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A B S T R A C T

Indoor positioning applications are increasingly popular due to the availability of effective and low cost ranging
sensors. Many solutions have been proposed recently using these type of sensors to estimate the coordinates
(position) of a target within a given target uncertainty. In this paper, we consider the problem of deploying
a large scale infrastructure that solves the positioning task with guaranteed estimation uncertainty while
minimising the number of ranging sensors. To this end, we adopt a two steps procedure. In the first step, we
identify a basic cell structure compounded of a small number of sensors deployed in symmetric configurations.
We study the problem in general terms and we specifically focus on how to maximise the area covered by this
basic structure using the smallest possible number of three ranging sensors. In the second step, we use this
basic cell as an elementary tile structure to be used in standard coverage algorithm minimising the portion
of space left uncovered. The approach is validated through a large number of simulations and experimental

results.
. Introduction

Given an entity (e.g., a person, a robot or a valuable asset of any
ind) and given an environment, the positioning problem is about the
se of some external measurements to find its cartesian coordinates at
given time, whereas the localisation problem is about using exter-

al measurements and ego-motion information to reconstruct its pose
cartesian coordinates + orientation) and to track it over time [1].
oth problems are instrumental to a large class of important industrial
pplications, and their solution is particularly difficult in the environ-
ents where the satellite-based positioning systems are not available

r reliable.
The increasing availability of low cost accurate sensors has

emocratised the positioning and localisation technology disclosing im-
ortant opportunities for its penetration in large indoor environments,
nce believed the most impervious to its application. An important
xample of this innovative type of sensors are the Ultra-Wide-Band
UWB) communication modules. An UWB node can generate a very
arrow impulse that is robust to multipath fading and interference.
herefore, it is possible to set up a measurement system based on time-
f-arrival (ToA) information and producing ranging measurement with
n accuracy of a few centimetres. Even if this new type of sensors
ave made accurate positioning affordable, they require to set up
n maintain an important infrastructure. This leads us to the sensor
lacement problem: finding a deployment that guarantees an assigned
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E-mail addresses: farhad.shamsfakhr@unitn.it (F. Shamsfakhr), luigi.palopoli@unitn.it (L. Palopoli), daniele.fontanelli@unitn.it (D. Fontanelli).

maximum target uncertainty and that requires the least number of
sensors. As we will discuss in the paper, the problem is known to be
NP-Hard, and in order for a solution to scale to environments of realistic
size, it has to be necessarily sub-optimal. With these considerations in
mind, the relevance of a solution for optimal sensor placement has to be
evaluated on its ability to meet a number of practical requirements such
as: R1. producing solutions for large environments in an acceptable
time (scalability), R2. working with environments of arbitrary shape
(generality), R3. keeping the number of deployed sensors close to
the minimal and anyway very small (efficiency), R4. guaranteeing
specified levels of uncertainty by countering all possible effects (e.g., of
geometric nature) that could amplify the positioning error (reliability),
R5. it has to consider physical limitations of the sensors (sensor
limitations). As regards, the last requirement, we should observe that
the ranging uncertainty is a function of the distance between the
source and the emitter. For example, light based (e.g., LiDAR) or
acoustic (e.g., Sonars) ranging systems are naturally limited by the
maximum sensing distance [2]. Typical RF ranging systems suffer the
same limitations. This has been observed for RSSI signals [3] but also
for the ToA based measurements of UWB nodes, both in Line of Sight
(LoS) [4] and in non-LoS [5] conditions.

Related Work. The sensor placement problem has been widely in-
vestigated in the past for different types of sensors. For example, [6]
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proposed a visual landmark placement algorithm in order to meet a
desired target uncertainty. This solution considers the existence of a
fixed pattern, equilateral triangles with landmarks on the vertices, that
has been shown to be optimal to reach the minimum uncertainty [7].

Redondi et al. [8] presented Tabu Search heuristic algorithm for
finding the optimal deployment pattern of sensor nodes for an indoor
localisation system based on Received Signal Strength (RSS). The ap-
proach considers a fixed number of sensors and uses the Cramer Rao
Lower Bound (CRLB) as the optimality index to minimise the overall lo-
calisation error. In the same line, other papers [9,10] address the range
sensors placement problems, with the mean-square localisation error
being used as the optimisation index. The proposed solutions provide
near-optimal deployment patterns on a free plane without considering
the physical constraints of the environment. Besides, the authors do
not offer any clue on the actual computational costs of the optimisation
algorithm. With respect to these papers, our problem is somewhat dual:
rather than minimising the uncertainty given the number of nodes, we
look for the minimal number of nodes guaranteeing a target uncertainty
and then build the deployment on it.

Chepuri et al. [11] proposes a solution for selecting the optimal de-
ployment pattern of UWB nodes. The problem is modelled as the design
of a sparse selection vector and its solution is based on the random
selection of a sub-set of sensors which are randomly located on a well-
shaped grid structure. Hence, its application cannot be generalised to
environments of generic shape.

Information-theoretic-based approaches [12,13] are popular meth-
ods for optimal sensor placements, suitable for selection of heteroge-
neous sensors used for both observation and actuations. In [14], a
sensor selection strategy for target localisation based on the maximum
likelihood estimator is presented. The algorithm chooses the sensor
observation that reduces the most the entropy on the target location,
taking into account the prior target position pdf. The selection pro-
cedure is performed iteratively using a heuristic algorithm selecting
one sensor per step. [15] investigates a unique scalar measure for
the spread of the uncertainty in the structural parameter values using
the Fisher information matrix. By developing a relationship between
measurement redundancy and information entropy, the optimal set of
sensor configurations that minimises the entropy measure is obtained.
The approach has a strong relationship with the determinant of the in-
verse of Fisher information matrix, which encompasses the information
about the values of the structural model parameters based on the data
from all measured positions. Another approach based on [15] takes
the knowledge of the prior distribution into account within a Bayesian
framework for the placement of multi-type sensors (measurement and
system actuation) of a dynamical system [16]. Here a heuristic sequen-
tial method was used for selecting the optimal locations of different
types of sensors based on the overall Information Entropy. The down-
side of the aforementioned entropy-based methodologies is a very
high computational cost to solve the discrete optimisation and obtain
good estimates of sensor configurations that correspond to information
entropy values close to the minimum information entropy.

The idea of seeking the optimal deployment of range sensors within
fixed patterns is explored by several authors. In a number of different
proposals [6,17–19], the approach is to first fix a grid of ‘‘candidate’’
positions for the sensors, and then apply non-convex optimisation to
find the optimal deployment of sensors limiting the search to the grid.
As observed by Chepuri et al. [17], the performance of an algorithm
of this kind is strongly related to the choice of the search grid. A
coarse grained grid may prevent the algorithm form a deployment
guaranteeing the required target uncertainty, while a small grid size
may easily make the problem intractable.

As a final and additional important point, none of the papers cited
above dealing with ranging sensors considers the point that we have
generally defined as sensor limitations (i.e., the limited sensing range).
We would like also to remark that, in spite of the rich literature on
2

the topic and of the constant reduction of the hardware costs over t
the past years, the sensor deployment problem remains a very active
research area. Much of the scientific interest lies in the difficulty of
achieving scalable solutions, of deploying anchors to difficult-to reach
locations, of keeping in check the maintenance cost of the system, and
of managing the communication protocol between the anchors and with
the target.

Paper Contribution. In this paper, we propose a sensor placement
solution respecting the five requirements stated above. Our solution
builds on a key observation from Chen et al. [20]: an optimal ranging
sensor deployment follows exact symmetrical patterns. For example,
the optimal pattern for the three sensors case is an equilateral triangle,
for four is a square, for six is given by two nested equilateral triangles
(one triangle inside the other), etc. This observation leads us to search
for the optimal symmetric configuration of a set of 𝑛 ranging sensors
(henceforth referred to as anchors) that covers a region 𝑛 respecting
ome constraints. The constraints are for us of two types: 1. each
oint in the region must fall within the sensing range (which is set
o a finite and known value 𝑟) of an adequate number of anchors,
. the positioning uncertainty within this area should be less than
he desired target uncertainty. Notice that by ‘‘optimal’’ we mean the
onfiguration that respects the constraints with the minimal number of
nchors. Once this region has been identified and characterised, it can
e used as a basic ‘‘tile’’ in a geometric covering algorithm [21]. Our
irst contribution is a characterisation of the geometric properties of the
egion 𝑛 and an algorithm that solves the optimisation problem.

The minimal number of anchors that solve the problem is 𝑛 =
3. However, we show as our second, and probably most important,
contribution that the minimal ‘‘tile’’ that we should consider is not
necessarily 3, but it is possible to find a region 2 with larger coverage
and with the same positioning uncertainty. The validity of the approach
is shown by a large number of simulations and experimental evidence.

The paper is organised as follows. In Section 2, we offer a quick
overview of the main previous results and ideas the paper builds on.
In Section 3, we provide a geometric characterisation of the region
𝑛 and we describe an algorithm to optimise the anchor configuration
to cover 𝑛 with guaranteed positioning performance and minimising
the number of anchors. In Section 4, we focus our attention on the
case of the cell covered with the minimum possible number of anchors
(𝑛 = 3). In particular, we show that, for every 3 configuration, we can
find an equivalent 2 with the same maximum uncertainty and with a
larger coverage. The approach is validated through simulation data in
Section 5 and through experiments in Section 6. Finally, in Section 7,
we state our conclusions and announce future work directions.

2. Background material

We consider the problem of estimating the position of a target
within an indoor environment. To this end, we will use ranging sen-
sors that, in the ideal case, produce a measurement modelled by the
measurement function:

𝓁𝑖 = ℎ𝑖(𝐩) =
√

(𝑋𝑖 − 𝑥)2 + (𝑌𝑖 − 𝑦)2, (1)

ith 𝐚𝑖 = [𝑋𝑖, 𝑌𝑖]𝑇 being the Cartesian coordinates of the 𝑖th anchor and
ith 𝐩 = [𝑥, 𝑦]𝑇 ∈  being the coordinates of the target position to be
stimated. The results presented below are totally agnostic both to the
hoice of the sensor module (e.g., based on radio frequency, ultrasonic
r light signals) and to the measurement technique (e.g., measuring the
adio signal strength, the echo, the time-stamped values).

Estimating the coordinates of a target 𝐩 at a given time by using
he ranging measurements is known as a positioning problem, and
ts solution requires at least 𝑛 ≥ 3 measurements from non-collinear
nchors [22]. On the contrary, if the target moves with known dy-
amics a localisation problem is adopted, whose solution leverages
he motion information as well; therefore, under minimal assumptions,

he minimum number of anchors required reduces to 𝑛 = 2 [23]. In
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this paper, we will restrict the focus to the positioning problem. We
will make the realistic assumptions that measurements are affected
by noise, and therefore the estimated position will be uncertain. We
remark that the uncertainty on the position is amplified when it is used
to reconstruct the pose for dynamic targets [1,24], thus making the
discussion below relevant also for the localisation problem.

Because of the noise, the measurement function (1) takes the more
realistic form:

𝓁𝑖 = ℎ𝑖(𝐩) + 𝜂𝑖 = 𝓁𝑖 + 𝜂𝑖. (2)

We will assume that the uncertainties 𝜂𝑖 are zero mean and uncorre-
ated. Hence, using the expected operator E {⋅}, we have E

{

𝜂𝑖𝜂𝑗
}

= 0
f 𝑖 ≠ 𝑗 and E

{

𝜂2𝑖
}

= 𝜎2𝑖 , which can be expressed more compactly with
he vectorial form 𝜼 = [𝜂1,… , 𝜂𝑛]𝑇 , i.e., 𝜮𝜼 = E

{

𝜼𝜼𝑇
}

= diag(𝜎21 ,… , 𝜎2𝑛 ).
Since (1) is nonlinear, the problem of finding a suitable estimate 𝐩̂ of 𝐩
can be effectively solved using the following Nonlinear Weighted Least
Squares (NWLS) problem

𝐩 = argmin
𝐩

𝑛
∑

𝑖=1

(

𝓁 − ℎ𝑖(𝐩)
)2

𝜎2𝑖
. (3)

n effective solution is given by the iterative Gauss–Newton solution,
hich, solves a point-wise linearised WLS problem

𝓵 ≈ 𝐻𝑘𝐩̂𝑘+1 + 𝜼 ⇒ 𝐩̂𝑘+1 = (𝐻𝑇
𝑘 𝜮

−1
𝜼 𝐻𝑘)−1𝐻𝑇

𝑘 𝜮
−1
𝜼 𝓵 = 𝐻†

𝑘𝓵, (4)

where 𝓵 = [𝓁1,… ,𝓁𝑛]𝑇 is the vector of measurements (2),

𝐻𝑘 = 𝜕ℎ
𝜕𝐩̂𝑘

⎡

⎢

⎢

⎢

⎢

⎣

𝜆𝑥1 (𝐩̂𝑘) 𝜆𝑦1 (𝐩̂𝑘)
𝜆𝑥2 (𝐩̂𝑘) 𝜆𝑦2 (𝐩̂𝑘)

⋮
𝜆𝑥𝑛 (𝐩̂𝑘) 𝜆𝑦𝑛 (𝐩̂𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

, (5)

s the Jacobian of the measurement vector ℎ(𝐩), 𝜆𝑥𝑖 (𝐩̂𝑘) = 𝑥𝑘−𝑋𝑖
𝓁𝑖,𝑘

,

𝑦𝑖 (𝐩̂𝑘) =
𝑦𝑘−𝑌𝑖
𝓁𝑖,𝑘

, and 𝓁𝑖,𝑘 =
√

(𝑥𝑘 −𝑋𝑖)2 + (𝑦𝑘 − 𝑌𝑖)2. In this expression,
𝐩𝑘 is the estimate of 𝐩 at the 𝑘th iteration of the NWLS, and is used to
derive the updated estimates 𝐩̂𝑘+1. The standard approach mandates to
iterate the gradient descent steps up until ‖𝐩̂𝑘+1 − 𝐩̂𝑘‖ ≤ 𝑒𝐩, where 𝑒𝐩 is
a user defined accuracy threshold. However, by exploiting geometric
properties, it os possible to find an alternative technique, known as
the G-WLS [25], which requires only two WLS iterations to reach the
optimal theoretical bound in standard operative conditions. The first
step is the solution of a linearised multilateration problem using a
standard WLS, while the second step corrects the result by injecting the
information on anchor geometry captured by the Geometric Dilution
of Precision (GDoP) for positioning problems [26]. The two-steps algo-
rithm leads to a position estimation error 𝐩̃ = 𝐩− 𝐩̂ with an uncertainty
given by

𝜮 𝐩̃𝑘 = (𝐻𝑇
𝑘 E

{

𝓵𝓵
𝑇}−1

𝐻𝑘)−1 = (𝐻𝑇
𝑘 𝜮

−1
𝜼 𝐻𝑘)−1.

As reported in [25], in the case of zero-mean and Gaussian uncertainties
𝜼 = [𝜂1,… , 𝜂𝑛]𝑇 , the solution of the two-step G-WLS almost surely
reaches the CRLB [27]

𝐶(𝐩) =
(

𝐻𝑇𝜮−1
𝜼 𝐻

)−1
, (6)

where 𝐻 is the value of (5) evaluated in the actual position 𝐩. The
CRLB is a measure of the minimum theoretical estimation uncertainties
achievable by an estimator, hence this certifies the effectiveness of the
two steps approach.

Moreover, in the assumption of homoscedasticity of the ranging
uncertainties, i.e., 𝜮𝜼 = 𝜎𝑇𝓁 𝐼𝑚, we have

𝜮 𝐩̃𝑘 = 𝜎2𝓁(𝐻
𝑇
𝑘 𝐻𝑘)−1. (7)

his quantity is tightly related to the GDoP 𝑔(𝐩) [28,29]:

(𝐩) =
√

Tr
(

(𝐻𝑇𝐻𝑘)−1
)

=

√

Tr
(

𝜮 𝐩̃𝑘

)

, (8)
3

𝑘 𝜎𝓁 a
here Tr (⋅) is the trace of a matrix and 𝐩̃𝑘 = 𝐩 − 𝐩̂𝑘. The lower is the
GDoP, the lower is the uncertainty on 𝐩̃𝑘, since (𝐻𝑇

𝑘 𝐻𝑘)−1 acts as a
multidimensional gain for the ranging uncertainties.

2.1. Problem formulation

Since the CRLB (6) can be attained using the G-WLS [25] and it
is intrinsically related to the GDoP (8), we will consider the GDoP as
the cost index to guide the optimal deployment of the ranging sensors.
In particular, given the set of all the feasible positions  , we want to
minimise the number 𝑛 of ranging anchors deployed in the environment
in order to have 𝑔(𝐩) ≤ 𝑔⋆, ∀𝐩 ∈  , where 𝑔⋆ is the maximum desired
value for the GDoP. We will explicitly consider limited sensing range 𝑟 for
the anchors, which will be modelled by setting 𝓁𝑖 = −1 in (2) if 𝓁𝑖 > 𝑟
in (1) (e.g., no echo is detected in Time-of-Flight ranging sensors).

3. Geometric analysis

One common approach to ranging anchors deployment is to first
grid the space  with a sequence of 𝑚 points on a grid, displaced at
istance 𝑑. Next, by regularly sampling 𝐩ℎ ∈  , ℎ = 1,… , 𝑞, it is
ossible to compute the gradients 𝐻𝑖,ℎ (the rows of (5)) for the 𝑖th
rid position, 𝑖 = 1,… , 𝑚, in the ℎth sampled position 𝐩ℎ, ℎ = 1,… , 𝑞.
ssuming homoscedasticity for the uncertainties and using the selection
ector 𝐰 = [𝑤1, 𝑤2, … 𝑤𝑚]𝑇 ∈ {0, 1}𝑚, where 𝑤𝑖 = 1 if the sensor is
laced in the 𝑖th position or zero otherwise, it is possible to set the
ollowing optimisation problem [17]

min
𝐰∈{0,1}𝑚

‖𝐰‖0 s.t. 𝜎2𝓁Tr
⎛

⎜

⎜

⎝

( 𝑚
∑

𝑖=1
𝑤𝑖𝐻

𝑇
𝑖,ℎ𝐻𝑖,ℎ

)−1
⎞

⎟

⎟

⎠

≤ 𝜆,∀ℎ (9)

here the ‖𝐰‖0 is a quasi norm counting the number of non-zero entries
f 𝐰 and 𝜆 is the desired target uncertainty for the position estimates.
ince

r
⎛

⎜

⎜

⎝

( 𝑚
∑

𝑖=1
𝑤𝑖𝐻

𝑇
𝑖,ℎ𝐻𝑖,ℎ

)−1
⎞

⎟

⎟

⎠

= Tr
(

(

𝐻𝑇
ℎ 𝐻ℎ

)−1),

here 𝐻ℎ is the Jacobian (5) evaluated in position 𝐩ℎ and for the
nchors in grid position 𝑖 where 𝑤𝑖 = 1, the minimisation problem (9)
s substantially equivalent to the GDoP uncertainty gain minimisation
n (8) and this further corroborates our choice of the GDoP as a cost
unction. With this approach, the performance very much depends on
he grid’s choice [17], and it is not possible to consider a limited sensing
ange.

To overcome these important limitations, we will consider an ap-
roach in which the search for the optimal configuration is made in a
ontinuous space. Our idea to reduce the complexity is based on two
teps. In the first step, we identify a basic ‘‘tile’’ 𝑛 ⊆  , in which 𝑛
nchors are optimally deployed so that the GDoP constraint is satisfied,
.e. 𝑔𝑛(𝐩) ≤ 𝑔⋆, ∀𝐩 ∈ 𝑛. This search is simplified by two facts: 1. the
ptimal solution can be sought between the symmetric configurations
f the anchors [20], 2. the behaviour of the GDoP is monotone in the
umber of anchors 𝑔𝑛(𝐩) ≥ 𝑔𝑛+1(𝐩) (i.e., given a configuration with 𝑛
nchors, randomly adding an anchor will never increase the GDoP).
he second fact has an additional benefit: if we consider two tiles 𝑛,
ny point 𝐩 in the overlapping region will respect 𝑔(𝐩) ≤ 𝑔⋆. This leads
s to the second step: once the basic tile 𝑛 structure is defined, it
an be replicated to cover the entire space using standard tile coverage

lgorithms (see Section 5.1).
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Fig. 1. Behaviour of 𝑑 (solid), 𝑔 (dashed) and 𝑔 as a function of the number of anchors
and with a fixed radius 𝛿.

3.1. 𝑛 region

In this first part of the discussion, we characterise the most impor-
tant properties of the region 𝑛. As reported in [20], given a set of 𝑛 ≥ 3
anchors the most convenient configuration for GDoP minimisation is
one in which the anchors are optimally deployed on a circle. Indeed,
the matrix 𝐻𝑘 in (5) can be expressed as (the subscript 𝑘 in (4) is not
needed in this context)

𝐻 =

⎡

⎢

⎢

⎢

⎢

⎣

cos(𝛾1) sin(𝛾1)
cos(𝛾2) sin(𝛾2)

⋮
cos(𝛾𝑛) sin(𝛾𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

,

where 𝛾𝑖 = arctan 𝑦−𝑌𝑖
𝑥−𝑋𝑖

, with the evaluation point 𝐩 = [𝑥, 𝑦]𝑇 and the
anchor position 𝐚𝑖 = [𝑋𝑖, 𝑌𝑖]𝑇 , which leads to [25]

𝑔𝑛(𝐩) =
√

𝑛
∑𝑛−1

𝑖=1
∑𝑛

𝑗=𝑖+1 sin(𝛾𝑗 − 𝛾𝑖)2
=
√

𝑛
𝐷𝑛

. (10)

Three important propositions are now stated.

Proposition 1. Within the 𝑛 region, the GDoP 𝑔𝑛(𝐩) is non-increasing
with 𝑛. As an example, in Fig. 1, shows the lower bound 𝑔 = min𝐩 𝑔𝑛(𝐩)
with a dashed line and the upper bound 𝑔 = max𝐩 𝑔𝑛(𝐩) with a dotted line.
As it is possible to see both decrease with 𝑛.

Proposition 2. If we neglect such adverse effects as reflections or multi-
path (as we do in this context to keep our discussion neutral with respect
to the adopted technology), the inspection of (10) and the results shown
in [25] reveal that the optimal deployment is simply given by a symmetric
configuration with a distance 𝑑 among the anchors.

Proposition 3. Considering again Eq. (10), for a symmetric configuration
of the anchors, the lowest GDoP is attained at the centre of the anchors
configuration, i.e., 𝑔 = 𝑔𝑛(𝐩𝑐 ).

Given the centre 𝐩𝑐 = [𝑥𝑐 , 𝑦𝑐 ]𝑇 of the circle of radius 𝛿 upon which
the anchors are deployed, in view of Proposition 2, the anchors will be
deployed in the following position

𝐚𝑖 = 𝑝𝑐 + 𝛿[cos 𝜃𝑖, sin 𝜃𝑖]𝑇 , (11)

where 𝜃𝑖 = 2𝑖𝜋∕𝑛, 𝑖 = 1,… , 𝑛, with the Euclidean distance between two
adjacent anchors expressed using the 2-norm ‖.‖ being

𝑑 = 2𝛿 sin(𝜋∕𝑛) = ‖𝐚 − 𝐚 ‖,∀𝑖 ∈ {1,… , 𝑛}, (12)
4

𝑖 𝑖+1
Fig. 2. 3 region (solid fill) and 2 region (line pattern fill) with 𝑟 = 8 [m] and
𝑑 = 0.75𝑟.

with the implicit assumption that 𝐚𝑖+1 = 𝐚1 for the periodicity of the
circular deployment. Increasing the number 𝑛 of anchors, will reduce
their mutual distance 𝑑 (solid blue line in Fig. 1), and will reduce the
GDoP (Proposition 1). Finally, the minimum GDoP will be attained in
𝐩𝑐 (Proposition 3).

By making the choice in (11) and considering a limited sensing
range 𝑟, we can choose 𝑛 as a symmetric region having the same centre
𝐩𝑐 as the anchor configuration. If we account for the limited sensing
range, the area has to fall within the intersection of the circles centred
in the anchors with radius 𝑟. As a result 𝑛 can be defined as

𝑛 =
{

𝐩 ∈ |ℎ𝑖(𝐩) ≤ 𝑟 ∀𝑖 ∈ {1,… , 𝑛} ∧ 𝑔𝑛(𝐩) ≤ 𝑔⋆
}

, (13)

where 𝑛 ≥ 3.
We can now formulate a few constraints stemming from purely

geometric considerations.

• If 𝛿 > 𝑟, it follows that 𝐩𝑐 ∉ 𝑛, which means that 𝐩𝑐 should
be covered by additional anchors, hence a minimal deployment
cannot be reached. If 𝛿 = 𝑟 and 𝑔𝑛(𝐩𝑐 ) ≤ 𝑔⋆, we have 𝐩𝑐 ≡ 𝑛,
which is of course a non minimal configuration. Therefore, we
will assume that 𝛿 < 𝑟.

• If 𝛿 < 𝑟 and 𝑔𝑛(𝐩𝑐 ) > 𝑔⋆, in view of Proposition 3, we have 𝑛 = ∅.
In this case, it is possible just to increase the number of anchors 𝑛
deployed on the circle of radius 𝛿 up until we reach the condition
𝑛 ≠ ∅. The GDoP equation (10) proves that this condition is
achieved for a sufficiently large number of anchors (see Fig. 1).

• Given 𝛿 < 𝑟 and 𝑔𝑛(𝐩𝑐 ) ≤ 𝑔⋆, we have from (12) that 𝑑 < 2𝑟. The
situation is the one displayed in Fig. 2 for an example with 𝑛 = 3.

Notice that since the GDoP depends only on the geometry of the
deployment, the value of the minimum GDoP 𝑔𝑛(𝐩𝑐 ) for a fixed 𝑛
does not change ∀𝛿 > 0. However, the region covered respecting the
constraint 𝑔𝑛(𝐩) ≤ 𝑔⋆ shrinks when 𝛿 decreases due to (10). On the
other hand, since 𝑛 in (13) has to fall within the sensing range of
all anchors, its maximum extension is given by the intersection of the
𝑛 circles centred in the anchors, i.e., constrained by 𝑟 (see the dark-
solid shaded area in Fig. 2). AS a consequence, the area jointly covered
by the anchors shrinks when the anchors are pushed farther away by
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Fig. 3. The coverage area for different number of anchors.

increasing 𝛿, thus the anchors will be pushed outside the region 𝑛.
This is clearly visible in Fig. 3 where we report

𝑛 = ∫𝐩∈𝑛

𝐩 𝑑𝐩, (14)

as a function of the distance 𝑑 for fixed 𝑟; However, since we are
looking for the tile configuration that facilitates the coverage of the
entire work-space by means of a set of overlapping tiles, it is convenient
to consider configurations for which the anchors fall within 𝑛, which
implies 𝑑 < 𝑟. By using (12), this choice implies:

𝛿 ≤ 𝑟
2 sin(𝜋∕𝑛)

. (15)

A final fact needs to be stated on the point within the region 𝑛
that produces the worst (i.e., the maximum) GDoP. Assuming that the
configuration is chosen so that 𝑛 contains all the 𝑛 anchors (as per the
previous observations) let

(𝑎) = {𝐩 ∈ |𝐩 = 𝐩𝑐 + 𝑎𝛿[cos 𝛼, sin 𝛼]𝑇 , 𝛼 ∈ [0, 2𝜋)}. (16)

For 𝑎 > 1 this is a circular region enclosing the circle where the anchors
are deployed, e.g., it encloses the thick dotted line circle of radius 𝛿
in the example of Fig. 2. By using (10), it is possible to show the
following:

Proposition 4. Let (𝑎) be the region defined in (16) and let the
configuration of the anchor be symmetric with respect to (15) (i.e., the
anchors fall inside 𝑛). Let 𝐩𝑀 (𝑎) = argmax𝐩∈(𝑎) 𝑔𝑛(𝐩), i.e. 𝑔𝑛(𝐩𝑀 (𝑎)) =
max𝐩∈(𝑎) 𝑔𝑛(𝐩). For small enough 𝑎 and given (16), we have that 𝐩𝑀 (𝑎) is
attained exactly by the angles

𝛼 ∈
{

arctan
(

𝑌1 − 𝑦𝑐
𝑋1 − 𝑥𝑐

)

,… , arctan
(

𝑌𝑛 − 𝑦𝑐
𝑋𝑛 − 𝑥𝑐

)}

,

i.e., 𝐩𝑀 (𝑎) is along the direction from the centre 𝐩𝑐 to each of the anchors
𝐚𝑖, 𝑖 = 1,… , 𝑛. This fact is true for any choice of 𝛿 respecting the hypotheses.

We observe that the result of Proposition 4 is strictly true only for
small 𝑎, since, if 𝑎 increases, the curves at constant GDoP tends to be
circles, hence the GDoP has the same value on (𝑎) for any angle 𝛼.
However, ∀𝑎 > 1 and due to the anchors symmetric configuration, we
have that the following holds always true

𝐩𝑀 (𝑎) =
{

𝐩 ∈ (𝑎)|𝛼 = arctan
(

𝑌1 − 𝑦𝑐
𝑋1 − 𝑥𝑐

)}

. (17)

3.2. Example: 3 region

It is known that in order to solve the position problem with ranging
measurements (2) there should be at least 𝑛 = 3 anchors in non-
collinear configuration [23]. So it is very interesting to study the shape
5

Fig. 4. GDoP 𝑔3(𝐩) surface with colour scale for 3 when 𝑟 = 8 [m] and 𝑑 = 0.87𝑟.

of the 3 region. As shown in Fig. 2 (dark-solid shaded region), if we use
exactly three ranging measurements to reconstruct the target position,
3 is a circular triangle. The values of 𝑔3(𝐩), i.e., the GDoP for 𝐩 ∈ 3, is
graphically depicted in Fig. 4 with a colour scale assuming 𝑑 = 0.87 𝑟.
The geometric position estimation uncertainty 𝑔3(𝐩) increases when
the target moves towards the vertexes of the circular triangle (the
intersection points among the circles centred in the three anchors with
radius 𝑟), which are the locations of 𝐩𝑀 (𝑎) given in Proposition 4.

3.3. Anchor deployment for 𝑛 region

After characterising the most important properties of our basic ‘‘tile’’
𝑛, we are know in a condition to discuss Algorithm 1, which computes
the optimal tile and its anchor configuration. The algorithm takes as
input the centre of tile 𝐩𝑐 , the sensing radius 𝑟 and the target maximum
uncertainty value expressed with the GDoP 𝑔⋆. It returns the minimum
number of anchors needed to achieve the result and the radius 𝛿 of the
circle they are to be deployed on using (11). The algorithm exploits
the results on the characterisation of 𝑛 for symmetric configurations
discussed above. The number of anchors is initially set to 𝑛 = 3 (the
minimum value). A first do-while loop increases 𝑛 until the minimum
value of the GDoP is less than 𝑔⋆, which, in view of Proposition 3, is to
be found at 𝑝𝑐 independently of 𝑛. This loop exploits the monotonicity
of GDoP with the number of anchors (Proposition 1). The second do-
while loop enforces the condition 𝑔(𝐩𝑀 (𝑎)) ≤ 𝑔⋆. To this end, it exploits
a function find𝑎 which looks for the smallest value of the scaling
factor 𝑎 > 1 such that the maximum GDoP 𝑔(𝐩𝑀 (𝑎)) evaluated on (𝑎)
meets the constraints (see Proposition 4). If no point 𝐩𝑀 (𝑎) respecting
the property exists, the loops considers a configuration with a greater
number of anchors (notice that a solution surely exists by Proposition 1
and the fact that 𝑔(𝐩𝑐 ) ≤ 𝑔⋆). After the search is completed, we have to
increase the deployment radius 𝛿 until the point 𝐩𝑀 (𝑎) falls inside the
sensing range of the anchors (it is worth recalling that the position of
𝐩𝑀 (𝑎) does not depend on 𝛿 by Proposition 4). To this end the algorithm
finds the anchor 𝐚 that, in the current configuration, is the farthest
from 𝐩𝑀 (𝑎). If 𝑛 is even there is only one 𝐚 and 𝛿 is given by 𝑟

𝑎+1 . If
𝑛 is odd, we have two anchors 𝐚1,2 at the same distance from 𝐩𝑀 (𝑎).
In this case, it is sufficient to compute the base length (which is the
distance 𝑑) of an isosceles triangle with vertices in 𝐚1, 𝐚2 and 𝐩𝑀 (𝑎),
i.e., 𝑑 = 𝑟‖ 𝐚1−𝐩𝑀 (𝑎)

‖𝐚2−𝐩𝑀 (𝑎)‖ − 𝐚2−𝐩𝑀 (𝑎)
‖𝐚2−𝐩𝑀 (𝑎)‖‖, and then compute 𝛿 reverting (12),

i.e., 𝛿 =
‖𝐚⋆1 −𝐚

⋆
2 ‖ .
2 sin(𝜋∕𝑛)
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a
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Fig. 5. Placement when 𝑟 = 20 m. The thick dashed line represents the cell contour, while the GDoP contour values for 𝑔5(𝐩) (a) and 𝑔6(𝐩) (b) are reported accordingly. The
placement for 𝑔⋆ = 1 results in 𝑑 = 0.6𝑟 and 𝛿 = 0.5𝑟 (a), while for 𝑔⋆ = 0.9 with 𝑑 = 0.55𝑟 and 𝛿 = 0.47𝑟 (b).
Algorithm 1 Optimal anchor configuration
Input: central point 𝐩𝑐 , sensing radius 𝑟, desired 𝑔⋆

Output: deployment radius 𝛿, anchor number 𝑛
1: 𝑛 = 3; 𝛿 =<minimum possible value>;
2: flag = true
3: do
4: 𝑔 = 𝑔𝑛(𝐩𝑐 )
5: if 𝑔 ≥ 𝑔⋆ then n = n + 1
6: else flag = false
7: while flag
8: flag = true
9: do

10: 𝐚𝑖 = 𝐩𝑐 + 𝛿[cos 2𝑖𝜋∕𝑛, sin cos 2𝑖𝜋∕𝑛]𝑇 , 𝑖 = 1… 𝑛
11: [𝑝𝑀 (𝑎), 𝑎] = finda(𝑔⋆)
12: if 𝑝𝑀 (𝑎) == ∅ then 𝑛 = 𝑛 + 1
13: else flag = false
14: while flag
15: if 𝑛 is even then
16: 𝐚 = argmax𝐚∈𝐚𝑖 ||𝐚 − 𝐩𝑀 (𝑎)|

|

17: 𝛿 = 𝑟∕(𝑎 + 1)
18: else
19: 𝐚1, 2 = argmax𝐚∈𝐚𝑖 ||𝐚 − 𝐩𝑀 (𝑎)|

|

20: 𝑑 = 𝑟‖ 𝐚1−𝐩𝑀 (𝑎)
‖𝐚1−𝐩𝑀 (𝑎)‖ − 𝐚2−𝐩𝑀 (𝑎)

‖𝐚2−𝐩𝑀 (𝑎)‖‖; 𝛿 =
‖𝐚⋆𝑖 −𝐚

⋆
𝑗 ‖

2 sin(𝜋∕𝑛)
return 𝛿, 𝑛

Example of placements using the previous algorithm for 𝑔⋆ = 1
nd 𝑔⋆ = 0.9 are reported in Fig. 5. In the first example, we have
n odd number of anchors, resulting in 𝑑 = 0.59𝑟 and 𝛿 = 0.505𝑟,

while in the second more stringent case we have an even number of
anchors, resulting in 𝑑 = 0.55𝑟 and 𝛿 = 0.468𝑟, i.e. a more dense
deployment, as consequence of the higher performance required in
terms of GDoP. Notice that the results are reported as a function of
𝑟 since the graphs will be simply scaled for different values of 𝑟: Fig. 5
reports an exemplifying value of 𝑟 = 20 m. It is worthwhile to note that
the cell for 5 and 6 are intersections of circles centred in the anchors
positions (thick dashed lines in Fig. 5). Finally, it is clear that with 𝑛 = 5
we cannot ensure 𝑔⋆ = 0.9 (see the value of the level curves of 𝑔5(𝐩)
in Fig. 5-a), unless a drastically reduced area (with anchors outside the
deployment) is obtained. Hence, the minimum value needed is 𝑛 = 6
(Fig. 5-b).
6

4. Beyond 𝟑: the 𝟐 case

The need to collect at least three anchor measurements is a ge-
ometric constraint, which is apparently impossible to surmount. The
problem is very simple: if we use two anchors the point to localise can
generally be in two different locations, corresponding to the intersec-
tion of two circles. This consideration leads us to define 3 as a subset
of the intersection of the three circles within the sensing set of the three
anchors. However, if we look for a coverage with minimal number of
anchors that meets the target maximum uncertainty (maximum GDoP)
we can work around this limitation. In the following, we first discuss
how to define a basic tile out of three anchors, dubbed 2, that covers a
larger area than 3 (Section 4.1). Indeed, starting from 3 (intersection
of three circles), 2 is obtained by adding the areas where only two
circles intersect. As will be discussed in Section 4.2, in the areas of
2 we can still exploit our knowledge on the anchor positions to solve
the ambiguity. Importantly, we will see in Section 4.3 that by using
2 instead of 3 we can cover a larger area without sacrificing the
worst case GDoP, i.e., still meeting the target maximum uncertainty
requirement.

4.1. The 2 region

The region 2 is still defined using 𝑛 = 3 anchors, but we release
the assumption on their visibility requiring that at least three of them
are simultaneously in sight. More formally, by handling (13), we have

2 =
{

𝐩 ∈ |∃𝑖, 𝑗 ∈ {1, 2, 3}s.t.(ℎ𝑖(𝐩) ≤ 𝑟 ∧ ℎ𝑗 (𝐩) ≤ 𝑟)

∧ 𝑔2(𝐩) ≤ 𝑔⋆
}

.

The region 2 thus defined is exemplified in Fig. 2, where it is covered
wit a linear pattern. The area covered by 2 is significantly larger
than 3 (see Fig. 3 or compare Figs. 4 and 6 for the same anchor
deployment). The 2 region forms a three lens-shaped region. As can
be observed from the corresponding GDoP plot of Fig. 6, the target
positioning uncertainty using two anchors increases at the circle inter-
sections, while it reaches its highest value right behind each anchor,
exactly as it happens for the 3 cells (recall Section 3.1).

4.2. Positioning with 2

Clearly, when a point lies at the intersection between the sensing
circles of the three anchors, its position 𝐩̂ can be estimated using

standard trilateration [24]. However, for the particular deployment we
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Fig. 6. GDoP 𝑔2(𝐩) surface with colour scale for 2 when 𝑟 = 8 [m] and 𝑑 = 0.87𝑟.

described for 2, 𝐩̂ can be estimated even with two anchors measure-
ments. Considering the shaded area with line pattern fill in Fig. 2, this
condition occurs in the three areas not covered by the dark grey solid
fill. Importantly, in each of these three regions, the pair of anchors in
view are different and this information is available. Moreover, from any
pair of anchors at distance 𝑑, say 𝐚𝑖 and 𝐚𝑗 , it is possible to express the
position 𝐩 in a reference frame expressed in Fig. 7 and dubbed 𝐩⋆ using
the following transformation

𝐩⋆ =
[

cos(𝜙) sin(𝜙)
− sin(𝜙) cos(𝜙)

]

(

𝐩 − 𝐚𝑖
)

= 𝑅(𝜙)
(

𝐩 − 𝐚𝑖
)

,

where 𝜙 = arctan
(

𝑌𝑗−𝑌𝑖
𝑋𝑗−𝑋𝑖

)

. With respect to this reference frame, the

position 𝐩 given two ranging measurements is given by

𝐩⋆ =

⎡

⎢

⎢

⎢

⎣

𝑑2−𝓁2𝑗 −𝓁
2
𝑖

2𝑑

±

√

4𝑑2𝓁2𝑖 −(𝑑
2−𝓁2𝑗 +𝓁

2
𝑖 )

2

4𝑑2

⎤

⎥

⎥

⎥

⎦

,

hence expressing the ambiguity along the 𝑦 direction. As a consequence,

𝐩 = 𝑅(𝜙)𝑇 𝐩⋆ + 𝐚𝑖. (18)

It is now evident that there are two locations for 𝐩, which are symmetric
with respect to the segment passing through 𝐚𝑖 and 𝐚𝑗 . With respect to
Fig. 2, it follows that either 𝐩 is in the shaded dark grey area or in the
line pattern fill, condition that can be easily verified by the presence or
not of the third ranging measurement. As such, there is no ambiguous
location for the 2 cell. Since the estimated location 𝐩̂ is given by the
NWLS applied to the 2 cell, we dubbed this solution algorithm as NLS.

Remark 1. The possibility of resolving the ambiguity is subject to some
geometric conditions. Indeed, when 𝑑 ≤ 𝑟, the ambiguous location can
be always uniquely determined by the presence or absence of third
anchor measurement (see Fig. 8(a)). On the other contrary, if 𝑑 > 𝑟, it
is possible to have ambiguities (see Fig. 8(b)). Notice that, as discussed
in Section 3.1, the fact that the anchors fall within 𝑛, implies 𝑑 < 𝑟,
hence no ambiguous locations exist.

Remark 2. The presence or absence of the third measurement, is
instrumental to set up the NWLS in (3)–(5). Indeed, since that is a
gradient descent-like algorithm, if the initial location is set at the centre
of the region with line pattern fill or in the dark grey shaded area
of Fig. 2, the algorithm will inevitably converge towards the correct
location.
7

4.3. Positioning uncertainty in 2 and 3 cells

As discussed in Section 3 (Proposition 1) for a fixed distance 𝑑
between the anchors the GDoP improves with the number 𝑛 of anchors.
Hence, 3 yields a smaller GDoP value than 2. Nonetheless, we will
now show that given a generic 3, it is possible to define 2 such
that max𝐩∈2

𝑔2(𝐩) = max𝐩∈3
𝑔3(𝐩) with a larger area covered by 2.

However, we will have to allow for a slightly larger distance between
the anchors in 2 than in 3.

Theorem 1. For any 3 cell with 𝑑 ≤ 𝑟, there exists a 2 cell such that
max𝐩∈2

𝑔2(𝐩) = max𝐩∈3
𝑔3(𝐩) as defined in (10) and having 2 ≥ 3 as

defined in (14). The distance between the anchors is 𝛽𝑑, with1:

𝛽 =

√

𝜉 ±
√

𝜉2 − 2𝜉 + 2
3
and 𝜉 = 2𝑟2

𝑑2
. (19)

Proof. Without loss of generality, let us consider the anchors are
deployed as in (11) and located at

𝐚1 =
[

0
0

]

, 𝐚2 =
[

𝑑
0

]

and 𝐚3 =
[

𝑑 cos𝜋∕3
𝑑 sin𝜋∕3

]

,

i.e., the vertices of an equilateral triangle, which is the configuration for
three anchors discussed in Section 3. Consider the point corresponding
to the maximum GDoP 𝐩𝑀𝑖

= [𝑥, 𝑦]𝑇 ∈ 𝐩(𝑎) defined in (17) for the 𝑖th
cell 𝑖, i.e., the locations 𝐩𝑀2

and 𝐩𝑀3
with maximum GDoP given by

the intersection of two and three circles, respectively, of radius 𝑟 (see
Fig. 7). Considering that the anchors for 2 are at distance 𝛽𝑑, with 𝑑
being their distance for 3. We can compute the explicit GDoP in the
two points applying (10):

𝑔3(𝐩𝑀3
) =

√

√

√

√

3
∑𝑖=2

𝑖=1
∑𝑗=3

𝑗=𝑖+1 sin(𝛾𝑖 − 𝛾𝑗 )2
=

√

3𝑟4
𝑦2𝑑2 + 2𝑟2𝑥2

,

𝑔2(𝐩𝑀2
) =

√

2𝑟4
𝑦2𝛽2𝑑2

.

(20)

By imposing 𝑔2(𝐩2) = 𝑔3(𝐩3) and solving for 𝛽, we have the following
two roots

𝛽 =

√

𝜉 ±
√

𝜉2 − 2𝜉 + 2
3

and 𝜉 = 2𝑟2

𝑑2
, (21)

yielding non-complex values for 𝑟 > 0 and 𝑑 ≤ 𝑟, with two positive
roots.

The last step to complete the proof is to show that, by setting the
distance between the anchors in 2 to 𝛽𝑑, we have 2 ≥ 3. 2 is
obviously larger than 3 when the anchors are deployed at the same
distance (see Fig. 3). When the anchors for 2 are deployed at distance
𝛽𝑑, the area covered by 2 decreases by increasing 𝛽. It can be seen
that for any choice of 𝑟 > 0 and 𝑑 ≤ 𝑟, we have 2 > 3, if 𝛽 ≤ 1.7
(see [30]). It can be seen that for any value of 𝜉 in (19), one of the two
solutions for 𝛽 is always smaller than 1.7. Therefore, it is possible to
find a region 2 greater than 3 and with equal worst case GDoP.

Remark 3. The cell 2 constructed as discussed in Theorem 1 is
guaranteed to have the same worst case GDoP and a better coverage
than the corresponding 3. The price to pay is that the GDoP (and hence
the uncertainty) can be worse in the average. Indeed, the uncertainty
of the estimates degrades when the target lays on the line pattern filled
area of Fig. 2.

Remark 4. The value 𝛽 = 1.7 is actually an upper bound for the
‘‘legal’’ ranges of 𝛽, i.e., the ones that guarantee 2 ≥ 3. We know

1 Albeit negative solutions for 𝛽 exists, they have no physical meaning.
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Fig. 7. The geometry of the worst GDOP.
Fig. 8. The necessary condition for 2 to resolve the ambiguity in position estimation using two anchors.
hat this bound is actually conservative and we are currently looking
or the tightest possible bound that guarantee this geometric property.
n the next section, we empirically obtain an approximate value for
his bound, which we define as the ‘‘approximate optimal bound for
ositioning uncertainty’’ in 2.

. Simulation results

As a first goal, we aimed for a numeric comparison between 2
nd 3 cell geometry. The comparison was made on the efficiency
ain (i.e., number of anchors needed) and on the positioning accuracy.
ince an experimental comparison would have required a massive
eployment of anchors, we decided to use simulation data. The reader
8

nterested in an accurate evaluation of the trilateration uncertainty
adopting as ranging sensors UWB anchors is referred to our previous
work [25].

We considered a simulated map generated by the Robotics System
Toolbox of Matlab R2020a Software with the total coverage area of
557m2. We have considered the maximum sensing range to be 𝑟 = 8 m
and a maximum GDOP value of 𝑔⋆ = 1.98, which resulted in an anchor
distance of 𝑑 = 6 m for the 3 cell. With the same constraints, the
anchor distance for the 2 obtained with the scaling parameter 𝛽 in (19)
was given by 𝑑 = 6.2 m (𝛽 = 1.03).

For the deployment results, since we have fully characterised the
regions 𝑗 ⊆  so that the limited sensing range 𝑟 is satisfied and
𝑔𝑗 (𝐩) ≤ 𝑔⋆, ∀𝐩 ∈ 𝑗 , it is sufficient to cover the entire space  with
regions 𝑗 to ensure 𝑔(𝐩) ≤ 𝑔⋆, ∀𝐩 ∈  . The geometric parameters for

the deployment of the anchors were obtained using Algorithm 1.
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Fig. 9. The final deployed anchors for the 3 cells.

5.1. Ranging anchors deployment

The anchor deployment problem as defined here with geometric
cells (be them 2 or 3) is a special case of the general class of
covering problems [21,31,32], where a space  is fully covered with
cells (or tiles) of a given geometry. As shown in [33], the optimal
covering of a plane with convex polygons is an NP-Complete problem.
Unfortunately, this negative result is obviously applicable to the cell
geometry considered in this paper.

However, the coverage problem considered in this paper can be
approached adapting the solutions proposed in the literature. For ex-
ample, a basic solution for NP-Complete covering problems (e.g., vertex
cover, hitting set, general set cover, geometric set cover, etc.) is the
greedy heuristic vertex covering algorithm proposed by Hochbaum
et al. [34]. This approach produces an upper bound for the number
of tiles (and hence of anchors) needed for the coverage and has a
logarithmic approximation ratio [35]. As discussed next, the covering
greedy algorithm in general produces a solution that is not in practice
too far from the optimal.

In our example, an initial set of 6000 random cells in equilateral
triangle patterns was generated uniformly inside the region of interest.
By using the greedy approximation algorithm with 3 cells, the result is
12 cells deployed with a maximum coverage area of 529 m2 and with a
total computation time of 682.5 s. On the other hand, by using 2 cells,
the coverage area was larger, i.e., 552 m2, while the computation time
was smaller (416 s) and the algorithm used significantly less cells than
in the case of 3, i.e., just 5. These results were obtained in MathWorks
Matlab R2022b software running in Microsoft Windows 10, and using
a 2.60 GHz Intel(R) Core(TM) i7 microprocessor endowed with 16 GB
RAM. The two deployment are reported in Figs. 9 and 10, respectively.
By looking at the deployment results, it appears that the final solution
does not provide a full coverage for the map. This is a common problem
when heuristic solutions are applied to complex environments. Leaving
some parts of the map uncovered is often preferable over using an
unnecessarily large number of anchors. However, this problem is solved
by placing anchors strictly were needed at the end of the algorithm.
9

Fig. 10. The final deployed anchors for the 2 cells.

5.2. Positioning results

The previous section clearly shows evident advantages in the cov-
ering performance of using 2 over 3. Our goal is now to show the
performance of the two tiles in terms of positioning uncertainty. For
this test, we assumed that the ranging uncertainty 𝜂𝑖 in (2) was the
same for all anchors and was distributed according to a Gaussian,
white, zero-mean stochastic process with a standard deviation of 𝜎𝓁 .
The cell geometry for 2 and 3 considered for this test are the one
shown in Fig. 11. For all the tests, we assumed a fixed sensing range
of 𝑟 = 10 m was used. For 2, the position estimates are found
using the algorithm described in Section 4.2 and the NWLS described
in (3)–(5). The corresponding solution for the 3 is given by the GWLS
method [25], which is hence adopted. Notice that, as reported in [25],
this will ensure the attainment of the CRLB: to further verify this fact,
we also reports the solution for 3 when the simple Least Squares (LS)
is adopted.

For each position in the grid cell, we collected the position estima-
tion error for 𝑚 = 1000 Monte Carlo (MC) simulations. This procedure
was repeated with three different measurement standard uncertainties,
namely 𝜎𝓁 = [0.05, 0.1, 0.2] m. The results are reported in Fig. 12
for all the estimation algorithms described above. For the positioning
estimation uncertainty, the quantitative results in terms of the Root
Mean Square Error (RMSE) were used, i.e.

RMSE𝐩 =

√

√

√

√

√

1
𝑚𝑁

𝑁
∑

𝑖=1

𝑚
∑

𝑗=1

(𝑥𝑖 − 𝑥̂𝑖,𝑗 )2 + (𝑦𝑖 − 𝑦̂𝑖,𝑗 )2

2

where 𝑁 is the number of grid points in the grid cell, 𝐩𝑖 = [𝑥𝑖, 𝑦𝑖]𝑇

are the 𝑖th actual coordinates of the grid cell and 𝑝̂𝑖,𝑗 = [𝑥̂𝑖,𝑗 , 𝑦̂𝑖,𝑗 ]𝑇 are
the corresponding estimated coordinates of the 𝑖th grid cell point for
the 𝑗th MC simulation. The results of Fig. 12 shows that the GWLS
surely provides results that are better than LS for the 3 regardless of
the distances 𝑑 among the anchors and in all the locations on the plane
that are covered by the three anchors (see Fig. 11-c). We additionally
report with a solid line in Fig. 12 the RMSE for all the points in 2
(say RMSE2) when the distance 𝑑2 = 𝑟 = 10 m (grid of Fig. 11-a), used
as comparison. This RMSE reports the error between the true target
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Fig. 11. Three sample grid cells with 𝑟 = 10 [m]. (a) 2 with 𝑑 = 𝑟, (b) 3 with 𝑑 = 𝑟, and (c) 3 with 𝑑 = 0.3𝑟.
Fig. 12. RMSE vs. 𝑑 for the 2 and the along the grid points of Fig. 11, for the different estimation algorithms employed and with different distances between the anchors for 3.
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osition and the estimated value using NLS, i.e., the intersection point
f two ranging measurements in 2 described in Section 4.2. We then
otice that when 𝑑 ≥ 𝛾𝑑2 = 6.36 m, (vertical line in Fig. 12) the RMSE
or all the points in the region 3 (say RMSE3) is smaller than RMSE2.
owever, from Theorem 1, we know that there exists a value of 𝛽 ≥ 1.7

uch that for 𝑑2 = 𝛽𝑑 we have that 2 ≥ 3 with the same maximum
DoP. Therefore, we have that if 1 < 𝛽 < 1∕𝛾 = 1.57, then the RMSE3 <
MSE2, while if 1∕𝛾 ≤ 𝛽 ≤ 1.7, then RMSE3 ≥ RMSE2, which is our

‘approximate optimal bound for positioning uncertainty’’ for 2.

. Experimental results

The arena considered for the experiment is the IoT laboratory
f the Department of Information Engineering and Computer Science
DISI), University of Trento, a 6 × 6 m2 area instrumented with an
ptiTrack system equipped with 14 cameras that provides the ground

ruth data (i.e., the precise location of the anchors in this experiment).
e adopted as ranging sensors anchors based on radio frequency

echnology, namely UWB nodes.
Hence, the target and the testing area are instrumented with De-

aWave UWB transceivers (see Fig. 13) with DWM1001 module, which
ncludes a DWM1000 UWB transceiver (compliant with the
EEE802.15.4 UWB physical layer), a Nordic Semiconductor nRF52832
icro-controller unit (MCU) with Bluetooth low Energy (BLE) support,

nd a three-axis accelerometer. The module operates on 6 frequency
ands with base frequencies ranging from 3.5 to 6.5 GHz and a
andwidth of 500 or 900 MHz working with a two-way-ranging-TOA
10

TWR-TOA) protocol for an asynchronous communication. In addition
to the anchors of the infrastructure, the setup comprises one tag as the
target, whose position is to be estimated and linked to a laptop, and
one anchor configured as initiator to configure the DRTLS network.
To prevent interference, a channel access time division multiple access
(TDMA) is used to enforce collision-free signal broadcasting from
different anchors. In agreement with the IEEE802.15.4 standard, the
initiator starts the TDMA cycle for a TWR communication and keeps
the clocks of the anchors synchronised. The tag communicates with
each anchor within a 25 ms time interval that results in a positioning
etwork system with 10 Hz sampling rate (i.e., one 25 ms slot is allotted
o the Initiator) for the total communications and measurements of the
hole positioning network system.

The UWB measurement results were collected using three anchors
recisely located in an equilateral triangular pattern using the Opti-
rack system (having an expanded uncertainty of 1 mm) and placed at
683 mm off the floor (see Fig. 13). The anchors are placed under line-
f-sight (LOS) conditions. However, to ensure realistic environmental
onditions, the lab was fully furnished and equipped with several
aboratory instruments. The inevitable reflections by the walls, ceiling
nd different furniture, majorly made of metal in the lab, caused
ndesired signal interference and attenuation, resulting in biases in
he signal time of arrival. This phenomenon is depicted in the two
ample measurement error probability mass functions (pmf) obtained
rom two different UWB anchors and in two different locations on
he experimental environment and depicted in Fig. 14. Considering a
ype A analysis, we collected ranging measurements at the maximum
ositioning frequency, i.e. 40 Hz per anchor. The pmfs represent the
anging measurement errors: they were computed by subtracting the
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Fig. 13. Experimental setup with DecaWave MDEK UWB positioning system. (a) The overview of the arena, and (b) the experimental setup.
Fig. 14. Two sample measurement error pmfs obtained from two different UWB anchors and in two different locations on the experimental environment, with (a) positive and
(b) negative bias.
actual distance (i.e., the ground truth distance from stationary target to
the UWB anchors retrieved from the OptiTrack system with millimetre
accuracy) from the 900 measurement results received from the UWB
anchor. From the analysis carried out from two different anchor lo-
cations, we observed that the UWB measurements are superimposed
with an uncertainty that has standard deviation of 𝜎𝓁 = 0.1 m and
a positive/negative maximum bias ranging in the set ±0.28 cm. The
experiment consists of two different equilateral triangular deployment
with four sampled locations, all depicted in Fig. 15. In the first scenario,
Fig. 15-a, the anchors were located with the same distance 𝑑 = 2.59 m
for 2 and 3. In the second scenario, the distances between the anchors
in 2 was extended by choosing 𝛽 = 1.62, a value close to the optimal
bound which was empirically obtained in Section 5 and that has a
minimal increase in the covered area but a large average reduction
of GDoP. For each position on the map, 900 estimates were made for
2 and 3. The GDoP (calculated by the ground truth measurements
retrieved by the OptiTrack system) and RMSE results (computed as in
Section 5) are reported in Tables 1 and 2, respectively. From Table 2 we
can observe how the GDoP in the same exact locations decreases when
the distance among the anchors increases. Moreover, when the distance
is the same, 2 conveys a GDoP that is greater than 3, thus verifying
that 𝛽 > 1 in light of Theorem 1. Moreover, when 𝛽 increases, we can
observe a reduction of the GDoP  , but at the price of a reduced area
11

2

Table 1
RMSE values for the four different positions and the two configurations of Fig. 15 with
the algorithms described in Section 5.

Target 3(LS) 3(GWLS) 2 (𝑑 = 2.59) [m] 2 (𝑑 = 4.20) [m]

1 0.179 0.123 0.145 0.096
2 0.179 0.111 0.133 0.095
3 0.218 0.143 0.150 0.111
4 0.090 0.076 0.15 0.096

covered 2 (see Fig. 15). From Table 1, we can notice that with the
adopted 𝛽 = 1.62, we have a smaller average positioning error for 2
with respect to 3, while still preserving a larger coverage area (see
Fig. 15-b), which is in perfect accordance with the numerical analysis
of Section 5. Finally, from both the tables, we can notice that the RMSE
and the GDoP follow the same exact patterns, i.e., when the GDoP of
2 is less than 3 so does the RMSE, and vice-versa, which empirically
validates once our choice of choosing the GDoP to meet the target
uncertainty.

7. Conclusion

In this paper, we have presented a novel solution for an algorithm
that produces a large scale deployment for ranging sensors so that a
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Fig. 15. Experimental positioning locations (numbered 1 to 4) and two different anchor deployments. (a) 2 and 3 with the same 𝑑 = 2.59 m (b) 2 with 𝑑 = 4.20 m and 3
ith 𝑑 = 2.59 m.
Table 2
GDoP values for the four different positions and the two configurations of Fig. 15.

Target 3 2 (𝑑 = 2.59) [m] 2 (𝑑 = 4.20) [m]

1 2.260 2.338 1.419
2 1.947 2.168 1.419
3 2.126 2.190 1.414
4 1.454 1.596 1.455

few important requirements are respected. The requirements are of the-
oretical nature and practical nature and include scalability, generality,
optimality, reliability and ability to deal with the physical limitations of
the sensors (first and foremost the limited sensing range). We have pro-
posed a two step algorithm in which first a basic cell structure (or tile)
is designed and optimised to cover a specified area with guaranteed
compliance with the desired target uncertainty, and then this structure
is replicated in order to cover the entire space. The key contributions
of the paper have been to show: the geometric properties of the cell,
an algorithm to design it with a minimal symmetric configuration of
anchors, and how the covering efficiency can be maximised when the
number of anchors is chosen as the smallest (i.e., 𝑛 = 3).

A large amount of work is still ongoing or is reserved for fu-
ure investigations. One issue we are coping with is the extension of
he proposed analysis with heterogeneous sensing range and to the
hree/dimensional case. Another direction of work is to study how the
roposed results extend to localisation problems and how the cells may
e modified still verifying the target uncertainty (this is relevant to
dapt the cells to challenging scenarios). In particular, the exploitation
f the massive computing power available in the new generation of
igh Performance Computers will be key to the scalability of the
pproach. We will study how to define the cell structure to fit the com-
utation style induced by this type of architectures. Moreover, we plan
o extend the analysis to more complicated uncertainty models that
onsider the effect of the environment generating multipath and biases,
onsidering both model-based and data-driven approaches as [36,37]
nd powerful computing platforms.

RediT authorship contribution statement

Farhad Shamsfakhr: Conceptualization, Methodology, Investiga-
ion, Software, Data curation, Writing – original draft, Validation. Luigi
Palopoli: Supervision, Investigation, Methodology, Writing – review
12
& editing. Daniele Fontanelli: Conceptualization, Supervision, Inves-
tigation, Methodology, Writing – original draft, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] D. Fontanelli, Perception for autonomous systems: A measurement perspective
on localisation and positioning, IEEE Instrum. Meas. Mag. 25 (4) (2022) 4–9,
http://dx.doi.org/10.1109/MIM.2022.9777773.

[2] A. Filgueira, H. González-Jorge, S. Lagüela, L. Díaz-Vilariño, P. Arias, Quantifying
the influence of rain in LiDAR performance, Measurement 95 (2017) 143–148.

[3] N. Ahmed, S.S. Kanhere, S. Jha, On the importance of link characterization for
aerial wireless sensor networks, IEEE Commun. Mag. 54 (5) (2016) 52–57.

[4] G. Bellusci, G.J.M. Janssen, J. Yan, C.C.J.M. Tiberius, Model of distance and
bandwidth dependency of TOA-based UWB ranging error, in: IEEE International
Conference on Ultra-Wideband, Vol. 3, 2008, pp. 193–196, http://dx.doi.org/10.
1109/ICUWB.2008.4653448.

[5] N.A. Alsindi, B. Alavi, K. Pahlavan, Measurement and modeling of ultrawideband
TOA-based ranging in indoor multipath environments, IEEE Trans. Veh. Technol.
58 (3) (2009) 1046–1058, http://dx.doi.org/10.1109/TVT.2008.926071.

[6] V. Magnago, L. Palopoli, R. Passerone, D. Fontanelli, D. Macii, Effective landmark
placement for robot indoor localization with position uncertainty constraints,
IEEE Trans. Instrum. Meas. 68 (11) (2019) 4443–4455, http://dx.doi.org/10.
1109/TIM.2018.2887071.

[7] P. Nazemzadeh, D. Fontanelli, D. Macii, Optimal placement of landmarks
for indoor localization using sensors with a limited range, in: International
Conference on Indoor Positioning and Indoor Navigation, IPIN, IEEE, Madrid,
Spain, 2016, pp. 1–8, http://dx.doi.org/10.1109/IPIN.2016.7743631.

[8] A.E. Redondi, E. Amaldi, Optimizing the placement of anchor nodes in rss-
based indoor localization systems, in: 2013 12th Annual Mediterranean Ad Hoc
Networking Workshop (MED-HOC-NET), IEEE, 2013, pp. 8–13.

[9] J.N. Ash, R.L. Moses, On optimal anchor node placement in sensor localization by
optimization of subspace principal angles, in: 2008 IEEE International Conference
on Acoustics, Speech and Signal Processing, IEEE, 2008, pp. 2289–2292.

[10] B. Tatham, T. Kunz, Anchor node placement for localization in wireless sensor
networks, in: 2011 IEEE 7th International Conference on Wireless and Mo-
bile Computing, Networking and Communications (WiMob), IEEE, 2011, pp.
180–187.

http://dx.doi.org/10.1109/MIM.2022.9777773
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb2
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb2
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb2
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb3
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb3
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb3
http://dx.doi.org/10.1109/ICUWB.2008.4653448
http://dx.doi.org/10.1109/ICUWB.2008.4653448
http://dx.doi.org/10.1109/ICUWB.2008.4653448
http://dx.doi.org/10.1109/TVT.2008.926071
http://dx.doi.org/10.1109/TIM.2018.2887071
http://dx.doi.org/10.1109/TIM.2018.2887071
http://dx.doi.org/10.1109/TIM.2018.2887071
http://dx.doi.org/10.1109/IPIN.2016.7743631
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb8
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb8
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb8
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb8
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb8
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb9
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb9
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb9
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb9
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb9
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb10
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb10
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb10
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb10
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb10
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb10
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb10


Measurement 211 (2023) 112666F. Shamsfakhr et al.
[11] S.P. Chepuri, G. Leus, A.-J. van der Veen, Sparsity-exploiting anchor place-
ment for localization in sensor networks, in: 21st European Signal Processing
Conference (EUSIPCO 2013), IEEE, 2013, pp. 1–5.

[12] H. Sun, O. Büyüköztürk, Optimal sensor placement in structural health mon-
itoring using discrete optimization, Smart Mater. Struct. 24 (12) (2015)
125034.

[13] K.-V. Yuen, X.-H. Hao, S.-C. Kuok, Robust sensor placement for structural
identification, Struct. Control Health Monit. 29 (1) (2022) e2861.

[14] H. Wang, K. Yao, G. Pottie, D. Estrin, Entropy-based sensor selection heuristic
for target localization, in: Proceedings of the 3rd International Symposium on
Information Processing in Sensor Networks, 2004, pp. 36–45.

[15] C. Papadimitriou, J.L. Beck, S.-K. Au, Entropy-based optimal sensor location for
structural model updating, J. Vib. Control 6 (5) (2000) 781–800.

[16] K.-V. Yuen, S.-C. Kuok, Efficient bayesian sensor placement algorithm for
structural identification: a general approach for multi-type sensory systems,
Earthq. Eng. Struct. Dyn. 44 (5) (2015) 757–774.

[17] S.P. Chepuri, G. Leus, Continuous sensor placement, IEEE Signal Process. Lett.
22 (5) (2014) 544–548.

[18] A. Krause, A. Singh, C. Guestrin, Near-optimal sensor placements in gaussian
processes: Theory, efficient algorithms and empirical studies, J. Mach. Learn.
Res. 9 (Feb) (2008) 235–284.

[19] S. Liu, E. Masazade, M. Fardad, P.K. Varshney, Sparsity-aware field estimation
via ordinary kriging, in: 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP, IEEE, 2014, pp. 3948–3952.

[20] Y. Chen, J.-A. Francisco, W. Trappe, R.P. Martin, A practical approach to
landmark deployment for indoor localization, in: 2006 3rd Annual IEEE Com-
munications Society on Sensor and Ad Hoc Communications and Networks, Vol.
1, IEEE, 2006, pp. 365–373.

[21] J. Liang, M. Liu, X. Kui, A survey of coverage problems in wireless sensor
networks, Sens. Transducers 163 (1) (2014) 240.

[22] R. Zekavat, R.M. Buehrer, HandBook of Position Location: Theory, Practice and
Advances, Vol. 27, John Wiley & Sons, 2011.

[23] D. Fontanelli, F. Shamsfakhr, D. Macii, L. Palopoli, An uncertainty-driven and
observability-based state estimator for nonholonomic robots, IEEE Trans. Instrum.
Meas. 70 (2021) 1–12, http://dx.doi.org/10.1109/TIM.2021.3053066, available
online.
13
[24] F. Shamsfakhr, A. Antonucci, L. Palopoli, D. Macii, D. Fontanelli, Indoor local-
isation uncertainty control based on wireless ranging for robots path planning,
IEEE Trans. Instrum. Meas. 71 (2022) 1–11, http://dx.doi.org/10.1109/TIM.
2022.3147316.

[25] D. Fontanelli, F. Shamsfakhr, L. Palopoli, Cramer–rao lower bound attainment in
range-only positioning using geometry: The G-WLS, IEEE Trans. Instrum. Meas.
70 (2021) 1–14, http://dx.doi.org/10.1109/TIM.2021.3122521.

[26] I. Sharp, K. Yu, Y.J. Guo, Gdop analysis for positioning system design, IEEE
Trans. Veh. Technol. 58 (7) (2009) 3371–3382, http://dx.doi.org/10.1109/TVT.
2009.2017270.

[27] S.M. Kay, Fundamentals of Statistical Signal Processing, Prentice Hall PTR, 1993.
[28] C. Wu, W. Su, Y. Ho, A study on gps gdop approximation using support-

vector machines, IEEE Trans. Instrum. Meas. 60 (1) (2011) 137–145, http:
//dx.doi.org/10.1109/TIM.2010.2049228.

[29] R.J. Milliken, C.J. Zoller, Principle of operation of navstar and system
characteristics, Navigation 25 (2) (1978) 95–106.

[30] M.P. Fewell, Area of Common Overlap of Three Circles, Tech. rep., Defence
Science and Technology Organisation Edinburgh (Australia) Maritime, 2006.

[31] Y.-C. Wang, C.-C. Hu, Y.-C. Tseng, Efficient placement and dispatch of sensors
in a wireless sensor network, IEEE Trans. Mob. Comput. 7 (2) (2007) 262–274.

[32] J. Zhu, B. Wang, The optimal placement pattern for confident information
coverage in wireless sensor networks, IEEE Trans. Mob. Comput. 15 (4) (2015)
1022–1032.

[33] R.J. Fowler, M.S. Paterson, S.L. Tanimoto, Optimal packing and covering in the
plane are np-complete, Inform. Process. Lett. 12 (3) (1981) 133–137.

[34] D.S. Hochbaum, Approximation algorithms for the set covering and vertex cover
problems, SIAM J. Comput. 11 (3) (1982) 555–556.

[35] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction To Algorithms,
MIT Press, 2009.

[36] K. Manohar, B.W. Brunton, J.N. Kutz, S.L. Brunton, Data-driven sparse sensor
placement for reconstruction: Demonstrating the benefits of exploiting known
patterns, IEEE Control Syst. Mag. 38 (3) (2018) 63–86.

[37] Y. Saito, T. Nonomura, K. Yamada, K. Nakai, T. Nagata, K. Asai, Y. Sasaki,
D. Tsubakino, Determinant-based fast greedy sensor selection algorithm, IEEE
Access 9 (2021) 68535–68551.

http://refhub.elsevier.com/S0263-2241(23)00230-0/sb11
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb11
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb11
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb11
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb11
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb12
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb12
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb12
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb12
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb12
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb13
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb13
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb13
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb14
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb14
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb14
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb14
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb14
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb15
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb15
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb15
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb16
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb16
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb16
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb16
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb16
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb17
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb17
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb17
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb18
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb18
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb18
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb18
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb18
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb19
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb19
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb19
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb19
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb19
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb20
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb20
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb20
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb20
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb20
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb20
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb20
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb21
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb21
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb21
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb22
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb22
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb22
http://dx.doi.org/10.1109/TIM.2021.3053066
http://dx.doi.org/10.1109/TIM.2022.3147316
http://dx.doi.org/10.1109/TIM.2022.3147316
http://dx.doi.org/10.1109/TIM.2022.3147316
http://dx.doi.org/10.1109/TIM.2021.3122521
http://dx.doi.org/10.1109/TVT.2009.2017270
http://dx.doi.org/10.1109/TVT.2009.2017270
http://dx.doi.org/10.1109/TVT.2009.2017270
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb27
http://dx.doi.org/10.1109/TIM.2010.2049228
http://dx.doi.org/10.1109/TIM.2010.2049228
http://dx.doi.org/10.1109/TIM.2010.2049228
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb29
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb29
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb29
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb30
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb30
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb30
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb31
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb31
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb31
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb32
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb32
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb32
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb32
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb32
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb33
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb33
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb33
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb34
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb34
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb34
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb35
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb35
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb35
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb36
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb36
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb36
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb36
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb36
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb37
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb37
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb37
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb37
http://refhub.elsevier.com/S0263-2241(23)00230-0/sb37

	Minimising the number of ranging sensors verifying target positioning uncertainty
	Introduction
	Background Material
	Problem formulation

	Geometric Analysis
	Pn region
	Example: P3 region
	Anchor deployment for Pn region

	Beyond P3: the P2 case
	The P2 region
	Positioning with P2
	Positioning uncertainty in P2 and P3 cells

	Simulation Results
	Ranging anchors deployment
	Positioning results

	Experimental Results
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


