
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE

ICT International Doctoral School

exploiting spatial and spectral information for

audio source separation and speaker diarization

Mahmoud Fakhry

Advisor

Maurizio Omologo

Fondazione Bruno Kessler

Co-Advisor

Piergiorgio Svaizer

Fondazione Bruno Kessler

December 2016





Acknowledgements

My gratitude goes to my supervisor, Maurizio Omologo, who gave me

the opportunity to do a PhD. I highly appreciate his patience and wisdom.

His guidance throughout this period helped me to get to this point.

I am very thankful to my co-supervisor, Piergiorgio Svaizer, for sharing

his valuable time and for his gracious recommendations.

I would like to thank the members of the SHINE research unit for the

enjoyable conversations at lunch and coffee time. Thanks also to the people

of the ICT doctoral school,

I would like to thank the members of the NTT Communication Science

Laboratories, Kyoto, Japan, who helped me to enrich the content of the

thesis by accepting me to spend six months as a paid intern.

I give my thanks with a grateful heart to my family and friends.





Abstract
The goal of multichannel audio source separation is to produce high quality separated

audio signals, observing mixtures of these signals. The difficulty of tackling the problem

comes from not only the source propagation through noisy and echoing environments, but

also overlapped source signals. Among the different research directions pursued around

this problem, the adoption of probabilistic and advanced modeling aims at exploiting the

diversity of multichannel propagation, and the redundancy of source signals. Moreover,

prior information about the environments or the signals is helpful to improve the quality

and to accelerate the separation.

In this thesis, we propose methods to increase the effectiveness of model-based audio source

separation methods by exploiting prior information applying spectral and sparse modeling

theories. The work is divided into two main parts.

In the first part, spectral modeling based on Nonnegative Matrix Factorization is adopted

to represent the source signals. The parameters of Gaussian model-based source sepa-

ration are estimated in sense of Maximum-Likelihood using a Generalized Expectation-

Maximization algorithm by applying supervised Nonnegative Matrix and Tensor Factor-

ization, given spectral descriptions of the source signals. Three modalities of making the

descriptions available are addressed, i.e. the descriptions are on-line trained during the

separation, pre-trained and made directly available, or pre-trained and made indirectly

available. In the latter, a detection method is proposed in order to identify the descrip-

tions best representing the signals in the mixtures.

In the second part, sparse modeling is adopted to represent the propagation environments.

Spatial descriptions of the environments, either deterministic or probabilistic, are pre-

trained and made indirectly available. A detection method is proposed in order to identify

the deterministic descriptions best representing the environments. The detected descrip-

tions are then used to perform source separation by minimizing a non-convex l0-norm

function. For speaker diarization where the task is to determine “who spoke when” in real

meetings, a Watson mixture model is optimized using an Expectation-Maximization algo-

rithm in order to detect the probabilistic descriptions, best representing the environments,

and to estimate the temporal activity of each source.

The performance of the proposed methods is experimentally evaluated using different datasets,

between simulated and live-recorded. The elaborated results show the superiority of the pro-

posed methods over recently developed methods used as baselines.

Keywords Source separation, speaker diarization, spectral information, spatial infor-

mation, probabilistic modeling, and spectral and spatial modeling.
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Chapter 1

Introduction

You are at a crowded party, where the music is loud, people are laughing,

and different conversations are running all around you. However, you are

able to focus on the specific voice you want to hear and you can also

temporarily alternate between different voices. The issue of focusing on

a single speaker is called the “cocktail party” problem. The ears receive

stereo mixtures of overlapped sounds. To hear what a certain person is

saying, the brain is able to extract the individual sound of interest from

those mixtures. Multichannel audio processing for source separation aims

at reproducing, by means of an automatic system, this functionality that

we achieve so effectively by our ears and brain.

The addressed scenario involves the use of multiple microphones to

capture, at different points in space, mixtures of individual signals emit-

ted by multiple audio sources. The individual signals are mixed through

a Multiple-Input Multiple Output (MIMO) mixing system, representing

sound propagation from each source to each microphone (a mixing pro-

cess). Each microphone receives overlapped and modified copies of the

individual signals, plus the additive background noise of the environment.

Based on the information contained in the mixture signals, it is required

to design a separation system, termed a reconstruction system or an in-

1
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.

.

.

Sources Separated SourcesMixtures

Figure 1.1: A multichannel mixing/separation process.

verse system, in order to retrieve the individual audio signals (a separation

process). Figure 1.1 shows an example of the mixing/separation process.

Because the output of the source separation system consists of audio

signals that may be further processed or listened to, the topic has attracted

extensive research work. The importance of tackling the problem for speech

processing comes from its possible applicability including:

• Speech separation to segregate simultaneous signals in echoing and

noisy environments for audio communication (e.g. teleconferencing).

• Speech enhancement to extract a signal of interest in the presence of

background noise when the rest are considered to be nuisance signals,

for audio surveillance.

• Speaker diarization to determine “who spoke when” in real meetings,

for voice activity detection.

• A front-end processing step for automatic speech recognition of mul-

tiple speakers.

• Automatic indexing of audio databases.

2
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Separation 
System

Figure 1.2: A multichannel mixing process in an echoing and noisy environment.

1.1 Problem statement

Starting from multiple observations of mixed audio signals generated by dif-

ferent sources, a successful separation system extracts each of the original

source signals. We consider the case where many people are simultane-

ously talking inside an echoing room, each person is considered as a source

of an audio signal. Furthermore, if an array of microphones is installed

inside the room, each microphone picks up a combination of reproduced

audio signals (see Figure 1.2). These multiple combinations are defined as

observed mixtures of the audio signals. The reproduced audio signal is

a modified copy of the original one, as the original audio signal bounces off

walls and objects inside the room. The set of all the paths that an audio

signal takes to arrive at a microphone is known as a propagation chan-

nel. The multiple propagation channels that the multiple audio signals

broadcast through are defined as a mixing system, which is described by

a set of mixing parameters. Starting from such observed mixtures where

the sources interfere each other and the signals are distorted by the prop-

agation through the noisy environment, it is indeed a challenging task to

obtain appropriate estimation of each original audio signal.

3
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In the search for a solutions that achieves a good performance, numerous

efforts have been undertaken.

• A first trend is to simulate the human auditory system source forma-

tion process [84], assuming that the sources are instantaneously not

overlapped. Exploiting this sparseness assumption, using auditory

characteristics-based classification techniques [6, 48, 76], the observed

mixtures are classified into clusters, each one belonging to a source.

• A second trend is to separately tackle the problem in short sub-bands.

Inside each sub-band, segments of source signals are obtained by esti-

mating separation filters applying Independent Component Analysis

(ICA) [46, 59]. Later, the segments belonging to each source are

grouped using source-based or spatial-based information.

• An alternative trend is to build generative models that integrate knowl-

edge about the source production process [3]. Model-based methods

exploit all the available knowledge at once and can consider multi-

ple overlapped sources [8, 30, 31, 58]. The source signals are ob-

tained by first estimating model hyper-parameters using for example

Expectation-Maximization (EM) [27] or convex/non-convex optimiza-

tion [68], then applying a suitable filtering process. In order to improve

the performance, along with model-based methods, advanced model-

ing theories such as the spectral modeling theory [25] and the sparse

modeling theory [21] are involved in the models in [10, 41, 70, 71].

• Better performance and faster convergence could be achieved when

the separation system is fed by prior information on a particular mix-

ing process. Nowadays, a new trend has grown up to take advantage

of prior information on either source signals [50, 51, 74, 85] or propa-

gation channels [11, 31, 56, 60].

4
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1.2 Objectives of the thesis

In line with the recent trends, we propose to exploit prior information ap-

plying advanced modeling theories to improve the effectiveness of model-

based methods. The main focus of the thesis is on multichannel audio

processing for source separation, specifically stereo source separation, i.e.

where the number of microphones is two. Furthermore, we exploit the

deep study of source separation to investigate speaker diarization. Consid-

ering the multichannel audio processing for source separation and speaker

diarization, the main objectives of the thesis are:

• To explore source separation aiming at introducing a clear explanation

of its mathematical formulation and probabilistic modeling.

• To present a general review of the-state-of-the-art methods and to

figure out their limitations.

• To introduce advanced modeling theories that can be applied to im-

prove the existing methods.

• To discuss and analyse in details proposed methods for improving the

overall performance.

• To experimentally evaluate the performance of the proposed methods

in several conditions, including simulated and real environments.

• To compare the performance of the proposed methods to recently

developed methods.

• To explore speaker diarization aiming to present a short review of

the-state-of-the-art methods, and to discuss a proposed solution.
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1.3 Original contribution

In case of a noisy environment, the elements of multichannel audio precess-

ing are mostly defined as a) audio signals, b) propagation channels, and c)

background noise. For the tasks under investigation, the audio signals are

represented by their spectral descriptions, and the propagation channels

are represented by their spatial descriptions. Building on this, the original

contribution of this thesis can be divided into two main parts (see Figures

1.3 and 1.4), namely:

• Exploiting spectral information about audio signals in observed mix-

tures, for source separation, by applying the spectral modeling theory

using Nonnegative Matrix and Tensor Factorization (NMF/NTF).

• Exploiting spatial information about propagation channels used to

generate observed mixtures, for source separation and speaker diariza-

tion, by applying the sparse modeling theory.

1.3.1 Exploiting spectral information for source separation

In this part of the work, we propose to combine spectral modeling us-

ing NMF/NTF [25] with one of the recently grown up model-based audio

source separation algorithms [30, 31, 39, 70]. Observed mixtures of au-

dio signals are probabilistically described by a multivariate complex Gaus-

sian model parametrized by spectral and spatial parameters, i.e. spectral

variances describing the audio signals, and spatial covariance matrices de-

scribing the propagation channels. The parameters are estimated applying

a Generalized Expectation-Maximization (GEM) algorithm [27]. In this

sense, we propose to reduce the estimation dependency of the parameters,

and to exploit spectral descriptions of sources. Our contribution in this

direction is listed as follows:
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Figure 1.3: A description of the proposed work. Highlighted blocks refer to novel contri-
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• Blindly estimating the spectral parameters regardless of the spatial

ones. Moreover, the spatial parameters are estimated by exploiting

spectral descriptions of the estimated spectral parameters applying

spectral modeling using supervised NMF/NTF. We propose that the

descriptions are either trained on-line, or pre-trained in advance using

a training dataset.

• Jointly estimating the parameters applying spectral modeling using

supervised NMF/NTF. Spectral descriptions of the spectral parame-

ters are made available to perform the supervised factorization. We

propose that the descriptions are either extracted on-line, or made

indirectly available through a redundant library containing trained

spectral descriptions of many sources. In the latter case, a detec-

tion step is proposed in order to identify the descriptions that best

represent source signals in observed mixtures.

1.3.2 Exploiting spatial information for source separation and

speaker diarization

Motivated by the idea of adopting a collection of patterns (over-complete

dictionaries) for sparse modeling, in this part of the work, we propose to

build dictionaries composed of spatial descriptions representing propaga-

tion channels. For possible positions of a source (a finite set of spatial

positions), the spatial description of propagation channels representing a

certain position forms a subset (a column) of the dictionary. Observing

mixtures of audio signals, given the dictionary, the spectral descriptions

that best match descriptions of propagation channels used to generate the

mixtures are detected, in order to perform source separation and speaker

diarization. Our contribution in this direction is listed as follows:

• The description of a column is represented by trained parameters
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of propagation channels for source separation. Furthermore, in case

that there is mismatch between the parameters of the dictionary and

the parameters used to generate observed mixtures, an unsupervised

dictionary adaptation step using weighted Independent Component

Analysis (wICA) is proposed to reduce such mismatch [67].

• The description of a column is represented by trained hyper-parameters

of a probabilistic model describing propagation channels for speaker

diarization. Moreover, in the presence of background noise and inter-

ferences, a Laplace distribution [4] is proposed to model the accompa-

nying corruption that is generated by the noise and the interferences.

1.4 Dissemination of the thesis

The dissemination of the proposed work is listed as follows:

• M. Fakhry, P. Svaizer, and M. Omologo. Audio source separation in

reverberant environments using β-divergence based nonnegative fac-

torization. IEEE Transactions on Audio, Speech, and Language Pro-

cessing (Passed the first phase of revision with two major and one

minor revisions).

• M. Fakhry, N. Ito, S. Araki, and T. Nakatani. Modeling audio direc-

tional statistics using a probabilistic dictionary for speaker diarization

in real meetings. In Proceedings of IWAENC, 2016.

• M. Fakhry, P. Svaizer, and M. Omologo. Estimation of the spatial

information in Gaussian model based audio source separation using

weighted spectral bases. In Proceedings of EUSIPCO, 2016.

• M. Fakhry, P. Svaizer, and M. Omologo. Audio source separation us-

ing a redundant library of source spectral bases for nonnegative tensor
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factorization. In Proceedings of ICASSP, 2015.

• M. Fakhry, P. Svaizer, and M. Omologo. Reverberant audio source sep-

aration using partially pre-trained nonnegative matrix factorization.

In Proceedings of IWAENC, 2014.

• F. Nesta and M. Fakhry. Unsupervised spatial dictionary learning for

sparse underdetermined multichannel source separation. In Proceed-

ings of ICASSP, 2013.

• M. Fakhry and F. Nesta. Underdetermined source detection and sep-

aration using a normalized multichannel spatial dictionary. In Pro-

ceedings of IWAENC, 2012.

1.5 Organization of the thesis

The rest of the thesis is organised as follows. Chapter 2 provides a general

review of different mechanisms and techniques commonly applied to tackle

audio source separation. Chapter 3 introduces the mathematical formula-

tion and probabilistic modeling of the problem. Moreover, we give a brief

introduction of the statistical estimation of the model parameters using the

Generalised Expectation-Maximization (GEM) algorithm, and of spectral

and sparse modeling theories.

A first proposed method to estimate the parameters of the Gaussian

model-based audio source separation system using spectral modeling based

on NMF/NTF is presented in Chapter 4. In this method, we reduce the

estimation dependency of the parameters, while the separation system is

informed by pre-trained spectral descriptions of audio signals in observed

mixtures. Chapter 5 presents a modification of the estimation method

proposed in the previous chapter, so that the performance is improved and
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the whole separation system can work with pre-trained or on-line trained

spectral descriptions.

A method for stable estimation of the model parameters using spectral

modeling based on NMF/NTF is detailed in Chapter 6. In this method,

we also reduce the estimation dependency by jointly updating the param-

eters. The separation system can work with pre-trained or on-line trained

spectral descriptions. Furthermore, we assume that the spectral descrip-

tions are indirectly available through a redundant library, and we detect

the descriptions that best represent audio signals in observed mixtures.

Chapter 7 presents an audio source separation method based on the

sparse modeling theory. In this method, we build a spatial dictionary con-

taining trained parameters describing a finite set of propagation channels.

Applying the sparse modeling theory, we detect the parameters that match

the parameters used to generate observed mixtures of audio signals. In case

there is mismatch between the two sets of parameters, an adaptation step

is proposed to reduce such mismatch.

Chapter 8 provides a general review of speaker diarization. Moreover,

the chapter presents a speaker diarization method using a spatial dictio-

nary composing of trained parameters of probabilistic models describing

a finite set of propagation channels. Applying the sparse modeling the-

ory, we detect the parameters that match the parameters used to generate

observed mixtures of audio signals by optimizing a probabilistic model.

Furthermore, the temporal activity of each source is estimated for speaker

diarization. Finally, the conclusion together with a perspective on future

work are drawn in Chapter 9.
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Chapter 2

Review

Multichannel audio source separation deals with the output of a Multiple-

Input Multiple-Output (MIMO) mixing system. Based on the general

mechanism adopted to solve the problem, approximated versions of the

original source signals are directly obtained, or a separation system is esti-

mated, then an optimization problem is adapted to extract approximated

versions of the original source signals. According to the available prior

information exploited to perform source separation, the-state-of-the-art is

classified into three main categories of methods, namely:

• Blind Source Separation (BSS) where the problem is tackled with-

out any prior information both on audio signals and on propagation

channels.

• Source-based informed separation where prior information about au-

dio signals is assumed to be available in different forms.

• Mixing system-based informed separation where the separation system

is fed by information about propagation channels.

Several approaches tackling the problem have appeared in the literature

during the last two decades [23, 46, 59]. They essentially differ in the

pre-assumptions about sources:

13
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• Some of them assume that the sources are statistically independent

without temporal structure. Higher order statistics, such as mutual

information, entropy, and non-Gaussianity, are mainly used to solve

the problem assuming that only one source has a normal distribution.

• Other algorithms suggest less restrictive conditions than indepen-

dence. They assume that each source has non-vanishing temporal cor-

relation. In this case, second order statistics such as cross-correlation

are sufficient to extract the sources if they have non-identical power

spectrum shapes.

• Non-stationarity of the sources is exploited as a pre-assumption, where

the source variances do not vary in time. Accordingly, second order

statistics are able to estimate the sources if they are with non-identical

non-stationarity properties.

• Various diversities of the sources, typically, time, frequency, and time-

frequency are used as pre-assumptions. In this case, the sources are

interpreted as localized, sparse or structured signals. Source signals

are then obtained by masking or filtering the observed mixtures in the

diversity domain.

On the other side, the configuration of the mixing process can also be con-

strained by assuming a specific geometrical setup identifying the spatial

positions of sources and microphones, i.e. the distance between the micro-

phones, the distance between the microphones and the sources, the angular

distance between the sources, etc.

In this multichannel multiple-sources scenario, the spatial diversity be-

tween multiple signal observations at multiple microphones is generated

as a result of multichannel propagation and different source spatial po-

sitions. The spatial diversity, combined with one or more of the above

14
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source signal pre-assumptions, can be exploited to perform multichannel

audio processing for source separation.

2.1 Blind source separation

Time-frequency representations of observed mixtures of audio signals are

obtained through the discrete Short Time Fourier Transform (STFT),

which is also known as the most common spectral-temporal representa-

tion of a signal. The discrete STFT represents a signal as a matrix of

complex components, i.e. time-frequency points. The index of each point

is defined by two variables, i.e. a frequency bin and a time frame. It has

been proven that the time-frequency representation is the most suitable

domain to process audio signals for the tasks under investigation.

Figure 2.1 illustrates the general mechanisms used to extract the con-

tribution of each original source signal from the observed mixtures, for

the case that two observed mixtures are generated by mixing two origi-

nal source signals. Time-frequency representations of the original source

signals can be estimated by clustering time-frequency representations of

the observed mixtures point-by-point applying binary masking [90] or soft

masking [44, 47, 77]. Full-band of frequency bins of the observed mixtures

can also be binary clustered as in [48, 76]. Spectral multichannel Wiener fil-

tering is applied to extract the contribution of each original source signal by

estimating time-frequency multichannel filter gains [30, 31, 70, 71]. Time-

invariant multichannel spectral filters can also be estimated inside each

frequency bin over all the time frames of the observed mixtures [46, 59].

Without prior information on either the source signals or the propaga-

tion environments, Blind Source Separation (BSS) methods broadly use

prior information on the source production and/or propagation processes.

The BSS methods can be classified into three main groups, based on the

15
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Figure 2.1: Different mechanisms to extract each signal from mixtures of signals.

general methodology and technique used to retrieve the source signals, i.e.

clustering-based separation, Independent Component Analysis (ICA-based

separation), and model-based separation.

2.1.1 Clustering-based separation

A first trend to source separation is to simulate the human auditory system

source formation process [84]. In the time-frequency domain, the observed

mixtures are represented as the product of time-frequency representations

of audio signals and complex-valued mixing vectors. Assuming that each

time-frequency point of the mixture signals is dominated by one source,

the clustering is performed point-by-point. The mixture signals are clas-

sified into small clusters using auditory characteristics-based classification
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techniques. These auditory characteristics state for example that the time-

frequency points are clustered together when they have harmonic frequen-

cies, smooth spectral envelopes, correlated amplitude and frequency mod-

ulations, or similar inter-channel time and intensity differences. In order

to obtain a single cluster per source, the resulting clusters are processed

by exploiting source-based prior knowledge such as the timber of a known

speaker.

To preserve the continuity of source spectral structures and to avoid

musical noise, the clustering is performed at full-band of frequency bins,

assuming that one source dominates at each time frame. Most of the exist-

ing techniques rely on estimating the Time-Difference-Of-Arrival (TDOA)

[6, 76] of each source at multiple microphones, or Interaural Time and

Level Differences (ITD/ILD) [48] for a two-microphone stereo case. Such

techniques work well in propagation environments with low reverberation.

However, in propagation environments with high reverberation, the above

clustering techniques are suggested as a first stage of two stages-based

separation. In the second stage, source activities that are represented by

amplitude envelopes of the sources [87] or clustering posterior probabilities

[44] are used to regroup the time-frequency points belonging to the same

source. A weighted Minimum Mean Square Error (MMSE) [32] solution

is proposed in [78]. The known MMSE estimator is weighted by source

activity posterior probability that is estimated using extracted spatial and

spectral source cues. Furthermore, the time-frequency points are clustered

in the direction that optimizes the weighted MMSE, and then regrouped

as in [44].

Since these clustering-based source separation methods assume that one

source is approximately dominating at each time-frequency point or at each

time frame, they fail when the source signals do not fulfill the assumption

of time-frequency sparseness.

17
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2.1.2 ICA-based separation

Assuming that more than one source is active at each frequency bin over

all the time frames, the problem is separately solved at each bin using

Independent Component Analysis (ICA) [46, 59]. ICA looks for estimat-

ing linear spectral mixing/separation filters that minimize the statistical

dependence between their output signals. Corresponding to the repre-

sentation in the clustering-based audio source separation, the observed

mixtures are represented as the product of time-frequency representations

of audio signal and complex-valued mixing vectors. With a less restric-

tive assumption than independence in ICA, Principal Component Analysis

(PCA) tackles the source separation problem assuming that the signals are

statistically uncorrelated [46, 59]. Source separation based on PCA is per-

formed by estimating the complex mixing vectors as the principal vectors of

covariance matrices of the observed mixtures, applying the singular value

decomposition (SVD). Although PCA can approximately estimate uncor-

related signals, it is not enough to separate the signals, especially when the

probability distributions of the sources are not Gaussian. In some source

separation methods, PCA is used as a pre-processing step to ICA, acting

as a whitening step.

On the other side, as a result of solving the problem at each frequency

bin independently, a permutation ambiguity is generated between frequency

bins of the separated source signals. The permutation should be aligned

so that a separated signal contains frequency bins of the same source. The

permutation problem is solved exploiting spatial information of sources in

[77] and spatial-temporal information in [67]. Source spectral information

is also exploited to avoid the permutation ambiguity in [80].

Given estimation of the mixing vectors, in the under-determined mixing

model (i.e. when the number of observed mixtures is less than the number
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of original source signals), exploiting the sparsity of audio signals [16, 55],

the source signals are extracted using, for example, l0-norm minimization

[80] or soft masking [17, 44, 77].

Since ICA-based source separation algorithms rely on higher order statis-

tics (independence), which require much amount of data to be processed,

they fail to separate short-length signals.

Regrouping in clustering-based algorithms, and permutation alignment

in ICA-algorithms rely on source activity estimation, hence this group of

source separation methods has a problem of convergence when they are

used to separate synchronized sources such as instrumental components in

mixed music signals.

2.1.3 Model-based separation

An alternative trend to audio source separation is to build generative mod-

els that integrate knowledge about the source production process. The

Bayesian theory [3] provides an appropriate framework to exploit such

models. The probabilistic distribution of observed mixtures of audio sig-

nals is specified by a set of hidden variables, including audio signals,

mixing parameters, and conditional distributions between these vari-

ables. Given mixtures of source signals, the model variables are estimated

by standard algorithms such as Expectation-Maximization (EM) [27] or

convex/non-convex optimization [68]. It seems very likely that the knowl-

edge about the sources used by probabilistic model-based source separation

methods turns out to be similar to that used by human auditory-based

source separation methods. However, model-based separation methods ex-

ploit all the available knowledge at once and can consider multiple active

sources at each time-frequency point.

Some of model-based algorithms separate the source signals using spec-

tral filters, exploiting simplified spatial models for the propagation channels
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[8, 30, 58]. A probabilistic model of Interaural Time and Level Differences

(ITD/ILD) related to each source is proposed in [62], later an EM algo-

rithm is applied to assign time-frequency points of observed mixtures to

each source. A mapping between source positions and the Interaural Level

Difference (ILD) is proposed in [26]. Furthermore, a Bayesian inference

using variational EM is applied to estimate the source signals.

Recently, a Gaussian framework [30, 39, 70] has grown up as model-

based audio source separation. Audio signals are locally modeled by mul-

tivariate complex Gaussian distributions. The covariance matrix of each

probabilistic distribution is parametrized by spatial and spectral parame-

ters. Assuming that the audio signals are statistically independent, the

likelihood function of the observed mixtures is a complex multivariate

Gaussian distribution. The parameters are estimated by maximizing the

likelihood function applying an EM algorithm. Given estimation of the

model parameters, the source signals are obtained by means of multichan-

nel Wiener filtering. Other algorithms exploit spectral and temporal re-

dundancies [70, 71] to estimate the parameters of the Gaussian model by

representing audio signals using Nonnegative Matrix Factorization (NMF)

[25, 53]. Furthermore, a combination of spatial modeling and NMF-based

spectral modeling is proposed in [9] to estimate the model parameters.

Model-based source separation systems have achieved good performance,

however, most of the systems require prior knowledge about the source

production process and/or the source propagation process and they fail to

separate audio signals mixed in difficult conditions.

Although BSS techniques are able to perform the separation task with-

out specific prior information on either the source signals or the mixing

environments, their robustness is still limited by low convergence, by high

estimation variances, and by signal conditions not well fitting the general

separation hypotheses.
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For a given problem, prior information on the audio signals and/or on

the mixing environments can be helpful to perform source separation with

improved performance. Taking advantage of prior knowledge has recently

raised as a new trend to increase the performance of BSS.

2.2 Source-based informed separation

Nesting prior knowledge about original source signals of a particular prob-

lem as side information promises to enhance the quality and accelerate the

separation process [51]. Different prior information about the temporal

activities of original sources in observed mixtures have been used to help

the separation system to achieve its task in [42, 57, 74]. Recently, spec-

tral modeling based on Nonnegative Matrix Factorization (NMF) [25] has

grown up to solve the problem by decomposing the observed mixtures in

a supervised scenario, i.e. the separation system is informed by spectral

descriptions of original source signals.

2.2.1 NMF-based separation

Spectral modeling based on Nonnegative Matrix Factorization (NMF) rep-

resents the nonnegative magnitude or power spectrum of a signal as the

product of two nonnegative matrices, i.e. a spectral basis matrix and an

activation coefficient matrix [25, 53]. In an informed scenario, the sep-

aration system is fed by trained spectral basis matrices representing source

signals in observed mixtures. Given the trained matrices and observed mix-

tures, the initial task of the separation system is to estimate appropriate

activation coefficient matrices of the sources. Moreover, source separation

is performed by first reconstructing either the magnitude or power spectra

of all the source signals in the observed mixtures, later building clustering

masks or applying Wiener filtering.
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Spectral modeling based on NMF was applied for speech enhancement

purposes in [79], where a universal dictionary of spectral bases is built in

advance, using a training dataset of multiple speech signals. The selec-

tion of optimal spectral bases and the estimation of activation coefficient

matrices, best representing source signals in observed mixtures, are done

using block sparsity constraints on top of the NMF objective. For the same

purpose of speech enhancement, a set of local dictionaries of spectral bases

best modeling a source signal, e.g., speech and noise, is proposed in [50].

The activation coefficient matrices are obtained applying block regularized

NMF so that only a small number of blocks are active at a time-instant.

To take advantage of more information about the signal structure, e.g.,

speech and noise, in [86] the authors propose to train prior models for ac-

tivation coefficient matrices of sources during the training of spectral basis

matrices. The speech signal is extracted in the presence of nonstationary

noise by applying a regularized NMF algorithm using the trained basis

matrices and exploiting the trained priors. In [85] the authors propose to

train discriminative spectral basis matrices to be used for the estimation of

activation coefficient matrices in the testing phase. Furthermore, the esti-

mated coefficient matrices are used to optimize the trained discriminative

spectral basis matrices.

2.3 Mixing system-based informed separation

To solve the source separation problem by exploiting prior information, an

alternative way is to have knowledge about the mixing parameters. One

trend is to adopt the multichannel sparse modeling theory. Sparse model-

ing assumes that by using a pre-specified redundant dictionary including

a proper definition of a set of basis called atoms, a signal can be uniquely

represented as a sparse vector in term of these atoms [21]. In the multi-
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channel situation, i.e. when the source signals are recorded by an array of

microphones, the atoms of the dictionary are defined through descriptions

of possible source mixing parameters. Then, the problem of estimating

the mixing system is relaxed to be a problem of detecting the system best

matching a real system that generated the observed mixtures.

In moderately reverberant environments, this description can be ap-

proximated by modeling the atoms as the phase differences of an anechoic

model [58]. Then a distance metric is used to match the observed mix-

tures and the modeled atoms. Moreover, a blind beamformer is applied to

estimate the original source signals.

In more echoic environments, parameters describing propagation chan-

nels can be trained from the data off-line [60] to build a set of cancellation

filters, when only one source at a time is active. Then Independent Com-

ponent Analysis (ICA) is applied to detect the appropriate cancellation

filter and to extract the original source signals. In [10, 11], a model-based

spatial dictionary of propagation channels between the microphones and a

set of points is built by estimating the parameters of the model when only

one source at a time instant is active. Then a sparse modeling algorithm

is applied to estimate the original source signals.

An alternative way to the spatial dictionary is to train probabilistic

models for fixed source spatial positions. By adopting spatial priors, the

authors in [31] propose to train the hyper-parameters of inverse-Wishart

distributions for fixed source positions. Given the trained priors, the pa-

rameters of the Gaussian model are estimated in sense of Maximum-A-

Posterior (MAP) using a Generalized Expectation-Maximization (GEM)

algorithm. The source signals are then obtained by means of multichannel

Wiener filtering.
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Chapter 3

Formulation

The mixing and filtering process of the audio source signals can be repre-

sented by different possible mathematical or physical models:

• The instantaneous model is the simplest one to describe the pro-

cess. The mixing system contains only constant attenuation factors

over time, since propagation effects are not taken into account.

• To model the propagation delays of audio signals from their positions

to the locations of microphones, an anechoic model is applied. The

elements of the mixing system are fixed attenuation and propagation

time delay factors.

• To simulate the realistic situations in a closed room, a reverberated

echoic model is necessary. The mixing system is a set of filters

fully representing the propagation channels from the positions of audio

sources to the locations of microphones.

The third mixing model is the most challenging one and due to the filter-

ing and mixing processes applied to the audio source signals, it is called a

convolutive mixing model. On the other side, if the number of audio

sources is equal to the number of microphones, the mixing process is re-

ferred to as determined mixing model. However, over-determined and
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Figure 3.1: A synthetic model of a propagation channel (RIR) sampled at 16 kHz.

under-determined models have also been suggested to identify the cases

when the number of audio sources is larger or smaller, than the number of

microphones, respectively.

3.1 RIR model

The propagation channel from the position of an audio source to the loca-

tion of a microphone is characterized by its corresponding Room Impulse

Response (RIR) which provides a model indicating the effects of all possible

propagation paths (see Figure 3.1). Each sample of the model represents

a corresponding attenuation and phase shift. The attenuation factor de-

fines the amount of signal amplitude decay, and the phase factor expresses

the amount of time delay due to the propagation. The model of the RIR

consists of a direct path, early reflections, and a reverberation tail. When

an audio signal is produced in a real environment, the direct path conveys

the signal directly to the microphone without interfering with any objects.

The early reflections describe the reflections from the side walls, the ceil-

ing, and the floor within a time period approximately 50 − 100 ms after

the direct path. The reverberation tail characterizes the high density re-

flections occurring after the first 50− 100 ms and it is often defined by an

exponentially decaying envelope curve.
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3.2 Mathematical formulation

A challenging situation arises when the number of microphones is less than

the number of source signals (under-determined mixing model), and the

surrounding mixing environment is reverberant (convolutive mixing model).

To mathematically formulate this situation, we assume that N sources are

observed by an array of M microphones, where M < N . The vector of

observed mixtures x(t) received at the microphones at the time-instant t

is represented as

x(t) =
N∑
n=1

cn(t), (3.1)

where cn(t) is a vector of source spatial images of the n-th source signal

sn(t). The m-th component of the vector cn(t) is represented as a function

of the propagation channel hnm(t) from the n-th source position to the

m-th microphone location as follows

cnm(t) =

NL∑
τ=0

hnm(τ)sn(t− τ), m = 1, ..,M (3.2)

where NL is the length of hnm(t). Using the discrete Short Time Fourier

Transform (STFT), each point at the frequency bin ω and the time frame

l, out of the total number of frequency bins Ω and time frames L, of the

observed mixtures is represented by a M × 1 vector of complex coefficients

x(ω, l). For the linear property of the STFT, the vector can be represented

as the combination of N source spatial images cn(ω, l) as follows

x(ω, l) =
N∑
n=1

cn(ω, l). (3.3)

At the microphones, cn(ω, l) is expressed as a function of the source signal

sn(ω, l) in the time-frequency domain and the vector of time-invariant fre-

quency responses of M propagation channels hn(ω) at the frequency ω as
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Figure 3.2: A speech signal waveform in the time domain sampled at 16 kHz.

cn(ω, l) = hn(ω)sn(ω, l). (3.4)

Observing the signal mixtures x(ω, l), source separation aims at finding

corresponding estimate s̃n(ω, l) of the original signal sn(ω, l). Then the in-

verse short-time Fourier transform (ISTFT) is applied in order to represent

back the estimated source signal s̃n(t) in the time domain.

3.3 Example of mixing process

As an example of the multichannel mixing process in a reverberant envi-

ronment, we consider the case where two speakers at two different spatial

positions are simultaneously talking in a closed room. Figure 3.2 shows

an example of a speech signal waveform in the time domain sampled at

16 kHz. Figures 3.3 and 3.4 show the power spectrograms of the speech

signal and its reverberated version as received at a distance microphone,

i.e. the square values of sn(ω, l) and cnm(ω, l). Mixtures of two speech

signals uttered by the two speakers are picked up by two spatially sepa-

rated microphones which are placed far from the speaker positions. Figure

3.5 shows the power spectrograms of the two speech signals, and the power

spectrograms of their two mixture signals received at the two microphones.
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Figure 3.3: Power spectrogram of the speech signal represented by Figure 3.2.
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Figure 3.4: Power spectrogram of the speech signal represented by Figure 3.2 as received

at a distant microphone in a reverberant environment.

3.4 Local Gaussian modeling

Over all the time-frequency points, the vectors of source spatial images

cn(ω, l) are assumed to be independent, and probabilistically modeled by

a zero-mean multivariate complex Gaussian distribution with a M × M

covariance matrix Σcn(ω, l)

cn(ω, l) ∼ N (0,Σcn(ω, l)), (3.5)

where 0 is a M × 1 vector of zeros. Under the assumption that the source

images are independent, the observed mixtures x(ω, l) are also modeled by
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Figure 3.5: Power spectrograms of two speech signals (first row) and their generated mix-

tures (second row) at two spatially separated microphones in a reverberant environment.

a zero-mean multivariate complex Gaussian distribution with a covariance

matrix obtained as

Σx(ω, l) =
N∑
n=1

Σcn(ω, l). (3.6)

In this case, the multivariate complex Gaussian likelihood function of the

observed mixtures x(ω, l) is parametrised by the set of the covariance ma-

trices of source spatial images, i.e. θ = {Σc1(ω, l), ...,ΣcN (ω, l)}ω,l. Over

all the time-frequency points, Maximum-Likelihood (ML) estimation of θ is

shown to result from the minimization of the minus log-likelihood function

as [70]

ξ(θ) =
∑
ω,l

tr(Σ−1
x (ω, l)R̃x(ω, l)) + log |πΣx(ω, l)|, (3.7)

where |.| denotes the determinant of a square matrix, tr(.) indicates the

trace of a matrix, and R̃x(ω, l) is an empirical covariance matrix of the

30



CHAPTER 3. FORMULATION 3.4. LOCAL GAUSSIAN MODELING

observed mixtures that can be defined by a rank-1 model in a linear form

as [71]

R̃x(ω, l) = x(ω, l)xH(ω, l), (3.8)

where (.)H indicates the conjugate transposition. In a quadratic form [70,

71], the empirical covariance matrix is obtained by local averaging over the

neighborhood of each time-frequency point as

R̃x(ω, l) =

∑
ω̃,l̃ γ(ω̃ − ω, l̃ − l)x(ω̃, l̃)xH(ω̃, l̃)∑

ω̃,l̃ γ(ω̃ − ω, l̃ − l)
, (3.9)

where γ is a bi-dimensional window describing the shape of the neighbor-

hood. As it is clear, the quadratic form to compute the empirical covariance

matrix R̃x(ω, l) includes additional information about the local correlation

between propagation channels which often increases the accuracy of esti-

mation.

Source separation is performed by first estimating the set θ in the sense

of ML. The source spatial images are then obtained in the sense of the

Minimum Mean Square Error (MMSE) by applying multichannel Wiener

filtering as follows

c̃n(ω, l) = Gn(ω, l)x(ω, l). (3.10)

The smoothing filter gain Gn(ω, l) is computed as

Gn(ω, l) = Σcn(ω, l)Σ
−1
x (ω, l). (3.11)

3.4.1 Smooth Wiener filtering

The conventional multichannel Wiener filter expressed in (3.11) minimizes

the mean-square error between the filter input and output signals. Ap-

plying extra constraints, such as smoothness or sparseness, on the mini-

mization problem can improve the results. Multichannel spatial smoothing

techniques have been proposed in order to widen the spatial response of
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the filter, so as to reduce artifacts assumed to be spatially close to the

target source direction. In this work, spatial smoothing [28] inspired by a

weighted likelihood model is used in which the filter is expressed as

Gs
n(ω, l) = Σcn(ω, l)[(1− µ)Σx(ω, l) + µΣcn(ω, l)]

−1. (3.12)

The smoothness of the resulting filter Gs
n(ω, l) increases with µ, so that

it is equal to the conventional Wiener filter Gn(ω, l) for µ = 0 and to the

identity filter for µ = 1.

3.4.2 Spatial covariance decomposition

In the spatial covariance decomposition, the covariance matrix of the n-th

source spatial images Σcn(ω, l) is modeled as the product of a scalar spec-

tral variance vn(ω, l) encoding the power spectrum of the n-th source signal

at the frequency bin ω and time frame l, and a M ×M time-invariant spa-

tial covariance matrix Rn(ω) encoding the spatial information associated

with the propagation of the n-th source signal at each frequency ω

Σcn(ω, l) = vn(ω, l)Rn(ω). (3.13)

Following such decomposition, the set of the model parameters to estimate

is updated to be

θ = {{v1(ω, l), ..., vN(ω, l)}l,R1(ω), ...,RN(ω)}ω. (3.14)

1. Spatial parameters: The covariance matrix models the spatial char-

acteristics, such as intensity and phase differences between propaga-

tion channels. The matrix can be represented by a rank-1 model as

Rn(ω) = hn(ω)hHn (ω), but it can be also described by an uncon-

strained model, which is considered in this work. As the focus of the

work is on spectral modeling, these aspects are not further detailed.
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2. Spectral parameters: The power spectrum of the source signal sn(ω, l)

denoted as Vn = [{vn(ω, l)}ω,l]Ω×L can be represented as the product

of two nonnegative matrices using NMF [25, 53]. Accordingly, the

nonnegative source variance vn(ω, l) can be represented as the multi-

plication of two vectors, each one with nonnegative entries

vn(ω, l) = uTn (ω)wn(l), (3.15)

where un(ω) is a spectral basis column vector ofK latent coefficients of

a spectral basis matrix Un = [{uTn (ω)}ω]Ω×K , and wn(l) is a column

vector of K latent coefficients of a time-varying coefficient matrix

Wn = [{wn(l)}l]K×L.

3.4.3 Estimation of the model parameters

Since the observed data X = {x(ω, l)}ω,l is fully expressed by the unob-

served data C = {cn(ω, l)}n,ω,l as it is mathematically modeled in (3.3), the

set of complete data is defined as {X,C}. The natural statistics are defined

as the covariance matrix of the conditional probability of the source spatial

images cn(ω, l) [30]. The set θ is estimated by minimizing the criterion in

(3.7) using a Generalized Expectation Maximization (GEM) algorithm [27]

that consists in alternating the following two steps:

1. E step: given the observed mixtures x(ω, l) and the current estimation

of the set θ, the conditional expectation of the natural statistics is

computed.

2. M step: given the conditional expectation of the natural statistics,

the set θ is updated so as to increase the conditional expectation of

the likelihood of the complete data.

Applying the GEM, the two estimation steps are detailed as follows:
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1. E step: given the current estimation of the source spatial images

c̃n(ω, l) and the set of model parameters θ, the natural statistics is

computed, for example, as [30]

R̃cn(ω, l) = c̃n(ω, l)c̃
H
n (ω, l) + (I−Gn(ω, l))Σcn(ω, l), (3.16)

where I is an M ×M identity matrix and c̃n(ω, l)c̃
H
n (ω, l) is a rank-1

empirical covariance matrix of c̃n(ω, l) in the linear form.

2. M step: given R̃cn(ω, l), the set θn = {{vn(ω, l)}l,Rn(ω)}ω belonging

to the n-th source, is updated according to the minimization of

θ̃n = arg min
θn

∑
ω,l

tr(Σ−1
cn

(ω, l)R̃cn(ω, l)) + log |πΣcn(ω, l)|, (3.17)

3.5 Spectral modeling using NMF

The source variance vn(ω, l) can be modeled using spectral modeling based

on Nonnegative Matrix Factorization (NMF) as the product of two non-

negative vectors as in (3.15). In other words, the source power spectrum

Vn = [{vn(ω, l)}ω,l]Ω×L is decomposed into two nonnegative matrices: a

spectral basis matrix Un containing constitutive parts of the power spec-

trum, and an activation coefficient matrix wn(l) containing time-varying

weights. Figure 3.6 shows an example of decomposing the source power

spectrum using NMF. An extension to NMF has been considered by arrang-

ing multiple signal observations in a tensor form, where the observations

form slices of 3-D tensor [25]. In Nonnegative Tensor Factorization (NTF),

the tensor is decomposed into the multiplication of matrices and tensors.

The redundancy among the original tensor slices is described by the ma-

trices, while the diversity is represented by the decomposed tensors. The

factorization is achieved by minimizing a cost function, which is an error

measurement function.
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Divergences are widely used as cost functions to measure the similarity

between source signals. For instance, the Kullback-Leibler (KL) divergence

[53] is used to compare two probability distributions. The Itakura-Saito

(IS) divergence [38] is used as a measure of the perceptual differences be-

tween spectra. The generalized β-divergence [13], used as a cost function

for NMF in [40, 52], encompasses the KL and IS divergences. The β-

divergence dβ(a/bc) between the elements a and its element decomposition

b and c is expressed as [40]

dβ(a/bc) =


a
bc − log( abc)− 1, β = 0

a log( abc) + bc− a, β = 1

aβ+(β−1)(bc)β−βa(bc)β−1

β(β−1) , otherwise

(3.18)

For β = 1, dβ(a/bc) is the Kullback-Leibler (KL) divergence [53], while it

is the Itakura-Saito (IS) divergence for β = 0 [38]. Applying the commonly

used multiplicative update (MU) rules, the factorization is accomplished

by minimizing the β-divergence. Appendix A presents the MU rule to

minimize the β-divergence for matrix and tensor factorization.

3.6 Sparse modeling

Sparse representations of signals have received a lot of attention to tackle

the problem of audio source detection and separation. The solution of

this problem basically exploits a prior assumption that the speech signals

are sparse in their nature in a known domain such as the time-frequency

domain. Indeed, it is a realistic assumption that, in a given basis, the audio

sources have an energy compaction property and most of their coefficient

values are very small. Moreover, a clear outcome of sparsity is the low

probability for several sources to be simultaneously active at every time-

frequency point.
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Figure 3.6: Nonnegative matrix factorization (NMF): the first figure on the left shows

the power spectrogram of a speech signal, the second one shows samples of spectral basis

vectors un(ω) at different frequency bins, and the third one shows the complete activation

coefficient matrix Wn.

Sparse modeling assumes an ability to describe a signal by a small num-

ber of values using a pre-defined dictionary. The basic idea of sparse mod-

eling is that traditional orthonormal bases are replaced by atoms (columns)

in an over-complete dictionary. Given the dictionary, a signal can be rep-

resented as a linear combination of few atoms [21]. This modeling requires

a proper definition of the atoms of the dictionary. As such, the choice of

the dictionary is important for the success of this modeling. A very simple

measure of sparsity of a vector a involves the number of nonzero entries;

the vector is sparse if there are few non-zeros among its entries. It is more

convenient to introduce the l0 norm as follows

||a||0 = #{i : ai 6= 0}. (3.19)

Given a vector of observations y and a redundant dictionary D = [d1 d2 ...]

(see Figure 3.7), the sparsity optimization problem is explicitly formulated
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Figure 3.7: Sparse modeling.

as

min
a
||a||0 subject to y = Da. (3.20)

This optimization is a NP-hard problem. However, it is relatively easy to

approximate using various techniques, including matching pursuit (MP)

[61], orthogonal matching pursuit (OMP) [75] and basis pursuit (BP) [29].

By matching the o-th atom do of the dictionary D and the observations

y, an MP-based algorithm iteratively selects the active atom omatch from

the produced dictionary and removes its effect from the observations, such

that the measurement of the error is decreased at each iteration, till a

certain level of sparsity G. Indicating with zi the residual error after the

i-th iteration, a simple MP algorithm can be described as

————————————————

z0 = y

For i = 1; i = i+1; till (i == G),

omatch = arg maxo|(do)H zi−1|
zi = zi−1 − (domatch)H zi−1d

omatch

Return

————————————————-

37



3.7. EVALUATION METRICS CHAPTER 3. FORMULATION

Many algorithms have followed a trend to exploit the sparse nature of

the audio source signals [15]. In the multichannel scenario, i.e. when audio

signals are recorded by an array of microphones, efficient sparse modeling

can be obtained through a model-based definition of the mixing parame-

ters. In mixing environments with low reverberation, anechoic models are

often used to approximate the parameters of the mixing environments [58].

In more reverberant environments, a dictionary of the mixing parameters

can be trained from the data itself [60].

3.7 Evaluation metrics

The separation performance is evaluated via signal-to-distortion ratio (SDR),

source image-to-spatial distortion ratio (ISR), signal-to-interference ratio

(SIR) and source-to-artifact ratio (SAR) expressed in decibels (dBs) [81],

which respectively account for overall distortion, target distortion, resid-

ual crosstalk, and musical noise. The n-th estimated source spatial image

component c̃nm(t) at the m-th microphone is represented in terms of the

true spatial image component cnm(t), as follows

c̃nm(t) = cnm(t) + espatnm (t) + einterfnm (t) + eartifnm (t), (3.21)

where espatnm (t), einterfnm (t) and eartifnm (t) are distinct error components respec-

tively representing spatial distortion, interference and artifacts. The above

performance measurements of each source are mathematically defined as

ISRn = 10 log

∑
m,t cnm(t)2∑
m,t e

spat
nm (t)2

(3.22)

SIRn = 10 log

∑
m,t(cnm(t) + espatnm (t))2∑

m,t e
interf
nm (t)2

(3.23)
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SARn = 10 log

∑
m,t(cnm(t) + espatnm (t) + einterfnm (t))2∑

m,t e
artif
nm (t)2

(3.24)

SDRn = 10 log

∑
m,t cnm(t)2∑

m,t(e
spat
nm (t) + einterfnm (t) + eartifnm (t))2

(3.25)
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FIRST PART

Exploiting spectral information about audio signals in observed

mixtures, for source separation, by applying the spectral

modeling theory using Nonnegative Matrix and Tensor

Factorization (NMF/NTF).





Chapter 4

Nonnegative Decomposition I

Trained spectral bases

As reported in the previous chapter, the mixing process is probabilisti-

cally modeled by a multivariate complex Gaussian likelihood function.

The function is described by spectral and spatial parameters, i.e. spec-

tral source variances (vn(ω, l)) and spatial covariance matrices (Rn(ω)).

Source separation is performed by estimating the parameters, then ap-

plying multichannel spectral Wiener filtering. The parameters are esti-

mated in sense of Maximum-Likelihood (ML) by applying a Generalized

Expectation-Maximization (GEM) algorithm. The GEM algorithm con-

sists in alternating two steps, i.e. an Expectation step and a Maximization

step. In the Expectation step, the natural statistics {R̃cn(ω, l)}ω,l,n are

computed. In the Maximization step, the set θ = {{vn(ω, l)}l,Rn(ω)}n,ω
is updated. In this chapter, we propose to (see Figure 4.1):

• Modify the computation method of R̃cn(ω, l), in the Expectation step,

in order to exploit the redundancy between multiple observations.

• Reduce the estimation dependency between the model parameters

vn(ω, l) and Rn(ω), in the Maximization step, in order to reduce the

accumulated estimation error.
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• Exploit pre-trained spectral basis vectors un(ω), in the Maximization

step, in order to propose accurate estimation of the parameters.

Mixtures

Natural Statistics
E­step

Supervised Factorization of
Estimated Source Variances

and Absolute Values of
Natural Statistics 

Estimation of Source Variances
M­step

Trained Spectral 
Basis Vectors

Estimation of Spatial
 Covariance Matrices

M­step

Absolute Phase

Multichannel Wiener Filtering

Separated Signals

Estimated Model Parameters

Figure 4.1: A flowchart of the proposed method. Highlighted blocks refer to novel contri-

butions.

4.1 Method

In the Expectation step of the GEM to estimate the set θ in Section 3.4.3,

the computation of R̃cn(ω, l) in (3.16) can be modified in order to include

more information about the coherence between propagation channels, and

the temporal-spectral redundancy between time-frequency points of the
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obtained source spatial images c̃n(ω, l). Using this empirical computation

often increases the accuracy of estimation. The matrix computation in

(3.16) can then be modified to be represented as follows

R̃cn(ω, l) = R̂cn(ω, l) + (I−Gn(ω, l))Σcn(ω, l), (4.1)

where R̂cn(ω, l) is an empirical covariance matrix of the estimated source

spatial images c̃n(ω, l), and it can be obtained in a quadratic form as in

(3.9) as follows

R̂cn(ω, l) =

∑
ω̃,l̃ γ(ω̃ − ω, l̃ − l)c̃n(ω̃, l̃)c̃Hn (ω̃, l̃)∑

ω̃,l̃ γ(ω̃ − ω, l̃ − l)
. (4.2)

In the Maximization step of the GEM, estimating the set of parameters

θ = {{vn(ω, l)}l,Rn(ω)}n,ω of the model in Section 3.4 is performed, as for

example in [31], by updating one parameter, then the second parameter is

updated using the first estimated one. The main limitation of this method

is that the estimation error is accumulated from the first parameter to the

second, and from one iteration to the next. We propose to reduce the

estimation dependency of the parameters, so that the estimation in the

current iteration does not depend on the previous one. This is done, here,

by reducing the dependency between the parameters by estimating the

source variance vn(ω, l) regardless of the spatial covariance matrix Rn(ω).

Assuming that spectral basis vectors un(ω) trained using variances of

source signals in observed mixtures are available, in this chapter, we pro-

pose methods to modify and refine the estimation of the parameters θ.

One way to involve the trained basis vectors un(ω) in the optimization

function requires, in practice, to slightly modify the minimization func-

tion in (3.17). To do this, the problem is broken down into the sum of

sub-problems so that spectral modeling using Nonnegative Matrix/Tensor

Factorization (NMF/NTF) is employed to represent the source variance

vn(ω, l) and the matrix of multiple observations R̃cn(ω, l) [35, 36].
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Up to a constant, the minimization function in (3.17) can be expressed

in terms of the parameters of the spatial covariance decomposition in (3.13)

as follows

ξ(θ) =
∑
ω,l,n

tr(v−1
n (ω, l)R−1

n (ω)R̃cn(ω, l)). (4.3)

We recall the set of model parameters as defined in (3.14)

θ = {{vn(ω, l)}l,Rn(ω)}ω,n. (4.4)

The set θ is estimated so that the function in (4.3) is minimized with

respect to each parameter. As proposed in this chapter, the source spec-

tral variance vn(ω, l) is blindly estimated observing the matrix R̃cn(ω, l),

whereas the spatial covariance matrix Rn(ω) is estimated in an informed

scenario, given the estimation of spectral variances of sources vn(ω, l) and

trained spectral basis vectors of sources un(ω) .

4.1.1 Training of source-based prior information

In spectral modeling using NMF, as recently proposed, trained source spec-

tral basis matrices can be identified as source-based prior information. For

clean training audio signals of the n-th source in the observed mixtures

x(ω, l), the nonnegative power spectra of the training signals are concate-

nated in a matrix Vt
n. Applying NMF, a spectral basis matrix Un is

extracted by decomposing Vt
n using the Multiplicative Update (MU) rules

in order to minimize the Kullback-Leibler (KL) divergence in (3.18) [25].

The matrix Un is obtained as follows (appendix A)

Un ← Un ◦
[Vt

n ◦ (UnW
t
n)
−1](Wt

n)
T

1(Wt
n)
T

, (4.5)

where the division is point-wise, ◦ indicates point-wise multiplication, and

1 is a matrix of ones. The matrix Un contains spectral basis vectors un(ω),
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each one of length K, i.e. Un = [{uTn (ω)}ω]Ω×K . Wt
n is a time-varying

activation coefficient matrix obtained as

Wt
n ←Wt

n ◦
UT
n [Vt

n ◦ (UnW
t
n)
−1]

UT
n1

. (4.6)

The factorization is performed by alternating (4.5) and (4.6) till a certain

point of convergence defined by a number of iterations or a value of an

error measurement. The matrix Wt
n is not needed in the estimation step.

4.1.2 Estimation of vn(ω, l) using SVD

R̃cn(ω, l) is a matrix with a high condition number (the ratio of the largest

singular value to the smallest one). In fact, the value of the number depends

on many factors, one of them is the reverberation. In mixing environments

with low reverberation, the number is high, however, it decreases as the

environment becomes more reverberant. This means that in environments

with low reverberation, the largest singular value can well describe the

magnitude information of the matrix R̃cn(ω, l), however, an approximate

description is accomplished in environments with high reverberation. The

largest singular value σn(ω, l) is derived by computing the singular value

decomposition (SVD) of the matrix R̃cn(ω, l). The minimization function

in (4.3) can then be described by including σn(ω, l) as follows

ξ(θ) =
∑
ω,l,n

tr(v−1
n (ω, l)R−1

n (ω)σn(ω, l)
R̃cn(ω, l)

σn(ω, l)
). (4.7)

In sense of Maximum-Likelihood (ML), if the source spectral variance is

estimated as [35]

vn(ω, l) = σn(ω, l), (4.8)

the matrix Rn(ω) is estimated so that its largest singular value equals

one. In fact, σn(ω, l) conveys information not only about the true spectral

variance of the n-th source but also about the propagation channels that are
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associated with the source. For this reason, the estimated vn(ω, l) in (4.8)

can be considered as the true source variance weighted by average channel

intensities, i.e. the source variance at the microphone locations. Therefore,

the spatial information involved in the estimated source variance vn(ω, l)

can be helpful for the estimation of the spatial covariance matrix Rn(ω).

4.1.3 Estimation of Rn(ω) using trained basis vectors

The n-th estimated source power spectrum Vn = [{vn(ω, l)}ω,l]Ω×L in (4.8)

can be decomposed applying supervised NMF, given the trained spec-

tral basis matrix Un, to compute an activation coefficient matrix Wn =

[{wn(l)}l]K×L that contains time-varying weight vectors wn(l), each one of

length K. Accordingly, given un(ω), the estimated source variance vn(ω, l)

in (4.8) is represented in the factorization domain as follows

vn(ω, l) =
∑
k

un(ω, k)wn(k, l), (4.9)

where un(ω, k) and wn(k, l) are the k -th coefficients of the vectors un(ω)

and wn(l), respectively.

On the other side, the absolute values of the matrix R̃cn(ω, l) can be

decomposed applying supervised NMF, given the spectral basis vectors

un(ω). Accordingly, the matrix is represented in the factorization domain

as follows

R̃cn(ω, l) =
∑
k

un(ω, k)Wcn(k, l)6 R̃cn(ω, l), (4.10)

where 6 R̃cn(ω, l) indicates the phase information of R̃cn(ω, l). Wcn(k, l)

is a time-varying activation coefficient matrix of the absolute values of

R̃cn(ω, l), the matrix is represented as

Wcn(k, l) =

 w11
cn

(k, l) · · · w1M
cn

(k, l)
... . . . ...

wM1
cn

(k, l) · · · wMM
cn

(k, l)

 , (4.11)
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where wm1m2
cn

(k, l), m1,m2 = 1, ..,M , is a weight coefficient of a time-

varying vector that is obtained by factorizing the (m1,m2) vector of the

absolute values of the matrix R̃cn(ω, l). For better understanding the build-

ing of the matrix R̃cn(ω, l), we want to emphasize that its m-th diagonal

observation r̃mmcn
(ω, l) is a real coefficient, which is expressed in the factor-

ization domain as follows

r̃mmcn
(ω, l) =

∑
k

un(ω, k)wmm
cn

(k, l), (4.12)

and its (m1,m2) off-diagonal observation is a complex coefficient that is

represented as

r̃m1m2
cn

(ω, l) =
∑
k

un(ω, k)wm1m2
cn

(k, l)6 r̃m1m2
cn

(ω, l), (4.13)

where 6 r̃m1m2
cn

(ω, l) indicates the phase information of the (m1,m2) coeffi-

cient r̃m1m2
cn

(ω, l).

To estimate the spatial covariance matrix Rn(ω), the minimization func-

tion in (4.3) can be expanded in order to exploit the above two factorization

steps, taking advantages of the trained spectral basis vectors un(ω). The

function can be approximately described in terms of the above two factor-

ization steps in (4.9) and (4.10) as follows

ξ(θ) ≈
∑
ω,l,n,k

tr((un(ω, k)wn(k, l))
−1R−1

n (ω)un(ω, k)Wcn(k, l)6 R̃cn(ω, l)).

(4.14)

In this formulation, the optimization function in (4.3) is modified in or-

der to perform the minimization in a high resolution domain, i.e. the

factorization domain, where the problem is represented as the sum of K

sub-problems. The disadvantage of this formulation is that the trained

spectral basis vectors un(ω, k) are eliminated. Accordingly, the absolute

values in the minimization function are frequency-independent. As a re-

sult, the changes in the absolute values of the matrix Rn(ω) are not well
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followed, from one frequency to another. The function in (4.14) is mini-

mized in sense of Maximum-Likelihood (ML) with respect to the spatial

covariance matrix Rn(ω), in which the matrix is estimated as follows

Rn(ω) =
1

L

∑
l,k

Wcn(k, l)

wn(k, l)
6 R̃cn(ω, l). (4.15)

The estimated matrix Rn(ω) is then normalized using its largest singular

value. As it is noted, the matrix is estimated using absolute information

of the factorization, i.e. time-varying activation weights, and phase infor-

mation of the time-frequency domain.

4.1.4 Refining the estimation of vn(ω, l) using NTF

Since the estimation of the source variance vn(ω, l) in (4.8) is point-wise,

by locally observing each time-frequency point of the matrix R̃cn(ω, l),

spectral-temporal redundancy between the points is not well exploited.

We propose a post-processing step to refine the estimation of the source

variance vn(ω, l) using the trained spectral basis vectors un(ω) and applying

Nonnegative Tensor Factorization (NTF).

As previously introduced, NTF is a parallel decomposition, where an

original tensor is decomposed into the product of matrices representing the

redundancy between slices of the original tensor, and decomposed tensors

describing the diversity. In this step of refining the estimation of vn(ω, l),

not only spectral-temporal redundancy between time-frequency points of

one signal observation is exploited, but also spatial redundancy between

multiple signal observations.

The diagonal coefficients of the matrix 1
L

∑
l
R̃cn(ω,l)
σn(ω,l) can be approxi-

mately seen to describe time-invariant inter-channel intensities, and the

off-diagonal coefficients to represent time-invariant cross-channel intensities

and phase differences. We arrange the estimated source variance vn(ω, l)
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times the diagonal coefficients of 1
L

∑
l
R̃cn(ω,l)
σn(ω,l) in a tensor ṼM

cn
(ω, l) of size

Ω× L×M , where M is the number of propagation channels. Each (ω, l)

coefficient of the m-th slice Ṽm
cn

(ω, l) of the tensor is represented by vn(ω, l)

weighted by the diagonal (m,m) coefficient of 1
L

∑
l
R̃cn(ω,l)
σn(ω,l) . The n-th ten-

sor is decomposed, fixing the n-th trained spectral basis matrix Un, so that

the m-th slice of the tensor is represented as

Ṽm
cn

(ω, l) = UnD̃
m
n W̃n, (4.16)

where W̃n is a time-varying activation coefficient matrix, and D̃m
n is a

diagonal matrix of size K × K. Each (k, k) coefficient of the matrix D̃m
n

encodes the contribution of each spectral basis vector of Un in the m-th

tensor slice Ṽm
cn

(ω, l) of the m-th channel observation. For the (k, k) vector

of length M in the K ×K ×M tensor D̃M
n = [{D̃m

n }m]K×K×M , we propose

to select the m-th channel index that maximizes the contribution of each

basis vector of Un in ṼM
cn

(ω, l). The optimal channel index is selected as

m∗(k) = arg max
m

d̃mn (k, k), m = 1, 2, ...,M. (4.17)

where d̃mn (k, k) is the k -th diagonal coefficient of the matrix D̃m∗

n . The

source variance is then updated as follows

vn(ω, l) =
∑
k

un(ω, k)d̃m
∗(k)

n (k, k)w̃n(k, l), (4.18)

w̃n(k, l) is the k -th coefficient of the matrix W̃n at the time frame l.

4.1.5 Estimation of Rn(ω) using NTF

Over all the time-frequency points and coefficients, a tensor of observations

of size F × L ×M 2 can be built from the absolute values of the matrix

R̃cn(ω, l). The tensor is represented in the factorization domain as the mul-

tiplication of the trained matrix Un, a time-varying coefficient matrix, and

51



4.1. METHOD CHAPTER 4. DECOMPOSITION I

a tensor representing the spatial diversity between coefficients of R̃cn(ω, l).

The full representation of the matrix R̃cn(ω, l) is then defined as

R̃cn(ω, l) =
∑
k

un(ω, k)wcn(k, l)D̃cn(k, k)6 R̃cn(ω, l). (4.19)

In this representation, at each frequency bin ω and time frame l, the redun-

dancy between coefficients of the matrix R̃cn(ω, l) is represented by un(ω, k)

and wcn(k, l), and the diversity is described by the matrix D̃cn(k, k) that

is represented as follows

D̃cn(k, k) =

 d̃11
cn

(k, k) · · · d̃1M
cn

(k, k)
... . . . ...

d̃M1
cn

(k, k) · · · d̃MM
cn

(k, k)

 . (4.20)

The minimization function in (4.3) can be described again by involving the

factorization of vn(ω, l) in (4.18) and R̃cn(ω, l) in (4.19), as follows

ξ(θ) ≈
∑
ω,l,n,k

tr[(un(ω, k)d̃m
∗(k)

n (k, k)wn(k, l))
−1un(ω, k)wcn(k, l)R

−1
n (ω)D̃cn(k, k)6 R̃cn(ω, l)].

(4.21)

As stated before about the formulation of the minimization function in

(4.14), the formulation of the minimization function in (4.21) also suffers

from that the trained spectral basis vectors un(ω) are eliminated. Ac-

cordingly, the absolute values in the minimization function are frequency-

independent. As a result, the changes in the absolute values of the matrix

Rn(ω) are not well followed, from one frequency to another. The function

in (4.21) is minimized in sense of Maximum-Likelihood (ML) with respect

to the spatial covariance matrix Rn(ω), in which the matrix is estimated

as

Rn(ω) =
1

L

∑
l,k

wcn(k, l)

d̃m∗
n (k, k)wn(k, l)

D̃cn(k, k)6 R̃cn(ω, l) (4.22)

The matrix Rn(ω) is then normalized using its largest singular value.
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4.1.6 Matrix/tensor representation of multiple observations

To perform supervised NMF of multiple observations in (4.10), the ab-

solute values of the (m1,m2) coefficients of the matrix R̃cn(ω, l), over all

the frequency bins and time frames, are arranged side-by-side in a matrix

Vm1m2
cn

= [{|r̃m1m2

cn
(ω, l)|}ω,l]Ω×L. Given the n-th trained source spectral ba-

sis matrix Un, the (m1,m2) matrix of observations is factorized applying

the MU rule as follows (appendix A)

Vm1m2
cn

= UnW
m1m2
cn

. (4.23)

Supervised NTF of multiple observations in (4.19) is performed by arrang-

ing the matrices Vm1m2
cn

,m1,m2 = 1, ..,M , in a tensor of multiple observa-

tions, i.e. VM2

cn
= [{Vm1m2

cn
}m1,m2

]Ω×L×M2. Given the n-th trained source

spectral basis matrix Un, the m-th slice of the tensor is factorized applying

the MU rule as follows (appendix A)

Vm
cn

= UnD̃
m
cn

Wcn. (4.24)

4.1.7 Initialization

The source spatial images c̃n(ω, l) needed for the initial computation of

the matrix R̂cn(ω, l) in (4.2) are initialized by binary clustering the time-

frequency points of the observed mixtures x(ω, l). The time difference of

arrival (TDOA) of each source is estimated by GCC-PHAT (Generalized

Cross-Correlation with PHAse Transform) as described in [69]. Given the

estimated TDOAs, the time-frequency points of x(ω, l) are classified into

multiple clusters, each one corresponding to a source. The clustering is per-

formed by minimizing the error between steering vectors of the estimated

TDOAs and phase differences of the time-frequency points of x(ω, l).
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4.2 Full description

The full method is summarized as follows:

———————————————————————————

Training: Un, n = 1, ..., N as in Section 4.1.1

Input: x(ω, l)

Initialize: c̃n(ω, l) as in Section 4.1.7, Σcn(ω, l) = I

Iterate: till convergence

Compute R̃cn(ω, l) as in (4.1)

Estimation of θ = {{vn(ω, l)}l,Rn(ω)}ω,n:
NMF: Estimate vn(ω, l) and Rn(ω) as in (4.8) and (4.15)

NTF: Estimate vn(ω, l) and Rn(ω) as in (4.18) and (4.22)

Separation:

Σcn(ω, l) = vn(ω, l)Rn(ω)

Gn(ω, l) = Σcn(ω, l)Σ
−1
x (ω, l)

c̃n(ω, l) = Gn(ω, l)x(ω, l)

Return

Output: c̃n(ω, l)

———————————————————————————

4.3 Experiments

A room with size 4.45×3.35×2.5 meters and an array of 2 omnidirectional

microphones spaced 0.2 m are considered in a simulated scenario. The

microphones are located in the middle of the room and they are at the same

height (i.e., 1.4 m) of three given audio sources (N = 3). The distance from

each source to the central point between the two microphones is either 0.5

or 1 m. The direction of arrivals of the source signals are 35, 90, and 145

angular degrees. Synthetic room impulse responses (RIRs) are simulated
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through the Image Source Method (ISM) [54] with a sampling frequency

of 16 kHz for three values of the reverberation time: T60 = 200, 350 or

500 ms. Six Italian speakers (3 males and 3 females) are considered as

audio sources. Each speaker uttered 20 sentences, of average length 8.75

s. The clean speech signals are divided into 5 signals to test the method,

and 15 to train the matrices Un, n = 1, 2, 3. The matrices are extracted

by decomposing the power spectra of the training signals applying the

multiplicative update (MU) rule [25, 53] to minimize the Kullback-Leibler

(KL) divergence as in Section 4.1.1,

Four male-female mixture combinations (i.e. 3 males, 3 females, 2 fe-

males and 1 male, and 2 males and 1 female) were generated by individ-

ually convolving the full length of the simulated RIRs with the original

signals and adding the source image contributions at each microphone.

This resulted in a total of 20 test mixtures for each T60. The discrete

time-frequency representation of the mixtures x(ω, l) is obtained through

STFT with a Hanning analysis window of length 128 ms and shift 64 ms.

The window γ of computing the empirical covariance matrix of the source

spatial images in (4.2) is a Hanning window of size 3× 3. The separation

performance is measured using the evaluation metrics detailed in Section

3.7.

As shown in Figure 4.2, the separation performance of source separation

using NMF (SS-NMF) initially keeps improving as K increases, and a peak

is detected when K is around 15. Further increase of K slowly degrades

the performance, as a result of overestimation of the model parameters θ.

Fixing K at 15, Table 4.1 shows the separation performance of SS-NMF

as a function of the type of speech signals in the mixtures. It can be noted

that depending on the type of speech signals, the performance slightly

changes. To achieve good performance, the trained spectral basis vectors

un(ω) must have high source reconstruction and discrimination properties,
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Figure 4.2: Average separation performance as a function of K.

Table 4.1: Separation performance as a function of the type of speech signals in mixtures.

Source-to-microphone distance is 0.5 m and K = 15.

T60 3 males 2 males&1 female 2 females&1 male 3 females

(ms) SDR ISR SDR ISR SDR ISR SDR ISR

200 9.17 15.38 10.51 16.70 10.36 16.30 10.23 16.08

350 7.10 12.48 8.04 13.48 8.23 13.27 8.50 13.70

500 5.52 10.51 6.53 11.55 6.68 11.33 6.99 11.79

and the overlap of the spectral-temporal representations of speech signals

must be low (high signal sparseness).

For mixtures of male speech signals, it is expected that there is a high

overlap in the time-frequency domain, especially in low frequency bands.

Even if the signals are well represented by the trained basis matrices, as

a result of that overlap, low separation performance is achieved. On the

other side, female speech signals are less overlapped as demonstrated by

the higher separation performance obtained for mixtures of female signals.

The separation performance of SS-NMF was evaluated in terms of the

source-to-microphone distances and the reverberation times as shown in

Figure 4.3. The highest performance is obtained when the source spatial

positions are close to the microphones (0.5 m), and the mixing environment

is less reverberant (T60 = 100 ms). Moreover, the proposed algorithm
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Figure 4.3: Average separation performance in terms of reverberation times and source-

to-microphone distances.

achieves a high separation performance (SDR = 6.43 dB and ISR = 11.3

dB) in a reverberant mixing environment (T60 = 500 ms). However, as

expected, the performance degrades as either the source-to-microphone

distance or the reverberation time increases.

4.3.1 Performance comparison

We compared the performance of the SS-NMF algorithm to three other

source separation algorithms, i.e. the binary masking (BM) [90], the l0-

norm minimization [80], and the original Gaussian model-based source

separation (ML-Blind) [30]. Both binary masking (BM) and l0-norm min-

imization are fully informed by the mixing parameters in an oracle form.

In practice, the binary masking and the l0-norm minimization in the or-

acle form are used to better understand the upper bound limits of the

separation performance. From Figure 4.4, in mixing environments with

low reverberation (T60 = 200 ms), the proposed algorithm outperforms the

fully informed algorithms (i.e. exploiting the true values of the mixing

parameters), from SDR point of view, which proves that prior information

about the sources in mixing environments with low reverberation is more

helpful than prior information about the mixing parameters. However,
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Figure 4.4: Comparison of separation performance, the source-to-microphone distance is

0.5 m.

prior information about the mixing parameters is very helpful in mixing

environments with high reverberation. On the other hand, the proposed

algorithm achieves high separation performance with respect to the ML-

Blind algorithm; the performance has been improved by around 4 dB of

SDR and more than 5 dB of ISR, averaging over all the reverberation times.

The proposed method (SS-NMF) outperforms two other methods as re-

ported in Table 4.2. The first compared method is the original Gaussian

model-based audio source separation proposed in [30], and the second one

is based on clustering the time-frequency points of the observed mixtures

using estimated source Time Difference-of-Arrivals (TDOAs) [69]. Further-

more, by exploiting spectral-temporal redundancy and applying parallel

processing, source separation using NTF (SS-NTF) outperforms SS-NMF.

4.4 Conclusion

This chapter presented a method to estimate the parameters of the Gaus-

sian model-based audio source separation. The model is parametrized by

variances of audio sources in observed mixtures and corresponding spatial
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Table 4.2: Comparison of separation performance, the source-to-microphone distance is

1 m.

dB
BM l0norm SS-NTF SS-NMF ML TDOAs

Ideal Ideal Inf. Inf. Blind Blind

SDR 10.53 10.12 7.11 6.53 4.62 4.90

ISR 19.44 17.56 12.58 12.11 9.06 11.12

T60 = 200 ms

SDR 10.02 7.80 5.20 4.46 3.56 3.01

ISR 18.70 13.63 9.90 9.23 7.30 8.50

T60 = 350 ms

SDR 9.57 6.30 4.11 3.55 2.48 2.30

ISR 18.08 11.57 8.47 8.04 5.90 7.51

T60 = 500 ms

covariance matrices. We aim at reducing the estimation dependency of

the parameters and exploiting trained source-based prior information to

improve the separation performance. Spectral basis matrices trained using

a set of power spectra of sources in observed mixtures are assumed to be

available. The matrices are obtained by factorizing the power spectra us-

ing Nonnegative Matrix Factorization (NMF) applying the Multiplicative

Update (MU) rules to minimize Kullback-Leibler (KL) divergence. The

variances of the sources are blindly estimated by applying singular value

decomposition of matrices of multiple observations. Furthermore, the spa-

tial covariance matrices are estimated applying supervised NMF given the

trained source spectral basis matrices. As an extension to the supervised

NMF, we presented a supervised NTF method to refine the estimation of

the variances of the sources and to estimate the spatial covariance ma-

trices. The proposed methods were compared to the original Gaussian

model-based audio source separation and it provided better performance

in several mixing conditions.
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Chapter 5

Nonnegative Decomposition II

Weighted spectral bases

Although the method proposed in the previous chapter works well with

good efficiency, the estimation does not exactly follow the changes in the

absolute values of the spatial covariance matrix Rn(ω), from one frequency

to another, as a result of eliminating the frequency-dependent trained basis

vectors un(ω) from the optimization function in (4.14) and (4.21). To over-

come this, we propose another method to involve source spectral modeling

using NMF in the optimization function in (4.3), in which the amplitude

values of the matrix Rn(ω) are well followed and tracked [37].

The proposed method can work with good performance in either blind

or trained scenarios applying either unsupervised or supervised NMF,

respectively. We propose to exploit the spectral modeling using NMF of

the estimated source variance vn(ω, l) in (4.8) to obtain weighted basis

vectors, which are used to factorize the matrix of multiple observations

R̃cn(ω, l) (see Figure 5.1). In this context, we look for compact descriptions

to the multiple observations in terms of the factorization of vn(ω, l), which

considerably improves the separation performance. Later, the factorization

output of both the estimated source variance vn(ω, l) and the matrix of

multiple observations R̃cn(ω, l) are used to estimate the matrix Rn(ω).
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Mixtures

Natural Statistics
E­step

Estimation of Source Variances
M­step

Trained Spectral 
Basis Vectors

Estimation of Spatial Covariance Matrices
M­step

Absolute Phase

Multichannel Wiener Filtering

Separated Signals

Estimated Model Parameters

Supervised Factorization 
of Estimated 

Source Variances

Supervised Factorization of  
Absolute Values of Natural Statistics

Weighted Spectral Vectors

  Unsupervised Factorization 
of Estimated 

Source Variances

or

Figure 5.1: A flowchart of the proposed method. Highlighted blocks refer to novel contri-

butions.
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5.1 Method

As earlier stated, we aim at estimating the set of Gaussian model pa-

rameters θ = {{vn(ω, l)}l,Rn(ω)}n,ω. As proposed in Section 4.1.2, the

source spectral variance vn(ω, l) is estimated as the largest singular value

of the matrix of multiple observations R̃cn(ω, l). Furthermore, apply-

ing unsupervised or supervised NMF, the estimated source variance

vn(ω, l) is approximately represented as the multiplication of a frequency-

dependent spectral basis vector un(ω) and a time-varying activation coef-

ficient vector wn(l) as in (3.15)

vn(ω, l) = uTn (ω)wn(l). (5.1)

Accordingly, the estimated source power spectrum is represented in the

factorization domain as follows

Vn = [{vn(ω, l)}ω,l]Ω×L = UnWn. (5.2)

To estimate the matrix Rn(ω) that is modeled as time-invariant, the main

idea is to exploit the factorization of vn(ω, l) in (5.1) to find compact time-

invariant representations of the time-varying absolute values of the multiple

observations R̃cn(ω, l). To do this, both the basis and coefficient vectors re-

sulting from factorization of vn(ω, l) are used to build frequency-dependent

time-varying matrices, which are employed to decompose the absolute val-

ues of the multiple observations R̃cn(ω, l) applying supervised NMF. The

factorization output consists of time-invariant compact matrices encoding

the spatial diversity among coefficients of the matrix R̃cn(ω, l) over all the

time frames. The spatial covariance matrix Rn(ω) is then estimated in

sense of Maximum-Likelihood (ML) using the time-varying coefficient vec-

tors wn(l) of the factorized spectral variance vn(ω, l), the time-invariant

matrices of the factorized absolute values of the multiple observations

R̃cn(ω, l), and the phase information of the multiple observations R̃cn(ω, l).
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Both the first and second factorization steps are carried out by min-

imizing the β-divergence applying the Multiplicative Update (MU) rules

[40]. Furthermore, we tested several values of β in order to identify the

best performing ones from source separation point of view. Intended mis-

match in selecting values of β for the first and second factorization steps

is applied, which leads in some cases to better performance.

5.1.1 Estimation of Rn(ω)

In a supervised factorization scenario, we propose to decompose the abso-

lute values of the matrix R̃cn(ω, l) using a time-varying frequency-dependent

vector qn(ω, l). The matrix R̃cn(ω, l) is represented in the factorization do-

main as follows

R̃cn(ω, l) =
∑
k

qn(ω, k, l)Wcn(ω, k)6 R̃cn(ω, l), (5.3)

where qn(ω, k, l) is the k -th coefficient of the vector qn(ω, l). Unlike the for-

mulations in (4.10) and (4.19), used to represent the matrix of multiple ob-

servations R̃cn(ω, l) in the factorization domain, here, both qn(ω, k, l) and

Wcn(ω, k) are granted to be frequency-dependent. This proposed formula-

tion allows to follow the amplitude values in the estimation of the matrix

Rn(ω), from one frequency to another. At each frequency bin ω, the time

indeterminacy of the absolute values of R̃cn(ω, l), from one time-frame to

another, is described by qn(ω, k, l). Moreover, the spatial indeterminacy of

the absolute values of the matrix R̃cn(ω, l), from one coefficient to another,

is specified by the time-invariant compact matrix

Wcn(ω, k) =

 w11
cn

(ω, k) · · · w1M
cn

(ω, k)
... . . . ...

wM1
cn

(ω, k) · · · wMM
cn

(ω, k)

 , (5.4)

where wm1m2
cn

(ω, k) indicates the (m1,m2) coefficient of the matrix Wcn(ω, k),

that corresponds to the (m1,m2) coefficient of the matrix R̃cn(ω, l).
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For better understanding the building of the matrix R̃cn(ω, l) in the

factorization domain, we want to confirm that its m-th diagonal observa-

tion r̃mmcn
(ω, l) is a real coefficient, which is expressed in the factorization

domain as follows

r̃mmcn
(ω, l) =

∑
k

qn(ω, k, l)w
mm
cn

(ω, k), (5.5)

and its (m1,m2) off-diagonal observation is a complex coefficient that is

represented as

r̃m1m2
cn

(ω, l) =
∑
k

qn(ω, k, l)w
m1m2
cn

(ω, k)6 r̃m1m2
cn

(ω, l), (5.6)

where 6 r̃m1m2
cn

(ω, l) indicates the phase information of the (m1,m2) coef-

ficient r̃m1m2
cn

(ω, l). The minimization function in (4.3) is expressed, by

substituting the factorization of R̃cn(ω, l) in (5.3), as

ξ(θ) =
∑
ω,l,n

tr(v−1
n (ω, l)R−1

n (ω)
∑
k

qn(ω, k, l)Wcn(ω, k)6 R̃cn(ω, l)). (5.7)

Let’s initially propose that the component qn(ω, k, l) be defined as the

product of two other scalar components as follows

qn(ω, k, l) = vn(ω, l)wn(k, l), (5.8)

where wn(k, l) is the k -th coefficient of the vector wn(l). Keep in mind

that vn(ω, l) itself can be also represented as the product of two vectors

as in (5.1). The minimization function in (5.7) is represented again by

substituting the factorization of qn(ω, k, l) in (5.8) and eliminating vn(ω, l),

as follows

ξ(θ) =
∑
ω,l,n

tr(R−1
n (ω)

∑
k

wn(k, l)Wcn(ω, k)6 R̃cn(ω, l)). (5.9)
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Figure 5.2: A trained basis vector and its generated weighted copy which is used to

factorize a particular time-frame of multiple observations.

The spatial covariance matrix Rn(ω) is then estimated in sense of Maximum-

Likelihood (ML) by minimizing the optimization function in (5.9) and av-

eraging over all the time-frames, as follows

Rn(ω) =
1

L

∑
l,k

wn(k, l)Wcn(ω, k)6 R̃cn(ω, l). (5.10)

The matrix Rn(ω) is then normalized using its largest singular value. On

the other side, regarding the factorization of the estimated source variance

vn(ω, l) in (5.1) and the component qn(ω, k, l) in (5.8), the vector qn(ω, l)

is represented as a weighted copy of the spectral basis vector un(ω) as

qTn (ω, l) = uTn (ω)[wn(l)w
T
n (l)], (5.11)

where the weight [wn(l)w
T
n (l)] is the outer-product of the vector wn(l) and

its transposition.

Figure 5.2 shows an example of an original spectral basis vector un(ω)

of length K = 25 at the frequency ω, a weight matrix [wn(l)w
T
n (l)] of size

25×25 obtained at a specific time-frame l, and a generated weighted vector

qn(ω, l) of length K = 25.
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As it is clear, much trust is given to the estimation of the source

variance vn(ω, l), where a combination of its factorization (qn(ω, l) as in

(5.11)) weighted by the time-invariant matrix Wcn(ω, k), is employed to de-

scribe the temporal activity of source spatial images cn(ω, l) in the matrix

R̃cn(ω, l). As a consequence, robust estimation and efficient factorization of

vn(ω, l) are strict requirements. The estimation step is accomplished as pro-

posed in Section 4.1.2. The factorization can be performed in supervised

or unsupervised scenarios. In case of supervised factorization, the spec-

tral basis vectors un(ω) are pre-trained in advance using a set of training

data, and kept fixed during the factorization of vn(ω, l) in (5.1). However,

the separation can be achieved in a blind scenario by on-line training of the

vectors un(ω) applying unsupervised factorization of vn(ω, l) in (5.1).

5.1.2 Matrix representation of multiple observations

To perform the factorization of multiple observations in (5.3), a frequency-

dependent matrix composed of the vectors qn(ω, l) over all the time-frames

is built, i.e. Qn(ω) = [{qTn (ω, l)}l]L×K . The absolute values of the matrix

R̃cn(ω, l) over all the time frames are also arranged side-by-side in a matrix

of observations Ṽcn(ω) = [{|r̃m1m2

cn
(ω, l)|}m1m2,l]L×M2. At the frequency bin

ω, the temporal diversity between columns of the matrix Ṽcn(ω) is modeled

to be constant, and it is represented by the matrix Qn(ω). The spatial

diversity between rows of the matrix Vcn(ω) is not constant, as it depends

on propagation inter and cross channel intensities, and it is encoded at each

k-th coefficient by the matrix Wcn(ω, k). To perform the factorization,

coefficients of the matrix Wcn(ω, k) are arranged side-by-side in a matrix

of size K ×M 2, i.e. Hcn(ω) = [{wm1m2
cn

(ω, k)}m1m2,k]K×M2. Accordingly,

the matrix of observations is represented in the factorization domain as

Ṽcn(ω) = Qn(ω)Hcn(ω). (5.12)
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5.2 Full description

The method is summarized as follows:

——————————————————————————

Training: Un, n = 1, ..., N as in Section 4.1.1

Input: x(ω, l)

Initialize: c̃n(ω, l) as in Section 4.1.7, Σcn(ω, l) = I

Iterate: till convergence

Compute R̃cn(ω, l) as in (4.1)

Estimate vn(ω, l) as in Section 4.1.2

Arrange absolute values of R̃cn(ω, l) in Ṽcn(ω) as in Section 5.1.2

Factorization: as in Section 5.3

(1) Supervised or Unsupervised factorization of Vn in (5.2) using β1

(2) Supervised Factorization of Ṽcn(ω) in (5.12) using β2

Estimate Rn(ω) as in Section 5.1.1

Separation:

Σcn(ω, l) = vn(ω, l)Rn(ω)

Gn(ω, l) = Σcn(ω, l)Σ
−1
x (ω, l)

c̃n(ω, l) = Gn(ω, l)x(ω, l)

Return

Output: c̃n(ω, l)

——————————————————————————

5.3 Supervised NMF using β-divergence

The Multiplicative Update (MU) rule to minimize the β-divergence be-

tween a matrix A and its matrix factorization BC, is applied as follows

(appendix A)

B← B ◦ [A ◦ (BC)β−2]CT

(BC)β−1CT
, (5.13)
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C← C ◦ BT [A ◦ (BC)β−2]

BT (BC)β−1
, (5.14)

where ◦ indicates the point-wise multiplication, and the division is point-

wise. Matrix factorization is performed by alternating (5.13) and (5.14)

till the convergence is achieved. Supervised factorization is carried out by

fixing one matrix, either B or C, and updating only the other one. The

factorization of the power spectrum in (5.2) and the multiple observations

in (5.12) are accomplished by respectively replacing A by either Vn or

Vcn(ω), B by either Un or Qn(ω), and C by either Wn or Hcn(ω).

5.3.1 Analysis of semi-supervised factorization for single chan-

nel source extraction

The current work of single or multiple channel source separation based on

supervised NMF relies on feeding the separation system by trained spectral

basis matrices of all sources in observed mixtures, and on fixing the value of

the divergence factor β for both training and supervised reconstruction, for

any value of latent coefficients K. In this section we experimentally study

the influence of selecting values of K and β for NMF-based training and

semi-supervised reconstruction, for semi-supervised single channel source

extraction. In the training phase, spectral basis vectors ut(ω) of a target

source st(t) are trained using the source power spectrum, with a training

divergence factor βt. In the reconstruction phase, observing a mixture of

the target source signal and an interfering signal, and given the trained

vectors ut(ω), we want to estimate activation coefficient vectors wt(l) best

representing the target source st(t), by testing several values of a recon-

struction divergence factor βs. To extract the target source, we built a soft

clustering-based single channel source extraction system. The extraction

performance is evaluated using the Source-to-Distortion Ratio (SDR).
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The experimental steps are summarized as follows:

• Train ut(ω) using the power spectrum of a target speech signal st(t)

applying unsupervised NMF, with K and βt.

• Generate a mixture by adding an interfering speech signal sintf(t) to

the target one, i.e. y(t) = st(t) + sintf(t).

• Given ut(ω), estimate wt(l) by factorizing the power spectrum py(ω, l)

of y(t) applying semi-supervised NMF, with K and βs.

• Compute the Signal-to-Interference Ratio as

SIR(ω, l) = uTt (ω)wt(l)
|py(ω,l)−uTt (ω)wt(l)|

• Avoid the outliers resulting of the division by comparing them to a

threshold, and build a soft clustering mask as

SM(ω, l) = log(SIR(ω, l))

• Set the negative values corresponding to low SIR to a small positive

threshold, and apply spectral-temporal smoothing as

SMs(ω, l) =
∑
ω̃,l̃ γ(ω̃−ω,l̃−l)SM(ω̃,l̃)∑

ω̃,l̃ γ(ω̃−ω,l̃−l)

• Obtain estimation of the source signal as

s̃t(ω, l) = SMs(ω, l)y(ω, l)

• Compute the extraction performance (SDR) using st(t) and s̃t(t).

The experiment was carried out using eight speech signals, i.e. four males

and four females (in both cases two English and two Japanese speech sig-

nals). The dataset is an excerpt from the SISEC evaluation campaign

[1]. The mixtures were generated with lengths of 10 s. The discrete time-

frequency representation of each mixture y(t) is obtained through STFT

with a Hanning analysis window of length 128 ms (or 2048 samples) and

shift of 64 ms. The training divergence factor (βt) to train the vectors
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ut(ω) was either 0.5 or 0.9. The number of the trained spectral basis vec-

tors (K) was 15, 25, 35 or 50. The value of the reconstruction divergence

factor (βs) was selected to span the interval between 0.1 and 1.9 by a step

of 0.2. For each value of βt, K and βs, the number of mixtures under test

was 56 speech signals. The input SDR of each one of the mixtures mea-

sured between the signal st(t) and the mixture y(t) varies between small

negative and positive values depending on the signal level in the mixture.

Analysis and results

In the reconstruction phase, the power spectrum of the mixture y(t) can

be approximately represented in the factorization domain as follows

py(ω, l) ≈ uTt (ω)wt(l) + ε(ω, l), (5.15)

where ε(ω, l) is the factorization error. For fixed value of βt, we can find an

optimal value of βs that best reduces the impact of the interference by con-

straining the sparsity of the semi-supervised reconstruction. On the other

side, for any value of βs, even if it equals βt, the error ε(ω, l) has a consid-

erable value. This means, in some cases, we can obtain good interference

reduction when βt = βs. In fact, after an extensive experimental study,

we can state that the optimal value of βs is data-dependent and there is

no optimal choice valid in general. However, the extraction performance is

obtained by computing the average over all the dataset under test.

Figures 5.3 and 5.4 show the average extraction performance (SDR) in

dBs. As it is expected, a large number (K) of trained spectral basis vectors

ut(ω) benefits the performance. Large values of βs perform slightly better

than smaller ones when K equals 15 or 25 in both cases of training, βt

equals either 0.5 or 0.9. In case that βt = 0.5, small values of βs perform

better than large ones when K equals either 35 and 50. However, better

performance is achieved when βs is around 0.9 when βt = 0.9.
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Figure 5.3: Source extraction performance, the training divergence factor = 0.9 and the

average input SDR = 0.04 dB.
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Figure 5.4: Source extraction performance, the training divergence factor = 0.5 and the

average input SDR = 0.04 dB.
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5.3.2 Analysis of semi-supervised factorization for stereo source

separation

As an extension to the above single channel source extraction, we analysed

the proposed multichannel source separation method. The training step

of ut(ω) in the above single channel source extraction method corresponds

to the training of un(ω), n = 1, .., N , using a training divergence factor

βt. The factorization of the estimated source variance vn(ω, l) in (5.1),

i.e. the estimated source power spectrum Vn in (5.2), is performed apply-

ing supervised NMF using a factorization divergence factor β1, given the

trained spectral basis vectors un(ω), n = 1, .., N . The spatial covariance

matrix Rn(ω) is estimated as in Section 5.1.1 using a factorization diver-

gence factor β2. The estimation step of the model parameters vn(ω, l) and

Rn(ω) corresponds to the estimation step of wt(l) in the above single chan-

nel source extraction method. Moreover, the multichannel Wiener filtering

in the proposed method corresponds to the single channel soft masking.

The live-recorded dataset dev1 of the SISEC evaluation campaign was

used for this analysis. The dataset consists of 4 live-recorded stereo mix-

tures of 3 Japanese and English speech signals. All the mixtures are 10 s

long sampled at 16 kHz. The experimental setup consists of 2 omnidirec-

tional microphones placed 1 m apart in a room of dimension 4.45×3.35×2.5

m with reverberation times 130 and 250 ms. The distance between source

positions and the central point between the microphones varies between 0.8

and 1.2 m. For all mixtures the DOAs vary between 60 and 300 angular de-

grees, with a minimal spacing of 15 degrees. The discrete time-frequency

representation of the mixtures x(ω, l) is obtained through STFT with a

Hanning analysis window of length 128 ms (or 2048 samples), with shift

of 64 ms. The window γ for the computation of the empirical covariance

matrix of the source images in (4.2) is a Hanning window of size 3× 3.
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Table 5.1: Average SDR (dB) of informed separation of live-recorded mixtures from

SISEC.

K 15 25 50

β2 0.5 0.9 0.5 0.9 0.5 0.9

β1 = 0.5 6.29 5.64 6.25 6.32 7.88 7.73

β1 = 0.9 7.36 7.09 7.68 7.80 7.88 7.68

βt = 0.9

β1 = 0.5 5.77 5.82 7.82 7.86 8.31 8.27

β1 = 0.9 7.18 7.28 7.58 7.43 7.78 7.73

βt = 0.5

Table 5.1 reports the average performance as a function of values of βt,

β1, β2, and K. As it is noted, the performance follow the same trend ob-

served in the above single channel case. Supervised factorization of vn(ω, l)

using β1 = 0.9 provides better performance than using β1 = 0.5 when

K = 15, in both cases of training, i.e. βt equals either 0.5 or 0.9. Almost

the same performance is achieved when βt = 0.9 and K = 50, in both

cases of estimation, i.e. β1 equals either 0.9 or 0.5. Corresponding to the

trend observed in the above single channel case, β1 = 0.5 performs better

than β1 = 0.9 when βt = 0.5 and K = 50. In order to apply two different

sparsity constraints, we tested generated mismatch between the selected

values of β1 and β2, which improves the performance in some cases.

5.4 Experiments

In this section, we evaluate the proposed method in a blind scenario. The

factorization of the estimated source variance vn(ω, l) in (5.1), i.e. the esti-

mated power spectrum Vn in (5.2), is performed applying unsupervised

NMF using a factorization divergence factor β1, i.e. preliminar training of

the spectral basis vectors un(ω) is not needed. The spatial covariance ma-

trix Rn(ω) is estimated as in Section 5.1.1 using a factorization divergence
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factor β2. The experimental evaluation was carried out as a function of K,

β1, and β2. The selected values of K were 15, 25, or 50, while each of β1

and β2 were assigned values of 0.5 and 0.9. Two different datasets were

used for this evaluation, including synthetic and live-recorded data.

5.4.1 Synthetic simulated dataset

A room with size 4.45 × 3.35 × 2.5 m and an array of 2 omnidirectional

microphones spaced of 0.2 m are considered. The microphones are located

in the middle of the room and they are at the same height (i.e., 1.4 m)

of three given sources. The distance from each source to the mid point

between the two microphones is 1 m. The direction of arrivals of the

sources are 40, 85, and 130 degrees. Synthetic room impulse responses

(RIRs) are simulated through ISM [54] with a sampling frequency of 16

kHz for two reverberation times: T60 = 130 or 250 ms. Six Italian speakers

(3 males and 3 females) are considered as audio sources. Six mixture

combinations of male-female speech signals were generated for each case

of the reverberation times. The discrete time-frequency representation of

the mixtures is obtained through STFT with a Hanning analysis window

of length 128 ms (or 2048 samples), with shift of 64 ms (L = 137). The

window γ for the computation of the empirical covariance matrix of the

source images in (4.2) is a Hanning window of size 3× 3.

Table 5.2 shows the average performance as a function of values of K, β1,

and β2. As previously observed, large values of K benefit the performance.

On the average, mismatch between values of β1 and β2 does not influence

much the performance. For comparison, the proposed method (SS-WSB)

outperforms two other methods as reported in Table 5.3. The first method

is the original Gaussian model-based source separation proposed in [30],

and the second one is based on clustering time-frequency points of the

mixtures using estimated Time Difference-of-Arrivals (TDOAs) [69].

75



5.4. EXPERIMENTS CHAPTER 5. DECOMPOSITION II

Table 5.2: Average performance of blind separation of synthetic stereo mixtures.

K 15 25 50

β2 0.5 0.9 0.5 0.9 0.5 0.9

β1 = 0.5

SDR 7.32 7.46 7.69 7.76 8.13 8.22

ISR 12.49 12.78 13.05 13.07 13.59 13.76

SIR 12.47 12.76 13.06 13.16 13.68 13.76

SAR 9.39 9.92 9.67 9.91 10.20 10.23

β1 = 0.9

SDR 7.03 7.31 7.80 7.99 8.19 8.33

ISR 11.95 12.33 13.15 13.33 13.75 13.81

SIR 11.98 12.26 13.16 13.41 13.82 13.84

SAR 9.51 9.78 9.79 10.19 10.18 10.42

Table 5.3: Comparison of blind separation performance.

dB SS-WSB ML-blind TDOAs

SDR 8.33 5.72 5.88

ISR 13.81 10.46 12.23

SIR 13.84 8.38 11.53

SAR 10.42 10.46 8.72

5.4.2 Live-recorded dataset of SISEC

The SISEC dataset explained in Section 5.3.2 is used to compare the sep-

aration performance in a blind scenario. In this case the performance

of the proposed method is compared to two recently developed meth-

ods in [22, 67]. The separation results of these two methods are pub-

lished on the SISEC website. The separation performance of the proposed

method was evaluated in details as a function of values of K, β1 and

β2. Table 5.4 reports the average separation performance of the four live-

recorded stereo mixtures generated using two different reverberation times,

i.e. T60 = 130 ms and 250 ms. On the average, the proposed method out-

performs the one developed in [67] and achieves separation performance

comparable to the one developed in [22]. Better performance is obtained
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Table 5.4: Average SDR (dB) of blind separation of 4 live-recorded stereo mixtures of

three male and three female speech signals from SISEC, T60 = 130 ms and 250 ms.

Proposed Baseline

K 15 25 50 Nesta Cho

β2 0.5 0.9 0.5 0.9 0.5 0.9 [67] [22]

β1 = 0.5 SDR 5.30 6.35 6.01 6.08 6.26 6.61
6.35 6.75

β1 = 0.9 SDR 4.67 5.20 5.34 5.85 6.04 5.94

Table 5.5: Detailed performance of blind separation of live-recorded stereo mixtures of

three female speech signals from SISEC, T60 = 130 ms.

Proposed Baseline

K 15 25 50 Nesta Cho

β2 0.5 0.9 0.5 0.9 0.5 0.9 [67] [22]

β1 = 0.5

SDR 8.62 9.34 9.67 9.34 8.92 9.24 7.70 8.40

ISR 13.98 14.56 14.87 14.29 14.19 14.36 10.50 13.00

SIR 14.56 15.42 15.74 14.93 14.36 14.41 13.30 12.60

SAR 12.22 12.10 12.60 13.00 11.54 12.39 11.80 12.10

β1 = 0.9

SDR 6.80 7.78 7.44 8.73 8.67 8.63

ISR 12.15 12.62 12.77 13.56 13.33 13.14

SIR 12.37 12.32 12.42 13.50 13.50 13.26

SAR 10.30 11.61 10.86 12.24 12.18 12.41

if β1 is assigned a value of 0.5. In this case, if β2 is assigned a value of 0.9,

improved performance is achieved.

Observing the separation performance of each one of the stereo mixtures

independently as reported in Tables 5.5, 5.6, 5.7, it is noted that values

of K, β1 and β2 can be tuned for each one of the mixtures, in order to

get the best performance. All in all, large values of K mostly benefit the

separation performance, moreover, mismatch between values of β1 and β2

plays a good role in improving the performance.
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Table 5.6: Detailed performance of blind separation of live-recorded stereo mixtures of

three male speech signals from SISEC, T60 = 130 ms.

Proposed Baseline

K 15 25 50 Nesta Cho

β2 0.5 0.9 0.5 0.9 0.5 0.9 [67] [22]

β1 = 0.5

SDR 4.41 4.90 5.25 5.46 6.83 6.68 6.50 6.50

ISR 8.82 9.56 9.90 10.23 11.90 11.58 9.30 11.40

SIR 7.36 8.60 9.08 9.38 11.82 11.55 10.90 10.00

SAR 7.68 7.62 7.81 8.40 9.00 8.97 9.60 10.50

β1 = 0.9

SDR 4.58 5.32 5.89 6.42 6.95 6.40

ISR 9.24 10.10 10.91 11.55 12.05 11.32

SIR 8.29 9.73 10.65 11.39 11.98 10.96

SAR 7.21 7.74 8.00 8.44 8.99 8.70

Table 5.7: Detailed performance of blind separation of live-recorded stereo mixtures of

three female speech signals from SISEC, T60 = 250 ms.

Proposed Baseline

K 15 25 50 Nesta Cho

β2 0.5 0.9 0.5 0.9 0.5 0.9 [67] [22]

β1 = 0.5

SDR 4.71 6.82 4.74 4.63 4.77 4.70 6.00 6.10

ISR 9.61 11.02 9.74 9.37 10.29 10.22 8.90 10.90

SIR 9.31 10.84 8.28 7.45 8.66 8.45 10.60 9.00

SAR 8.41 10.84 10.16 10.41 9.91 10.11 8.70 10.00

β1 = 0.9

SDR 3.76 4.00 4.40 4.32 4.51 4.43

ISR 8.36 8.66 9.25 9.03 9.22 8.84

SIR 7.07 7.30 7.21 6.86 7.33 7.11

SAR 8.67 9.03 9.68 9.86 9.82 10.00
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Table 5.8: Detailed performance of blind separation of live-recorded stereo mixtures of

three male speech signals from SISEC, T60 = 250 ms.

Proposed Baseline

K 15 25 50 Nesta Cho

β2 0.5 0.9 0.5 0.9 0.5 0.9 [67] [22]

β1 = 0.5

SDR 3.44 4.32 4.38 4.88 4.50 5.81 5.20 6.00

ISR 7.82 8.59 9.14 9.37 8.87 10.54 8.30 10.50

SIR 7.11 8.32 8.70 8.85 8.07 10.38 9.00 9.10

SAR 5.56 6.87 6.69 7.19 7.23 7.78 8.00 9.20

β1 = 0.9

SDR 3.55 3.68 3.64 3.94 4.16 4.31

ISR 7.91 7.84 8.07 8.10 8.50 8.49

SIR 6.55 6.36 6.93 6.92 7.59 7.74

SAR 6.13 6.62 6.65 7.28 7.01 7.39

5.5 Conclusion

In this chapter we introduced a method to estimate the parameters of the

Gaussian model-based audio source separation. We aimed at mitigating

a weakness point in estimation method proposed in the previous chap-

ter. The model is parametrized by variances of audio sources in observed

mixtures and corresponding spatial covariance matrices. We exploited un-

supervised or supervised factorization of the blindly estimated source vari-

ances to build weighted basis metrics, which are used to factorize matrices

of multiple observations in order to estimate the spatial covariance matri-

ces. The proposed method can work in either informed or blind scenarios.

In both cases, source spectral basis matrices are used to estimate the spa-

tial covariance matrices applying supervised Nonnegative Matrix Factor-

ization (NMF). In case of informed scenario the basis matrices are trained

in advance and the estimated source variances are decomposed applying

supervised NMF. However, in the other case the basis matrices are trained

online by decomposing the estimated source variances applying unsuper-
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vised NMF. The above factorization steps are performed by minimizing the

β-divergence using the Multiplicative Update (MU) rules. The separation

performance of the proposed method was evaluated as a function of the size

of the spectral basis matrices, and the values of β for each task of training

and estimation. According to the detailed results, we found that both the

size of the basis matrices and the values of β can be tuned for each mixing

condition in order to obtain the best performance. The performance of the

proposed method was compared to two recently developed source separa-

tion methods. On the average, the proposed method outperforms one of

the compared methods and achieves comparable performance to the other

one. However, it outperforms both the methods when the comparison is

done for each on of the mixtures independently, by tuning the above stated

variables.
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Nonnegative Decomposition III

Extracted and trained spectral bases

In line with the existing and proposed methods, the source spectral vari-

ance vn(ω, l) is modeled using Nonnegative Matrix Factorization (NMF),

i.e. vn(ω, l) = uTn (ω)wn(l). Given spectral basis vectors un(ω), here, multi-

channel decomposition using supervised Nonnegative Matrix/Tensor Fac-

torization (NMF/NTF) applying the β-divergence is adopted to estimate

the set θ = {{vn(ω, l)}l,Rn(ω)}n,ω. The parameters are jointly updated at

one step, which increases the estimation robustness and stability. Using

supervised factorization has the advantage that not only the parameters

are jointly estimated by factorizing the matrix of multiple observations

R̃cn(ω, l), but also unwanted artifacts are avoided. Due to the implicit

requirements of nonnegativity, we propose to split the parameters of the

model θ into two subsets: a subset of nonnegative parameters (vn(ω, l) and

diagonal coefficients of Rn(ω)) and another subset of complex parameters

(off-diagonal coefficients of Rn(ω)).

To estimate the first subset, it is required to factorize nonnegative ob-

served components of mixture signals into nonnegative components related

to both audio signals and corresponding propagation channels. This esti-

mation step can be performed applying supervised NTF. However, the
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second subset is estimated observing complex components of mixture sig-

nals. As it is known, nonnegative decomposition can not be applied to

factorize complex components. In this sense the second subset can be di-

rectly estimated without factorization. However, a scaling ambiguity is

generated as a result of estimating the first subset using factorization, and

estimating the second subset without factorization.

We will show that it is possible to factorize a complex component into

the multiplication of a nonnegative component and a complex component

in a supervised scenario, if the nonnegative component is known and kept

fixed during the factorization. This factorization step can be seen as esti-

mation without factorization of the second subset observing complex com-

ponents of the mixture signals. However, the difference is in the scaling of

the estimation, which is controlled in this case by the factorization diver-

gence factor β. Based on the above justification we apply supervised NMF

to estimate the second subset of complex parameters. Figure 6.1 shows the

flowchart of the proposed method.

In a separate step, observing the mixture signals, we propose that the

basis vectors un(ω), n = 1, .., N , are either extracted, or detected from

a redundant library containing trained vectors. Both the extraction and

detection steps are performed by decomposing the nonnegative observed

components of the mixture signals using respectively supervised or un-

supervised NTF. Furthermore, exploiting the time-frequency sparsity of

audio source signals and preserving their basic spectral structure continu-

ity, β is tuned for each task of training, detecting/extracting the spectral

basis matrices, and for estimating the parameters of the model.

We highlight that NTF should in principle perform better than NMF

when there is spatial redundancy among multiple signal observations, be-

cause in NTF multichannel observations are jointly processed in a parallel

way. Since the dataset to train spectral bases consists of several spoken
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Redundant 
Trained 

Spectral Basis 
Vectors

via a Library

Detection Extraction

Spectral Basis Vectors of 
Sources in the Mixtures 

or

Estimation of the set of 
Nonnegative Parameters

Mixtures

Natural Statistics
E­step

Nonnegative Tensors Complex Matrices

Estimation of the set of 
Complex Parameters

Estimated Model Paramerers
M­step

Multichannel Wiener Filtering

Separated Signals

Figure 6.1: A flowchart of the proposed method. Highlighted blocks refer to novel contri-

butions.
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sentences, there is not enough spatial redundancy among the sentences, as

a result of time-frequency sparsity. For this reason, training using NTF is

not much effective, so the bases are trained applying NMF by concatenat-

ing power spectra of the training data in one matrix. This training leads

to a good representation of the source signals by means of a few spectral

basis vectors. On the contrary, for the test data, the same spoken sentences

are propagating through several channels. Hence, the spatial redundancy

among multiple signal observations is very high. To exploit this redun-

dancy, the multichannel observations are arranged in a 3 D tensor. In this

sense, NTF is applied to extract or detect the spectral basis matrices, and

to estimate the subset of nonnegative parameters.

6.1 Method

As an alternative study to the one performed in Section 5.3.1, in this section

we give an example of minimizing the residual artifacts in an observation

using semi-supervised factorization by adjusting the value of β. Let us as-

sume that we observe a corrupted copy v̂n(ω, l) of the true source variance

vn(ω, l), where the corruption derives from other source signals, multipath

propagation or noisy environments. In terms of a given reference spec-

tral vector un(ω) of the source variance vn(ω, l), applying semi-supervised

NMF, the corrupted source variance can be approximately represented as

v̂n(ω, l) = uTn (ω)ŵn(l) ≈ uTn (ω)wn(l) + ε(ω, l), (6.1)

where ŵn(l) indicates the weight coefficient vector of v̂n(ω, l) in the factor-

ization domain, and ε(ω, l) encompasses the corruption error, as well as the

factorization error. If the basis vector un(ω) well describes the true source

variance vn(ω, l), a properly good estimation of the vector wn(l) could be

obtained. Following this model and observing v̂n(ω, l), given un(ω), the
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Figure 6.2: Examples of controlling the sparsity of Wn of the corrupted power spectrum

by selecting the value of β, from the left to the right, respectively, original Wn (training)

with β = 0.9, estimated with β = 0.1, estimated with β = 0.3, estimated with β = 0.6,

and estimated with β = 0.9.

Figure 6.3: Normalized power spectra of true, corrupted, and reconstructed signals, from

the left to the right respectively.

vector wn(l) can be obtained by applying an efficient factorization algo-

rithm. Figures 6.2 and 6.3 show an example of using the β-divergence in

minimizing the influence of an additive interfering signal from a mixture of

an original signal and the interfering one. We trained 50 spectral basis vec-

tors un(ω) using the power spectrum of a male speech signal, applying the

β-divergence with β = 0.9 and using the multiplicative update (MU) rule.

The male speech signal was linearly mixed with a second female speech

signal using a mixing vector with coefficients [1, 0.7].

Observing the power spectrum of the mixture of the two speech sig-

nals, given the trained vectors un(ω) of male speech signal, we want to

reconstruct the power spectrum of the signal by estimating the coefficient
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vectors wn(l). For the male speech signal reconstruction using NMF in a

semi-supervised scenario applying the β-divergence, the vectors wn(l) can

be constrained to be sparse by tuning the value of β. As we observe in

Figure 6.3, the sparsity of the estimated vectors wn(l) can be governed.

Accordingly, the value of β can be tuned to minimize the impact of resid-

ual artifacts in a signal observation, which results in a better estimation.

Figure 6.3 shows the reconstructed power spectrum using β = 0.3.

Building on this idea, to estimate θn = {{vn(ω, l)}l,Rn(ω)}ω, the min-

imization function in (3.17) can be replaced by the β-divergence in a sce-

nario that is similar to the semi-supervised estimation explained above.

The difference is that the number of parameters to estimate is larger than

the number of pre-known parameters. The minimization function based

on the β-divergence is represented element-by-element as follows

θ̃n = arg min
θn

∑
m1,m2

∑
ω,l

dβ[r̃m1m2
cn

(ω, l)/vn(ω, l)r
m1m2
n (ω)], (6.2)

where r̃m1m2
cn

(ω, l) and rm1m2
n (ω) are the (m1,m2) coefficients of the matrices

R̃cn(ω, l) and Rn(ω), respectively, and m1,m2 = 1, ...,M . Substituting the

source variance vn(ω, l) by its decomposition, the parameters are estimated

by solving the following minimization problem

θ̃n = arg min
θn

∑
m1,m2

∑
ω,l

dβ[r̃m1m2
cn

(ω, l)/uTn (ω)wn(l)r
m1m2
n (ω)]. (6.3)

To minimize the degree of freedom of the decomposition, one or more of

the coefficients/vectors might be assumed to be known (prior information).

Since the focus of this work is on exploiting source-based information, we

assume that the frequency-dependent spectral basis vector un(ω) is pre-

known, and the task is to estimate by decomposition the time-varying co-

efficient vector wn(l) and the frequency-dependent entry rm1m2
n (ω). Hence

the set of parameters is redefined again as θn = {{wn(l)}l, {Rn(ω)}ω}.
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Since both R̃cn(ω, l) and Rn(ω) are complex covariance matrices, the

nonnegativity constraint of the factorization can be applied only on their

diagonal coefficients. For this reason, we split θn into two subsets, a subset

of nonnegative parameters θdiagn = {{wn(l)}l, {rm1m2
n (ω)}ω,m1,m2

}, m1 = m2,

and a subset of complex parameters θoffn = {rm1m2
n (ω)}ω,m1,m2

, m1 6= m2,

where θn = θdiagn ∪ θoffn .

The diagonal entries of R̃cn(ω, l) are multiple observations, where each

observation is represented as a corrupted copy of the source variance times

the inter-channel propagation intensity. From one observation to another,

the source variance is fixed, however, the inter-channel intensity changes.

Since the multiple observations are represented by one common compo-

nent accompanied by multiple components, we propose to use NTF, fixing

un(ω), to update the estimation of θdiagn .

Each parameter of θoffn is individually estimated using NMF, observing

each off-diagonal coefficient of R̃cn(ω, l) separately, by fixing un(ω) and

wn(l) (from the previous step). In this estimation step, NMF with non-

negative constraints is used to update one complex parameter rm1m2
n (ω),

m1 6= m2 out of three parameters, fixing the other two nonnegative param-

eters un(ω) and wn(l). In practice, the complex parameter is not used to

update the nonnegative parameters, so the step is only a scaled update of

rm1m2
n (ω) to keep the scale of computing rm1m2

n (ω), m1 6= m2 the same as

the scale of computing rm1m2
n (ω), m1 = m2, where the computation scaling

parameter is β.

6.1.1 Tensor/matrix representation of R̃cn(ω, l) and Rn(ω)

Over all the time-frequency points and the signal observations, a tensor ṼM
cn

of size Ω × L ×M can be built from the diagonal elements of the matrix

R̃cn(ω, l). Over the diagonal of R̃cn(ω, l), the m-th element is denoted as

r̃mcn(ω, l), accordingly, the m-th slice of the tensor of observations is defined
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as Ṽm
cn

= [{r̃mcn(ω, l)}ω,l]Ω×L. The same is done in order to define a tensor

with diagonal slices of spatial information, Vm
Rn

= diag [{rmn (ω)}ω]Ω×Ω,

where rmn (ω) indicates the m-th diagonal element of Rn(ω). In terms of

the tensor ṼM
cn

and the matrices Un and Wn, the minimization problem

of the subset of nonnegative of parameters in (6.3) is described as

θ̃diagn = arg min
θdiagn

∑
m

∑
ω,l

dβ[Ṽm
cn
/Vm

Rn
UnWn], (6.4)

where the subset of parameters to estimate is defined as θdiagn = {Wn,V
m
Rn
}.

Observing the tensor ṼM
cn

and given the matrix of source spectral bases Un,

the task is to estimate both the tensor of spatial information VM
Rn

and the

matrix of time-varying activation coefficients Wn.

What remains to complete the representation is to rearrange the off-

diagonal coefficients of R̃cn(ω, l) and Rn(ω). The off-diagonal coefficients

of each matrix are the complex conjugation of each other centred around

their diagonal coefficients, i.e. the (m1,m2) coefficient is the complex con-

jugation of the (m2,m1) coefficient. As a result, half of the coefficients in

θoffn need to be estimated, then the second half is obtained by calculating

the complex conjugation of the estimated one. Over all the frequencies, the

(m1,m2) complex coefficients of Rn(ω) are arranged in a diagonal matrix

as Vm1m2

Rn
= diag [{rm1m2

n (ω)}ω]Ω×Ω. Over all the time-frequency points,

a matrix from the (m1,m2) complex coefficients of R̃cn(ω, l) is defined as

Ṽm1m2
cn

= [{r̃m1m2
cn

(ω, l)}ω,l]Ω×L. Given Un, and the estimation of Wn ob-

tained from the solution of the previous minimization function (6.4), the

estimation minimizer is then defined as

θ̃offn = arg min
θoffn

∑
ω,l,m1 6=m2

dβ[Ṽm1m2
cn

/Vm1m2

Rn
UnWn], (6.5)

where the subset of the complex off-diagonal parameters to estimate is

represented as θoffn = {Vm1m2

Rn
}, m1 6= m2.
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6.1.2 Tensor/matrix update

Tensor/matrix factorization (NMF/NTF) is achieved by minimizing the β-

divergence. To estimate the set θn, the MU rule is applied to optimize the

minimization functions in (6.4) and (6.5). The rule consists of updating

each scalar parameter in θn by multiplying its value at a previous iteration

by the ratio of the negative and positive parts of the derivative of the

β-divergence with respect to the parameter (see appendix A).

1. To estimate the first subset of parameters θdiagn , the tensor of multi-

channel observations ṼM
cn

is decomposed using NTF, which accounts

for the spatial redundancy among the observations. Given Un, the MU

rule to estimate the tensor slice Vm
Rn

and the matrix Wn is obtained

by minimizing the β-divergence (appendix A)

Wn ←Wn ◦
∑

m(Vm
Rn

Un)
T [Ṽm

cn
◦ (Vm

Rn
UnWn)

βs−2]∑
m(Vm

Rn
Un)T (Vm

Rn
UnWn)β

s−1
, (6.6)

Vm
Rn
← Vm

Rn
◦

[Ṽm
cn
◦ (Vm

Rn
UnWn)

βs−2](UnWn)
T

(Vm
Rn

UnWn)β
s−1(UnWn)T

, (6.7)

where ◦ indicates element-wise multiplication, βs denotes the value of

β used for estimating the parameters. The division is element-wise.

As it is noted, each slice Vm
Rn

is independently updated. However, the

matrix Wn is jointly updated using slices of the tensors ṼM
cn

and VM
Rn

,

which allows to exploit the multichannel spatial redundancy.

2. As the matrix Wn is estimated, it is accompanied with the matrix

Un in order to estimate the second subset θoffn in the same way we

estimated the spatial information Vm
Rn

in the previous step, but using

different observations

Vm1m2

Rn
← Vm1m2

Rn
◦

[Ṽm1m2
cn

◦ (Vm1m2

Rn
UnWn)

βs−2](UnWn)
T

(Vm1m2

Rn
UnWn)β

s−1(UnWn)T
. (6.8)
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In this step, the complex coefficients of Rn(ω), i.e. Vm1m2

Rn
, are up-

dated, which seems that we use NMF to update these complex co-

efficients, observing the complex coefficients of R̃cn(ω, l), given the

estimated coefficient matrix Wn and the basis matrix Un.

In practice, we do this to keep the scaling in equations (6.7) and (6.8)

unchanged, otherwise a scaling ambiguity would be generated between the

estimated diagonal and off-diagonal coefficients of Rn(ω). Furthermore,

the matrix update in (6.8) looks like factorization, but, it is only scaled es-

timation. On the other side, to maintain the diagonal representation of the

tensor slice Vm
Rn

and the matrix Vm1m2

Rn
, they are initialized as matrices of

zeros with diagonal entries of ones. Moreover, the matrix Wn is randomly

initialized by values larger than zero.

6.2 Source-based prior information

As it was previously mentioned, the basis matrices, Un, n = 1, .., N , of

the sources in the observed mixtures are assumed to be always known

information. We propose that the matrices are either extracted in a

separate step, or made available in advance in a pre-training step. In the

second scenario, the matrices can be made either directly or indirectly

available. In case that the matrices are indirectly available, we assume that

a redundant library of trained spectral basis matrices is available. The

library contains trained basis matrices of sources, both if they are in the

observed mixtures and if they are not. Furthermore, we detect the basis

matrices that best represent the sources in the mixtures.

As we will see, following the extraction scenario of the basis matrices,

the proposed work is effective for BSS in mixing environments with low

reverberation. However, the separation performance is improved using

trained matrices in mixing environments with low and high reverberation.
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6.2.1 Extraction of the prior information

To extract the matrix Un observing the tensor ṼM
cn

, we formulate a mini-

mization function based on the β-divergence as follows

{Ũn,W̃
m
n } = arg min

Ũn,W̃m
n

∑
m

∑
ω,l

dβ[Ṽm
cn
/ŨnW̃

m
n ], (6.9)

where Ũn is estimation of the spectral basis matrix of the n-th source.

W̃m
n denotes a time-varying activation coefficient slice corresponding to

the observed slice Ṽm
cn

. In this formulation, the spatial diversity from one

observed slice to another is represented by the matrices W̃m
n ,m = 1, ..,M ,

while the redundant information is kept in the matrix Ũn. As it was stated,

the value of β plays a role in controlling the sparsity of factorization. We

build our idea to extract the matrix Un on minimizing the above function

by selecting a suitable value of β. In case that the value of β is a positive

large number, the low energy points of ṼM
cn

are weighted by small values,

while a small value of β increases the contribution of low energy points.

Accordingly, we can say that by assigning β a suitable value, the high

energy points belonging to the n-th source are only used to train the basis

vectors of the matrix Ũn, while the other points associated with artifacts

and reverberation are ignored. The matrix is extracted by applying the

MU to minimize the β-divergence in (6.9) as (appendix A)

Ũn ← Ũn ◦
∑

m[Ṽm
cn
◦ (ŨnW̃

m
n )β

e−2](W̃m
n )T∑

m(ŨnW̃m
n )βe−1(W̃m

n )T
, (6.10)

W̃m
n ← W̃m

n ◦
ŨT
n [Ṽm

cn
◦ (ŨnW̃

m
n )β

e−2]

ŨT
n (ŨnW̃m

n )βe−1
. (6.11)

βe denotes the value of β used for extracting the matrix Ũn. Each column

of the matrix Ũn is normalized to sum up to 1, while iterating the above

two steps of factorization. The slices W̃m
n ,m = 1, ..,M are not needed

anymore.
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6.2.2 Training of the prior information

The matrix Un can be pre-trained in advance on a separate set of training

audio signals applying NMF. For clean training audio signals of the n-th

source, the power spectra of the sources are concatenated in one matrix Vt
n.

As commonly applied, the minimization function based on the β-divergence

is represented as follows

{Un,W
t
n} = arg min

Un,Wt
n

∑
ω,l

dβ[Vt
n/UnW

t
n], (6.12)

The factorization of Vt
n is performed by minimizing the above function

using the MU rule by alternating the following two steps (appendix A)

Un ← Un ◦
[Vt

n ◦ (UnW
t
n)
βt−2](Wt

n)
T

(UnWt
n)
βt−1(Wt

n)
T

, (6.13)

Wt
n ←Wt

n ◦
UT
n [Vt

n ◦ (UnW
t
n)
βt−2]

UT
n (UnWt

n)
βt−1

. (6.14)

βt denotes the value of β used for training the matrix Un. The activation

coefficient matrix Wt
n is not needed any more. In this scenario the identities

of multiple speakers must be known in advance. Accordingly, the spectral

basis matrices Un, n = 1, .., N , are predefined and fixed for all the speakers.

Furthermore, the source order must be also known in advance.

To increase the flexibility of the proposed method, a redundant library

of trained spectral basis matrices of all available sources can be built. Then

the basis matrices matching the source signals in the observed mixtures, are

detected. To constitute the library Ulib for a number Z of source signals,

where Z > N , the spectral basis matrices are trained and sequentially

arranged side by side such as

Ulib = [U1 · · · |Uz| · · · |UZ ]. (6.15)
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6.2.3 Detection of the matched prior information

As it was previously stated, the tensor ṼM
cn

approximately represents cor-

rupted copies of the source power spectrum Vn weighted by propagation

inter-channel intensities. Using NMF, the spectrum can be decomposed as

Vn = UnWn. The factorization can be expanded by using the library and

involving a diagonal matrix Dlib as Vn = UlibDlibWlib. The coefficients

of the diagonal matrix Dlib can be seen to define the contribution of each

spectral basis vector of the library Ulib. Assuming that the matrix Un is

included in the library Ulib, the coefficient of Dlib that are associated with

the matrix Un, will have the largest values over all the other coefficients.

Accordingly, the matrix Un that best represents the source power spec-

trum Vn can be identified in the library Ulib by observing the diagonal

coefficients of the matrix Dlib.

This idea can be extended to the case of multiple observations. How-

ever, in this work, the tensor of multiple observations ṼM
cn

is composed by

weighted and corrupted versions of the source power spectrum Vn. The

weights are inter-channel intensities, and the corruption is due to resid-

ual from other source signals, reverberant environments or additive noise.

As a result, to perform successful detection, an efficient factorization al-

gorithm is required that tries to compensate the impact of the weights

and the corruption. To detect the matched matrices, we recall the conven-

tional Nonnegative Tensor Factorization (NTF) formulation. Observing

the tensor ṼM
cn

, the minimization function based on the β-divergence is

represented as follows

{Dm
lib,Wlib} = arg min

Dm
lib,Wlib

∑
m

∑
ω,l

dβ[Ṽm
cn
/UlibD

m
libWlib], (6.16)

where the m-th slice Dm
lib is a diagonal matrix of size ZK × ZK of a

ZK×ZK×M tensor DM
lib. Given the library Ulib, the matrix Dm

lib and the
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activation coefficient matrix Wlib are obtained by applying the MU rule to

minimize the β-divergence in (6.16) as follows (appendix A)

Dm
lib ← Dm

lib ◦
UT
lib[Ṽ

m
cn
◦ (UlibD

m
libWlib)

βd−2]WT
lib

UT
n (UlibDm

libWlib)β
d−1WT

lib

, (6.17)

Wlib ←Wlib ◦
∑

m(UlibD
m
lib)

T [Ṽm
cn
◦ (UlibD

m
libWlib)

βd−2]∑
m(UlibDm

lib)
T (UlibDm

libWlib)β
d−1

. (6.18)

βd is the value of β used to detect the matched spectral basis matrices. We

can detect the matched spectral basis matrix Uz that best represents the

n-th source spectral basis matrix Un, observing the tensor DM
lib. We start

by averaging along the elements of the diagonal slices of the tensor DM
lib,

converting the tensor into a vector d of size ZK, whose entries define the

average contribution of each spectral vector in multiple observations

d =
1

M

M∑
m=1

diag(Dm
lib). (6.19)

The vector d is divided into Z sub-vectors dz(k), each one is associated

with a spectral basis matrix Uz, and defines the contribution of each basis

vector in Uz. To detect the optimal basis matrix Uz∗ that best represents

the n-th source signal, the index z∗ of the optimal matrix is selected as

follows

z∗ = arg max
z

∑
k

dz(k), z = 1, 2, ..., Z (6.20)

Observing the tensors ṼM
cn

, n = 1, ..., N , we detect N optimal spectral basis

matrices. This proposed detection algorithm alternates with the separation

one, in order to correct wrong detections that may have occurred in a

previous iteration. The wrong detections may occur because of the residual

from the other source signals in the observed mixtures, and the coherence

between the trained spectral basis matrices in the library.
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6.3 Full description

The full algorithm is summarized as follows

—————————————————————————

Training: Ulib as in Section 6.2.2

Input: x(ω, l)

Initialize: c̃n(ω, l) as in Section 4.1.7, Σcn(ω, l) = I

Iterate: till convergence

Compute R̃cn(ω, l) as in (4.1)

Build the tensor ṼM
cn

and the matrix Ṽm1m2
cn

as in Section 6.1.1

Extraction or Detection:

Using ṼM
cn

, Extract Un, n = 1, ..., N as in Section 6.2.1

Using ṼM
cn

, Detect Un, n = 1, ..., N as in Section 6.2.3

Estimation:

Fixing Un, Factorize ṼM
cn

:

to estimate θdiagn = {Wn,V
m
Rn
} as in (6.6) and (6.7)

Fixing Un and Wn, Factorize Ṽm1m2
cn

:

to estimate θoffn = {Vm1m2

Rn
} as in (6.8)

Separation:

Rearrange Vm
Rn

and Vm1m2

Rn
in Rn(ω)

Compute vn(ω, l) = uTn (ω)wn(l)

Σcn(ω, l) = vn(ω, l)Rn(ω)

Gn(ω, l) = Σcn(ω, l)Σ
−1
x (ω, l)

c̃n(ω, l) = Gn(ω, l)x(ω, l)

Return

Output: c̃n(ω, l)

—————————————————————————

95



6.4. EXPERIMENTS CHAPTER 6. DECOMPOSITION III

6.4 Experiments

The experiments were carried out to investigate the effect of the number

of spectral basis vectors K, the training divergence factor βt, the detection

divergence factor βd, the extraction divergence factor βe, and the esti-

mation divergence factor βs. Three different datasets were used for this

experimental evaluation, including simulated and live-recorded data.

• The first one is a simulated dataset that was used to analyse the

detection algorithm, as well as to identify the separation performance

using trained spectral basis matrices.

• To evaluate the separation performance in real mixing environments,

using the trained basis matrices, a second live-recorded dataset was

recorded in an acoustically insulated room.

• The third dataset consists of simulated and live-recorded data from

the SISEC evaluation campaign. This was used as a reference dataset

to identify the performance of the algorithm in blind and informed

scenarios, where the extraction algorithm proposed in section 6.2.1 is

adopted to extract the spectral basis matrices in order to perform BSS.

This was also used to assess the performance that can be obtained in

the informed case, where the matrix Un associated with each source

signal is available.

For the multichannel underdetermined source separation problem, M = 2

observed mixtures and N = 3 speech signals were used. A smoothing

factor µ = 0.1 was adopted in (3.12). The discrete time-frequency rep-

resentation of the observed mixtures x(ω, l) was obtained through STFT

using a Hanning analysis window with length of 128 ms (i.e. 2048 samples

at 16 kHz sampling rate) and shift of 64 ms. The bi-dimensional window

γ for the computation of the empirical covariance matrix R̂cn(ω, l) in (4.2)
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is a Hanning window of size 3× 3. The algorithm was iterated till conver-

gence, which is achieved in less than 50 iterations, while the decomposition

algorithms were iterated 100 times.

6.4.1 Simulated scenario

A room of size 4.45 × 3.35 × 2.5 meters and an array of 2 omnidirec-

tional microphones spaced of 0.2 m are considered. The array is located

in the middle of the room and it has the same height (1.4 m) as the three

sources. The distance between source positions and the central point be-

tween the microphones was randomly chosen between 0.8 and 1.2 m, with

several source direction of arrivals (DOAs). The minimum angular dis-

tance between two neighboring sources is 25 degrees, and the maximum

is 40 degrees. Synthetic room impulse responses (RIRs) are simulated

through ISM [54] with a sampling frequency of 16 kHz for three reverber-

ation times: T60 = 130, 250, or 380 ms. Six native Italian speakers are

considered as our audio sources, 3 males and 3 females. For each speaker,

20 clean speech signals with average lengths of 8.75 s were produced. For

each speaker, the signals are divided into 5 signals for testing data and

15 signals used to train the spectral basis matrices Uz, z = 1, ..., 6. Six

male-female combinations of mixtures were generated. This resulted in a

total of 30 test observed mixtures for each reverberation time (T60).

Analysis of the detection algorithm

To build the redundant library Ulib in (6.15) for Z = 6 trained spectral

basis matrices, the power spectra of the training signals were computed and

concatenated in the matrix Vt
z, z = 1, 2, ..., 6. Applying NMF, each matrix

was factorized with K = 15. The training divergence factor βt in (6.13)

and (6.14) was assigned a value of 0.9, quite close to the KL divergence.

The z-th spectral basis matrix Uz of size 1025 × 15 was obtained, and
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integrated into the library Ulib of 6 trained spectral basis matrices of total

size 1025× 90. Let us now consider one specific case of mixing conditions,

on source-to-microphone distance of 1 m, and in a mixing environment

with reverberation time (T60) of 250 ms, in which mixtures of two male

and one female speech signals were generated. In the specific example here

considered the indexes of the basis matrices, chosen from the library and

involved in the mixtures, are {2, 4, 6}.

The detection divergence factor used in (6.17) and (6.18) was βd = 0.3.

Moreover, the separation divergence factor in (6.6), (6.7) and (6.8) was

βs = 0.3. The contribution of each spectral basis vector and spectral basis

matrix was computed at each iteration of the separation phase as in (6.19)

and (6.20). As it can be observed in Figures 6.4 and 6.5, the normalized

likelihood of each spectral basis vector and matrix associated with a cer-

tain target source in the observed mixtures increases while iterating the

separation algorithm; therefore, the optimal index of each spectral basis

matrix becomes more identifiable with respect to the other indexes.

Applying the proposed detection algorithm on all mixtures under test,

we observed that, as in the separation process, the accuracy of the algo-

rithm depends on the value of βd, the configuration of the mixing process

and the construction of the spectral basis matrices. Low values of βd per-

form better than large ones, especially in mixing environments with high

reverberation. If the mixing process involves low reverberation, the algo-

rithm works with very high efficiency. However, if the mixing environment

is highly reverberant, wrong detection may happen, especially if there is

much residual from the other source signals, and if there is high redundant

correlation between the pre-trained spectral basis matrices.
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Figure 6.4: Normalized Likelihoods of each basis vector in Ulib as a function of separation

iterations. The first graph on the left represents the mixtures, then columns from left to

right correspond to iterations, while the 3 rows refer to each one of the 3 sources.

Figure 6.5: Normalized Likelihoods of each basis matrix Uz as a function of separation

iterations. The first graph on the left represents the mixtures, then columns from left to

right correspond to iterations, while the 3 rows refer to each one of the 3 sources.

Source separation

The average separation performance measurement (SDR) as a function of

T60, K, and βs, with fixed βt = 0.9, is reported in Table 6.1. At low

reverberation when T60 = 130 ms, the best separation performance is ob-

tained when the value of K is large (between 25 and 40) and βs is assigned

moderate values (between 0.3 and 0.6). On the other side, a good perfor-

mance is achieved in high reverberation (T60 = 380 ms), when K is small

(between 15 and 25) and βs is also assigned small values (between 0.1 and
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Table 6.1: Average SDR (dB) of the simulated scenario as a function of K, T60 and βs,

βt = 0.9.

T60 (ms) 130 250 380 Average

K 15 25 40 15 25 40 15 25 40 15 25 40

βs = 0.9 8.53 9.18 9.04 5.50 5.61 5.32 3.58 3.46 3.23 5.87 6.08 5.86

βs = 0.6 9.03 9.71 9.64 6.57 6.51 5.92 4.73 4.48 4.08 6.78 6.90 6.55

βs = 0.3 8.64 9.26 9.66 6.60 6.85 6.84 5.02 4.95 4.44 6.75 7.02 6.98

βs = 0.1 7.88 8.48 9.09 6.26 6.52 6.96 4.63 4.67 4.81 6.26 6.56 6.95

0.3). On the average, the best performance is obtained when βs is in the

range between 0.3 and 0.6, but this range also depends on the value of the

adopted βt. In general, the experiments show the importance of choosing

proper values of β for training the basis matrices Un and estimating the

model parameters θ to guarantee an effective performance.

6.4.2 Live-recorded dataset

A room of size 6.5 × 3 × 2.2 meters and 2 omnidirectional microphones

spaced 16 cm are considered. The microphones are located close to the

center of one of the room walls and has the same height (1.5 m) as 3

loudspeakers considered as speech sources. The distance between source

positions and the central point between the microphones is 1.5 m, with

DOAs at 55, 90 and 125 degrees. The measured reverberation time of the

room is about 220 ms. The mixtures were recorded at sampling frequency

of 16 kHz. The same speech source signals and trained spectral basis

matrices, used in the simulated scenario in section 6.4.1, were used for this

evaluation on the live-recorded data. Table 6.2 shows the corresponding

results as a function of K and βs, with fixed βt = 0.9. The performance

is close to what obtained in the simulated experiments at T60 = 250 ms.

The best separation performance is obtained when K is moderately large

(between 20 and 40), and βs is assigned small values (between 0.1 and 0.3)
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Table 6.2: Average SDR (dB) of the live-recorded dataset as a function of K and βs,

βt = 0.9.

K 10 20 30 40

βs = 0.9 4.52 4.82 5.10 5.43

βs = 0.6 5.60 5.70 5.79 5.88

βs = 0.3 5.72 6.62 6.78 6.62

βs = 0.1 5.67 6.46 6.42 6.43

6.4.3 Dataset of SISEC

The development dataset dev1 of SISEC (under-determined speech and

music mixtures) was used to further assess the performance of the pro-

posed algorithm. The dataset consists of 4 synthetic convolutive and 4 live-

recorded stereo mixtures of 3 Japanese and English speech signals. All the

mixtures are 10 s long sampled at 16 kHz. The synthetic convolutive filters

are generated with the Roomsim toolbox [20]. They simulate 2 omnidirec-

tional microphones placed 1 m apart in a room of dimension 4.45×3.35×2.5

with reverberation times 130 and 250 ms, which corresponds to the setting

employed for live-recorded mixtures. The distance between source posi-

tions and the central point between the microphones varies between 0.8

and 1.2 m. For all mixtures the DOAs vary between 60 and 300 angular

degrees, with a minimal spacing of 15 degrees. This dataset was used to

evaluate the proposed algorithm in a blind scenario, where the extraction

algorithm of the spectral basis matrices Un, n = 1, .., N , proposed in sec-

tion 6.2.1 is adopted, as well as in an informed scenario, where the true

spectral basis matrices are available.

On the available 8 observed mixtures (male and female synthetic con-

volutive and live-recorded with two different reverberation times of 130

and 250 ms) and in an informed case, we computed the basis matrices
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Figure 6.6: The average separation performance of the informed case of the SISEC dataset

as a function of K and βs. βt = 0.9. The horizontal axis indicates the value of the tested

βs=[0.1 0.3 0.6 0.9].

Un of the available source signals. The matrices were with different sizes

K = [20, 35, 50], and were trained with βt = 0.9. For the separation, the

selected values of βs were again 0.1, 0.3, 0.6, or 0.9. Fig. 6.6 shows the

average separation performance, for all values of K. The best performance

is obtained when the value of βs equals 0.6. On the average, large values

of K between 35 and 50 benefit the separation performance when βs is

assigned large values also (between 0.6 and 0.9). While when βs is low

(between 0.1 and 0.3), it is preferable to adopt small values of K.

Table 6.3 shows an example of the detailed performance measurements

of informed and blind source separation. In this experiment, only the live-

recorded stereo mixture of 3-female speech signals, with reverberation time

T60 = 130 ms, was used to evaluate the performance. The matrix Un is

either assumed to be pre-known with K = 35, or to be extracted with

K = 50, the best performing sizes of Un. For the extraction, the matrix

Un is updated as proposed in Section 6.2.1. On the average, with the prior

information, we gain around 1.5 dBs of SDR compared to the blind case.
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Table 6.3: Detailed performance of informed and blind separation of live-recorded mix-

tures of three females from SISEC, T60 = 130 ms.

Un Informed Blind

Div. Factors βt = 0.9, βs = 0.3 βe = 0.6, βs = 0.6

Source images c̃1 c̃2 c̃3 c̃1 c̃2 c̃3

SDR 11.27 10.42 10.22 9.63 8.67 9.17

ISR 15.13 14.56 17.76 12.90 12.82 16.50

SIR 17.26 18.02 13.12 15.28 13.97 11.95

SAR 14.99 12.99 13.68 14.32 12.33 12.76

Blind source separation

We evaluated the performance in a blind scenario using 4 observed mixtures

(2 synthetic convolutive and 2 live-recorded, all with reverberation time of

130 ms). The matrix Un is extracted as proposed in Section 6.2.1. Tables

6.4 and 6.5 report the average SDR in terms of K, βe, and βs. For the

synthetic convolutive mixtures, when K is small, moderate values of βs

(between 0.3 and 0.6) perform good, if βe is assigned moderate values

(between 0.6 and 0.9). By increasing K and keeping βe in its moderate

range, a good performance is obtained when βs is assigned small values

(between 0.1 and 0.3). The best average SDR (7.07 dBs) is achieved when

K = 35, βe = 0.6 and βs = 0.1.

On the other hand, for the live-recorded mixtures, large values for both

βe and βs perform better than small ones, when K = 20. Better per-

formance is achieved for large values of βs when βe = 0.6 and K = 35.

Furthermore, the best performance is obtained when K = 50, βe between

0.6 and 0.9, and βs in its moderate range (between 0.3 and 0.6). To con-

clude, in mixing environments with low reverberation (T60 = 130 ms),

moderately large values of K and moderate values of βs benefit the sepa-

ration performance not only when the separation system is fed by the basis

matrices as in the previous subsections, but also in the blind scenario.
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Table 6.4: Average SDR of blind separation of mixtures from SISEC, T60 = 130 ms.

Env. Synthetic convolutive mixtures

K 20 35 50

βe 1.2 0.9 0.6 1.2 0.9 0.6 1.2 0.9 0.6

βs = 0.9 5.53 5.97 6.00 5.70 5.79 5.63 5.78 5.80 5.68

βs = 0.6 5.92 6.32 6.49 5.71 6.22 5.97 6.18 6.17 5.76

βs = 0.3 5.51 6.79 6.75 5.66 6.01 6.81 5.71 6.90 6.08

βs = 0.1 5.07 5.55 5.75 5.44 6.50 7.07 5.34 6.36 6.20

Table 6.5: Average SDR of blind separation of mixtures from SISEC, T60 = 130 ms.

Env. Live-recorded mixtures

K 20 35 50

βe 1.2 0.9 0.6 1.2 0.9 0.6 1.2 0.9 0.6

βs = 0.9 7.46 7.54 5.83 7.74 7.58 7.95 7.55 7.62 7.80

βs = 0.6 7.49 7.27 6.98 7.66 7.48 7.76 7.61 7.90 8.16

βs = 0.3 6.07 7.06 6.76 6.31 7.20 7.31 7.23 7.62 7.98

βs = 0.1 5.26 5.59 5.41 5.48 6.76 6.74 6.26 7.10 7.11

Performance comparison

Using the live-recorded dataset, we compared the performance of the pro-

posed method in informed and blind scenarios with the method proposed

in the previous chapter and two recently developed blind source separation

methods [22, 67]. Tables 6.6, 6.7, 6.8 and 6.9 show the comparison results

of the four methods, denoted as “Proposed III”, “Proposed II”,“Nesta”

[67], and “Cho” [22]. For the informed case, the spectral basis matrices

Un are trained as proposed in Section 6.2.2. The matrices are extracted

as proposed in Section 6.2.1 for blind source separation.

Over all the mixtures under test, the prior information benefits the

performance, the informed case of the proposed method in this chapter

performs better than the informed case of the proposed method in the

previous chapter. In the informed case, moderate values of K (around 35)
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and moderate small values of βs (around 0.3), when βt = 0.9, perform the

best for mixtures of female voices. However, large size pre-trained prior

information (K = 50) is recommended for mixtures of male voices, and in

this case βs should be assigned moderate large values (around 0.6).

In the blind case, in mixing environments with low reverberation (T60 =

130 ms), the proposed method performs better than the methods “Nesta”

and “Cho”, in both cases of mixtures of female voices and mixtures of

male voices. However, the method “Proposed II” outperforms the pro-

posed method in case of mixtures of female voices. In mixing environments

with moderate reverberation (T60 = 250 ms) and in case of mixtures of fe-

male voices, the method “Proposed II” performs the best, moreover, the

proposed method outperforms the other two methods. However, due to

the weak sparsity and to the overlap at low frequency bands, the proposed

methods “Proposed II” and “Proposed III” fail for mixtures of male voices.

For the extraction, in mixing environments with low reverberation, large

values of βe (around 1.2) and moderate large values of K (around 20)

perform the best for mixtures of male voices. However, it is better to

adopt large values of K (around 50) and moderate values of βe (around

0.6) for mixtures of female voices. In mixing environments with moderate

reverberation, the best performance is obtained when K is moderately

large (around 35) and βe is large (between 0.9 and 1.2) for both cases of

male and female voices. On the other hand, values of βs in the interval

between 0.3 and 0.6 still perform the best for all mixing conditions and

separation strategies.

6.5 Conclusion

In this work, we tackled the problem of underdetermined audio source

separation in reverberant environments. The proposed work adopts local
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Table 6.6: Performance comparison of blind separation of live-recorded stereo mixtures

of three female speech signals from SISEC, T60 = 130 ms.

Method Proposed III Proposed II

Nesta Cho

Un Inf. Ext. Inf. Ext.

K 35 50 50 25

Train/Extract βt=0.9 βe=0.6 βt=0.5 β1=0.5 [67] [22]

Estimation βs=0.3 βs=0.6 β1=0.5,β2=0.5 β1=0.5,β2=0.5

SDR 10.70 9.20 10.10 9.70 7.70 8.40

ISR 15.80 14.10 15.00 14.90 10.50 13.00

SIR 16.10 13.70 16.00 15.70 13.30 12.60

SAR 14.00 13.10 13.40 12.60 11.80 12.10

Table 6.7: Performance comparison of blind separation of live-recorded stereo mixtures

of three male speech signals from SISEC, T60 = 130 ms.

Method Proposed III Proposed II

Nesta Cho

Un Inf. Ext. Inf. Ext.

K 50 20 50 50

Train/Extract βt=0.9 βe=1.2 βt=0.9 β1=0.9 [67] [22]

Estimation βs=0.6 βs=0.6 β1=0.5,β2=0.9 β1=0.9,β2=0.5

SDR 9.10 7.20 7.70 6.95 6.50 6.50

ISR 14.10 12.20 12.40 12.10 9.30 11.40

SIR 13.80 11.60 13.20 12.00 10.90 10.00

SAR 12.20 10.10 10.30 9.00 9.60 10.50
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Table 6.8: Performance comparison of blind separation of live-recorded stereo mixtures

of three female speech signals from SISEC, T60 = 250 ms.

Method Proposed III Proposed II

Nesta Cho

Un Inf. Ext. Inf. Ext.

K 35 15 50 15

Train/Extract βt=0.9 βe=0.9 βt=0.5 β1=0.5 [67] [22]

Estimation βs=0.3 βs=0.3 β1=0.9, β2=0.9 β1=0.5,β2=0.9

SDR 9.40 6.40 9.30 6.80 6.00 6.10

ISR 14.40 11.20 13.90 11.00 8.90 10.90

SIR 14.10 10.60 14.30 10.80 10.60 9.00

SAR 12.40 9.90 12.20 10.80 8.70 10.00

Table 6.9: Performance comparison of blind separation of live-recorded stereo mixtures

of three male speech signals from SISEC, T60 = 250 ms.

Method Proposed III Proposed II

Nesta Cho

Un Inf. Ext. Inf. Ext.

K 50 35 50 50

Train/Extract βt=0.9 βe=1.2 βt=0.9 β1=0.5 [67] [22]

Estimation βs=0.6 βs=0.6 β1=0.5,β2=0.9 β1=0.5,β2=0.9

SDR 8.30 5.00 7.10 5.80 5.20 6.00

ISR 13.10 9.49 11.50 10.54 8.30 10.50

SIR 12.70 8.36 11.60 10.40 9.00 9.10

SAR 11.10 8.23 9.70 7.80 8.00 9.20
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Gaussian modeling of the mixing process. The work describes a new esti-

mation algorithm of the parameters of the model by applying nonnegative

tensor/matrix factorization, given source-based prior information. Follow-

ing this direction, the parameters are jointly estimated, and the related

artifacts are consequently reduced. To perform the estimation, spectral

basis matrices of power spectra of source signals in observed mixtures are

assumed to be available as prior information. In a separate step, the basis

matrices are either extracted or detected. Using nonnegative tensor factor-

ization, we propose a new method for extracting the matrices, and in this

case the algorithm fully works in a blind scenario. However, to obtain a

better separation performance, in the other case the matrices are made in-

directly available through a pre-trained redundant library of spectral basis

matrices. Furthermore, using nonnegative tensor factorization, we propose

a new method to detect the basis matrices that best represent the power

spectra of the source signals in the observed mixtures.

For each of the training, detection, extraction and estimation phases, the

factorization is performed using the β-divergence and applying the widely

used multiplicative update rules. By tuning the value of β, we can govern

the sparsity of factorization. Controlling the sparsity is an important issue

because it is known that the speech signals are sparse in their nature, and

so we can minimize any residual artifacts. Accordingly, we tested several

values of β for each task in order to identify the best performing ones.

Experiments show that the choice of β is a really critical aspect. We found

that the best choice of β to estimate the parameters, is in the interval

between 0.3 and 0.6, in both cases of extracting the basis matrices and

of detecting the trained ones. On the other hand, to extract the basis

matrices, we found that for mixtures of female voices, the best choice of

β is between 0.6 and 0.9. However large values (> 0.9) perform better for

mixtures of male voices.
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The experimental results show that the proposed method can work with

approximately the same efficiency in both cases of simulated and real en-

vironments. In the informed case, the proposed algorithm perform better

than the proposed one in the previous chapter. In the blind case, the

proposed method outperforms two of the recently proposed blind source

separation algorithms, and provides comparable results to the one proposed

in the previous chapter.
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SECOND PART

Exploiting spatial information about propagation channels used

to generate observed mixtures, for source separation and speaker

diarization, by applying the sparse modeling theory.





Chapter 7

Sparse source separation

Sparse modeling basically exploits a prior assumption that audio source

signals are sparse in their nature in a known domain such as the time-

frequency domain. In this work, a dictionary composed of the mixing pa-

rameters is built using Room Impulse Responses (RIRs) between multiple

points of the space and an array of microphones. For example, the planar

area of a room can be sampled into a finite set of points and the RIRs

are measured and then arranged in the dictionary. Exploiting the sparse

nature of audio signals, given the dictionary and observed mixtures of au-

dio signals, applying a sparse modeling algorithm, we propose to detect

trained mixing parameters that match the real parameters which charac-

terize the observed mixtures [34]. Furthermore, the detected parameters

are exploited to perform source separation in order to retrieve the original

signals in the mixtures applying l0-norm minimization [80] (see Figure 7.1).

To do this we propose and analyze an efficient greedy algorithm based

on the Orthogonal Matching Pursuit (OMP) [61, 75] and focus on the mis-

match between ideal and non-ideal mixing conditions. It is shown that the

overall detection capability is considerably degraded if the time-frequency

sparseness condition of speech signals is not ideally fulfilled or when there

is a mismatch between the real mixing parameters and the trained ones.
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Mixtures

Dictionary of 
Trained RIRs

Separated Signals

Detection using 
OMP

RIRs in the Mixtures

l0­norm 
Minimization

Adaptation of 
Detected RIRs
using wICA

or

Figure 7.1: Flowchart of the proposed method. Highlighted blocks refer to novel contri-

butions.

An efficient normalization strategy is applied which improves the work

of the proposed MP and consequently the overall source detection and sepa-

ration performance. Although the effect of this mismatch can be mitigated

by the normalization, still its effect is crucial and it should be reduced as

much as possible. In response to this need, dictionary adaptation with

the observed data is a possible viable solution. In this study we fuse the

concept of model-based spatial dictionary and blind mixing system esti-

mation in a single framework, through the effective combination of sparse

modeling and Independent Component Analysis (ICA) [66]. Unsupervised

ICA based on the weighted Natural Gradient is exploited to adapt the

original dictionary with the observed data. The ICA adaptation is based

on the assumption of sparse spatio-temporal representation of the acoustic

sources.
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7.1 Observations and dictionary representation

Assuming that the source signals are sparse in the STFT domain and each

time-frequency point is dominated by one source, the observed mixtures

x(ω, l) can be approximately represented as

x(ω, l) = [x1(ω, l), · · · , xM(ω, l)]T

≈ [h1,n(ω,l)(ω), · · · , hM,n(ω,l)(ω)]Tsn(ω,l)(ω, l),
(7.1)

where n(ω, l) is the index of the most dominant source. Under this assump-

tion, a convenient representation of the source signals can be obtained by

computing the cross correlation between the m-th observed mixture at the

m-th microphone and an observed mixture at a reference microphone, e.g.

m = 1. Therefore, the n-th source dominance is approximated as

rm(ω, l) = xm(ω, l)x1(ω, l)
H

≈ hm,n(ω,l)(ω)sn(ω, l)sn(ω, l)
Hh1,n(ω,l)(ω)H .

(7.2)

Applying absolute normalization, a normalized copy of rm(ω, l) is de-

fined as

rnormm (ω, l) =
rm(ω, l)

|rm(ω, l)|
=

xm(ω, l)x1(ω, l)
H

|xm(ω, l)x1(ω, l)H |

≈


hm,n(ω,l)(ω)h1,n(ω,l)(ω)H

|hm,n(ω,l)(ω)h1,n(ω,l)(ω)H | + ε(ω, l), sn(ω, l)sn(ω, l)
H > 0

0, sn(ω, l)sn(ω, l)
H = 0

(7.3)

where ε(ω, l) is the error of a non strict sparse signal assumption or the

residual from other source signals in the observed mixtures x(ω, l). Note

that in the ideal sparseness, i.e. when ε(ω, l) = 0, rnormm (ω, l) does not

depend on the source spectral variance sn(ω,l)(ω, l)sn(ω,l)(ω, l)
H and then can

be ideally represented by a finite small number of models, which are only

related to the propagation channel characteristics. Then, it is suitable to

lead to an efficient sparse representation of the source signals.
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According to equation (7.3), up to the error ε(ω, l), at each frequency ω,

rnormm (ω, l) can only represent the cross-channel propagation characteristics.

The propagation channel between the position of a source and the location

of a microphone is in general difficult to model since it depends on the

geometrical description of all the reflective surfaces and on their sound

absorption characteristic. The propagation channel characteristics can be

represented using measured RIRs. Therefore, the atoms of the dictionary,

representing values assumed by
hm,n(ω,l)(ω)h1,n(ω,l)(ω)H

|hm,n(ω,l)(ω)h1,n(ω,l)(ω)H | , can be designed using

the measured RIRs.

Possible source spatial positions are approximated by selecting a finite

set of points, e.g. on a two-dimensional grid. The RIR from the o-th loca-

tion to the m-th microphone is obtained. Furthermore, the discrete Fourier

transform is applied in order to compute the frequency representation of

the impulse response hom(ω). Finally, the normalized atom vector is defined

as

dom =

[
hom(1)ho1(1)H

|hom(1)ho1(1)H |
· · · h

o
m(Ω)ho1(Ω)H

|hom(Ω)ho1(Ω)H |

]T
, (7.4)

do = [do2; · · · ; doM ]. (7.5)

The over-complete dictionary including all the atom vectors is defined as

D = [d1| · · · |dO].

In order to match the atom definition, the time-frequency representa-

tions of the observations in equation (7.3) can be inserted into a single

vector depending on the frame l such as

rm(l) = [rnormm (1, l) · · · rnormm (Ω, l)]T . (7.6)

r(l) = [r2(l); · · · ; rM(l)]. (7.7)
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7.2 Detection of matched atoms

We focus on a greedy algorithm based on the Orthogonal Matching Pur-

suit (OMP) introduced in Section 3.6, and with a modification in the atom

selection procedure. Since we observe multiple frames, in principle the pro-

jection could be averaged over all the observations. However, this strategy

may lead to wrong results due to the intrinsic correlation between the

atoms related to very close spatial locations. Here, in order to mitigate

this problem and exploit also the source temporal sparsity, we adopt an

extended selection procedure which still considers all the observed frames

at the same time. In case of temporal sparsity assumption, large coherence

between r(l) and one of the active atoms is detected inside each time frame

l. Starting by initializing the iterative residual as z0(l) = r(l), we compute

the inner product of the columns of the current residual and the atoms of

the dictionary and select the one maximizing it inside each time frame l

omatch
l = arg max

o
|(do)H zi−1(l)|. (7.8)

We consider all the indexes omatch
l obtained over all the frames and sort

them in descending order in a vector q, according to their frequencies

of occurrences. Finally, for the first J-atoms in q, the cumulative inner

product is calculated and the atom leading to the highest integrated value

is chosen

jmatch = arg max
j

∑
l

|(dqj)H zi−1(l)|, j = 1, 2, ..., J (7.9)

This strategy avoids that wrong atoms matching noisy frames of the ob-

served data, but with low projection value, would be erroneously detected.

The final algorithmic procedure is described below. In this work the

OMP strategy was adopted in place of the standard MP, i.e. the residual

is updated computing the projection orthogonal to the subspace spanned

by all the atoms estimated until the current iteration.
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————————————————————————————————

Initialize: z0(l) = r(l), Γ0 = φ, DΓ0
= [0].

Iterate: For i = 1; i = i+1; till stopping criterion,

Find the index jmatch of the best matching atom with zi−1(l), ∀l as in

(7.9),

Update sub-dictionary by new atom DΓi = [DΓi−1
|djmatch

],

Update the sub-space by new atom index Γi = Γi−1 ∪ jmatch,

Orthogonal projection : p̂i(l) = D†Γizi−1(l),∀l,
Update residual : zi(l) = zi−1(l)−DΓip̂i(l),∀l,
Normalize each element of zi−1(l),∀l to unit magnitude.

Return

————————————————————————————————

Here DΓi is the sub-dictionary of the selected matched atoms in the i-th

iteration spanned by the atoms indexed in th subspace Γi of the sparse

dictionary D, D†Γi = (DH
Γi

DΓi)
−1DH

Γi
is the pseudo-inverse of DΓi, and DH

Γi

is the conjugate transposition of DΓi. We can choose between two different

stopping criteria for istop:

1) Repeat until a predefined level of sparsity G, i.e. i == G.

2) Repeat until the reduction of the total residual from the previous iter-

ation is smaller than a certain threshold.

7.3 Dictionary adaptation

The mismatch between the true mixing parameters used to generate the

observed mixtures x(ω, l) and the trained atoms in the dictionary D is the

main cause of poor performance of sparse modeling. On the other side,

blind techniques are able to estimate the mixing system without specific

geometrical knowledge and then better adapt to the observed mixtures
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x(ω, l). However, their robustness is limited by low convergence, high

estimation variance and signal conditions not well fitting the general hy-

pothesis of independence in short-time. We propose to combine both the

approaches in order to compensate their individual weak points, leading to

a semi-blind estimation method.

We start with the hypothesis that there is only one source dominating

a specific STFT frame. Therefore, each instant is used to update only the

atom related to the dominating source. For this purpose we use a modifica-

tion of the weighted Natural Gradient (wNG) proposed in [67]. The main

idea behind wNG is to re-weight the gradient according to the likelihood

of dominance of a source in a given frame in order to selectively estimate

the mixing parameters related to different spatial locations. Following this

idea, we select the atom in the dictionary best matching with the observed

frame l

õ = arg max
o

Pr(o, l), Pr(o, l) = |(do)H r(l)|, (7.10)

and normalize the respective projection as

Pr(õ, l) =
Pr(õ, l)− Prminõ

Prmaxõ − Prminõ

, (7.11)

where Prminõ and Prmaxõ are the minimum and maximum projection of the

atom õ with all the previously observed data frames. The normalized

projection is then a weight with values ranging from 0 to 1, indicating the

dominance of the source at the location õ at the frame l.

A weighting matrix Põ is defined as a diagonal matrix with the first

element of value Pr(õ, l) and the remaining elements set to 1− Pr(õ, l). A

squared M×M mixing matrix, describing the source propagating from the
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location related to the atom o at the frequency bin ω, is initialized as

ĥo(ω) =


1 0 · · · 0

do2(ω) 1 · · · 0

· · · · · · · · · · · ·
doM(ω) 0 · · · 1

 , ∀o (7.12)

where dom(ω) indicates an element of the vector dom. According to the

weighted NG, for each frame l, the atom selected in (7.10) and its corre-

sponding mixing system are updated as follows

y(ω, l) = [ĥõ(ω)]−1x(ω, l) (7.13)

∆h(ω) = ĥõ(ω)(I− Φ(y(ω, l))y(ω, l)H)Põ (7.14)

ĥõ(ω) = ĥõ(ω)− η∆h(ω) (7.15)

dõm =

[
ĥõm1(1)ĥõ11(1)H

|ĥõm1(1)ĥõ11(1)H |
, · · · , ĥ

õ
m1(Ω)ĥõ11(Ω)H

|ĥõm1(Ω)ĥõ11(Ω)H |

]T
(7.16)

dõ = [dõ2; · · · ; dõM ] (7.17)

where η is the step-size and Φ(·) is a non-linear function. In practice, the

weighting matrix induces the gradient to update the first column of ĥõ(Ω)

when the source located in õ is dominant.

The above adaptation structure differs from that of traditional on-line

determined BSS which updates a single mixing/demixing matrix, in order

to split the observed mixtures into their individual components. In contrast

the proposed algorithm realizes a semi-blind spatio-temporal learning, i.e.

the learning proceeds not only in time but also in the spatial domain,

according to the prior knowledge given by the geometry. Therefore, the
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learning can continue even when the source of interest is silent but some

localized noise sources are active, so that a learning from noise becomes

possible. This is an attractive property which can considerably increases

speed and robustness of separation when compared to any blind method.

7.4 Experiments

A room with size 8 × 6 × 3 meters and an array of 2 omni directional

microphones spaced of 0.2 m are considered. Microphones are located in

the middle of the room and have the same height as the sources (1.5 m).

Synthetic RIRs are simulated through ISM between multiple locations in

the room and the microphones, over a grid of two-dimensional points with

a spatial resolution of 0.2 m (i.e. a total of Natoms = 546 atoms), with a

sampling frequency of fs = 16 kHz. The average reverberation time of the

simulated RIRs is of about 250 ms (i.e. the length of the RIRs is about

4096 samples). Time-domain mixtures of N = 4 speech sources were gen-

erated by individually convolving the full length simulated RIRs with the

original source signals and adding the source image contributions to each

microphone. The discrete time-frequency representation of the mixture

x(ω, l) was obtained through STFT with Hanning analysis windows with

length Nbins. The dictionary D is built by truncating the original impulse

responses at the length Nbins and applying the discrete Fourier transform

(DFT) to obtain a discrete frequency representation. Due to the Hermitian

symmetry, only half of the frequency bins were used in both mixtures and

dictionary atoms.

7.4.1 Mismatch analysis

In this section we analyze through simulation the correlation between ob-

servations and atoms, in presence of two causes of mismatch between the
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ideal model and the real conditions. Two different conditions generating

mismatch are considered:

• Non-ideal source signal sparseness

• Atoms representing the true mixing system are not included in the

dictionary

In a first analysis, we assume that the mixing system of each source is

exactly modeled by an atom included in the dictionary, i.e. mixtures are

obtained by convolution of the source signals with randomly selected RIRs,

corresponding to four atoms in the dictionary. In this analysis we compare

the effect of ideal and non-ideal time-frequency source sparseness. Having

knowledge of the individual source signals recorded at the microphones, an

ideal sparse representation of r(l) is obtained by first computing the index

of the most dominant source for each time-frequency point

M(ω, l) = arg max
n
|sn(ω, l)|2, (7.18)

where |sn(ω, l)|2 indicates the power of the n-th source. The ideal sparse-

ness is simulated by modeling the observation as

rnorm2 (ω, l) =
h
o(M(ω,l))
2 (ω)h

o(M(ω,l))
1 (ω)H

|ho(M(ω,l))
2 (ω)h

o(M(ω,l))
1 (ω)H |

, (7.19)

where o(M(ω, l)) is the index of the atom in the dictionary ideally repre-

senting the mixing system of the source indexed in M(ω, l). Note that in

the two-channel case, the observation is represented by a single component

for each frequency bin ω and time frame l. Then, modeling the observa-

tion vector as in (7.6) and (7.7), we compute the magnitude of the inner

product between the atoms related to each source and the frames of r(l)

ζn(l) = |(do(n))Hr(l)|, (7.20)

where o(n) indicates the index in the dictionary of the atom representing
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Figure 7.2: Cumulative distribution function of the correlation ζn(l) in case of ideal and

non ideal TF source sparseness.

the n-th source. Figure 7.2 shows the cumulative distribution function

(CDF) of ζn(l) for all n and l, when the inner product is computed for

both cases of ideal and non-ideal sparse sources with and without applying

the absolute normalization in (7.3). It is straightforward to observe that for

an ideal sparse representation, with and without absolute normalization,

the CDF slowly approaches to 1 for large inner products, which means that

there are frames ideally matching the atoms of the dictionary D.

On the other hand, the source signal overlap in the non-ideal sparseness

cases is responsible of a large mismatch between the magnitude of the

observations and atoms, and consequently the CDF quickly saturates for

a value close to 0.3 of correlation. However, when the normalization is

applied, the correlation between atoms and observations is better preserved

and the CDF gets closer to that obtained in the ideal sparse case.

In a second analysis, we analyze the behavior of the CDF when there is

ideal source sparseness, i.e. the error in (7.3) is ideally 0, but the dictionary

is represented by atoms non ideally matching the true mixing systems.

Similarly to (7.20), we compute the inner product of each active atom and

the ideal sparse ratio represented in (7.19). To simulate the mismatch,
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Figure 7.3: Cumulative distribution function of the correlation ζn(l) in case of

match/mismatch between atoms and true mixing systems.

the atoms are generated from the simulated RIRs but reduced to a time-

domain length of 256 samples. Figure 7.3 shows that the correlation can

be seriously degraded in case of mismatch between atoms and true mixing

conditions. Nevertheless, the absolute normalization seems considerably

able to mitigate the effect of such errors.

7.4.2 Source detection and separation

In these simulation experiments, we test the ability of the proposed method

to detect the active atoms in order to localize and separate the audio

sources. The separation is carried out using the detected active mixing

system and applying the l0-norm minimization proposed in [80]. The per-

formance of detection and separation was tested by counting the number of

correct source location detection and the source-to-distortion ratio (SDR).

To be fair, the measured results were averaged over 20 experiments simu-

lated with different random source positions.

As before, in a first experiment we consider the ideal case of time-

frequency source sparseness (the sparse ratios were obtained as in (7.19))

and ideal match between the true mixing system and the atoms in the
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dictionary. In practice, the atoms in the dictionary were modeled from the

true mixing systems setting their length to the length of the analysis frame

Nbins = 4096, in order to describe the entire full length RIRs. Consistently

with the mismatch analysis results, we obtained 100% of true detection

and a very high average SDR of 9.24 dB. This result shows that in ideal

conditions, the proposed OMP algorithm is able to correctly detect the

sources and then is potentially an attractive method for source localization

and separation.

In a second experiment we evaluate the performance in the real case, i.e.

considering the observations obtained from the real mixtures and modifying

the length of the RIRs used to model the dictionary. Specifically the length

of the RIRs for the simulation of the atoms was set to the length of the

analysis frame Nbins.

As expected, tables 7.1 and 7.2 show that the robustness can be con-

siderably improved through the normalization which is able to correctly

detect all the sources with a sufficient accurate atom definition (i.e. when

the length is at least ≥ 1024 samples). Using the detected mixing system,

the original sources sn(t) could be separated with the l0-norm minimization

in [80], leading to a remarkable SDR (see table (7.2)), considered the dif-

ficult conditions (i.e. underdetermined scenario, large microphone-source

distance). The average SDR is considerably higher with normalization

since it allows a higher true atom detection, and grows up monotonically

as a function of the length of the detected mixing system. In fact, the

sparse demixing in frequency-domain applied by the l0-norm minimiza-

tion method, becomes more effective as the mixing system modeled by the

atoms approaches the true one.

Finally, it can be noted that even when the detection rate is very low,

a certain level of separation is still obtained (see the positive SDR values

obtained without normalization). This is possible because of the intrinsic
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Table 7.1: Percentage of successful detection.

Nbins 256 512 1024 2048 4096

Without Norm. 5% 0% 5% 10% 10%

With Norm. 35% 35% 90% 95% 100%

Table 7.2: Average of separation performance SDR in dBs.

Nbins 256 512 1024 2048 4096

Without Norm. 4.35 5.25 5.40 6.24 5.91

With Norm. 4.46 5.14 6.97 8.77 9.24

correlation between atoms related to multiple close locations. That is, even

though it is not possible to correctly detect the true source locations, to a

certain extent, wrong detected atoms are still able to describe the sources

with a sparse signal representation.

7.4.3 Dictionary adaptation

For the evaluation, we simulated mismatched sets of RIRs for the genera-

tion of the dictionary and for the generation of the mixtures. The first set

was obtained by simulating RIRs assuming uniform absorption coefficients

over all the room surfaces (walls, ceiling and floor) and with a reverberation

time of about T60 = 50 ms. The second set was simulated in a similar way

but sampling the spatial locations with a random offset (between 0 and 5

cm) with respect to the atom locations and using a larger reverberation

time T60 = 250 ms. In this way we generated a double mismatch between

the RIRs in the dictionary and those underlying the mixtures. Indeed, this

is a realistic condition that one would observe in real-world because the

source locations cannot be exactly restricted to the points sampled in the

dictionary and the accuracy of the modeled RIRs is always limited by the

used geometrical model.

For the generation of the mixtures three different datasets were consid-
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Figure 7.4: Simulation setup: green circles indicate the true locations of the sources in

the mixtures while cross points in the grid indicate the spatial locations modeled by the

original dictionary.

ered: a set for adaptation used for updating the atoms in the dictionary;

two sets for evaluating the separation performance. The adaptation set was

generated by creating mixtures of acoustic sources using domestic noise

signal samples in the Freesound1 and the Logic Pro libraries, and added

in order to generate a time-varying degree of overlap (for a maximum of

three sources overlapping in time). It consists of two hundred mixtures of

12 seconds each for a total of about 40 minutes. Time-domain mixtures

were generated by individually convolving simulated RIRs for a given set

of locations (see Figure 7.4), with the original source signals and adding

the source image contributions at each microphone. The mixtures for the

first evaluation dataset were generated by using a speech signal selected

from the TIMIT database and three random domestic noise signals.

The second evaluation dataset was generated by using only speech sig-

nals, for a total of 4 overlapping speakers. Both test sets consist in 20

mixtures of about 15 s. In all the datasets source locations were randomly

modified for each mixture. The discrete time-frequency representation of

1http://www.freesound.org/
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Figure 7.5: Average inner product between the true mixing systems with the first best

matching atom (solid line) and the second best matching atom (dotted line)

the mixture x(ω, l) was obtained through STFT with Hanning windows of

length L, shifted of 512 samples. In the weighted Natural Gradient the

adaptation step-size was set to η = 0.02 and the non-linear function to

Φ(x) = tanh(10 · |x|) x
|x| .

System identification

Figure 7.5 shows the average projection obtained after having adapted the

dictionary with a certain amount of data and showing the projection when

considering the first and second best matching atom. At the time instant

0 the average projection corresponds to the performance evaluated with

the original unadapted one. It can be noted that as the learning process

proceeds over time the average projection of the first atom approaches the

unity, which means that each true mixing system will eventually have a

close match with one of the adapted atom. On the other hand, the second

best matching atom remains unaltered during the learning which means

that the discrimination between the atoms increases with the learning,

which is a desirable feature for MP-based detection algorithms.
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Table 7.3: Mean (standard deviation) performance in dBs for separated signals with and

without dictionary adaptation for test dataset with 1 speech + 3 noise random signals.

Performance only refers to the target speech signal.

Metric Adapted dictionary Original Dictionary

SDR 8.2(2) 2.9(4.5)

∆ SIR 2.9(3.5) -4(7)

Signal performance evaluation

To complete the analysis we report the signal separation performance in

terms of Signal-to-Distortion ratio (SDR) and Delta Signal-to-Interference-

Ratio (∆SIR), as defined in [77]. In the evaluation both the original dic-

tionary and the updated dictionary were considered. The signals were sep-

arated using the l0-norm minimization [80], applied to each time-frequency

point independently by defining the full estimated mixing system as

H̃(ω) =


1 1 · · · 1

do12 (ω) do22 (ω) · · · doN2 (ω)

· · · · · · · · · · · ·
do1M(Ω) do2M(Ω) · · · doNM (Ω)

 , (7.21)

where donM(ω) indicates the ω-th element of the n-th atom detected by

the OMP algorithm. Tables 7.3 and 7.4 show the performance with and

without adaptation when the separation algorithm is applied to both the

test datasets, reporting mean and standard deviation. In the dataset with

a single speech plus multiple noise sources, performance refers to the speech

signal only, while for the other dataset the performance for each speaker is

reported. In the first dataset a sensible average improvement in SDR can

be observed compared with the original dictionary and the low deviation

also indicates a very stable separation result. It is also worth noting that

the SIR improvement is not so large even with the adaptation because the

average SIR is already high at the input, although it may become very low
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Table 7.4: Mean (standard deviation) performance in dBs for separated signals with and

without dictionary adaptation for test dataset with 4 speech signals. S1, S2, S3 and S4

indicate the performance averaged over multiple locations but for the same source.

Metric S1 S2 S3 S4 Avg

SDR 6.4(1.6) 6.4(2.7) 4(2.9) 3.8(3.4) 5.1(2.9)

∆ SIR 14.6(2.4) 3.3(3) 7.2(3.2) 13(3.3) 9.5(5.4)

Adapted dictionary

Metric S1 S2 S3 S4 Avg

SDR 3.2(3.2) 2.4(4.4) 4.7(5.4) 2.3(4.4) 3.1(4.4)

∆ SIR 10.9(4.6) -1.7(5.3) 6.9(6.6) 11.2(4.4) 6.8(7.3)

Original dictionary

in some instants where an impulse noise source becomes active. However if

the adaptation is not applied a degradation of SIR is also observed (see the

negative value), because separation with wrong demixing systems tends to

cancel the signal of the target speech.

With the second dataset the improvement becomes even more clear. In

fact, performance is averaged over all the speech sources with signals of

comparable average power. It is important to mention that sources are at

considerable distance from the microphones, averagely around 2.5 meters

for a maximum of about 4 meters, and therefore the direct-to-reverberant

ratio is low making the estimation of the full mixing system very difficult.

Furthermore, since for each mixture the source locations were randomly

chosen, sources may be close to each other.

7.5 Conclusions

We discussed on a modified greedy algorithm, based on the orthogonal

matching pursuit, which is able to detect the mixing systems of multiple

sources recorded by a microphone array. After detection, separation of the

original source signals was carried out through l0-norm minimization. The
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proposed method is based on a sparse multichannel representation of the

source mixing parameters. A redundant dictionary, of atoms representing

each spatial location, was built with prior knowledge on the room and ar-

ray geometry. The effect of mismatch between ideal and real conditions

was analyzed and the proposed dictionary on-line adaptation with the in-

coming data through a weighted Natural Gradient, led to higher detection

performance. It was shown that the spatial-temporal adaptation mitigates

the mismatch between the true mixing systems and the simulated geomet-

rical models, which is otherwise cause of high distortion in the separated

signals.
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Chapter 8

Speaker Diarization

In this work, speaker diarization is referred to the multichannel audio pro-

cessing operation to determine “who spoke when” in real meetings, when

multiple speakers alternate in a discussion. The difficulty of achieving

the diarization task in real meetings comes from not only the recording

environments but also the speaker activities. In real environments, the

recordings are corrupted by background noise plus the influence of rever-

beration. Moreover, the activities of speakers contain large overlapping

speech, and speaker turns occur frequently.

8.1 Review

Most speaker diarization systems fit into one of two categories: the bottom-

up and top-down approaches [65]. The bottom-up approach trains a num-

ber of clusters or models representing the different speakers and aims at

merging and reducing the number of clusters until only one remains for

each speaker. In contrast, the top-down approach first models the entire

audio stream with a single model and adds new models to it until the full

number of speakers are deemed to be accounted for. Both bottom-up and

top-down approaches are mainly based on Hidden Markov Models (HMMs)

where each state is a Gaussian Mixture Model (GMM) and corresponds to

133



8.1. REVIEW CHAPTER 8. SPEAKER DIARIZATION

a speaker. Transitions between these states correspond to speaker turns.

The procedure of speaker diarization consists of:

• Acoustic beamforming that jointly processes the multiple microphones

used to record the meeting.

• Speech activity detection that involves the labeling of speech and non-

speech segments.

• Segmentation and clustering that aims at splitting the audio stream

into speaker homogeneous segments.

In the multichannel scenario, acoustic beamforming is applied as a front-

end pre-processing step in order to mix multiple observations into a unique

enhanced signal [5]. Acoustic beamforming can be performed applying,

for instance, maximum likelihood (ML) [64], generalized sidelobe canceller

(GSC) [43], or minimum variance distortionless response (MVDR) [82].

An alternative approach for acoustic beamforming is to utilize estimated

source Time-Difference-Of-Arrivals (TDOAs) and fuse spatial and cepstral

information as in [73].

A common approach for speech activity detection is to assume that

speech and non-speech segments follow certain models, which can be pre-

trained with external speech and non-speech data [88]. The models may op-

tionally be adapted to specific meeting conditions [18]. Labeling of speech

and non-speech segments is then performed applying an Expectation Max-

imization (EM) algorithm with two Gaussian components. Furthermore,

temporal smoothing techniques are applied on the binary labels to discard

short duration non-speech regions of the audio stream.

After these two pre-processing steps, speaker diarization algorithms di-

verge into two main directions, i.e. those that apply segmentation to the

audio stream, and those that do not apply such segmentation. Both algo-

rithmic approaches exploit a certain characteristic that the speaker labels
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exhibit, which is the temporal continuity. Step-by-step algorithms exploit

this continuity to turn the problem into a typical unsupervised cluster-

ing task. They represent each segments using a statistical model (a sin-

gle Gaussian or a GMM) and they apply clustering techniques to group

them into speakers. On the contrary, the integrated algorithms exploit

the temporal continuity by assuming that the transitions between speak-

ers follow a stochastic process which can be modeled by a (first-order and

time-independent) Markov chain. Since the labels are not directly ob-

served, an observation model should be added, to link each distinct label

(or state) with the observations. The overall model is therefore a HMM,

where the observation model (i.e. the part of model that accounts for the

state-emission probabilities) is usually a GMM for each state.

8.2 Introduction to the proposed method

From the above short review, we can conclude that the speaker diarization

problem has been tackled by extracting either spectral or spatial informa-

tion, or combinations of them [5, 7, 65, 89]. In the conventional spatial

feature-based methods, clustering of time-difference of arrivals (TDOAs)

of multiple sources between multiple microphone observations has been

widely applied [7, 45, 72]. The estimation of the TDOAs is known to

be sensitive to the presence of noise and reverberation, and therefore, the

diarization performance is limited. It has been proven that directional clus-

tering of normalized observation vectors with the Watson mixture model

(WMM) [14] performs well in the reverberant and noisy conditions [47]. Its

performance has been confirmed for Blind Source Separation (BSS), while

its applicability to a meeting situation is still under investigation.

In this work, we employ the WMM-based clustering for speaker diariza-

tion in real meetings. The WMM is represented as the weighted sum of
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Watson distributions. For the WMM-based clustering, good estimation

of the model parameters is essential. For the reliable parameter estima-

tion, motivated by [30, 34, 66], we also utilize a dictionary of spatial feature

models [33]. This dictionary consists of parameters of Watson distributions

modeling spatial features for multiple possible speaker locations. The pa-

rameters are pre-trained by using training data composed of reverberant

speech signals from these locations. Using the spatial dictionary and ob-

serving mixture signals, mixture weights modeling activity of each possible

speaker location are estimated. To perform the speaker diarization, the es-

timated mixture weights are post-processed applying cluster merging and

temporal smoothing. We will show that the proposed pre-trained WMM

via a spatial dictionary realizes robust clustering in real meetings.

8.3 Watson mixture model

Directional statistics are primarily concerned with normalized vectors or

equivalently vectors residing on the surface of a hypersphere of a unit

radius. The n-th vector of source spatial images cn(ω, l) of size M × 1 can

be normalized, resulting in normalized spatial features related to the n-th

source position, as [83]

csn(ω, l) =
cn(ω, l)

||cn(ω, l)||
, (8.1)

where ||.|| denotes the Euclidean norm. The normalized vector of spatial

features csn(ω, l) is said to follow the multivariate Watson distribution if its

probability density function is given by [63]

p(csn(ω, l)|an(ω), κn(ω)) =

(M − 1)!

2πMµ(1,M, κn(ω))
exp (κn(ω)|an(ω)Hcsn(ω, l)|2),

(8.2)
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where µ is the Kummer function. The distribution is rotationally symmet-

ric around the mean orientation an(ω), which is also a unit norm vector.

As the concentration parameter κn(ω) increases, the distribution tends to

get more spread out around an(ω). The parameters an(ω) and κn(ω) are

estimated in sense of Maximum-likelihood (ML) as in [47, 63].

Assuming that each time-frequency point of the vectors x(ω, l) in (3.3)

is dominated by one source, the normalized spatial features of the vectors

can be approximately represented as

xs(ω, l) ≈ csn(ω, l), n = 1, .., N. (8.3)

The directional clustering of the normalized spatial features xs(ω, l) is ac-

complished by building either binary or soft clustering masks. To cluster

the spatial features xs(ω, l) using the WMM, they are probabilistically

represented by a mixture of Watson distributions as follows [14]

p(xs(ω, l)|θ) =
K∑
k=1

αk(l)p(x
s(ω, l)|k, ak(ω), κk(ω)), (8.4)

where p(xs(ω, l)|k, ak(ω), κk(ω)) is the Watson distribution of xs(ω, l) as

defined in (8.2), replacing csn(ω, l) by xs(ω, l). k denotes the cluster number

out of total number K of clusters, and αk(l) indicates the mixture weight

encoding the source activity of the k -th cluster at the time-frame l. If the

number of source signals N in the observed mixtures x(ω, l) is unknown,

which is the case in this work, K is assigned a value larger than N . During

the clustering, the features xs(ω, l) will be adaptively described by only N

active clusters, while the remaining ones are considered as clusters of noise

or inactive clusters. The set of parameters of the WMM is defined as

θ = {{αk(l)}l, {ak(ω), κk(ω)}ω}k. (8.5)

Clustering of the vectors xs(ω, l) is performed by estimating the parameters

of the WMM applying an EM algorithm in order to optimize the likelihood

function in (8.4) (see [14, 47, 63] for details).
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Figure 8.1: Proposed speaker diarization method.

8.4 Method

Figure 8.1 shows the processing flow of the proposed method. The method

consists of two phases: training and testing. In the training phase, The

parameters ak(ω) and κk(ω) of the Watson distribution in (8.2) are trained

for each k -th possible speaker spatial location using training source spatial

images ctk(ω, l). As a result, a spatial dictionary composed of the trained

parameters of the Watson distributions of K possible speaker locations

is available. In the testing phase, the mixture weight αk(l) of each k-

th possible speaker location is estimated by using the dictionary and the

observed mixtures x(ω, l). To do this, the set of the parameters of the

WMM is divided into two disjoint subsets, i.e. θ = θt ∪ θe. The subset of

parameters to train is defined as θt = {ak(ω), κk(ω)}k,ω, and the subset of

parameters to estimate is represented as θe = {αk(l)}k,l.

8.4.1 Training of model parameters in spatial dictionary

Let us assume that a speaker is at one of K possible locations, where

K � N . Training data consists of source spatial images ctk(ω, l) for each

k -th location. The spatial dictionary is trained using these data by means
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of Maximum-Likelihood (ML) estimation of the subset θt applying the

following procedures (see [47, 63] for details):

1. Obtain normalized spatial features ctsk (ω, l) of the k -th possible speaker

location by normalizing the training source images ctk(ω, l) as in (8.1).

2. Compute a time-invariant empirical spatial covariance matrix of the

normalized spatial features as

Rk(ω) =
1

L

L∑
l=1

ctsk (ω, l)[ctsk (ω, l)]H . (8.6)

3. Derive the largest eigenvalue λk(ω) and a corresponding normalized

eigenvector as estimation of ak(ω) by the eigenvalue decomposition of

the matrix Rk(ω).

4. Compute κk(ω) by

κk(ω) ≈ Mλk(ω)− 1

2λk(ω)(1− λk(ω))

[
1 +

√
1 +

4(M + 1)λk(ω)(1− λk(ω))

M − 1

]
.

(8.7)

8.4.2 Estimation of mixture weights in testing phase

Given the trained set θt = {ak(ω), κk(ω)}k,ω, the Watson distributions of

all K locations or clusters are computed by observing the spatial features

xs(ω, l) in (8.3), i.e. p(xs(ω.l)|k, ak(ω), κk(ω)), k = 1, ..., K. By considering

Bayes’ rule, soft clustering masks are obtained as [47]

γk(ω, l) =
α̃k(l)p(x

s(ω, l)|k, ak(ω), κk(ω))∑K
τ=1 α̃τ(l)p(x

s(ω, l)|τ, aτ(ω), κτ(ω))
, (8.8)

where α̃k(l) is the current estimation of the k-th mixture weight, which is

updated by averaging over the whole frequency bins as follows

α̃k(l) =
1

Ω

Ω∑
ω=1

γk(ω, l). (8.9)
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The final estimation of θe = {αk(l)}k,l is obtained by iterating (8.8) and

(8.9) for two or three times. The masks can also be used to obtain estima-

tion of the source spatial images as follows

c̃k(l, ω) = γk(ω, l)x(ω, l). (8.10)

In practice, if one source dominates all the frequency bins at a time-frame

ld, the value of α̃k(ld) associated with the cluster of the dominant source is

equal to one. Furthermore, if two sources are active inside the frame, two

optimal clusters indexed by k∗1 and k∗2 are detected as active and α̃k∗1(ld) +

α̃k∗2(ld) = 1. This means that inside each time-frame l, the sum of α̃k(l)

over k is equal to one. However, what will happen if a frame is with

noise activity, or with activities received from spatial locations that are

not trained? To answer the question, in a pre-processing step, observing

x(ω, l), we propose to define one more cluster containing time-frequency

points of noise activity. The cluster is modeled by training parameters of

a Laplace distribution [4], which is accompanied with the trained Watson

distributions to estimate the masks in (8.8). Accordingly, one more mixture

weight is estimated in (8.9), and one more cluster is computed in (8.10).

8.4.3 Modeling of noise

To describe time-frames with noise activity, let us denote the additional es-

timated weight by α̃K+1(l) and the additional computed cluster as c̃K+1(l, ω).

Observing x(ω, l), we recall the computation of an empirical covariance

matrix of observed mixtures in (3.9)

R̃x(l, ω) =

∑
l̃,ω̃ γ(l̃ − l, ω̃ − ω)x(l̃, ω̃)xH(l̃, ω̃)∑

l̃,ω̃ γ(l̃ − l, ω̃ − ω)
, (8.11)

Using this computation of R̃x(l, ω) accounts for source activities in a block

of time-frequency points. The diagonal coefficients of R̃x(l, ω) convey infor-

mation about the amount of source activities received at the microphones.
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On the other hand, for the sparsity of speech signals, a few time-frequency

points are active, and the majority of the points are with low activities.

This means using a peaky distribution centered around zero can well de-

scribe the noise activity. Accordingly, p(c̃K+1(l, ω)|a, b(ω)) is described by

a Laplace distribution trained on the trace of R̃x(l, ω) as

p(c̃K+1(l, ω)|a, b(ω)) =
1

2b(ω)
exp(−|tr(R̃x(l, ω))− a|

b(ω)
), (8.12)

where a and b(ω) are location and diversity parameters, and tr(.) de-

notes the trace of a matrix. Since tr(R̃x(l, ω)) rates from zero to infinity,

p(c̃K+1(l, ω)|a, b(ω)) is a positive-sided distribution. To center the distribu-

tion around zero, a is set equal to zero. The parameter b(ω) is empirically

obtained as

b(ω) =
1

L

L∑
l=1

tr(R̃x(l, ω)). (8.13)

8.5 Experiments

8.5.1 Experimental conditions

To evaluate the proposed work, a real live recorded conversation dataset

in a meeting room was considered ( see Figure 8.2). There are a table with

chairs and other furniture in the room. An array of 8 omni-directional

microphones spaced 4 cm is present on the center of the table, and from

4 to 6 participants are seating on the chairs. The measured reverberation

time (T60) of the room is about 500 ms. For the testing and estimation

of θe, real natural conversations were recorded. While a presenter is talk-

ing, interruption is coming from the participants by opening discussions

about the talk topic in the presence of background noise and interferences.

Exhibition audience noise is simulated to be present outside of the room
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Figure 8.2: Experimental setup for speaker diarization.

and controlled using the door. The number of testing recordings is 8, with

lengths varying between 15 and 20 minutes.

For the training and estimation of θt, the space around the table is sam-

pled into 72 points with angular distance of 5◦ and impulse responses are

measured at the points. Then ctk(ω, l) are simulated using a speech signal

of length 10 s. As the spatial locations of the speakers in the meetings are

randomly chosen, exact spatial matching between the trained and tested

locations is not urgently required.

Table 8.1 reports some statistics about the recordings. From the left

column to the right, for every one of the recordings, the table states the

recording number, the number of speakers, the total overlap in seconds,

the percentage of overlap, the number of speaker turn-takings, the average

of speaker turn-takings per minute, the total number of utterances, and

the average number of utterances per minute.
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Table 8.1: Statistics of the recordings.

Rec.
No. Overlap Overlap No. Spk-turns No. Utters.

Speakers (Second) (%) Spk-turns /min Utters. /min

1 6 165.82 18.25 326 21.50 501 33.10

2 6 227.74 21.22 471 26.30 645 36.10

3 6 229.74 23.62 352 21.70 513 31.60

4 5 235.09 25.90 433 28.57 565 37.30

5 5 296.73 32.82 633 42.00 745 49.40

6 6 152.27 16.53 270 17.60 413 26.90

7 4 286.46 31.60 496 32.80 631 41.80

8 4 326.00 35.93 515 34.10 633 41.90

8.5.2 Implementation issues

Given one of the recordings, the signal is divided into time-blocks each of

length one second, which allows for on-line processing. For the computation

of the time-frequency representation of the signal through the Short Time

Fourier Transform (STFT) with a sampling rate of 16 kHz, the frame

length is 1024 samples (64 ms) with a shift of 256 samples (16 ms). In

the implementation, it is required to apply temporal smoothing and merge

neighboring clusters. Considering the continuity of speech signals, a sliding

averaging window of size 60 time-frames is applied in order to smooth the

estimation of θe over the frames. Observing the smoothed mixture weights

α̃k(l), the active clusters are detected and the sources are counted and

localized by considering the peaks to obtain a time-varying set of active

cluster indexes k∗(l) = {k∗1(l), k∗2(l), .., k∗N(l)}.
Several kinds of artifacts such as the reverberation, the coherence be-

tween the trained models of neighboring spatial locations, the mismatch

between the trained and tested locations, etc., could disturb the stability

of the method. As a result of such disturbance, exact match between one

particular trained cluster and one tested location at each time frame over
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all the signal length cannot be captured. Accordingly, multiple neighboring

clusters related to one location are detected to be active from one time-

frame to another, fluctuating around the main detected active cluster. For

this reason, the source activity is estimated in a wide angular range by

merging the contribution of neighboring clusters together. For example, in

this experiment, we collect the contribution of 3 estimated weights in an

angular range of size 10◦; i.e. k∗±1(l) = {k∗1(l) ± 1, k∗2(l) ± 1, .., k∗N(l) ± 1}.
One more processing step has been applied to remove short fragments and

pauses using hangover smoothing. Given k∗±1(l), the smoothed source ac-

tivities α̃k∗
±1

(l) are used for speaker diarization.

8.5.3 Speaker diarization results

The performance of the proposed method was evaluated by computing the

diarization error rate (DER),

DER =
Wrongly estimated speaker time length

Entire speaker time length
× 100[%],

which was established by NIST [2]. To calculate the DER, the estimated ac-

tivities were compared to a manually annotated dataset. Table 8.2 reports

information about the background noise with the DER of the proposed

method (Prop.) compared to a baseline method (Base), which is based

on the combination of voice activity detection with TDOA estimation (see

Section III-C [45]). As it is observed the proposed method outperforms

the baseline method over all the testing recordings. As it is expected the

performance of the proposed method varies as a function of the overlap

and the background noise level. Increasing either the overlap or the noise

level, or both of them, reduces the diarization performance.
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Table 8.2: Diarization results. Door is: 0 for closed and 1 for opened; Level is: 0 for

noiseless, 1 for low, and 2 for high.

Recording 1 2 3 4 5 6 7 8

Noise
Door 0 0 0 1 0 1 0 1

Level 0 0 1 1 1 2 2 2

DER(%)
Baseline 46.81 64.58 62.63 23.84 47.46 67.17 73.56 70.93

Proposed 9.34 12.21 15.61 17.17 18.86 18.88 24.80 27.69

8.6 Conclusion

This chapter presented a review of the speaker diarization as well as a

proposed method for speaker diarization in real meetings. The core idea of

the method is to train parameters of probabilistic models using directional

spatial features, where each model statistically describes a spatial cluster

of a possible speaker location. The Watson distribution is adopted to

model the spatial features of each cluster. Mixtures of audio signals are

probabilistically modeled by the Watson mixture model (WMM), which is

expressed in terms of the trained Watson distributions and mixture weights

that define the source activities of the spatial locations. Furthermore,

we proposed to on-line train a Laplace distribution to model the noise

activity. Given the trained models, the observed mixtures are clustered and

the mixture weights are estimated. The speaker diarization is performed

by observing post-processed mixture weights. The post-processing of the

estimated weights involves cluster merging and temporal smoothing. The

elaborated results show the consistency and superiority of the proposed

method over a recently developed baseline method.
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Chapter 9

Conclusion and Future Research

Source separation has been tackled during the last two decades aiming at

producing high quality separated signals. Conventionally, the separation

is performed by exploiting source statistical properties such as indepen-

dence, non-gaussianity, etc. In this work we considered the case where

multiple microphones distributed inside an echoing room are used to pick

up mixtures of audio signals produced by multiple speakers at several spa-

tial positions. In this scenario, audio source separation is achieved by

exploiting the spatial diversity of multiple observations at the multiple mi-

crophones together with source statistical properties. Advanced spectral

and sparse modeling theories are applied for further exploitation of source

spectral-temporal redundancy and sparseness. A separation system can be

informed by prior information about a specific mixing problem, in order to

increase the quality and to accelerate the separation.

On the other side, to arrive at multiple microphones, an audio signal

propagates through multiple channels. In this work, the audio signals are

represented by their spectral descriptions and the propagation channels are

represented by their spatial descriptions. A separation system can be fed

by either spectral descriptions of audio signals in the mixtures, or spatial

descriptions of propagation channels used to generate the mixtures. Three
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modalities of making these descriptions available are considered, i.e. a) the

descriptions are on-line trained during the separation, b) the descriptions

are pre-trained and made directly available, c) or the descriptions are pre-

trained and made indirectly available through a redundant dictionary or

library. In the latter, either the spectral descriptions, best representing

audio signals in the mixtures, or the spatial descriptions, best representing

propagation channels used to generate the mixtures, are detected during

the separation. The spectral descriptions of audio signals are exploited

by applying the spectral modeling theory, and the spatial descriptions of

propagation channels are exploited by applying the sparse modeling theory.

9.1 Spectral information for source separation

Using spectral modeling based on Nonnegative Matrix Factorization (NMF),

the power spectrum of an audio signal is represented as the product of

two matrices, i.e. a spectral basis matrix containing constitutive parts of

the spectrum, and an activation coefficient matrix containing time-varying

weights. The factorization can be performed either in an unsupervised

scenario where the two matrices are unknown, or in a supervised sce-

nario where one of the two matrices is known in an approximate repre-

sentation of the true one. As recently proposed, spectral basis matrices

of multiple audio signals can be assumed to be known and identified as

source spectral descriptions.

It has been proven that model-based audio source separation methods

achieve good performance. Gaussian model-based audio source separa-

tion represents observed mixtures of audio signals by a probabilistic model

parametrized by spectral and spatial parameters, i.e. source variances

encoding power spectra of audio signals, and spatial covariance matrices

encoding propagation channels. Source separation is performed by first
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estimating the parameters of the Gaussian model, later applying multi-

channel Wiener filtering. The model parameters are estimated in sense of

Maximum-Likelihood (ML) by optimizing the model with respect to each

one of the parameters applying a Generalized Expectation-Maximization

(GEM) algorithm.

Conventionally, the spectral and spatial parameters of the model are

dependently estimated, where each parameter is updated using the other

estimated one. As a result, the estimation error is accumulated from one

parameter to the other one, and from one estimation iteration to another.

To reduce the dependency, we proposed either to estimate the spectral

parameter regardless of the spatial one, or to jointly estimate them:

• In the first estimation method, the source variance is estimated by

computing the singular value decomposition of a matrix of multiple

observations as in Chapter 4 and 5. The estimated source variance

can be factorized applying supervised NMF in case that the separa-

tion system is informed by pre-trained source spectral basis matrices,

as proposed in Chapters 4 and 5. However, unsupervised NMF can

be applied to factorize the estimated source variance in a blind sce-

nario and we consider this step as on-line training of the spectral basis

matrices, as proposed in Chapter 5. To estimate the spatial covari-

ance matrix, we started by factorizing absolute values of the matrix

of multiple observations applying supervised NMF or NTF by using

the trained spectral basis matrices as in Chapter 4, or by generat-

ing weighted basis matrices from vectors of either the pre-trained or

on-line trained spectral basis matrices as in Chapter 5. The main

purpose of this factorization step is to find compact representations of

the multiple observations using the spectral basis matrices. The spa-

tial covariance matrix is then estimated using the factorization of the

source variance, the factorization of the absolute values of the matrix
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of multiple observations, and the phase information of the matrix of

multiple observations as in Chapter 4 and 5.

• A stable estimation could be recognised if the parameters are jointly

updated applying supervised NMF/NTF as proposed in Chapter 6,

given either extracted or pre-trained source spectral basis matrices.

Following this direction, we proposed to rearrange elements of the ma-

trices of multiple observations in tensors of nonnegative parameters,

and matrices of complex parameters. Due to the implicit requirement

of nonnegativity, we split the model parameters into two subsets, i.e.

a subset of nonnegative parameters to be estimated by factorizing the

tensors, and a subset of complex parameters to be estimated by fac-

torizing the matrices. In fact, the purpose is not to factorize complex

matrices using NMF, but is only an updating step to keep the scal-

ing matched between the two estimated subsets. Besides using the

tensors of nonnegative parameters to estimate the subset of nonnega-

tive parameters, they are also used either to extract the spectral basis

matrices, or to detect them from a redundant library of pre-trained

spectral basis matrices.

All the above factorization steps are performed by minimizing the β-

divergence applying the widely used Multiplicative Update (MU) rules [52].

A deep study on selecting the size of the spectral basis matrices and the

values of the divergence factor β was conducted in order to identify the best

performing combinations. We found that these values are data-dependent

and should be optimized for each mixing condition in order to obtain the

best separation performance. Large size spectral basis matrices mostly

benefit the performance, however, better performance could be obtained

if β is assigned a suitable value when the size of the matrices is small.

Experiments were carried out to assess the performance of the proposed
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methods, and it was found that they outperform other recently developed

state-of-the-art methods.

Although the separation system can perform better, in some mixing con-

ditions, with the first proposed estimation method than with the second

one, the separation convergence with the second method is more guaran-

teed than with the first one. Both the estimation methods suffer when the

source signals are highly overlapped, that was confirmed by the low sepa-

ration performance obtained when they were used to separate mixtures of

male speech signals. In the detection step of the pre-trained spectral ba-

sis matrices from the library, best representing source signals in observed

mixtures, wrong detection may happen. The main cause of that wrong de-

tection is the high redundant coherence between the pre-trained spectral

basis matrices.

9.2 Spatial information for source separation and

speaker diarization

Sparse modeling assumes an ability to describe a signal by a small num-

ber of values using a pre-defined dictionary. In this work, the dictionary

is composed of trained spatial descriptions of propagation channels repre-

senting a finite set of source spatial positions. Given the dictionary, source

separation is performed by first detecting the active spatial source posi-

tions using a modified sparse modeling algorithm (orthogonal matching

pursuit) [21] as proposed in Chapter 7. Then later the detected spatial

descriptions associated with the active positions are used to obtain the

source signals applying l0-norm minimization [80]. In case that there is

mismatch between the spatial descriptions in the dictionary and the ones

used to generate the observed mixtures, an unsupervised dictionary adap-

tation step using weighted Independent Component Analysis (wICA) [67]
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is proposed in order to reduce such mismatch.

Spatial dictionary for source separation: By working at the signal

level, a column of the dictionary is represented as the cross correlation be-

tween each pair of parameters of multiple propagation channels obtained

between a spatial position and multiple microphones. To match the ob-

served mixtures with each column of the dictionary, they are also repre-

sented as the cross correlation between each pair of mixture signals. To

increase the matching probability, each element of both the dictionary and

the observations is normalized using its absolute value. This normalization

step is seen as important for improving the detection accuracy as well as

for increasing the separation performance.

On the other side, for speaker diarization, observed mixtures of audio

signals are probabilistically modeled by a Watson mixture model (WMM)

[14] as proposed in Chapter 8. Given the dictionary, speaker diarization

is achieved by estimating the source activity of each spatial position by

optimizing the model using an Expectation-Maximization (EM) algorithm

[27] and applying soft spectral masking [47]. In case of the presence of

background noise and interferences, a Laplace distribution [4] is proposed

to model the accompanying corruption generated by the noise and the

interferences .

Probabilistic spatial dictionary for speaker diarization: By work-

ing at the probabilistic level, a column of the dictionary is represented

as a Watson distribution [63] with trained controlling parameters. The

Watson distribution is well known to probabilistically describe directional

statistics. The distribution models a unit norm vector by an exponential

function controlled by a mean orientation vector and a concentration pa-

rameter. The parameters of the distribution related to a particular spatial

position are trained using unit norm vectors of reverberant speech signal

received at multiple microphones from that position. To match the signal

152



CHAPTER 9. CONCLUSION 9.3. FUTURE RESEARCH DIRECTIONS

representation used to train the distributions, the observed mixtures are

also normalized using the Euclidean norm of a vector.

Based on the trained spatial dictionaries, according to the obtained

experimental results, consistent and robust source separation and speaker

diarization can be achieved. However, the unsupervised dictionary adapta-

tion step for source separation still needs to be reconsidered again in order

to obtain improved performance. For speaker diarization, the training of

normalized mean orientation vectors of Watson distributions is not enough

to well describe the propagation environments with high reverberation.

9.3 Perspective on future research directions

In the future, the effectiveness and robustness of the proposed methods

can be improved by:

• Looking for more efficient spectral modeling based on Nonnegative

Matrix and Tensor Factorization (NMF/NTF) algorithms. These al-

gorithms should be stable to work in difficult mixing conditions, and

weak source spectral-temporal sparseness. Constraining the sparsity

of factorization as in [19] and using other factorization cost functions

such as the α-divergence as in [24] could be good research directions

leading to improved solutions. Training spectral basis matrices with

high source reconstruction and discrimination properties or updating

the trained matrices during the separation for better properties as in

[85] could also be a possible trend to minimize the coherence between

the trained matrices, and to increase the performance. Furthermore,

self adaptation of the factorization divergence factor β as a function

of the signal level is a special need to increase the flexibility of the

proposed methods.

• Seeking for a robust on-line update method of the spatial dictionary
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for source separation, in which the mismatch between the trained

parameters in the dictionary and the parameters used to generate

observed mixtures is reduced. To meet this objective, a dictionary

update scheme by an iterative projection method complemented by

a rotation of the dictionary as proposed in [12] could be a good idea

aiming at reducing such mismatch and improving the overall detection

and separation performance.

• Learning spatial covariance matrices that is a more consistent option

to describe propagation environments with high reverberation. The

Bingham distribution [49] provides a model to describe directional

statistics using spatial covariance matrices. In this case, the Watson

distribution could be replaced by the Bingham distribution, and the

Watson mixture model (WMM) is replaced by the Bingham mixture

model (BMM), for more robust speaker diarization.

The proposed methods find their viable applications in several fields in-

cluding:

• Audio surveillance and tracking of multiple speakers.

• Hearing aids by increasing the accuracy of source localization and by

reducing the environmental nuisance.

• Improving the quality of audio communications during a phone call

or teleconference by reducing the surrounding interferences.

• Increasing the performance of automatic speech recognition and tran-

scription systems by using the proposed methods as front-end aiming

to produce enhanced signals.
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Appendix A

The MU rule for the β-divergence

The divergence in (3.18) between the element a and its decomposition bcd

can de defined as

dβ(a/bcd) =
aβ + (β − 1)(bcd)β − βa(bcd)β−1

β(β − 1)
. (A.1)

To minimize the divergence with respect to, for example, the element b,

the partial derivative of dβ(a/bcd) is computed

g =
β(β − 1)cd(bcd)(β−1) − β(β − 1)acd(bcd)β−2

β(β − 1)
(A.2)

So the positive part of the derivative is defined as

g+ = cd(bcd)(β−1), (A.3)

and the negative part is represented as

g− = acd(bcd)β−2. (A.4)

The MU rule to update the element b is described in terms of g+ and g−

as

b = b
g−
g+

= b
acd(bcd)β−2

cd(bcd)(β−1)
. (A.5)

And so, we can define the update rule using MU for each element. More-

over, this element-wise update rule can be easily extended for matrix fac-

torization, respecting the dimensions.
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APPENDIX A. THE MU RULE FOR THE β-DIVERGENCE

For tensor factorization, let us assume that AM is a tensor of size 1 ×
1×M . By decomposing the tensor into two elements b and d, and a tensor

CM , the divergence can be described as∑
m

dβ(am/bcmd) =
∑
m

(am)β + (β − 1)(bcmd)β − βam(bcmd)β−1

β(β − 1)
, (A.6)

where am and cm are the m-th elements of AM and CM , respectively. To

minimize the divergence with respect to, for example, the element b, the

partial derivative g is computed

g =
∑
m

cmd(bcmd)(β−1) −
∑
m

amcmd(bcmd)β−2. (A.7)

Accordingly, the MU rule to update the element b is described as

b = b

∑
m a

mcmd(bcmd)β−2∑
m c

md(bcmd)(β−1)
. (A.8)

Respecting the dimensions, this update rule can be easily extended to

decompose a tensor into tensors and matrices.
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