
Developing BDI-based Robotic Systems with
ROS2

Devis Dal Moro[0000−0003−4075−5937], Marco Robol[0000−0003−4611−0371],
Marco Roveri[0000−0001−9483−3940], and Paolo Giorgini[0000−0003−4152−9683]

University of Trento
{devis.dalmoro,marco.robol,marco.roveri,paolo.giorgini}@unitn.it

Abstract. Robots are very effective in automatizing repetitive opera-
tions leveraging hard-coded control, actuation, and sensing algorithms.
Current industrial automation trends demand combining low-level reac-
tive primitives with high-level autonomy capabilities (e.g., reasoning and
planning). Recent robotic reactive architectures provide capabilities to
reliably sense the environment and promptly react to stimuli, but their
autonomy capabilities are in an early stage and present several limita-
tions. The BDI model has been proposed as a reference model to build
autonomous agents, but it does not provide any kind of conceptual and
developing framework to connect the reasoning and planning capabilities
with the lower level reactive functionalities of a robotic system. In this
paper, we propose an architecture supporting BDI-based solutions to
develop agents with deliberation and priority aware executions of plans,
and that consider deadline-aware prioritization of desires. We build our
architecture on top of ROS 2 (a standard robotic framework) leveraging
and extending state-of-the-art ROS planning infrastructures. We pro-
vide a novel development tool-kit that allows for the implementation of
autonomous robotic systems. Finally, we show by means of a realistic
industrially inspired scenario how to use the developed tool-kit.

Keywords: Real-Time Multi-Agent Systems · Planning & Execution ·
ROS2

1 Introduction

Robots are very effective in automatizing processes and repetitive, high-precision,
and mechanical operations. They are typically designed leveraging on control-
ling actuators and sensors with hard-coded algorithmic-based software running
on dedicated hardware parts. However, in the recent I4.0 industrial revolution,
robots are asked to operate in complex and evolving environments with more
and more degree of autonomy to cope with problem that are difficult to pre-
dict at design time. This introduces the need of combining low-level reactive
primitives (e.g., sensor management, obstacle avoidance, navigation) with more
high-level capabilities, such as reasoning, autonomous deliberation, planning and
communication.



2 D. Dal Moro et al.

Recent reactive architectures (e.g., those provided by state-of-the-art robotic
infrastructure like Robotic Operating System - ROS - [17]) provide capabilities
to reliably sense the environment and promptly react to stimuli. ROS allows
for the implementation of core logic software, hiding the complexity of deal-
ing with physical installations aspects, such as, the deployment of the software
in distributed and dedicated hardware parts, and dealing with communication
latency. However, the functionalities that allow a robot to autonomously delib-
erate are still in an early stage [11,2,7,1,5,3,15], and they present a number of
open problems. For instance, although ROSPlan [4] and PlanSys2 [13] provide
planning functionalities, they are not supported by any deliberative functional-
ities making planning unusable in real scenarios. This is a well-known problem
in the AI community, where the BDI (Belief -Desire-Intention) model [16] has
been proposed as a reference model to build autonomous agents that can use
their beliefs to reason about goals and elaborating plans to achieve them. The
literature on BDI agents does not offer, however, any kind of conceptual and
developing framework to connect the reasoning and planning capabilities with
the lower level reactive functionalities of a robotic system.

In this paper, we focus on the problem of developing distributed autonomous
robotic systems proposing an architecture supporting BDI-based deliberation to
develop agents with (temporal) planning capabilities. The architecture provides
deadline-aware prioritization of desires and it supports preemption of running
plans with lower priority. The BDI agent’s architecture is built on top of ROS
2 [17] leveraging on and extending the functionalities provided by PlanSys2 [13].
As result, we provide a novel tool-kit for ROS 2 that allows for the implemen-
tation of autonomous robotic systems. Then, we show by means of a realistic
industrially inspired scenario how the development kit can be used.

The paper is organized as follows. Section 2 presents the baseline, including
PDDL planning, and the PlanSys2 ROS2 planning system. Section 3 presents the
architecture and the development tool-kit. In section 4, the previously presented
architecture is demonstrated within a robotic simulated industrially inspired
scenario. Section 5 presents the related work. Finally, Section 6 concludes and
discusses future work.

2 Background

In this work we build on i) a temporal planning infrastructure; ii) and the Plan-
Sys2 ROS2 robotic planning infrastructure. In the rest of this section we sum-
marize the main concepts of these two components.

PDDL based temporal planning [10] is a framework for i) modeling the
behavior of agents considering that actions might not be instantaneous and last
some known amount of time, ii) generate time-triggered plans (i.e., sequences
of actions where each action is associated with the time instant at which the
action shall be scheduled, and the respective duration) for achieving a goal.
Time-triggered plans allow to represent multiple actions active at the same time,
thus capturing the case where e.g. two different actions are executed in parallel



Developing BDI-based Robotic Systems with ROS2 3

by e.g. two different agents or the case where a single agent executes two actions
in parallel by leveraging two different actuators to perform a task. These are
our minimal requirements to represent the possible activities of the agents, and
are supported by the PDDL version 2.1 [10]. The AI planning community also
considered richer formalisms like e.g. PDDL 3.1 [12] that complements PDDL
2.1 with constraints, preferences, and other features. These features will be nice
to have in the framework we will describe later on, but, as far as our knowledge
is concerned, there are no tools that support all the features of PDDL 3.1 (in
particular constraints, preferences and durative actions).

The ROS2 Planning System (PlanSys2 in short) [13] is the reference open-
source framework for symbolic temporal planning within the ROS2 [17] infras-
tructure, which in turn is a de facto standard in robotic software development.
PlanSys2 incorporates novel approaches for the execution of time-triggered tasks
on robots working in demanding environments (also considering real-time con-
straints at communication and execution level). It supports several features, but
the most important ones for our purpose are i) optimized execution, based on
Behavior Trees [14] (a mathematical model suitable for formal verification, im-
portant in several critical applications), of plans through an actions auction pro-
tocol; ii) integrated support for temporal planning systems, in particular of the
POPF [6] and Temporal Fast Downward [9] symbolic planners which supports
PDDL 2.1 and are able to generate time-triggered temporal plans minimizing
a given cost function; iii) multi-robot planning capabilities. Finally, it has a
growing community of users and developers.

3 A Multi-Agent Robotic RT-BDI Architecture

This section presents a framework for the development of Multi-Agent Real-
Time BDI (MA-RT-BDI) systems for robotic architecture based on ROS2. The
framework includes: i) an architecture built on top of the ROS2 robotic plat-
form, that leverages the BDI model [16] to provides autonomous behavior with
planning capabilities; and ii) a development tool-kit to support the implemen-
tation of autonomous robotic systems based on ROS2, adopting the proposed
architecture.

Current robotic solutions, including ROS2, provides a multi-layer architec-
ture to support efficient communication protocols to share data and allow remote
control of robots. However, such systems have strong limitations when they are
adopted in open environments, where a limited initial knowledge and a partial
observability of events demand robots a proactive behavior to allow them taking
decisions in autonomy. To address this, we present an architecture that pro-
vides the following features: i) autonomous behavior based on the BDI-model
ii) multi-agent iii) planning capabilities iv) deadline-aware desire prioritization
v) preemption of running plans with lower priority vi) distributed and vii) im-
plemented over ROS2 nodes, topics and services. Being based on ROS2, the ar-
chitecture can be straightforwardly adopted into robotic systems and deployed
on a single machine or on several machines connected through a network.



4 D. Dal Moro et al.

Fig. 1. The proposed Multi-Agent BDI Robotic architecture.

Figure 1 depicts the proposed architecture. Rectangles stand for one or more
ROS2 topics (i.e., communication channels), while circles represent ROS2 nodes
encapsulating the core functionalities of the agent. By using different colours for
them, we aim to distinguish core nodes (green) from agent-specific ones (teal).
The former group is fixed in terms of composition and just the behavior of its
component might be tuned, while the latter varies in number and inner logic
depending on the specific sensing and acting skills of the agent. All arrows rep-



Developing BDI-based Robotic Systems with ROS2 5

resent exchanges of information: we use straight lines if the data are retrieved
and dotted lines if it is sent. Different colours here are used to improve read-
ability. Diamond-shaped boxes highlight the key messages that are going to be
exchanged. A PlanSys2 instance is loaded up within the name-space of each
agent and its ROS2 nodes are represented with ellipses. The figure emphasizes
the fact that multiple agents can run and communicate among each other, all
powered by the proposed architecture.

Specific parts of the architecture are provided within core nodes that imple-
ment the following features: i) Beliefset Management ii) Multi-Agent Requests
handler iii) Scheduler (desire prioritization and preemption) iv) Check over run-
ning plan’s context and desired deadline conditions v) Event Listener. The Plan
Director node is used to trigger or abort, based on preconditions, desired dead-
lines and context conditions, the execution of plans running on top of Plan-
Sys2, which rely on Action Executor nodes to run each action separately. The
computed plans and the execution framework allows for concurrent action exe-
cutions. The Scheduler node provides the handling of prioritization of running
intentions and goals, interfacing with PlanSys2 to compute plans and with the
Plan Director to demand either their execution or abortion. Finally, the Event
Listener provides inference rules to map sensed data into the belief set, in ad-
dition to triggering the addition or removal of desires when specific conditions
results satisfied w.r.t. the current belief set of the agent.

Autonomous behavior. The BDI model provides autonomous agents a sep-
aration of concerns between their understanding of what they perceived from
the environment (Beliefs), their main goal refined into sub-goals (Desires), and
possibilities of how agents can achieve goals with specific, pre-generated plans.1
(Intentions). The BDI-model adopted in the architecture consists of i) a Belief
Manager, ii) Sensor nodes, iii) Scheduler, iv) Action Executors, and v) Event
Listener. The Event Listener implements the belief revision and the option gen-
eration functions of the agent reasoning loop.

With the multi-agent paradigm, several agents act in a shared environment,
adopting either non-collaborative or coordinated behaviors. Multi-agent coordi-
nation and negotiation strategies are not specifically provided, still, support is
provided by the MA Requests Handler node, which allows for requests received
by other agents to be handled locally. Requests can include fact checking, or
submission of belief or desires. Decision of accepting or rejecting the request is
enforced by means of agent-specific static policies. Once a desire is accepted, a
priority is associated, which may have the effect of postponing its execution at
a later time, or completely missing the deadline associated to the request.

Planning capabilities. Planning capabilities are provided by PlanSys2. A
Monitoring node has been defined to control its running status. The Belief Man-
ager takes care of synchronizing the knowledge of the agent with the Problem
Expert of the planning system, by encoding it into the PDDL problem initial

1 In our setting, plans are automatically generated through the invocation of a planner.



6 D. Dal Moro et al.

status. A one-to-one mapping is applied between beliefs and PDDL instances,
predicates and functions. In addition, the Scheduler invokes directly the planner
to verify whether desires are achievable, and how.

Scheduling and execution. The Scheduler provides two main features: 1) pur-
suing of desires to be fulfilled based on their respective priority and deadline,
2) aborting plans in execution. The Plan Director triggers, aborts and monitors
the execution of plans. Additional features include: plan failure management with
rollback functionalities, along with deadline and context condition monitoring.

Deadline-aware prioritization is supported by the Scheduler, who decides
which desire to pursue, based first on priorities and secondly on the deadline,
adopting an Earliest Deadline First (in the case of desires with the same priority).
Before demanding the execution, preconditions are taken into consideration too.

Additionally, it can also force the interruption of a running scheduled plan so
to handle a newcomer desire with a higher priority or with the same and a shorter
deadline, for which a plan to fulfill such new desire can be scheduled. Differently
from a preemption mechanism, the interruption mechanism implemented in our
architecture does not suspend and then resume the execution from where it was
left. Once the plan is aborted, the desire it was supposed to fulfill is put back in
the desire set, from where it may be picked up again later. When the preempted
desire is considered again in a following rescheduling operation, a new plan might
be computed and selected for execution. Note that this new plan might differ
from the former one, given the relevant environment has changed.

The events for which a plan gets aborted includes i) an explicit request by
the Scheduler if the desire is fulfilled during execution (e.g. sensors might detect
that part of the goals are already fulfilled while running the plan), or ii) if there
is a desire with higher priority than the one currently executing that can be
fulfilled. However, the latter is an optional configuration (option PREEMPT),
for which preemption is applied to the running plan in the case of upcoming
higher priority desires. New plans are periodically computed for each pending
desire and one might be selected to run, after aborting the plan currently in
execution. Otherwise, Scheduler would wait for the termination, successful or
failing, of the currently executing plan, even if higher priority ones are present
in the desire set. Additionally, in both cases there is an upper bound to the
number of times for which plan computation for a desire is unsuccessful. When
reached, the desire is discarded.

The Plan Director node triggers and aborts the execution of a plan on behalf
of a request by the Scheduler, forwarding it to the Executor node of PlanSys2.
Moreover, it processes its progress feedback and publishes it in a topic, so that
the Scheduler has a feed of the currently running plan too. Furthermore, the Plan
Director monitors over the context conditions and requests the plan abortion in
case they are not satisfied anymore. This happens also in the case deadlines
are missed by a multiplication factor with respect to the desire deadline. For
example, given the default factor 2, when the duration the plan is taking goes
over 2 times the desire deadline, it is automatically aborted. Plan execution can
fail also at the PlanSys2 level in the case of unsatisfied run-time requirements



Developing BDI-based Robotic Systems with ROS2 7

or failed action executions. The Scheduler, which is notified about plan failures,
discards a desire after a given number of failing plan executions to fulfill it.

A basic rollback feature is provided by the Plan Director aborting function.
This consists of restoring the status of the belief set by pushing or deleting a
few given declared values. Limitations consist in the possibility of incurring in
an inconsistent belief set, due to the difficulty of writing sound rollback rules
that can be valid for any plan failure situation. This feature should be used in
simulated scenarios, but in real ones a dedicated set of sensors and an exhaustive
set of belief revision rules enforced by the Event Listener should suffice.

3.1 Development tool-kit

The development tool-kit provided includes interfaces for the definition of BDI
messages, sensors, and actions. Furthermore, a python module has been included
to offer a straightforward and ready-to-use agent’s launch description generator.

Both sensors and actions are basically ROS2 nodes. The former extends the
rclcpp::Node class, while the latter is built on top of the one provided by Plan-
Sys2 for developing action executors, i.e., plansys2::ActionExecutorClient.
The sensor interface, given a statically defined belief prototype, acts at run-time
processing periodically or aperiodically raw-level data, presumably retrieved
from ROS2 topics, into “valid” belief items that can be easily exploited to update
the belief set, i.e., the current perception the agent has of the environment. A
periodic method for sensing can be easily enabled, enforcing the logic provided
by the user, but it’s not necessary, e.g., the API call for sensing can be called
within one or more subscription callbacks. This is not true in the case of Ac-
tion Executor, where a periodic method has to be developed, implementing the
logic behind a “step-execution” of the action and returning the relative progress
made. Here, we mainly want to hide the complexities related to the setup and
API calls that need to be made to correctly communicate with the PlanSys2
Executor, while providing a very lean way to exploit the communication APIs
and interact with other agents to consult or update their belief or desire sets.
Additionally, methods are provided to monitor the fulfillment of a desire that
was previously pushed to a “collaborator” agent.

Finally, the provided tool-kit aims to facilitate the bring-up of an agent, by
hiding the loading definition of a PlanSys2 instance linked to the provided PDDL
domain for the agent and all the core nodes properly set up w.r.t. the configured
behavior. Indeed, many parameters can be overridden to comply better with
domain-specific requirements, tuning the behavior of the core nodes of the agent.
For instance, one might want to force the abortion of a plan execution as soon
as the deadline is reached, regardless of the desire being fulfilled, or explicitly
select the aforementioned preemptive mechanism. They are supposed to be used
also to select the files to initialize at startup the belief and desire set, as well
as the rules enforced by the Event Listener and to identify the group of agents
which are allowed to ask for a factual check or an update to the agent’s belief or
desire set. In summary, the tool-kit provides a compact way to define all of the
above and easily attach sensor and action nodes to the agent definition.



8 D. Dal Moro et al.

Fig. 2. Initial situation depicted on the left, while the goal one is on the right.

4 Demonstration of the MA-RT-BDI Architecture

In order to demonstrate the capabilities of the proposed architecture, we imple-
mented our architecture on top of the PlanSys2 ROS2 infrastructure, and we
deployed it in a realistic scenario inspired by industrial applications, although
simulated. In particular, the considered scenario is a paradigmatic instance of a
typical logistic problem. There are multiple deposit areas, and there are several
agents each aiming to specific activities that range from sorting and carrying
operations to get boxes from their initial stacks to specific destination deposits.
The specific scenario consists of a deposit with three different stacks (named 1,
2, and 3) each composed of boxes of possibly different types (e.g., A, B, and C),
and three loading areas (one for each type of the boxes, i.e., A, B, and C). The
loading areas are positioned on a straight line. There are three destination areas
one for each type of box (also named with the same name of the boxes). These
destination areas are positioned in front of the respective loading area but at
a far distance. In this specific demonstrative scenario we considered two kind
of agents. We have a robotic agent equipped with a gripper and a carrier
robotic agent that can carry up two boxes and can move between locations. The
gripper robotic agent can move between the stacks following a rail track with
the concurrent capability of shifting the y-position of its gripper arm across its
transversal bridge. This agent can grasp the box on top of the stack, and can
load it on top of another stack or on a moving vehicle. The scenario considers one
gripper robotic agent and three carrier agents. A carrier agent is needed to
move boxes from loading area to corresponding destination area. Each carrier
agent is assigned to a particular loading and destination, and it can move back
and forth between these two locations. Figure 2 shows the pictorial representa-
tion of this scenario. In this specific scenario we require the gripper to sort the
boxes. The boxes are initially randomly stacked in the three stacks. The gripper
can move the boxes one by one on top of the carrier which is able to deliver
them to the right deposit. To achieve this, the gripper could ask a carrier
to come into the right place for loading the box. Once the carrier has been
loaded, it can move back to the assigned deposits to deliver the boxes.

We designed this scenario within the Webots2 simulation environment (see
for instance Figure 2). Webots is a free and open-source 3D robot simulator
2 https://cyberbotics.com/.

https://cyberbotics.com/


Developing BDI-based Robotic Systems with ROS2 9

used in industry, research and education which provides an almost “out of the
box” integration with ROS2 applications, and most importantly the Webots
simulations have a sufficient degree of fidelity w.r.t. real executions (indeed, the
controls developed with this simulator can also be deployed to real robots). In
this simulation scenario, the gripper agent is equipped with sensors to know
the carrier agents’ position (i.e. base/deposit/moving), while they detect at
run-time not only that, but also the number of loaded boxes they’re carrying.
The gripper agent can move between stackbases and loading areas, pickup and
putdown boxes and finally call carriers to come to their loading base. carrier
can move and unload boxes. Low-level implementations of all the actions, but
the one to request a carrier to come to its base, has been developed through the
Webots ROS2 driver interface 3 to enable the triggering from within ROS2. The
gripper action to request a carrier to come to its base has been implemented
through the API provided by the ROS2 framework described in this paper to
push to the specific carrier a new desire to do so (carriers are designed to
accept them). The sensing (e.g., GPS) from the carriers, the gripper arm and
all the boxes is continuously made available to ROS2 leveraging the Webots
ROS2 driver. This sensing data is then processed by the sensors proposed within
our architecture to become “valid” belief items that can be used to update the
belief set of the agent. Further inference is then performed by rules (specified
programmatically) within the event listener of both types of agents (e.g., if the
carrier is loaded with 2 boxes, it considers itself fully_loaded). The latter is
used also to make the carrier agents self-submit the desire of unloading the boxes
to the deposit, when they’re “fully loaded”. The gripper is provided at the start
with the desire to put the boxes on top of the “right” carrier, so to get the
rest of the demo started. To complete the scenario, additional static information
regarding the environment is also provided at the start, to initialize the belief
set of each agent. The framework, its documentation, and the demonstrative
scenario are available at https://github.com/devis12/ROS2-BDI.

We showcase two different demonstrative runs on top of the scenario de-
scribed above. The first is a simple, successful execution: all boxes are sorted
and moved to the right deposit without any unexpected event occurring. The
second is a small variation, where the carrier for boxes of type C moves to the
destination location before being fully loaded. In this case, the gripper when
attempting to load the last box of C in the respective carrier detects that the
carrier is not there, the execution of its plan fails, it re-plans from this sit-
uation generating a plan requiring the carrier to come back to base, and then
continue with the new plan to achieve the overall desire to move all the boxes to
their respective destination. This last scenario shows that with our framework,
when something does not go as expected and the plan execution fails, the agent
might be able to use its updated knowledge of the world to find a new plan and
eventually fulfill its initial desire, or receive a new desire to be fulfilled (e.g., the
carrier to come back to base). The video showing our proposed framework at
work on these two scenarios is available at https://youtu.be/zB2HvCR5H9E.

3 https://github.com/cyberbotics/webots_ros2

https://github.com/devis12/ROS2-BDI
https://youtu.be/zB2HvCR5H9E
https://github.com/cyberbotics/webots_ros2


10 D. Dal Moro et al.

5 Related Work

In the literature there have been several works that addressed the problem of
designing complex and intelligent autonomous architectures for the robotic set-
ting, mostly focusing on specific contexts [11,2,7]. More recently, it was proposed
a preliminary integration of BDI concepts in the ROS2 framework [1]. This work
inspired the design of our architecture. Many of the concepts we adopted were
introduced firstly here. However, this preliminary work, differently from our, was
not addressing the problem of the autonomous deliberation nor the problem of
autonomous re/planning to answer to contingencies and/or new emerging de-
sires. In [1], all the BDI elements were manually specified and pre-loaded in the
architecture, the focus was on defining the messages to be exchanged among
the different components and on the real-time (re-)scheduling of the intentions.
As far as the robotic setting is concerned, noticeable related works are Cogni-
TAO [5], CORTEX [3], SkiROS2 [15], ROSPlan [4] (for ROS1), and its successor
PlanSys2 [13] (for ROS2). CogniTAO [5] implements a BDI model in the ROS
architecture. However, differently from our approach, where the BDI model is
completely integrated within ROS together with the deliberation ability (not
supported by CogniTAO), the execution of the agent paradigm is delegated to
the TAO machine (which is logically separated from the other ROS-related com-
ponents). CORTEX is a cognitive centralized robotics architecture built on top
of an ad-hoc communication framework, while we rely on ROS2. In CORTEX
there is a centralized common knowledge base for the group of agents that use
it as a communication mean. Similarly to our approach, CORTEX includes a
deliberation capacities, but differently from us, the planning is centralized, the
actions of the different agents are instantaneous, and thus it is not possible to
have overlapping action executions by the different agents (a feature needed
in several realistic applications). Last, in the framework it is not possible to
integrate concepts like real-time scheduling, which are supported by our frame-
work through ROS2. SkiROS2 is another platform to create complex robotic
behaviors through composition of skills delivered in modular software blocks,
while maintaining a centralized semantic database to manage environmental
knowledge based on OWL ontologies. Even if it offers an integration point for
PDDL task planning, it lacks support for temporal planning and interactions
among different agents. Finally, ROSPlan first, and PlanSys2 later cannot be
considered real BDI infrastructures. They focused on integrating deliberation
capabilities based on (temporal) planning, and respective plan execution in the
single agent robotic setting. While in ROSPlan the plans are generated and ex-
ecuted with internal ad-hoc representations, in PlanSys2 the generated plans
are transformed into Behavior Trees [14]. Other important features provided by
PlanSys2 w.r.t. ROSPlan are i) the ability to build incrementally the delibera-
tion model thus being modular, ii) an auction mechanism for delivering actions
to action performers, thus enabling for targeting multi-robot/agent executions.
Moreover, these frameworks lack of several BDI capabilities like e.g. detection-
reaction, high-level deliberation and multi-agent interaction mechanisms, local
re-planning, automatic generation of new desires, that come directly "out of the



Developing BDI-based Robotic Systems with ROS2 11

box" with the BDI model. Nonetheless, PlanSys2 was the baseline on top of
which we have built our Multi-Agent Robotic BDI Architecture.

6 Conclusions and Future Work

In this work, we proposed a distributed architecture powering robotics agents
with autonomous behavior through the means offered by the widely accepted
and increasingly used ROS2 robotic infrastructure and PlanSys2 planning sys-
tem. To improve the intuitiveness of the design and adaptability of every agent,
the reasoning flow is strongly based on the BDI model which has been decom-
posed into modular, decoupled, event-based processes, in compliance with the
standard pattern of development of the target platform. The developed architec-
ture comes packed with a provided toolkit guiding the user toward the definition
of agents’ specific detection and operating skills and behavior. A validating use
case is presented working as proof of concept and model to inspire and facilitate
the development of new solutions powered by the framework. Even if we consider
the delivered and open-to-use framework based on the proposed architecture a
promising tool, ready for powering up real world applications, enhancing the
definition, flexibility of the robotic agents, as well as the degree of interaction
and cooperation among them, it should be noted that there are still some limi-
tations and several directions of further improvement to address them that are
subject to future work. The reasoning cycle needs to be enriched with addi-
tional functionalities, e.g. store multiple plans to choose among in response to
emerging new desires; to make the scheduling and execution of all the core and
domain-specific behavior more computational aware, leaning toward a greater
degree of real-time compliance as for instance discussed in [19]. To improve the
deliberation and execution capabilities of the proposed framework we plan to
extend its use by integrating forms of online planning and execution along the
lines discussed in [18,8], i.e., have a more tight integration of the deliberation
and execution activities. Moreover, we will address some limitations of existing
planning systems by allowing the use of planning systems able to optimize the
solution plans w.r.t. a given objective functions specified as part of a desire.
We will also consider the integration of advanced meta-reasoning to evaluate
whether to trigger specific new behaviors (e.g., self-submission of desire to fulfill
precondition or context condition of a pending desire) which at the moment are
defined statically (for the sake of simplicity of the development) at design time.
Finally, we will study also mechanisms to identify and handle deadlock scenar-
ios, thus moving the responsibility of avoiding deadlock scenarios from the agent
designer to the deliberation reasoning, e.g., by employing the rules enforced by
the Event Listener and/or other means offered by the toolkit (e.g., rollback belief
after an execution abortion) to tackle the issue in a context-specific manner.

References

1. Alzetta, F., Giorgini, P.: Towards a real-time BDI model for ROS 2. In: WOA.
CEUR Workshop Proceedings, vol. 2404, pp. 1–7. CEUR-WS.org (2019)



12 D. Dal Moro et al.

2. van Breemen, A., Crucq, K., Krose, B., Nuttin, M., Porta, J., Demeester, E.: A
user-interface robot for ambient intelligent environments. In: Proc. of the 1st Int.
Workshop on Advances in Service Robotics,(ASER) (2003)

3. Bustos, P., Manso, L.J., Bandera, A., Rubio, J.P.B., García-Varea, I., Martínez-
Gómez, J.: The CORTEX cognitive robotics architecture: Use cases. Cogn. Syst.
Res. 55, 107–123 (2019)

4. Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palom-
eras, N., Hurtós, N., Carreras, M.: ROSPlan: Planning in the Robot Operating
System. In: ICAPS 2015. pp. 333–341. AAAI Press (2015)

5. CogniTAO-Team: CogniTAO (BDI), http://wiki.ros.org/decision_making/
Tutorials/CogniTAO

6. Coles, A.J., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning.
In: ICAPS 2010. pp. 42–49. AAAI (2010)

7. Duffy, B.R., Collier, R., O’Hare, G.M., Rooney, C., O’Donoghue, R.: Social
robotics: Reality and virtuality in agent-based robotics. In: Bar-Ilan Symposium on
the Foundations of Artificial Intelligence: Bridging theory and practice (BISFAI-
99), Ramat Gan, Israel, June 23-25, 1999 (1999)

8. Elboher, A., Shperberg, S.S., Shimony, S.E.: Metareasoning for interleaved plan-
ning and execution. In: SOCS. pp. 167–169. AAAI Press (2021)

9. Eyerich, P., Mattmüller, R., Röger, G.: Using the context-enhanced additive heuris-
tic for temporal and numeric planning. In: Towards Service Robots for Everyday
Environments - Recent Advances in Designing Service Robots for Complex Tasks
in Everyday Environments, Springer Tracts in Advanced Robotics, vol. 76, pp.
49–64. Springer (2012)

10. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. 20, 61–124 (2003)

11. Gottifredi, S., Tucat, M., Corbata, D., García, A.J., Simari, G.R.: A BDI architec-
ture for high level robot deliberation. Inteligencia Artif. 14(46), 74–83 (2010)

12. Helmert, M.: Changes in PDDL 3.1 (2008), unpublished summary from the IPC
2008 website: https://ipc08.icaps-conference.org/deterministic/

13. Martín, F., Clavero, J.G., Matellán, V., Rodríguez, F.J.: Plansys2: A planning
system framework for ROS2. In: IROS. pp. 9742–9749. IEEE (2021)

14. Marzinotto, A., Colledanchise, M., Smith, C., Ögren, P.: Towards a unified behavior
trees framework for robot control. pp. 5420–5427. IEEE (2014)

15. Polydoros, A.S., Großmann, B., Rovida, F., Nalpantidis, L., Krüger, V.: Accu-
rate and Versatile Automation of Industrial Kitting Operations with SkiROS. In:
TAROS 2016. LNCS, vol. 9716, pp. 255–268. Springer (2016)

16. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
KR. pp. 473–484. Morgan Kaufmann (1991)

17. ROS2 - Robot Operating System version 2 (2022), https://docs.ros.org
18. Shperberg, S.S., Coles, A., Karpas, E., Ruml, W., Shimony, S.E.: Situated temporal

planning using deadline-aware metareasoning. In: ICAPS. pp. 340–348. AAAI Press
(2021)

19. Traldi, A., Bruschetti, F., Robol, M., Roveri, M., Giorgini, P.: Real-Time BDI
Agents: a model and its implementation. In: Press, A. (ed.) IJCAI 2022 (2022)

http://wiki.ros.org/decision_making/Tutorials/CogniTAO
http://wiki.ros.org/decision_making/Tutorials/CogniTAO
https://ipc08.icaps-conference.org/deterministic/
https://docs.ros.org

	Developing BDI-based Robotic Systems with ROS2

