical
pile-up limit of 5% detection rate up to a distance of 3.8 m.

Index Terms— Light detection and ranging (LiDAR), single-photon avalanche diode (SPAD).

I. INTRODUCTION

SPATIAL perception enabled by 3-D imaging techniques
is constantly gaining interest for industrial [1], automo-

tive [2], space [3], and consumer applications. As an example,
the required level of self-awareness of autonomous driving
vehicles demands for 3-D imaging systems with high reso-
lution and high frame rate. Unfortunately, these requirements
are in conflict, constraining engineers to performance-limiting
tradeoffs. In this article, we focus on light detection and
ranging (LiDAR)/direct-Time-of-Flight (d-ToF) measurement
based on single-photon avalanche diodes (SPADs), which is
one of the most promising among active techniques [4], [5].
In an SPAD-based d-ToF measurement, the distance is
extracted by measuring the traveling time of a pulse of
light projected from the source and reflected back by the
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target to a detector that consists of an SPAD operating as a
photon-to-edge converter, coupled to a photon timestamping
circuit [usually a time-to-digital converter (TDC) or a time-
to-amplitude converter (TAC)] [6], [7], [8]. Due to hardware
limitations, such as the detector dead time and the statistical
nature of photons, together with the presence of uncorre-
lated background light, a number of observations are usually
accumulated into a histogram memory to enhance the signal-
to-noise ratio (SNR) and extract the target distance by means
of signal processing techniques [9], [10], [11].

The increased interest in advanced driver assistance sys-
tems (ADAS), where 3-D vision is a pillar, is focusing the
attention of researchers in developing techniques to increase
the robustness of such systems against the effect of back-
ground light and against possible interference from similar
devices. Concerning the problem of background light, one
of the most effective and widespread techniques is known
as photon coincidence, which exploits the temporal proximity
of photons belonging to the reflected laser pulse to filter out
unwanted background photons which are more likely to be
temporally sparse [12], [13]. With a different method, based
on a smart accumulation technique by Yoshioka et al. [14],
the SNR is increased by merging the information from pixels
observing similar regions of the scene. A different approach
has been recently proposed by Manuzzato et al. [15], where
a per-pixel circuit is able to automatically decrease the SPAD
sensitivity reducing the probability of saturation in case of high
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background intensities, favoring the detection of laser photons.
Yet another technique is known as time-gating, where by
means of a search procedure several subranges of the scene are
measured, increasing the SNR at the expense of an increased
acquisition time [16]. Regarding the problem of mutual inter-
ference, Ximenes et al. [17] propose a spread-spectrum-based
technique, where the laser emission time is randomized from
device to device, spreading any other interference below the
level of the signal of interest. Another solution is based on
the emission of two laser pulses, whose temporal relationship
is different from device to device and used to actively discard
unwanted interference [18], [19], [20].

These techniques, however, cannot cope with very high
fluxes because of two fundamental problems. First, the his-
togram of timestamps appears distorted due to the dead-time
of SPAD detectors and timestamping circuits, which translates
into a nonlinear response of the system to the incident flux of
photons over time. It is a widely held belief that the upper
photon flux limit that still results in a negligibly distorted
histogram is given by 5% of detected photons per laser
cycle [21]. Second, the amount of data generated by the sensor
is too large to scale to a large number of pixels.

To overcome the former problem, several solutions
have been proposed in the literature. In the work from
Rapp et al. [22], the histogram is linearized through a Markov
chain model of the photon detection times. By using this
method, the system can cope with up to five photoelectrons per
illumination cycle. Another approach, which is implemented
at the system level, is to rely on the so-called multievent
or continuous sampling TDCs [23], [24]. With this solution,
the time-to-digital conversion is not limited to a single event
per laser cycle, as in standard approaches, but allows for a
continuous sampling of the incoming flux of photons, limited
by either the gate delay of the TDC architecture [23] or by the
fixed amount of memory that stores the continuously sampled
timestamps [24]. These solutions proved to be effective in
mitigating the pile-up distortion, as they allow for a mul-
titude of timestamps to be recorded from each laser pulse.
Therefore, to a certain extent, the linearization of the SPAD
response is possible and well approximated. However, due
to the necessity to employ an asynchronous SPAD driving
approach, true linearization cannot be achieved. Continuous
sampling approaches also match well with innovative tech-
niques aimed at extending the range of SPAD-based LiDARs.
For instance, Patanwala et al. [25] propose the synchronous
summation technique (SST) which attains the highest through-
put compared to existing pulse combining techniques [12],
[13], [23], [24], maximizing the effectiveness of such TDC
approaches. Gupta et al. [26] address the problem of histogram
distortion due to high background light with a gated acquisi-
tion approach, where the gating signal is progressively scanned
over the whole acquisition window to produce an approximate
version of a true linearized histogram. While this approach can
average out the effect of pile-up, the histogram linearization is
only approximated and is more effective with a high number of
temporal gate shifts, resulting in an increased acquisition time
and complexity. In another work, the same authors address the
problem of optimal attenuation for an SPAD-based LiDAR

to be operated with [27]. With this approach, the typical
fixed limit of 5% detection rate is overcome by computing
an optimal flux attenuation factor which requires an estimate
of the background flux of photons. Despite being effective in
improving the per-pixel signal-to-background ratio (SBR), this
article does not state clearly how the level of attenuation can
be adjusted in real time on a pixel basis.

Concerning the amount of generated data, Gyongy et al. [28]
propose a mitigation technique by upscaling a low-resolution
depth image based on a high-resolution intensity image.
A similar approach is used by Ruget et al. [29], where the
native resolution of a depth image from an SPAD camera
is increased by means of a deep neural network. Still the
bottleneck is represented by the necessity to build and transfer
a histogram of timestamps for each pixel in the image from
which the ToF is extracted.

One strategy to reduce the bandwidth requirement on the
amount of data which is transferred from the chip to the
controller (usually an FPGA or µC) is to integrate the his-
togram, or part of it, directly on chip. Several solutions are
proposed in the literature to integrate histogramming capability
on-chip [24], [30], [31], [32], [33], [34], [35], [36], [37], [38],
but despite the advantage in bandwidth performance compared
to other solutions where the histogram is built off-chip [12],
[13], [15], [16], [17], still many limitations are present. In gen-
eral, the on-chip realization of either a partial or full histogram
requires additional area, which can be obtained by either
reducing the fill factor or by using expensive 3-D-stacked
solutions.

With the so-called partial approach [18], [32], [33], [34],
[36], [37], [38], a reduced histogram memory is available on-
chip, therefore requiring a search procedure to identify the
location of the ensemble of histogram bins containing the laser
peak. In the literature, two techniques have been described to
implement a partial histogram behavior. With the so-called
zooming technique [18], [32], [33], [37], at the beginning of
the measurement the reduced set of histogram bins is spread
across the entire distance range. By counting the number of
photons detected on each bin, the reduced set of histogram
bins is concentrated over several iterations on a shorter range,
thus achieving the desired resolution on the estimated target
distance. With the other technique, called sliding, the subset
of histogram bins is already set to the desired resolution,
thus covering only a small portion of the range. Again by
means of several iterations, the subset of histogram bins slides
across the entire range, and the number of photons at each
iteration is used to estimate the target distance. Despite the
intrinsic differences between the two methods, for both of
them, as outlined by Taneski et al. [39], a laser power penalty
occurs as more laser shots are required to find the laser peak
location.

A full histogram approach is possible with resource sharing,
e.g., by reallocating the same histogram circuitry to several
pixels, as described by Kumagai et al. [35]. However, resource
sharing resulted in only ≈27% of the chip area dedicated to
the SPAD array, requiring a very high clock frequency of
500 MHz and the design of a 3-D stacked solution with a
complex scanning illumination approach.
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In the literature, other techniques to reduce the amount
of data generated and handled by SPAD-based d-ToF sys-
tems have been proposed. Ingle and Maier [40] propose a
novel approach based on race logic which can provide an
equi-depth histogram where the photon counts from several
SPAD detections are divided into quantiles (in particular,
the median value is used). By cascading several binner cir-
cuits, it is possible to reconstruct the equi-depth histogram
of photon arrival times from which the ToF is extracted.
This approach, however, has been only tested with simulated
data and no physical realization of the binner circuit imple-
mented with race logic has been provided. In the work from
Gutierrez-Barragan et al. [41], an on-the-fly compressive
histogram approach is presented. In this work, the amount
of memory reduction is the same as for partial histogram
approaches with the advantage of ensuring a better accuracy in
the localization of the histogram peak. However, it requires a
high in-pixel compute effort, since several multiply-add oper-
ations must be executed in real time for each new timestamp.
Sheehan et al. [42] propose a sketching approach based on the
Fourier transform, which does not scale with either the number
of photons or the timestamp resolution and does not effectively
build a histogram of timestamps. However, this approach,
which also was not validated with hardware, requires the
real-time computation of the Fourier features which is hardly
integrable at the pixel level.

In this article, we propose for the first time a robust method
supported by a rigorous mathematical model to extract the
3-D information from a set of acquired timestamps without
the need to build a histogram, which can also sustain high
photon fluxes, enabling the possibility to operate beyond the
standard limit of 5% detection rate [21] for pile-up distortion.
The method can be implemented using only two registers and
one accumulator for each pixel. With such a low amount of
resources, the per-pixel memory requirement is reduced by
more than three orders of magnitude compared to standard
d-ToF architectures (off-chip histogram) [16], [17], and by
a factor of ≃5 compared to architectures with on-chip, full
histogramming capability [43]. We reach the goal in two steps.
First, we propose and evaluate an algorithm to efficiently
extract the target distance from a set of timestamps based
on a simple on-the-fly average operation, which does not
require the allocation of a histogram memory. Then, since the
proposed algorithm works on the assumption that the detector
response is linear, we present two acquisition schemes that
can be easily implemented on chip and emulate the behavior
of a single-photon detector with no dead time, providing the
desired linear response to the input flux of photons. The
proposed method is supported by analytical and numerical
(Monte Carlo) models and has been validated experimentally
up to a distance of 3.8 m (mainly limited by the sensor used
for characterization [44]) under a background light equivalent
to 85 klx and beyond the standard 5% rule for pile-up
distortion [21].

This article is organized as follows. In Section II, a typical
d-ToF acquisition system with the most important parameters
of concern is described and preliminary considerations on a
histogram-less acquisition approach are provided with a first

validation by means of a Monte Carlo model. In Section III,
we provide the analytical proof of the proposed acquisition
method, while in Section IV we explain in detail two acqui-
sition schemes which are needed to emulate the response of a
linear detector, together with a comparison against state-of-the
art sensors in terms of memory requirement, scalability, and
tolerance to high background flux. In Section V, we provide
measurement results from an existing SPAD-based d-ToF
sensor, showing that the proposed acquisition and extraction
schemes are capable of successfully computing the ToF with-
out the need for a histogram of timestamps. Finally, we discuss
future perspectives to advance the results found in this work
in Section VI.

II. PRELIMINARY VALIDATION

In this section, we present the principle of operation of
an SPAD-based d-ToF system with preliminary considerations
and Monte Carlo simulations on the histogram-less approach
which will be further developed in this article.

A. Typical d-ToF Operation
A typical d-ToF image acquisition requires a pulsed laser

and a time-resolved, single-photon image sensor with photon
timestamping capabilities. It works by sending periodic laser
pulses and then measuring the arrival time, or timestamp, of the
first detected photons reflected by the target following each
pulse. Due to space and bandwidth limitations, the number
of photon timestamps generated per laser pulse is typically
limited to one.

In principle, a single laser pulse, and thus a single times-
tamp, would be sufficient to estimate the ToF. However,
due to the presence of uncorrelated background events [from
both external light sources or internal SPAD dark count rate
(DCR)] and of shot noise, the first detected photon may
not be from the laser pulse, so that several repetitions are
needed to discriminate the different contributions. To do so,
the timestamps measured during the acquisition process are
collected in a histogram memory that records how many times
each timestamp has been observed. This provides a convenient
representation of the temporal distribution of the arrival times,
as shown in the example of Fig. 1. In a system capable of
acquiring only one photon (the first), the distribution of the
arrival times is a piecewise exponential curve, where each
segment is described by

Pi (t) = Ai · e−λi ·t (1)

whose intensity (rate) λi depends on the intensity of back-
ground light, dark counts, and laser echo. Table I summarizes
the most important parameters of the detection process.

The ToF is typically estimated from the histogram by
finding the location of its peak or of a sharp rising edge, which
likely belongs to the reflected laser pulse. The histogram of
timestamps contains all the relevant information to properly
estimate the ToF, and represents the gold standard process-
ing technique in the field of SPAD-based d-ToF systems.
Unfortunately, the histogram requires a considerable amount
of resources in terms of memory, bandwidth, and power, as it
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Fig. 1. Simulated distribution of timestamps in a typical d-ToF system
able to record one photon per acquisition, with a ToF of 20 ns and
a laser pulse duration TW of 4 ns. The histogram is composed of
105 timestamps, with a bin size of 100 ps. Superimposed to the Monte
Carlo simulation, we show also the analytical exponential distribution.

TABLE I
LIST OF PARAMETERS FOR A TYPICAL d-TOF ACQUISITION

requires the readout of every timestamp from the sensor for
processing by an external controller (FPGA or µC). Even with
the latest implementations where the histogram is available
on-chip, the required amount of resources is considerable.
As an example, a 10-m-range 128 × 128 LiDAR system with
a 100-ps time resolution and 8-bit histogram depth requires
approximately 10 MB of memory.

B. Histogram-Less Approach
Intuitively, if no background events are present, and neglect-

ing the width of the laser pulse, we could estimate the ToF
without the need to build a histogram. This can be achieved
by simply calculating the average of the continuous stream
of laser-only timestamps. To extend the above method to sce-
narios where background events are also present, we need to
eliminate their contribution to the average. Again, intuitively,
this can be accomplished by dividing the measurement into
two acquisitions. The first is performed with the laser turned
off, and is used to estimate the contribution of the background
light only, by computing the average t̄bg of the recorded
timestamps. The same operation is repeated in the second
acquisition with the joint contribution of background and laser
timestamps, resulting in a total average time t̄ tot. In principle,
the ToF could be estimated as a linear combination of the
averages1 as

ToF ∝ ktot · t̄ tot − kbg · t̄bg (2)

with the contribution of the background canceling out. The
coefficients ktot and kbg depend on the number of detected

1For the precise formulation, see (6).

Fig. 2. Simulated distribution of timestamps in a typical d-ToF acquisi-
tion. (a) and (b) Distributions of background-only events (with rate λB)
and laser-only events (with rate λS), respectively, are shown. (c) Dis-
tribution of the combination of background and laser events is reported,
graphically showing that the superposition property does not hold due to
the nonlinear behavior of the detection process. In particular, the portion
of background events after the laser peak is underestimated, as only
one photon per acquisition can be detected. For each contribution, the
amplitude terms of the exponential (A0, A1, A2 and A3) are reported,
with A3 < A0 due to the SPAD nonlinearity.

photons, hence they are affected by shot noise, with a direct
impact on the measurement precision.

This approach, however, relies on the superposition property
which does not hold, as SPADs are nonlinear detectors. More
specifically, the problem lies in the dead time of the detection
process, which depends upon the SPAD dead time itself,
on the limited bandwidth of the timestamping circuit and also
on the limited memory available, blinding the measurement
channel for some time after each detection. With this limi-
tation, the detection of a photon belonging to the laser echo
does prevent a later photon from being potentially detected,
resulting in a distortion of the statistics. In particular, the
amount of background photons which contribute to t̄ tot in the
second acquisition (with the laser turned on) is underestimated.
This behavior can be observed on the histograms of Fig. 2,
where the distribution of timestamps in different scenarios
is compared, emphasizing the estimation error. Furthermore,
the greater the laser echo intensity, the higher the number of
background photons that are underestimated.

This can also be seen analytically by computing explicitly
the cumulative distribution function F of the random vari-
able T associated with the first photon detection time, defined
as F(t) := P(T ∈ [0, t]). If t ∈ [0, ToF] then the incoming
photon necessarily belongs to the background, hence

F(t) = P(T ∈ [0, t]) = 1 − e−λB t .

If t ∈ (ToF, ToF + TW ], then

F(t) = P(T ∈ [0, ToF]) + P(T ∈ (ToF, t])

= 1 − e−λB ToF
+ e−λB ToF(1 − e−(λS+λB )(t−ToF)

)
.

Finally, for t > ToF + TW , we have

F(t) = P(T ∈ [0, ToF])

+ P(T ∈ (ToF, ToF + TW ])

+ P(T ∈ (ToF + TW , t])

= 1 − e−λB ToF

+ e−λB ToF(1 − e−(λS+λB )TW
)

+ e−λB ToFe−(λS+λB )TW
(
1 − e−λB (t−ToF−TW )

)
.
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Fig. 3. Distribution of timestamps obtained with a linear detection
process, i.e., with no dead-time limitation. The distributions are uniform,
since we are now considering the absolute arrival time of detected
photons with respect to the beginning of the acquisition window. This
approach enables the secure subtraction of the background contribution
in (a) from the combined measurement in (c). (b) Result is the isolated
contribution from the laser light alone, which carries the ToF information.
As the superposition property holds in this case, there is no longer an
under-weighting condition of background counts after the laser pulse
peak in the histogram (c).

The probability density f of the distribution of T , where
F(t) =

∫ t
−∞

f (u)du, can be easily computed by means of the
formula f (t) = F ′(t), yielding

f (t) =


λBe−λB t , t ∈ [0, ToF]

(λS + λB)eλSToFe−(λS+λB )t , t ∈ (ToF, ToF + TW ]

λBe−λS TW e−λB t , t > ToF + TW

while the average first arrival time is given by

E[T ] =

∫
+∞

0
t f (t)dt

=
1 − e−λB ToF

λB
+

e−λB ToF(1 − e−(λS+λB )Tw )

λS + λB

+
e−λS TW e−λB (ToF+TW )

λB
. (3)

As shown in (3), the average detection time depends
nonlinearly on two parameters (λS and ToF). This confirms
that it is not possible to uniquely extract the ToF from the
aforementioned acquisition method, since the average of the
timestamps acquired in the second acquisition, t̄ tot, which is
governed by the probability of detection of laser photons,
also depends on the λS parameter, which depends not only
on the ToF, but also on the target reflectivity. One could try
to compensate for the error; however, this requires measuring
also the intensity of the received laser light (which affects the
error), introducing an extra variable which is hard to estimate,
invalidating the procedure.

Conversely, a linear detector, with no dead time, is able
to timestamp every photon which falls within the acquisition
window. In this case, the histograms shown in Fig. 2 become
linear in time, as shown in Fig. 3.

One can then extract the ToF with the proposed two-step
procedure. In the first step, we measure the total number of
background events, Nbg, and their average absolute arrival
time, t̄bg. In the second step, with the combination of both
background and laser events, we measure the total number
of events and their average absolute arrival time, denoted
Ntot and t̄ tot. Because the superposition property holds, the
difference Ntot − Nbg is equal to the amount of photons from

the reflected laser source. We can then extract the ToF by
properly weighting each average timestamp measurement with
the relative photon count contribution

Ntot · t tot = Nbg · tbg + (ToF + t l) · (Ntot − Nbg) (4)

where t l is the average arrival time of the laser photons referred
to the laser emission time in the absence of background
light (i.e., λB = 0 and ToF = 0). The value t l is a
characteristic parameter of the laser source, which can be
experimentally estimated by means of an initial calibration.
The proposed extraction method does not require the allocation
of histogram memory, and needs only two counters to store
Nbg and Ntot, and two accumulators to compute t̄bg and
t̄ tot reducing the memory requirements by more than three
orders of magnitude compared to recent long-range high-
resolution d-ToF sensors [16], [17]. We can further reduce the
amount of resources down to a single accumulator, needed
to store t̄ tot, and two counters for Nbg and Ntot, because a
constant background throughout the acquisition window leads
to an average background time t̄bg of Tacq/2. In this case, (4)
turns into the simpler form

Ntot · t tot = Nbg ·
Tacq

2
+ (ToF + t l) · (Ntot − Nbg) (5)

which yields

ToF =
Ntot t̄ tot − Nbg

Tacq

2

Ntot − Nbg
− t l . (6)

We have simulated this extraction method with a Monte
Carlo simulator [45] by sweeping the parameters λS and
λB in the range [106

− 108
] and [105

− 109
], respectively.

For each pair of λS and λB values, 104 measurements have
been acquired with the ToF value set to 25 ns. The resulting
ToF, obtained from (4), is shown in Fig. 4 with the correct
estimation over a wide range of λB, λS pairs, failing only when
the λS/λB ratio is too low even for a classic histogram-based
approach.

In Section III, we provide a rigorous mathematical analysis
which proves the results briefly introduced with (6) from the
underlying statistical distribution of photons.

III. MATHEMATICAL ANALYSIS

This section proves the validity of the method described
above analytically. In the following, we shall denote the
duration of the acquisition window by Tacq, assume the laser
echo to entirely occur within it, i.e., Tacq ≫ ToF + TW ,
and denote the time-dependent intensity of the laser pulse
by the function λS : [0, TW ] → R. The flux of photons can
be modeled by a counting process (Nt )t∈[0,Tacq] obtained as
the sum of two independent Poisson processes: (N B

t )t∈[0,Tacq],
with intensity λB , describing the background flux of photons,
and (N S

t )t∈[ToF,ToF+TW ], describing the signal. In particular,
the process (N S

t )t∈[ToF,ToF+TW ] is modeled through an inho-
mogeneous Poisson process with time-dependent intensity
(λ̃S(t))t∈[ToF,ToF+TW ] given by λ̃S(t) := λS(t − ToF). Hence,
the overall flux of photons reaching the SPAD is given by
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Fig. 4. Preliminary Monte Carlo simulation results showing the ToF
computed with the proposed acquisition method with the hypothesis
of an ideal linear detector over a full scale range (acquisition window)
of 100 ns. The ToF can be properly estimated over a wide range of
λB,λS pairs. With the minimum λS value considered for the simulation
(106 events/s), the ToF estimation becomes very noisy, but still centered
around the correct value of 25 ns. If the signal intensity were zero, the
ToF estimation would be centered around zero, as the contributions
from the two measurements (with and without background) cancel out
reciprocally.

an inhomogeneous Poisson process (Nt ))t∈[0,Tacq] with varying
intensity λ given by

λ(t) =

{
λB, t ∈ [0, ToF) ∪ [ToF + TW , Tacq]

λB + λ̃S(t), t ∈ [ToF, ToF + TW ).

Hence, we can prove that, given n photons detected in the
interval I = [0, Tacq], the n detection times are independent
and distributed on [0, Tacq] with a distribution density function
f : [0, Tacq] → R given by

f (t) =



λB

λB Tacq +
∫ TW

0 λS(u)du
,

t ∈ [0, ToF) ∪ [ToF + TW , Tacq]

λB + λS(t − ToF)

λB Tacq +
∫ TW

0 λS(u)du
,

t ∈ [ToF, ToF + TW ).

(7)

Indeed, by considering a partition {I j } j=1,...,m of the interval
I = [0, Tacq], the independence of the increments of the
inhomogeneous Poisson processes (Nt )t∈[0,Tacq] yields

P(N (I1) = n1, . . . , N (Im) = nm | N (I ) = n)

=

∏m
j=1 e−λI j

(λI j )
n j

n j !

e−λ[0,Tacq ]
(λ[0,Tacq ])

n

n!

(8)

where, for an interval I = [a, b] ⊂ R, we adopted the
notation λI :=

∫ b
a λ(t)dt and we assumed

∑m
j=1 n j = n. By a

straightforward computation, the right-hand side of (8) can be
written as

P(N (I1) = n1, . . . , N (Im) = nm | N (I ) = n)

=
n!

n1!, . . . , nm !

m∏
j=1

(
λI j

λ[0,Tacq]

)n j

the latter being equivalently obtained in terms of n indepen-
dent and identically distributed continuous random variables
T1, . . . , Tn with density f given by (7). In other words, the
arrival times {Ti }i=1,...,n of the n photons provide a statistical
sample for the distribution (7). The distribution (7) has a mean
µ given by

µ =

∫ Tacq

0
t f (t)dt

=
1

λB Tacq +
∫ TW

0 λS(t)dt

·

(
λB T 2

acq

2
+ ToF

∫ TW

0
λS(t)dt +

∫ TW

0
tλS(t)dt

)
. (9)

Clearly, since µ is a linear function of ToF, it can easily be
inverted. By denoting with α the ratio

α :=
λB Tacq

λB Tacq +

∫ TW

0
λS(t)dt

(10)

we get an equation providing the ToF as a function of the
other characteristic parameters of the process

ToF =
1

1 − α

(
µ − α

Tacq

2

)
− t l (11)

where t l = (
∫ TW

0 tλS(t)dt)/(
∫ TW

0 λS(t)dt) is the average
arrival time of the laser photons referred to the laser emission
time in the absence of background light (i.e., λB = 0 and
ToF = 0).

If n photons are detected within the interval [0, Tacq], the
sample mean t̄ tot of their detection times provides an unbiased
estimator for µ. The main issue with this approach is the
estimation of the parameter α, which depends on λB and λS ,
the latter being affected by a high level of uncertainty since it
is related to the intensity of the laser echo. Because the total
number of photons detected in the time interval [0, Tacq] is a
Poisson random variable with average λB Tacq +

∫ TW

0 λS(t)dt
and, analogously, the number of background photons detected
in the time interval [0, Tacq] is a Poisson random variable
with average λB Tacq, we can estimate both parameters by
observing a realization of both processes. More precisely, let
us first switch off the laser source and collect the number
Nbg of photons arriving during the interval [0, Tacq], then let
us switch on the laser source and collect the total number
Ntot of photons arriving during the interval [0, Tacq]. The
observed values Nbg and Ntot are, respectively, an estimate
for λB Tacq and λB Tacq +

∫ TW

0 λS(t)dt , while their ratio is an
estimate α̂ := (Nbg/Ntot) for the parameter α defined in (10).
By replacing the parameters µ and α with their estimates
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t̄ tot and α̂ in formula (11), we obtain the following estimator
for ToF:

T̂oF =
1

1 − α̂

(
t̄ tot − α̂

Tacq

2

)
− t l (12)

=
Ntot t̄ tot − Nbg

Tacq

2

Ntot − Nbg
− t l (13)

which coincides with (6).

IV. ACQUISITION SCHEMES

The simulation results obtained in Section II-B are based
on the assumption that the photon detection process is ideal,
i.e., with no dead time and with a linear response over the
incoming flux of photons. In a real-world scenario, however,
detectors are limited by the dead time between subsequent
detections, resulting in a nonlinear response. To implement
the proposed extraction method, we propose a novel SPAD
acquisition scheme which emulates the behavior of a linear
detector. More in detail, we propose two ways to obtain a
linearized SPAD response from a real SPAD. Both methods
are based on the assumption that the underlying statistical
processes are stationary and ergodic. In particular, we assume
that there are no major fluctuations of the characteristic
parameters of the process during the acquisition time. Similar
to an equivalent-time sampling oscilloscope, both methods
rely on repeating the observation multiple times to emu-
late the response of an SPAD detector with no dead time.
In Sections IV-A and IV-B, we describe the working principle
of each method and propose a possible implementation. Then,
in Section IV-C, we provide the mathematical proof that both
acquisition methods are capable of correctly sampling the
distribution of photon arrival times.

A. Acquisition Scheme #1: Acquire or Discard
The first acquisition scheme relies on a simple (albeit

inefficient) mechanism, which requires no additional resources
in terms of the SPAD driving circuit. The acquisition works
over multiple runs, each requiring multiple observations. The
first timestamp of every run is considered valid, memorized,
and used to increment either Nbg or Ntot, depending on
the current phase of the acquisition, and update t tot. Then,
in the next observations, timestamps are considered valid, and
used to update the algorithm parameters, only if they are
higher than the largest previous timestamp, otherwise they are
discarded. The procedure is iterated until the last photon within
the acquisition window Tacq is timestamped. The necessary
condition to conclude the current linearization cycle is the
absence of detected photons before Tacq. This implies that the
next photon will occur after the acquisition window, thereby
validating that the last recorded photon marks the conclusion
of the current linearization cycle. The process is then repeated
multiple times to increase statistics. Fig. 5 shows an example
of a run, including all the discarded events, and a possible
implementation. While the implementation is straightforward,
the method is inefficient because the majority of the detected
photons may end up being discarded.

Fig. 5. Example of SPAD response linearization with the acquire or
discard acquisition method. (a) Each photon arrival time is represented
by a red arrow and the order of arrival is indicated. The first run starts
with the acquisition of photon #1, resulting in timestamp t1. Photon #2
is discarded, since its arrival time is earlier than photon #1. The next
recorded information comes instead from photon #3, which is later than
photon #1, and sets the new minimum time. The run proceeds with the
same criteria resulting in the stream of photon arrival times t1, t2, t3
and t4 from photons #1, #3, #7 and #8, which is a single realization
of the emulated response of the linearized SPAD detector (b). On the
right, a principle schematic is proposed, showing the lightweight usage
of resources, with only one comparator and one register required on top
of the processing circuit. The acquire or discard acquisition method is
simple but inefficient, as most of the photons arrival times are discarded,
resulting in longer acquisition times.

Fig. 6. Example of SPAD response linearization with the time-gated
acquisition method. With this approach, no photon timestamp is dis-
carded thanks to the delayed activation of the SPAD for each timing
measurement. During the charge delay phase, the SPAD front end is
forced OFF, thus photons cannot be detected. For each measurement,
the first timestamp is detected and used to increment either Nbg or
Ntot and update the average time ttot. At the same time, the charge
delay phase value is updated accordingly for the next measurement.
As opposed to the acquire or discard method, more hardware resources
are needed to build the delay element which controls the activation of
the SPAD.

B. Acquisition Scheme #2: Time-Gated
The time-gated acquisition scheme works by delaying the

activation of the SPAD to start from the previously acquired
timestamp, until no photon is detected before the end of the
acquisition window.

With this approach, there is no need to discard timestamps,
allowing for a faster acquisition. This, however, comes at the
expense of a more complex hardware implementation, which
needs a time-activated gating scheme, for instance using a
programmable delay line. An example of acquisitions is shown
in Fig. 6, together with a possible implementation.

C. Discussion on Implementation, Expected
Performance, and Mathematical Analysis

While providing the same result, it is clear that the imple-
mentation cost and the performance of the two acquisition
schemes are different. With the acquire or discard scheme,
almost no hardware modification is required to an already
existing SPAD sensor. However, because of the decimation
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Fig. 7. Result of Monte Carlo simulation comparing the two proposed
acquisition schemes in terms of efficiency for increasing values of back-
ground light flux (λB) in the range [106,108

] events/s. (a) We compare
the acquisition schemes in absolute terms. On the left axis, we show the
number of timestamps required to linearize the SPAD response over an
acquisition window Tacq of 100 ns. On the right axis, we show the total
time required for the two methods to collect N = 3 · 104 measurements
to average the linearized response of the SPAD N times. The horizontal
line indicates a limit of ≈33.3 ms, for an equivalent operation frame
rate of 30 FPS. With the time-gated scheme, the required frame rate
can be guaranteed over the entire range of background light flux, while
considering the acquire or discard scheme, the maximum sustainable
flux is limited to ≈2.4 · 107 events/s. (b) We compare the acquisition
schemes in relative terms against an ideal system composed by an ideal
SPAD with an ideal TDC, showing the percentage of photons lost during
the linearization process over the acquisition window Tacq. The loss of
photons occurs as both acquisition schemes works with a real SPAD,
which in this case can timestamp at most one photon per acquisition.

process, the efficiency of the acquisition could be very low.
This also depends on the intensity of the incoming rate of
events: the higher the rate, the higher the probability to have
smaller timestamps which block the detection process. On the
other hand, the time-gated scheme requires a delay line and
the SPAD-gating, but the efficiency is much higher since no
decimation process occurs. To show the difference in terms
of efficiency of the two proposed acquisition schemes, we run
a Monte Carlo simulation with background light flux in the
range [106, 108

] events/s with the aim to linearize the SPAD
response over an acquisition window Tacq of 100 ns. As shown
in Fig. 7(a), at the highest rate of 108 events/s, the amount of
timestamps to be acquired to cover the acquisition window
Tacq for the acquire or discard scheme is more than three
orders of magnitude higher compared to the more efficient
time gated scheme. From the simulation, we can also identify
the maximum number of measurements which can be executed
by the two acquisition schemes to sustain an operation frame
rate of 30 frames/s (FPS). The time-gated scheme can average
the linearized SPAD response up to N = 3 · 104 times over
the whole range of background light event rate. On the other
hand, with the same number N of acquisitions, the acquire
or discard scheme can only support up to ≈2.4 · 107 events/s
of background rate. Fig. 7(b) shows a comparison in relative
terms against an ideal SPAD coupled to an ideal TDC, thus
being capable of timestamping all photons impinging on the
sensor surface over the acquisition window at once. Both the
acquire or discard and time-gated schemes are meant to work
with a real SPAD, which in this case can timestamp at most

one photon per acquisition window. For such a reason, if the
acquisition schemes are compared against an ideal system,
a loss of photons occurs, which can be limited by the time-
gated scheme at ≈90% in the worst case of photon flux.

Concerning the implementation complexity, the time-gated
scheme requires a finely controlled delay element, which may
be expensive on a per-pixel basis. Proper balance between the
linearization efficiency and implementation complexity can be
obtained with a mixture between the two acquisition schemes.
This can be accomplished by employing a coarse but simple
delay architecture for the gating mechanism (e.g., a clock-
based counter), which activates the SPAD one clock cycle
before the last recorded timestamp. Then, the linearization
process is concluded by relying on the acquire or discard
scheme to cover the remaining amount of time. The efficiency
is still guaranteed, as the acquire or discard scheme starts at
most one clock cycle before the last recorded timestamp, and
not from the beginning as in the standalone implementation.

From a mathematical point of view, both acquisition meth-
ods allow sampling the correct distribution of the photon
arrival times (Tn)n≥1. Let Tn denote the occurrence time of
the nth event, i.e., the arrival of the nth photon. This can be
defined as the infimum of the set of times t such that the
number of arrivals Nt in the interval [0, t] is greater than or
equal to n

Tn := inf{t ≥ 0 : Nt ≥ n}, n ≥ 1.

By definition, NTn = n. We can therefore derive an equivalent
representation of the random variables Tn . Indeed, for n ≥ 2,
the time Tn of occurrence of the nth event can be obtained as
the infimum of the set of times t greater than Tn−1 [the time
of occurrence of the (n − 1)th event] such that the increment
Nt − NTn−1 , the number of events occurring in the interval
(Tn−1, t], is greater than 1. Therefore,

T1 : = inf{t ≥ 0 : Nt ≥ 1}

Tn : = inf{t ≥ Tn−1 : Nt − NTn−1 ≥ 1}, n ≥ 2

which corresponds to the results of the acquisition schemes
described previously.

D. Comparison With State-of-the-Art
In this section, we compare our histogram-less acquisi-

tion method with state-of-the-art SPAD-based LiDAR sensors
in terms of memory requirement, scalability, and tolerance
to high background light flux. For all comparisons in this
section, we consider for our method 16 bits of counters depth
(i.e., up to 65 535 counts for Nbg and Ntot, respectively)
and then three times the number of TDC bits (1 xTDC bits
required for the TDC word itself, and then 2 xTDC bits to
properly size the accumulator memory). First, we compare
against standard sensors, i.e., sensors that require the raw
timestamps to be read out to build the necessary histogram
of timestamps off-chip. To provide a fair comparison, we do
not consider the sensor resolution, which changes from chip
to chip, but only the amount of memory required to build
the histogram for one pixel. In the works we consider for
our comparison [2], [12], [15], [16], [17], we extrapolate
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TABLE II
MINIMUM, AVERAGE, AND MAXIMUM MEMORY REDUCTION FACTOR OF THE PROPOSED HISTOGRAM-LESS ACQUISITION

METHOD AGAINST STANDARD d-TOF SENSORS (OFF-CHIP HISTOGRAM) [2], [12], [15], [16], [17]
AND SENSORS WITH ON-CHIP FULL HISTOGRAM CAPABILITY [23], [43], [46]

Fig. 8. Comparison of the amount of per-pixel memory required
by our histogram-less acquisition method against histogram-based
d-ToF sensors. (a) We consider standard sensors where every
timestamp is read out and the histogram is built off-chip [2], [12],
[15], [16], [17]. (b) We consider sensors with full on-chip histogram
capability [23], [43], [46].

the total amount of per-pixel memory based on the number
of reported TDC bits and on an 8-bit histogram depth for
all of them. We then compare our solution to sensors that
offer full on-chip histogram capability [23], [43], [46]. Also
in this case, we consider the amount of memory reported in
each work necessary to build the histogram of timestamps for
one pixel. Results are reported in Fig. 8, where an average
memory reduction factor of ≈2129 and ≈136 for standard
and full on-chip histogram sensors, respectively, is obtained.
More comparison details, including minimum and maximum
memory reduction factors, are reported in Table II.

Similar to our method, partial histogram approaches [24],
[32], [33], [38] are also quite effective in reducing the memory
requirements. Nevertheless, our approach not only outperforms
them with a memory reduction that ranges from 67% [24] to
3% [38], but also performs better in many other important
aspects. In fact, unlike previous work, our approach does not
have any of the following needs.

1) The need to find the laser peak in time using a zooming
or a sliding search procedure, which is at the basis of
every partial histogram approach [39].

2) The need to share hardware resources (TDCs, memory)
among pixels in the same column [32] or in the same
cluster [38], to reduce the area usage.

3) The need for area consuming processors to manage
the algorithm underlying the partial histogram technique
and that can only be implemented using advanced 3-D
integrated technologies with single-pixel access [24].

All these translate into higher measurement time and laser
power penalty as more acquisitions are needed than a standard
full-histogram approach [39], and higher costs.

Our method, given the very limited amount of required
memory resources, is also advantageous in terms of scalability
to higher sensor resolutions, and also in terms of range
extension. As an example, a standard histogram-based sensor
with 15-bit TDC requires memory to store up to 32 767
histogram bins per pixel. If the measurement range is doubled,
the additional TDC bit results in an increase of 100% on
the memory requirement. Conversely, with our approach, the
amount of memory increase to double the range is limited to
only ≈3.9%.

Concerning the tolerance to high background light flux,
both detection processes can sustain very high flux regimes,
with a limit determined by the finite resolution TTS of the
timestamping circuit. This limit translates to the requirement
(1/(λB + λS)) ≫ TTS, i.e., having a low probability that more
than one photon fall into the same time bin. By considering
a threshold on this probability, we can extract the maximum
flux of photons λmax which can be sustained by our detection
process. The probability to have more than one photon per time
bin is expressed as P(n > 1) = 1−e−λmax·TTS · (1+λmax · TTS).
By setting a threshold of less than 1%, and considering TTS =

100 ps, the maximum photon flux that can be sustained is
equal to λmax ≃ 1.48 · 109 ph/s. Compared to the maximum
flux required by a standard system which must comply with
the 5% rule, and with the hypothesis of an acquisition window
Tacq of 100 ns, our detection process can sustain a photon flux
≃3000 times higher.

As the ToF is extracted without direct access to the com-
plete statistics of photon timestamps (i.e., the histogram), the
contributions to the ToF due to multiple targets or multipath
reflections cannot be distinguished as they linearly contribute
to the average timestamp value extracted after the linearization
process. A foreseen countermeasure is the implementation of
an additional system-level gating scheme (thus, on top of the
one required for the SPAD linearization), where by means of
an approximate knowledge of the target(s) location, the timing
localization of the LiDAR acquisition is properly steered to
avoid the mixture of multiple contributions. On the other
hand, the two acquisition schemes proposed in this work do
not prevent the construction of a histogram of (linearized)
timestamps, supporting the complete distinction of multiple
targets and multipath reflections.

V. MEASUREMENT RESULTS

The proposed acquisition scheme has been validated with
measurements using real data from an existing single-point
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Fig. 9. Measurement setup with the FPGA control board, d-ToF system,
and halogen illuminator for the generation of background light pointed
directly toward the sensor.

SPAD-based d-ToF sensor, with an architecture similar to
the one from Perenzoni et al. [44], which in addition offers
on-chip histogramming capability. The sensor is fabricated in
a standard 150-nm CMOS process with the SPAD technol-
ogy developed in the work by Xu et al. [47]. The histogram
features 1024 bins with 10-b depth, and a TDC resolution
of 100 ps. The SPADs are enabled synchronously with the
beginning of the acquisition window and the first measured
timestamp for each acquisition increments the corresponding
histogram bin. After a user-selectable number of acquisitions,
the histogram is read out and unpacked. Then, the unpacked
data is shuffled to recover a realization vector of the arrival
times of the detected photons.

Background events were generated by means of a ≈180-W
fiber-coupled halogen illuminator pointed directly toward the
sensor, while a black matte panel with low ≈10% reflectivity
was selected as target, with a distance range from 1 up
to 3.8 m. A picture of the setup is shown in Fig. 9, with
indications on the main components.

First, we focus on the validation of the linearization behav-
ior of the proposed acquisition scheme by considering only
background light. Then, we consider the combination of
background and laser together, as in a real scenario, and we
compute the ToF with the proposed histogram-less acquisition
scheme.

A. Preliminary Considerations
As we base our measurements on the re-engineering of an

existing d-ToF sensor, preliminary considerations are needed
before providing further details on measurement results. The
sensor measures the arrival time of the first detected photon
for each laser pulse, as described in Section II, which is stored
in an on-chip histogram memory. Since the sensor measures
the arrival time of the first photon, the statistical distribution
is exponential, thus we are considering relative arrival times.
A statistically valid realization of the incoming timestamps is
obtained by unpacking and randomly shuffling the content of
the histogram memory. The obtained realization is a vector
of relative arrival times, which is the starting point of our
measurement analysis.

In Section IV, we described two possible acquisition
schemes. The acquire or discard scheme, even though is
intrinsically inefficient, can be straightforwardly used with our
dataset as it requires no hardware modification over the already
existing SPAD-based d-ToF system. The time-gated scheme,
while more efficient, requires a time-gating circuit which is
not implemented in our sensor.

The first set of measurements focuses on background events
only. In this case, there is a single source of events with inten-
sity λB , so we can apply the time-gated scheme by computing
the cumulative sums of timestamps to obtain absolute arrival
times from relative ones. On the other hand, when events from
background and laser are combined, as in a real measurement
scenario, it is not possible to mimic the behavior of the time-
gated scheme by means of the cumulative sum operation.
In that case, we rely on the acquire or discard scheme.

B. Measurements With Background Light Only
We set the intensity of background light from a minimum of

≈6.5·106 up to ≈133·106 events/s. This is the rate of events at
the output of the SPAD, which therefore takes into account all
physical parameters of concern of a typical d-ToF system [45].
Considering an acquisition window of 100 ns, specific from
the sensor [44], the equivalent average number of detections
within Tacq equals ≈0.65 and ≈13.3 for the minimum and
maximum background light intensity, respectively. In both
cases, this is much higher than the conventional limit of 5%
events [21] (13 and 266 times higher, respectively), showing
the high resistance of our method against pile-up distortion.
By considering the equation which links the intensity of
background events, λB , with the physical parameters of the
system [45], it is possible to derive the equivalent background
illumination level, in kilolux, up to a maximum of ≈85 klx.
Measurement results are shown in Fig. 10, showing a relative
deviation from the reference background intensity extracted
from the exponential fit of the original histogram of less than
±0.5% over the whole range of values.

C. Measurements With Background and Laser Light and
Extraction of the ToF

Our first goal is to show that the underestimation of back-
ground counts which occurs in a standard d-ToF system can
be completely recovered with our acquisition scheme. This is
demonstrated in the first measurement, displayed in Fig. 11,
which compares a traditional acquisition with the acquire or
discard scheme, qualitatively showing the linearization process
by means of the linearized histogram of timestamps.

We then quantitatively evaluated the linearization process by
estimating the intensity of background light from both portions
of the histogram, i.e., before and after the laser peak. For this
characterization, we used the ≈10% reflectivity target (black
matte panel) at 2.5-m distance from the sensor. The results
are depicted in Fig. 12, showing a relative deviation from the
ground truth (estimated from an exponential fit on the original
dataset) below ±4%.

In a different measurement, we verify the resistance of
the proposed SPAD linearization method against pile-up dis-
tortion. To do so, we acquire several timestamps from the
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Fig. 10. Linearization of the SPAD response with background events
only. For each value of background flux, 8 ·106 timestamps are acquired
from the sensor. (a) Example of linearized histogram is shown together
with the original one (exponentially distributed) for a background flux
of ≈100 · 106 events/s. (b) Flux of background events estimated from
the linearized histogram of timestamps, λlin against the flux estimated
from an exponential fit on the original histogram of timestamps, λfit.
(c) For each value of background flux, the entire dataset was split into
200 subsets to analyze the homogeneity of the linearization process.
(d) Relative deviation from the background flux measured from the
original histograms is shown, used as a reference, demonstrating a
relative deviation below ±0.5% over all data subsets.

Fig. 11. Qualitative measurement showing the linearization process of
the proposed acquisition scheme. (a) Original histogram of timestamps
is shown in logarithmic scale, where the drop of counts which occurs
after the laser peak is clearly visible. (b) Histogram obtained with the
acquire or discard scheme proves the efficacy of the linearization pro-
cess, which fully compensates for the nonlinearity of the detector. The
length of the linearized histogram is shorter than the original dataset,
as we decided to stop the linearization earlier to reduce the data loss
which naturally occurs with the acquire or discard scheme. Due to
the intrinsic inefficiency of this scheme, the histogram peak in (b) is
attenuated by ≈34 dB with respect to the original dataset in (a). (c) Two
histograms are shown together after normalization.

reflected laser pulse with a detection rate of 90%, which is
18 times higher than the conventional limit of 5%. The results,
shown in Fig. 13, proves the efficacy of our linearization
method in challenging pile-up conditions where a standard
sensor would fail. A reference measurement acquired with a
conventional time-correlated single photon counting (TCSPC)
setup is shown as reference.

The last set of measurements shows the extracted ToF
without the need to build a histogram of timestamps. For
each measured distance, we run the linearization algorithm
250 times to have sufficient statistics to compute accuracy and

Fig. 12. Quantitative characterization of the linearization process
considering four different values of background flux, from ≈27.6 ·

106 events/s up to ≈133 · 106 events/s with a target distance of
2.5 m. For each value of background flux, 2.5 · 106 timestamps are
acquired from the sensor. (a) Relationship between the background
fluxes computed before the laser peak is shown, where λfit,L comes from
an exponential fit on the original histogram, while λlin,L comes from the
linearized histogram. (b) Same relationship is shown but considering
the portion of background events after the histogram peak. For each
portion, the relative deviation of the flux extracted from the linearized
histogram of timestamps is shown, demonstrating an estimation error
below ±4% over the whole range. The application of the acquire or
discard acquisition scheme results in a data reduction factor of ≈7.5 and
≈165 for the minimum and maximum background light flux, respectively.

Fig. 13. Characterization of the behavior of the proposed SPAD
linearization method under strong pile-up conditions. The histogram
obtained from the linearized vector of timestamps is compared against
the original histogram (built from the detection of the first arrival time)
and against a reference measurement obtained with a conventional
TCSPC setup. In the histograms obtained from our sensor timestamps,
the bin width is 100 ps, while the reference measurement from the
TCSPC setup has 4-ps timing resolution. The proposed SPAD lineariza-
tion method allows us to recover the full shape of the laser envelope
even if the detection rate is 18 times higher than the conventional limit
of 5%.

precision. For each run of the algorithm, we average the results
from N = 1.5 · 104 vectors of linearized SPAD timestamps,
to emulate an equivalent 30-FPS operation rate, as outlined
in Section IV-C and with Fig. 7. For all measurements, the
same ≃10% reflectivity target (black matte panel) was used,
in the range from 1 to 3.8 m, to emulate a challenging scenario
for a typical SPAD-based d-ToF system. First, we evaluate
the behavior of the ToF extraction process without back-
ground light. The results, depicted in Fig. 14, show good
agreement between the extracted ToF and the ground truth.
Then, we repeat the measurements with the inclusion of
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Fig. 14. Measurement results with no background light, showing the
ToF extracted without the need to build a histogram of timestamps. The
relative accuracy is below ±0.5%, while the relative precision is below
0.25% for all measurements.

Fig. 15. Measurement results with low background light flux
(λB = 7.7 · 106 events/s), showing the extracted ToF without the need
to build a histogram of timestamps. The relative accuracy is in the
range [−0.2, 2]%, while the worst relative precision is 6% at the highest
distance of 3.8 m.

Fig. 16. Measurement results with high background light flux (λB =

120 · 106 events/s), showing the extracted ToF without the need to
build a histogram of timestamps. The relative accuracy is in the range
[−9, 6.7]%, while the worst relative precision is 21% at 3 m. With this
high background light flux (corresponding to ≈75 klx), and the decision
to use a low reflectivity target (≈10%), the maximum achieved range
decreased to 3.4 m.

background light by setting the halogen illuminator to generate
a background light flux of 7.7 · 106 and 120 · 106 events/s.
The values of background light flux are considered at the

output of the SPADs of the sensor, and they correspond
to an illumination level of ≃15 and ≃75 klx, respectively.
Results are shown in Figs. 15 and 16, demonstrating the
validity of the proposed histogram-less ToF estimation in a real
setup.

VI. CONCLUSION

In this work, we demonstrate how to extract the ToF
information in an SPAD-based d-ToF system without the
need to build a resource and bandwidth-hungry histogram
of timestamps. Moreover, the proposed method is resistant
against high photon fluxes and can withstand detection rates
three orders of magnitude higher than the conventionally
recognized limit of 5%. The acquisition method, which is
based on the linearization of the SPAD response, is suitable
for integration in CMOS technology using low resources and
is therefore scalable to large arrays, since it can be easily
integrated per-pixel. The proposed extraction method has been
completely characterized, first with Monte Carlo numerical
simulations. The method is also mathematically justified, and
we demonstrated its validity with real measurements, by repur-
posing an existing d-ToF sensor and using real data to extract
the ToF. The proposed extraction method can be implemented
at least in two ways, by means of the acquire or discard or
time-gated detection schemes. While the acquire or discard
scheme allows for the least usage of resources, it suffers from
long integration times especially when the flux of photons
is too high. On the other hand, the time-gated scheme can
guarantee a more efficient acquisition at the expense of a
per-pixel controllable delay element. A hybrid scheme, which
implements a coarse but simple delay element to implement
the time-gated acquisition and relies on the acquire or discard
scheme for the remaining amount of time, can guarantee at
the same time a compact hardware implementation and opti-
mized acquisition time. Concerning the ToF extraction method,
we demonstrated its validity by using an extremely low amount
of resources, as only two counters and one accumulator are
required.
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