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A B S T R A C T   

Riverbed scour is the leading cause of bridge failure worldwide. Recent developments in sensor technology for 
structures have resulted in more bridges being instrumented and monitored. However, alongside scour moni
toring systems, there is a need of techniques to handle the data obtained and exploit them to inform the man
agement of the bridge scour risk. This paper illustrates the development of a decision support system (DSS) for 
bridge scour risk management, which is based on a probabilistic framework for scour risk estimation, enhanced 
by real-time information from scour monitoring systems and in line with current risk procedures used by 
transport agencies. The proposed DSS provides bridge operators with adaptive measurement-informed water 
level thresholds triggering bridge closure to traffic under heavy floods. The application of the DSS is illustrated 
by considering a case study of three bridges at risk of scour managed by Transport Scotland. It is shown that 
information from scour sensors within the proposed DSS allows reducing the uncertainty in the scour estimates 
and yields adaptive water level thresholds triggering bridge closure to traffic that can differ significantly from 
those currently considered by transport agencies. This can ultimately result in a reduction of false alarms and 
unnecessary bridge closures.   

1. Scour risk management 

Bridge scour is the removal of material from the bed of streams 
around bridge foundations under the erosive action of flowing water 
[1–4]. This phenomenon is responsible for a large number of failures 
worldwide. For example, in the UK, scour has caused the collapse of 
almost one bridge per year in the period 1846–2013 [5]. In the US, an 
average annual rate of 22 bridges was found to collapse or undergo 
severe damage according to a study by Briaud et al. [6]. Wardhana and 
Hadipriono [7] also showed that the combined figure of 266 
flood/scour-related cases in the US constitutes the most dominant bridge 
failure cause (53% of the total cases of failures). Climate change is ex
pected to exacerbate the bridge scour risk [8]. For example, according to 
the UK Climate Change Risk Assessment, considering a medium emis
sion scenario, an increase of 15–20% of failure rates is expected by 
2050s [9,10]. 

Transport agencies responsible for bridge management carry out 
regular assessments of the scour risk of bridges and assign them risk 
scores, which are used for planning inspections and prioritising 

mitigation interventions. In Scotland, around 8% of the 2029 bridges 
and culverts over water managed by Transport Scotland (TS) are clas
sified as scour critical and need scour monitoring and protection mea
sures. In the UK, the Procedure BD97/12 [11] is used for evaluating the 
scour risk of road bridges. The risk evaluation is based on an essentially 
deterministic approach, which considers a predefined flood scenario (i. 
e., the 1 in 200-year flood adjusted by an additional 20% on the design 
flood to account for potential effects of climate change) and employs 
rather simple models for scour assessment. Moreover, this approach 
disregards the various uncertainties inherent to the hydraulic and bridge 
properties, and to the models used for scour assessment [12–14]. 

Transport agencies also issue action plans, establishing a systematic 
and structured approach to how they must respond to the threat of 
adverse weather. The purpose of these documents is to define the de
cision process and the actions that must be taken during or following an 
extreme weather event. According to TS’s scour management strategy 
and flood emergency plan, the decision of whether to close a bridge to 
traffic or not under a heavy flood is made based on the comparison 
between the water level at the upstream section of the bridge and a 
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critical water level, represented by a marker installed on the bridge. This 
critical threshold corresponds to the water level expected in corre
spondence of a specific return period of the flood that is likely to cause 
damage (i.e., 200 years return period), but can also be defined consid
ering other potential problems for the bridge (e.g., deck uplifting or 
inundation). Nevertheless, the critical water level cannot directly be 
associated to a precise level of scour at the bridge foundations because 
there is not a unique correspondence between scour depth and water 
levels. In fact, different hydraulic processes can generate the same scour 
depth at a bridge pier. Moreover, scour can accumulate under multiple 
flood events [13,14]. Finally, the models employed for evaluating scour 
are inaccurate and affected by many uncertainties that must be taken 
into account in the scour assessment. As a result of this, the probability 
of collapse of a bridge due to scour may differ significantly from the 
probability of exceedance of the critical water level [2]. 

For the reasons discussed above, current emergency and long-term 
scour risk management approaches should be improved, (i) by adding 
a more explicit consideration of the various sources of uncertainty that 
affect the problem, thus enabling the shift from a deterministic to a 
probabilistic evaluation of the scour risk, and (ii) by integrating in the 
risk assessment the observations from monitoring sensors, allowing the 
reduction of the uncertainty in the scour risk estimates, and thus helping 
bridge operators in taking the optimal decisions concerning bridge scour 
risk management [15]. 

Bridge scour monitoring is widely recognised as an important scour 
mitigation measure, e.g., Argyroudis et al. [16] and Tubaldi et al. [4], 
Giordano et al. [15]. Many sensors have been developed and tested to 
achieve more precise evaluations of the extent of scour at bridge foun
dations and of the relevant effects on the performance of bridge com
ponents. Reference can be made to Prendergast and Gavin [17], Maroni 
et al. [18], Achillopoulou et al. [19] and Tubaldi et al. [20] for a review 
of these. Alongside the development of monitoring systems for bridge 
scour monitoring, there is also a need of techniques to handle the data 
obtained from sensors and provide bridge owners and managers with 
useful information for optimal management of bridge scour. Bayesian 
Networks (BNs) have already been employed in the context of flood risk 
assessment of bridges. For example, Martínez-Martínez et al. [21] 
developed a BN-based framework for the risk assessment of masonry 
bridge pier failure due to a combination of drag forces and scour in 
presence of woody debris trapping phenomena. The proposed frame
work provides a quantitative support to bridge maintenance and in
spection strategies. Maroni et al. [22] developed a BN-based approach 
for propagating the information from available scour probes and 
gauging stations to update the probabilistic distribution of scour at the 
foundations of different bridges in a network. However, this framework 
must be further developed to exploit the reduction of uncertainty 
stemming from available observations to support the decision-making 
process. 

In this paper, a Decision Support System (DSS) is developed for 
bridge scour management, which extends and complements current 
scour risk rating procedures and action plans of transport agencies by 
enabling the use of monitoring data in the decision-making process. The 
DSS produces measurement-informed thresholds of the river flow depth 
triggering bridge closure to traffic under heavy floods, based on the 
updated estimates of the probabilistic distribution of scour obtained by 
introducing sensor observations in the BN developed by Maroni et al. 
[22]. 

The rest of the paper is structured as follows: Section 2 presents the 
procedures currently followed by TS to classify bridges at risk of scour 
and their emergency plans providing the actions to be implemented in 
the case of an extreme weather event. Section 3 presents the proposed 
monitoring-informed DSS for bridge scour risk management. Section 4 
describes the application of the DSS to a case study consisting of three 
bridges managed by TS in South-West Scotland and discusses the ob
tained results by highlighting the changes to current risk management 
procedures. The paper ends with a conclusion and future works section. 

2. Current procedures for scour risk assessment and 
management 

In the UK, the assessment of the scour risk at highway and railway 
structures is carried out in accordance with the Procedure BD 97/12 
(Highway [11]). This procedure introduces a bridge scour risk classifi
cation based on the relative scour depth DR, which denotes the ratio 
between the total scour depth DT and the foundation depth DF (Fig. 1). 
The total scour depth DT is defined as the sum of constriction and local 
scour depth, respectively DC and DL. The BD97/12 provides the formula 
for estimating these by starting from an assessment flow, i.e., the flow 
corresponding to a return period of 200 years. Furthermore, a priority 
factor PF is used in the scour risk rating to account for several factors, 
such as the history of scour problems, the type of foundation, and the 
importance of the bridge (i.e., vehicle traffic volume). For instance, for 
PF = 2, the scour risk classes are defined by the value of DR as follows: 
Class 5 for DR ≤ 1, Class 4 for 1 〈 DR ≤ 1.8, Class 3 for 1.8 < DR ≤ 2.3, 
Class 2 for 2.3 < DR ≤ 3.5, and Class 1 for DR 〉 3.5. It is noteworthy that 
the use of the models of BD97/12 is likely to result in an overestimation 
of the scour depth. This explains values of DR significantly higher than 1 
that can be observed in the scour risk classification of Fig. 1. Never
theless, values of DR>1 may not necessarily result in foundation and 
bridge collapse due to the shape of the scour hole. This issue is discussed 
in detail in Tubaldi et al. [4]. 

In Scotland, TS has also issued a plan describing the actions to be 
taken during or after the occurrence of a flood event and furnishing a 
systematic and structured approach to how to respond to the threat of 
adverse weather [23]. A “visual” decision scheme is employed, which is 
based on the comparison between the water level and the markers 
placed on the bridge’s upstream surface. 

Two different marker plates are used, the Flood Level Marker (FLM) 
plate that corresponds to the 1 in 200-year flood level according to the 
BD97/12 (Fig. 2(a)), and the Red Plate. This latter is installed at the level 
of the bridge soffit in those structures where the 1 in 200-year flood level 
is higher than this (Fig. 2(b)). This marker provides a warning for deck 
uplift, inundation, or no freeboard, risking debris impact. 

Fig. 1. Scour risk classification performed according to BD97/12.  
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When the water exceeds the levels shown on these markers, specific 
actions such as closure of the bridge to traffic, must be taken (see 
Table 1). Following the closure, inspection of the structure, including 
underwater parts and the riverbed, is undertaken as soon as it is safely 
practicable to do so, and the bridge may be re-opened to traffic once 
water levels have reduced sufficiently and only if there are no visible 
signs of deformation or structural distress. The bridge may have to be 
closed for many days, thus resulting in significant downtime. 

In summary, the action plan specifies that any high-risk structure 
must be closed when the water level reaches a critical threshold at which 
the bridge is deemed to be at risk of failure. The threshold’s choice is 
conservative by nature, so that safety of road users can be ensured by 
closing the bridge before the water level rises to a point at which serious 
scour is likely to develop. However, this plan does not consider the 
complexity in the temporal evolution of the scour process. For instance, 
in the case of live-bed regime, soil material may be partially redeposited 
in the scour depth at the end of the flood [24]. Thus, measurements of 
scour carried out at the end of a flood may not capture the maximum 
scour that occurred during the event as the scour hole might have partly 
filled during the recession [25]. 

Furthermore, scour depth formula are often very conservative [12, 
26,27], being based on laboratory experiments and the assumption that 
the designed flood acts over an infinite duration [2], while real flood 
events are characterised by different hydrograph duration and magni
tude. Thus, high-flow events may not necessarily result in the develop
ment of a significant scour hole, especially if they have a short duration. 
Moreover, bridges are exposed to sequences of flood events, each 
potentially contributing to scouring. Thus, their safety could be jeop
ardized by the progressive accumulation of scour under multiple events 
with low return period (i.e., water levels below the FLM) occurring in 
sequence, as was the case of the Lamington viaduct [28]. 

For the reasons above, the 1 in 200-year flood level marker alone is 
only a very rough indicator of the scour risk, which remains unknown 
until the flood has receded, thus allowing divers, sonar or probing sur
veys to safety check the bridge foundations. More accurate, real-time 
scour evaluations are required to improve the flood emergency man
agement for bridges and avoid risk misclassifications, unnecessary 
bridge closures, and excessive downtime. 

3. Formulation 

This section illustrates a decision support system that aims to 
improve current bridge flood emergency management systems by 
exploiting monitoring data for making better-informed decisions 

concerning bridge closure under heavy floods. In particular, we define 
an adaptive water level threshold based on information from monitored 
scour depths and water levels upstream of the bridge. 

3.1. Predictive model 

In order to apply this framework, we need to state a model that al
lows prediction of the scour depth DR based on water level yU. An 
extensive number of studies has been carried out during the last decades 
on the physics and modelling of the scour phenomenon. Several ap
proaches have been followed in order to focus on topics such as physical 
modelling, controlling dimensionless scour parameters or scour esti
mates including empirical models, numerical frameworks and non- 
deterministic approaches [2]. However, the main goal of every study 
is to find a model to predict such a complex phenomenon as the problem 
of scour at bridge foundations and then manage the risk of scour bridge 
failure. 

In this work, we use the same probabilistic predictive model devel
oped by Maroni et al. [22] for bridge scour hazard assessment and 
updating, and the same classification scheme of current procedures of 
transport agencies, which were described in the previous section. 
Therefore, using epistemological terms, three different inference cases 
are analysed in the predictive model:  

1) a prior inference of the scour depth based on the sole observation of 
the water level yU;  

2) a posterior inference of the scour depth DR1 based on the direct 
observation of scour at the same location 1 where the scour sensor is 
installed;  

3) a posterior inference of the scour depth DR2 at the unmonitored 
location 2 based on the indirect observation of scour at the location 1 
and water level at location 2. 

The prior scour risk predictive model is based on the current scour 
risk assessment and management procedures used by transport agencies, 
where no information of scour depth enters the decision process and the 
monitored quantity that triggers bridge closures is the water level up
stream of the bridge yU. The posterior scour risk predictive model for a 
directly monitored location (i.e., denoted to as location 1) exploits in
formation from the direct measurement of the relative scour depth (DR1) 
at the foundation of a bridge pier. Thus, the monitored quantity that 
triggers the bridge closure to traffic coincides with DR1 as there is no 
need to consider the water level as a proxy of scour. Finally, the posterior 
scour risk predictive model for an indirectly monitored location (i.e., 
denoted to as location 2) exploits information from the measurement of 
the scour depth at the location 1 and the water level observed upstream 
the location 2. The monitored quantity that triggers the bridge closure to 
traffic is the water level upstream of the bridge, as illustrated more in 
detail below. 

The predictive model above is based on the BN-based framework 
developed in Maroni et al. [22]. The BN is a directed acyclic graph 
expressing the relationship between the various variables involved in 
the scour risk evaluation. The BN developed by Maroni et al. [22] is 
based on the BD 97/12 [11], which is the procedure followed by Na
tional Highways and Transport Scotland (TS) to assess the scour risk of 
their road bridges. In particular, starting from the river flow charac
teristics (such as river flow Q), different models are applied to estimate 
the depth of flow upstream of the bridge yU, and the two components of 
scour, constriction scour (DC) and local scour (DL), whose sum is equal to 
the total scour depth DT. Fig. 3 shows an example of a BN used to esti
mate the scour depth at one bridge with two piers in the riverbed. 

Manning equation is used to describe the relationship between Q and 
water depth yU whereas a nonlinear system of three equations in three 
variables is developed to estimate the constriction scour depth DC (i.e., 
DC,ave is the mean value of constriction scour depth). The system consists 
of the Colebrook–White equation, the conservation of fluid mass and the 

Fig. 2. (a) The Flood Level Marker plate and (b) the Red Plate.  

Table 1 
Water level safety actions for structures managed by TS.  

Markers Water level Action 

Yes Below the FLM Carry out observations 
At the FLM or above it Close structure 

No Below the Red Plate Carry out observations 
At the Red Plate or above it Close structure  
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Bernoulli equation. The local scour depth DL is calculated using an 
empirical formula based on the pier geometry, the pier alignment with 
respect to the water flow and the water depth itself. Model uncertainties 
are added to each model in the BN to describe the randomness of the 
estimation processes. Two types of error are defined: one expresses the 
systematic (perfectly correlated) error that affects the estimates when 
the model is used, and the other one represents a random (uncorrelated) 
error, that is, an additional error associated with the specific location (e. 
g., pier or bridge). This type of uncertainty is not displayed in the BN 
shown in Fig. 3 for the sake of clarity. 

Many phenomena that affect the scour depth (e.g., unsteadiness of 
flow, variability of bed topography and riverbed soil conditions, etc.) are 
not explicitly modelled in the BN, but they are implicitly included via 
the abovementioned model uncertainties. The reader can refer to Mar
oni et al. [22] for more details about the definition of each model 
(including the parameters involved) and each uncertainty. These un
certainties are generally reduced by performing Bayesian Learning 
based on the available observations. The bias inherent to the scour 
models can also be corrected. It is noteworthy that the developed BN is a 
static one. A more rigorous approach for real-time scour risk assessment 
accounting for flow unsteadiness should be based on a dynamic BN (see 
e.g., [29–31]). 

The BN can be used to perform a predictive analysis to estimate the a- 
priori probability density function (pdf) of the scour depth under an 
extreme flood given the pdf of the parent nodes of the network. It can 
also be employed for performing Bayesian learning, which in this 
context denotes the updating of the scour depth at any unmonitored 
location (i.e., location 2 in Fig. 3) in the bridge infrastructure network 
based on the measurement of scour at location 1. In fact, while at the 
monitored locations quite accurate scour estimates can be achieved, 
depending on the sensor accuracy, at the unmonitored ones it is still 
possible to observe a reduction of uncertainty thanks to the correlation 
existing between the scour depths at different locations. 

3.2. Decision support system 

The proposed DSS uses the outcomes of Bayesian learning for 
defining a monitoring-informed threshold (e.g., flood level marker ySHM) 
for triggering the actions to be taken by the operator responsible for the 
bridge management. The rationale behind the DSS is that the knowledge 
of the actual scour depth at bridge foundations is characterised by sig
nificant uncertainty. Thus, the reduction of the uncertainty brought by 
sensor observations should also yield more accurate estimates of the 
critical scour levels (for location 1) or water levels (for location 2) 
triggering bridge closure, while maintaining the same target level of risk 
of bridge failure as the one inherent to current procedures. 

At the base of the development of the DSS there is the choice of the 
implicit level of risk of bridge failure that the operator is willing to 
accept, PF0. According to the simple decision tree depicted in Fig. 4, this 
risk threshold PF0 can be defined as the value of the probability of failure 
under the given flood event PF that satisfies the following equation: 

PF CF = CCB (1)  

where CCB denotes the losses due to the bridge closure, and CF denotes 
the (direct and indirect) losses incurred by letting the traffic pass over 
the bridge when it fails. It is noteworthy that repair/reconstruction 
costs, which are present regardless of the action taken, are not shown in 
Fig. 4. The losses due to the reconstruction are indeed cancelled out due 
to the assumption of linear expected utility. 

It is noteworthy that transport agencies and operators usually decide 
on bridge closure without carrying out an explicit risk/consequence 
analysis, but by comparing the water level yU (i.e., water level upstream 
the bridge) with a level marker yTA based on experience and/or engi
neering judgement. However, introducing the probability of failure 
implicitly sought by transport agencies is essential for the development 
of the proposed DSS, which defines the adaptive water level threshold by 
targeting this probability of failure. The term “adaptive” is used because 
the DSS provides an updated water level threshold whose value may 
change with the information collected in real-time by scour sensors and 
the outcomes of Bayesian learning. 

3.3. Failure probability 

In general terms, the probability of failure due to scour at one pier of 
a bridge can be expressed as the probability that the scour demand is 
equal to or greater than the scour capacity, i.e., critical scour level 
resulting in bridge collapse. The relative values of the scour depth are 
considered hereinafter for expressing the scour demand and capacity, 
consistently with risk classifications. Both the demand and the capacity 
are random variables, due to the many uncertainties inherent to the 
problem. Thus, the probability of failure can be obtained as: 

PF =

∫

DR

FC(x) fDR (x)dx (2)  

where FC(x) is the cumulative distribution function of the scour capac
ity, expressing the probability that the capacity is less than dR, and fDR (x)
is the probability density function of the relative scour demand. 

For mathematical convenience, the relative scour capacity is 
assumed to follow a normal distribution with expected value E[DR,C] and 
standard deviation σC. According to this model, the probability of failure 
PF for a given relative scour depth can be expressed as: 

Fig. 3. BN for scour estimation at one bridge with two piers.  

Fig. 4. Decision tree to define a threshold.  
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PF(DR) = P[C ≤ DR] = FC(DR) = Φ
(

DR − E
[
DR,C

]

σC

)

, (3)  

where Φ is the standard normal cumulative distribution function and E 
[DR,C] is the mean scour capacity. 

It is noteworthy that capacity models similar to the one employed 
here are widely used in other contexts such as Earthquake Engineering 
and are denoted to as fragility functions (see e.g., Gkimprixis et al., [32]. 
Fig. 5 shows the plot of Eq. (3) for two cases, corresponding to a mean 
value of scour capacity E[DR,C]=4.35 and normal standard deviation σC 
= 0.66 (i.e., fragility function 1) and to a mean value of scour capacity E 
[DR,C]=4.97 and normal standard deviation σC = 1.15 (i.e., fragility 
function 2). These values represent respectively a low and a large un
certainty in the bridge capacity. The value of E[DR,C] and σC could 
defined based on engineering judgement to yield acceptable values of 
the risk of failure for bridges belonging to different risk classes according 
to BD97/12. In the considered cases, the first fragility function is defined 
by assuming that the values of the probability of failure associated with 
the DR levels separating class 2 from class 1 and class 3 from class 2 are 
respectively PF = 10− 1 and the PF = 10− 3. The values assumed for 
fragility function 2 are PF = 10− 1 and PF = 10− 2, respectively. The DR 
levels defining the scour risk classes shown in Fig. 5 correspond to a 
bridge with a priority factor (Highway [11]) equal to 2. 

Alternatively, the values of the parameters of the fragility curve for a 
specific bridge can be evaluated by performing numerical analyses 
under increasing levels of scour, such as in Tubaldi et al. [33] and 
Argyroudis et al. [34]. Nevertheless, the mean scour capacity E[DRC] is 
expected to be significantly higher than 1, even for the case of shallow 
foundations. This is because the scour models emebedded in BD97/12 
usually tend to overestimate significantly the scour demand for the 
critical flood level. Moreover, as illustrated in Tubaldi et al. [33], 
Scozzese et al. [35] and Tubaldi et al. [4], local scour holes usually have 
an inverted paraboloid shape, and a maximum scour depth significantly 
higher than the foundation depth is required to induce bridge collapse. 

3.3.1. Prior failure probability 
The relative scour demand consistent with the current decision sys

tem of transport agencies (relying on the fixed threshold yTA) is defined 

by the pdf of the relative scour depth corresponding to yTA. This distri
bution can be obtained via Bayesian learning by entering the observa
tion yTA in correspondence of the node corresponding to the water level. 
This approach is consistent with the choice of TS of setting a red marker 
in correspondence of the water level yTA with a return period of 200 
years. The obtained samples define the “a priori” distribution of the 
relative scour demand, DR,TA, i.e., the relative scour pdf achieved from 
the BN without scour observations from scour sensors, that is, “a-priori” 
knowledge. The prior relative scour demand DR,TA can be assumed to 
follow a normal distribution with an expected value E[DR,TA] and stan
dard deviation σDR,TA . 

Since both the prior demand and the capacity are normal random 
variables, the corresponding prior failure probability PF0 for a water 
level equal to yTA can be expressed: 

PF0 = Φ

⎛

⎜
⎝

E
[
DR,C

]
− E

[
DR,TA

]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

C + σ2
DR,TA

√

⎞

⎟
⎠ (4) 

The next subsections discuss the calculation of the threshold for two 
cases a posteriori, corresponding respectively to a directly monitored 
location (i.e., location “1”), and to an unmonitored location (i.e., loca
tion “2”). 

3.3.2. Posterior failure probability and threshold for a directly monitored 
location 

Scour probes can achieve accurate scour measurements in the loca
tion where they are installed, and thus at these locations the scour de
mand is a deterministic variable DR1, directly measured by the scour 
probe. The posterior failure probability associated with the updated 
scour depth distribution when the bridge location is directly monitored 
can be expressed as: 

PF1 = Φ
(

E
[
DR,C

]
− DR1

σC

)

(5) 

The failure probability must be the same as the one implicit in cur
rent procedures PF0 (i.e., the prior distribution); therefore, the critical 
mean level of scour DR that should trigger bridge closure can be found by 
solving the inverse reliability problem PF0 = PF1 for the unknown DR. 
This yields the following equation: 

E
[
DR,C

]
− E

[
DR,TA

]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

C + σ2
DR,TA

√ =
E
[
DR,C

]
− DR1

σC
(6) 

The solution is: 

DR1 = DR = E
[
DR,TA

]
γ + E

[
DR,C

]
(1 − γ) (7)  

where the factor γ weights the total uncertainties in the posterior and 
prior distributions (e.g., relative scour demand and capacity): 

γ =
σC

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

C + σ2
DR,TA

√ . (8) 

Since the monitoring system directly measures the scour at the 
monitored location there is no need to convert the critical mean level of 
scour DR into a critical water level in order to update a fixed flood level 
marker. Therefore, Eq. (7) provides a monitoring-based scour threshold 
that incorporates the uncertainty of the scour capacity and the piece of 
information provided by the scour observation (i.e., there is no uncer
tainty in the demand but in the capacity alone). It can be used under an 
extreme weather event to trigger bridge closure to traffic if the measured 
relative scour depth DR exceeds DR. This updated scour threshold is valid 
only for monitored bridge locations, since for the unmonitored it is 
necessary to account also for the dispersion of the scour demand, as 
discussed in the following subsection. 

Fig. 5. Fragility functions for scour capacity C.  
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3.3.3. Posterior failure probability and threshold for an indirectly 
monitored location 

In general, the scour depth is uncertain at locations not equipped 
with a scour monitoring system. This is also the case for indirect mea
surements of scour, e.g., using inclinometers or vibration-based identi
fication techniques [17,20]. The posterior probabilistic distribution of 
the scour depth DR2|1, which can be read as the posterior pdf of the scour 
at the location 2 (i.e., unmonitored) given the observation at location 1, 
can be assumed to follow a normal distribution with mean value E[DR2| 

1] and normal standard deviation σDR2|1 . 
The posterior failure probability associated with the updated scour 

depth distribution can be expressed as: 

PF2|1 = Φ

⎛

⎜
⎝

E
[
DR,C

]
− E

[
DR2|1

]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

C + σ2
DR2|1

√

⎞

⎟
⎠ (9)  

where E[DR2|1] is the expected value of the scour threshold that informs 
asset manager about the bridge closure to traffic. 

Since the failure probability to be targeted by the new DSS should be 
the same as the one implicit in current procedures PF0 (i.e., the prior 
distribution), the critical mean level of scour DR,SHM that should trigger 
bridge closure can be found by solving the inverse reliability problem 
PF0 = PF2|1 for the unknown E[DR2|1]. This yields the following equation: 

E
[
DR,C

]
− E

[
DR,TA

]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

C + σ2
DR,TA

√ =
E
[
DR,C

]
− E

[
DR2|1

]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

C + σ2
DR2|1

√ (10) 

The solution is: 

E
[
DR2|1

]
= DR,SHM = E

[
DR,TA

]
γ + E

[
DR,C

]
(1 − γ) (11)  

where this time the factor γ is expressed as: 

γ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

C + σ2
DR2|1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

C + σ2
DR,TA

√ . (12) 

Eq. (11) can also be rewritten as follows: 

DR,SHM

E
[
DR,TA

] = γ +
E
[
DR,C

]

E
[
DR,TA

] (1 − γ) (13) 

Since γ is expected to be less than 1, it can be concluded that for 
bridges that are classified at low risk of scour according to BD97/12 (E 
[DR,C] >> E[DR,TA]), DR,SHM is expected to be significantly higher than E 
[DR,TA], whereas for bridges at high risk of scour, DR,SHM can actually be 
lower than E[DR,TA]. 

In order to keep the same decision-making approach as the one 
currently adopted by agencies, the concept of monitoring-based flood 
level marker ySHMis introduced to update the fixed markers already 
defined for bridges at risk of scour. We label this variable as adaptive 
threshold. This marker is adaptive in the sense that can change continu
ously with the change of monitored value of DR1. The adaptive threshold 
should be calculated from DR,SHM given by Eq. (11) by backward appli
cation of the predictive model. In order to invert the prediction model, it 
is convenient to replace it with a linear relationship whose parameters 
are identified by a simple linear regression analysis. For this purpose, 
Bayesian Learning is performed multiple times, considering several 
possible combinations of DR1 and yU2, and evaluating the corresponding 
mean value and standard deviation of the posterior distribution of DR2|1, 
respectively E[DR2|1] and σDR2|1 . A multiple regression analysis is then 
performed to describe the variation of E[DR2|1] with yU2 and DR1: 

E
[
DR2|1

]
= f (yU2,DR1) = b1 + b2DR1 + b3yU2 + b4DR1yU2. (14) 

A similar model can be used to fit σDR2|1 . However, as will be shown in 
the Case study section, σDR2|1 remains practically constant in all the 
investigated simulations. 

By replacing E[DR2|1] given by Eq. (14) in Eq. (11), a new expression 
of the water level yU2 can be defined, which satisfies the equality be
tween the prior and posterior failure probabilities (i.e., PF0 = PF2|1) and 
corresponds to the sought monitoring-based flood level marker: 

yU2 = ySHM =
E
[
DR,TA

]
γ + E

[
DR,C

]
(1 − γ) − b2DR1 − b1

(b3 + b4DR1)
(15) 

In summary, Eq. (15) provides an explicit expression of the adaptive 
threshold that should be used as a marker to decide whether to close the 
bridge or not, based on the indirect observation of scour depth DR1. Eq. 
(15) assumes that the predictive model can be fit by a linear regression 
as in Eq. (14) and that the uncertainty of the prediction is effectively 
independent on the observation. 

4. Case study 

4.1. Description 

The application of the monitoring-based DSS and the measurement- 
informed water level thresholds is illustrated considering the case study 
already presented in Maroni et al. [22]. This consists in a network of 
three scour-critical bridges managed by TS in south-west Scotland. The 
bridges cross the same river (River Nith) and only one pier of Bridge 1 
(marked in green in Fig. 6b) is instrumented with a scour monitoring 
system [18]. The unmonitored location for each bridge (i.e., the piers 
located in the riverbed) is marked in blue in their descriptive figure. The 
main characteristics of these bridges are reported below:  

• Bridge 1: A76 200 Nith bridge on River Nith in New Cumnock 
(Fig. 6). It is a 3-span (9.1 m, 10.7 m and 9.1 m) stone-masonry arch 
bridge, with two piers in the riverbed. Abutments and piers are all 
founded on spread footings on the natural riverbed.  

• Bridge 2: A76 120 Guildhall bridge in Kirkconnel (Fig. 7). It is a 3- 
span (8.8 m, 11.3 m and 11.3 m) masonry arch bridge, with one 
pier in the riverbed. Both the abutments and the piers are founded on 
spread footings on natural ground.  

• Bridge 3: A75 300 Dalscone bridge in Dumfries (Fig. 8). It is a 7-span 
(spans of 35 m and two of 28 m) steel-concrete composite bridge, 
with one pier in the riverbed. The abutments and piers are founded 
on pile foundations on natural ground. 

The foundation depth DF of the first two bridges is unknown because 
they were built in the 18th century. Therefore, in accord with BD97/12, 
a depth of 1 m is assumed in the calculation of the relative scour depth 
DR. Instead, the Dalscone bridge is founded on sheet piling; according to 
procedure BD 97/12, in the case of a piled foundations DF must be 
assumed equal to the underside depth of the pilecap, which for the 
Dalscone Bridge is 3 m. 

4.2. Prior relative scour prediction 

For each bridge, Transport Scotland has defined a fixed water level 
marker yTA as reported in Table 2. Based on these values, we wish to 
establish the mean value and standard deviation of the scour depth from 
the predictive model that are consistent with this water marker. 

The probabilistic distribution of the scour demand consistent with 
the current decision system of transport agencies (relying on a fixed 
threshold yTA) can be obtained via Bayesian learning by entering the 
observation yTA in correspondence of the node corresponding to the 
water level as shown in Fig. 9. The figure illustrates the application of 
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the BN-based probabilistic framework developed by Maroni et al. [22] 
for calculating the total scour depth experienced at the bridge pier when 
the water level is equal to fixed threshold yTA. The samples of the total 
scour depth, normalised by the foundation depth DF, define the prior 
distribution of the relative scour demand, DR,TA, i.e., the relative scour 
pdf achieved from the BN without scour observations from scour sen
sors. This corresponds to the “a-priori” knowledge of the scour depth. 

Table 2 illustrates the parameters (i.e., expected value E[DR,TA] and 
standard deviation σDR,TA ) of the pdf of the prior relative scour demand 
corresponding to yTA for the three studied bridges. The Kolmogorov- 
Smirnov normality test [36] is performed on the samples of DR,TA and 
the p-value returned by the test for the three cases are also reported in 
Table 2. These values are always higher than the value of 0.05, which is 
usually considered as level of significance, and thus the samples can be 
assumed to follow a normal distribution. 

The results shown in Table 2, especially the ones in terms of standard 
deviation, confirm the significant uncertainty affecting the relationship 
between water levels and scour depths. Even when the water level is 
perfectly known, the scour depth exhibits a not-negligible dispersion, 
corresponding to a coefficient of variation in the range between 0.27 and 
0.28. As expected, these values are lower than those obtained in Maroni 
et al. [22] by also considering the uncertainty in the water levels (of the 
order of 0.35–0.40). 

Fig. 10 illustrates the relationship between the samples of the rela
tive total scour depth DR and the upstream water level yU for each of the 
three considered bridges. These samples have been obtained by per
forming predictive analysis, entering in the BN the discharge data 
recorded by gauging stations upstream of the bridges in the last 10 years. 

Fig. 6. (a) A76 200 Nith Bridge; and (b) bridge elevation.  

Fig. 7. (a) A76 120 Guildhall bridge; and (b) bridge elevation.  

Fig. 8. (a) A75 300 Dalscone bridge; and (b) bridge elevation.  

Table 2 
Prior relative scour demand corresponding to yTA.   

Nith bridge Guildhall bridge Dalscone bridge 

yTA 2.530 2.346 4.398 
E[DR,TA] 2.806 3.035 1.163 
σDR,TA 0.7389 0.8378 0.3274 
p-value 0.1078 0.2034 0.1863  

Fig. 9. BNs for prior scour estimation at the bridge piers. Q: water flow; d: bed 
material grain size; vB,C: scour threshold velocity; DC,ave: average depth of 
constriction scour; yB: depth of flow below the bridge; DC,pier: depth of 
constriction scour at the pier; DL: local scour depth; DT: total scour depth; ex: 
model uncertainties applied to the estimation models. 
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It can be observed that different scour depths correspond to a given 
water level. Shown in Fig. 10 are also the fixed thresholds yTA obtained 
according to the TS procedure for each bridge. The corresponding values 
of the standard deviation of DR are consistent with those presented in 
Table 2. These results confirm that the critical water level cannot be 
directly associated to a precise level of scour at the bridge foundations, 
because there is a weak correlation between water level and scour depth 
due to many uncertainties that affect the problem. In other words, water 
level is a very rough indicator of bridge scour risk. 

4.3. Posterior inference at a directly monitored location 

Table 3 shows the critical mean level of scour DR obtained with Eq. 
(7) that represents the scour threshold triggering the bridge closure to 
traffic when the bridge is monitored. The table provides two values of DR 

because the scour threshold depends on γ, which in turn depends on σC, 
standard deviation of the two different fragility functions defining the 
relative scour capacity (e.g., E[DRC]=4.35 and σC = 0.66 for fragility 
function 1 and E[DRC]=4.97 and σC = 1.15 for fragility function 2). 

Fig. 10. Correlation between water level and total scour depth estimated by the BN-based framework.  

Table 3 
Scour relative threshold triggering bridge closure when the scour depth at pier 
bridge is monitored.    

Nith bridge Guildhall bridge Dalscone bridge 

Fragility function 1 γ 0.668 0.621 0.925 
DR 3.319 3.534 1.403 

Fragility function 2 γ 0.841 0.808 0.973 
DR 3.150 3.407 1.266  
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4.4. Posterior inference at an indirectly monitored location 

For each of the three bridges considered, Bayesian Learning is per
formed multiple times to obtain posterior values of the expected value E 
[DR2|1] and the standard deviation σDR2|1 of the scour depth DR2|1 at the 
unmonitored bridge locations, given different combinations of yU2 and 
DR1 (i.e., the scour depth measured at the base of pier 1 of the A76 200 
Nith bridge). Fig. 11 shows the BNs deployed for the three Bayesian 
learning applications, corresponding to the updating of the total scour 
depth at the unmonitored locations. The application of the BN on the left 
corresponds to the scour estimation at pier 2 of the Nith bridge (i.e., 
location 2 is the unmonitored pier of the same bridge) whereas the 
application of the BN on the right corresponds to the estimation of the 
scour at underwater pier foundations of Guildhall and Dalscone bridges 
(i.e., location 2 is the pier of the unmonitored bridge). The three BN 
applications are all based on the total scour measured at pier 1 of Nith 
bridge and the water level at the corresponding bridges. 

Table 4 shows the multiple linear fitting of the expected value E[DR2| 

1] corresponding to Eq. (14) for the investigated bridges, including the 
four parameters that define the regression surface. The posterior stan
dard deviation of the scour depth DR2|1 does not change significantly 
with yU2 and DR1 and it can be assumed constant for all the investigated 
cases. 

4.5. Adaptive threshold 

Fig. 12 illustrates the variation of the adaptive monitoring-based 
water level threshold ySHMfor the three considered bridges, obtained 
by applying Eq. (15) assuming the fragility function with lower disper
sion (i.e., fragility function 1 from Section 3.3). In the figures, the 
threshold ySHM is compared with the fixed threshold yTA implicitly 
chosen by TS. 

The adaptive water level threshold decreases as the relative scour 
depth DR1 increases, i.e., values of ySHM higher than yTA are obtained for 
small values of DR1, and values of ySHM lower than yTA are obtained for 
high values of DR1. This is expected, since the scour depths at the un
monitored locations are correlated to the scour depth at the monitored 
one. Thus, when DR1 increases, also DR2|1 is expected to increase and 
thus the water level triggering bridge closure should decrease in order to 
ensure a consistent risk of failure for the bridge. It is worth noting that 
the adaptive threshold ySHMis always lower than the fixed threshold 
when the observed scour depth is equal to the critical mean level of 
scour DR. It is noteworthy that Dalscone bridge is founded on deep 
foundations (foundation depth DF = 3 m) whereas at Nith bridge DF = 1 

m. Therefore, in order to avoid confusion between the representation 
scales of relative scour depth of location 2 (DR2 at Dalscone bridge) and 1 
(DR1 at Nith bridge), the graph presented in Fig. 12c has a double x axis, 
the bottom one for the relative scour depth at location 1 (i.e., Nith 
bridge), and the top one for the relative scour depth at location 2 (i.e., 
Dascone bridge). The first scale is used for the plot of ySHM, whereas the 
other scale is used for the plot of the other quantities. 

Using the proposed adaptive threshold in the decision-making pro
cess is expected to reduce significantly the false positive cases (i.e., the 
unnecessary bridge closures) for low values of DR1 and the false negative 
cases for high values of DR1. Table 5 compares the values of the adaptive 
and fixed threshold for the case of DR1 = 0. The relative increase of the 
threshold, when passing from a fixed to an adaptive one, is in the order 
of 70% for the A76 200 Nith bridge and around 40% for the other two 
bridges. The increase is highest for the case of Nith bridge because pier 1 
is monitored, and the scour depth at pier 2 is highly correlated to the one 
at pier 1. Thus, higher uncertainty reductions are achieved in the esti
mates of the DR2|1 for this case compared to the other bridges. 

Dalscone bridge presents a higher increase than Guildhall bridge 
since the former bridge is at very low risk of scour according to BD97/12 
(i.e., ranked in risk class 5), whereas Guildhall is classified in risk class 3. 
In fact, according to Eq. (13), the scour threshold DR,SHM (and accord
ingly ySHM) is expected to be significantly higher than E[DR,TA] (and 
accordingly yTA) in bridges that are classified at low risk of scour (i.e., for 
a high E[DR,C] / E[DR,TA] ratio). 

Fig. 13 compares the values of the adaptive thresholds of Fig. 12 
normalised with respect to the corresponding values of yTA given in 
Table 2. The sensitivity of the normalised adaptive threshold to the 
value of DR1 (measured by the slope of the curves plotted in Fig. 13) is 
higher for Nith bridge than for the other two bridges. This is expected 
considering that the monitoring system is installed at Nith bridge. 
Furthermore, the graph below shows that the Nith bridge also experi
ences the higher increase in the threshold for lower values of DR1. This 
could be again explained by the more confident estimation of scour at 
pier 2 (i.e., pier 1 is directly monitored) than the ones performed at the 
other two unmonitored bridges. The higher confidence in the knowledge 
of the scour depth yields higher values of water level threshold by 
keeping the same level of risk implicitly chosen by transport agencies. 
On the contrary, but the same reason, in the case of high levels of 
observed scour DR1, the normalised water level threshold at Nith bridge 
is lower than the ones at the other two bridges. 

In order to appreciate the sensitivity of the adaptive threshold to the 
specific fragility function, Fig. 14 plots the adaptive threshold for two 
different fragility functions defining the relative scour capacity (e.g., E 

Fig. 11. The three BN applications for posterior scour estimation at the bridge piers starting from scour measured at pier 1 of Nith bridge and the water level at the 
corresponding bridges. 
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[DR,C]=4.35 and σC = 0.66 for Fragility function 1 and E[DR,C]=4.97 and 
σC = 1.15 for Fragility function 2). It can be noted that the two curves 
almost overlap meaning that the knowledge level of the capacity of the 
bridge against scour has a minor effect on the water level threshold ySHM. 
In fact, the adaptive thresholds obtained with the two different capacity 
models are not significantly different from each other. 

5. Conclusions 

This paper presents a rationale to establish an adaptive water level 
threshold ySHM triggering bridge closure due to scour risk, which ac
counts for indirect information from scour monitoring sensors. A BN- 
based approach is used for predicting and updating the probabilistic 
distribution of scour at unmonitored bridge locations based on the 
available observations (e.g., scour depth at the monitored location). The 
updated, adaptive measurement-informed water level threshold ySHM is 

Table 4 
Multiple linear fitting of the expected value of relative scour depth DR2|1 (Eq.(14)) for the three studied bridges.  

Pier 2 Nith bridge | Pier 1 Nith bridge & water level Nith bridge 

b1 = − 0.7579 
b2 = 0.5676 
b3 = 0.9091 m− 1 

b4 = − 0.0361 m− 1 

σDR2|1= 0.1563 

Guildhall bridge | Pier 1 Nith bridge & water level Guildhall bridge 
b1 = − 0.8751 
b2 = 0.5114 
b3 = 1.2569 m− 1 

b4 = − 0.0792 m− 1 

σDR2|1= 0.2791 

Dalscone bridge | Pier 1 Nith bridge & water level Dalscone bridge 
b1 = 0.0032 
b2 = 0.1302 
b3 = 0.1974 m− 1 

b4 = − 0.0050 m− 1 

σDR2|1= 0.0822  
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Fig. 12. Adaptive monitoring-based water level threshold from BN’s outcomes of unmonitored components.  
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estimated by targeting the same probability of bridge failure as that 
implicit in current bridge flood management plans, based on flow depth 
expected under a 1 in 200yrs flood event. We illustrate the application of 
the proposed DSS on a small network consisting of three bridges at risk 
of scour managed by Transport Scotland in south-west Scotland. 

Based on the study results, the following conclusions can be drawn:  

i. The adaptive water level threshold ySHM decreases for increasing 
levels of the relative scour depth DR1 at the monitored pier. 
Compared to the fixed markers yTA currently considered by 
Transport Scotland, higher values of the water level triggering 
bridge closure are obtained for small values of DR1, and lower 
values for high values of DR1.  

ii. The adaptive threshold ySHM depends on the ratio between the 
median scour capacity and the median scour demand, that in 
turn, depend on the bridge prior risk of failure. In particular, for 
bridges with low risk of failure due to scour, the adaptive 
threshold departs significantly from the fixed threshold while this 
difference is less significant for bridges at high scour risk of 
failure.  

iii. The difference between the adaptive threshold ySHM and the fixed 
marker yTA is more significant if the indirect observation is made 
on a pier of the same bridge. 

iv. The choice of fragility function used for describing the scour ca
pacity does not significantly affect the adaptive threshold ySHM. 
Therefore, we can safely establish a reasonable value of adaptive 
threshold regardless our knowledge of the scour bridge capacity. 

The general method and formulation introduced in this paper are 
suitable for extension to any decision problems that include observa
tions from different types of sensors and multiple decision options, 
comprising long-term and/or emergency risk management of bridges. 
These additional topics will be investigated in future studies. 
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Table 5 
Fixed water level threshold yTAvs adaptive monitoring-based water level 
threshold ySHM when DR1 = 0.   

Nith bridge – Pier 2 Guildhall bridge Dalscone bridge 

Fixed water level threshold – yTA [m]  
2.530 2.346 4.398 

Adaptive monitoring-based water level threshold – ySHM (DR1 ¼ 0) [m] 
ySHM 4.24 3.26 6.33 
Relative increase +68% +39% +44%  

Fig. 13. Comparison of the monitoring-based water level thresholds ySHM 
normalised with respect to the correspondence yTA. 

Fig. 14. Adaptive monitoring-based water level threshold from BN’s outcomes 
of unmonitored components. 
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