UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

SOLVING THE SEQUENTIAL ORDERING PROBLEM
WITH AUTOMATICALLY GENERATED LOWER BOUNDS

Istvan T. Herrédvolgyi

February 2004

Technical Report # DIT-04-018

Solving the Sequential Ordering Problem
with Automatically Generated Lower Bounds

Istvan T. Hernddvolgyi

Department of Information and Communication Technology, University of Trento,
Povo, 38100 Trento, Italy*

Abstract. The Sequential Ordering Problem (SOP) is a version of the Asymmetric
Traveling Salesman Problem (ATSP) where precedence constraints on the vertices
must also be observed. The SOP has many real life applications and it has proved to
be a great challenge (there are SOPs with 40-50 vertices which have not been solved
optimally yet with significant computational effort). We use novel branch&bound
search algorithms with lower bounds obtained from homomorphic abstractions of
the original state space. Our method is asymptotically optimal. In one instance,
it has proved a solution value to be optimal for an open problem while it also
has matched best known solutions quickly for many unsolved problems from the
TSPLIB. Our method of deriving lower bounds is general and applies to other
variants of constrained ATSPs as well.

1 Introduction

The Sequential Ordering Problem (SOP) is stated as follows. Given a graph
G, with n vertices and directed weighted edges with the start and terminal
vertices designated. Find a minimal cost Hamiltonian path from the start
vertex to the terminal vertex which also observes precedence constraints. An
instance of a SOP can be defined by an n x n cost matrix C, where the entry
C; ; is the cost of the edge ¢j in G, or it is -1 to represent the constraint that
vertex j must precede vertex i in the solution path.

The SOP is a model for many real life applications, ranging from heli-
copter routing between oil rigs [10] to scheduling on-line stacker cranes in an
automated warehouse [1].

Most asymptotically optimal solvers model the SOP as an Integer Pro-
gram. Unfortunately the exact structure of the SOP polytope is not yet fully
understood and therefore these methods achieved only limited success. Our
approach is state space search. The partial completions of feasible tours form
a directed acyclic graph. The lower bounds are derived from abstractions of
the original state space and correspond to optimal tour completion costs in
the abstract space. The lower bounds are stored in a look-up table which we
will refer to as the pattern database. They are named so, because the abstrac-
tion corresponds to merging states of the original state space according to
some syntactic pattern. The abstraction mechanism described in this paper
is general and it is applicable to other versions of constrained ATSPs as well.

* work done at SITE, University of Ottawa, Canada, istvan@site.uottawa.ca

2 I. T. Hernadvdlgyi

2 Related Work

Optimal solutions to some instances of the SOP were obtained by Ascheuer et.
al. [2] who used the cutting plane technique. They also employed heuristic
tour constructions and improvements to derive actual solutions. Escudero
et al. [5] used a similar approach but the lower bounds were obtained by
Lagrangian relaxation.

The HAS-SOP system of Gambardella et al. [6] is a metaheuristic tech-
nique. In many instances they obtained the best known upper bounds to un-
solved instances. This approach is a form of stochastic search and therefore
optimal solutions cannot be guaranteed, however the solutions were obtained
very quickly. Similar results using genetic algorithms were achieved by Seo
et al. [11].

Christofides et al. [3] considered state space relaxations first to generate
lower bounds for TSPs. They also used a state representation very close to
ours. The same approach was also considered by Mingozzi et al. [9] for the
TSP with time windows and precedence constraints.

The pattern database technique was invented by Culberson and Schaeffer
[4] and was later used by Korf [8] to obtain optimal solutions to the Rubik’s
Cube for the first time.

3 Lower Bounds

In our representation, a SOP state s corresponds to a partial completion of
the tour. It records the current last vertex in this partial tour as well as the
vertices which have not been reached yet. This is very similar to the state
representation of Christofides et al. [3]. The SOP state space S is a lattice
with the start state at the apex and the goal state at the bottom. The lattice
has n levels, each corresponding to adding a new vertex to a partial tour such
that it still satisfies the constraints. These levels are manifested by the edge
structure of the lattice. Edges in S only exist between adjacent levels.

The abstract state space S’ is also a lattice with the same number of
levels as S. However, |S'| < |S|, so we can enumerate it efficiently. The
abstract lattice is obtained by clustering states of S on the same level. Figure
1 illustrates the conceptual relationship between the original and abstract
lattices. S is the original lattice and S’ is the resulting abstraction. We chose
states on the same levels to cluster and identified the cheapest cost edges
entering and leaving these clusters (drawn with bold edges). These edges will
be retained to connect the clustered states which are now replaced by a single
vertex (shown as filled circles) in S’. The cost of the optimal completion of s'
in S’ is a lower bound on the optimal completion cost of the preimage states of
s'in S. This is exactly what our lower bounds correspond to. The abstractions
are simple relabeling functions we call domain abstractions. Initially we assign
a unique label to each vertex in the SOP. 0 and n — 1 are the labels of

Solving The Sequential Ordering Problem 3

Fig. 1. State Space Lattice Abstraction

the initial and terminal vertices. A domain abstraction is a map from this
set of labels to another set of labels of smaller cardinality. We use different
domain abstractions at different levels. Let us consider two specific examples
of domain abstractions for a 6 vertex SOP.

v 012345
¢pov) 011213 (1)
¢s(v) 012234

¢2 and ¢3 are applied to levels 2 and 3 respectively. Let X represent a non-
existing edge in S and -1 correspond to a precedence constraint as we de-
scribed earlier.

0 1 23 45
I R
01 2 2 34
P2
0-0 x 2[1 x| 4 x 2 1 4
Cya=1-1 [F1][x][1T 4[] 2|[x] = j_i :1,, gg (2)
21| |-1|| 1j| x 3| 3||0 1-1-1-1x
41| |- 2] 1 3] x||1

3—2 -1 —1 2 3
553 -1 —1[C1-1) -1 x

Equation 2 shows how the original cost matrix is transformed into the cost
matrix Cj 5 that describes the connectivity and costs between Sy and S3. In
order to guarantee lower bounds, the most conservative choice is applied to
derive the cost representing the merged edges. If all edge costs are -1, then the
resulting edge cost is also a -1 (precedences can be preserved). If some are -1

4 I. T. Hernadvdlgyi

and some are X we must choose an x (and eliminate some precedences). If all
preimage edges are x then so is the abstract edge cost (no new edge created).
If there are some non -1 and non x entries then we must choose the one with
the minimum cost. In [7], we prove that this construction results in valid
lower bounds for S. Although conceptually S’ is obtained by compressing S,
S is so large that it cannot be enumerated and we build S’ by expanding it
from the bottom up while also calculating the lower bounds corresponding
to the completion costs of the abstract partial tours of S’. For details see
[7]. To obtain the abstractions, we minimize a user provided error function of
the merged edges. In our experiments, we found that minimizing the absolute
error between the merged edge costs and the new edge cost and applying some
additional user provided penalty for eliminated precedences is particularly
effective. We also used transposition tables at levels 3 and 4 to keep track of
already visited states and to avoid their re-expansion.

4 Search

Our search algorithms are all derived from depth-first branch&bound. We
branch depth-first because memory is reserved to store lower bounds. For the
partial tour s; € S;, let

f(s1) = c(s1) +b(s1) (3)

be an estimate of the total cost of the completed tour which is comprised from
the cost of the partial tour ¢(s;) and its estimated completion cost b(s;). If
f(s1) exceeds the cost of the best known feasible solution (the incumbent)
then it can be pruned. The branches are also sorted in increasing f value
order. Plain branch&bound can be greatly improved because of two special
properties of the SOP. First, the SOP can be solved by searching from both
directions and second, any consecutive sequence of vertices in any feasible
tour also corresponds to a smaller SOP by itself. The cost matrix of the sub-
problem SOP can be obtained by readily taking entries from the original cost
matrix and this subproblem can be solved independently. In our experiments
we found that search in one direction is often much faster than in the other
and therefore it is worthwhile searching from both directions. The switch from
one direction to the other is triggered by reaching a user set node expansion
limit. The search in both directions works on refining the same incumbent. We
named this algorithm bi-directional depth-first branch&bound (or BDFBB).
Recursive depth-first branch&bound (or RDFBB) uses a user imposed tol-
erance limit L. When the number of nodes expanded in the search under a
subtree T exceeds L, the subproblem SOP corresponding to the largest sub-
tree not including the start state but including 7T is solved independently with
its own automatically generated lower bounds. We also employed a 3-opt on
each new incumbent to opportunistically improve it (also used by [2,6,11]).

Solving The Sequential Ordering Problem 5

Max Random Absolute
Width Error
bo| ave(b)|Time bo| ave(b)|Time

500{ 400 402.90| 0.57| 53,965|53,704.10 0.57
2,000{ 490 830.25| 0.80|(80,690(59,256.60| 0.77
8,000| 545|1,219.24| 1.00|| 54,115(52,356.10| 1.13
32,000| 630|2,146.16| 1.46|/80,890(65,315.20| 1.29
128,000| 680|2,934.33| 2.13||81,055(60,713.50| 2.24
512,000 710|4,925.33| 3.30(|81,110(69,782.70| 2.63
2,048,000| 965|7,841.39| 5.82|(81,350|65,885.20| 4.48
8,192,000(1,265|9,704.65|18.43||81,585|70,473.30|12.87

Table 1. Generating Lower Bounds for p43.4

5 Results and Discussion

The two control parameters we supply to calculate the lower bounds are the
maximum number of abstract states on a single level (maximum width) and
the error function which the abstractions between consecutive levels optimize.
As we have mentioned, minimizing absolute error (AE) proved to be effective.
This is very clear from Table 1 which shows the average value of lower bounds
(ave(d)), the lower bound corresponding to the start state (bg) and the time it
took in seconds to build the pattern databases of various sizes. The problem
is one of the previously unsolved ones called p43.4 from the TSPLIB [12]. by
is also a lower bound for the SOP itself. The bounds which are tighter than
the previously best known value of 69,569 are shown in bold font. We com-
pare randomly chosen abstractions to the ones that minimize AE. The values
reported in the columns under “Random” correspond to the best from a pool
of 20. Our smallest AE pattern database has much higher lower bounds than
the best of 20 random ones which is also 16,384 larger. This experiment also
reveals an interesting phenomenon that we encountered on more than one
occasions. The AE pattern database with width 2000 is better than many of
the larger ones minimizing the same error measure. At this time we have no
explanation other than the abstractions seem to preserve the costs between
the levels particularly well. With RDFBB, in 22 hours of CPU time we de-
rived that the value of 83,005 is optimal'. We also have matched the best
reported upper bounds within 60 minutes of CPU time to the open problems
p43.2, p43.3, p43.4, ry48p.2, ry48p.3, ry48p.4, £t53.2 and £t53.3. In
these experiments we used BDFBB and also utilized a 3-opt edge exchange
heuristic. We also generated a problem set of 16 SOPs; each over 30 ver-
tices. These are derived from 4 base problems. Two correspond to rounded
Euclidean distances on a 500x500 and a 6x6 grid with some random noise

! which contradicts a previously reported upper bound of 82,960 whose origin we
could not trace

6 I. T. Hernadvdlgyi

SOP 50,000 250,000 1,250,000

1,000 Time 1,000 Time| 1,000 Time
Nodes (sec)] Nodes (sec)| Nodes (sec)
1|3,046,341 21,790.11| 20,596 208.29 964 10.57
500x500 2| 212,656 1,132.43 8,761 52.63 692 5.27
3|| 66,025 278.13 7,750 37.92 460 3.07

4 27,796 127.25 9,288 49.80 488 3.17
1{/9,022,057 66,451.02(1,775,135 16,058.50|141,987 1,570.72
6x6 2(|1,154,906 5,818.16| 35,283 206.61| 3,476 25.25
3 26,579 133.14 9,509 57.88 814 5.63
4 988 4.84 176 1.06 4 0.03
1f 360,391 2,773.21| 34,060 336.05| 17,091 184.29
0-1000 2 25,661 152.81 3,787 26.34 159 1.51
3|| 266,626 1,243.66| 70,435 376.39| 8,936 60.89
4 176 1.04 32 0.22 4 0.04
1| 118,071 721.58| 33,489 248.34| 3,006 32.74
0-10 2 468 3.06 202 1.48 54 0.52
3 59,310 290.84| 22,045 126.68| 10,943 61.89
4 7,788 40.01 895 5.33 43 0.32

Table 2. Nodes Expanded and CPU Times of the Problem Set

added to third of the edge costs. The other two are uniform random costs in
[0,1000] and [0, 10]. Next, we generated four random precedence graphs. We
applied the constraints implied by these to each of our four base problems
and obtained SOPs with 107 (1), 160 (2), 210 (3) and 253 (4) precedence
constraints. These include the 57 trivial precedences which are due to the
fact that the start and terminal vertices are known. For ease of reference, we
named these 16 test problems suggestively. First, we investigate solving these
problems with three different size pattern databases of exponentially larger
sizes. To compare them we measure nodes expanded in the search and CPU
time. For these experiments we did not use the 3-opt tour improvement, only
pattern databases. The results are tabulated in Table 2. Our results show
that having larger databases pays off. In the case of 500x500-1 allocating a
5 times larger database results in a 148 fold reduction in nodes expanded.
Increasing this size yet another 5 times and there is another 21-fold reduction
in nodes expanded. While these very high ratios are not typical, our experi-
ments indicate that in general the trade-off between memory and search speed
favors adding more memory. It is also the case that, in most cases, the search
finishes much faster when the SOP is more constrained. The branch&cut
technique of Ascheuer et al. [2] solves the less constrained SOPs faster. The
limiting factors in branch&cut, besides the dimensionality, are the size of
the pool of inequalities that have to be searched and the construction of
the facet inducing inequalities. Non of these are eased by more precedences.
For us, more precedence constraints mean less branching in the search space

Solving The Sequential Ordering Problem 7

50,000

SOP Plain Rec Rec + Trans

K Nodes Time| K Nodes Time| K Nodes Time
1/[3,046,341 21,790.11| 405,420 3,220.54| 350,431 2,317.33
500x500 2|| 212,666 1,132.43| 351,017 2,113.21 315,387 1,922.89
3 66,025 278.13 33,327 146.79 26,871 118.18

4| 27,796 127.25| 56,153 248.63| 44,182 198.21
1][9,022,057 66,451.02|18,950,825 134,032.34]12,250,761 101,120.71
6x6 2|[1,154,006 5,818.16| 30,4600 1,750.83| 26,8862 1,551.40
3| 26,579 133.14] 26,579 135.48) 21,293 108.86
4 988 4.84 988 4.96 988 4.98
1] 360,391 2,773.21| 347,409 2,732.30| 317,975 2,506.07
0-1000 2| 25661 152.81| 17,865 112.49| 17,686 109.62
3| 266,526 1,243.66] 51,707 230.21| 48,021 212.11
4 176 1.04 176 1.03 176 0.03
1 118,071 721.58] 61,936 420.93] 61,798 423.42
0-10 2 468 3.06 468 3.11 468 3.13
3| 59,310 290.84) 22,042 111.54| 20,171 101.83
4| 7788 40.01 7,788 40.95 7,786 40.93

Table 3. Nodes Expanded and CPU Times of the Problem Set

and therefore less node expansions. Table 3 compares plain DFBB (Plain)
to RDFBB (Rec) and RDFBB with transposition tables (Rec + Trans) with
the smallest (maximum width 50,000) pattern databases. The values in bold
show improvements that resulted in less search effort than searching with
plain DFBB with a 5 times larger pattern database. The improvement is of-
ten remarkable but not always present. It requires further investigation to
examine the cause as there is a large number of parameters to be set, such
as the size of subproblems, databases and expansion limits.

With DFBB, the cost of the initial sequence of feasible solutions is very
important since the costs are used as pruning bounds. Interestingly, we found
that the size of the pattern database and even the magnitudes of the lower
bounds stored have no relevance whatsoever when it comes to obtaining cheap
solutions fast. Therefore the use of a 3-opt makes a very big difference. In
fact, to this end we believe it would be more effective to start with the cheap
and fast solutions of the HAS-SOP system [6] and instead of ordering by f
values (Equation 3), we could make use of intermediate solutions of the LP
relaxation of the branch&cut solver [2]. The solution to the LP relaxation is
a fraction in [0, 1] corresponding to each edge of the SOP. We could interpret
these values as probabilities that tell how likely it is that the particular edge
is included in the tour. We would sort branches by these probability values
but still use our lower bounds for pruning.

We would also like to mention that our lower bounds could be generated
when the precedences are arbitrary boolean constraints — such as “vertex

8 I. T. Hernadvdlgyi

2 or 3 must precede vertex 4” and when some precedence violations are
allowed when some user defined penalty is paid. In fact, we believe that
pattern databases could be effective to generate lower bounds for a number
of constrained Scheduling/Operations Research problems.

I would like to dedicate this work in the memory of my dear friend, Dr. Baldzs
Zombori, who recently died in a car accident.

This research was supported in part by a research grant provided by the
Natural Sciences and Engineering Research Council of Canada. I would also
like to thank Dr. Robert C. Holte (University of Alberta) for his insights and
encouragement.

References

1. N. Ascheuer. Hamiltonian path problems in the on-line optimization and schedul-
ing of flexible manufacturing systems. PhD thesis, Technical University of Berlin,
1995.

2. N. Ascheuer, M. Jiinger, and G. Reinelt. A branch & cut algorithm for the asym-
metric traveling salesman problem with precedence constraints. Computational
Optimization and Applications, 17(1):61-84, 2000.

3. N. Christofides, A. Mingozzi, and P. Toth. State space relaxation procedures for
the computation of bounds to routing problems. In Networks, volume 11, pages
145-164, 1981.

4. J. C. Culberson and J. Schaeffer. Searching with pattern databases. In Proceed-
ings of the Eleventh Biennial Conference of the Canadian Society for Computa-
tional Studies of Intelligence on Advances in Artificial Intelligence, volume 1081
of LNCS, pages 402-416, 1996.

5. L. F. Escudero, M. Guignard, and K. Malik. A Lagrangian relax-and-cut ap-
proach for the sequential ordering problem with precedence constraints. In An-
nals of Operations Research, volume 50, pages 219-237, 1994.

6. L. M. Gambardella and M. Dorigo. An ant colony system hybridized with a
new local search for the sequential ordering problem. INFORMS Journal on
Computing, 12(3):237-255, 2000.

7. 1. T. Hernddvdlgyi. Solving the sequential ordering problem with automatically
generated lower bounds. Technical Report TR03-16, University of Alberta, 2003.

8. R. Korf. Finding optimal solutions to Rubik’s cube using pattern databases. In
Proceedings of the Workshop on Computer Games (W81) at IJCAI-97, pages
21-26, 1997.

9. A. Mingozzi, L. Bianco, and S. Ricciardelli. Dynamic programming strategies for
the traveling salesman problem with time window and precedence constraints.
Operations Research, 45:365-377, 1997.

10. W. Pulleyblank and M. Timlin. Precedence constrained routing and helicopter
scheduling: Heuristic design. Technical Report RC17154, IBM, 1991.

11. Dong-Il Seo and Byung-Ro Moon. A hybrid genetic algorithm based on com-
plete graph representation for the sequential ordering problem. In GECCO-2003,
volume 2723 of LNCS, pages 669-680. Springer-Verlag, 2003.

12. http://www.iwr.uni-heidelberg.de/groups/comopt /software/ TSPLIB95/

