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Abstract
The aim of this paper is to make a connection between design theory and algebraic geome-
try/commutative algebra. In particular, given any Steiner System S(t, n, v) we associate two
ideals, in a suitable polynomial ring, defining a Steiner configuration of points and its Com-
plement. We focus on the latter, studying its homological invariants, such as Hilbert Function
andBetti numbers.We also study symbolic and regular powers associated to the ideal defining
a Complement of a Steiner configuration of points, finding its Waldschmidt constant, regu-
larity, bounds on its resurgence and asymptotic resurgence. We also compute the parameters
of linear codes associated to any Steiner configuration of points and its Complement.

Keywords Steiner systems · Monomial ideals · Symbolic powers · Stanley Reisner rings ·
Linear codes

Mathematics Subject Classification 51E10 · 13F55 · 13F20 · 14G50 · 94B27

1 Introduction

Combinatorial design theory is the study of arranging elements of a finite set into patterns
(subsets, words, arrays) according to specified rules. It is a field of combinatorics connected
to several other areas of mathematics including number theory and finite geometries. In the
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last years, the main techniques used in combinatorial and algebraic geometry allow design
theory to growup involving applications in other areas such as in coding theory, cryptography,
and computer science.

A t − (v, n, λ)-design D = (V , B) is a pair consisting of a set V of v points and a
collection B of n-subsets of V , called blocks, such that every t-subset (or t-tuple) of V is
contained in exactly λ blocks in B.

The numbers v = |V |, b = |B|, n, λ, and t are called the parameters of the design.
A Steiner system (V , B) of type S(t, n, v) is a t − (v, n, 1) design, that is, a collection B

of n-subsets (blocks) of a v-set V such that each t-tuple of V is contained in a unique block
in B. The elements in V are called vertices or points and those of B are called blocks. In
particular, a Steiner triple system of order v, ST S(v), is a collection of triples (3-subsets)
of V , such that each unordered pair of elements is contained in precisely one block, and a
Steiner quadruple system of order v, SQS(v), is a collection of quadruples (4-subsets) of V
such that each triple is found in precisely one block.

A geometric study of some particular classes of Steiner systems, with an eye on the
automorphism groups, can be found in [57]. There exists a very extensive literature on STSs
and SQS, e.g. [5,6,11–13,27–30,37,40–45,47] to cite some of them.

In this paper we study special configurations of reduced points in P
n constructed on

Steiner Systems, combining Combinatorial Algebraic Geometry and Commutative Algebra.
We found many results concerning geometric and algebraic codes and Steiner systems (or
designs in general) but we did not find in the literature any result concerning the study
of combinatorial structures, as Steiner systems, using their homological invariants. Thus,
we consider this paper as a starting point of the study of combinatorial designs, such as
Steiner systems, using the homological invariants of their defining ideals. An introduction of
coding theory with the use of Algebraic Geometry can be found in [56]. In particular, we can
refer to [48] for some techniques used to study algebraic varieties with special combinatorial
features. Recently, connections between commutative algebra and coding theory have gained
much attention (see [15,16,19,24,31,34,38,52–54] for more results in this direction). For a
background in commutative algebra with a view toward algebraic geometry we suggest [20].

The paper is structured as follow. Section 2 provides the background on designs, ideals of
points, symbolic and regular powers of ideals, containment problem andmonomial ideals.We
introduce two finite sets of reduced points inP

n called Steiner configuration andComplement
of a Steiner configuration (see Definitions 2.3 and 2.4). As pointed out in Remark 2.5, a
Steiner configuration of points and its Complement constructed from a Steiner system of
type S(t, n, v) are subschemes of a so called star configuration of

(
v
n

)
points in P

n .
In Sect. 3, we will focus on the Complement of a Steiner configuration of points because

it is a proper hyperplanes section of a monomial ideal that is the Stanley-Reisner ideal of
a matroid (see Theorem 3.4). Thus, each m-th symbolic power of such a monomial ideal is
arithmetically Cohen-Macaulay and, after a proper hyperplanes section, it agrees with the
m-th symbolic power of the ideal defining a Complement of a Steiner configuration (see
Proposition 3.6). This connection allows us to study the homological invariants of the ideal
IXC of the Complement of a Steiner configuration. We start with the description of the initial
degree IXC , i.e. we describe the minimum integer d such that (IXC )d �= (0) or, equivalently,
the least degree d of a minimal generator of IXC . We also compute its Waldschmidt constant
and give results on the containment problem of IXC , i.e. the problem of determining for which

m and d the containment I (m)
XC

⊆ I dXC
holds. Section 4 is devoted to the computation of the

Hilbert Function, the regularity and graded Betti numbers of IXC . In particular, we give some
bounds for the asymptotic resurgence and the resurgence of IXC .
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Steiner systems and configurations of points 201

Unfortunately, the monomial ideal associated to a Steiner configuration of points does
not lead to a Cohen-Macaulay algebra and we cannot apply the same methods as for its
Complement. From a combinatorial point of view, two Steiner systems having the same
parameters could have very different properties. Computational experiments give us examples
where such differences effect the homological invariants. We pose Questions 4.15 and 4.16
on the behaviour of Steiner configurations of points to lead us and the interested researcher
towards future works.

We end the paper with an application to coding theory. Following [15,24,52–55], we study
special linear codes associated to a Steiner configuration of points and its Complement. In
particular, their combinatorial structure allows us to compute the Hamming distance of the
associated code (Proposition 5.2 and Theorem 5.4).

The computer softwares CoCoA [1] and Macaulay2 [32] were indispensable for all the
computations we made.

2 Preliminaries and notation

Steiner systems play an important role in Design Theory. We use [11] and [13] as main
references for all the background on this topic.

The existence of a Steiner system strongly depends on the parameters (t, n, v). For instance
if t = 2 and n = 3 then v ≡ 1, 3 mod (6)must hold. There are known necessary conditions
for the existence of a Steiner system of type S(t, n, v) that are not in general sufficient. If a

Steiner system (V , B) of type S(t, n, v) exists, then |B| = (v
t)

(nt)
.

Example 2.1 One of the simplest and most known examples of Steiner system is the Fano
Plane. It is unique up to isomorphism and it is a Steiner system of type S(2, 3, 7) with block
set

B := {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}.

2.1 Ideals of Steiner configuration of points and its complement

Let V be a set of v points andH := {H1, . . . Hv} be a collection of distinct hyperplanes Hj of
P
n defined by the linear forms � j for j = 1 . . . , n and n ≤ v. Assume that any n hyperplanes

in H meet in a point. There is a natural way to associate a point in P
n to a n-subset of V .

Indeed, given a n-subset σ := {σ1, . . . σn} of V , we denote by PH,σ the point intersection
of the hyperplanes Hσ1 , . . . , Hσn . Then the ideal IPH,σ

= (�σ1 , . . . , �σn ) ⊆ k[Pn] is the
vanishing ideal of the point PH,σ .

Definition 2.2 Given a set V of v points and a general collection Y of subsets of V , we define
the following set of points in P

n with respect to H
XH,Y := ∪σ∈Y PH,σ

and its defining ideal

IXH,Y := ∩σ∈Y IPH,σ
.

In particular, if n ≤ v are positive integers and V is a set of v points, we denote by C(n,v)

the set containing all the n-subsets of V .
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202 E. Ballico et al.

Definition 2.3 Let (V , B) be a Steiner system of type S(t, n, v)with t < v ≤ n.We associate
to B the following set of points in P

n

XH,B := ∪σ∈B PH,σ

and its defining ideal

IXH,B := ∩σ∈B IPH,σ
.

We call XH,B the Steiner configuration of points associated to the Steiner system (V , B) of
type S(t, n, v) with respect to H (or just XB if there is no ambiguity).

Definition 2.4 Let (V , B) be a Steiner system of type S(t, n, v)with t < n ≤ v.We associate
to C(n,v) \ B the following set of points in P

n

XH,C(n,v)\B := ∪σ∈C(n,v)\B PH,σ

and its defining ideal

IXH,C(n,v)\B := ∩σ∈C(n,v)\B IPH,σ
.

We call XH,C(v,n)\B the Complement of a Steiner configuration of points with respect to
H (or C-Steiner XC if there is no ambiguity).

Remark 2.5 Note that from Definition 2.2, it follows that XH,C(n,v)
is a so called star con-

figuration of
(
v
n

)
points in P

n . In particular, from Definitions 2.3 and 2.4, XH,C(n,v)\B is the
Complement of the Steiner configuration XH,B in the star configuration XH,C(n,v)

. Thus, a
Steiner configuration of points and its Complement are subschemes of a star configuration
of

(
v
n

)
points in P

n . See for instance [7–9,25,26] for recent results on star configurations and
see [55] for the connections between linear codes and ideals of star configurations.

Remark 2.6 Since the set XH,B contains |B| points, we have that

deg XH,C(n,v)\B =
(

v

n

)
− |B| =

(
v

n

)
−

(
v
t

)

(n
t

) .

Example 2.7 Consider the Steiner configuration associated to (V , B) of type S(2, 3, 7) as
in Example 2.1. Take H := {H1, . . . , H7} a collection of 7 distinct hyperplanes Hi in P

3

defined by a linear form �i for i = 1, . . . , 7, respectively, with the property that any 3 of
them meet in a point PH,σ = Hσ1 ∩ Hσ2 ∩ Hσ3 , where σ = {σ1, σ2, σ3} ∈ B. We get
that XH,C(3,7) is a star configuration of

(7
3

) = 35 points in P
3, XH,B := ∪σ∈B {PH,σ } is a

Steiner configuration consisting of 7 points in P
3 and XH,C(3,7)\B is a C-Steiner configuration

consisting of
(7
3

) − 7 = 28 points in P
3. Their defining ideals are respectively,

IXH,B := ∩σ∈B IPH,σ
and IXH,C(3,7)\B := ∩σ∈C(3,7)\B IPH,σ

.

2.2 Symbolic and regular powers of an ideal and the containment problem

In this section, we recall some definitions and known results concerning the symbolic and
regular powers of ideal of points.
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Steiner systems and configurations of points 203

Let I be a homogeneous ideal in the standard graded polynomial ring R := k[x0, . . . , xn].
Given an integer m, we denote by Im the regular power of the ideal I . The m-th symbolic
power of I is defined as

I (m) =
⋂

p∈Ass(I )

(Im Rp ∩ R)

where Ass(I ) denotes the set of associated primes of I . If I is a radical ideal (this includes
for instance squarefree monomial ideals and ideals of finite sets of points) then

I (m) =
⋂

p∈Ass(I )

pm .

It always holds that Im ⊆ I (m). In particular, the containment problem is of interest, i.e.
the problem of determining for which m and d the containment I (m) ⊆ I d holds. We refer
the reader to [2–4,17,18,36,50] for a partial list of papers on this topic.

The investigation of this problem led to the introduction of other invariants with the aim
of comparison between symbolic and ordinary powers of an ideal.

Let I be a homogeneous ideal, the real number

ρ(I ) = sup
{m
r

: I (m)
� I r

}

is called resurgence of I (see [3,4]). For a homogeneous ideal (0) ⊂ I ⊂ k[Pn], in [33] the
authors define an asymptotic resurgence as follows:

ρa(I ) = sup
{m
r

: I (mt)
� I rt for all t >> 0

}
.

The resurgence is strictly related to the Waldschmidt constant of I , introduced in [59] in
a completely different setting. If α(I ) is the minimum integer d such that Id �= (0), then the
Waldschmidt constant of I , α̂(I ), is the real number

α̂(I ) = lim
m→∞

α(I (m))

m
.

Given r distinct points Pi ∈ P
n and non-negative integers mi , we denote by Z = m1P1 +

· · · + mr Pr ⊂ P
n the set of fat points defined by IZ = ⋂

i I
mi
Pi

, where IPi is the prime ideal
generated by all forms which vanish at Pi . The set X = {P1, . . . , Pr } is called the support
of Z . When mi = m for all i , IZ = ⋂

i I
m
Pi

= I (m)
X .

If I is the ideal of a set of (fat) points, we denote by Ii (resp. Ri ) the vector space span
in I (resp. R) of the forms of degree i in I (resp. R). The function H : N → N such that
H(i) = dimk(R/I )i = dimk Ri − dimk Ii is called the Hilbert Function of R/I and it is
denoted by HR/I (i). The Castelnuovo-Mumford regularity of I , denoted by reg(I ), is the
least degree t > 0 such that dim(R/I )t = dim(R/I )t−1.

Theorem 1.2.1 in [4] shows that if I defines a 0-dimensional scheme, i.e., a finite set of
points, then

α(I )

α̂(I )
≤ ρ(I ) ≤ reg(I )

α̂(I )
.

In [33], Theorem 1.2. shows that (1) 1 ≤ α(I )

α̂(I )
≤ ρa(I ) ≤ ρ(I ) ≤ h where h =

min(N , hI ) and hI is the maximum of the heights of the associated primes of I ; (2) if I is
the ideal of a (non-empty) smooth subscheme of P

n , then ρa(I ) ≤ ω(I )
α̂(I ) ≤ reg(I )

α̂(I ) where ω(I )
is the largest degree in a minimal homogeneous set of generators of I .
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2.3 Monomial ideals, simplicial complexes

In this section, we show how monomial ideals form an important link between commutative
algebra and combinatorics.Amonomial ideal is uniquely determinedby themonomials it con-
tains. Monomial ideals also arise in graph theory. Given a graphG with vertices {x1, . . . , xv},
we associate the ideal IG in k[x1, . . . , xv] generated by the quadratic monomials xi x j such
that xi is adjacent to x j . From known results in the literature, it is possible to determine many
invariants for monomial ideals.

In particular, ideals generated by squarefree monomials have a beautiful combinatorial
interpretation in terms of simplicial complexes. In the next sections, we will use these prop-
erties to completely describe the most important homological invariants of an ideal defining
a Complement of a Steiner configuration of points. This is equivalent to say that we are
describing special subsets of star configurations using tools from combinatorics and alge-
braic geometry. Unfortunately, the ideal defining a Steiner configuration of points cannot be
described using monomial ideals, and we cannot determine its homological invariants. So,
the problem is still open. At the end of the paper, we will be able to describe the parameters
of the linear codes associated to both a Steiner configuration of points and its Complement.

We refer to [35] for notation and basic facts on monomial ideals and to [4] for an extensive
coverage of the theory of Stanley-Reisner ideals.

Definition 2.8 An ideal I in a polynomial ring R is called amonomial ideal if there is a subset
A ⊂ Z

n≥0 (possible infinite) such that I consists of all polynomials of the form
∑

α∈A hαxα ,
where hα ∈ R.

Definition 2.9 A simplicial complex� over a set of vertices V = {x1, . . . , xv} is a collection
of subsets of V satisfying the following two conditions:

(1) {xi } ∈ � for all 1 ≤ i ≤ v

(2) if F ∈ � and G ⊂ F , then G ∈ �.

An element F of � is called a face, and the dimension of a face F of � is |F | − 1, where
|F | is the number of vertices of F . The faces of dimensions 0 and 1 are called vertices and
edges, respectively, and dim ∅ = −1.

The maximal faces of � under inclusion are called facets of �. The dimension of the
simplicial complex � is dim� = max{dim F | F ∈ �}. We refer to i-dimensional faces as
i-faces. We denote the simplicial complex � with facets F1, . . . , Fq by � = 〈F1, . . . , Fq〉
and we call {F1, . . . , Fq} the facet set of �.

If � is a d-dimensional simplicial complex, the most important invariant is the f -vector
(or face vector) of� and it is denoted by ( f0, . . . , fd) ∈ N

d+1, where fi denotes the number
of i-dimensional faces in�. From the monomial ideal point of view, the f -vector is encoded
in the Hilbert series of the quotient ring R/I� and it is related to the h-vector of a suitable
set of points in P

n (see Sect. 4). We will use Remark 2.11 to show the connections between
Stanley-Reisner ideals, simplicial complexes, matroids and Steiner systems to determine
Waldschmidt constant and bounds for the resurgence (see Sect. 3), Betti numbers, Hilbert
function, and regularity of the ideal of a Complement of a Steiner configurations of points
(see Sect. 4).

The Alexander dual of a simplicial complex � on V = {x1, . . . , xv} is the simplicial
complex �∨ on V with faces V \ σ , where σ /∈ �.

The Stanley-Reisner ideal of � is the ideal I� := (xσ | σ /∈ �) of R = k[x1, . . . , xv],
where xσ = 	i∈σ xi . It is well known that the Stanley-Reisner ideals are precisely the
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Steiner systems and configurations of points 205

squarefree monomial ideals. The quotient ring k[�] := R/I� is the Stanley-Reisner ring of
the simplicial complex �.

Each simplicial complex has a geometric realization as a certain subset of a finite dimen-
sional affine space.

If V is a set v points, we denote by k[V ] := k[x1, . . . , xv] the standard graded polynomial
ring in v variables. Given a n-subset of V , σ := {i1, i2, . . . , in} ⊆ V , we will write

pσ := (xi1 , xi2 , . . . , xin ) ⊆ k[V ]
for the prime ideal generated by the variables indexed by σ , and

Mσ := xi1xi2 · · · xin ∈ k[V ]
for the monomial given by the product of the variables indexed by σ .

Let n ≤ v be positive integers, and V a set of v points; recall thatC(n,v) is the set containing
all the n-subsets of V .

Definition 2.10 If T ⊂ C(n,v), we define two ideals

IT := (Mσ | σ ∈ T ) ⊆ k[V ]
and

JT :=
⋂

σ∈T
pσ ⊆ k[V ]

called the face ideal of T and the cover ideal of T , respectively.

Remark 2.11 It is well known that JT is the Stanley-Reisner ideal I�T of the simplicial
complex

�T := 〈V \ σ |σ ∈ T 〉 .

Then JT is generated by the monomials Mb with b /∈ �T . We also recall that IT and JT are
the Alexander duals of each other.

Since JT is a squarefree monomial ideal, the m-th symbolic power of JT (Theorem 3.7 in
[14]) is

J (m)
T :=

⋂

σ∈T
pmσ .

3 Matroid and configurations of points from Steiner systems:
Waldschmidt constant and containment problem

This section is devoted to show how the results of the previuos sections are related to our
special configurations of points. In particular, we will show that the Complement of a Steiner
configuration of points is connected with the theory of matroids.

Definition 3.1 A simplicial complex � is said to be a matroid if F,G ∈ � and if |F | > |G|
then there exists i ∈ F \ G such that G ∪ {i} ∈ �.

We also recall that we say that a homogeneous ideal J in a polynomial ring R is Cohen-
Macaulay (CM) if R/J is Cohen-Macaulay, i.e. depth(R/J ) = Krull-dim(R/J ). Varbaro
in [58] and Minh and Trung in [46] have independently shown the following
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Theorem 3.2 (Varbaro [58], Minh and Trung [46]) Let � be a simplicial complex. Then
k[V ]/I (m)

� is Cohen-Macaulay for each m ≥ 1 if and only if � is a matroid.

Terai and Trung in [51] proved if I (m)
� is Cohen-Macaulay for some m ≥ 3 then � is a

matroid.
To shorten the notation, from now on we set C := C(n,v) \ B. Let XH,B be a Steiner

configuration of points and XH,C its Complement as previous defined with respect to a
collection H of hyperplanes in P

n .

We claim that I (m)
XH,C

and J (m)
C share the same homological invariants for any positive

integer m. In particular, the key point of our argument is that JC is the Stanley-Reisner ideal
of the simplicial complex �C , and that �C is a matroid (see Theorem 3.4).

Several times in the literature simplicial complexes have been associated to Steiner sys-
tems. See for instance [12,49]. In Example 4.6 in [18] the well known Fanomatroid is used to
construct a Cohen-Macaulay ideal I such that I (3) �= I 3 and I (2) �= I 2. The quoted example
is one of the cases described in Corollary 3.10.

We need the following auxiliary lemma.

Lemma 3.3 Let (V , B) be a Steiner system of type S(t, n, v). If C(v−n−1,v) is the set con-
taining all the (v − n + 1)-subsets of V , then C(v−n−1,v) ⊆ �C .

Proof Let F be a (v − n − 1)-set of V . In order to prove the lemma we need to find G ∈ C
such that F ⊆ V \ G, i.e., G ⊆ V \ F . First note that |V \ F | = n + 1, so we can take
two n-subsets G1,G2 of V \ F sharing a n − 1-subset. Since n − 1 ≥ t , from the definition
of Steiner Systems at least one of them, say G1, does not belong to G. Then G1 ∈ C and
G ⊆ V \ F . ��

The next results are useful to describe the Complement of a Steiner configuration of points
using the combinatorial properties of matroids.

Theorem 3.4 Let (V , B) be a Steiner system of type S(t, n, v). Then �C is a matroid.

Proof Let F,G be two maximal elements in �C , i.e., F,G belong to the facet set of �C .
Assume by contradiction (F \ {i}) ∪ { j} /∈ �C for each i ∈ F and for each j ∈ F . Then all
the sets σi, j := V \ ((F \ {i})∪{ j}) belong to B. Since n ≥ 2, at least two blocks of B share
a (n − 1)-set. That is a contradiction because n − 1 > t − 1 from Definition 2.3. ��
Proposition 3.5 Let (V , B) be a Steiner system of type S(t, n, v). Then k[V ]/J (m)

C is Cohen-
Macaulay for each m ≥ 1.

Proof Since JC = I�C , it is a consequence of Theorem 3.2 and Theorem 3.4. ��
Now, given a Steiner system of type S(t, n, v) we are able to describe some homolog-

ical invariants of the ideal associated to a Complement of Steiner configuration of points.
Unfortunately, we have no similar result as Proposition 3.5 that should hold for a Steiner
configuration of points.

We now prove the main claim of this section.

Proposition 3.6 I (m)
XH,C

⊆ k[Pn] and I (m)
�C

⊆ k[V ] share the same homological invariants.

Proof It is an immediate consequence of Theorem 3.6. in [26]. Indeed, k[V ]/I (m)
�C

is Cohen-
Macaulay, and any subset of atmost n linear forms in {�1, . . . , �v} is a k[Pn]-regular sequence.
��
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Steiner systems and configurations of points 207

The Cohen-Macaulay property of k[V ]/I (m)
�C

also allows us to look at I (m)
XH,C

as a proper

hyperplane section of I (m)
�C

(see [57]). This construction is quite standard but is very useful
to describe combinatorial properties for arithmetically Cohen-Macaulay varieties X , i.e,
depth(R/IX ) = Krull-dim(R/IX ), not only in projective spaces, but also in multiprojective
spaces, see for instance [21–23,26]. The common idea is to relate, when possible, ideals of
arithmeticallyCohen-Macaulay varieties tomonomial ideals in order to study their invariants.

We start with the description of the initial degree α(JC ) of JC = I�C , i.e. we describe the
minimum integer d such that (JC )d �= (0) or, equivalently, the least degree d of a minimal
generator of JC . For the ease of the reader, we prove the following result that shows that
{α(JmC )}m is a strictly increasing sequence.

Lemma 3.7 Let p ⊆ k[V ] be a squarefree monomial ideal and M ∈ pm. Then
∂M

∂x j
∈ pm−1

for any j ∈ V .

Proof Set p = pσ where σ ⊆ V and let xa11 . . . xav
v ∈ pm . Then

∑

i∈σ

ai ≥ m. If a j = 0 then

trivially 0 ∈ pm−1. If a j > 0 then
∂M

∂x j
= a j x

a1
1 . . . x

a j−1
j . . . xav

v and
∑

i∈σ

ai ≥ m − 1. ��

Proposition 3.8 Let (V , B) be a Steiner system of type S(t, n, v). Then

(i) α(JC ) = v − n;
(ii) α(J (q)

C ) = v − n + q for 2 ≤ q < n;

(iii) α(J (m)
C ) = α(J (q)

C ) + pv, where m = pn + q and 0 ≤ q < n.

Proof (i) We have JC = I�C = (Mσ | σ /∈ �C ). FromLemma 3.3we have that the elements
not in �C have cardinality at least v − n. On the other hand, for any β ∈ B we have
V \ β /∈ �C .

(ii) First we show α(J (q)
C ) ≤ v −n+q . Let β ∈ B and σ ⊆ β with |σ | = q , then we claim

M(V \β)∪σ ∈ α(J (q)
C ). Assume by contradiction M(V \β)∪σ /∈ p

q
τ for some τ ∈ V . Then

(V \ β) ∩ σ ∩ τ = ∅ but this is a contradiction since v − n + q + n > n. On the other
hand, if q > 2 the statement follows by Lemma 3.7, since α(J (q)

C ) > α(J (q−1)
C ) =

v−n+q−1. If q = 2 we proceed by contradiction. Let M ∈ J (2)
C be a monomial such

that degM = v − n + 1. Then there are at least n − 1 variables that do not divide M .
Since t ≤ n − 1, there is at most one block in B containing these variables. Therefore
there are at least v − n elements of C containing them. Since M ∈ J (2)

C , M belongs to
each of these ideals to the power of 2, i.e., there are v − n variables x j such that x2j |M .

So degM ≥ 2(v − n) > v − n + 1.
(iii) We show that J (m)

C : MV = J (m−n)
C .

• If F ∈ J (m−n)
C then MV F ∈ J (n)

C · J (m−n)
C ⊆ J (m)

C .

• If FMV ∈ J (m)
C then, by Lemma 3.7, FMV \σ ∈ J (m−n)

C for any σ ∈ T . Thus FMV \σ ∈
p
(m−n)
σ . This implies F ∈ p

(m−n)
σ .

Then α(J (m)
C ) = α(J (m−n)

C ) + v = · · · = α(J (q)
C ) + pv, where m = pn + q and 0 ≤ q < n.

��
From Proposition 3.6 and Proposition 3.8, the initial degree of the ideal of a C-Steiner

configuration of points only depends on the parameters (t, n, v) of the Steiner system.
Using the previous results, we have the following theorem:
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Theorem 3.9 Let (V , B) be a Steiner system of type S(t, n, v). Then

(i) α(IXC ) = v − n;

(ii) α(I (q)
XC

) = v − n + q, for 2 ≤ q < n;
(iii) α(I (m)

XC
) = α(I (q)

XC
) + pv, where m = pn + q and 0 ≤ q < n and α(I (n)

XC
) =

α(I (0)
XC

) + v = v.

An important consequence of Theorem 3.9 is related to the containment problem.

Corollary 3.10 Let (V , B) be a Steiner system of type S(t, n, v). Then I (m)
XC

� I dXC
for any

pair (m, d) such that

m ≡ 1 mod n and d > 1 + (m − 1)v

n(v − n)
or

m �≡ 1 mod n and d > 1 + m − n

n
+ m

(v − n)

In particular, if v > 2n then

I (n)
XC

� I 2XC

Proof From item i) in Theorem 3.9 α(I dXC
) = d(v − n). Therefore, it is enough to take m

such that α(I (m)
XC

) < d(v − n). If m ≡ 1 mod n then, from items i) and i i i) in Theorem

3.9, we get α(I (m)
XC

) = (v − n) + (m − 1)v

n
. Then (v − n) + (m − 1)v

n
< d(v − n) implies

the statement. If m �≡ 1 mod n then m = pn + q and 2 ≤ q ≤ n and, from items i i) and
i i i) in Theorem 3.9, we get α(I (m)

XC
) = v − n +m − pn + pv = (1+ p)(v − n) +m. Thus

(1 + p)(v − n) < d(v − n) + m implies d > 1 + p + m

(v − n)
≥ 1 + m − n

n
+ m

(v − n)
.

In the case m = n, we get 1 + m − n

n
+ m

(v − n)
= 1 + n

(v − n)
< 2. ��

Example 3.11 If X := XH,C(3,7)\B ⊆ P
3 is the C-Steiner configuration of points as in Exam-

ple 2.7, then I (3)
X � IX 2.

Another immediate corollary allows us to compute the Waldschmidt constant of a C-
Steiner configuration. The Waldschmidt constant of a uniform matroid was computed in
Theorem 7.5 in [2]. Properties of a uniform matroid were also studied in [26].

Corollary 3.12 If (V , B) is a Steiner system of type S(t, n, v), then the Waldschmidt constant
of IXC is

α̂(IXC ) = v

n
.

Proof From [10], Lemma 1, the limit α̂(IXC ) = lim
m→+∞

α(I (m)
XC

)

m
exists. Then from Theorem

3.9 we have

α̂(IXC ) = lim
p→+∞

α(I (pn)
XC

)

pn
= lim

p→+∞
pv

pn
= v

n
.

��
Remark 3.13 The homological invariants do not depend on the choice of the hyperplanes,
provided that we take them meeting properly.
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4 Homological invariants of C-Steiner configurations of points: Hilbert
function and graded Betti numbers

In this section we describe the Hilbert function of a C-Steiner configuration of points. We
recall some known definitions. For a finite set of points X ⊂ P

n the Hilbert function of X is
defined as the numerical function HX : N → N such that

HX (i) = dimk(R/IX )i = dimk Ri − dimk(IX )i

where R = k[Pn] and the first difference of the Hilbert function is defined by �HX (i) :=
HX (i) − HX (i − 1). The h-vector of X is denoted by

hX = h = (1, h1, . . . , h p)

where hi = �HX (i) and p is the last index such that �HX (i) > 0. If I is the ideal of a
set of points, analogously to the case of fat points, reg(I ) denotes the Castelnuovo-Mumford
regularity of I .

The next result gives us informations on the h-vector of a C-Steiner configuration of points
XC . Recall that given a Steiner system (V , B) of type S(t, n, v), the number of blocks is

|B| =
(
v
t

)

(n
t

) and that the last entry h p of hXC is in degree p = v − n. With the previous

notation, we have the following:

Proposition 4.1 If (V , B) is a Steiner system S(t, n, v), then the h-vector of XC is

hXC =
(
1, n,

(
n + 1

n − 1

)
, . . . ,

(
v − 2

n − 1

)
,

(
v − 1

n − 1

)
− |B|

)
.

Proof From Theorem 3.9 we have α(I�C ) is v − n. From Remark 2.11, a set of minimal
generators of degree v−n has |B| elements. Sowe only need to show that hXC (v−n+1) = 0.
This follows since

∑v−n
j=0 hXC ( j) = (

v
n

) − |B| = deg XC . ��
The regularity of IXC is an easy consequence of Proposition 4.1:

Corollary 4.2 reg(IXC ) = α(IXC ) + 1 = v − n + 1.

Let (V , B) be a Steiner system of type S(t, n, v). A minimal graded free resolution of
IXC will be written as

0 →
⊕

j

R(− j)βn−1, j (IXC ) → · · · →
⊕

j

R(− j)β1, j (IXC )

→
⊕

j

R(− j)β0, j (IXC ) → R → R/IXC → 0 (1)

where R(− j) is the free R-module obtained by shifting the degrees of R by j, i.e. so that
R(− j)a = Ra− j .

The number βi, j (IXC ) is called the (i, j)-th graded Betti numbers of IXC and equals the
number of minimal generators of degree j in the i-th syzygy module of IXC .

Another consequence of Proposition 4.1 is that

βi, j (IXC ) = 0 for any j − i > v − n + 1.

This means that the nonzero graded Betti numbers only occur in two rows of the Betti table
β(IXC ) := (

βi,i+ j (IXC )
)
i, j of IXC .

The next proposition excludes the existence of first syzygies in degree v − n + 1.
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Proposition 4.3 If (V , B) is a Steiner system of type S(t, n, v), then

β1,v−n+1(XC ) = 0.

Proof From Proposition 3.6 it is enough to show that β1,v−n+1(JC ) = 0. By contradiction,
let α1, α2 ∈ B be two distinct blocks of the Steiner system (V , B) such that the monomials
M1 := MV \α1 and M2 := MV \α2 give a linear syzygy. Then gcd(M1, M2) has degree
v − n − 1. This implies |α1 ∩ α2| = n − 1 ≥ t, a contradiction to Definition 2.3 of Steiner
system. ��
Proposition 4.4 If (V , B) is a Steiner system of type S(t, n, v), then

β0,v−n+1(IXC ) = n|B| −
(

v

n − 1

)
= n

(
v
t

)

(n
t

) −
(

v

n − 1

)
.

Proof It is matter of computation to show that

�hXC (v − n + 1) = −
(

v − 1

n − 1

)
+ |B|

and

�hXC (v − n) =
(

v − 1

n − 1

)
− |B| −

(
v − 2

n − 1

)
=

(
v − 2

n − 2

)
− |B|

and for i < v − n

�hXC (i) =
(
i + n − 2

n − 2

)
.

Then

�2hXC (v − n + 1) = −
(

v − 2

n − 2

)
−

(
v − 1

n − 1

)
+ 2|B|

and

�2hXC (v − n) =
(

v − 3

n − 3

)
− |B|

and for i < v − n

�2hXC (i) =
(
i + n − 3

n − 3

)
.

So we have

�nhXC (v − n + 1) = n|B| −
[(

v − 1

n − 1

)
+

(
v − 2

n − 2

)
+ · · ·

(
v − n

0

)]
=

= n

(
v
t

)

(n
t

) −
(

v

n − 1

)
.

Then the statement follows from Proposition 4.3. ��
Corollary 4.5 If (V , B) is a Steiner system of type S(t, n, v), then β0,v−n+1(IXC ) = 0 if and
only if t = n − 1.
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Proof From Proposition 4.4 we have

β0,v−n+1(IXC ) = �nhXC (v − n + 1) = n|B| −
[(

v − 1

n − 1

)
+

(
v − 2

n − 2

)
+ · · ·

(
v − n

0

)]
=

= n

(
v
t

)

(n
t

) −
(

v

n − 1

)
.

If t = n − 1 then we get

β0,v−n+1(IXC ) = n

(
v

n−1

)

( n
n−1

) −
(

v

n − 1

)
= 0.

If β0,v−n+1(IXC ) = 0 then we have

(n − t)!
(v − t)! = 1

(v − n + 1)!
and then

v − n + 1 =
(

v − t

n − t

)
.

This implies
(

v − n + 1

v − n

)
=

(
v − t

v − n

)

and then t = n − 1. ��
Corollary 4.6 If t = n − 1, we have

βi, j (IXC ) =

⎧
⎪⎨

⎪⎩

|B| if (i, j) = (0, v − n)

(−1)i�nhXC (v − n + 1 + i) if j = v − n + 1 + i

0 otherwise.

Corollary 4.7 We have

ω(IXC ) =
{

α(IXC ) = v − n if t = n − 1

α(IXC ) + 1 = reg(IXC ) = v − n + 1 if t < n − 1

where ω(IXC ) is the largest degree in a minimal homogeneous set of generators of IXC .

Recalling that the resurgence and the asymptotic resurgence of I are defined as ρ(I ) :=
sup

{m
d

| I (m)
� I d

}
and ρa(I ) = sup

{m
r : I (mt)

� I rt for all t >> 0
}
, respectively, the

following results give the bounds:

Corollary 4.8 Let (V , B) be a Steiner system of type S(t, n, v).

(1) If t = n − 1 then

(v − n)n

v
= ρa(IXC ) ≤ ρ(IXC ) ≤ (v − n + 1)n

v
.
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(2) If t < n − 1

(v − n)n

v
≤ ρa(IXC ) ≤ ρ(IXC ) ≤ (v − n + 1)n

v
.

Proof By Theorem 1.2.1 in [4] and by Theorem 3.9 and Corollary 4.7 we have

(v − n)n

v
= α(IXC )

α̂(IXC )
≤ ρ(IXC ) ≤ reg(IXC )

α̂(IXC )
= (v − n + 1)n

v

��
Remark 4.9 From Lemma 2.3.4 in [4], if d reg(IX ) ≤ α(I (m)

X ), then I (m)
X ⊆ I d . Moreover,

if dα(IX ) > α(I (m)
X ) then I (m)

X � I dX . The range of values not covered by these bounds has
length

⌊
α(I (m)

X )

α(IX )
− α(I (m)

X )

reg(IX )

⌋

=
⌊

α(I (m)
X )(reg(IX ) − α(IX ))

α(IX ) reg(IX )

⌋

For a C-Steiner configuration XC , from Corollary 4.2, this number is equal to
⌊

α(I (m)
XC

)

α(IXC ) reg(IXC )

⌋

.

Example 4.10 We compute the h-vector and the graded Betti numbers of a C-Steiner System
XC of type S(2, 3, v). We have |B| = v(v−1)

6 and then

hXC = (1, 3, 6, . . . ,

(
v − 2

2

)
,

(
v − 1

2

)
− |B|) =

�3hXC = (1, 0, 0, . . . , 0,−|B|, 0, 2
(

v − 1

2

)
+ (v − 2) − 3|B|,−

(
v − 1

2

)
+ |B|) =

=
(
1, 0, 0, . . . , 0,−v(v − 1)

6
, 0,

v(v − 3)

2
,− (v − 1)(v − 3)

3

)
.

In this case, we have: β0,v−3 = v(v−1)
6 , β1,v−2 = 0, β1,v−1 = − v(v−3)

2 and β2,v =
− (v−1)(v−3)

6 . In particular, α(IXC ) = ω((IXC ) = v − 3 and reg(IXC ) = v − 2.

In the following example we compute the graded Betti numbers of a C-Steiner configu-
ration of type S(t, n, v) where t < n − 1.

Example 4.11 Consider a Steiner system (V , B) of type S(2, 4, 13) where |V | = 13 and

B := {{2, 3, 5, 11}, {3, 4, 6, 12}, {4, 5, 7, 13}, {1, 5, 6, 8}, {2, 6, 7, 9}, {3, 7, 8, 10},
{4, 8, 9, 11}, {5, 9, 10, 12}, {6, 10, 11, 13}, {1, 7, 11, 12}, {2, 8, 12, 13},

{1, 3, 9, 13}, {1, 2, 4, 10}}.
Setting C := C(4,13) \ V , we construct a C-Steiner configuration XC in P

4. We have

hXC = (1, 4, 10, 20, 35, 56, 84, 120, 165, 207).

We have β0,9 = 13, β0,10 = 234, β1,11 = 702, β2,12 = 663, β3,13 = 207. In particular,
we have α(IXC ) = 9 and ω(IXC ) = reg(IXC ) = 10.

In general, the following question is open.
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Question 4.12 Let XC ⊆ P
n be a C-Steiner configuration of points of type S(t, n, v). Do

the graded Betti numbers and the Hilbert Function of I (m)
XC

only depend on the parameters
(t, n, v)?

We don’t have any formula to describe the Hilbert function of I (m)
XC

. Form = 1 Proposition
4.1 implies that the h-vector of XC is a pure O-sequence (see [39] for all the terminology
and background on this topic). This is not always true if m > 1. Using [1] and [32], we can
show examples where the h-vectors could be not unimodal or not differentiable.

Example 4.13 Consider a Steiner system (V1, B1) of type S(2, 3, 7). Set XC1 := XC(3,7)\B1 .
Using [32], we found that I (7)

XC1
has the following h-vector

h
I (7)
XC1

= (1, 3, 6, . . . , 15316, 171, 183, 182, 189, 175, 140, 119, 84, 63, 42, 21, 1428)

that is a non-unimodal sequence (the index denotes the degree in which the dimension occurs,
for instance, above the entry 153 is in degree 16).

Example 4.14 Consider a Steiner configuration (V2, B2) of type S(2, 3, 9) and set XC2 :=
XC(3,7)\B2 . Using [32], we found that the h-vector of I (10)

XC2
is

h
I (10)
XC2

= (1, 3, 6, . . . , 52831, 561, 583, 585, 603, 621, 639, 621, 567, 540, 540, 528, 468, 396,

360, 360, 324, 252, 216, 216, 204, 144, 108, 108, 108, 72, 36, 36, 36, 2460)

that is unimodal but not differentiable (the positive part of the first difference is not an
O-sequence).

We end this section with the following questions on XH,B suggested by experimental
evidences using [1] and [32]. From a combinatorial point of view, two Steiner systems
having the same parameters could have very different properties. We have examples where
such differences effect the homological invariants.

Question 4.15 Let (V , B) be a Steiner system of type S(t, n, v), and XH,B the associated
Steiner configuration of points. Assume that the hyperplanes in H are chosen generically.
Do the Hilbert function and the graded Betti numbers of XH,B only depend on t, n, v?

Question 4.16 Let (V , B) be a Steiner system of type S(t, n, v), and XH,B the associated
Steiner configuration of points. Assume that the hyperplanes in H are chosen generically.
Are the Hilbert function and the graded Betti numbers of XH,B generic with respect to the
Hilbert function? (i.e. the same as a set of |B| generic points in P

n?)

5 Application to coding theory

In this section we show an application of the previous results on Steiner and C-Steiner
configurations of points to coding theory. We recall the basic notion on linear coding and we
compute the parameters of a linear code associated to a Steiner configuration and a C-Steiner
configuration of points in P

n . We refer to [15,24,52–55] for a detailed initial motivation
to study the connections between the minimum distance and some invariants coming from
commutative/homological algebra. There are several ways to compute theminimumdistance.
One of them comes from linear algebra.
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Let k be any field and X = {P1, . . . , Pr } ⊆ P
n a not degenerate finite set of reduced

points. The linear code associated to 
 denoted by C(X) is the image of the injective linear
map ϕ : kn+1 → kr .

We are interested in three parameters [|X |, kX , dX ] that we use to evaluate the goodness
of a linear code. The first number |X | is the cardinality of X . The number kX is the dimension
of the code as k-linear vector space, that is the rank of the matrix associated to ϕ. The number
dX denotes the minimal distance of C(X), that is the minimum of the Hamming distance of
two elements in C(X). The Singleton bound gives always an upper bound for this number:
dX ≤ |X | − n. When dX = |X | − n the code is called a maximal distance separable code
(MDS code).

The linear code associated to X has generating matrix of type (n + 1) × r

A(X) = [c1 . . . cr ]
where ci are the coordinates of Pi . Then the linear code C(X) has parameters [|X |,
Rank(A(X)), dX ]. Assuming that A(X) has no proportional columns is equivalent to say
that the points Pi are distinct points in P

n . Then |X | = r , Rank(A(X)) = n + 1 and r − dX
is the maximum number of these points that fit in a hyperplane of P

n . Remark 2.2 in [52,53]
says that the minimum distance dX is also the minimum number such that r −dX columns in
A(X) span an n-dimensional space. The generating matrix A(X) of an [|X |, n + 1, d]-linear
code C naturally determines a matroid M(C).

Denoted by hyp(X) themaximumnumber of points contained in some hyperplane, dX has
also geometrical interpretation, that is dX = |X | − hyp(X), see Sect. 2 in [52] and Remark
2.7 in [54]. In particular, the authors borrowed this terminology from coding theory since dX
is exactly the minimum distance of the (equivalence class of) linear codes with generating
matrix having as columns the coordinates of the points of X .

Set XB := XH,B .We apply the results of the previous sections to compute the parameters
of linear codes associated to both a Steiner configuration XB of points and its Complement
XC .

Proposition 5.1 Let (V , B) be a Steiner system of type S(t, n, v) with |V | = v. If XB is the
Steiner configuration of points and XC its Complement, we have

hyp(XB) =
(
v−1
t−1

)

(n−1
t−1

)

and

hyp(XC ) =
(

v − 1

n − 1

)
−

(
v−1
t−1

)

(n−1
t−1

) .

Proof Let H1 ∈ H be one of the hyperplanes involved in the construction of a Steiner
configuration. Then it is clear by definition that the number of blocks in B containing 1, i.e.,
the number of points in H1 is

hyp(XB) =
(
v−1
t−1

)

(n−1
t−1

) .
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Since the star configuration XH,C(n,v)
has

(
v−1
n−1

)
points lying on H1, we get

hyp(XC ) =
(

v − 1

n − 1

)
−

(
v−1
t−1

)

(n−1
t−1

) .

��
Proposition 5.2 Let (V , B) be a Steiner system of type S(t, n, v)with |V | = v. Then a Steiner
configuration of points XB ⊆ P

n defines a linear code with

dXB =
(
v
t

)

(n
t

) −
(
v−1
t−1

)

(n−1
t−1

) .

A C-Steiner configuration of points XC ⊆ P
n defines a linear code with

dXC =
(

v

n

)
−

(
v
t

)

(n
t

) −
(

v − 1

n − 1

)
+

(
v−1
t−1

)

(n−1
t−1

) .

Proof The statement follows from Proposition 5.1 since, from Remark 2.7 in [54], for a set
of points X it is dX = |X | − hyp(X). ��
Remark 5.3 For a Steiner triple system S(2, 3, v) with block set B, define C := C(3,v) \ B.
Then XB and XC have the following minimal distance

dXB =
(
v
2

)

3
− v − 1

2
= (v − 1)(v − 3)

6

and

dXC =
(

v

3

)
−

(
v
2

)

3
−

(
v − 1

2

)
+ v − 1

2
= (v − 1)(v − 3)2

6
.

With the above results, we have

Theorem 5.4 Let (V , B) be a Steiner system S(t, n, v) with |V | = v. Then

(1) the parameters of the linear code defined by a Steiner configuration of points XB are[|B|, n + 1, dXB

] ;
(2) the parameters of the linear code defined by a Complement of a Steiner configuration of

points XC are
[(

v
n

) − |B|, n + 1, dXC

]
.

Theorem 5.5 Let (V , B) be a Steiner system S(t, n, v) with |V | = v.

(1) If n =
(
v−1
t−1

)

(n−1
t−1

) then C(XB) is a MDS code;

(2) if n = (
v−1
t−1

) −
(
v−1
t−1

)

(n−1
t−1

) then C(XC ) is a MDS code;

Example 5.6 Consider the Steiner system S(2, 3, 7). The blocks are, up to isomorphism,
B := {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}}.

Let �i := x + 2i y + 3i z + 5iw ∈ C[x, y, z, w] = C[P3] be linear forms and let Hi ⊆ P
3

be the hyperplane defined by �i for i = 1, . . . , 7. Set H := {H1, . . . , H7}. One can check
that any three hyperplanes inHmeet in one point. Computing with Cocoa [1] the generating
matrix of the linear code C(XH,B) defined by the Steiner configuration on B we get
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A(XH,B) :=

⎛

⎜
⎜
⎝

−15 −1983 −438045 −350 −639000 9315 104625
20 1576 269060 160 240075 −2610 −25875

−10 −418 −34230 −35 −37550 470 4250
1 17 523 1 666 −9 −99

⎞

⎟
⎟
⎠

where the columns are the seven coordinates (among the thirty-five) of the intersection points
of any three hyperplanes H1, . . . , H7 corresponding to the seven blocks B. The parameters
of the code C(XH,B) are [7, 4, 4].

We note that only in this particular case, the linear code C(XH,B) associated to a Steiner
system of type S(2, 3, 7) has dXB = 4 = 7−3 and C(XH,B) is a maximal distance separable
code (MDS).

We now compute linear code C(XH,C(3,7)\B) associated to the Complement of the Steiner
configuration. We get

A(XH,C(3,7)\B ) :=

⎛

⎜
⎜
⎝

75 −207 615 4845 −465 −70 27585 −190 21300 −5985 36273 −3610
−90 232 −660 −5060 460 64 −23980 160 −16005 4340 −24728 2368
40 −94 250 1830 −170 −21 7190 −45 3755 −930 4586 −387
−3 5 −9 −43 11 1 −239 1 −111 19 −115 7

225 1125 −621 9225 6975 413775 −29745 −108819 −3375 −33750 5250
−150 −675 348 −4950 −3450 −179850 11820 37092 1125 10125 −1200
50 200 −94 1250 850 35950 −2090 −4586 −250 −2000 175
−3 −9 3 −27 −33 −717 51 69 9 54 −3

−446175 −101250 1012500 −3138750 3037500
88650 16875 −151875 388125 −253125

−10450 −2500 20000 −42500 25000
153 54 −324 594 −324

⎞

⎟
⎟
⎠

where the columns are the twenty-eight coordinates of the intersection points (among the
thirty-five) of any three hyperplanes H1, . . . , H7 corresponding to the twenty-eight blocks

C(3,7) \ B ={{1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 2, 7}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 3, 7}, {1, 4, 6},
{1, 4, 7}, {1, 5, 6}, {1, 5, 7}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 3, 7}, {2, 4, 5}, {2, 4, 7},
{2, 5, 6}, {2, 6, 7}, {3, 4, 5}, {3, 4, 6}, {3, 5, 7}, {3, 6, 7}, {4, 5, 6}, {4, 5, 7}, {4, 6, 7}, {5, 6, 7}}.

The parameters of the code C(XH,C(3,7)\B) are [28, 4, 16].
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