GENERIC UNIQUENESS FOR THE PLATEAU PROBLEM

GIANMARCO CALDINI *, ANDREA MARCHESE *, ANDREA MERLO** AND SIMONE STEINBRÜCHEL ***

Abstract

Given a complete Riemannian manifold $\mathcal{M} \subset \mathbb{R}^{d}$ which is a Lipschitz neighbourhood retract of dimension $m+n$, of class $C^{3, \beta}$, without boundary and an oriented, closed submanifold $\Gamma \subset \mathcal{M}$ of dimension $m-1$, of class $C^{3, \alpha}$ with $\alpha<\beta$, which is a boundary in integral homology, we construct a complete metric space \mathcal{B} of $C^{3, \alpha}$-perturbations of Γ inside \mathcal{M} with the following property. For the typical element $b \in \mathcal{B}$, in the sense of Baire categories, every m-dimensional integral current in \mathcal{M} which solves the corresponding Plateau problem has an open dense set of boundary points with density $1 / 2$. We deduce that the typical element $b \in \mathcal{B}$ admits a unique solution to the Plateau problem. Moreover we prove that, in a complete metric space of integral currents without boundary in \mathbb{R}^{m+n}, metrized by the flat norm, the typical boundary admits a unique solution to the Plateau problem.

MSC (2020) 49Q05, 49Q15.

CONTENTS

1 Introduction 1
1.1 Previous results on generic uniqueness of area minimizing currents 3
2 Notation and preliminaries 4
3 The typical $C^{h, \alpha}$ graph avoids $C^{h, \beta}$ submanifolds 5
4 Proof of the main results 9
4.1 Proof of Theorem 1.1 10
4.2 Proof of Corollary 1.2 10
4.3 Proof of Theorem 1.3 10
5 Generic uniqueness with respect to the flat norm 12

1 INTRODUCTION

In the following let $n, m \geq 1, \beta \in(0,1]$ and let $\mathcal{M} \subset \mathbb{R}^{d}$ be a complete Riemannian manifold, which is a Lipschitz neighbourhood retract ${ }^{1}$ of dimension $m+n$, of class $C^{3, \beta}$, without boundary. For every $k=0, \ldots, m+n$, we denote by $\mathscr{D}_{k}(\mathcal{M})$ the set of k-dimensional currents with support in \mathcal{M} and by $\mathscr{I}_{k}(\mathcal{M})$ the subgroup of k-dimensional integral currents. We refer to Section 2 for the relevant definitions. We denote by $\operatorname{AMC}(b)$ the set of area minimizing integral currents in \mathcal{M} with boundary b, namely

$$
\operatorname{AMC}(b):=\left\{T \in \mathscr{I}_{m}(\mathcal{M}): \partial T=b, \mathbb{M}(T) \leq \mathbb{M}(S) \text { for every } S \in \mathscr{I}_{m}(\mathcal{M}) \text { with } \partial S=b\right\}
$$

We denote the set of $(m-1)$-dimensional boundaries in \mathcal{M} by

$$
\mathscr{B}_{m-1}(\mathcal{M}):=\left\{b \in \mathscr{D}_{m-1}(\mathcal{M}): b=\partial T \text { for some } T \in \mathscr{D}_{m}(\mathcal{M})\right\}
$$

[^0]Let $0<\alpha<\beta$ and let $\Gamma \subset \mathcal{M}$ be an oriented, closed (i.e. compact and without boundary) submanifold of dimension $m-1$ and of class $C^{3, \alpha}$. Let $b_{0}:=\llbracket \Gamma \rrbracket$ be the associated current and assume that $b_{0} \in \mathscr{B}_{m-1}(\mathcal{M})$. For every $P \in \Gamma$ there exists a connected, open set $U \subset \mathbb{R}^{m+n}$, a diffeomorphism $\boldsymbol{\Phi}: U \rightarrow \boldsymbol{\Phi}(U) \subseteq \mathcal{M}$ of class $C^{3, \beta}$ such that $P \in \boldsymbol{\Phi}(U)$, a relatively open, connected, bounded set $\Omega \subset \mathbb{R}^{m-1}=\left\langle e_{1}, \ldots, e_{m-1}\right\rangle$, and a function $f: \Omega \rightarrow \mathbb{R}^{n+1}$ of class $C^{3, \alpha}$ such that $g r(f) \subset U$, where

$$
g r(f):=\left\{(x, y) \in \Omega \times\left\langle e_{m}, \ldots, e_{m+n}\right\rangle: y=f(x)\right\}
$$

and

$$
\begin{equation*}
\Gamma \cap \boldsymbol{\Phi}(U)=\boldsymbol{\Phi}(g r(f)) \tag{1}
\end{equation*}
$$

Observe that since Ω is connected, then (1) implies that $\Gamma \cap \boldsymbol{\Phi}(U)$ is also connected.
Given a connected open set Ω^{\prime} compactly contained in Ω and $\varepsilon>0$, we let

$$
\begin{equation*}
X_{\varepsilon}(P):=\left\{u \in C^{3, \alpha}\left(\Omega, \mathbb{R}^{n+1}\right): f-u \equiv 0 \text { on } \Omega \backslash \Omega^{\prime},\|f-u\|_{C^{3, \alpha}} \leq \varepsilon\right\} \tag{2}
\end{equation*}
$$

By (1) there exists $\varepsilon>0$ such that

$$
\begin{equation*}
g r(u) \subseteq U \text { for every } u \in X_{\varepsilon}(P) \tag{3}
\end{equation*}
$$

We endow $X_{\mathcal{\varepsilon}}(P)$ with the norm $\|\cdot\|_{C^{3, \alpha}}$, which makes it a complete metric space, see Lemma 3.1.
For $i=1, \ldots, N$, we select one point P_{i} on each connected component of Γ and we assume that the definition of $U_{i}, \boldsymbol{\Phi}_{i}, \Omega_{i}, f_{i}$ and ε_{i} as in (3) is understood. We assume that $\boldsymbol{\Phi}_{i}\left(U_{i}\right)$ are disjoint and we denote

$$
\begin{equation*}
\eta:=\min \left\{1 ; \min _{i=1, \ldots, N} \varepsilon_{i}\right\} . \tag{4}
\end{equation*}
$$

Further restrictions on η will be specified in Lemma 4.1. We denote by \mathbf{X}_{η} the product space

$$
\begin{equation*}
\mathbf{x}_{\eta}:=\prod_{i=1}^{N} X_{\eta}\left(P_{i}\right) \tag{5}
\end{equation*}
$$

endowed with the 1-product distance, namely the distance induced by the norm

$$
\begin{equation*}
\left\|\left(u_{1}, \ldots, u_{N}\right)\right\|:=\sum_{i=1}^{N}\left\|u_{i}\right\|_{C^{3, \alpha}} . \tag{6}
\end{equation*}
$$

We define a map $\Psi: \mathbf{X}_{\eta} \rightarrow \mathscr{B}_{m-1}(\mathcal{M})$ as follows

$$
\begin{equation*}
\Psi\left(u_{1}, \ldots, u_{N}\right):=\sum_{i=1}^{N} \llbracket \boldsymbol{\Phi}_{i}\left(g r\left(u_{i}\right)\right) \rrbracket+b_{0}\left\llcorner\left(\mathcal{M} \backslash \bigcup_{i=1}^{N} \boldsymbol{\Phi}_{i}\left(U_{i}\right)\right) .\right. \tag{7}
\end{equation*}
$$

We observe that Ψ is injective and $\Psi\left(u_{1}, \ldots, u_{N}\right)$ and b_{0} are in the same homology class for every $\left(u_{1}, \ldots, u_{N}\right) \in \mathbf{X}_{\eta}$, see Lemma 2.2. We define the space of boundaries associated to \boldsymbol{X}_{η} as

$$
\begin{equation*}
\mathcal{B}_{\eta}:=\Psi\left(\mathbf{X}_{\eta}\right) . \tag{8}
\end{equation*}
$$

We naturally endow \mathcal{B}_{η} with the distance d induced by the map Ψ. More precisely, for every $b \in \mathbf{X}_{\eta}$ we denote

$$
\begin{equation*}
\left(u_{1}(b), \ldots, u_{N}(b)\right):=\Psi^{-1}(b) \tag{9}
\end{equation*}
$$

and we define

$$
\begin{equation*}
d(b, \bar{b}):=\sum_{i=1}^{N}\left\|u_{i}(b)-u_{i}(\bar{b})\right\|_{C^{3, \alpha}} . \tag{10}
\end{equation*}
$$

Obviously, this is also a complete metric space, because Ψ is by definition an isometry. Roughly speaking, the space \mathcal{B}_{η} consists of $C^{3, \alpha}$-perturbations of the boundary Γ that allow us to deform each connected component of Γ, locally around a point. We are ready to state the main results of this paper.

Theorem 1.1. For the typical boundary $b \in \mathcal{B}_{\eta}$, any area minimizing integral current T with $\partial T=b$ has density $1 / 2$ on a dense open subset of the support of b.

In codimension $n=1$ the previous theorem has the following interesting consequence.
Corollary 1.2. If $n=1$, then for the typical boundary $b \in \mathcal{B}_{\eta}$, any area minimizing integral current T with $\partial T=b$ has density $1 / 2$ at every point of the support of b.

Another remarkable consequence of Theorem 1.1, valid in any codimension, is the following
Theorem 1.3. For the typical boundary $b \in \mathcal{B}_{\eta}$, there is a unique area minimizing integral current T with $\partial T=b$.
In Section 5 we prove a similar result, which is more general in terms of the class of boundaries that we consider. On the other hand the term typical is referred to a weaker notion of distance between boundaries. More precisely, we prove that in a natural complete metric space metrized by the flat norm, the typical integral current admits a unique solution to the Plateau's problem, see Theorem 5.2.

1.1 Previous results on generic uniqueness of area minimizing currents

The question of how many minimal surfaces are spanned by a given closed curve occurs naturally in connection with the Plateau problem. It goes back at least to the first decades of the twentieth century, to works by many authors, see $[5,10,11,20,23]$. There are many examples of curves admitting several different minimizers, see [15, 21]. However, they carry a lot of symmetries which motivates the question whether uniqueness of solutions is a generic property, see [3, Section I.11, (3)] for a discussion on the topic.
Morgan proved in [16] that almost every curve in \mathbb{R}^{3} (with respect to a suitable measure) bounds a unique area minimizing surface. The result has been later generalized by the same author to elliptic integrands and to any dimension and codimension, see [17, 18]. Morgan's works deeply rely on Allard's boundary regularity theorem, see [1,2], proving that if a boundary Γ is contained in the boundary of a uniformly convex set, then every boundary point $p \in \Gamma$ is regular and has density $1 / 2$, see [16, Proposition 6.1] and [2, p. 429]. This assumption allows the author to rule out the existence of two-sided regular boundary points, namely regular boundary points with multiplicity greater than one, see [6, Example 1.3].
Hardt and Simon proved in [13] that for codimension 1 currents, i.e. when the (Euclidean) ambient manifold has one dimension more than the area minimizing current every boundary point has density $1 / 2$, without assuming the convexity condition. More recently, the fourth author extended this result to general codimension 1 Riemannian ambient manifolds, see [25]. Moreover, a recent result by De Lellis, De Philippis, Hirsch and Massaccesi, see [6], proves the first general boundary regularity theorem with no restrictions on the codimension, showing that the set of regular boundary points (possibly two-sided) is dense, see also [19].

In this article we prove the generic uniqueness of area minimizing integral currents in full generality, in any dimension and codimension and with no convexity assumption on the geometry of the boundary Γ. Our result relies on the above mentioned boundary regularity theorem as our main aim is proving the generic absence of two-sided boundary points.

Acknowledgements.

We would like to thank Camillo De Lellis and Guido De Philippis for valuable discussions. The work of A. Ma. is partially supported by PRIN 2017 TEXA3H_oo2 "Gradient flows, Optimal Transport and Metric Measure Structures" and by GNAMPA-INdAM. During the writing of this work A.Me. was partially supported by the European Union's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement no 101065346.

We briefly recall the relevant definitions of the theory of currents and we refer the reader to [12,24] for a complete treatment of the subject. A k-dimensional current on $\mathbb{R}^{d}(k \leq d)$ is a continuous linear functional on the space $\mathscr{D}^{k}\left(\mathbb{R}^{d}\right)$ of smooth and compactly supported differential k-forms in \mathbb{R}^{d}. The space of k-dimensional currents in \mathbb{R}^{d} is denoted by $\mathscr{D}_{k}\left(\mathbb{R}^{d}\right)$. The boundary of a current $T \in \mathscr{D}_{k}\left(\mathbb{R}^{d}\right)$ is the current $\partial T \in \mathscr{D}_{k-1}\left(\mathbb{R}^{d}\right)$ such that

$$
\partial T(\varphi)=T(d \varphi), \quad \text { for every } \varphi \in \mathscr{D}^{k-1}\left(\mathbb{R}^{d}\right)
$$

where as usual d denotes the exterior differential. Given $T \in \mathscr{D}_{k}\left(\mathbb{R}^{d}\right)$, the mass of T is denoted by $\mathbb{M}(T)$ and is defined as the supremum of $T(\omega)$ over all forms ω with $|\omega(x)| \leq 1$ for all $x \in \mathbb{R}^{d}$. The support of a current T, denoted $\operatorname{supp}(T)$, is the intersection of all closed sets C in \mathbb{R}^{d} such that $T(\omega)=0$ whenever $\omega \equiv 0$ on C. For every closed subset K of \mathbb{R}^{d}, we will denote by $\mathscr{D}_{k}(K)$ the set

$$
\mathscr{D}_{k}(K):=\left\{T \in \mathscr{D}_{k}\left(\mathbb{R}^{d}\right) \mid \operatorname{supp}(T) \subset K\right\} .
$$

Given a smooth, proper map $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$ and a k-current T in \mathbb{R}^{d}, the push-forward of T according to the map f is the k-current $f_{\sharp} T$ in $\mathbb{R}^{d^{\prime}}$ defined by

$$
\begin{equation*}
f_{\sharp} T(\omega):=T\left(f^{\sharp} \omega\right), \quad \text { for every } \omega \in \mathscr{D}^{k}\left(\mathbb{R}^{d^{\prime}}\right), \tag{11}
\end{equation*}
$$

where $f^{\sharp} \omega$ denotes the pullback of ω through f. If T has finite mass and compact support, then the previous definition can be extended to any f of class C^{1}.

We say that a current $T \in \mathscr{D}_{k}\left(\mathbb{R}^{d}\right)$ is integer rectifiable and we write $T \in \mathscr{R}_{k}\left(\mathbb{R}^{d}\right)$ if we can identify T with a triple (E, τ, θ), where $E \subset K$ is a k-rectifiable set, $\tau(x)$ is a unit k-vector spanning the tangent space $T_{x} E$ at \mathscr{H}^{k}-a.e. x and $\theta \in L^{1}\left(\mathscr{H}^{k}\llcorner E, \mathbb{Z})\right.$ is an integer-valued multiplicity, where the identification means that the action of T can be expressed by

$$
\begin{equation*}
T(\omega)=\int_{E}\langle\omega(x), \tau(x)\rangle \theta(x) d \mathscr{H}^{k}(x), \quad \text { for every } \omega \in \mathscr{D}^{k}\left(\mathbb{R}^{d}\right) \tag{12}
\end{equation*}
$$

If T is as in (12), we denote it by $T=\llbracket E, \tau, \theta \rrbracket$. We denote by $\mathscr{I}_{k}\left(\mathbb{R}^{d}\right)$ the subgroup of k-dimensional integral currents, that is the set of currents $T \in \mathscr{R}_{k}\left(\mathbb{R}^{d}\right)$ with $\partial T \in \mathscr{R}_{k-1}\left(\mathbb{R}^{d}\right)$. If $T=\llbracket E, \tau, \theta \rrbracket \in \mathscr{R}_{k}\left(\mathbb{R}^{d}\right)$ and $B \subset \mathbb{R}^{d}$ is a Borel set, we denote the restriction of T to B by setting $T\llcorner B:=\llbracket E \cap B, \tau, \theta \rrbracket$. The set of integer rectifiable (respectively integral) k-currents with support in a closed set K is denoted by $\mathscr{R}_{k}(K)$ (respectively $\mathscr{I}_{k}(K)$).

We recall that the (integral) flat norm $\mathbb{F}(T)$ of an integral current $T \in \mathscr{I}_{k}(K)$, with K compact, is defined by:

$$
\begin{equation*}
\mathbb{F}(T):=\min \left\{\mathbb{M}(R)+\mathbb{M}(S) \mid T=R+\partial S, R \in \mathscr{I}_{k}(K), S \in \mathscr{I}_{k+1}(K)\right\} \tag{13}
\end{equation*}
$$

A k-dimensional polyhedral current is a current P of the form

$$
\begin{equation*}
P:=\sum_{i=1}^{N} \theta_{i} \llbracket \sigma_{i} \rrbracket, \tag{14}
\end{equation*}
$$

where $\theta_{i} \in \mathbb{R}, \sigma_{i}$ are non-overlapping k-dimensional simplexes in \mathbb{R}^{d}, oriented by (constant) k-vectors τ_{i} and $\llbracket \sigma_{i} \rrbracket=\llbracket \sigma_{i}, \tau_{i}, 1 \rrbracket$ is the multiplicity-one current naturally associated to σ_{i}. A polyhedral current with integer coefficients θ_{i} is called integer polyhedral and we denote the subgroup of integer polyhedral currents with support in K by $\mathscr{P}_{k}(K)$.

Lemma 2.1. There exists a constant $C>0$ such that $\mathbb{F}(b-\bar{b}) \leq C d(b, \bar{b})$, for every $b, \bar{b} \in \mathcal{B}_{\eta}$.
Proof. It is sufficient to prove the lemma for $N=1$. Indeed, denoting for every $b \in \mathcal{B}_{\eta}$ and for $i=1, \ldots, N$ the boundary $b^{i} \in \mathcal{B}_{\eta}$ defined by

$$
b^{i}:=b\left\llcorner\left(\boldsymbol{\Phi}_{i}\left(U_{i}\right)\right)+\llbracket \Gamma \rrbracket\left\llcorner\left(\mathcal{M} \backslash \boldsymbol{\Phi}_{i}\left(U_{i}\right)\right),\right.\right.
$$

we have

$$
\mathbb{F}(\bar{b}-b) \leq \sum_{i=1}^{N} \mathbb{F}\left(\bar{b}^{i}-b^{i}\right) \leq N \max _{i=1, \ldots, N} \mathbb{F}\left(\bar{b}^{i}-b^{i}\right)
$$

Hence we can assume that $N=1$ and for $w \in \mathbf{X}_{\eta}$ we define $\mathbf{w}: \Omega \rightarrow \mathbb{R}^{m+n}$ by

$$
\begin{equation*}
\mathbf{w}(x):=(x, w(x)) \tag{15}
\end{equation*}
$$

Let $u:=\Psi^{-1}(b)$ and $\bar{u}:=\Psi^{-1}(\bar{b})$ and we denote $I:=\llbracket[0,1] \rrbracket \in \mathscr{I}_{1}(\mathbb{R})$ and we let $F:[0,1] \times \Omega \rightarrow \mathbb{R}^{m+n}$ be the linear homotopy

$$
F(t, x)=(1-t) \mathbf{u}(x)+t \overline{\mathbf{u}}(x)
$$

Denote $S:=F_{\sharp}(I \times \llbracket \Omega \rrbracket)$. We use $[24,26.18]$ to compute

$$
\begin{aligned}
\partial S & =F_{\sharp}(\partial(I \times \llbracket \Omega \rrbracket))=F_{\sharp}(\partial I \times \llbracket \Omega \rrbracket-I \times \partial \llbracket \Omega \rrbracket)=F_{\sharp}\left(\delta_{1} \times \llbracket \Omega \rrbracket\right)-F_{\sharp}\left(\delta_{0} \times \llbracket \Omega \rrbracket\right)-F_{\sharp}(I \times \partial \llbracket \Omega \rrbracket) \\
& =(\overline{\mathbf{u}})_{\sharp \llbracket} \llbracket \Omega \rrbracket-(\mathbf{u})_{\sharp} \llbracket \Omega \rrbracket-F_{\sharp}(I \times \partial \llbracket \Omega \rrbracket)=\llbracket g r(\bar{u}) \rrbracket-\llbracket g r(u) \rrbracket-F_{\sharp}(I \times \partial \llbracket \Omega \rrbracket)=\llbracket g r(\bar{u}) \rrbracket-\llbracket g r(u) \rrbracket,
\end{aligned}
$$

where the last equality is due to the fact that $\overline{\mathbf{u}}=\mathbf{u}$ on $\partial \Omega$. Hence, by the homotopy formula, see [12, §4.1.14], we can estimate

$$
\begin{align*}
\mathbb{F}(\llbracket g r(\bar{u}) \rrbracket-\llbracket g r(u) \rrbracket) & \leq \mathbb{M}(S) \leq\|\overline{\mathbf{u}}-\mathbf{u}\|_{\infty} \sup _{x \in \Omega}(|D \mathbf{u}(x)|+|D \overline{\mathbf{u}}(x)|)^{m-1} \mathbb{M}(\llbracket \Omega \rrbracket) \tag{16}\\
& \leq C\|\overline{\mathbf{u}}-\mathbf{u}\|_{C^{3, \alpha}}=C\|\bar{u}-u\|_{C^{3, \alpha}} .
\end{align*}
$$

Therefore, since $\boldsymbol{\Phi}$ is of class $C^{3, \beta}$, we infer

$$
\mathbb{F}(\bar{b}-b)=\mathbb{F}\left(\boldsymbol{\Phi}_{\sharp}(\llbracket g r(\bar{u}) \rrbracket-\llbracket g r(u) \rrbracket)\right) \leq \mathbb{M}\left(\boldsymbol{\Phi}_{\sharp} S\right) \leq C\|\bar{u}-u\|_{C^{3, \alpha}}=C d(\bar{b}, b),
$$

where the last identity follows from the definition of the distance d.
Lemma 2.2. For every $b \in \mathcal{B}_{\eta}$ there exists a current $S \in \mathscr{I}_{m}(\mathcal{M})$ such that $\llbracket \Gamma \rrbracket-b=\partial S$. In particular all the elements of \mathcal{B}_{η} are in the same homology class.

Proof. For every connected component of Γ, we consider the corresponding $U_{i}, \boldsymbol{\Phi}_{i}, \Omega_{i}, f_{i}$, defined in the introduction. We now argue as in the proof of Lemma 2.1, replacing \bar{b} with $\llbracket \Gamma \rrbracket$ to define a current $S_{i} \in \mathscr{I}_{m}\left(\mathbb{R}^{m+n}\right)$ such that $\partial S_{i}=\llbracket g r\left(f_{i}\right) \rrbracket-\llbracket g r\left(u_{i}\right) \rrbracket$. The current $S:=\sum_{i=1}^{N}\left(\boldsymbol{\Phi}_{i}\right)_{\sharp}\left(S_{i}\right)$ satisfies the requirement.

3 the typical $C^{h, \alpha}$ graph avoids $C^{h, \beta}$ submanifolds

Theorem 1.1 is a simple consequence of the boundary regularity result of [6] and the following fact. The typical $\operatorname{map} u \in X_{\varepsilon}(P)$, see (2), has the following property. For every open set $V \subset U \subset \mathbb{R}^{n+m}$ such that $g r\left(u\left\llcorner\Omega^{\prime}\right) \cap V \neq \varnothing\right.$ and, for every m-dimensional submanifold \mathcal{N} of class $C^{3, \beta}$ in \mathbb{R}^{m+n} with $\partial \mathcal{N} \cap V=\varnothing$ it holds $g r(u) \cap V \not \subset \mathcal{N}$.

For the sake of generality, in this section we prove this result for $u: \mathbb{R}^{m-k} \rightarrow \mathbb{R}^{n+k}$ of class $C^{h, \alpha}$ and \mathcal{N} of class $C^{h, \beta}$, for every $h \in \mathbb{N}$ and every $k<m$. This generalization does not require any additional effort with respect to the case of interest for the purposes of the paper.

In the following let $n, m \geq 1$, and $0 \leq k<m$. Throughout this section we will denote $\left\{e_{1}, \ldots, e_{m+n}\right\}$ the standard basis of \mathbb{R}^{m+n}. Let Ω be a fixed open bounded set in $\mathbb{R}^{m-k}=\left\langle e_{1}, \ldots, e_{m-k}\right\rangle$. We further fix $h \in \mathbb{N} \backslash\{0\}$, $0<\alpha<\gamma<\beta \leq 1$ a function $f: \Omega \rightarrow \mathbb{R}^{n+k}$ of class $C^{h, \alpha}$ and an open set Ω^{\prime} compactly contained in Ω. For fixed $\varepsilon>0$, we let

$$
\begin{equation*}
X_{\varepsilon}:=\left\{u \in C^{h, \alpha}\left(\Omega, \mathbb{R}^{n+k}\right): f-u \equiv 0 \text { on } \Omega \backslash \Omega^{\prime},\|f-u\|_{C^{h, \alpha}} \leq \varepsilon\right\} \tag{17}
\end{equation*}
$$

where we denoted

$$
\|u\|_{C^{h, \alpha}}=\|u\|_{C^{h}}+\left[D^{h} u\right]_{\alpha}:=\|u\|_{\infty}+\sum_{j=1}^{h}\left\|D^{j} u\right\|_{\infty}+\sup _{x \neq y \in \Omega} \frac{\left|D^{h} u(x)-D^{h} u(y)\right|}{|x-y|^{\alpha}} .
$$

we further endow X_{ε} with the norm $\|\cdot\|_{C^{h, \alpha}}$. We observe that the space $X_{\varepsilon}(P)$ defined in (2), fits this definition with $k=1$ and $h=3$.

We begin with the following observation.

Lemma 3.1. The space $\left(X_{\varepsilon},\|\cdot\|_{C^{h, \alpha}}\right)$ is complete. In particular the space $\left(\mathcal{B}_{\eta}, d\right)$ is also complete.
Proof. It suffices to show that X_{ε} is closed in $\left(C^{h, \alpha},\|\cdot\|_{C^{h, \alpha}}\right)$. Let u_{n} be a sequence of elements in X_{ε} and let $u \in C^{h, \alpha}$ be such that $\left\|u_{n}-u\right\|_{C^{h, \alpha}} \rightarrow 0$. Obviously $f-u \equiv 0$ on $\Omega \backslash \Omega^{\prime}$ and $u \in C^{h, \alpha}$, hence $u \in X_{\varepsilon}$.

The fact that \mathcal{B}_{η} is complete follows from the fact that Ψ is an isometry between the product space X defined in (5) endowed with the distance induced by the norm (6) and (\mathcal{B}_{η}, d).

We then introduce a subset of X_{ε} which roughly consists of those functions whose graph has small intersection with any submanifold of class $C^{h, \beta}$. We let $\pi_{\Omega}: \Omega \times \mathbb{R}^{n+k} \rightarrow \Omega$ be the orthogonal projection on the first $m-k$ coordinates of \mathbb{R}^{m+n}. For every open set $A \subset \Omega$ we denote

$$
C_{A}:=\left\{\left(z_{1}, z_{2}\right) \in \Omega \times \mathbb{R}^{n+k}: z_{1} \in A\right\}
$$

and we abbreviate $C(x, r):=C_{B(x, r)}$.
Definition 3.1. Let \mathcal{A} be the set of those $w \in X_{\varepsilon}$ for which there exists an embedded m-dimensional manifold $\mathcal{N} \subset \mathbb{R}^{m+n}$ of class $C^{h, \beta}$ and an open set $O \subset C_{\Omega^{\prime}}$ such that

$$
\partial \mathcal{N} \cap O=\varnothing \quad \text { and } \quad \varnothing \neq \operatorname{gr}(w) \cap O \subset \mathcal{N}
$$

The aim of this section is to prove the following proposition.
Proposition 3.2. The set \mathcal{A} is of first category in $X_{\mathcal{\varepsilon}}$, i.e. it is contained in a countable union of closed sets with empty interior.
Thanks to Lemma 3.1 and Baire's theorem, Proposition 3.2 implies in particular that $X_{\mathcal{E}} \backslash \mathcal{A}$ is dense in $X_{\mathcal{\varepsilon}}$. Our strategy to prove Proposition 3.2 uses the relation between topological properties of sets in the sense of Baire categories and the existence of a winning strategy for a suitable topological game.

Definition 3.2 (Banach-Mazur game). Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$ be an arbitrary subset. The Banach-Mazur game associated to A is a game between two players, $P 1$ and $P 2$ which is played as follows: $P 1$ chooses arbitrarily an open set $\mathscr{U}_{1} \subseteq X$; then $P 2$ chooses an open set $\mathscr{V}_{1} \subseteq \mathscr{U}_{1}$; then $P 1$ chooses an open set $\mathscr{U}_{2} \subseteq \mathscr{V}_{1}$ and so on. If the set $\left(\bigcap_{i \in \mathbb{N}} \mathscr{V}_{i}\right) \cap A$ is non-empty then $P 1$ wins. Otherwise $P 2$ wins.

The following proposition relates the Banach-Mazur game to the topology of the space on which it is played. We say that a set is of first category if it is contained in a countable union of closed subsets with empty interior. A set is residual if its complement is of first category. We say that a certain property holds for the typical element of X, if it holds for every element of a residual set.

Proposition 3.3. Suppose the metric space X is complete. Then there exists a winning strategy for $P 2$ if and only if A is of first category in X .

Proof. The proof of this result is given in [22] only in the case of the real line. However the same argument works verbatim in any complete metric space.

Definition 3.3. Let A be the set of those $w \in X_{\mathcal{\varepsilon}}$ for which there exists a map $M: \Omega \times\left\langle e_{m-k+1}, \ldots, e_{m}\right\rangle \rightarrow \mathbb{R}^{n}$ of class $C^{h, \beta}$ and an open set $U \subset \Omega^{\prime}$ such that

$$
\pi_{\Omega}\left(C_{U} \cap \operatorname{gr}(M) \cap \operatorname{gr}(w)\right)=U
$$

The main step for the proof of Proposition 3.2 is the following
Proposition 3.4. The set A is of first category in $X_{\mathcal{E}}$.
Now we proceed with the proofs of Proposition 3.4 and Proposition 3.2. We begin with the following elementary lemma.

Lemma 3.5. Suppose that $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function of class $C^{h, \beta}$. Then, for any $x \in \mathbb{R}$ there exists a $t_{0}>0$ and a bounded function $r_{h+1}(t):\left[-t_{0}, t_{0}\right] \rightarrow \mathbb{R}$ such that

$$
g(x+t)=g(x)+d g(x) t+\ldots+\frac{d^{h} g(x)}{h!} t^{h}+r_{h+1}(t) t^{h+\beta} .
$$

Proof. The Taylor expansion of g yields

$$
\begin{equation*}
g(x+t)=g(x)+d g(x) t+\ldots+\frac{d^{h-1} g(x)}{(h-1)!} t^{h-1}+\frac{d^{h} g\left(x+\zeta_{t}\right)}{h!} t^{h} \tag{18}
\end{equation*}
$$

for some $\zeta_{t} \in[0, t]$. However, this shows that

$$
\begin{equation*}
g(x+t)-g(x)-d g(x) t-\ldots-\frac{d^{h-1} g(x)}{(h-1)!} t^{h-1}-\frac{d^{h} g(x)}{h!} t^{h}=\frac{d^{h} g\left(x+\zeta_{t}\right) t^{h}-d^{h} g(x) t^{h}}{h!} \tag{19}
\end{equation*}
$$

Define $r_{h+1}(t):=\frac{d^{h} g\left(x+\zeta_{t}\right)-d^{h} g(x)}{h!t^{\beta}}$ and note that $\left|r_{h+1}(t)\right| \leq \frac{\left|d^{h} g\left(x+\zeta_{t}\right)-d^{h} g(x)\right|}{h!\zeta_{t}^{\beta}} \leq \frac{\left[d^{h} g(x)\right]_{c}{ }^{\beta}}{h!}$.
The following proposition provides the main tool to find a winning strategy for the Banach-Mazur game associated to A, allowing us to prove Proposition 3.4. We denote $\mathscr{B}(w, \rho)=\left\{u \in X_{\varepsilon}:\|u-w\|_{C^{h, \alpha}}<\rho\right\}$.

Proposition 3.6. Let $\bar{w} \in X_{\varepsilon}$ be fixed and let $\bar{\rho}>0, j \in \mathbb{N} \backslash\{0\}$. Then, for any $x \in \Omega^{\prime}$ there exist $u \in X_{\varepsilon}$ and $\rho>0$ such that
(i) $\mathscr{B}(u, \rho) \subseteq \mathscr{B}(\bar{w}, \bar{\rho})$;
(ii) for every $w \in \mathscr{B}(u, \rho)$ and $M: \Omega \times\left\langle e_{m-k+1}, \ldots, e_{m}\right\rangle \rightarrow \mathbb{R}^{n}$ of class $C^{h, \beta}$ with $\operatorname{Lip}(M)+\|M\|_{C^{h, \beta}} \leq j$ we have

$$
\pi_{\Omega}(\operatorname{gr}(M) \cap \operatorname{gr}(w) \cap C(x, r)) \neq B(x, r),
$$

where $r:=\min \left\{1 / j, \operatorname{dist}\left(x, \Omega \backslash \Omega^{\prime}\right)\right\}$.
Proof. Assume by contradiction that there is an $x \in \Omega^{\prime}$ such that for every $u \in \mathscr{B}(\bar{w}, \bar{\rho})$ there is an infinitesimal sequence $\rho_{i} \leq \bar{\rho}-\|u-\bar{w}\|_{C^{h, \alpha}}$ such that property (ii) fails.

Fix $0<\delta<1$ to be chosen later and let ψ_{δ} be the function on \mathbb{R}^{m-k} defined by

$$
\psi_{\delta}(z):=\delta^{1+\gamma}\left|x_{1}-z_{1}\right|^{h+\gamma}
$$

where z_{i} are the coordinates of $z \in \mathbb{R}^{m-k}$. Fix $r<\min \left\{1 / j, \operatorname{dist}\left(x, \partial \Omega^{\prime}\right)\right\}$. Let $\eta: \Omega \rightarrow[0,1]$ be a smooth cutoff function such that $\eta \equiv 0$ on $\Omega \backslash B_{r}(x)$ and $\eta \equiv 1$ on $B_{r / 2}(x)$. Observe that $\eta \psi_{\delta} \in C^{h, \alpha}$ and more precisely

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \delta^{-1}\left\|\eta \psi_{\delta}\right\|_{C^{h, \alpha}}=0 \quad \text { and } \quad\left|\psi_{\delta}\left(x+t e_{1}\right)\right|=\delta^{1+\gamma}|t|^{h+\gamma} \quad \text { for any }|t| \leq r / 2 \tag{20}
\end{equation*}
$$

Throughout the rest of the proof, we let φ be a mollification kernel, that is a non-negative, radial smooth function supported on $B(0,1) \subseteq \mathbb{R}^{m-k}$ such that $\varphi \equiv 1$ on $B(0,1 / 2)$ and $\int \varphi=1$. For any $\iota=1,2, \ldots$ we further let $\varphi_{\iota}(y):=\iota^{m-k} \varphi(\iota y)$. Denote $f_{\delta}:=(1-\delta) \bar{w}+\delta f$. Now define

$$
v:=\varphi_{\iota} *\left(\eta f_{\delta}\right)+(1-\eta) f_{\delta}
$$

and observe that for ι sufficiently large we have that $f-v \equiv 0$ on $\Omega \backslash \Omega^{\prime}$. Moreover, the function v is smooth on $B(x, r / 2)$. Denote

$$
u:=\left(v_{1}, \ldots, v_{n+k-1}, v_{n+k}+\eta \psi_{\delta}\right) .
$$

We can estimate

$$
\begin{aligned}
\|u-f\|_{C^{h, \alpha}} & \leq\|u-v\|_{C^{h, \alpha}}+\left\|v-f_{\delta}\right\|_{C^{h, \alpha}}+\|(1-\delta)(\bar{w}-f)\|_{C^{h, \alpha}} \\
& \leq\left\|\eta \psi_{\delta}\right\|_{C^{h, \alpha}}+\left\|\varphi_{l} *\left(\eta f_{\delta}\right)-\eta f_{\delta}\right\|_{C^{h, \alpha}}+(1-\delta) \varepsilon .
\end{aligned}
$$

Hence it follows from (20) that for δ sufficiently small and ι sufficiently large, $u \in X_{\mathcal{E}}$ Moreover for δ sufficiently small and ι sufficiently large we have $u \in \mathscr{B}(\bar{w}, \bar{\rho} / 2)$. Indeed,

$$
\begin{aligned}
\|u-\bar{w}\|_{C^{h, \alpha}} & \leq\|u-v\|_{C^{h, \alpha}}+\left\|v-f_{\delta}\right\|_{C^{h, \alpha}}+\|\delta(\bar{w}-f)\|_{C^{h, \alpha}} \\
& \leq\left\|\eta \psi_{\delta}\right\|_{C^{h, \alpha}}+\left\|\varphi_{l} *\left(\eta f_{\delta}\right)-\eta f_{\delta}\right\|_{C^{h, \alpha}}+\delta \varepsilon .
\end{aligned}
$$

By assumption there is a sequence $\rho_{i}<\bar{\rho} / 2$ with $\rho_{i} \rightarrow 0$, such that there exist $w^{i} \in \mathscr{B}\left(u, \rho_{i}\right)$ and $M^{i}: \Omega \times$ $\left\langle e_{m-k+1}, \ldots, e_{m}\right\rangle \rightarrow \mathbb{R}^{n}$ of class $C^{h, \beta}$ with $\operatorname{Lip}\left(M^{i}\right)+\left\|M^{i}\right\|_{C^{h, \beta}} \leq j$ for which

$$
\pi_{\Omega}\left(\operatorname{gr}\left(M^{i}\right) \cap \operatorname{gr}\left(w^{i}\right) \cap C(x, r)\right)=B(x, r) .
$$

This means that for any $y \in B(x, r)$ we find $y^{\prime} \in \mathbb{R}^{k}$ such that

$$
\left(y, y^{\prime}, M^{i}\left(y, y^{\prime}\right)\right)=\left(y, \underline{w}^{i}(y), \underline{\underline{w}}^{i}(y)\right) \in \mathbb{R}^{m-k} \times \mathbb{R}^{k} \times \mathbb{R}^{n}, \quad \text { for any } i \in \mathbb{N},
$$

where we denote $\underline{w}^{i}:=\left(w_{1}^{i}, \ldots, w_{k}^{i}\right)$ and $\underline{\underline{w}}^{i}:=\left(w_{k+1}^{i}, \ldots, w_{n+k}^{i}\right)$. In particular, for $y=x_{t}:=x+t e_{1}$ with $t \in[0, r / 2]$, we have

$$
\left(x_{t}, \underline{w}^{i}\left(x_{t}\right), \underline{\underline{w}}^{i}\left(x_{t}\right)\right)=\left(x_{t}, \underline{w}^{i}\left(x_{t}\right), M^{i}\left(x_{t}, \underline{w}^{i}\left(x_{t}\right)\right)\right),
$$

and comparing the last components, we deduce that for every $t \in[0, r / 2]$, we have

$$
\begin{equation*}
w_{n+k}^{i}\left(x_{t}\right)=M_{n}^{i}\left(x_{t}, \underline{w}^{i}\left(x_{t}\right)\right) \quad \text { for all } i \in \mathbb{N} \tag{21}
\end{equation*}
$$

Thanks to Arzelà-Ascoli theorem, with the same argument used in Lemma 3.1, we can show that there exists $M \in C^{h, \beta}$ with $\operatorname{Lip}(M)+\|M\|_{C^{h, \beta}} \leq j$ such that, up to subsequences, $\lim _{i \rightarrow \infty}\left\|M^{i}-M\right\|_{C^{h, \beta}}=0$. In addition, since $\rho_{i} \rightarrow 0$ and $w^{i} \in \mathscr{B}\left(u, \rho_{i}\right)$, we also have that $\lim _{i \rightarrow \infty}\left\|w^{i}-u\right\|_{C^{1}}=0$ and hence, by continuity of all the functions involved, the fact that $w^{i} \rightarrow u$ and $\underline{u}=\underline{v}$, (21) implies that

$$
\begin{equation*}
u_{n+k}\left(x_{t}\right)=M_{n}\left(x_{t}, \underline{u}\left(x_{t}\right)\right)=M_{n}\left(x_{t}, \underline{v}\left(x_{t}\right)\right), \tag{22}
\end{equation*}
$$

for every $t \in[0, r / 2]$. On the other hand, using Lemma 3.5 and the fact that M is of class $C^{h, \beta}$ and \underline{u} is smooth, we find constants c_{0}, \ldots, c_{h} and a function $c_{h+1}(t)$ with $\left\|c_{h+1}\right\|_{L^{\infty}\left(0, r_{\delta}\right)}<C_{h+1}$ such that for every $t \in[0, r / 2]$, it holds

$$
\begin{equation*}
M_{n}\left(x_{t}, \underline{v}\left(x_{t}\right)\right)=c_{0}+c_{1} t+\ldots+c_{h} \frac{t^{h}}{h!}+c_{h+1}(t) t^{h+\beta} \tag{23}
\end{equation*}
$$

Observe that v is smooth, hence we can expand it

$$
\begin{equation*}
v_{n+k}\left(x_{t}\right)=v_{n+k}(x)+\partial_{1} v_{n+k}(x) t+\ldots+\frac{\partial_{1}^{h} v_{n+k}(x)}{h!} t^{h}+\frac{\partial_{1}^{h+1} v_{n+k}(\zeta)}{(h+1)!} t^{h+1} \tag{24}
\end{equation*}
$$

for some $\zeta \in\left[x, x+t e_{1}\right]$.
Now we estimate the size of the added bump.

$$
\begin{equation*}
\eta\left(x_{t}\right) \psi_{\delta}\left(x_{t}\right)=\left(u_{n+k}-v_{n+k}\right)\left(x_{t}\right) \stackrel{(22)}{=} M_{n}\left(x_{t}, \underline{v}\left(x_{t}\right)\right)-v_{n+k}\left(x_{t}\right) . \tag{25}
\end{equation*}
$$

Combining (23), (24) and (25) we infer that for every $t \in[0, r / 2]$ we have

$$
\begin{align*}
\left|\sum_{\kappa=0}^{h}\left(c_{\kappa}-\partial_{1}^{\kappa} v_{n+k}(x)\right) \frac{t^{\kappa}}{\kappa!}+c_{h+1}(t) t^{h+\beta}-\frac{\partial_{1}^{h+1} v_{n+k}(\zeta)}{(h+1)!} t^{h+1}\right| & =\left|M_{n}\left(x_{t}, \underline{v}\left(x_{t}\right)\right)-v_{n+k}\left(x_{t}\right)\right| \tag{26}\\
& \stackrel{(25)}{=}\left|\eta\left(x_{t}\right) \psi_{\delta}\left(x_{t}\right)\right| \stackrel{(20)}{=} \bar{C} \delta^{1+\gamma} t^{h+\alpha} .
\end{align*}
$$

As $\alpha>0$, we deduce that

$$
\begin{equation*}
c_{\kappa}=\partial_{1}^{\kappa} v_{n+k}(x) \quad \text { for all } \quad 0 \leq \kappa \leq h . \tag{27}
\end{equation*}
$$

On the other hand we infer from (25) that for any $t \in[0, r / 2]$, we have

$$
\begin{equation*}
\bar{C} \delta^{1+\gamma} t^{h+\gamma} \stackrel{(20)}{=}\left|\eta\left(x_{t}\right) \psi_{\delta}\left(x_{t}\right)\right|=\left|M_{n}\left(x_{t}, \underline{v}\left(x_{t}\right)\right)-v_{n+k}\left(x_{t}\right)\right| \stackrel{(27)}{=}\left|c_{h+1}(t) t^{h+\beta}-\frac{\partial_{1}^{h+1} v_{n+k}(\zeta)}{(h+1)!} t^{h+1}\right| \tag{28}
\end{equation*}
$$

which results in a contradiction as $\gamma<\beta$.

Proof of Proposition 3.4. Let us prove that $P 2$ has a winning strategy for the Banach-Mazur game associated to A.
Let us assume that the players $P 1$ and $P 2$ have played already κ moves which are associated to open sets $\mathscr{U}_{1}, \ldots, \mathscr{U}_{\kappa}$ and $\mathscr{V}_{1}, \ldots, \mathscr{V}_{\kappa}$ chosen by $P 1$ and $P 2$ respectively in such a way that

$$
\mathscr{V}_{\kappa} \subseteq \mathscr{U}_{\kappa} \subseteq \ldots \subseteq \mathscr{V}_{1} \subseteq \mathscr{U}_{1} .
$$

The $(\kappa+1)$ th move for $P 1$ is an open set $\mathscr{U}_{\kappa+1} \subseteq \mathscr{V}_{\kappa}$. Now we describe how to choose properly the set $\mathscr{V}_{\kappa+1}$.
Let us fix a dense sequence $\left\{x_{l}\right\}_{l \in \mathbb{N}}$ in Ω^{\prime}. First $P 2$ picks some $\bar{w} \in \mathscr{U}_{\kappa+1}$ and $\bar{\rho}>0$ such that $\mathscr{B}(\bar{w}, \bar{\rho}) \subseteq \mathscr{U}_{\kappa+1}$. By Proposition 3.6 applied with these choices of \bar{w} and $\bar{\rho}$ and with $x=x_{\kappa+1}, j=\kappa+1$ we obtain $u^{\kappa+1} \in \mathscr{B}(\bar{w}, \bar{\rho})$ and $0<\rho_{\kappa+1}<1 /(\kappa+1)$ such that
(i) $\mathscr{B}\left(u^{\kappa+1}, \rho_{\kappa+1}\right) \subseteq \mathscr{U}_{\kappa+1}$;
(ii) for every $w \in \mathscr{B}\left(u^{\kappa+1}, \rho_{\kappa+1}\right)$ and $M: \Omega \times\left\langle e_{m-k+1}, \ldots, e_{m}\right\rangle \rightarrow \mathbb{R}^{n}$ of class $C^{h, \beta}$ with $\operatorname{Lip}(M)+\|M\|_{C^{h, \beta}} \leq \kappa+1$ we have

$$
\pi_{\Omega}(\operatorname{gr}(M) \cap \operatorname{gr}(w) \cap C(x, r)) \neq B(x, r)
$$

where $r:=\min \left\{1 /(\kappa+1), \operatorname{dist}\left(x, \Omega \backslash \Omega^{\prime}\right)\right\}$.
Note that with the choice $\mathscr{V}_{\kappa+1}:=\mathscr{B}\left(u^{\kappa+1}, \rho_{\kappa+1}\right)$ there exists $w_{\infty} \in X_{\varepsilon}$ such that $\left\{w_{\infty}\right\}=\bigcap_{j \in \mathbb{N}} \mathscr{V}_{j}$. Let us show that $w_{\infty} \notin A$. Let $U \subseteq \Omega^{\prime}$ be an open set and pick $\iota \in \mathbb{N}$ such that $B\left(x_{\iota}, 1 / \iota\right)$ is compactly contained in U. Since $w_{\infty} \in \cap_{\kappa \in \mathbb{N}} \mathscr{V}_{\kappa}$, in particular $w_{\infty} \in \mathscr{V}_{l}$ and we can deduce that

$$
\pi_{\Omega}\left(\operatorname{gr}(M) \cap \operatorname{gr}\left(w_{\infty}\right) \cap C\left(x_{\iota}, 1 / \iota\right)\right) \neq B\left(x_{\iota}, 1 / \iota\right)
$$

for every $M: \Omega \times\left\langle e_{m-k+1}, \ldots, e_{m}\right\rangle \rightarrow \mathbb{R}^{n}$ of class $C^{h, \beta}$ with $\operatorname{Lip}(M)+\|M\|_{C^{h, \beta}} \leq \iota$. Thanks to the arbitrariness of U and since ι can be chosen arbitrarily large, we conclude that $w_{\infty} \notin A$. Hence this is a winning strategy for $P 2$ and this concludes the proof.

Proof of Proposition 3.2. Let $w \in \mathcal{A}$ and let U and \mathcal{N} be as in Definition 3.1. Let $p \in \operatorname{gr}\left(w\left\llcorner\Omega^{\prime}\right) \cap U\right.$. We claim that there exists a ball $B \subseteq U$ centred at p such that the manifold \mathcal{N} inside the ball B coincides with the graph of a map $N: V \rightarrow V^{\perp}$ of class $C^{h, \beta}$, where V is an m-dimensional coordinate plane in $\mathbb{R}^{m+n}=\left\langle e_{1}, \ldots, e_{m+n}\right\rangle$. This is due to the implicit function theorem and to the fact that the tangent of \mathcal{N} at p must be a graph with respect of one of the coordinate planes.
Furthermore, it is also clear that V must contain $\left\langle e_{1}, \ldots, e_{m-k}\right\rangle$. This is due to the fact that otherwise $\operatorname{gr}\left(w\left\llcorner\Omega^{\prime}\right)\right.$ and $\operatorname{gr}(N)$ would be transversal. In particular $\Omega \subseteq V$. For any m-dimensional coordinate plane denote with A_{V} the subset of X_{ε} obtained replacing $\left\langle e_{1}, \ldots, e_{m}\right\rangle$ with V in Definition 3.3. Note that the above discussion implies that $\mathcal{A} \subseteq \cup_{V} A_{V}$, where the union is taken on the coordinate m-dimensional planes in \mathbb{R}^{m+n}, and thus \mathcal{A} is of first category by Proposition 3.4.

4 PROOF OF THE MAIN RESULTS

Given \mathcal{M}, Γ as in Section 1 and $T \in \mathbf{A M C}(b)$ with $b=\llbracket \Gamma \rrbracket$, we recall that a point $p \in \Gamma$ is a regular boundary point for T if there exist a neighborhood U of p and a regular embedded m-dimensional submanifold $\Sigma \subset U \cap \mathcal{M}$ (without boundary in U) such that $\operatorname{supp}(T) \cap U \subset \Sigma$. The set of regular boundary points is denoted by $\operatorname{Reg}_{\mathrm{b}}(T)$ and its complement in Γ will be denoted by $\operatorname{Sing}_{\mathrm{b}}(T)$.
Let $p \in \operatorname{Reg}_{b}(T)$. Up to restrictions of U so that $U \cap \Sigma$ is diffeomorphic to an m-dimensional ball, there exists a positive integer Q (called multiplicity) such that $T\left\llcorner U=Q \llbracket \Sigma^{+} \rrbracket+(Q-1) \llbracket \Sigma^{-} \rrbracket\right.$, where Σ^{+}and Σ^{-}are the two disjoint regular submanifolds of U divided by $\Gamma \cap U$ and with boundaries Γ and $-\Gamma$, respectively. We define the density of a regular boundary point p in $\Gamma \cap U$ as $\Theta(T, p):=Q-1 / 2$. This definition is equivalent to the definition of density of T at every regular boundary point p as

$$
\Theta(T, p):=\lim _{r \rightarrow 0} \frac{\|T\|(B(p, r))}{\omega_{m} r^{m}}
$$

where the numerator and the denominator represent respectively the mass of the current in a ball of radius r and the m-dimensional volume of an m-dimensional ball of radius r. Regular boundary points where $Q=1$ are called
one-sided boundary points. Regular boundary points where $Q>1$ are called two-sided. The main result of [6] is that, assuming \mathcal{M}, Γ and T as above, $\operatorname{Reg}_{b}(T)$ is (open and) dense in Γ.

Analogously, we say that $p \in \operatorname{supp}(T) \backslash \Gamma$ is an interior regular point if there is a positive radius $\bar{r}>0$, a regular embedded submanifold $\Sigma \subset \mathcal{M}$ and a positive integer Q such that $T\left\llcorner B\left(x_{0}, \bar{r}\right)=Q \llbracket \Sigma \rrbracket\right.$. The set of interior regular points, which is relatively open in $\operatorname{supp}(T) \backslash \Gamma$, is denoted by $\operatorname{Reg}_{\mathrm{i}}(T)$. Its complement, i.e. $\operatorname{supp}(T) \backslash\left(\Gamma \cup \operatorname{Reg}_{\mathrm{i}}(T)\right)$, is denoted by $\operatorname{Sing}_{\mathrm{i}}(T)$ and is called the interior singular set of T.

4.1 Proof of Theorem 1.1

For every $i=1, \ldots, N$ we consider the set $X_{\eta}\left(P_{i}\right)$ and we define the corresponding set \mathcal{A}_{i} as in Definition 3.1. By Proposition 3.2 we have that \mathcal{A}_{i} is a set of first category in $X_{\eta}\left(P_{i}\right)$ so that $\mathscr{R}:=\prod_{i=1}^{N}\left(X_{\eta}\left(P_{i}\right) \backslash \mathcal{A}_{i}\right)$ is a residual set in \mathbf{X}_{η}, see (5). Since the map Ψ defined in (7) is an isometry, then $\Psi(\mathscr{R})$ is a residual set in \mathcal{B}_{η}, see (8). Moreover, for every $i=1, \ldots, N$ and for every $u \in X_{\eta}\left(P_{i}\right) \backslash \mathcal{A}_{i}$ the following property holds: for every open set $U \subset \boldsymbol{\Phi}_{i}\left(\Omega_{i}^{\prime}\right) \subset \mathcal{M}$ and for every m-dimensional submanifold $\mathcal{N} \subset \mathcal{M}$ of class $C^{3, \beta}$ such that $\partial \mathcal{N} \cap U=\varnothing$ we have

$$
\begin{equation*}
U \cap \boldsymbol{\Phi}_{i}(g r(u)) \not \subset \mathcal{N} . \tag{29}
\end{equation*}
$$

Now consider $b \in \Psi(\mathscr{R})$ and assume by contradiction that there exists an area minimizing integral current T with $\partial T=b$ which does not satisfy the conclusion of Theorem 1.1. By [6, Theorem 1.6], the open and dense set of regular boundary points of T contains at least a two-sided point p. By [6, Theorem 2.1] the dense set of regular points in the connected component of $\operatorname{supp}(\tilde{b})$ containing p consists of two-sided points. This contradicts (29) because for any two-sided point p, then $\operatorname{supp}(T)$ must be contained in a $C^{3, \beta}$ submanifold, locally around p.

4.2 Proof of Corollary 1.2

By [25, Theorem 9.1], for every area minimizing integral current T with $\partial T=b$ every point $P \in \operatorname{supp}(b)$ is regular. As in the proof of Theorem 1.1, for every $b \in \mathscr{R}$ there are no two-sided regular points, which implies that every point of b has density $1 / 2$.

4.3 Proof of Theorem 1.3

Consider the subset of \mathcal{B}_{η} of those boundaries admitting more than one minimizer:

$$
\begin{equation*}
N U:=\left\{b \in \mathcal{B}_{\eta}: \text { there exist } T^{1}, T^{2} \in \mathbf{A M C}(b) \text { such that } T^{1} \neq T^{2}\right\} . \tag{30}
\end{equation*}
$$

We aim to prove that $N U$ is a set of first category in \mathcal{B}_{η}. The following lemma shows that it is sufficient to prove that $\mathcal{B}_{\eta} \backslash N U$ is dense. A similar strategy is adopted in [4].

Lemma 4.1. There exists a constant $\eta_{0}=\eta_{0}(\mathcal{M})>0$ such that if the parameter η in (4) is smaller than η_{0} the following property holds: if the set $\mathcal{B}_{\eta} \backslash N U$ is dense in $\left(\mathcal{B}_{\eta}, d\right)$, then it is residual.
Proof. For every $\mathbf{m} \in \mathbb{N} \backslash\{0\}$, consider the sets

$$
N U_{\mathbf{m}}:=\left\{b \in \mathcal{B}_{\eta}: \text { there exist } T^{1}, T^{2} \in \mathbf{A M C}(b) \text { with } \mathbb{F}\left(T^{2}-T^{1}\right) \geq \mathbf{m}^{-1}\right\} .
$$

Since $N U_{\mathbf{m}} \subset N U$, then $\left(\mathcal{B}_{\eta} \backslash N U_{\mathbf{m}}\right) \supset\left(\mathcal{B}_{\eta} \backslash N U\right)$ and hence, by assumption, $\mathcal{B}_{\eta} \backslash N U_{\mathbf{m}}$ is dense in \mathcal{B}_{η} for every \mathbf{m}. Therefore $N U_{\mathbf{m}}$ has empty interior in \mathcal{B}_{η} for every \mathbf{m}. We conclude by proving that $N U_{\mathbf{m}}$ is closed for every \mathbf{m}.
Fix \mathbf{m} and consider a sequence b_{j} of elements of $N U_{\mathbf{m}}$ and let b be such that $d\left(b_{j}, b\right) \rightarrow 0$. Since \mathcal{B}_{η} is complete, see Lemma 3.1, we can assume $b \in \mathcal{B}_{\eta}$. By Lemma 2.1 we deduce that $\mathbb{F}\left(b_{j}-b\right) \rightarrow 0$. Observe that, denoting $u\left(b_{j}\right)=\left(u_{1}^{j}, \ldots, u_{N}^{j}\right)$, we have

$$
\begin{equation*}
\mathbb{M}\left(b_{j}\right) \leq \mathbb{M}\left(b_{0}\left\llcorner\left(\mathcal{M} \backslash \bigcup_{i=1}^{N} \boldsymbol{\Phi}_{i}\left(U_{i}\right)\right)\right)+\sum_{i=1}^{N} \mathbb{M}\left(\left(\mathbf{u}_{i}^{j}\right)_{\sharp} \llbracket \Omega_{i} \rrbracket\right) \leq C+\sum_{i=1}^{N} \operatorname{Lip}\left(\mathbf{u}_{i}^{j}\right)^{m-1} \not{H} \mathscr{C}^{m-1}\left(\Omega_{i}\right)\right. \tag{31}
\end{equation*}
$$

where we recall that \mathbf{u}_{i}^{j} are defined in (15). Therefore the masses of b_{j} are equibounded because

$$
\operatorname{Lip}\left(\mathbf{u}_{i}^{j}\right) \leq \operatorname{Lip}\left(f_{i}\right)+\left\|u_{i}^{j}-f_{i}\right\|_{C^{1}} \leq \operatorname{Lip}\left(f_{i}\right)+\varepsilon_{i}
$$

For every $j \in \mathbb{N}$, take

$$
T_{j}, \bar{T}_{j} \in \mathbf{A M C}\left(b_{j}\right) \quad \text { with } \quad \mathbb{F}\left(T_{j}-\bar{T}_{j}\right) \geq \mathbf{m}^{-1}
$$

Let $T \in \mathbf{A M C}(b)$ and observe that by [14, Lemma 3.4], if the parameter η defined in (4) is smaller than a constant η_{0} depending only on \mathcal{M}, for every j there exists $S_{j}, \bar{S}_{j} \in \mathscr{I}_{m+1}(\mathcal{M})$ such that $T-T_{j}=\partial S_{j}$ and $\mathbb{M}\left(S_{j}\right) \leq C \mathbb{F}\left(T-T_{j}\right)$ and similarly $T-\bar{T}_{j}=\partial \bar{S}_{j}$ and $\mathbb{M}\left(\bar{S}_{j}\right) \leq C \mathbb{F}\left(T-\bar{T}_{j}\right)$. Therefore we can estimate

$$
\begin{equation*}
\mathbb{M}\left(T_{j}\right) \leq \mathbb{M}(T)+C \mathbb{F}\left(b-b_{j}\right), \quad \mathbb{M}\left(\bar{T}_{j}\right) \leq \mathbb{M}(T)+C \mathbb{F}\left(b-b_{j}\right) \tag{32}
\end{equation*}
$$

and so the masses of T_{j} and \bar{T}_{j} are equibounded. Moreover the same argument used in [14, Lemma 3.4] implies that $\operatorname{supp}\left(T_{j}\right)$ and $\operatorname{supp}\left(\bar{T}_{j}\right)$ are contained in a fixed tubular neighbourhood of Γ and therefore they are all supported on a unique compact set $K \subset \mathcal{M}$. Combining (31) and (32) we deduce from the compactness theorem [12, §4.2.17] that there exist integral currents $T, \bar{T} \in \mathscr{I}_{m}(K)$, such that $\partial T=\partial \bar{T}=b$ and, up to subsequences, $\mathbb{F}\left(T_{j}-T\right) \rightarrow 0, \mathbb{F}\left(\bar{T}_{j}-\bar{T}\right) \rightarrow 0$. Clearly $\mathbb{F}(\bar{T}-T) \geq 1 / \mathbf{m}$. By [24, Theorem 34.5], we have $T, \bar{T} \in \mathbf{A M C}(b)$, hence $b \in N U_{\mathrm{m}}$.

Proposition 4.2. The set $\mathcal{B}_{\eta} \backslash N U$ is dense in \mathcal{B}_{η}.
Proof. Fix $0<\mu<1$. Let $b \in \mathcal{B}_{\eta}$ and take $\left(u_{1}, \ldots, u_{N}\right) \in \mathbf{X}_{\eta}$ such that $b=\Psi\left(u_{1}, \ldots, u_{N}\right)$, see (7). Consider

$$
\left(w_{1}, \ldots, w_{N}\right):=(1-\mu)\left(u_{1}, \ldots, u_{N}\right)-\mu\left(f_{1}, \ldots, f_{N}\right)
$$

and observe that $\left(w_{1}, \ldots, w_{N}\right) \in \mathbf{X}_{(1-\mu) \eta}$. By Proposition 3.2, there is $\left(\tilde{w}_{1}, \ldots, \tilde{w}_{N}\right) \in \mathbf{X}_{(1-\mu) \eta} \backslash \mathcal{A}$ with

$$
\begin{equation*}
\sum_{i=1, \ldots, N}\left\|\tilde{w}_{i}-w_{i}\right\|_{C^{3, \alpha}}<\mu \eta / 2 \tag{33}
\end{equation*}
$$

Now define $b_{\mu}:=\Psi\left(w_{1}, \ldots, w_{N}\right)$ and $\tilde{b}:=\Psi\left(\tilde{w}_{1}, \ldots, \tilde{w}_{N}\right)$ and observe that by (33)

$$
\begin{equation*}
d(\tilde{b}, b) \leq d\left(\tilde{b}, b_{\mu}\right)+d\left(b_{\mu}, b\right) \leq \mu \eta / 2+\mu \eta=3 \mu \eta / 2 \tag{34}
\end{equation*}
$$

Moreover, for every $T \in \operatorname{AMC}(\tilde{b})$ there exists an open and dense subset of $\operatorname{supp}(\tilde{b})$ which points have density $1 / 2$ for T. Indeed, fix such a current T and observe that for every $i=1, \ldots, N\left[6\right.$, Theorem 1.6] implies that $\boldsymbol{\Phi}_{i}\left(g r\left(\tilde{w}_{i}\left\llcorner\Omega_{i}^{\prime}\right)\right)\right.$ contains at least one regular boundary point p_{i} for T. On the other hand, by the same argument used in the proof of Theorem 1.1, p cannot be two-sided and therefore it has density $1 / 2$. Hence [6, Theorem 2.1] implies that the open dense set of regular boundary points for T in the connected component of $\operatorname{supp}(\tilde{b})$ which contains p consists of points of density $1 / 2$.

Now we construct a boundary \hat{b} which is a local perturbation of \tilde{b} around every p_{i}, with the property that AMC (\hat{b}) is a singleton. From now on we assume $N=1$ and we drop the index i. The proof for $N>1$ follows by applying the same argument to every connected component of $\operatorname{supp}(\tilde{b})$. Without loss of generality, and up to choosing a subset of U, we can assume that the diffeomorphism $\boldsymbol{\Phi}: U \rightarrow \boldsymbol{\Phi}(U) \subseteq \mathcal{M}$ is of the form

$$
\boldsymbol{\Phi}(z)=(z, \Phi(z)) \in \mathbb{R}^{d} \quad \text { for } z \in U \subset \mathbb{R}^{n+m}
$$

with $\Phi: U \rightarrow \mathbb{R}^{d-m-n}$ of class $C^{3, \beta}$. Moreover up to rotation and translation, we can assume that

- $(0, \Phi(0))=p$ and $D \Phi(0)=0$,
- there exist $r>0$, a open set $\Lambda \subset B(0, r) \subset \mathbb{R}^{m}$ containing the origin and a $C^{3, \beta}$ function $F: \Lambda \rightarrow \mathbb{R}^{n}$ with $F(0)=0$ and $D F(0)=0$ such that

$$
\operatorname{supp}(T) \cap C_{\Lambda} \cap B^{d}(p, r)=\left\{\left(x^{\prime}, x_{m}, F\left(x^{\prime}, x_{m}\right), \Phi\left(x^{\prime}, x_{m}, F\left(x^{\prime}, x_{m}\right)\right)\right): x^{\prime} \in \Omega^{\prime}, x_{m}>\tilde{w}_{1}\left(x^{\prime}\right) \text { with }\left(x^{\prime}, x_{m}\right) \in \Lambda\right\}
$$

where $B^{d}(p, r)$ denotes the d-dimensional ball, $C_{\Lambda} \subset \mathbb{R}^{d}$ the cylinder above Λ and \tilde{w}_{1} the first component of \tilde{w}.

Now consider a non-zero, smooth bump function $\rho: \mathbb{R}^{m-1} \rightarrow[0, \infty)$ with $\operatorname{supp}(\rho) \subset \Lambda \cap \Omega^{\prime}$ and

$$
\|\rho\|_{C^{3, \alpha}}<\frac{\mu \eta}{2\left(1+\|F\|_{C^{3, \alpha}}\right)} .
$$

Define $v: \Omega \rightarrow \mathbb{R}^{1+n}$ by

$$
v\left(x^{\prime}\right)=\left(\tilde{w}_{1}\left(x^{\prime}\right)+\rho\left(x^{\prime}\right), F\left(x^{\prime}, \tilde{w}_{1}\left(x^{\prime}\right)+\rho\left(x^{\prime}\right)\right)\right)
$$

and observe that denoting $\hat{b}:=\Psi(v)$ we have

$$
\begin{equation*}
d(\tilde{b}, \hat{b})<\mu \eta / 2 \tag{35}
\end{equation*}
$$

and that that $\boldsymbol{\Phi}(g r(v)) \subset \operatorname{supp}(T)$. Combining (35) and the fact that $\tilde{b} \in \mathcal{B}_{(1-\mu) \eta}$ we deduce that $\hat{b} \in \mathcal{B}_{\eta}$. Moreover by (34) and (35) we also have

$$
\begin{equation*}
d(b, \hat{b})<2 \mu \eta \tag{36}
\end{equation*}
$$

Consider the current

$$
T^{\prime}:=T\left\llcorner\left\{\left(x^{\prime}, x_{m}, F\left(x^{\prime}, x_{m}\right), y\right) \in \mathbb{R}^{d}: x^{\prime} \in \Lambda \cap \Omega^{\prime}, \tilde{w}_{1}\left(x^{\prime}\right)<x_{m}<v_{1}\left(x^{\prime}\right)\right\}\right.
$$

and denote $\hat{T}:=T-T^{\prime}$. Since $T \in \mathbf{A M C}(\tilde{b})$, it follows that $\hat{T} \in \mathbf{A M C}(\hat{b})$. Indeed assuming by contradiction that $S \in \mathbf{A M C}(\hat{b})$ satisfies $\mathbb{M}(S)<\mathbb{M}(\hat{T})$, we obtain that $\partial\left(S+T^{\prime}\right)=\tilde{b}$ and moreover

$$
\mathbb{M}\left(S+T^{\prime}\right) \leq \mathbb{M}(S)+\mathbb{M}\left(T^{\prime}\right)<\mathbb{M}(\hat{T})+\mathbb{M}\left(T^{\prime}\right)=\mathbb{M}(T)
$$

which contradicts the minimality of T. We claim that \hat{T} is the unique element of $\mathbf{A M C}(\hat{b})$. The validity of the claim concludes the proof due to (36) and the arbitrariness of μ.

We show the validity of the claim following [17]. Assume by contradiction that there exists a current $\hat{S} \in \operatorname{AMC}(\hat{b})$ with $\hat{S} \neq \hat{T}$. Define $S:=\hat{S}+T^{\prime}$. By interior regularity, see $[7,8,9]$, there exists a point $q \in \operatorname{Reg}_{\mathrm{i}}(T) \cap \operatorname{Reg}_{\mathrm{i}}(S) \cap$ $\operatorname{supp}(\hat{b}) \backslash \operatorname{supp}(\tilde{b})$. Since both T and S are smooth minimal surfaces in a neighbourhood of q which coincide on $\operatorname{supp}\left(T^{\prime}\right)$, the unique continuation principle of [18, Lemma 7.2] implies that there exists a neighbourhood of q where $\operatorname{supp}(S)=\operatorname{supp}(T)$. By $\left[6\right.$, Theorem 2.1] we know that $\operatorname{Reg}_{i}(\hat{T})$ and $\operatorname{Reg}_{\mathrm{i}}(\hat{S})$ are connected and therefore they coincide.

Since the points of $\operatorname{supp}(\hat{b})$ are one-sided for \hat{T}, then the multiplicity (and the orientation) of \hat{S} coincides with that of \hat{T}, which concludes the proof of the claim and of Proposition 4.2.

Proof of Theorem 1.3. By Proposition 4.2, $\mathcal{B}_{\eta} \backslash N U$ is dense in \mathcal{B}_{η} and by Lemma 4.1 it is also residual.

5 GENERIC UNIQUENESS WITH RESPECT TO THE FLAT NORM

In this section we aim to obtain a result in the spirit of Theorem 1.3, replacing the space \mathcal{B}_{η} with a larger space of boundaries. On the other hand, the strong norm considered on \mathcal{B}_{η} needs to be naturally substituted by a weaker one. In this section we work on the manifold $\mathcal{M}:=\mathbb{R}^{m+n}$.

We fix an arbitrary $C>0$, a compact, convex set $K \subset \mathbb{R}^{m+n}$ with nonempty interior and define

$$
\begin{equation*}
\mathcal{R}_{C}:=\left\{b \in \mathscr{B}_{m-1}(K) \cap \mathscr{I}_{m-1}(K): \mathbb{M}(b) \leq C\right\} \tag{37}
\end{equation*}
$$

We metrize \mathcal{R}_{C} with the distance d_{b} induced by the flat norm, see (13).
Lemma 5.1. The space $\left(\mathcal{R}_{C}, d_{b}\right)$ is a nontrivial complete metric space.
Proof. It is sufficient to prove that \mathcal{R}_{C} is closed, then completeness follows from [12, $\S 4.2 .17$]. Let b_{j} be a sequence of elements of \mathcal{R}_{C} and let b be such that $\mathbb{F}\left(b_{j}-b\right) \rightarrow 0$. By the lower semicontinuity of the mass, we have $\mathbb{M}(b) \leq C$. For any $j \in \mathbb{N}$, let $T_{j} \in \mathbf{A M C}\left(b_{j}\right)$. By the isoperimetric inequality, see $[12, \S 4.2 .10]$, we have $\sup \left\{\mathbb{M}\left(T_{j}\right)\right\}<\infty$. By [12, §4.2.17], there exists $T \in \mathscr{I}_{m}\left(\mathbb{R}^{m+n}\right)$ such that, up to (non relabeled) subsequences $\mathbb{F}\left(T_{j}-T\right) \rightarrow 0$. By the continuity of the boundary operator we have $\partial T=b$ and hence $b \in \mathcal{R}_{C}$.

We state the main result of this section.

Theorem 5.2. For the typical boundary $b \in \mathcal{R}_{C}$, the set $\mathbf{A M C}(b)$ is a singleton.
In analogy with (30), we consider the following subset of \mathcal{R}_{C} :

$$
\mathcal{N} \mathcal{U}_{C}:=\left\{b \in \mathcal{R}_{C}: \text { there exist } T^{1}, T^{2} \in \mathbf{A M C}(b) \text { such that } T^{1} \neq T^{2}\right\}
$$

The following lemma is the counterpart of Lemma 4.1 for the flat norm.
Lemma 5.3. Assume that the set $\mathcal{R}_{C} \backslash \mathcal{N} \mathcal{U}_{C}$ is dense in \mathcal{R}_{C}. Then it is residual.
Proof. For $\mathbf{m} \in \mathbb{N} \backslash\{0\}$, consider the sets

$$
\mathcal{N} \mathcal{U}_{C}^{\mathbf{m}}:=\left\{b \in \mathcal{R}_{C}: \text { there exist } T^{1}, T^{2} \in \mathbf{A M C}(b) \text { with } \mathbb{F}\left(T^{2}-T^{1}\right) \geq \mathbf{m}^{-1}\right\} .
$$

It suffices to prove that $\mathcal{N} \mathcal{U}_{C}^{\mathrm{m}}$ is closed for every \mathbf{m}. Consider a sequence b_{j} of elements of $\mathcal{N} \mathcal{U}_{C}^{\mathrm{m}}$ and let $b \in \mathcal{R}_{C}$ be such that $\mathbb{F}\left(b_{j}-b\right) \rightarrow 0$. For every $j \in \mathbb{N}$, take $T_{j}^{1}, T_{j}^{2} \in \mathbf{A M C}\left(b_{j}\right)$ with $\mathbb{F}\left(T_{j}^{2}-T_{j}^{1}\right) \geq 1 / \mathbf{m}$. As in the proof of Lemma 5.1, we deduce that there exist $T^{1}, T^{2} \in \mathscr{I}_{m}\left(\mathbb{R}^{m+n}\right)$ such that $\partial T^{1}=\partial T^{2}=b$ and, up to (non relabeled) subsequences, $\mathbb{F}\left(T_{j}^{1}-T^{1}\right) \rightarrow 0, \mathbb{F}\left(T_{j}^{2}-T^{2}\right) \rightarrow 0$ and $\mathbb{F}\left(T^{2}-T^{1}\right) \geq 1 / \mathbf{m}$. By [24, Theorem 34.5], we have $T_{1}, T_{2} \in \operatorname{AMC}(b)$, hence $b \in \mathcal{N} \mathcal{U}_{C}^{\mathrm{m}}$.

To prove Theorem 5.2 we are left to show that the set of boundaries $b \in \mathcal{R}_{C}$ for which $\mathbf{A M C}(b)$ is a singleton is dense in the metric space $\left(\mathcal{R}_{C}, d_{b}\right)$. The proof can be roughly summarized as follows: firstly, we approximate $b \in \mathcal{R}_{C}$ with an integer polyhedral boundary $b_{P} \in \mathcal{R}_{C-\delta}$, for some $\delta>0$, see Lemma 5.4. Then, we fix $S \in \mathbf{A M C}\left(b_{P}\right)$ and for every connected component of $\operatorname{Reg}_{i}(S)$ there exists, by $[7,8,9]$, an interior regular point x_{i}. We define the current $b^{\prime}:=\partial\left(S-S\left\llcorner\bigcup_{i} B\left(x_{i}, r_{i}\right)\right)\right.$ where r_{i} are suitably small radii, so that $b^{\prime} \in \mathcal{R}_{C}$ and $\mathbb{F}\left(b-b^{\prime}\right)$ is small. An argument similar to that used in Proposition 4.2 proves that AMC $\left(b^{\prime}\right)$ is a singleton.

Lemma 5.4. For any $b \in \mathcal{R}_{C}$ and $\varepsilon>0$ there exist $a \delta>0$ and $b_{P} \in \mathcal{R}_{C-\delta} \cap \mathscr{P}_{m-1}(K)$ such that

$$
\mathbb{F}\left(b-b_{P}\right) \leq \varepsilon .
$$

Proof. Without loss of generality and up to rescaling, we can assume $C=1$. We consider a map $\phi: K \rightarrow K$ which is ($1-\varepsilon / 4 m$)-Lipschitz and $\|I d-\phi\|_{\infty}<\varepsilon / 2^{m}$. Consider $\bar{b}:=\phi_{\sharp} b$. Applying the homotopy formula as in (16), we obtain that

$$
\begin{equation*}
\mathbb{F}(b-\bar{b}) \leq 2^{m-1}\|I d-\phi\|_{\infty} \leq \varepsilon / 2 \tag{38}
\end{equation*}
$$

and

$$
\mathbb{M}(\bar{b}) \leq(1-\varepsilon / 4 m)^{m-1} \mathbb{M}(b) \leq(1-\varepsilon / 2) \mathbb{M}(b)
$$

Observe in particular that $\bar{b} \in \mathcal{R}_{C-\varepsilon / 2}$ and moreover $\operatorname{supp}(\bar{b})$ is contained in the interior of K. We can thus apply [12, §4.2.21] to obtain an integer polyhedral current b_{P} such that

$$
\begin{equation*}
\mathbb{F}\left(b_{P}-\bar{b}\right) \leq \varepsilon / 2, \quad \partial b_{P}=0 \quad \text { and } \quad \mathbb{M}\left(b_{P}\right) \leq(1+\varepsilon / 2) \mathbb{M}(\bar{b}) \tag{39}
\end{equation*}
$$

deducing from (38) and (39) that

$$
\mathbb{F}\left(b_{P}-b\right) \leq \varepsilon \quad \text { and } \quad \mathbb{M}\left(b_{P}\right) \leq\left(1-\varepsilon^{2} / 4\right) \mathbb{M}(b)
$$

In particular b_{P} satisfies the requirement of the lemma for $\delta=\varepsilon^{2} / 4$.

Proof of Theorem 5.2. Fix $\varepsilon>0, b \in \mathcal{R}_{C}$ and b_{P} as in Lemma 5.4 and consider $S \in \operatorname{AMC}\left(b_{P}\right)$. It is sufficient to prove the theorem assuming $\operatorname{Reg}_{\mathrm{i}}(S)$ is connected, indeed the same argument can be applied to each connected component of $\operatorname{Reg}_{\mathrm{i}}(S)$.
Let $x_{0} \in \operatorname{Reg}_{\mathrm{i}}(S)$, so that there exists a positive radius $\bar{r}>0$, a smooth embedded submanifold $\Sigma \subset \mathbb{R}^{m+n}$ and a positive integer Q such that $S\left\llcorner B\left(x_{0}, \bar{r}\right)=Q \llbracket \Sigma \rrbracket\right.$. Fix some positive radius r such that $r<\bar{r}$ and define

$$
S^{\prime}:=S-S\left\llcorner B\left(x_{0}, r\right) \text { and } b^{\prime}:=\partial S^{\prime}\right.
$$

Note that, since $b \in \mathcal{R}_{C-\delta}$, then for r sufficiently small $b^{\prime} \in \mathcal{R}_{C}$. Note further that $S^{\prime} \in \mathbf{A M C}\left(b^{\prime}\right)$, which can be proved by the same argument used in the proof of Proposition 4.2. Hence we only need to show that AMC $\left(b^{\prime}\right)=\left\{S^{\prime}\right\}$.

Suppose there exists $S^{\prime \prime} \in \operatorname{AMC}\left(b^{\prime}\right)$ such that $S^{\prime} \neq S^{\prime \prime}$ and denote $\hat{S}:=S^{\prime \prime}+S\left\llcorner B\left(x_{0}, r\right)\right.$. Observe that since

$$
\mathbb{M}(S) \leq \mathbb{M}(\hat{S}) \leq \mathbb{M}\left(S^{\prime \prime}\right)+\mathbb{M}\left(S\left\llcorner B\left(x_{0}, r\right)\right) \leq \mathbb{M}(S)\right.
$$

then $\hat{S} \in \operatorname{AMC}\left(b_{P}\right)$. By the minimality of S one immediately sees that supp $(\hat{S}) \supset \operatorname{supp}(S) \cap B\left(x_{0}, r\right)$. By interior regularity, there exists $x_{1} \in \partial B\left(x_{0}, r\right) \cap \operatorname{Reg}_{\mathrm{i}}(S) \cap \operatorname{Reg}_{\mathrm{i}}(\hat{S})$. For a sufficiently small radius ρ we can write

$$
S\left\llcorner B\left(x_{1}, \rho\right)=Q_{1} \llbracket \Sigma_{1} \rrbracket\left\llcornerB (x _ { 1 } , \rho) \text { and } \hat { S } \left\llcorner B\left(x_{1}, \rho\right)=Q_{2} \llbracket \Sigma_{2} \rrbracket\left\llcorner B\left(x_{1}, \rho\right)\right.\right.\right.\right.
$$

By the same argument of Lemma 4.2, the two submanifolds Σ_{1}, Σ_{2} must coincide locally around x_{1}. Since by [6, Theorem 2.1] $\operatorname{Reg}_{\mathrm{i}}\left(S^{\prime}\right)$ and $\operatorname{Reg}_{\mathrm{i}}\left(S^{\prime \prime}\right)$ are connected, unique continuation implies that $\operatorname{Reg}_{\mathrm{i}}\left(S^{\prime}\right)=\operatorname{Reg}_{\mathrm{i}}\left(S^{\prime \prime}\right)$. Since all points of $\partial B\left(x_{0}, r\right)$ have density $Q / 2$, then the multiplicity (and the orientation) of S^{\prime} coincides with that of $S^{\prime \prime}$, contradicting $S^{\prime} \neq S^{\prime \prime}$. This proves that the set of boundaries $b \in \mathcal{R}_{C}$ for which AMC (b) is a singleton is dense in (\mathcal{R}_{C}, d_{b}) and hence, by Lemma 5.3, we conclude the proof of Theorem 5.2.

The preliminary approximation of Lemma 5.4 is motivated by the following remark.
Remark 5.1. Given an integral current $b \in \mathscr{B}_{m-1}(K) \cap \mathscr{I}_{m-1}(K)$ and $S \in \mathbf{A M C}(b)$, it is not possible to conclude $\operatorname{Reg}_{\mathrm{i}}(S) \neq \varnothing$, as the following example shows. Consider a sequence of positive real numbers r_{j} in \mathbb{R}^{2} such that $\sum_{j} r_{j}<\infty$ and a sequence q_{j} that is dense in $B(0,1) \subset \mathbb{R}^{2}$. Denote $\rho_{j}:=\min \left\{r_{j}, 1-\left|q_{j}\right|\right\}$, and consider the balls $B\left(q_{j}, \rho_{j}\right)$ and the 2-dimensional current defined as

$$
T:=\sum_{j \in \mathbb{N}} \llbracket B\left(q_{j}, \rho_{j}\right) \rrbracket .
$$

Note T is well defined and has finite mass because $\sum_{j \in \mathbb{N}} \mathbb{M}\left(\llbracket B\left(q_{j}, \rho_{j}\right) \rrbracket\right)<\infty$ and moreover

$$
\begin{equation*}
\mathbb{M}(\partial T)=\mathbb{M}\left(\sum_{j \in \mathbb{N}} \partial \llbracket B\left(q_{j}, \rho_{j}\right) \rrbracket\right) \leq \sum_{j \in \mathbb{N}} \mathbb{M}\left(\partial \llbracket B\left(q_{j}, \rho_{j}\right) \rrbracket\right) \tag{40}
\end{equation*}
$$

Hence, by [24, Theorem 30.3], $T \in \mathscr{I}_{2}(\overline{B(0,1)})$. Moreover, since the intersection between two circumferences with different centers is \mathscr{H}^{1}-null, then the inequality in (40) is an equality and therefore supp $(\partial T)=\overline{B(0,1)}$. Now take $S \in \operatorname{AMC}(\partial T)$. Since $\operatorname{supp}(S) \subset \operatorname{conv}(\operatorname{supp}(\partial T))$, we deduce that $\operatorname{Reg}_{\mathrm{i}}(S) \subset \operatorname{supp}(S) \backslash \operatorname{supp}(\partial T)=\varnothing$.

REFERENCES

[1] William Allard. "On boundary regularity for Plateau's problem". In: Bulletin of the American Mathematical Society 75:3 (1969), pp. 522-523.
[2] William Allard. "On the first variation of a varifold: boundary behavior". In: Annals of Mathematics 101:3 (1975), pp. 418-446.
[3] Frederick Almgren. Almgren's Big Regularity Paper. World Scientific Monograph Series in Mathematics, 1. World Scientific Publishing Co. Inc., 2000, pp. xv+955.
[4] Gianmarco Caldini, Andrea Marchese, and Simone Steinbrüchel. "Generic uniqueness of optimal transportation networks". Preprint arXiv:2205.05023.
[5] Richard Courant. Dirichlet's principle, conformal mapping and minimal surfaces. Interscience, 1950, p. 330.
[6] Camillo De Lellis, Guido De Philippis, Jonas Hirsch, and Annalisa Massaccesi. "Density of the boundary regular set of 2d area minimizing currents with arbitrary codimension and multiplicity". Preprint arXiv:1809.09457 to appear in: Memoirs of the American Mathematical Society.
[7] Camillo De Lellis and Emanuele Spadaro. "Regularity of area minimizing currents I: gradient L^{p} estimates". In: Geometric and Functional Analysis 24 (2014), pp. 1831-1884.
[8] Camillo De Lellis and Emanuele Spadaro. "Regularity of area minimizing currents II: center manifold". In: Annals of Mathematics 183:2 (2016), pp. 499-575.
[9] Camillo De Lellis and Emanuele Spadaro. "Regularity of area minimizing currents III: blow-up". In: Annals of Mathematics 183:2 (2016), pp. 577-617.
[10] Ulrich Dierkes, Stefan Hildebrandt, and Friedrich Sauvigny. Minimal Surfaces. Grundlehren der mathematischen Wissenschaften. Springer, 2010, pp. xvi+688.
[11] Jesse Douglas. "Solution of the problem of Plateau". In: Transactions of the American Mathematical Society 33:1 (1931), pp. 263-321.
[12] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969, pp. xiv+676.
[13] Robert Hardt and Leon Simon. "Boundary regularity and embedded solutions for the oriented Plateau problem". In: Annals of Mathematics 110:3 (1979), pp. 439-486.
[14] Dominik Inauen and Andrea Marchese. "Quantitative minimality of strictly stable extremal submanifolds in a flat neighbourhood". In: Journal of Functional Analysis 275:6 (2018), pp. 1532-1550.
[15] Frank Morgan. "A smooth curve in \mathbb{R}^{4} bounding a continuum of area minimizing surfaces". In: Duke Mathematical Journal 43:4 (1976), pp. 867-870.
[16] Frank Morgan. "Almost every curve in \mathbb{R}^{3} bounds a unique area minimizing surface". In: Inventiones Mathematicae 45:3 (1978), pp. 253-297.
[17] Frank Morgan. "Generic Uniqueness for Hypersurfaces Minimizing the Integral of an Elliptic Integrand with Constant Coefficients". In: Indiana University Mathematics Journal 30:1 (1981), pp. 29-45.
[18] Frank Morgan. "Measures on Spaces of Surfaces". In: Archive for Rational Mechanics and Analysis 78:4 (1982), pp. 335-359.
[19] Stefano Nardulli and Reinaldo Reisende. "On the boundary behavior of mass-minimizing integral currents". Preprint arXiv: 2204.11947.
[20] Johannes Nitsche. "A new uniqueness theorem for minimal surfaces". In: Archive for Rational Mechanics and Analysis 52:4 (1973), pp. 319-329.
[21] Johannes Nitsche. "Contours Bounding at Least Three Solutions of Plateau's Problem". In: Archive for Rational Mechanics and Analysis 30:1 (1968), pp. 1-11.
[22] John C. Oxtoby. Measure and category. A survey of the analogies between topological and measure spaces. Graduate Texts in Mathematics, Vol. 2. Springer-Verlag, New York-Berlin, 1971, pp. viii+95.
[23] Tibor Radó. "On Plateau's Problem". In: Annals of Mathematics 31:3 (1930), pp. 457-469.
[24] Leon Simon. Lectures on geometric measure theory. Vol. 3. Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983, pp. vii+272.
[25] Simone Steinbrüchel. "Boundary regularity of minimal oriented hypersurfaces on a manifold". In: ESAIM: Control, Optimisation and Calculus of Variations 28, 52 (2022).

[^0]: * Università di Trento, Dipartimento di Matematica, Via Sommarive, 14, 38123 Povo (TN), Italy, e-mail: gianmarco.caldini@unitn.it, andrea.marchese@unitn.it,
 ** Departamento de Matemáticas, Universidad del País Vasco, Barrio Sarriena s/n 48940 Leioa, Spain, e-mail: andrea.merlo@ehu.eus,
 *** Institut für Mathematik, Universtät Leipzig, Augustusplatz 10, o4109 Leipzig, Germany, e-mail: simone.steinbruechel@math.uni-leipzig.de.
 1 This assumption is satisfied for instance if \mathcal{M} is a closed Riemannian manifold or if $\mathcal{M}=\mathbb{R}^{m+n}$.

