Step Size is a Consequential Parameter in Continuous Cellular Automata

Q. Tyrell Davis' and Josh Bongard'

"University of Vermont, Burlington, VT 05405
gdavis & jhongard @uvm.edu

Introduction

In the 1960s, John H. Conway developed a zero-player game
with simple rules. This Game of Life, a cellular automa-
ton (CA), has had a seminal impact on the study of com-
plex systems, computation, and art. Conway's Life followed
John von Neumann's 29-state CA (von Neumann and Burks,
1966), and Life's impact on popular as well as academic
imagination is unigque, seeded by a 1970 article in Scientific
American by Martin Gardner (Gardner, 1970).

Subsequent decades saw increasing diversity of CA re-
search and applications. The Life framework: totalistic
CA based on a Moore neighborhood and cell states, sup-
ports 262, 144 different rulesets' CA have since been devel-
oped with larger neighborhoods (Evans, 2001; Pivate, 2007),
higher dimensions (Bays, 1987; Chan, 2020), and evolving
rules (McCaskill and Packard, 2019), to name but a few ex-
amples among many. In this work we are concerned with
continuous CA,

Rudy Rucker developed a continuous CA framework in
the 1990s called CAPOW (Rucker, 2003). Later, Stephen
Rafler developed a continuous CA, SmoothLife, and discov-
ered a persistent glider therein (Rafler, 200 1), Recently, Bert
Chan described the discovery of many persistent patterns in
his Lenia framework (Chan, 2019, 20200, and encoding CA
updates in continuously valued neural networks has been ap-
plied to models for growth (Mordvintsey et al., 2020, image
recognition (Randazzo et al., 2020), and control { Variengien
et al., 2021). Continuous CA can be described as:

At + dt) = A(t) + dt - F{A(1)) (1

where A represents cell states, { is unitless time, o is step
size, and f(-)} represents some function dependent on cell
stales’

'Life-like CA are defined by Birth and Survival rules: each may
contain any or all of the possible Moore neighborhood sum values
() through &, yielding 2% - 2" = 2' = 253, 144 possible rules. At
cach step, cells with a neighborhood sum in their 5 mles remain
unchanged, become | with a sum in B: all other cells become (.

() typically includes a neighborhood operation (e.g. convo-
Iution) and an arbitrary update function.
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Figure 1: Stability of a minimal glider in Lenia’s Scutinm
gravigus ruleset spans from approximately of = 0.25 o
0.97. Kernel parameters (pig. o) = (0.5,0.15) . update
parameters (pe, o) = (0,283, 0.0369),

Typically receiving little scrutiny, «of can have important
effects. Persistent patterns require step size to be neither oo
large nor too small, and multiple patterns may exist their
own f ranges within an otherwise identical CA rule set
(Figures 2 and 3). Step size can also lead to qualitatively
different behavior in CA. Varying step size from 0.0125 o
(.13 in Figure 3 vields diverse movement types including
hopping, meandering, and corkscrewing. While not a per-
fect analogy, the behavioral repertoire in Figure 3 seems to
have more in common with a robot in a conventional physics
simulation changing from jumping (o pirouetie movement
patterns than with the expected catastrophic failure (or te-
dious slow-down) caused by an inappropriate lime-slep in a
comventional differential equation-based numerical physics
simulation. Supporting resources for this project are open-
source

‘Links 1o animations, notebooks, and code wsed in this
project are consolidated at https://rivesunder.github.
io/yuca
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Figure 2: This wide glider pattern is pseudostable around
dt = 0.1, but tends to change size and shape (sometimes
with explosive growth) at higher i, and to disappear at
lower df. Kernel parameters (py, op) = (0.5,0.15) , up-
date parameters (g, o) = (L2833, 0.0369).

Pattern stability and step size

An intuitive consequence of poor step size choice is that pat-
terns become unstable when the step size is too large, but
this also occurs when step size is oo small. This defies the
expectation that in simulations of physical system we typ-
ically expect greater accuracy as the step size approaches
zero. What would be considered systematic error in simulat-
ing hilliard ball trajectories is essential for self-organization
by some CA patterns.

A minimal glider Scutivm gravidus in the Lenia frame-
work, cousin to the SmoothLife glider (Rafler, 200 1), is sta-
ble between approximately ot = 0.245 to 0,978, smaller or
larger step sizes lead to the glider vanishing. Sample trajec-
tories at both extremes are shown in Figure 1.

Another pattern operating under the same neighborhood
and update rules, a wide glider, is most stable at much lower
step sizes around 0,1, Larger or smaller step sizes yield un-
constrained growth or a vanishing pattern, respectively (Fig-
ure 2). A step size of 0.1 is pseudo-stable for this pattern,
but is sensitive to initial conditions (including grid dimen-
sions, pattern placement, and floating point precision) and
can eventually { ~ 1000s of steps) become unstable.

Pattern behavior and step size
In addition to pattern instability, step size can lead to qualita-
tively different behavior. Figure 3 demonstrates behavioral
diversity solely by changing step size. At the “natural” step
size of (0.1, it moves in a “hopping” motion. Relatively large
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Different Step Size, Different Behavior
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Figure 3: ldentical starting conditions, here a mobile “frog"”
pattern, follow different trajectories with qualitatively differ-
ent behavior under CA rules differing only in step size dt.
MNote the CA grid represents the surface of a torus: trajecto-
ries reaching one edge of the grid reappear at the opposite
edge.

step sizes (= 0.13) bring the pattern to the edge of stability,
with occasional explosive growth (responsible for a sharp
turn in trajectory), and also occasional larger, surging hops.
At step size 0.025 the pattern travels in a meandering
trajectory and a step size of (L0125 leads to corkscrew tra-
jectories and a spiky morphology. The CA in Figure 3 uses
the Glaberish CA framework (Davis and Bongard, 2022),
splitting the update function into persisience and genesis
functions dependent on cell state, with a neighborhood
kernel of mixed Gaussians with parameters (pg, ox) =
[(0.0038,0.033), (0.2814,0.033), (0.469, 0.033)] with
weights [0.5, 1.0, 0.667], a Gaussian genesis function
(pig.mg) = [(0.0621,0.0088), and persistence function
(gt ) = (0.2151, 0.0369).

Conclusions

This work demonstrates that step size is a consequential pa-
rameter in continuous CA, affecting pattern stability and
gualitative behavior. This is in marked contrast to remarks
in (Chan, 2019), which, noting the resemblance of the Le-
nia update to Euler’s method, suggested that decreasing step
size asymplotically approaches the ideal simulation of a Le-
nia pattern, Orbim. This work demonstrates that for sev-
eral patterns a lower step size does not entail a more accu-
rate simulation, but different behavior or potential patterns
entirely. Therefore, step size should be considered for opti-
mization and leaming with CA. e.g. to develop patterns with
agency to avoid obstacles (Hamon et al., 2022) or for train-
ing neural CA such as in{Mordvintsev et al., 2020; Randazzo
et al., 2020; Variengien et al., 2021).
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Abstract

Biohybrids combine artificial robotic elements with living or-
ganisms. These novel technologies allow for obtaining use-
ful data on the environment by implementing organisms as
“living sensors”. Natural water resources are under serious
ecological threat and there is always a need for new, more ef-
ficient methods for aquatic monitoring. Project Robocoenosis
introduces the use of biohybrid entities as low-cost and long-
term environmental monitoring devices. This will be done by
combining lifeforms with technical parts which will be pow-
ered with the use of MFCs. This concept will allow for a more
well-rounded data collection and provide an insight into the
water body with minimal human impact.

Introduction

Currently worsening environmental conditions pose a threat
to global water supplies and communities inhabiting them.
This trend causes for urgent need to gather water quality
data globally and more efficiently. Traditionally, water mon-
itoring studies are carried out with surveys, sample collect-
ing and various sensors. This provides a precise and reli-
able readings on the examined water body. However, due
to the immense complexity of aquatic environments, a need
arose for a more extensive and continuous water monitoring.
Project Robocoenosis aims to develop a novel methodology
for that purpose, with the use of “biohybrid entities” (The-
nius et al., 2021). These devices are made by combining
the electrical and mechanical robotic parts with living organ-
isms. This system allows for extracting useful information
from the organisms which respond instantly to changes in
the environment with various behavioural or physiological
changes. The biohybrid will also be self-powering by being
equipped with Microbial Fuel Cells (MFC). These structures
consist of an anode and cathode chamber which extract elec-
tricity by relying on natural processes occurring in the sed-
iments and the availability of organic matter. Here, the fo-
cus is placed on lifeforms and devices that can potentially
provide valuable insight into the aquatic communities and
environmental changes affecting them.

It is of merit to note that the concept of using organ-
isms as biosensors is not entirely new (Kirsanov et al.,
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2014; Fini et al., 2009). The project Robocoenosis will
combine existing technologies (Wang et al., 2015; Enviro-
Analytical, 2021; Dzierzynska-Bialoriczyk et al., 2019) and
well-researched organisms to construct a new, self-sufficient
biohybrid. This concept aims to compliment traditional
monitoring methods, providing an additional insight into the
water quality. The combination of different lifeforms will
allow a, so called, ecosystem hacking.

Methods
Lifeforms

Zebra mussel For the sake of biological safety, it is es-
sential to use lifeforms from the respective environments to
avoid introducing alien species (Stiers et al., 2011; Guzman-
Novoa et al., 2020). First lifeform investigated for the un-
derwater monitoring setup is zebra mussel Dreissena poly-
morpha (Pallas, 1771). It is a broadly distributed species
considered invasive in most of Europe. Mussels have
been considered useful bioindicators due to their longevity,
clustered colonies and high vulnerability to the surround-
ing waters due to their feeding and breathing mechanisms
(Grabarkiewicz and Davis, 2008). Its sensitivity to various
sensors, especially low oxygen and heavy metals, often re-
sults in abnormal behaviour, such as closing the valves. This
can be observed by attaching it to the robotic setup and ob-
serving its movements with continuous image analysis (Fig-
ure 1). When the valves present fluttering movements or
are closed for a prolonged period of time, an alarm will be
triggered to announce a potential disturbance to the environ-
ment.

Daphnia Another organism considered a useful bioindica-
tor is the water flea Daphnia sp. (Miiller, 1785). It is highly
sensitive to many environmental stressors including chang-
ing salinity, oxygen levels, heavy metals and many others
(Michels et al., 2000). Stress responses can include abnor-
mal swimming (slower speed, increased sinking, spinning),
disrupted phototaxy (light-related responses), haemoglobin
accumulation and mortality (Rajewicz et al., 2021). These
behaviours will be observed by continuous movement track-
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Figure 1: Zebra mussel mounted on the underwater setup A:
red tag mounted on the top valve and B: view on the mussel
from the camera attached to the setup.

Figure I: Daphma swimming in the flow-through cham-
ber with background illumination as part of the monitoring
selup.

ing of the swimming animals enclosed in the setup. A
flow-through cage was built where Daplnia can swim freely
while being exposed directly 1o the surrounding waters ( Fig-
ure 2), This will also allow the animals 1o sustain themselves
normally by feeding on the algae present in the water. Be-
cause of the stress reactions occurring immediately after the
exposure o the stressor, Daphnia can be a reliable source of
information on the water condition,

Microbial Fuel Cells

Microbial Fuel Cell will be explored as a power source alter-
native as well as un additional bivindicator. Thanks to their
working principles, MFCs can provide information on dis-
solved oxygen, toxins, bacterial activity and others. These
can be monitored by tracking the electrical current produced
and delivered to the biohybnid entity (Cuwi et al., 2019). Cer-
tain species of bacteria, such as Geobacter sulfurreducens,
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are able to perform aerobic breathing and produce an electric
current (Poddar and Khurana, 20011), This proves a feasible
method of a long-term production of electricity supplies that
can be harvested by the MFC, The major limitation of this
energy-harvesting method is that the currents provided are
low in voltage and difficult to amplify. This will be resolved
by using multiple MFCs connected by a super capacitor. Ad-
ditionally, low-power electronics will be used For short peri-
ods of time and be put in sleep mode between the monitor-
ing periods. This energy will be stored and used for pow-
ering micro-controllers and other low-energy devices con-
tained within the biohyhbrid.

Discussion

In this work, certain ideas and concepts used in the project
Robocoenosis are presented. With the use of biohybrid enti-
ties, environmental monitoring can be performed more effi-
ciently by removing the time usually used for sampling sur-
veys, enabling a faster detection of catastrophic events, such
as leakages of toxins, heavy metals, etc. Using behavioural
and physiological reactions as natural sensors requires the
use of well-researched organisms and meticulously planned
environmental setups, Data obtained with this methodology
will come with a degree of ambiguity due 1o the complex-
ity of the aquatic emvironment and varying degrees o which
they affect the living organisms. For this reason, the method
developed is meant o compliment the classical sensor ap-
proach. The use of organisms will allow for monitoring the
overall quality of the water body and reduce the need for
maintenance and costs wsually associated with using clas-
sical probes and sensors. The big advantage of biohybrid
entitics compared to fully artificial systems is that lifeforms
have the ability 1o self-calibrate and self maintain. Com-
pared to technological systems that usually need frequent
maintenance {ThermoScientific, 2007}, a simple observation
of lifeforms leaves a longer maintenance break. In com-
bination with energy harvesting and low-power electronics
iMFC and STM32 microcontroller), it is possible to create
an ultra-long runtimes of possibly several years, This leads
to long-lasting, affordable and reliable measuring system. In
theory, the system works with no maintenance, although the
practical limitations will be investigated.
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Abstract

Regulating the development of advanced technology such
as Artificial Intelligence (AI) has become a principal topic,
given the potential threat they pose to humanity’s long term
future. First deploying such technology promises innumer-
able benefits, which might lead to the disregard of safety pre-
cautions or societal consequences in favour of speedy devel-
opment, engendering a race narrative among firms and stake-
holders due to value erosion. Building upon a previously pro-
posed game-theoretical model describing an idealised tech-
nology race, we investigated how various structures of in-
teraction among race participants can alter collective choices
and requirements for regulatory actions. Our findings indi-
cate that strong diversity among race participants, both in
terms of connections and peer-influence, can reduce the con-
flicts which arise in purely homogeneous settings, thereby
lessening the need for regulation.

Introduction

Researchers and stakeholders alike have urged for due dili-
gence in regard to Al development on the basis of several
concerns. The desire to be at the foreground of the state-
of-the-art, or the pressures imposed by upper management,
might tempt developers to ignore safety procedures or ap-
prehensions about ethical consequences (Armstrong et al.,
2016; Cave and OhEigeartaigh, 2018). Regulation and gov-
ernance of advanced technologies such as Artificial Intelli-
gence (Al) have become increasingly more important given
their potential implications, such as for associated risks and
ethical issues (European Commission, 2020; Declaration,
2018; Russell et al., 2015; Future of Life Institute, 2015,
2019). With the tremendous benefits promised from being
first able to supply such technologies, stake-holders might
cut corners on safety precautions in order to ensure rapid
deployment, in a race towards Al market supremacy (AIS)
(Armstrong et al., 2016; Cave and OhEigeartaigh, 2018).
With this aim in mind, a baseline model of an innova-
tion race has been recently proposed (Han et al., 2020), in
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which innovation dynamics are pictured through the lens of
Evolutionary Game Theory (EGT) and where all race partic-
ipants are equally well-connected in the system. The base-
line results have showed the importance of accounting for
different time-scales of development, and also exposed the
dilemmas that arise when what is individually preferred by
developers differs from what is globally beneficial. How-
ever, real-world stakeholders and their interactions are far
from homogeneous (Schilling and Phelps, 2007; Newman,
2004; Barabasi, 2014). Some individuals are more influen-
tial than others, or play different roles in the unfolding of
new technologies. Technology races are shaped by complex
networks of exchange, influence, and competition where di-
versity abounds. Here we summarise a recent work (Cim-
peanu et al., 2022) studying impacts of network topology on
the adoption of safety measures in innovation dynamics.

Models and Methods

Assuming that winning the race towards supremacy is the
goal of the development teams and that a number of devel-
opment steps are required, the players have two strategic op-
tions at each step: to follow safety precautions (denoted by
SAFE) or to ignore them (denoted by UNSAFE) (Han et al.,
2020). As it takes more time and effort to comply with
the precautionary requirements, playing SAFE is not only
costlier but also implies a slower development speed, com-
pared to playing UNSAFE. Let us also assume that to play
SAFE players need to pay additional costs. The interactions
are iterated until one or more teams achieve a designated ob-
jective, after having completed W development steps. As a
result, the players obtain a large benefit B, shared among
those who reach the target objective at the same time. How-
ever, a setback or disaster can happen with some probabil-
ity, which is assumed to increase with the number of times
the safety requirements have been omitted by the winning
team(s). Although many potential Al disaster scenarios have
been sketched (Armstrong et al., 2016; Pamlin and Arm-
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strong, 2015; Han et al., 2019, 2022), the uncertainties in
accurately predicting these outcomes are high. When such
a disaster occurs, risk-taking participants lose all their bene-
fits. We denote by p,. the risk probability of such a disaster
occurring when no safety precaution is followed at all.

To study the effect of network structures on the safety out-
come, we have analysed the following types of networks,
from simple to more complex (Cimpeanu et al., 2022): well-
mixed populations (complete graph), where each agent in-
teracts with all other agents in a population; square lat-
tice of size with periodic boundary conditions; and scale-
free (SF) networks (Barabdsi and Albert, 1999; Dorogovt-
sev, 2010; Newman, 2003), generated by means of two
growing network models — the widely-adopted Barabasi-
Albert (BA) model (Barabasi and Albert, 1999; Albert and
Barabési, 2002) and the Dorogovtsev-Mendes-Samukhin
(DMS) model (Dorogovtsev, 2010), the latter of which al-
lowed us to assess the role of a large number of triangular
motifs (i.e. high clustering coefficient).

Results and Conclusions

We initially considered the roles of degree-homogeneous
graphs in the evolution of safety in the Al race game. They
simulated the Al race game in well-mixed populations (Fig-
ure 1, first column), and then explored the same game on
a square lattice, where each agent can interact with its four
edge neighbours (Figure 1, second column). They show that
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the trends remain the same when compared with well-mixed
populations, with very slight differences in numerical values
between the two. That is, homogeneous spatial variation is
not enough to influence safe technological development.

Investigating beyond homogeneous structures, we make
use of two SF network models. Contrary to the findings on
homogeneous networks, SF structures produce marked im-
provements in almost all parameter regions of the Al race
game (Figure 1). Given that innovation in the field of Al
(more broadly, technological advancement), should be prof-
itable (and robust) to developers, shareholders and society
altogether, it is important to discuss the analytical loci where
these objectives can be fulfilled. Assuredly, it is observed
that diversity in players introduces two marked improve-
ments in both early and late safety regimes. Firstly, very lit-
tle regulation is required in the case of a late Al race, princi-
pally concerning the existing observations in homogeneous
settings. Intuitively, this suggests that there is little encour-
agement needed to promote risk-taking in late AIS regimes:
diversity enables beneficial innovation. Secondly, the region
for early AIS regimes in which regulation must be enforced
is diminished, but not completely eliminated. Consequently,
governance should still be prescribed when developers are
racing towards an early or otherwise uncertain timeline to
reaching transformative Al It stands to reason that insight
into what regime type the Al race operates in is therefore
paramount to the success of any potential regulatory actions.
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Abstract

This study reveals what kind of temporal and spatial pat-
terns form when learning in an adversarial relationship be-
tween two individuals. The model was implemented by cou-
pling generative adversarial networks, which are well-known
in the field of machine learning. The obtained temporal pat-
terns resulted in chaos with a positive Lyapunov exponent
for time-series learning, whereas spatial pattern learning pro-
duced structured patterns with a higher fractal dimension, not
just more complexity with a higher entropy.

Introduction

The simulation studies for communication emergence in Al-
ife aim to reveal how communication signals are organized
to make sense with other individuals (Marocco et al., 2003;
Hashimoto and Ikegami, 1996; Shibuya et al., 2018). In
those simulations, other individuals are always cooperative
and the signals tend to converge on simple symbolic usages,
such as alarm sounds used by animals. How, then, can hu-
man language and some bird songs, which form complex
signal patterns, emerge?

The studies in which complex patterns are produced in-
volve dilemmatic or competitive environments instead of
simple cooperative relationships (Suzuki and Kaneko, 1994;
Hashimoto and Ikegami, 1996; lizuka and Ikegami, 2004;
Moran and Pollack, 2017). In particular, Suzuki and Kaneko
(1994) showed that the parameters of the logistic function
evolved to the edge of chaos in generating time series in a sit-
uation where individuals want to imitate but not be imitated.
We call this situation an adversarial imitation. The ability to
imitate profitable and useful behaviors is beneficial. How-
ever, for those performing the behavior, being imitated loses
the benefit. Brood parasitism, used by some birds, is a good
example. The strategy of imitating and not-being-imitated
can be evolutionarily dominant. In this study, we use deep
learning methods to investigate what kind of time series or
spatial patterns adversarial imitation generates and how the
patterns can be structured using a simulation-based synthetic
approach.
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Coupled Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a technique
that imitates real data (e.g., images) to create artificial data
that does not actually exist but is realistic (Goodfellow et al.,
2014). We use GANs to model adversarial imitation.

Time series generation

We first describe the model of applying coupled GANs to
time series generation, simulating a situation in which two
agents engage in adversarial imitation. Figure 1 presents
an overview of the simulation model. Each agent consists
of a time series generator and discriminator. The genera-
tor generates its own time series, feeding back its output to
the input at each step. The imitation time series are gener-
ated while inputting the opponent’s time series at each step.
The discriminator receives each generated time series as in-
put and outputs whether it is its own or the opponent’s. The
discriminator is trained such that it can recognize the time
series generated by its own generator as its own and the im-
itation time series as the opponent’s. The teaching signals
are given as to who outputs the time series. The generator is
trained such that its discriminator recognizes the own time
series as its own, and the opponent’s discriminator is fooled
into recognizing the generated imitation time series as the
opponent’s own time series.

The top graphs in Fig.2 are bifurcation diagrams showing
the convergence points of the time series generated by the
trained generators at each learning epoch. The random ini-
tialization of the generators resulted in monotonically con-
verging dynamics; however, as the learning progressed, we
observe bifurcations of the generated time series and dy-
namics changing from periodic to more complex trajecto-
ries. The graphs on the lower right of Fig.2 present examples
of the complex trajectories. The Lyapunov exponents cal-
culated by differentiating the generator networks show that
generators produced a chaotic trajectory (see lower left of
Fig.2).
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Figure 2: Learning results of time series generation

Spatial pattern generation

We then applied the Coupled GANs to generate spatial pat-
terns. Figure 3 presents an overview of our simulation
model. The spatial pattern generators were implemented us-
ing feed-forward networks with convolution layers, whereas
the time series in the previous experiment was generated in
a recurrent manner. The generators generated grayscale im-
ages of size 128 x 128 from random values, similar to the
original GANs. These generators and discriminators were
trained using adversarial imitation in the same manner as the
previous experiment. To show that mutual adversarial imi-
tation learning produced structural patterns, we compared it
to the unidirectional condition, in which only one individual
performed adversarial imitation learning.

The graphs on the left in Fig.4 show the patterns generated
by generators G* and GP with eight different random z val-
ues under the mutual conditions. The generations of images
by G* and GP are independent, but they generated similar
patterns owing to the imitation effect. However, they did not
maintain the same pattern. The generated patterns became
equally cluttered at the beginning because all network pa-
rameters were initialized with random values. In addition,
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as the learning process progressed, in the mutual adversar-
ial imitation learning, the generated patterns had a type of
global pattern instead of a locally cluttered pattern. Con-
versely, in the unidirectional adversarial imitation learning,
the generated patterns became locally detailed and cluttered
(not shown).

To show the progress of complication and structuring
under mutual adversarial imitation learning, entropy and
fractal dimensions were computed (see the images on the
right in Fig.4). In the mutual adversarial imitation learn-
ing, the entropy and fractal dimension oscillated. The en-
tropy sometimes decreased, and the pattern became less clut-
tered. The fractal dimension temporarily increased. In the
unidirectional adversarial imitation learning, we observed
that entropy simply increased and that the fractal dimension
stagnated at a relatively low value. These results indicate
that mutual adversarial imitation learning generates not only
complex patterns, but also formed structural patterns mea-
surable in the fractal dimension.

Conclusion

We showed that adversarial imitation learning can increase
the complexity of patterns and structure them both tempo-
rally and spatially. If only one side of the discriminators
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was trained, it simply produced a messy spatial pattern. This
suggests that mutual learning is necessary for the formation
of patterns with structure rather than mere clutter.
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Abstract

Kecent work with Lenia, a continuously-valued cellular au-
tomata (CA) framework, has yielded ~100s of compelling.
bioreminiscent and mobile patterns. Lenia can be viewed as
a continuously-valued generalization of the Game of Life, a
seminal cellular automaton developed by John Conway that
exhibits complex and universal behavior based on simple
birth and survival rules. Life's framework of totalistic CA
based on the Moore neighborhood includes many other in-
teresting. Life-like, CA. A simplification introduced in Lenia
limits the types of Life-like CA that are expressible in Lenia
1o a specific subset. This work recovers the ability o eas-
ily implement any Life-like CA by splitting Lenia’s growth
function into genesis and persisience functions, analogous o
Life's birth and survival rules. We demonstrate the capabili-
ties of this new CA variant by implementing a puffer pattern
from Life-like CA Morley/™ove, and examine differences
between related CA in Lenia and Glaberish frameworks: Hy-
drogeminium natans and s613, respectively. These CA ex-
hibit marked differences in dynamics and character based on
spatial entropy over time, and both support several persistent
mobile patterns, The CA s613, implemented in the Glabenish
framework, is more dynamic than the Hydrogeminium CA
{and likely most Lenia-based CA) in terms of a consistently
high variance in spatial entropy over time, These results sug-
gest there may be a wide variety of interesting CA that can
be implemented in the Glaberish variant of the Lenia frame-
work, analogous to the many interesting Life-hke CA outside
of Conway's Life. Supporting information amd resources are
open-source’ .

Introduction

John Conway’s Game of Life 15 a cellular automaton (CA,
plural: cellular automata) and archetypical example of a
complex and computationally universal system arising from
simple rules (Gardner, 1970; Berlekamp et al., 2004). Life
is a “zero-player” (or simulation) game invented by Conway
during coffee breaks with help from colleagues: its invention
laid the foundations for a vibrant community of hobbyists
and professional researchers to study Life and related CA,

Links to supporting resources, including notebooks for repli-
cating this paper’s figures and additional animations are consoli-
dated at https: //rivesunder.github.io/yuca
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Figure 1: Hydrogeminium natans (Lenia) and 5613 (Glaber-
ish) CA after 47 time steps. Both CA started with the same
6d-wide vertical strip of cells with random uniform intial
values, a) Hydrogeminium grid state after 47 time steps. b)
Spatial entropy map of a. ¢) s613 grid state after 47 time
steps, with emerged “frog™ glider pattern. d) Spatial entropy
map of ¢. Armows call out glider pattern in $613. Spatial en-
tropy was computed with a window size of 23, entropy units
are in bits.

with some of the most interesting and beautiful work in CA
the work of non-academic artists, engineers, and tinkerers.
Life consists of binary cells on a grid, with each cell’s dy-
namics defined by the sum of neighbors and the cell’s own
state. The dynamics of Life depend entirely on cell states
and neighborhood values and follow a simple set of rules,

Life is one of 262,144 possible rules in the framework of
Life-like CA. Rules can be written as Bx/Sy, where x and
y are any, none, or all integers from O through 8. Life is
written as B3/523: empty cells with 3 neighbors are Born, or
become 1, and active cells with 2 or 3 neighbors Survive, and
retain a state of 1. Life-like CA update synchronously and
discretely. Because B rules and S rules are 9-bits each, and
can be implemented in any combination, there are 27 . 29 =
2% possible rule combinations of Life-like CA.

In Life cells can have a state of 00 or 1, and cach cell has
a neighborhood consisting of the cells orthogonally and di-
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agonally adjacent to it. With exactly 3 neighbors cell state
becomes 1. With 2 neighbors, cell state remains unchanged,
regardless of whether the current state is 0 or 1. All other
cells take on a state of (). Note that it is possible to write a
description of Life rules without referring to the particular
value of the cell state. This distinction enables facile im-
plementation of Life in the Lenia framework, butl is not a
general characteristic for every Life-like CA.

Inspired by Life, CA frameworks have subsequently been
expanded to larger neighborhoods (Evans, 2001; Pivato,
2007), higher dimensions (Bays, 1987; Chan, 2020}, multi-
ple channels (Chan, 20207, and continuous-value states and
updates (Rucker, 2003; Chan, 2019) to give just a few ex-
amples of the many Life-inspired CA projects.

An carly framework for continuous CA, developed by
Rudy Rucker in the 1990s, was CAPOW (Rucker, 2003).
Later, Stephan Rafler described the SmoothLife CA based
on sharply defined inner and outer neighborhoods, with birth
and survival rules defined by a pair of intervals comprised of
smooth step functions*, Bert Chan developed the continuous
Lenia CA framework with a different formulation: neigh-
borhoods are defined by smooth convolution kernels and a
single update function (called the growth function) (Chan,
2019).

Meither SmoothLife nor Lenia explicitly considered Life-
like CA in general: SmoothLife was developed with a single
continuous interval each for birth and survival (e Smooth-
Life used “Bays space” rules (Bays, 1987)), and Lenia up-
dates do not depend on cell state. This potentially leaves
a vast volume of continuous CA with interesting dynamics
that are not readily implementable in Lenia or SmoothLife.

A Life-like CA of particular interest is called Move or
Morley, with rules B368/5245 (Figure 4). Morley supports
a commonly occurring puffer, a mobile pattern that continu-
ously generates persistent patterns along its trajectory. The
Morley puffer is a simple example of an infinite growth pat-
tern, of particular interest as an indicator of complexity in
CA. Morley has multiple B and 5 conditions, none of which
overlap and most of which are not contiguous, making it an
ideal Life-like CA for exploring the limitations of previous
continuous CA frameworks,

In the next section we demonstrate Lenia does not have a
simple implementation of Life-like CA Morley. This limi-
tation is exemplified in Figures 4 and 5. Choosing to view
this as a problem, we incorporate conditional updates based
on cell state, and name the resulting CA framework Glaber-

*8ee  also https://softelogyblog.wordpress.
com/2018/03/09 and https: //github. com/
slackermanz/vulkanautomata

JSeeuI:m-tttps:;".-"qithub.n:u::-m.-"rudyrucher,-"capaw,
https://fwww. rudyrucker . com/capow, and hteps: //
arxiv.orgfabs/1111,.1567

YRafler, 5. {2011}, Generalization of Conway’s “Game of Life”
1o a continuous domain - SmoothLife. pre-print on ArXiv https:
flarkiv.orgfabs/1111.1567
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Figure 2: Lenia neighborhood kernel and growth function
for Orbium CA. A neighborhood kernel and a growth fune-
tion gives rise to complex behavior in Lenia. The Gaussian
kernel defined by (p = 0.5, &7 = 0.15) and Gaussian growth
function defined by (= 0.15,# = 0.015), shown here,
supports the exemplary Qrbium glider pattern.

ixh, a nod to the Latin etymology of Lenia and a reference
to the role of Life-like CA bevond Conway’s Life in siudy-
ing complex systems. Glaberish takes its root from another
Latin word for smooth®, and Glaberish is to Lenia as Life-
like CA are to Conway's Life.

In Results several technigques from the literature are used
to assess CA implemented in the Lenia framework and
in Glaberish. A spatial entropy metric, similar to that in
(Wuensche, 1999), is shown applied to CA grid states in
Lenia and Glaberish in Figure 1, with an emergent glider
pattern in the Glaberish CA (s613). This metric is further
considered in the context of previous work in the Discussion
section. Speculation about the potential value of increas-
ingly complicated systems, iLe. continuous CA, forms the
basis for possible future research directions discussed in our
Conclusions,

Glaberish is Lenia with conditional updates

Like Life, Lenia defines CA dynamics with a neighborhood
and an update function. Neighborhood values are the result
of 21 convolution with kemel K, which become input to
growth function . CA dynamics in the Lenia system are
defined as

A — (AT 4 dt . GIK + AY) (1)

where 1 is a squashing or clipping function that limits
values to between (.0 and 1.0, and A" is the CA grid at time
t.

The kernel & and growth function ¢ can take various
forms, but a typical Lenia CA uses Gauwssian functions of

the form
- a
flr) =exp (— (_‘IJ‘-‘EG#]‘) ) (2)

*Lenia and Glaberizh are based on the Latin root words lemis
and glaber, respectively,
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Figure 3: Conway's Game of Life implemented in the Lenia
framework. Kernel K is a Moore neighborhood, and a step-
wise growth function corresponds o B3/523.

Figure 2 visualizes i and the growth function for a Lenia
CA, Orbium. The neighborhood kernel isa (g = 0L, @ =
0.15) Gaussian with a 2D grid of radial distance from center
as input . K is normalized to have a sum of 1.0, and the
outpul of convolution with K is inputl for the growth func-
tion. In the same CA, the growth function (-] is a Gaussian
with (g = 0.15, 0 = 0,015). Note that for use as a growth
function, f(x) is stretched to yield values from -1 to 1, ie
Glx) = 2 flx) — 1. The Orbium CA supports an iconic
glider pattern of the same name, described in (Chan, 2019).

Figure 3a shows how Conway’s Life can be implemented
in the Lenia framework. The B and S rules overlap, so if we
sum the corresponding continuous intervals we get a two-
step staircase function; the default value is -1, cells go to 0,
values in the survival interval vield a value of 0, no change,
and values in the birth interval vield an update of +1. Growth
occurs only where B and 5 rules overlap.

Lenia can only readily implement Life-like CA where val-
ues in the B interval are a subset of those in the § interval, to
enable growth and avoid survival outside of survival inter-
vals. B368/5245, aka Morley (Figure 4), is an example of a
CA with no overlap between B and S rules and is not readily
implementable in the Lenia framework. Combining the B/S
rules as in Figure 3 results in a growth function that never
returns values greater than O (Figure 4a). yvielding a CA that
is not capable of growth,

To extend Lenia to a full generalization of Life-like CA,
we add conditional updates, splitting the growth function
into genesis and persistence functions that depend on the cell
state, Equation 3 defines the Glaberish update,

A — s (A dE](1 — A)G yen(N) + A'P(N)]) (3)

In Equation 3 we use N to denote the result of neigh-
borhood convolution K + A'. The growth function (-] is
replaced in Equation 3 by genesis function G, (-} and per-
sistence function P(-), Conditional update dvnamics rescue
the ability to implement B368/5245, and a timelapse of the
common Morley puffer pattern is shown in Figure 3.
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Figure 4: Continuous implementations of the Life-like Mor-
leyiMove CA (B368/5245), a) Implemented in Lenia with
updates defined by a single growth function. b) and ¢) Im-
plemented in Glaberish with separate genesis and persis-
tence functions.

Results

We compare the Hydrogeminium CA from Lenia (Chan,
2019 to an evolved CA rule set under the Glaberish frame-
work. We refer to the Glaberish CA as “s613" for the ran-
dom seed used to evolve it, selecting for poor performance of
neural networks trained to predict whether all cell states fall
o 0 after a set number of time steps, described in (Davis and
Bongard, 2022). These CA share a neighborhood kernel,
and the persistence function from 613 resembles a slightly
shifted version of the growth function from Hydrogeminium
natans (Figure 4). The most notable difference between the
two sets of rules, the s613 genesis function (a Gaussian with
g = 0,063 and o = 0.0088) makes for markedly different
dynamics between the two CA.

Hydrogeminium is defined by a (shared with s613)
neighborhood kemel with three rings, the weighted
sum of three Gaussians acting on the radial distance
from center in a 2D grid, with parameters (p, o)
= [(0.0938, 0.033), (0.2814,0.0330), (0,469, 0.033)] and
weights [(1.5, 1.0, 0.667). The growth function has param-
eters (p, o) = (0.26,0.036). 3613 shares the neighborhood
function (as well as the same step size df = 0.1), but has
eenesis and persistence functions with parameters (p, o) =
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Figure 5: A common puffer in Life-like CA Morley/Move
(B368/5245). a) The puffer pattern is static in Lenia, under
the growth function in Figure 4a. b) Implemented in Glaber-
ish, the pattern exhibits expected behavior: moving across
the grid while leaving a trail of oscillating patterns,

(0.0621,0.0088) and (0.2151, 0.0369), respectively.

Wolfram (1983) suggested a subjective classification
scheme for complexity in 1D CA, later applied to 2D CA
in (Packard and Wolfram, 1985), and often referenced to
as a general rubric for CA. Under the Wolfram classes,
briefly, Class [ CA cells quickly reach a uniform state (usu-
ally all 0y, Class 11 CA typically produce an equilibrium grid
of static and/or oscillating patterns, Class 111 CA produce
chaotic dynamics with aperiodic patterns, and Class 1V CA
exhibit long-lived, complex, and localized patterns. These
categories remain subjective, but the sedentary patterns pro-
duced by Hydrogeminium might fall under Class 11, while
the open-ended dynamics of s613 could be categorized as
Class Il or class IV. Class Il CA are suggested in Wol-
fram (1983) to tend toward a consistent density value, but
in Figure 8 we see substantial variation in average cell value
(normalized to the mean) in s613 over & runs, much more
than for Hydrogeminium.

Eppstein (2010) introduced a set of heuristic requirements
for predicting complexity and universality in CA: mortality
and fertility. CA are mortal it a pattern can be found that dis-
appears after several time steps, and fertile if a pattern exists
that displays the capacity for infinite growth (estimated by
finding patterns that escape an initial bounding box). Un-
like Wolfram's CA classes and their application to 2D CA
(Wolfram, 1983; Packard and Wolfram. 1983) these metrics
are not subjective and capture more of the Life-like CA that
support universal computation.

Although fertility and mortality were not developed with
continuous CA in mind, Hydrogeminium and s613 meet
both criteria. Random uniform conditions typically escape
an initial bounding box, as demonstrated in Figure 7 (bound-
ing box, in gray, is twice the width and height of the initial-
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Figure 6: Rule visualization in Lenia and Glaberish. a) Hy-
drogeminium, a CA based on the Lenia framework. b) 5613,
a Glaberish CA. These use the same neighborhood kernel
but differ in their update functions. Most notably 5613 splits
updates into genesis and persistence dependent on current
cell state. Despite minor differences in the update functions
and marked differences in CA dynamics, both systems read-
ily support mobile patterns.

ization area). A vanishing pattern for either CA is trivial:
a single active pixel with a value smaller than any update
function zero-crossing must vanish. Starting from a random
uniform initial state (range 0,0 1o 1.0), Hydrogeminium typ-
ically settles into a mostly static state resembling a Turing
pattern (Turing, 1952). CA s613 remains dynamic, continu-
ously remodeling local structures.

An important motivation for studying artificial life is to
explore how to recognize living systems vastly different
than found in Earth ecosystems. One approach is to take
an abstract, information theoretic approach o defining the
activities of life. In broad strokes, we can look for sys-
tems that generate local departure from thermal equilibrivm
(Popescu, 2011) and generate statistically unlikely struc-
tures, Entropy-based measures find common application in
analyzing life and computation alike. Indeed many of the
key activities of biological life including replication, tran-
scription, and translation have been analyzed as computa-
tion with respect (o their thermodynamic efficiency (Kem-
pes et al, 2007). Cellular automata, important models of
both computation and artificial life, have been been sub-
jeet to several entropy-based metrics including input entropy
(Wuensche, 19499, local entropy (Helvik et al., 2004), con-
ditional entropy (Pefia and Sayama, 2021), and transfer en-
tropy (Lizier et al., 2008),

We consider spatial entropy of CA grids, calculating the
image entropy under a sliding window with the same dimen-

sions as the convolution kemel used to compute neighbor-
hood values. Given the neighborhood kernel window size,
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Figure 7: Grid state progression from random uniform initial
states. a) Hydrogeminiom at step 0. ¢} Hydrogeminium at
step 512, ¢) Hydrogeminium at step 1024, b) 3613 at step 0
(same as in Ta). d) s613 atstep 512, 1) 5613 at step 1024,

our spatial entropy measure is conceptually similar 1o the
input entropy in {Wuensche, 1999), which considers the dis-
crete states of cells defining 1D CA rules of varying input
size. The 2D spatial entropy used here considers the cell
values (discretized to 8 bits for computational tractability)
in the neighborhood kernel window. In the window around
each cell in the CA grid we compuie entropy as for a 2D
8-bit image.

5

H == P(s)loga(P(s)) ()

a=ll

where [ is the entropy of the sub-grid and P(s) is the
empirical proportion of cells in the sub-grid in state 5. Com-
puted at each cell location (or pixel), Equation 4 yields a
spatial entropy map. In Figure 9 spatial entropy is visual-
ized for a random uniform initial state (confined to a starting
box), and after several hundred time steps of change under
Hydrogeminium and s613 rules, starting from the same ran-
dom uniform initialization. After 1024 steps, Hydrogemi-
nium has very little spatial entropy variance while s613 has
higher average entropy and much higher variance. Owver 8
runs with bounded random uniform initial cell states, Hy-
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Figure #: Mean-normalized mean cell value over time. h)
After 256 time steps, the normalized average cell value for
5613 varies from its overall mean value by a standard devia-
tion of 0.0947, while Hydrogeminium (a) has a standard de-
viation of 0.00204. As discussed in (Wolfram, 1983), class
T CA are characterized by chaos but tend to an equilibrium
cell density, which we don’t see in the case of 5613,

drogeminium had final average spatial entropy of .18 bits
= 0.065 (standard deviation), while s613 had final average
spatial entropy of 3.95 bits = 1.25.

In addition to variation across the CA grid at a given time
step, s613 spatial entropy varies substantially over time, es-
pecially as compared to Hydrogeminium in Figure 10. The
upper and lower bounds in Figure 10, representing standard
deviation from the mean, remain consistent and wide over
time in 613, Hydrogeminium approaches a static mean
value and vanishingly small standard deviation of spatial en-
tropy after about 200 time steps,

Mortality and fertility heuristics, subjective calegoriza-
tion, and entropy-based metrics are all attempts to mea-
sure and/or predict complexity and universality in CA. They
do not fully substitute for finding coherent, self-organizing,
traveling patterns known as gliders (or, often, particles in 1D
CA). They may serve as effective tools for finding gliders,
however, especially when information theoretic metrics are
used as filters to highlight the presence of gliders/particles
(Lizier et al., 2008; Shalizi et al., 2006, Wuensche, 19949,
Helvik et al.. 2004). In 2D CA gliders often are readily ap-
parent from observation, as in the discovery of the classic
reflex glider in Life (Berlekamp et al., 2004). In this work
we present a few examples of gliders in Hydrogeminium
and s613, found by evolving synthesis patterns encoded as
compositional pattern producing networks (Stanley, 2007)
in (Davis and Bongard, 2022). These patterns were selected
for a combination of center-of-mass displacement and con-
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Figure 9: Spatial entropy maps of step 512 of CA simula-
tiom, starting from a bounded random uniform initial grid.
a) Random uniform initial grid state. b) Spatial entropy for
4. ¢) Hydrogeminium grid state after 1024 steps and d) spa-
tial entropy of ¢. e) Grid state of s613 after 1024 steps and
f) corresponding spatial entropy map.

sistent average cell value (a proxy for homeostasis).

Traveling glider patterns from each CA are shown along
with trajectories in Figure 11, and include a slow-moving
“wrinkled cucumber” in Hydrogeminium and a hopping
“frog™ pattern in s613. Both CA support similar broad glid-
ers that initially have a straight traveling behavior, but begin
to wobble after several hundred time steps and often eventu-
ally become unstable.

Figure 1 shows the Figure 11d pattern emerging from
613 dynamics, and corresponding spatial entropy, with the
same grid state simulated for an equal number of steps in
Hydrogeminium for comparison. This pattern emerges com-
paratively often from random uniform initial states in s613,
frequently created and destroyved in collisions with other ac-
tive cells,
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Figure 10: Spatial entropy over time. Values represent 11
snapshots taken every 25 time steps in Hydrogeminium and
s613 CA simulations. Starting grid states were identical and
sample from a random uniform distribution. Error fill s +
standard deviation.

Discussion

By extending Conway’s Life to continuous values and time
steps, Lenia introduced a combinatorial increase in possi-
ble configurations. By focusing on Life, Lenia also intro-
duced a significant simplification over Life-like CA, opling
for a single growth function instead of mirroring the cell
value-dependent birth and survival rules of Life-like CA. We
showed that this simplification limits Lenia’s ability to im-
plement arbitrary Life-like CA: there 15 no straightforward
implementation of Life-like CA with birth rules that are not
a subset of its survival rules®,

Aside from the lack of straightforward implementations
of many of the 262,144 possible Life-like CA in Lenia, any
significant himitation as a model for artificial hife as a re-
sult of the growth function simplification in Lenia is not
readily apparent: work with the framework has generated
a large taxonomy of bioreminiscent patterns (Chan, 2019)
and Lenia has continued to be the substrate for increasingly
automated exploration of bioreminiscent patterns (Reinke
et al., 2020; Davis and Bongard, 2022) and modifications to
the framework itself (Chan, 2020; Kawaguchi et al., 2021).
MNonetheless, there is a vast number of Life-like CA with
non-overlapping andf/or non-contiguous B/S rules, including
the Morley/Move CA we focused on in this article and the
B356/523 CA found in Penia and Sayama (2021) to score
the highest on a complexity metric based on conditional en-
tropy”. and the increased rule-space enabled with Glaberish
likely contains many inferesting CA,

"But note that Lenia can readily implement Life. which
in mm can simulate any other Life-like CA. See for exam-
ple Brice Due’s OTCA metapixel https: //otcametapixel.
blogspot .com/

"Like Morley, B356/523 has a frequently-occurring puffer pat-
tern, a reflex puffer with period 72
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Hydrageminium 5613
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S d

Figure 11: Self-organizing. traveling patterns in Hydrogem-
inium and s613. a) Large, slow-moving, and eponymous
pattern in Hydrogeminum natans. b) Fast-moving glider in
s613. This pattern begins to wobble afer some time steps
and eventually becomes unstable. It has a similar pattern in
¢) glider in Hydrogeminium natans. This pattern starts to
wobhle after a few hundred time steps, and sometime be-
comes unstable over long time periods, d) "Frog™ pattern in
s613. This pattern moves in a straight, hopping motion. Tra-
jectories correspond to 64 time steps for all patterns, except
a) which shows 128 time steps.

In comparing related CA in Lenia and Glaberish, we
observed that Hydrogeminium tends to eventually produce
mostly sedentary Turing patterns, an equilibrium character-
istic of class I1 CA in Wolfram's classification scheme. The
Glaberish CA 5613 continuously remodels local structures
and remains difficult to predict, characteristic of Class II1
or IV (chaotic or complex) CA under Wolfram’s classifica-
tion {(Wolfram, 1983). The markedly different dynamics of
the two related CA make predicting future states in Hydro-
geminum significantly easier than in s613. Itis not clear how
much the framework influences the CA dynamics in com-
parison to the way each rule set was developed: s613 was
evolved to be difficult for convolutional neural networks 1o
predict whether a given pattern would disappear after a num-
ber of time steps (Davis and Bongard, 2022), whereas Hy-
drogeminium was developed with a combination of manual
and semi-automated evolution (Chan, 2019). Also, not all
Lenia CA share the characteristic end-point of a static Tur-
ing pattern®.

We also considered variance in spatial entropy as a life-
like characteristic for assessing CA. One hallmark of life
seems to be unusual or improbable structure, e.g. living eu-

"Examples of more dynamic Lenia CA include Asirium scinil-
lans and two variants of Pertafolium incarceranis,
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karyotic cells maintain an improbable distinction between
the external environment and their intermal milieu, as well as
distinct environments within organelles that quickly return
to equilibrium when life stops. In terms of spatial entropy,
s613 is more varied over both space and time than Hydro-
geminium (Figures 9 and 10). Spatial entropy considered
here is a nearly analogous metric 1o the input entropy de-
scribed in (Wuensche, 1999), Wuensche described a charac-
teristic signature of complex CA in entropy variance, which
we also see in 5613, across space as well as time. Other
information theoretic measures of complexity have been ap-
plied to CA, including local entropy (Helvik et al., 2004),
conditional entropy (Pefia and Sayama, 2021), transfer en-
tropy (Lizier et al., 2008), and local sensitivity and statistical
complexity (Shalizi et al., 2006). While not considered here,
the project repository includes tools for computing condi-
tional entropy on continuous CA,

We also demonstrated that both Hydrogeminium and s613
support gliders, Gliders form a foundational basis of com-
putation in CA, readily performing the essential functions
of information transfer by their ability 1o avel, and infor-
mation modification in the consequences of their collisions
(Berlekamp et al.,, 2004; Lizier et al., 2008, 2010). Glid-
ers are essential components of engineered computing de-
vices in CA, such as Turing machines (Rendell, 2011) or
Life metacells capable of simulating arbitrary Life-like CA".

Information theoretic filters have been shown to be ef-
fective for identifying gliders and other coherent strue-
tures in CA (Wuensche, 1999; Shalizi et al., 2006; Helvik
et al., 2004; Lizier et al., 2008). Our gliders, in contrast,
were obtained from synthesis pattern evolution, selected for
center-of-mass displacement and mean cell value homeosta-
sis (Davis and Bongard, 2022).

Conclusions

In this paper we discussed a potentially important limitation
of the Lenia framework: updates are applied without regard
to current cell values, which limits facile implementation of
Life-like CA to those with hirth rules wholly contained as
a subset of the survival rules. Life, with its B3/523 rule
set, can be readily implemented in Lenia, but not Morley or
other CA with non-overlapping B/S rules. We demonstrated
that by splitting the update function into conditional genesis
and persistence functions (analogous o B and S rules), the
ability to implement Life-like CA with distinct B/S rules can
be recovered. as shown for the Morley puffer pattern.

In a direct comparison between related CA implemented
in the Lenia and Glaberish frameworks, the Glaberish CA is
more active and unpredictable. Both CA meet the mortality
and fertility criteria predicting universality from (Eppstein,
20109, but 5613 exhibits greater variance in entropy across
space and time.

“See, for example, Brice Due's OTCA metacell https://
ctcametapixel.blogspot.com/
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More importantly, both CA support gliders. Gliders are
important components of computational ability, and drivers
of life-like characteristics, in CA because they transmit in-
formation and can perform computation in the results of
their collisions. Substantial efforts have been made to de-
velop formal classification or heuristics that are predictive of
CA that are computationally universal and compelling, but
there seems to be no comprehensive substitute for finding
gliders.

As noted in (Packard and Wolfram, 1985), increasing de-
grees of freedom in CA can increase the tendency to chaos,
and as noted in (Chan, 2020) expanding CA to greater
numbers of channels and dimensions makes persistent self-
organizing patterns rare, but potentially more interesting.
Continuously-valued CA implementations certainly fall un-
der “additional degrees of freedom” as compared to their
discrete counterparts. In addition, Glaberish at least dou-
bles the number of functions used to calculate updates, but
if applied to the Lenia’s expanded universe extension (Chan,
2020), where multiple channels may interact in different
ways, Glaberish may lead to an exponential increase in rule
functions. Determining whether the trade-off of a more
complicated implementation is worth the greater expressive-
ness of the Glaberish formulation, specifically whether the
framework is meaningfully more capable for a given task,
remains the subject of future work. While continuous dy-
namics and strong localization of structure that we demon-
strated for the Glaberish automaton s613 are promising, our
comparisons were limited to one pair of exemplary (and re-
lated) CA from the Lenia and Glaberish frameworks and do
not claim superiority of one CA framework over the other.

Similar arguments for parsimony could be made against
Lenia and other extended CA frameworks with additional
degrees of freedom, compared to simple CA like Life. Even
Life may seem too complicated if we also have simpler sys-
tems available, like the Turing-complete rule 110 elementary
CA (Cook et al., 2004).

A strong argument in favor of more complicated CA is the
potential for agents to exist fully embodied in simulated en-
vironments that follow the same physics as the agents them-
selves. Continuous CA, complicated as they may be in com-
parison to their simple antecessors, may fill the gap between
real-world robots and simulated agents. In typical simulated
learning environments, e.g. in reinforcement learning re-
search, there is a sharp distinction between the mechanics
of control policies and that of the simulated environment.
Recent work, described online!® demonstrated a hint of the
potential for embodied agents under consistent physics in
continuous CA. In a special version of Lenia’s expanded
universe, the authors used gradient descent methods to opti-
mize glider-supporting CA to improve the gliders’ ability to
survive interaction with obstacles in an immutable channel.

"https://developmentalsystems.org/sensorimotor-lenia/
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Several CA in that work each give rise to a particular glider
pattern that by all appearances skirts obstacles contained in
the immutable layer.

Spatial entropy maps with window size 23 are visualized
in Figure 1 for a comparison of Hydrogeminium and s613,
with s613 exhibiting a glider pattern emerging from CA dy-
namics. An aim of future work is to discover more com-
plex patterns with compartmentalization of internal struc-
tures and a clear distinction in internal/external entropy val-
ues (or another information theoretic complexity measure),
making for an intriguing analog to biological cells.

Glaberish expands the search space of possible CA in Le-
nia in the same way as Life-like CA expanded the possible
CA rules beyond Life itself, providing a more expansive sub-
strate for developing agency and autopoiesis in continuous
CA. While aesthetics and human pareidolia play a role in
the attractiveness of continuous CA patterns, they have the
potential to offer increasingly life-like systems for studying
life-like computation.
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Abstract

The field of Artificial Life studies the nature of the living
state, by modeling and synthesizing living systems. Such sys-
tems, under certain conditions, may come to deserve moral
consideration similar to that of non-human vertebrates or
even human beings. The fact that these systems are non-
human and evolve in a potentially radically different substrate
should not be seen as an insurmountable obstacle to their po-
tentially having rights equivalent to non-human vertebrates
or even human beings, if they are sufficiently sophisticated in
other respects. Nor should the fact that they owe their exis-
tence to us be seen as reducing their status as targets of moral
concern. On the contrary, creators of artificial life may have
special obligations to their creations, resembling those of an
owner to their pet or a parent to their child. For a field that
aims to create artificial lifeforms with increasing levels of so-
phistication, it is crucial to consider the possible implications
of our activities under an ethical perspective, and assess the
moral obligations for which we should be prepared. If artifi-
cial life is “larger than life”, then the ethics of artificial beings
should be “larger than human ethics”.

Introduction

Under what conditions does a system deserve moral con-
sideration intrinsically, or for its own sake, as opposed to
extrinsically or derivatively? While human beings are ordi-
narily regarded as having “full moral status” or the high-
est level of moral considerability (Jaworska and Tannen-
baum, 2018), other types of entities are sometimes regarded
as having intrinsic moral considerability, though often to a
lesser extent, such as nonhuman primates (Zimmer, 2016),
other animals (Singer, 1975; Regan, 1997; Cohen and Re-
gan, 2001), and even rivers (Zimmer, 2016). Institutional
Animal Care and Use Committees regulate the treatment of
all vertebrates. Artificial living systems, which include soft-
ware simulations, robots, biochemical systems, ecosystems,
and a wide variety of hybrids, may also under some condi-
tions deserve some moral consideration. In spite of differ-
ing from humans, future artificial life might possess features
that warrant giving it intrinsic moral consideration, whether
superior, inferior, or of a different type than that of human
beings or non-human vertebrates.

310

In addition to being non-human, possibly non-
biochemical, and built from radically different blocks
on different physical substrates, artificial lifeforms may
be designed and engineered by humans, giving us at least
partial control and thus arguably responsibility for their
well being, if they are capable of well being. Because of
our potential control and responsibility, artificial life forms
created by us might be due additional moral obligations,
resembling the obligations of an owner to a pet or a parent
to a child.

Research in artificial life aims to understand the funda-
mental mechanisms of life by creating and studying artifi-
cial lifeforms with increasing levels of sophistication from
the bottom up. The field ought to seriously consider possi-
ble implications of its activities under an ethical viewpoint,
to assess the moral obligations for which society should be
prepared, enlarging its perspective to include new ethical re-
search discoveries. If artificial life is “life as it could be”
(quoting Chris Langton (Langton, 1998)) and “larger than
biological life” (quoting Takashi Ikegami (Witkowski et al.,
2020)), then the ethics of artificial life is “ethics as it could
be” and “larger than human ethics”.

In this paper, we attempt to shed some light on the moral
status of artificial life, and propose ways to tackle a difficult
problem under transdisciplinary perspectives. We first ap-
proach the topic from the human perspective, then progres-
sively extending to non-human entities. We then approach
artificial systems to identify key ethical parameters before
discussing possible criteria, stakes, and challenges looking
into the future.

From human to non-human rights

Humans are often recognized as having rights that belong to
all individuals simply because they are human beings. Some
theorists focus on inalienable rights, a set of human rights
that are fundamental, are not awarded nor can be surren-
dered or taken away by any human power, embodying cen-
tral values such as fairness, dignity, equality, and respect,
reflected in many documents including the United Nations
Universal Declaration of Human Rights (Assembly et al.,
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Figure 1: These Alter robots, designed for the purpose of
exploring what it means to be “life-like”. This proximity
to humans raises the question of what the moral consider-
ation such entities might deserve. Development by Itsuki
Doi, Kohei Ogawa, Takashi Tkegami. and Hiroshi Ishiguro
(2006). Sull image from the short video Soul Skife, ©2018
Justine Emard

1948). However, “rights” talk does not need to be construed
in terms of lists of inalienable rights. Yirtually all current
ethical perspectives recognize that human beings deserve a
very high degree of “moral considerability”™ either simply in
virtue of being human or in virtue of sets of properties or
social relations that humans typically possess (Jaworska ancd
Tannenbaum, 2018}, It is unethical to kill, enslave, or tor-
ture human beings absent extremely compelling overniding
considerations,

Although there exists a global agreement that humans de-
serve basic rights or moral consideration, other entities are
far from having reached a comparable status. The main
category of candidates to such rights are animals, ranging
from non-human primates to animals biologically and be-
haviorally remote from humans, Defenders of animal rights
hold that sentient animals have moral worth that is indepen-
dem of their wility for humans, and that their most basic
interests (life, liberty, and freedom from torture) should be
given substantial consideration (Singer, 1975; Ryder, 1989,
Wolff, 2012; McDonald, 2012; Korsgaard, 2018; Gruen,
20210 While views vary on exactly how much moral con-
sideration is due to non-human animals, both ethics re-
searchers and the general public tend to agree that some non-
human animals deserve substantial protections, Many juris-
dictions, for example, award prison sentences for the abuse
of dogs. The United Kingdom has recently extended its
Animal Welfare law to include some nonveriebrate species,
particularly cephalopod molluscs and decapod crustaceans,
after a report documenting the scientific consensus that the
lanter types of animals are sentient in the sense that they can
and do feel pain and pleasure (Birch et al., 2021).

Rights or moral considerability may be considered for
artificial entities as well, such as robots or Al software,
Widespread agreement can be found among scholars that
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some artificial entities could potentially warrant moral con-
sideration in the future (Gunkel, 2018; Harris and Anthis,
2021), some of them at least to the same degree as human
beings (Schwitzgebel and Garza, 2015). One argument for
this is based on the potential similarity between such Al
and human beings, in all aspects that may matter, includ-
ing psychological features such as consciousness, sociality,
freedom, creativity, or irmeplaceability, These considerations
have led to further reflections about the design of policies
o ensure cautious engineering that ensures that Al systems
have self-respect, the freedom o explore other values, and
avoid unhealthy forms of anificial altruism (Schwitzgebel
and Garza, 2020).

Of the (non- juniqueness of human life

Humans have long thought of themselves as unique, and so-
cieties have designed stories w explain why they are poised
at the center of the universe {Hawking and Mlodinow, 2008).
Al least since the time of Galileo, evidence has been avail-
ahle that we are but ordinary inhabitants of the universe, liv-
ing on an earth much smaller than the sun. However, the
idea remains that there is something unigue about being a
human, often centered on two main concepts: human intel-
ligence and human consciousness.

Research on human intelligence is fascinating and impor-
tant, but we might twrn oul not o be as intelligent as we
think. How intelligent we appear to be depends largely on
the criteria for intelligence we use in studying the question,
The usual approach - which makes sense from the perspec-
tive of humans, since ultimately all science is conducted by
humans - is o compare the nature and capacities of human
intelligence with other animal species. In that case we ap-
pear highly intelligent (Martunez-Miranda and Aldea, 2005),
However, if one views intelligence in terms of physical com-
putation (Tegmark, 2017}, there are certainly ways 1o build
computers that would be less limited than humans are in
physical computing capacity (Kahle, 1979), able to process
memories faster (Simon, 1955; Tegmark, 2001 7). capable of
large-scale parallelization (Rogers and Monsell, 1995; Ru-
binstein et al., 2001), and able to manage memaories more
efficiently (Wingfield and Byrnes, 1981).

Even our degree of consciousness may nol be so unigue
(Boly ct al., 2013; Shevlin, 2021b), and some speak of anti-
ficial consciousness (Basl, 2013) or artificial sentience (Zi-
esche and Yampolskiy, 2019). Few nowadays agree with
René Descartes that thought or consciousness is a unigquely
human attribute, and nonhuman animals merely cleverly
designed automatons with a toolkit of preprogrammed be-
haviors, each triggered by certain environmental stimuli
(Chittka and Wilson, 2019). However, some still defend
thee idea that consciousness and higher cognitive functions
are closely linked and that it’s unclear whether even rel-
atively cognitively sophisticated non-human animals have
conscious experiences (Dennett, 1978; Carruthers, 2003,

d-sBuipaadoid/|esi/npajiw-joauip//:dpy woly papeojumoq

€ |BSl/6GYSE0T/ L/VEICZOZIES! /P

20z Atenuer Lg uo Jesn O LNIYL 1A VLISHIAINN Aq ypd’ 26500



2019; Rosenthal, 1993; Dennett, 2008; Papineau, 2003).
However, a large part of the field of consciousness research
rejects this perspective and views consciousness as a prop-
erty or ensemble of mechanisms which may potentially exist
in non-human beings (Birch, 2020; Shevlin, 2021b). Even if
other entities differ considerably from humans in their cog-
nitive architecture, for example having internal representa-
tions more map-like than conceptual, a different set of mem-
ory mechanisms, or even radically different types of com-
putation (Hoffman, 2014), they might have properties suffi-
cient for conscious experience, such as high degrees of in-
formation integration (Oizumi et al., 2014) or a cognitive
“global workspace” (Dehaene, 2014).

Humans may appear to have unique properties in the an-
imal kingdom, but the uniqueness of particular properties
has been challenged again and again over the course of the
history of scientific research, pointing rather at a set of evo-
lutionary processes which made certain properties emerge
and evolve, often in parallel. Most behavioral properties and
cognitive mechanisms typically thought of as uniquely hu-
man, turned out to be found in other animals as well, such
as culture (Kawai, 1965) and combinatorial communication
(Scott-Phillips et al., 2014).

If human beings have no unique capacities that ground
their high moral status, they might also not in principle be
uniquely deserving of the highest moral status. A natural
candidate to study is Al, for its behavior is growing more
sophisticated every year. Beyond Al, one might also look
at a larger range of systems, including a diverse set of intel-
ligences, metabolisms, and functional mechanisms, which
may exist over various physical substrates.

Artificial intelligence

If the field of artificial intelligence (Al) is defined as the sim-
ulation of human intelligence processes by engineered ma-
chines, it is probably still in its infancy. We might regard
some Al systems as similar to children who are learning to
understand causality in the physical world (Gopnik, 2017).
Computers become increasingly proficient at a wide range of
tasks, from simple counting and arithmetic to complex clas-
sifications such as face recognition. However, besides a set
of exceptional cherry-picked outliers, the state of the art in
Al is, in the words of Yoshua Bengio: “not anywhere close
today to the level of intelligence of a two-year-old child” (in-
terviewed by Eliza Strickland, on December 10, 2019). Cur-
rent chatbots butcher basic sentences of common language;
Al decision making fails at what we consider basic common
sense; robots cannot yet balance themselves properly.
These failings reflect Moravec’s Paradox, named after
Hans Moravec who wrote: “It is comparatively easy to make
computers exhibit adult level performance on intelligence
tests or playing checkers, and difficult or impossible to give
them the skills of a one-year-old when it comes to perception
and mobility” (Moravec, 1988). We need to recognize that
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various machines are more or less optimal at various tasks
(Williams Korteling, 2018). The difficulty of performing a
task is by no means an intrinsic measure of task complexity,
nor is an agent’s performance on a specific task a measure
of its general level of skill or intelligence.

Nevertheless, some successful algorithms and models do
reach the level of performance of some animals, and if we al-
low ourselves to focus on narrow examples of what humans
consider as complex tasks, progress has been extremely im-
pressive over the last decade. Ever since IBM Deep Blue
prevailed against world chess champion Garry Kasparov in
a series of chess matches back in 1997, it has become clear
that artificial intelligence is increasingly able to explore and
react with seeming-intelligence to its environment. Some fu-
turists envision robots with human-level intelligence, virtual
simulations of humans, cyborgs, advanced brain-machine
interfaces, and other emerging technologies that would blur
the line between humans and machines. The science and
technology of intelligence in the future may make it hard to
distinguish AI from humans. Artificial life systems appear
to be a good candidate for a category of systems that might,
if technology evolves in a certain direction, arguably deserve
moral consideration. On the other hand, as Al systems be-
come more powerful, the line separating them from artificial
living systems might become blurrier, to the point that this
classification may no longer be relevant.

Narrow Al is typically distinguished from General Al (or
AGI, for Artificial General Intelligence). The former is de-
fined as the production of systems displaying intelligence
regarding specific, highly constrained tasks, like playing
chess, facial recognition, autonomous navigation, or loco-
motion (Goertzel, 2014). AGI, on the other hand, is often
thought to involve the achievement of at least human-level
general intelligence. However, human intelligence may not
be as general nor high level as it is widely thought to be.
Nor is it as unique as it is claimed to be. The widespread
conception of intelligence has an intrinsic anthropocentric
component, as it is only natural to view the human mind
as a reference. We tend to use it as a basis for reasoning
about other, less familiar phenomena of intelligence, such as
other forms of biological and artificial intelligence (Coley
and Tanner, 2012).

Technological beings are also likely to be the only future
space travelers in a further future (Schneider, 2017), and
it has been argued that we might fuse with future artificial
technologies, as we have already to some extent by our in-
teraction with them, by transmitting to them large parts of
our knowledge and even values, increasingly relying upon
them. Considering the long-term future of potential space
travel, it’s likely that our biological particles won’t be able
to efficiently travel in space, and thus it’s likely that only
our biological information in a larger sense could be dis-
tributed beyond the Solar System, either in different forms
of physical embodiment or simply as information transmit-
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ted in electromagnetic waves towards new colonies. The
potential ubiquity of Al invites questions of their potential
future moral consideration (Dameski, 2018), although they
are far from being the only category of systems at stake.

Artificial life, beyond Al

Artificial life (ALife) is a broad field of study about the syn-
thesis and simulation of living systems. The field exists
at the intersection of many other fields, including biology,
chemistry, computer science, art, philosophy, engineering,
astrophysics, and more. As its name indicates, the purpose
of ALife is to understand the fundamental mechanisms and
properties of “life as it could be”, instead of “life as we know
it”. Its scope includes natural life with its processes and evo-
lution, but also instances in computational models, robotics,
biochemistry, and any other forms of life, discovered or de-
signed, in the past or the future.

The ALife approach must deal with a large set of funda-
mental problems including the lack of a formal definition of
life over a very diverse distribution of instances and radically
different substrates (Bedau et al., 2000). However, since
its inception, the field has proposed numerous metrics to
identify conditions which may be more suitable for life than
others, which include for example measures of complexity,
computational capabilities, or open-endedness (Frans et al.,
2021; Stepney, 2021; Stanley, 2019).

Figure 2: An example of hybrid entities is the Xenobot, an in
vitro self-replicating biological robot. The version 3.0 fol-
lows the original Xenobots reported in 2020 as the first liv-
ing robots, and Xenobots 2.0, capable of self-propelling us-
ing cilia and maintaining memories. Synthesized from frog
cells, these computer-designed living machines are able to
navigate aqueous environments in different ways, forage for
single cells, heal after damage, and show emergent group be-
haviors (Blackiston et al., 2021). Image source: Daily Mail
©2021 Douglas Blackiston & Sam Kriegman.

A particular topic of interest in ALife, although it is not
only limited to artificial systems, is the one of hybrid sys-
tems. Hybridity may involve an external designer, a mix-
ture of mechanical, electrical, chemical, or biological com-
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ponents. There exists some tension in defining such hybrid
machines, as they tend to escape the simple dichotomy be-
tween machines versus living organisms. A recent example
of such hybrid robot (or hybrot) can be found in Xenobots
(Blackiston et al., 2021) (see Figure 2) are made of frog
skin and heart cells but are designed via a genetic algorithm.
Such hybrid systems may be considered life forms, but some
have been reticent to call them organisms because of the ab-
sence of certain properties such as reproduction (Coghlan
and Leins, 2020). This hybridity brings about novel chal-
lenges, such as the apparent oxymoron of a designed yet
autonomous agent (Siqueiros, 2021). Our limited under-
standing of potential hybrid systems invites concerns about
our capacity to understand what their moral status might be.
From the angle of environmental ethics, Holy-Luczaj and
Blok (2021) argue that it may primarily be the ability to
serve other beings by performing certain of their functions,
intrinsic to their identity, that qualify a being for moral con-
siderability.

Although a complete review of the current state of re-
search on this topic is challenging due to the exponential
growth of a diverse range of research, Harris and Anthis
(2021) is a valuable coverage and synthesis. They show how,
despite some scholars dismissing the question of moral con-
siderability as premature or frivolous for artificial beings, an
increasing number believe the topic is worth addressing ur-
gently, even proposing the development and formalization
of a field of “Al welfare science” (Ziesche and Yampolskiy,
2018).

Three approaches to moral status

Although rights are an important and effective way of con-
ceptualizing moral status, a more fundamental starting point
is to consider whether an entity’s interests morally matter
to some degree for the entity’s own sake. More precisely,
we focus on moral considerability. An entity may be said
to have moral considerability if its suffering is morally bad,
on account of this animal itself and regardless of the conse-
quences for other beings. Specific terminologies depend on
the type of framework or approach adopted (Jaworska and
Tannenbaum, 2018). There are generally three approaches
to this question: consequentialist approaches, especially
utilitarianism, which focuses on the capacity for pleasure
or suffering, deontological approaches, which focus on the
intrinsic value of an entity, and eudaimonistic approaches,
which focus on the flourishing of an entity.

The utilitarian approach views moral considerability in
terms of a calculation of each agent’s interests to deter-
mine which action maximizes a utility function, based on
as many factors as necessary, including for example the in-
tensity, duration, and probability of an entity’s pleasure or
pain (Singer, 1993; DeGrazia, 2008; Mill, 2001; Bentham,
1988). Alternatively, others favor an individual-rights-based
or deontological approach, arising from the traditions of
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Kant and social contract theory (Kant, 1785). This non-
utilitarian approach views moral status such that there are
reasons to act for the sake of the entity or its interest, reasons
which are prior to, and may clash with, what the calcula-
tion of the overall best consequences would dictate (Regan,
2004). A third approach, rooted in the Aristotelian tradition,
emphasizes human, or alternatively non-human, flourishing,
including acting virtuously as a type of human flourishing
(Nussbaum, 2009).

One immediate concern might come to mind for utilitar-
ian or eudaimonistic approaches: What if Al systems were
capable of superhuman levels of pleasure and suffering, or
flourishing? Would we then owe them more moral consid-
eration than we owe to our fellow human beings? We don’t
rule out this possibility, but some theorists might find it un-
appealing or unintuitive. Conversely, approaches that focus
on individual rights might struggle if future artificial sys-
tems can merge and divide at will, or if the boundaries of
individuality become vague and permeable.

What criteria for moral considerability?

The main parameters at play in determining whether a being
is deserving of rights usually belong to the following list
— presented to illustrate what an arbitrary cut of plausible
criteria for moral status may resemble, and by no means to
be regarded as exhaustive or final. Nevertheless, these may
be considered as a starting reflective structure to think of
moral rights for artificial systems.

Embodiment

The physical embodiment refers to the biology, dynami-
cal properties, or architecture of an entity. The nature of
the living state is not well defined in the literature, or at
least it possesses many opposing definitions. Nevertheless,
many would rely on the embodiment as a criterion to at-
tribute moral status to an entity. Biological or physical
criteria may include some characterization of mechanisms,
metabolism, behavior, and other biochemical parameters.
Kirsiené et al. (2021) propose autonomy and embodiment as
important criteria, but argue that while there may be future
conditions to justify Al personhood, doing so now appears
to be technically premature and is likely to be inappropri-
ate. In our view, similarity of physical embodiment should
probably not be the determining factor for moral consider-
ability. The cognition or sentience of an entity may not de-
pend upon its medium of embodiment either (Doctor et al.,
2022). Most current theories of the grounds of moral status
focus on psychological and social properties as more im-
portant to moral status than an entity’s particular form of
embodiment, though of course certain forms of embodiment
might make certain forms of cognition easier, more useful,
or more likely.
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Consciousness

An entity is conscious if and only if “there is something
it’s like” to be that entity (Nagel, 1974), or if the entity
has a stream of experiences, such as sensory or affective
experiences. Having consciousness might be necessary for
moral considerability, or it might be sufficient, or both. Un-
fortunately, there is little consensus about what entities are
conscious and how consciousness arises. Metaphysical op-
tions include dualism, according to which consciousness re-
quires non-physical substances or properties, materialism,
according to which everything in the world is wholly phys-
ical, and several types of alternative views or compromise
views. Even among materialist views, options range from
panpsychism or near-panpsychism, according to which con-
sciousness is ubiquitous or at least very widespread, to views
on which consciousness is a rare and delicate achievement
only in the most sophisticated organisms. On liberal views
of consciousness, artificial systems might already be con-
scious. On conservative views, artificial systems might
never be conscious. If consciousness is required for moral
considerability, then on conservative views, artificial sys-
tems might never merit moral consideration. Liberal views
of consciousness, when combined with the view that con-
sciousness is important to moral considerability, fit more
neatly with the view that artificial systems might soon war-
rant moral consideration. However, the most liberal views
might involve denying that the mere existence of conscious-
ness is sufficient for a high level of moral considerability,
unless one wants to commit to the view that very simple
systems already have high moral status.

Sentience in a narrow sense refers to the capacity of enti-
ties to experience positive and negative affect, such as sensa-
tions of pleasure and pain. Sentience in a broad sense might
also include features of the mind such as creativity, intel-
ligence, sapience, self-awareness, and intentionality, which
may not be needed for sentience in its narrower sense. Ar-
guably, all sentient entities are also conscious the sense of
having “something it’s like” to be them (Nagel, 1974), al-
though there might be room for a view in which wholly
nonconscious entities also have affective systems. Utilitar-
ian views typically emphasize specifically sentience rather
than consciousness in general as the basis of moral consid-
erability. Existing work on, for example, whether decapods
or certain species of vertebrate fish can feel pain is often re-
garded as central to the question of whether they have moral
considerability. This is pointed out by Elwood (2021), who
point out behavioral responses to potentially painful events
different from simple reflexes. This illustrates how in prac-
tice, the characterization of consciousness or sentience may
connect closely with cognitive or behavioral considerations.

Due to the extreme difficulty of reaching consensus on a
universal detector of conscious experience or sentience, it
might be very difficult to assess whether an artificial entity
is conscious or sentient. If its moral status turns on con-
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sciousness or sentience, we might be left with considerable
moral uncertainty. To avoid situations in which we might
be grossly mistreating entities that have, unbeknownst to
us, the full moral status of human beings, we recommend
considering the “Design Policy of the Excluded Middle”
(Schwitzgebel and Garza, 2015). According to this policy,
we should avoid creating Als for which it is unclear whether
they would or not deserve moral consideration similar to that
of human beings.

Cognition and behavior

Cognition refers to any mental process consisting in gaining
knowledge and comprehension, including reasoning, prob-
lem solving, remembering, judgment, planning, abstract
thinking, complex idea comprehension, and learning from
experience (Gottfredson, 2004). A typical example is the
capacity for mathematical reasoning, or the ability to carry
out a complex task. Although assessing the cognitive struc-
tures and capacities of a system is sometimes difficult, the
task is considerably more straightforward than settling ques-
tions of consciousness. Partly for this reason, some theorists
might prefer to think of moral considerability in cognitive
terms: Any entity with the right cognitive capacities de-
serves moral consideration, whether than entity is human or
artificial. Which are the right cognitive capacities may prove
to be a difficult theoretical question (Shevlin, 2021a,b). Pre-
sumably the capacity to add a list of numbers is not enough
for the highest level of moral status, since artificial sys-
tems already have this capacity. Conversely, infants and the
severely cognitively disabled are typically regarded as hav-
ing full moral status equivalent to ordinary adult human be-
ings, even if their cognitive capacities are very different from
ours.

Outward behavior is another potentially simple and
tractable tool for assessing moral status. If a system behaves
similarly to a human being, perhaps it deserves similar moral
status (Danaher, 2021). Questions that arise are: Similar in
what respects? If the system is architecturally simple, so
that it plausibly lacks consciousness and cognition like ours,
would we really want to treat it as having full moral status?
What about systems that have limited outward behavior but
whom we ordinarily regard as deserving of full moral status,
such as people with locked-in syndrome?

Social attribution

Social structures arise from their members and the larger
public, as entities that exist independently of of any partic-
ular individual. Such social entities come with their own
sets of relationships and moral, legal, and physical fea-
tures. If morality is partly grounded in intersubjective agree-
ment, then belonging to the right social structure or being
attributed moral status within a group might be sufficient
for moral considerability. David Gunkel and Mark Coeck-
elbergh argue that moral status is a socially constructed re-
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sult of negotiation among groups, and that the participating
groups might at some point come to include artificial entities
(Coeckelbergh, 2012; Gunkel, 2018).

A perhaps esoteric example of attribution may be found in
an entity created mentally or spiritually, called tulpa (Mikles
and Laycock, 2015; Veissiere, 2016). It refers to a type of
willed imaginary friend which practitioners consider to be
sentient and possessing certain autonomous abilities. Such
entities may be deserving of derived moral considerability,
even if they have no intrinsic moral considerability, just as a
child’s favorite stuffed animal might be treated with respect
due to the child’s concern for it. This would imply including
extrinsic properties as grounds for moral considerability, in
opposition to strictly intrinsic grounds (Liao, 2020).

Relatedly, even if we suppose that some entities, such as
artificial systems and non-human animals, have no intrinsic
moral considerability, it might be morally wrong to harm
them because harming them either expresses a vice in the
person who does the harming or nurtures habits and attitudes
that may be harmful in the long run through affecting how
one treats other people (Kant, 1785; Darling, 2021).

We note there may be biases towards evaluating moral
choices by artificial beings that resemble humans as less
moral compared to the same moral choices made by either
humans or clearly nonhuman robots (Laakasuo et al., 2021).
This moral uncanny valley effect might have similar or even
further implications for the moral considerability of artificial
life, as it is designed to be as life-like as possible, possibly
in different or more open-ended ways compared to Al which
arguably suffers from risks of local optima due to the focus
of solely imitating human behavior.

Group entities and the extended mind

Social entities themselves, at any scale, may come to be
attributed a moral status. By the virtue of existing au-
tonomously from its composing agents or others, includ-
ing any organization such as social groups, legal structures,
cultural entities, ecosystems, and more. Many of them,
such as corporations or states, certainly are recognized to
possess legal rights. Some have even argued that social
groups, such as the United States might be literally con-
scious (Schwitzgebel, 2015; Lerner, 2021).

Others have argued that our minds literally extend into
the world when we rely heavily on the world for our cogni-
tive processes (Clark and Chalmers, 1998; Clark et al., 2008;
Chalmers, 2019), which may involve conscious processes as
well (Vold, 2020). As we become highly dependent on exter-
nal devices, harming those devices might literally be harm-
ing our own minds, so that taking someone’s smartphone or
stealing a blind person’s cane is better conceived of as as-
sault resulting in cognitive damage rather than merely theft
(Vold, 2018). Human-robot dyadic interaction may be a re-
lated case (Zahavi, 2019). Artificial life approaches have
been proposed to study morality with the help of modeling

#20z Atenuer Lg uo Jesn O LNIHL 1A VLISHIAINN Aq 4pd° 26500 € 1eSI/6G7SE0Z/L/vE/2Z0zIes!ypd-sBulpaadoid)les)/npajiw-joalip//:diy woly papeojumoq



populations of artificial agents (Sullins, 2005; Witkowski
and Ikegami, 2016).

Discussion

One may wonder whether there would be practical applica-
tions for the problem of determination of moral status. One
near-term issue is this: sometime in the near future some
people with liberal ideas about what sorts of systems deserve
moral consideration will likely come to think that some ar-
tificial systems have moral status and interests that need to
be protected. They might rush to save a favorite robot in a
fire, for example, risking their lives for it; or they might ob-
ject to the mistreatment of a service delivery bot, thinking
that abuse of such a bot deserves criminal penalty similar to
the abuse of a dog. This is likely to occur in the near fu-
ture regardless of whether such entities actually do deserve
such moral consideration. The issue needs to be considered
in advance, so that we can address this likely social problem
in an informed way.

Coevolution, omnipresent in theory of artificial life, may
be a promising way to think of the problem. A compelling
example may be Neanderthals, who were assimilated by
early modern human populations. There was an evolution-
ary, cultural, and technological gap between humans and
Neanderthals. Although Homo Sapiens is considered to
have “won” the survival game, due to interbreeding, Nean-
derthal genes still exist within human DNA, and the same
might be said about elements of their culture and technology.
Other examples of coevolutionary events might be found in
pets, which are part of human history, or viruses which co-
evolved with bacteria. All such cases illustrate further our
previous point on hybrid forms of life, where entities are not
only to be considered on one layer of organization, but rather
on multiple levels, vertically as well as laterally. For exam-
ple, humans exist at the scale of their DNA, but are also part
of larger ecosystems, cultures, or technological timelines,
which may be considered as entities of their own right.

The topics treated in this article are contentious and re-
quire a transdisciplinary approach, touching multiple fields
in science, engineering, and the humanities. Both within and
between disciplines, clashing perspectives are likely. The
aim of this paper is not to formulate a final response to the
questions posed but rather to invite wide-ranging interdisci-
plinary conversation. We remark that moral consideration
cannot be based merely on the results of scientific research,
although it can be informed by them. Singer (1990), for
example, argues that equality of consideration is a prescrip-
tion, not an assertion of fact such as intelligence, physical
strength, or moral capacity. We also note the existence of po-
tential risks that, although not discussed in detail in this pa-
per, should nevertheless be considered seriously when creat-
ing artificial living entities, especially when they are capable
of moral judgment themselves (Cave et al., 2018).

Sadly, even the fight for universal human rights is far from
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won. It goes without saying that any discussion about the
rights of machine or nonhuman life should by no means slow
us down in our hard fight for the protection and support of
human rights. We believe that the type of broad vision about
the bases of moral considerability at work in thinking about
the moral status of non-human animals and artificial systems
is one that supports and aligns with, rather than competes
with, a broad vision of human rights.

The principal ambition of this article is to shed some light
on the relevance of the perspective of artificial life on the
question of moral consideration of entities. Parallel to Al,
where advances are happening at a much faster pace than the
design of policies would be able to reach, the engineering of
living systems is also moving up a gear, pressing society
to include them in the current design processes. Artificial
living systems may soon become a concrete aspect of our
daily lives. When that time comes, research groundwork
should already be in place to inform ethical policies, not only
for life, but also for life as it could be.
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Abstract

In Evolutionary Eobotics, evolutionary algorithms are used
to co-optimize morphology and control.  However, co-
optimizing leads to differeni challenges: How do you opii-
mize 3 controller for a hody that often changes its number
of inputs ond outputs?  Researchers must then make some
choice between centralized or decentralized control. In this
article, we study the effects of centralized and decentralized
controllers on modular robot performance and morphologies.
This is done by implementing one centralized and two decen-
tralized continuous tinee recurrent neural network controllers,
as well as a sine wave controller for a baseline. We found
that a decentralized approach that was more independent of
morphology size performed significantly better than the other
approaches, It also worked well in o larger vanety of mor-
phology sizes.  In addition, we highlighted the difficultics
of implementing centralized control for o changing morphaol-
oy, and saw that our centralized controller struggled more
with carly converzence than the other approsches. Our find-
ings indicate that deplicated decentralized networks are ben-
eficial when evolving both the morphology and control of
modular robots. Owverall, if these findings translate 1o other
robot systems, our resulis and isspes encountered can help
fumure researchers make a choice of control method when co-
optimizing morphology and control,

Introduction

When co-optimizing morphology and control of modular
robots, how do we optimize a controller for a robot that of-
ten changes its number of actuators and sensors? If a cen-
trealized approach is chosen, we must select a method to deal
with disappearing actuators or the addition of new ones. Fur-
thermore, although distributed control removes the issues of
changing morphology, we must still then facilitate for global
synchronization of the actuators. In this paper, we imple-
ment and discuss one centralized and three decentralized
approaches to control and their effect on morphology. We
suggest a decentralized control strategy that reuses control
units across the robot body and demonstrate that such an ap-
proach leads to higher performance and more morphological
development.

Throughout Evolutionary Robotics” short history, there
have been many approaches to co-optimizing morphology
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Figure |; The EMeRGE module. The left image is an ex-
ample of a real EMeRGE module, and the right is our Unity
simplification.

and control. Most notably, the work of Karl Sims showed
virtual creatures evolved wsing a nested graph where hody
and control elements were connected (Sims, 1994, Con-
troflers. were duplicated as body parts were copied in a
semi-distributed approach. Lipson and Pollack (2000) later
showed a pipeline to transfer such virual creatures to re-
ality, where they uwsed centralized control. Later, Cheney
etal. (2013, 2014) displayed soft-robots that evalved control
through an indirect encoding using a Compositional Pattern
Producing Metwork (CPPN). Similarly, Auverbach and Bon-
gard (2011) used a CPPN encoding to generate a morphol-
ogy and weights for a centralized continuous time recurment
neural network (CTRNN) controller. Both these approaches
have reuse of control elements due to the indirect encodings.

A common problem when co-optimizing morphology and
control is that of early convergence of morphology. As de-
scribed by Joachimezak et al. (2016), and later explored fur-
ther by Cheney et al. (2016}, the morphology will reach
its almost final form relatively early. Cheney et al. theo-
rize that because the controller interacts with the environ-
ment through the interface of the body, changes to the body
will scramble the control. However, this effect has not been
studied much in modular robots, Decentralized control in
maodular robots could potentially decrease this issue because
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Figure 2: Examples of well-performing morphologies. Purple and top left: Copy controller. Yellow and top right: Sine
contreller. Blue and bottom left: Decentralized CTRNN controller. Teal and bottom right: Centralized CTRNN controller,

adding a new module with the same controller as its parent
could still work without scrambling the overall performance.

Maodular robotics (MR) concerns robots built from sepa-
rable modules or units that encapsulate some function of a
robotic system (Stoy et al., 2000), This is as opposed o an
integrated design with no clear sectional modularity. The
modules contain actuation, computation, energy, and sens-
ing as needed, as well as some mechanism to connect and
transmil to other modules, They can easily be reconfigured
by hand or by machine, making them highly suited for rapid
prototyping of robot designs,

The field of modular robotics is guite young, with some
of the first notable papers, like the CEBOT {Kawauchi et al.,
1992) and Fracta (Murata et al., 1994) papers, being pub-
lished in the 905, Modular robots promised easily reconfig-
urable robots that could adapt their form to any use (Yim
et al,, 2000), Early systems such as the M-TRAN showed
self-reconfiguration into shapes for walking and climbing
(Murata et al, 2002}, and Zykov et al. (2005) showed
the first minimal example of self-reproduction in modular
robots, Throughout the 20005 and early 2010s, the focus
was mostly on exploring the promise of reconfiguration and
creating novel mechanical solutions for the modules.

Later Marbach and Tjspeert (2004}, inspired by the works
of Sims (1994) and Lipson and Pollack (2000), started 1o
co-evolve configuration and control. With works like Mar-
bach and Ijspeent’s Adam and EDHMoR (Faifia et al., 2013),
researchers started to experiment with the pipeline 1o cre-
ate modular robots for any task. Evolutionary algorithms
were uniguely suited for optimizing the robots, because the
complexity of control scales exponentially with the num-
ber of modules (Marbach and ljspeert, 2004). Additionally,
by co-evolving we avoid the limitations and biases a human
designer would bring, hopefully producing mere novel and
better adapted solutions {Faifia et al., 2013),

Many systems in MR use sine wave generator controllers
when the focus of the research 15 elsewhere (Faifia et al.,
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2003; Liu et al.,, 2017; Veenstra et al., 2017), because they
produce periodical movement with few parameters 1o opti-
mize. This controller is a good buseling for the behavior of
other controllers, as it is what we minimally expect from a
decentralized controller,

Evolved centralized control is something that is nol much
used in MR. as the focus early on was on hand-crafted cen-
tralized reconfiguration systems (Murata et al., 2002). Later
works have also shown centralized control that focus on sk
execution and locomotion (Brunete et al., 20012}, however
these are not evolved and do not necessarily scale well. Tt
is still thought that some form of cemralized control could
be more suited to task execution (Seo et al., 2019), and so
evolving centralized control should be explored.

Even so, decentralized control has also shown impres-
sive results in task execution. Chrstensen (2006) showed
an example of a decentralized neural network controller,
which could self-reconfigure and self-repair. Their modules’
swarm-like, imperfect behavior was able to control above
3000 modules in simulation, showing the scalability of good
decentralized control. Another good example of newral net-
work control is Jelisaveic et al.’s (2019) use of CPGs in the
RoboGen modules. While this still results in distributed con-
trol, a CPPN encoding determines the CPG weights and can
still enable module synchronization.

Our contribution to the ficld is two-fold: We present an
investigation into centralized and decentralized controllers,
and present a decentralized controller that reuses control
units across the body. The controllers were implemented
on a chain-type modular robot system. Through measur-
ing performance and morphological diversity, we evaluate
which control approach is better suited for co-optimizing
morphology and control in light of premature convergence
of morphology., Our findings show that the controller that
reuses control units leads to an increase in performance and
morphological development. which advocates for reuse of
control elements in controllers in general.
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Figure 3: The controllers and how they could map to the modules in a small modular robot. The arrows with numbers
represent inputs (left side of boxes) and outputs (right side of boxes). a) The sine controller, b) The centralized CTRNN
controller, c) The decentralized CTRNN controller, d) The copy controller.

Methods

Our system consists of modular robots simulated in a flat
ground environment and being measured on the task of lo-
comotion. To co-optimize the morphology and controller,
an evolutionary algorithm is used. This, as well as the four
controllers we are investigating, will be presented below.

For this project, an environment and simulated modular
robots were built in Unity with the framework of ML-Agents
!. ML-Agents version 1.0.7 was used. Unity uses the Nvidia
PhysX physics engine, which supports rigid body dynamics
and updates physics steps every 0.02 seconds. The default
physics engine settings were used.

The Modules

We are using the EMeRGE module (Moreno et al., 2017),
see Figure 1. It is a simple module with one servo motor,
so that each module works like a hinge. It has four connec-
tion faces, one male at the base, and three female on the top
and sides. The male connection face can only connect to
the female ones and vice versa, meaning the robot will have
a root module with three possible child modules, growing
outwards in a tree-like structure. We do not allow connec-
tions to break. The joint is driven by a spring joint with 200
in spring torque and a damping value of 5. The max force
is not constrained. Example morphologies can be seen in
Figure 2.

The original design for the modules includes infrared
proximity sensors on each face. This was also implemented
in our abstraction of the module, although the workings of
the exact sensor model were not replicated. Instead, sen-
sors register all distances through a ray cast, meaning the
distances it can register are not capped and could get very
high. For not registering a distance, for example from being

'Source code at https://github.com/mia-katrin/Modbots
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angled towards the sky, a sensor returns -1. When a child
module occupies a site, the sensor will register the small dis-
tance towards the child.

The Controllers

There are four controllers implemented in this system (Fig-
ure 3), each described below. For all of them, the output
produced is directly the desired angle of a module’s servo.
The simulated module constrains the movement to +/-90°.

Three of the controllers use a continuous time recurrent
neural network (CTRNN)2. This network was chosen to
have the possibility of dynamic temporal behavior (Beer,
1995). Here each node updates based on a differential equa-
tion, with neuron potentials as dependent variables.

The CTRNN mutation operators can adjust weights and
biases, change activation and aggregation functions, and cut
away/disable or add/enable connections and nodes. The
gene mutation rates are equal for all our CTRNN controllers
and are given in the source code. These rates were then
scaled by the controller’s control mutation rate.

Open-loop sine wave generator The open-loop sine wave
generator is a decentralized controller that performs well be-
cause it produces periodic movement through sine waves,
although it has no sensor input. In our case, the sine wave
controller is used to provide a baseline to compare the other
controllers to. The controller is given by the function

y(t) = Axsin(w*t+p)+o (1)

where A is the amplitude, w is the frequency, ¢ is time, p is
phase, and o is offset. y(¢) is the controller output at time ¢
that is directly fed to the servo’s desired angle.

“The CTRNN implementation used is from the neat-python li-
brary https://neat-python.readthedocs.io/en/latest/
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Figure 4: The distribution of number of modules in indi-
viduals in a random population before optimization.

To enable synchronization between the modules, the fre-
quency was fixed in all sine wave controllers and was not
allowed to mutate. We noticed that without this, the sine
controller was susceptible to choose local optima solutions.
The sine wave controller has 3 parameters for each joint,
meaning an average robot of 6 modules will have 18 param-
eters to optimize for the controller. When a module is added
to the morphology, it is instantiated with the control param-
eters of the parent module.

Centralized CTRNN A straightforward approach to us-
ing a CTRNN for a modular robot is to simply gather all
sensor outputs and feed them into one big CTRNN, that
then outputs all controller actions. This leads to a fixed size
CTRNN controller.

In initial experiments with the centralized CTRNN con-
troller, we tested numbers of inputs and outputs correspond-
ing to 50 modules. Because there was a clear tendency to
have a small number of modules, we tested with fewer in-
puts and outputs until finally we chose 15 to be the number
of modules that would be controlled. This allowed the net-
work to be as small as possible while still accommodating
larger creatures at initialization, however it was very rare to
see larger creatures with this controller. When a modular
robot is smaller than 15 modules, the rest of the inputs to the
network is set to 0.

The centralized CTRNN controller has 45 inputs and 15
outputs. It is initialized with 45 hidden nodes but is only
20% connected. The order of mapping modules to input and
output follows a depth first ordering of the modules, so that
the first three inputs and first output goes to the root, the
second three inputs and second output goes to its child, etc.

The centralized CTRNN controller ends up having circa
600 connections and 60 nodes, each with respectively 3 and
5 parameters to tune, for a total of 2100 parameters.

Decentralized CTRNN Foregoing the benefits of a cen-
tralized brain, a decentralized approach leads to less param-
eters and a less complex optimization. The decentralized
approach consists of each module getting its own CTRNN
controller. When a module is added, it is instantiated with
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the control parameters of the parent module. Here, we used
a small compact network of 3 inputs and 1 output, and with
3 hidden nodes and enabling all connections from the start,
we get 4 nodes and 16 connections, totaling 68 parameters.
For an average sized robot with one of these controllers in
every module, this leads to about 400 parameters.

Copy Decentralized CTRNN The copy decentralized
CTRNN controller, or the copy controller for short, is our al-
ternative to the decentralized approach. It functions by hav-
ing each robot keep a list of two CTRNN networks, which
maps to different modules. The networks are the same as in
the decentralized CTRNN controller. At initialization, these
networks are clones, but as the optimization progresses, they
will mutate separately. The modules will then mutate which
network they use for control, theoretically allowing special-
ization. When a module is added to the morphology, it will
use the same network as its parent module.

At the start of an evaluation, the networks are copied into
their corresponding modules, hence the name. They then
function independently of each other, and because of differ-
ent sensor input such as detecting ground or the presence
of child modules, they will likely behave differently. Nev-
ertheless, it is reasonable to assume it will not achieve the
level of specialization that the decentralized CTRNN con-
troller can. While this might be a trade-off, we assume the
copy controller will be quicker to achieve a good fitness, and
possibly not be as dependent on number of modules.

This controller, like the centralized CTRNN controller, is
the same no matter the size of the robot. This gives us two
controllers with 68 parameters, for a total of 136 parameters.
Additionally, each module can change which controller they
use, giving us a further average of 6 parameters.

Evolutionary Algorithm

The evolutionary algorithm used had tournament selection,
with a tournament size of 4, and generational replacement. It
was implemented using the DEAP framework (Fortin et al.,
2012). Generational replacement was chosen because it can
sometimes dislodge a population from early convergence.
This happens because the best genotype will rarely be kept
when the population is mutated and no elites are kept. Other
parameters of the algorithm were also chosen to keep diver-
sity. Most notably, the tournament selection size was small
to increase selection pressure on the elites, while still being
large enough to avoid a noisy evolutionary progression.

The morphology and the controller had separate mutation
rates. All controller gene values mutated with a Gaussian
distribution based on the mutation power. For the rates, a
parameter sweep was done for each controller on a grid of 8
values for both controller and morphology (Figure 5), a total
of 64 pairs. Each pair was run for 50 generations with a pop-
ulation size of 50, which totaled 2500 evaluations. This was
done 4 times for each pair. Finally, the columns and rows in
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Figure 5: The grids filled for the parameter tuning, values
are rounded average fitness for each mutation rate pair.

the grid were collapsed and plotted because there were a lot
of variation between the pairs. The best performing column
and row value were then chosen for each controller.

The 8 sweep values were chosen for each controller and
the body based on whether they divided the mutation rate in-
ternally. In the body, the sine, and the decentralized CTRNN
controller, the mutation rate is divided by the number of
modules so that creatures mutate the same amount no matter
the size. This encourages the use of more modules because
larger creatures are not more unstable solutions. Since the
average number of modules is 6 (Figure 4), the per-module
mutation rate is 0.14 for the largest sweep value of 0.82. In
the morphology mutation, this is further multiplied by circa
0.25 for each gene in the module.

Encoding of robots

For the encoding of the robots, a direct encoding is used.
A directed tree is generated from a root node, after which
it is sent to the simulator. The simulator builds the robot
and prunes any branches that collide, prioritizing keeping
modules closer to the root. Modules that are not expressed
are still kept in the genome.

The morphology can mutate by adding and removing
modules, as well as changing the angle of modules. There
is a slightly higher chance to get an add module mutation in
order to bias creatures to grow. Additionally, one mutation
will make a module duplicate one child branch to another
connection site. This mutation was chosen to facilitate sym-
metry and larger jumps in the morphology landscape.
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Figure 6: The fitness progressions for all four controllers.
The solid lines are averages of the best individuals in each
generation, and the shaded areas represent the standard error.

Fitness function

The task that we measured the modular robots on was lo-
comotion away from the origin during a set amount of time
(100 steps of 0.2 seconds, roughly equaling 20 seconds in
real time). Because this often leads to robots discovering
the immediate optima of the somersault, or simply falling
over, the robots were given 2 seconds to fall before the eval-
uation started. At the same time, the controller is not given
input and will not give output. The fitness function is then

Fitness = \/(xend - xstart)z + (yend - ystart)2 (2)

where 4.+ 1S the x-position after 2 seconds of simulation,
and Ty q is the x-position when the simulation ends. Like-
wise for y. The fitness is measured in units that correspond
to the height of one module, which is circa 8§ cm. A fitness
of 30 would therefore mean 2.4 m has been travelled. The
evaluation will stop early after 4 seconds from start if the
robot has not moved in the last 2 seconds.

Results
Mutation rate sweep

As can be seen in Figure 5, the results from the sweep were
often quite even. Only the copy and decentralized CTRNN
controllers saw huge differences between different pairs, but
all controllers had only minor differences after collapsing
the data. Therefore, we settled on choosing a few of the
ones that were contenders after the initial sweep and run a
few more evolutionary runs on those. A winner would then
often be clearer. The final parameters for all controllers can
be seen in Table 1.

Controller performance

The final runs were done on populations of 50 individuals
for 500 generations, for a total of 25 000 evaluations. This
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Table 1: The mutation rate parameters chosen after
the sweep. Note that for the sine wave and decentralized
CTRNN controller, as well as the morphology, the working
mutation rate on one module is divided by the number of
modules in the robot.

] Controller | Morph. rate | Controller rate |
Sine wave 0.32 0.64
Centralized CTRNN 0.24 0.16
Decentralized CTRNN 0.24 0.48
Copy CTRNN 0.32 0.08

was done for all controllers 64 times, and the resulting per-
formances can be seen in Figure 6. Figure 7 shows the dis-
tribution of performances for the different controllers.

In order to get an overview of all significant differences, 6
two-sided Mann-Whitney U test were performed between all
controllers at generations 50 and 500, a total of 12 tests. An
alpha level of 0.05 was chosen. Because we were conducting
multiple comparisons, Bonferroni correction was used. This
gives us an adjusted alpha level of 0.05/ 12 = 0.00416.

At generation 50, the sine and centralized CTRNN con-
trollers were significantly different from the decentralized
CTRNN controller (both p < 0.0001). There was no signif-
icant difference between the sine and copy (p > 0.2), sine
and centralized CTRNN (p > 0.07), copy and centralized
CTRNN (p > 0.06), and the copy and decentralized CTRNN
controllers (p > 0.01).

At generation 500, the copy controller was significantly
different from the centralized CTRNN, the sine, and the
decentralized CTRNN controllers (respective p-values p <
0.003, p < 0.0004, p < 0.0002). There was no significant
difference between the sine controller and the centralized
and decentralized CTRNN controllers (both p > 0.1), or be-
tween the centralized and the decentralized CTRNN con-
trollers (p > 0.04).

Effect on morphology

In Figure 8, the progressions for number of modules in mor-
phologies are plotted for all the controllers. Here, we can
see that the sine and centralized CTRNN controllers both
end up at a lower average number of modules than the copy
and decentralized CTRNN controllers. To confirm if this
was significant, as previously 6 two-sided Mann-Whitney
U tests were performed with Bonferroni correction between
the different count distributions. An alpha level of 0.05 was
used, which means that with correction we consider p-values
below 0.05 / 6 = 0.0083 as significant.

Here we found that the copy and decentralized CTRNN
controllers had no significant difference between them (p >
0.4) and the sine and centralized CTRNN controllers like-
wise had no difference (p > 0.2). However, the copy and de-
centralized CTRNN controllers were both different from the
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sine and centralized CTRNN controllers (all p < 0.0001).

Qualitatively, we recognize this from looking at the
robots. The sine and centralized controllers had small, ef-
fective strategies while the copy and decentralized CTRNN
controller both tended towards larger morphologies. The
sine and centralized CTRNN controllers would do large,
powerful movements, with some modules in the morphol-
ogy not moving at all. As opposed to this, the copy and de-
centralized CTRNN controllers favored small, rapid move-
ments. Here, the copy moved most its modules, while the
decentralized CTRNN controller sometimes had unmoving
modules. Example behaviors can be seen in the accompany-
ing video®.

In Figure 9, we see that there seems to be a divide between

3https ://www.mn.uio.no/ifi/english/research/
groups/robin/research-projects/cocomo/modbots.html
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larger creatures that get high fitness, and those that get low
fitness. Presumably, this is because falling strategies tend to
be larger in order to get further, but it is also interesting to see
that some larger solutions did quite well. Especially the copy
controller did well with larger morphologies, managing to
produce a fitness on par with the centralized CTRNN and
sine controllers with upwards of 10 expressed modules.

When looking into the issue of early convergence of mor-
phology only, Figure 10 was made. It shows shaded areas
between the 25 and 75 percentiles of number of beneficial
morphology changes in a run in each interval of 100 gen-
erations. It shows that the centralized CTRNN and sine
controllers stop mutating morphology after 400 generations.
The last two controllers kept mutating all the way up un-
til the end. Interestingly, 72% of the copy controller runs
experienced morphology changes in the 100-200 generation
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interval, and more than 50% had morphology changes in the
200-300 interval.

Discussion

Our results have shown that the copy controller per-
forms significantly better than other controllers when co-
optimizing the morphology and control of modular robots.
Since it duplicates behaviors, modules are more likely to
be synchronized. Moreover, when a new module is added,
a working control unit can be inherited that is already po-
tentially useful. Even though the sine and decentralized
CTRNN controllers had a similar feature of inheriting the
parent module’s control, the copy controller is more likely
to be useful since it is already evolved to work in many
different parts of the robot. In addition, because a control
mutation affects multiple modules, it has an overall larger
effect on the behavior of the robot compared to a mutation
in the other controllers. Because of this, the copy CTRNN
approach is less able to fine-tune a single controller com-
pared to the other approaches and therefore may rely on
morphological change to see a performance increase. This
feature would thereby promote continued morphological di-
versification compared to the other controllers, as seen in
Figure 10.

From the fitness progressions, we can see that the sine
and centralized CTRNN controllers converged rather fast
compared to the other two. They also showed a pattern of
quickly finding a final morphology of relatively small size,
and then optimizing the controller. Meanwhile, the other
two controllers spent time developing both and thus con-
verged slower. Because having more modules means the
robot has more potential force, allowing for more movement
and higher fitness overall, the sine and centralized CTRNN
controllers were then at a disadvantage. These results con-
firm that there is a trade-off between fine-tuning controllers
and getting a good fitness with a small morphology while
losing the potential of getting a higher fitness and a large
morphology.

The distributions of solutions for the controllers vary
wildly, as seen in Figure 7. While the sine and central-
ized CTRNN controllers had a more solidly high perfor-
mance, the decentralized CTRNN controllers both had very
flat distributions, stretching from the worst to the best per-
formances recorded. The lower fitnesses can be accounted
for as robots that grow tall and fall in one direction, as some
of these have been visually confirmed to be. The higher val-
ues of the copy, decentralized, and centralized CTRNN con-
trollers often had rapid module movements that either led
to small jumps or shuffling behaviors. Because of fixing
the sine controller’s frequency, this strategy was not avail-
able to the sine controller, and so its worse performance
must at least be partially attributed to that. Even though it
could have rivalled the others by growing larger, the CTRNN
controllers’ behavior was likely less complicated to evolve.
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Still, the sine and centralized CTRNN much more often ar-
rived at very similar local optima, which tended to have the
same fitness. Here, the centralized CTRNN controller had
an advantage over the sine controller because it could opti-
mize further by adding non-periodic movements.

Because we had the same morphology mutation rate for
the sine and copy controllers, we could expect similar mor-
phological diversity from these. However, it is clear from
our results that this is not the case. When keeping in mind
that some of the more scalable strategies available to the
CTRNN controllers were not available to the sine controller,
it could simply be that there were less available good mor-
phologies for the sine controller.

The centralized CTRNN approach that was implemented
could evolve a network topology that connected to up to
15 modules. This means that evolving larger morphologies
would involve the CTRNN accommodating for more out-
puts. Since the CTRNN in this case would then have even
more parameters to optimize, we would expect the central-
ized CTRNN to converge even quicker. This could poten-
tially be overcome by connecting parts of the neural network
of the centralized CTRNN to the morphology and copying
these parts of the CTRNN when a new module is introduced.
Another possible cause for the rapid convergence seen in
the centralized CTRNN is that the initial experiments to de-
termine the supported number of modules only ran for 100
generations. Although we have no indication that it would,
the centralized CTRNN approach could generate larger mor-
phologies when given different mutation rate values.

The copy and decentralized controllers both had issues
of some number of unexpressed modules being added to
the genome. These were unexpressed because they collided
with other modules or the floor. 2 and 4 out of 64 samples
from respectively the copy and decentralized CTRNN con-
trollers had 10 to 20 unexpressed modules. Since they were
unexpressed, the only effect they had on the individual was
lowering the per-module mutation rate. This meant that the
morphology in both, and the controllers in the decentralized
CTRNN, would mutate less as the number of unexpressed
modules grew. This bloating of the genome would in theory
stabilize them from mutating. The two other controllers did
not have issues with this.

Another issue is that of some pervasive local optima.
Likely due to the angular shape of the EMeRGE modules,
initial populations of robots found success with a single
module dragging itself forward. In an attempt to avoid this,
we constrained the robots to having a limp root module. This
mitigated the problem somewhat, but similar strategies of
using the corners of the female connection plates persisted
all throughout the project. For example, the aforementioned
jumping and shuffling behaviors are likely only possible be-
cause of the module shape.

To avoid local optima, we tailored our algorithm to keep
diversity, for example by having generational replacement.
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While using a diversity maintenance method could have
minimized the occurrence of local optima solutions, it would
have been difficult to parse which results were caused by the
controllers and which were caused by the algorithm. Even
so, in future work the same controller approaches could be
tested with diversity enhancing methods to investigate what
different control behaviors arise.

Because the sensor implementation was not very realistic,
it could be useful to focus on adding more realism and to
measure the different controllers on tasks or environments
that require more sensing. Here, we would be better able to
study different strategies that emerged, and whether the con-
trollers were as equally equipped for task execution as they
were for locomotion. It seems probable that the centralized
CTRNN would perform better than the others here. The de-
centralized approaches would benefit from communication
between modules, and coupled CPGs such as the ones used
by Ijspeert et al. (2007) could likely work well here.

Lastly, to test if these findings translate to other robotic
systems, the same controller types should be implemented
on a system with different modules and/or controllers. Since
the EMeRGE module’s female connection plates can be
used for dragging and jumping, a less angular option like
the RoboGrammar modules (Zhao et al., 2020) could force
the controllers to choose more complicated movements. Ad-
ditionally, the previously discussed CPGs can be used to
achieve periodic motion and would be a good option to fur-
ther incorporate the sensors in locomotion.

Conclusion

In this article we implemented and tested four controllers
that were co-optimized along with a modular robot mor-
phology. With testing three decentralized and one central-
ized controller, we got insight into how these can be done
well and different challenges that arises for each approach.
Markedly, we learned that there is significant advantage to
simplify your controller to facilitate for global synchroniza-
tion, as was found when the copy controller outcompeted
the decentralized CTRNN controller. The copy approach al-
lows for better new control of added modules, thus more
morphological development, and larger jumps in the search
space. Regarding centralized control, we highlighted the
early convergence of morphology and performance when it
comes to having a complex controller to optimize. Given
that these findings translate to other controller networks and
morphologies, they can aid future choices of control when
co-optimizing morphology and control.
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Abstract

What insights can statistical analysis of the time series record-
ings of neurons and brain regions during behavior give about
the neural basis of behavior? With the increasing amount
of whole-brain imaging data becoming available, the impor-
tance of addressing this unanswered theoretical challenge has
become increasingly urgent. We propose a computational
neuroethology approach to begin to address this challenge.
We evolve dynamical recurrent neural networks to be capable
of performing multiple tasks. We then analyze the neural ac-
tivity using popular network neuroscience tools, specifically
functional connectivity using Pearson’s correlation, mutual
information, and transfer entropy. We compare the results
from these tools against a series of informational lesions, as
a way to reveal their degree of approximation to the ground-
truth. Our initial analysis reveals an overwhelming large gap
between the insights gained from statistical inference of the
functionality of the circuits based on neural activity and the
actual functionality of the circuits as revealed by mechanistic
interventions.

Introduction

A central goal in neuroscience is to understand how the
brain, body and environment come together to produce be-
havior. Specifically, we would like to understand in some de-
tail the functional role of the nervous system in behavior. To
this end, researchers are imaging with increasing time and
spatial resolution the neural activity of living organisms at
various scales, ranging from C. elegans to humans (Nguyen
et al., 2016; Aimon et al., 2019; Randlett et al., 2015). Fur-
thermore, technological advancements are starting to make
recording of neural activity from freely moving animals pos-
sible (Lin et al., 2022). This increase in neural activity data
has led to a similar increase in statistical measures and meth-
ods for inferring function from the time series of the neu-
ral activity (Paninski and Cunningham, 2018; Ramaswamy,
2019). Despite the incredible experimental progress and the
overwhelming explosion in data availability, a fundamental
theoretical challenge remains open (see Fig. 1): What can
statistical measures of neural activity during behavior reveal
about the function of the components of the nervous system?

Of the wide range of statistical methods that are avail-
able, the application of network theoretic tools to interpret
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animal brain activity as it pertains to behavior and disease
has seen an explosion of interest in the last decade (Sporns,
2010; Fornito et al., 2016). Specifically, there has been a
myriad of methods for constructing functional connectiv-
ity networks from neural activity to understand the interac-
tion between brain regions at various scales with the ulti-
mate goal of understanding the underlying causal relation-
ships (Van Den Heuvel and Pol, 2010; Smith et al., 2011;
Yeo et al., 2011). Of these, the most popular methods in-
clude Pearson’s correlation, mutual information and transfer
entropy (Friston, 1994). While these statistical methods can
provide very useful insights about the interactions between
the different components of the neural system, they provide
no guarantees as to their ability to converge to the ground-
truth causal relationships.

Computational models of neural networks have proven to
be an excellent test bed for generating and evaluating such
statistical methods (Dayan et al., 2003). For instance, us-
ing a computational model of a fully-connected spiking neu-
ral network, Ito et al. (2011) showed that while transfer en-
tropy can get close, it still cannot estimate the structural con-
nectivity of a neural network from its activity alone. Simi-
larly, using a recurrent dynamical neural network model op-
timized to perform a task, Candadai and Izquierdo (2020)
showed that mutual information cannot disambiguate be-
tween predictive information from different sources. Mah-
eswaranathan et al. (2019) showed that analysis of some fea-
tures of the representation geometry led to conclusions that
were not related to the function of the network, while oth-
ers did. Similar approaches have been taken to show that
polyadic interactions and the presence of underlying com-
mon inputs present challenges to these methods (Stevenson
et al., 2008; James and Crutchfield, 2017). In such studies,
two aspects that is often overlooked are: (a) animals don’t
function as “brains in a vat” but are embodied and embed-
ded in the environments that they are continuously interact-
ing with; and (b) natural systems are multifunctional, how-
ever most computational models that are studied are typi-
cally built to perform only a single behavior. This is where
computational neuroethological approaches to understand-
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Figure 1: Computational neurcethology approach to uncover what a statistical measure of functional connectivity tell us about
the actual functional connectivity of a nervous system. In order o address this theoretical challenge, we propose the following
paradigm. In scenario (A). the subject is presented with two different tasks (blue and magenta). For each task, there are
multiple trials (different sizes, different starting conditions), For each trial, neural activity is recorded for the subject, From
the combined neural recordings of each task, a node functional connectivity (nFC) is created, using one of three technigues:
Pearson’s correlation, mutual information, and transfer entropy. Finally, from the nFC the subcircuit for each task is estimated,
In scenario (B), the same subject is now tested on the same two tasks, bul now the drop in performance is recorded during
information lesions 1o each pair of connections or each individual connection between the components of the subject’s brain,
This effect of lesions per pairwise component is considered the actual functional connectivity (aFC). From it, the ground truth
functional circuit is obtained for each task, which is used (o assess the vsefulness of the statistical nFC approach. We cannot
do part B of this approach with humans, or with any other living organism, given current experimental limitations and ethical
considerations, However, we can use artificial life techniques wo: first generate agents capable of multiple tasks, and then
analyze them in the way proposed above.

ing the neural basis of behaviors come in (Beer, 1996; Datta us about the ground-truth. Second, wse this w guide and
et al,, 2009; Candadai, 2021): build computational models inform predictions and generate hypotheses in experiments,
of brain-body-environment (BBE) systems, optimize them Finally, improve the tools of analysis for complex BBE sys-
to perform multiple tasks, and use them as ground-truth for tems. In this paper, we would like to tackle the first of those
neural network operation with behavior defining what Func- goals in the simplest set of conditions possible: (1) Evolve
tion means. a BBE model to perform a pair of visually-guided behav-
iors; (2) Infer the functional connectivity for each task from
neural activity time series using Pearson’s correlation, mu-
twal information, and transfer entropy: (3) Compare the in-
sights gained against the ground-truth obtained from an in-
formational lesion characterization of the cireuit,

We would like to revisit the question that is at the heart
of all the work that uses Network Neuroscience tools from
a computational neuroethology perspective: What can sta-
tistical analysis of the time-series of the peural activity of
brain-hbody-environment systems tell us about the behavioral
functionality of the system? Our overarching goals are o This paper 1s organized as follows: the next section de-
First, build imuition about what the statistical methods tell scribes the design of visually-goided behaviors, and the
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agent; the following sections describe our results with re-
gards to how the agent performed said behaviors and the
comparison between statistically-inferred functional con-
nectivity and the ground-truth; finally we discuss our results
and present ideas for future work.

Methods

We replicated the visually-guided agent described in (Beer,
1996), including two tasks previously used in (Beer, 1996;
Slocum et al., 2000). The model agent is illustrated in Fig-
ure 2. The agent has a circular body with a diameter of 30
(in an environment of size 400 x 275). The agent possesses
an “eye” consisting of a foveated array of distance sensors.
The eye consists of 15 proximity sensors of maximum length
220, uniformly distributed over a visual angle of 7 /4. An in-
tersection between a ray and an object causes an input to be
injected into the corresponding sensory neuron. The mag-
nitude of the injected input is inversely proportional to the
distance to the object, with values ranging from 0 (no in-
tersection) to 10 (no separation). The agent has two “mo-
tors” that produce 1D movement of the entire body. The
agent moves according to first-order dynamics, with motor
neurons directly specifying the velocity of movement. The
agent’s horizontal velocity is proportional to the sum of op-
posing forces produced by a bilateral pair of effectors (with
a constant of proportionality of 8).

The agent’s behavior is controlled by a continuous-time
recurrent neural network (CTRNN) with the following state
equation:

N
Tili = —Yi + Z wjio(y; +6;) + I ey
j=1
where y is the state of each neuron, 7 is its time constant,
wj; is the strength of the connection from the j" to the i
neuron, 6 is a bias term, o(x) = 1/(1+ e~%) is the standard
logistic activation function, and I represents an external in-
put (e.g., from a sensor). States were initialized to 0 and cir-
cuits were integrated using the forward Euler method with
an integration step size of 0.1.

A real-valued genetic algorithm was used to evolve
CTRNN parameters. A population of individuals was main-
tained, with each individual encoded as a length M vector
of real numbers. Initially, a random population of vectors
was generated by initializing each component of every in-
dividual to random values uniformly distributed over the
range +1 (they could not move outside this range during
evolution). Individuals were selected for reproduction us-
ing a linear rank-based method. Children were generated
by either mutation or crossover with an adjustable crossover
probability. A selected parent was mutated by adding to
it a random displacement vector whose direction was uni-
formly distributed on the M-dimensional hypersphere and
whose magnitude was a Gaussian random variable with 0
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mean and variance o (for details, see Slocum et al. (2000)).
Search parameters in the range +1 were mapped linearly
into CTRNN parameters with the following ranges: connec-
tion weights € [—5, 5], biases € [—5, 5], and time-constants
€ [1,2]. The parameters of the neural circuit were bilaterally
symmetric.

For the first task, the embodied agent must be capable of
visually discriminating between objects of different sizes,
catching smaller circular objects while avoiding the larger
circular objects. Objects fell straight down with an ini-
tial horizontal offset in the range £25 and a vertical veloc-
ity of 3. The circular objects had a diameter in the range
[20,40]. Accordingly, the performance measure to be maxi-
mized was:

1 T
M:f;m 2)

where p; = 1—d; for smaller circular objects and p; = d; for
larger circular objects, d; is the horizontal distance between
the centers of the object and the agent when their vertical
separation goes to zero on the ith trial (clipped to MaxDis-
tance and normalized to run between 0 and 1), T is the total
number of trials, and D is the maximum distance. The rea-
son that d; was clipped to D was to prevent the avoidance of,
for example, larger circles by large distances from dominat-
ing the fitness at the expense of accuracy in catching smaller
circles. A total of 24 evaluation trials were used during evo-
lution, uniformly distributed over the range of horizontal off-
sets.

For the second task, the embodied agent must become
sensitive to the relationship of its own body to its surround-
ings and it must be able to perceive the actions that this
environment affords. We evolved agents that could accu-
rately distinguish between passageways and obstacles in a
falling wall, passing through openings wide enough to ac-
commodate their bodies while avoiding openings that were
too narrow. Walls consisting of two squares of width 20 sep-
arated by an aperture whose width was in the range [20, 40]
dropped from above with a vertical velocity of 3 and a hor-
izontal offset of +25 relative to the agent. Accordingly, the
performance measure to be maximized was:

1 T
m=f;m 3)

where p; = 1 — d; for an aperture wide enough for the agent
to pass through and p; = d; for an opening too narrow for
the agent to pass through, d; is the horizontal distance be-
tween the centers of the object and the agent when their ver-
tical separation goes to zero on the ith trial (again clipped to
MaxDistance and normalized to run between 0 and 1), T is
the total number of trials, and D is the maximum distance.
A total of 24 evaluation trials were used during evolution,
uniformly distributed over the range of horizontal offsets.
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Figure 2: Agent and tasks set up. (A) Agent. Sensory neurons (blue) are interconnected to interneurons (black), then which
are in turn connected to the two motor neurons (red). The interneurons are recurrently interconnected. The nervous system is
bilaterally symmetric. (B) Object-size discrimination task. The agent moves horizontally while a circle of different size falls
from above. The rays of the agent’s proximity sensors are shown in dashed blue. (C) Perceiving affordances task. The agent
moves horizontally while a wall with an adjustable aperture falls from above.

Statistical analyses of the neural activity, namely mutual
information and transfer entropy, were estimated using the
infotheory Candadai and Izquierdo (2019) package. Both
metrics were estimated using an average shifted histogram
based binning of the normalized activity with 100 bins along
each dimension.

Part I: Generating a Multi-Functional Agent

In order to study the relationship between the statistical
functional connectivity inferred from neural activity and
the actual functional connectivity from lesion analysis, we
first need an agent that is capable of performing multi-
ple tasks. Thus, our first step was to generate an ensem-
ble of successful multi-behavioral embodied dynamic recur-
rent neural systems. The agents were tasked with solving
two minimally-cognitive tasks Beer (1996); Slocum et al.
(2000): an object-size discrimination task and a perceiv-
ing affordances task. We performed 100 evolutionary runs
with different random seeds (Fig. 3A). Agents are evolved
to solve both tasks. During each fitness evaluation, an agent
is tested first on the 24 evaluation trials of the object-size
discrimination task and then on 24 evaluation trials of the
perceiving affordances task. The performance is calculated
for each task according to the defined fitness function (see
Methods) and multiplied together to produce a score. After
1000 generations, many of the runs found successful con-
figurations of the neural circuit that could solve the multi-
ple tasks. A histogram of the final performance of each of
the best agents in each run is shown in Fig. 3B. At least
three of the runs achieved near-perfect performance on the
fitness evaluation. As far as we are aware, this is the first re-
port of agents successfully evolved for multiple minimally-
cognitive tasks.

Before setting out to analyze one of these agents in some
detail, it is important that we examine the generality and
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robustness of these solutions across a wider range of be-
havioral conditions. Our goal is to use this further exam-
ination to select which circuit to analyze in detail. We
based our selection on which of the evolved agents solved
both tasks equally well and also generalized well across a
wider range of conditions for both tasks. There were three
key changes with respect to the original fitness evaluation:
(a) The step size of integration is made smaller (from 0.1 to
0.01). (b) The range of object sizes and aperture sizes was
drawn from [20,40] in steps of 0.05 instead of 1. (c) The
starting position was drawn from [1,5] in steps of 0.01. Al-
together, this corresponds to 200000 trials for the generaliza-
tion performance analysis (up from 100 trials per evaluation
for the fitness function). In Figure 3C, we show the per-
formance of each of the final circuits from each of the 100
evolutionary runs in each of the two tasks. As expected, the
same three circuits that performed best in the fitness eval-
uation also generalized best across the wider range of con-
ditions and are thus most appropriate for further examina-
tion. The best performing agent obtained a near-perfect per-
formance 0.977 on the object-size discrimination task and
0.976 on the perceiving affordances task. We focus on this
agent for the remained of this paper. What is the behavior
and neural activity of this agent? In Figure 4, we show the
behavior and neural activity for this best agent across the
two different tasks. Traces are colored according to whether
the agent has to catch or avoid the object or pass through
the aperture or avoid it. We use these neural traces for the
functional connectivity analysis ahead.

Part II: Comparing Functional Connectivities

Our second step is to analyze how well the insights gained
from the statistically-inferred functional connectivity help
us understand the actual functional connectivity of the cir-
cuit, as determined through informational lesion analysis.
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Figure 3: Generating a multifunctional agent using an evolu-
tionary algorithm. (A) Best fitness over generations for hun-
dred evolutionary runs, color coded by final fitness. (B) Rel-
ative frequency of the final fitness for each of the evolution-
ary runs. (C) Generalization performance for each of the
final solutions on the two tasks: object-size discrimination
and perceiving affordances.
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In order to do this, we first characterize the node func-
tional connectivity using traditional methods from network
neuroscience (first column, Fig. 5). Specifically, we focus
here on estimating the functional connectivity between pairs
of neurons using Pearson’s correlation, mutual information,
and transfer entropy (Candadai and Izquierdo, 2019). We
perform the analysis using the neural traces generated from
each of the two tasks (Fig. 4B). From the magnitude of each
of these measures, we establish the degree of involvement
of each pair of neurons to the task. That is, pairs of neurons
with little or no correlation in their activity during a task are
deemed unlikely to be involved in that task; whereas pairs of
neurons with strong correlation (either positive or negative)
are deemed likely to be involved in the task.

Second, we characterize the two-way and one-way causal
pairwise function of the edges using informational lesions
(second column, Fig. 5). For the two-way informational
lesions, we clamp the interchange of activity between two
neurons in both directions, have the agent perform the task
at hand, and measure the deficit in performance. We do this
for a large range of potential basal outputs for each neuron
in the pair (from an output of O to 1 in steps of 0.01 for each
neuron), and we select the smallest deficit generated. The
two-way lesions is used as the ground-truth for the nFC gen-
erated using Pearson’s correlation and mutual information,
because both provide only symmetric information between
two neurons. For the nFC calculated using transfer entropy,
which is directional, we perform a one-way information le-
sion analysis. The method here is the same as the previous
one but it is perform for each individual connection in the
circuit.

Finally, we compare the difference between the estimated
involvement of each of the pairs calculated using nFCs to
the ground-truth functional involvement characterized dur-
ing the lesion studies for the two tasks (third column, Fig. 5).
In these plots, each point represents a pair of neurons in
the circuit and the different colors represent the different
tasks, with the gray line connecting the same pair of neu-
rons across different tasks. Points in the upper left corner
represent unimportant connections for the task that are well
captured by the statistical measurements. That is, connec-
tions between neurons that do not have much correlation
and whose physical disruption does not cause a noticeable
effect on task performance. Points in the bottom right cor-
ner represent important connections for the task that are also
well captured by the statistical measurements. That is, con-
nections between neurons that have a strong correlation and
whose physical disruption causes a noticeable effect on task
performance. Points in the upper right triangle represent
points that are not causally important to the task, but that
come up as important in the statistical measurements. Points
in the bottom left triangle represent points that are causally
important, but that do not show up as relevant in the statis-
tical measures. The distance between the yellow and blue
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Figure 4: Behavior and neural activity across both tasks. (A and B) Behavioral traces during object-size discrimination and
perceiving aflfordances tasks, respectively. Relative position of the agent in relation to the center of the falling objects over time.
Traces are color coded depending on whether they need to be caught or avoided. In the object-size discrimination task, trials
with the smaller circles are shown in yellow and traces with the larger circles are shown in blue. In the perceiving affordances
task, trials with the smaller apertures are shown in green and those with the larger apertures are shown in red. (C and D) Neural
activity from the seven recurrently interconnected interneurons driving behavior for each of the two tasks. Color coding follows

the same pattern used for panels A and B.

points shown by the gray line represent the functional varia-
tion across tasks.

We highlight here four key qualitative insights gained
from this analysis (Fig. 5). First, across all levels of analysis,
the functional connectivities are different depending on the
task being performed. This is true across all levels of anal-
ysis, including the informational lesion studies. This shows
how the same nervous system, even without neuromaodula-
tion and synaptic plasticity, can have functionally different
configurations, based on task engagement alone. This high-
lights the importance of studying nervous systems in the
context of behavior. Second, the one-way lesion analysis
reveals major differences in the directionality of interactions
between components in the circuit. This, of course, high-
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lights the inherent limitations of the two more established
methods for estimating functional connectivity due to their
symmetrical treatment of the relationships, Person's corre-
lation and mutual information, Third, as can be appreciated
by even a mere cursory look at how much darker the range
of shades of the maps in the nFC column are in relation to
those in the aFC column, all of the statistical measures over-
infer the importance of the relationship between the vari-
ables relative o the actual role that those relationships play,
as determined by the information lesions. As can be seen
more easily in the third column, across all three measure-
ments, lesions to the majority of connections have little or
no effect on the behavior, despite the statistical measures in-
ferring high levels of correlation, mutual information, and
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Figure 5: Comparing insights gained from the statistical measures of node functional connectivity based on neural activity to
the ground-truth characterization from informational lesions analysis across tasks. (A) A comparison of the nFC using Pear-
son’s correlation to the aFC using two-way lesions. (B) A comparison of the nFC using mutual information to the aFC using
two-way lesions again. (C) A comparison of the nFC using transfer entropy to the aFC using one-way lesions. Across the first
two columns, the matrix represents the pairwise interactions between the seven interneurons in the circuit. The shade of each
cell represents the level of involvement of that pair in each task. The lighter the color represents little or no involvement, where
white corresponds to no correlation, no mutual information, no transfer entropy, and no deficit in performance after a two-way
lesion, or a one-way lesion, respectively. The darker shades represent increasing involvement, where black corresponds to the
maximum level of correlation, mutual information, and transfer entropy for the statistical measurements, and a complete dis-
ruption in the performance of the task in the case of the two-way and one-way lesions. The last column depicts the comparison
between statistical inference (nFC) and ground-truth (aFC). Each point represents a pair of neurons in the circuit (blue for the
perceiving affordances task and yellow for the object-size discrimination task). The gray line connecting two dots represents
the same pair of neurons across the different tasks. On the y-axis, the two-way and one-way lesions are defined such that the
value represents the deficit in performance. So a performance of 0.95 after a lesion to the connection between neurons X and
Y means that this link was not very important to the functioning of the circuit; on the other hand a resulting performance of 0.5
after a lesion would indicate that the connection between those pair of neurons is extremely important to the functioning of the
circuit. See main text for interpretation of the results.
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transfer entropy between them. Although this is expected
to some degree, the full effect can be quantified here con-
cretely. Fourth, despite the tendency for statistical measures
to over-infer causality that we just discussed, our analysis of
this agent allows us to see some clear examples of connec-
tions that are causally important that do not show up in the
statistical measurements. These are, of course, much less
common. They are particularly salient in the Pearson’s cor-
relational analysis and in the transfer entropy analysis.

Discussion

In this paper, we set out to answer the question: What does
functional connectivity tell us about the behaviorally func-
tional connectivity of a multifunctional neural circuit? We
used a computational neuroethology approach to begin to
address this theoretical challenge. We evolved a dynamical
recurrent neural network to be capable of performing mul-
tiple tasks, and then we analyzed its neural activity using
traditional network neuroscience tools. While our analy-
ses were performed on a neuron-to-neuron basis and func-
tional connectivity is typically performed across brain re-
gions, CTRNNs are universal function approximators and
can model neural activity in brain regions thus enabling our
analyses to scale. We then compared the results against a se-
ries of informational lesions as a way to reveal their degree
of approximation to the ground-truth. Overall, our analysis
reveals a large gap between the insights gained from statis-
tical inference of the functionality of the circuits based on
neural activity and the actual functionality of the circuits as
revealed by mechanistic interventions.

It is important to note that the measures of functional con-
nectivity being investigated in this paper are measures of a
statistical relationship. They are neither measures of causal
effect nor of how such a statistical relationship might relate
to interventional impact on a task. However, these statistical
methods are often used as tools to make claims about the re-
lationship between neural activity and behavior. The goal of
this paper is to examine the degree to which those measures
of a statistical relationship estimate causal effect on behav-
ior, as determined in this case through the interventional im-
pact on task function. While there has been some work that
had attempted to answer this question in the past (Ay and
Polani, 2008; Lizier and Prokopenko, 2010; Chicharro and
Ledberg, 2012), that work considered only neural circuits in
a vacuum; here we extend this work to consider functional
and complete brain-body-environment systems.

It is relatively straightforward to understand why a con-
nection between two neurons may have a high correlation,
a high mutual information, or a high transfer entropy, and
yet not have a high interventional causality: The two neu-
rons can be correlated for reasons other than their connec-
tion to each other. The opposite is also straightforward to
understand (i.e., why a connection between two neurons
may have a low correlation, low mutual information, or low
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transfer entropy and nevertheless have a high interventional
causality): The transformation of information between the
two neurons may be such that the two neurons do not have
similar informational profiles and yet they are still causally
linked. Finally, it is only to the degree that the two neu-
rons are causally linked, that lesioning the connection will
have some effect on functional performance. In other words,
a causal link is necessary for function, but not sufficient.
There may be some connections that are causally linked, but
that do not contribute to the circuit’s function. Finally, it
is important to note that all analyses in this work was done
on dyads and the statistical and interventional methods alike
would benefit from polyadic analysis.

Future Work

We have three main directions of future work. (1) In this
paper, we deliberately focus our analysis on a single circuit
as a way to begin to gather intuition. One direction for fu-
ture work is to perform a similar analysis across an ensem-
ble of successful but different solutions, as a way to uncover
the more general principles. This will involve examining
methods for quantifying how close the different statistical
methods approximate the causal relationships. (2) The neu-
ral network under consideration in our current analysis was
fully recurrent. We would like to study the degree to which
the structural connectivity of the neural circuit affects the
usefulness of the functional connectivity. One direction for
future work will be to systematically study the effect that the
structure of the connectivity of the circuit has on the perfor-
mance of the statistical measures of functional inference. As
part of this analysis, we also plan to study structures that are
grounded in available connectomes. (3) Finally, we deliber-
ately focused our analysis on the most popular measures of
node functional connectivity. One additional direction for
future work is to study the wider range of measurements
used in the network neuroscience literature. Crucially, we
would like to use further refined versions of the compu-
tational neuroethology approach proposed here as an ideal
testground for generating novel variations of statistical mea-
surements to gain insights on the functional connectivity of
these complex neural circuits.
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Abstract

Several studies that deal with the acquisition of concepts in a
bottom-up manner from experiences in the physical space ex-
ist, but there are few of them that deal with the bidirectional
interaction between symbolic operations and experiences in
the physical world. It was shown that a shared module neural
network succeeded in generating a bottom-up spatial repre-
sentation of the external world, without involving learning of
the signals of the spatial structure. Furthermore, the mod-
ule can understand the external map as a symbol based on its
spatial representation, and top-down navigation can be per-
formed using the map. In this study, we extended this model
and proposed a simulation model that unifies the emergence
of a number representation, learning of symbol manipulation
on the representation, and top-down understanding of symbol
manipulation onto the physical world. Our results show that
the learning results of the symbol manipulation can be applied
to the physical world prediction, and our proposed model suc-
ceeded in grounding symbol manipulation onto physical ex-
periences.

Introduction

Humans typically quickly learn the concept of numbers and
can recognize different numbers of objects. An apple is per-
ceived as a different object from an orange, yet we know
that both are instances of the same number. Similarly, three
watermelons may be expected to occupy a larger proportion
of our visual field than five oranges, but we can distinguish
the larger number of oranges compared to the watermelons.
Once we obtain the concept of numbers, this abstract under-
standing allows us to understand the idea of 1,000 apples,
although we may never have actually perceived, counted, or
compared such a large amount. This indicates that our con-
cept of numbers develops through experiences in a physical
world in a bottom-up manner, and then we learn to manip-
ulate concepts as symbols in an abstract (or mental) world
with some set of conceptual rules. Thus, we can understand
the results of operations in the abstract world by linking
them to real-world phenomena in a top-down manner.

The idea of intelligence based on symbol manipulation
without grounding in the physical world has been criti-
cized by Searle and Harnad via the Chinese room argu-
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ment and the symbol grounding problem (Searle, 1980; Har-
nad, 1990). With the development of neural networks and
robotics, the importance of physicality or embodiment as a
foundation for intelligence as situated in the physical world
has been emphasized (Pfeifer and Scheier, 2001; Brooks,
1991; Harvey et al., 1997; Nolfi and Floreano, 2000). The
idea of embodiment considers that an autonomous entity ob-
tains concepts emergently from interactions with their en-
vironment in a bottom-up manner, without designing clear
abstract symbols in advance (Marocco et al., 2003; Beer,
2000). However, these embodiment models remain limited
to the bottom-up process of concept generation. No mod-
els have been proposed to integrate bottom-up concept gen-
eration, the symbolic manipulation of concepts generated
by physical interaction, and top-down processes for under-
standing the results of symbolic manipulation in the physical
world.

In contrast, a shared module neural network has been pro-
posed to perform sensory integration and to differentiate
self from others (Noguchi et al., 2022a,b). In this model,
a single shared module processes sensor inputs from dif-
ferent modalities in the same manner. This constraint of
sharing the module among different modalities was used to
generate a bottom-up spatial representation of the external
world, which was common to all modalities. Furthermore,
the shared module neural network could understand the ex-
ternal map as a symbol based on its spatial representation
and perform top-down navigation using the map. However,
the authors considered continuous space rather than discrete
abstract symbols, and did not consider explicit symbolic op-
erations such as addition and subtraction.

Therefore, in this study, we extend the previous model and
propose a simulation model that unifies the emergence of
a representation of numbers, learning symbol manipulation
on the representation, and top-down understanding of sym-
bol manipulation onto the physical world. The remainder of
this paper consists of three sections, discussing respectively
the emergence of number representation, learning of sym-
bol manipulation processes, and the top-down understand-
ing of symbol manipulation. The overall simulation models
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Figure 1: Our proposing shared module neural network models. (a) A basic model used to predict visual inputs in the physical
world experiment. The visual images include stretching and bending a finger and placing and removing an object. (b) Re-use of

the shared module for the experiment of symbolic number prediction. Enc
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and Dec are new networks and a operation

converter is added for symbolic operations (See the main text for the details). (c) Applying the model obtained in (b) to the

physical situations of finger counting.

the process by which children acquire numbers using their
fingers and ohjects and learn new symbolic operations with
numbers. Finally, we show that the learning results can be
applied 1o the physical world.

Bottom-up formation of number
representation

In this section, we simulate the formation of a representation
of numbers through visual predictive learning. To realize
this, we trained a neural network model o predict images
changing as a result of action. We simulated a humanoid
robot as a model of a child performing actions of bending
and stretching its finger, and placing and removing objects,
The neural network model was trained by predictive learn-
ing on the robot"s physical experiences. This simulation is
referred to as a physical world experiment in the sense tha
the robot interacts with a simulated physical environment to
obtain simulated sensory information.

Model

Figure 1 (a) shows our proposed shared module neural net-
work. The model takes the current vision image vy and
the current action a, as its proprioceptive inputs. Then, it
outputs the prediction 4, of the next vision input v4,.
The model consists of three main components, including
an encoder Enc”, decoder Diec”, and a shared module with
an LSTM. The encoder and decoder are implemented with
feed-forward neural networks and the LSTM is used for the
shared module, which is re-used for different tasks. The
model performs prediction on consecutive sequences of vi-
sual and motor inputs, To encourage the model to perform
prediction across time steps on the sequences, we introduce
a mask operation to block the outputs of the encoder, which
are the inputs to the LSTM. The mask operation replaces
the outpui of the Enc” with the zero vector, and it causes
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the network to perform prediction using mainly a,, without
relying strongly on 1. It has been shown that this mask-
ing operation promotes the structuring of internal states of
LSTM trained by predictive learning (Noguchi et al., 2017,
Banino et al., 2018). The visual input is first encoded by
the encoder. Next, the LSTM receives the encoded vector
and action. Finally, visual prediction is generated from the
outputs of the LSTM by the visual decoder. The following
equations formulate this prediction process.

ency = Enc"{uy), (1

(hY.e!) = LSTM(Mask(enel: p™**), ap. hY_ . e8 ).
(2)

1 = Dec” ki), (3)

where i and cf represent hidden and cell states of LSTM at
time £, respectively. Mask denotes the mask operation and
the p™*** is the probability of masking.

Robot’s vision and action

A robot which has two hands with five fingers was simu-
lated to obtain data on physical experiences. The robot per-
forms actions in the environment to move its fingers, bend-
ing or stretching them. The robot also performs a task of
placing or removing objects in front of it. It can observe
its own hands and objects by means of a camera. The ac-
tions performed by the robots are simulated in an extremely
simplified form. One action involves stretching a single fin-
ger and placing a single object, and another bending a sin-
gle finger and removing a single object. The current action,
iy, is represented as 2 dimensional vectors, [r, 0] or [0, x|,
(e Xwhere X ={zeR|08<r<1.0}). [#0]is
used for stretching a finger and placing an object, and |0, |
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Figure 2: Example of training datasets of sequences of vi-
sual images. There are 4 different kinds of images, fingers,
stars, white and red balls,
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represents bending a finger and removing an object. The in-
termediate states of the actions are not simulated; the result-
ing states of the finger or object are obtained in a single time
step. Specifically, the interaction between objects and hands,
such as grasping, was not simulated. Although validation
in a more complex simulation environment with continuous
actions would be necessary, since the primary goal of this
study is to show that the shared module can be used as a ba-
sic principle to link bottom-up formation of representations
and top-down understanding of symbaols, our simulations are
kept extremely simple in the subsequent experiments

We collected sequences of vision and action from the per-
spective of the simulated robot.  Four types of sequences
correspond to the robot’s physical experiences of its hands
and three kinds of objects: stars, white balls, and red balls.
The robot performs a series of actions and records vision
data (Fig. 2). We considered eleven states for each type
of sequence comesponding to the number of stretched fin-
gers and the number of placed objects. The vision of the
simulated robot was obtained as RGB images with a size of
48 = 80,

Experiment

The proposed LSTM model had 128 hidden units. Enc” and
Dec"” were composed of convolution and fully connected
layers. 300 sequences of vision and action were used 1o
train the model, and 200 sequences were collected for fur-
ther analysis. The length of a single sequence was 40 im-
ages. During the collection, the actions of the robot were
controlled as follows, First, an action was selected randomly
from possible actions. Then, the robot repeated the selected
same action for a randomly determined duration. When it
finished this repetition, the action was selected randomly
again and the robot began repeating that action. When the
hand or object states reached the terminal state, comrespond-
ing to zero or ten, the robot changed its current action to
another action with a new randomly determined repeating
duration. The model was trained over 160 epochs. The pa-
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Figure 3: Example of the results of predictive learning, The
rows of input show the current states of hands at a given
time, and the row of prediction shows the predicied visual
images from the input.

rameters of the model were updated with a variable learning
rate (0.001 in the initial 100 epochs, and 0.0001 in the re-
maining), with a batch size of 8 and py,..c = 0.5, For pre-
dictive learning, prediction loss L“bfﬂf' was caleulated as a
mean squared error (MSE) between a predicted vision and
the actual next vision as follows,

m'.l;r”

;.lrm!

T
1
=7 ZMQE i1, Vs ) (4)

where T is the length of the sequence of vision and action.

Results

Figure 3 shows the prediction results by the trained net-
work, It may be observed that the neural network model
can successfully predict visual images according to the cur-
rent states and actions (stretching and bending a finger, and
placing and removing an object). We only show the results
of the hand and star, but the results of other objects were also
successful. Note that if p™*** is set too high, learning dose
not SUCcess.

Next, we visualized the internal states of the trained
shared module LSTM, for which, we used a principal com-
ponent analysis (PCA) to reduce the internal states 1o two
dimensions. Figure 4 shows the internal states of the shared
LSTM module. The color corresponds to the number rep-
resented as the target states of the prediction. In the visual-
ized internal state space, we can determine the internal states
organized from two aspects. The first is that the states cor-
responding to the same objects align linearly in the space
and the corresponding numbers increase or decrease along
the aligned direction. The other is that the alignments are
shared among different objects. Therefore, we call wo this
state space as a “number representation.”
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Figure 4: Visualized internal states of the shared module
LSTM, using PCA to reduce the dimensionality to two di-
mensions, The color corresponds (o the number represented
by the prediction output of the model. The four clusters cor-
respond 1o four types of objects,

Associating symbolic number with number
representation and learning of symbol
manipulation
In this section, we describe how abstract symbol manipula-
tions were learned on the neural network mode] trained in
the previous section. This simulates that the network model
learned the symbol manipulations using the number repre-
sentation obtained from the physical experiences. To realize
this process, we re-trained the neural network model with
the shared module LSTM to predict the outcomes of the
symbolic operations. In the simulation, the robot receives
an image of symbolic numbers shown in Fig. 5 and opera-
tions as symbol manipulations. The network model predicts
the image of the next number as the outcome of the oper-
ations, In the same way as the previous task, the network

model is simply trained by predictive learming.

Model using shared module

Figure 1 (b) shows our model, which receives the images of
the current number and the operation as its inputs in a sim-
ilar manner with the physical world experiments. Then, it
outputs a prediction of the next number as the result of the
operation. It differs in two ways from the previous model.
First, the shared module LSTM trained in the previous task
is used, but those parameters are frozen during learning.
The encoder and decoder networks are new networks ini-
tialized randomly, and the parameters of these networks are
updated by predictive learning. Second, a operation con-
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Figure 5: Example of visual image of number changes in
response to the operations, +1 and -1.
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Figure 6: Prediction results of images of symbolic numbers
with operations +1 and -1.

verter 15 added to the model to convert operations into inputs
of shared module LSTM. It is required because the propri-
oceptive inputs as physical actions are used for the shared
module described in the previous section, but there are no
corresponding physical actions for this task. Hence, we call
the output of operation converter virtual action. We consid-
ered two kinds of symbolic operations: + 1 and -1. In the
simulation model, random values are assigned o +1 and -1
operations as inputs for the operation converter, which are
not relevant to the physical actions used in the previous task,
Notably, we use +1 and -1 to express two types of sym-
bolic operations, but because those operations are input 1o
the network as randomly assigned values, they do not have
the literal meaning of +1 and -1 except for the two different
operations. The operation converter Convert” changes the
inputs into virtual action vectors with the same number of
dimensions as the physical action as follows.

al el — Convert®(ay), (5)
where o is assigned random values for the symbolic process
proprioceptive inputs +1 and -1. Because the shared module
network receives and operates without distinction between
physical and virtual action, the virtual action output by the
operation converter can be interpreted and used as physical
action.

Simulation of symbolic operation

We consider the situation in which the number is displayed
as visual inputs in front of the robot. The number changes
sequentially in response to the given symbolic operations,
+1 or -1. Similarly to the explanation above, we collected
sequential datasets composed of numbers and symbolic op-
crations (Fig. 5). The numbers ranged from 0 to 10, We used
RGE images with a size of 48 = 80. The symbolic operations
(+1 and —1) were represented as the three-dimensional ran-
dom vector.
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Figure 7: Internal states of the shared module trained in the
experiment of symbolic number prediction {dark dots). The
light dois indicate the number representation obiained in the
previous physical world experiment. The correspondence of
numbers are in reverse order,

Experiment

Enc"™ and Dec™™ had the same structure (but not the
same parameters) as Enc” and Dec”, Convert” were com-
posed of fully connected layers. 300 sequences of vision and
action were collected to train the model, and the length of the
sequence was 40. The model was trained tor 400 epochs. The
parameters of the Enc""™, Dec™™, and Convert” were
updated with variable learning rates (0.002 in the initial 20
epochs, and 0.0002 in the last 20 epochs), and a batch size
was 8 and p™*** = (8. For predictive learning, the pre-
diction loss L0 was caleulated as the MSE between the

pred

images of predicted number and the next number as follows,
i T

L= > MSE(fies1.npc1). (6)
i=1

The network was trained 1o minimize L7, Note that no

g i 2 predt
loss was given to directly supervise actions.

Resulis

Figure 6 shows the results of learning on symbolic opera-
tions, +1 and -1. 1t shows that the model was able to predict
the next image of the number according to the current num-
ber and the operation. Figure 7 shows the internal states of
the shared module, which were mapped onto the PCA spaces
obtained in Fig. 4. The dark and light dots indicate the in-
ternal states obtained in this and the previous experiments,

341

0B

E 3 I. : -'_".
06 1 76 2 & AR 4 ;
o 5 4 -

0.4 1 i 55’[‘? h f 2y

pea
& f
£

LT 53

Siretch a finger

=10 vl:l1 5 uTu nfs 10
pcl

Figure 8: Internal states of the shared module trained with
comespondence loss (eg. (7)).

Figure 9: Virtual actions converted from the symbolic oper-
ations +1 and -1 by Convert”, The lines show the physical
actions used in the experiment with fingers and objects.

respectively. ' Tt may be observed that the internal states for
the symbolic operations were in line with the representations
formed in the previous experiment. However, the correspon-
dence of the numbers was in reverse order. This is because
there was no relationship between the numbers in the physi-
cal world and the numbers in the symbol manipulation pro-
cess. It is important to note here that reversal or lack thereof
is determined by chance, Sometimes they happen to be the
SANE.

Here. we assumed that the supervised signal is necessary
to correspond the symbolic number to the number of objects,

'Note that too high p™*** causes leaming to fail. The reason
we increase p™ ™ is to make comrespondence better, If we use low
leamming rate, the distribution of the dark dots was smaller than that
of the light dots.
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Figure 10: Example of training sequences of visual images
of symbolic numbers and operations +2 and -2,
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Figure 11: Prediction results on symbolic numbers with +2
and -2 operations.

50 we used an additional loss as follows.
1 T
Looer = T ; MSE{ency, enef™™ ). N

where ency and enc™™ are the output of encoder Enc” and
Enc""™, respectively. Then, the overall loss was as follows.

Ln!]’ = ;,':-Tg + -Lr.rrrr- {3}

The internal states after adding L, are shown in Fig.
8. In this figure, the opposite correspondence has been elim-
inated, and the numbers thus overlap in an orderly fashion.
For example, the visual image of 10 as a symbal corresponds
to the situation in which 10 fingers or 10 ohjects exist in
front of the robot. In other words, the structure of the num-
ber representations is re-used to represent the states of the
symbolic numbers, This fact also implies that the symbolic
operations +1 and -1, are likely to be shared with the phys-
ical action. This occurs because if the action of stretching
one finger does not correspond to the symbolic operation
+1, it becomes difficult to transition the internal states in
the same way between physical experiences and symbolic
manipulation. In fact, it is observed that Convert” output
similar values to the actions of increasing and decreasing in
the first experiment following the predictive leaming pro-
cess (Fig, 9). The results of this experiment demonstrate
that predictive learning with the shared module neural net-
work successfully grounded the virtual action to match the
physical experience.

342

e
1+
144
18+
1B 4
B
L
LT
Bl F
L
-ai 4

=04

-8 BE A% B4 B4 8 1 LD 14 L6 LE

Figure 12: Obtained virtual actions corresponding to +2 and
-2,

Top-down understanding of symbolic
operation

In the previous section, we confirmed the comrespondence
between physical experiments and symbolic manipulation in
terms of internal states and actions. Physical and virtual ac-
tions were found to be interdependent, and the virtual action
wits learned 1o match the physical action. On the contrary, it
must be possible to generate physical action in a top-down
manner by learning a virtual action. Such a twop-down under-
standing is shown in this section.

Learning on new symbolic operations to generate
virtual actions

Our model learmed new symbolic operations +2 and -2, for
which there were no corresponding physical actions. The
new random values were assigned to the symbolic opera-
tions +2 and -2 as inputs to the operation converter. The
model (Fig. 1(b)) trained in the previous section was used
here. The model predicted on physical experiences in the
same manner as described in the previous section. However,
only the parameters of Convert” were trained using only

Teed » Whereas the parameters of Enc™™, Dec™™™ and the
shared module were frozen. For inputs, sequential datasets
comprising numbers and the new symbolic operations were
collected as explained in the previous section (Fig. 10).

The model was trained for 200 epochs. The parameters of
Convert” were updated with variable learning rates (0,002
in the first 10 epochs, and 0.0002 in the last 10 epochs), with
a batch size of & and p™*** = (.8. The hyper parameters
follows those of the previous experiment except for the num-
ber of training epochs.

Results

Figure 11 shows the prediction results of learning on new
symhbolic operations, +2 and -2, As in the previous task,
the network model could successfully predict changes in the
numbers simply by learning the weights of the operation
converter. The virtual actions from the operation converter
for the new symbol manipulation are shown in Fig. 12, The
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Figure 13: Example of prediction results, Virtual action can
be used to represent physical actions like stretching two fin-
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virtual actions naturally differed from the virtual actions of
+1 and -1, but +2 was represented on the same side as +1,
and -2 existed on the other side of +1 and +2. The result in-
dicates that the concepts of plus and minus and the amount
of the numbers are represented in the virtual actions.

After obtaining virtual actions through predictive learn-
ing, we investigated whether the model could wse them as
actions in the physical space. Then, we replaced the en-
coder and decoder with those trained for the experience in
the physical space (Fig. 1 {c)). The model received a current
visual image of fingers or objects and the operation (+2 or
<2), and then predicted the next vision.

Figure 13 shows the prediction results when virtual action
wias input o the neural network model as physical action.
The results indicate that after associating the symbolic num-
bers with experiences in physical space, the model could
understand the new symbolic operation learned only in sym-
holic space as a new action in physical space,

Discussion

Besides using the shared module as in the current study,
there are also models that acquire number representations
through learning. For example, there is a study showing
that the activity of convolutional neural networks (CNNs)
trained to classify natural images is correlated with the num-
ber of objects in the image, and that the CNNs acquire an
internal representation corresponding to the number of ob-
jects (Masr et al., 2019). However, in that case, the CNNs
cannot manipulate the internal representations because they
only receive image inputs and passively evoke internal rep-
resentations. In contrast, our model can manipulate the in-
ternal number representation using both physical and virtual
action. Another point that makes our model different from
simple CNN classifier models is that the symbolic numbers
do not correspond to the number of visual objects in the im-
ages. The shared module allows the association between the
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visually uncountable numbers in the symbolic space and vi-
sually countable objects in the physical space.

The current simulation does not take into account the con-
cept of order of digits in numbers. For example, the sym-
bolic number 100 has the symbol 1 at the ten’s place and the
symbaol (b at the one’s place; the number 10015 represented
by a combination of the two different symbols as units. On
the other hand, the model in this study recognizes the sym-
bolic number 10 as a single isolated symbol. This is be-
cause the model acquires the structure of the number repre-
sentation space based on experiences in the physical space,
and the structure of order in the symbalic number is not ex-
plicitly observable in the physical space and only exists in
the symbolic space. To handle such higher-order siructure
of the symbol like the combination of numbers, it is nec-
essary to learn the structure of the symbolic number space
through learming in the symbolic space as same as the learn-
ing of new operations through learning in the symbolic space
shown in the current study.

Conclusion

This study proposed the shared module newral network,
which can ground symbolic numbers onto the internal rep-
resentations evoked by the physical interactions. Thanks to
the use of the shared module, it becomes possible 10 under-
stand symbolic operations that manipulate symbolic num-
bers as physical actions. Furthermore, after the symbolic
numbers and operations are grounded. learning new opera-
tions on symbols allows the shared module neural network
to predict the consequences in the physical world when the
corresponding physical action is performed. We believe that
a mechanism like the shared module may exist in our brain
to connect abstract thought with physical experience. How-
ever, the simulation in this research was very simplified. For
future work, it is necessary to investigate whether the same
results can be reproduced with a more complex simulation.
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Abstract

The major evolutionary transition to multicellularity shifted
the unit of selection from individual cells to multicellular or-
ganisms. Constituent cells must regulate their growth and co-
operate to benefit the whole organism, even when such be-
haviors would have been maladaptive were they free living.
Mutations that disrupt cellular cooperation can lead to various
ailments, including physical deformities and cancer. Organ-
isms therefore employ mechanisms to enforce cooperation,
such as error correction, policing, and genetic robustness.
We built a simulation to study this last mechanism under
a range of evolutionary conditions. Specifically, we asked:
How does genetic robustness against cellular cheating evolve
in multicellular organisms? We focused on early multicel-
lular organisms (with only one cell type) where cells must
control their growth to avoid overwriting each other. In our
model, unrestrained cells will outcompete restrained cells
within an organism, but restrained cells alone will result in
faster reproduction for the organism. Ultimately, we demon-
strate a clear selective pressure for genetic robustness in mul-
ticellular organisms and show that this pressure increases
with the total number of cells in the organism.

Introduction

Multicellular organisms have needed to coordinate cellu-
lar activity since the origin of multicellularity three and a
half billion years ago (Callier, 2019). Within these organ-
isms, cells must cooperate with copies of themselves for
the higher-level organism to function and reproduce (Smith
and Szathmary, 1997; Calcott and Sterelny, 2011; Queller,
2000). The clonal nature of cells in an organism ensures
that kin selection aligns cellular and organismal goals, but
mutants can arise that do not engage in the cooperative be-
haviors. If those mutants also replicate more rapidly, they
can disrupt cooperation, reducing the fitness of the organ-
ism, possibly leading to cancer or death.

A variety of techniques are used by multicellular or-
ganisms to prevent defection from cooperation. These in-
clude policing (monitoring cellular behavior and punishing
or killing cells that fail to cooperate properly), apoptosis
(cellular suicide to avoid engaging in harmful behaviors),
error correction (repairing mutations before they can cause
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harm), and genetic robustness (reducing the probability of
harmful effects from mutations that do occur). Here, we
focus on this final technique and examine the selective pres-
sures by which multicellular organisms evolve robustness to
mutational effects (by means of simple redundancy) in order
to preserve cooperation.

Genetic robustness preserves phenotypic traits despite
mutational disruption, typically via redundancy or compen-
satory processes (De Visser et al., 2003), and is prevalent
throughout nature. Knockout experiments in yeast, for ex-
ample, have demonstrated that up to half of all genes can
be individually deactivated with minimal impact on fitness
(Thatcher et al., 1998). Significant attention has therefore
been given to the study of genetic robustness (Kitano, 2004;
Lauring et al., 2013; Masel and Siegal, 2009; Lenski et al.,
2006), including the role of redundancy (Gu et al., 2003;
Laruson et al., 2020).

In designing our system, we choose to focus on one of the
most simple forms that cellular cooperation takes: avoid-
ing killing neighboring cells during proliferation. Indeed,
inhibition of cellular replication is a hallmark of a major
evolutionary transition, as a collection of cells begins to act
as a higher-level individual by sacrificing their immediate
replication potential for the good of the whole (Calcott and
Sterelny, 2011).

Each cell division in a multicellular organism has a chance
of incurring a mutation that reduces the daughter cell’s abil-
ity to inhibit its own proliferation. As such, evolution se-
lects for robustness in cooperative reproductive strategies,
often with genetic redundancies to ensure that cells maintain
their limits on cellular proliferation. All else equal, organ-
isms that experience more cell divisions in their lifetimes
(via having more cells or living longer) are more likely to
accumulate mutations that cause cells to proliferate out of
control. As such, we expect larger and longer-lived organ-
isms to have greater selective pressures for redundancies in
cellular controls.

Indeed, this type of loss of inhibited cellular proliferation

is often studied in the context of cancer. As described by
Nunney (1999), “Cancer occurs because the genetic control
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of cell growth is vulnerable to somatic mutations [...], par-
ticularly in large, continuously dividing tissues.” Despite
undergoing more cell divisions in their lifetimes, however,
larger and longer-lived species do not typically exhibit pro-
portionally increased rates of cancer, a phenomenon known
as Peto’s paradox (Peto, 1977). In fact, Nunney (1999) sta-
tistically demonstrated that the mechanisms to avoid muta-
tions or cancer-causing mutational effects in small and large
species are so different that the mechanisms to prevent can-
cer in one would not be evolutionarily stable in the other.
Mechanisms used by smaller organisms would be ineffective
in larger organisms, while mechanisms in larger organisms
would be too expensive to sustain in smaller organisms.

Does this effect occur in more primitive circumstances?
We simulated asexual multicellular organisms composed of
cells as they would have existed shortly after the transition
to multicellularity, before any developmental processes or
division of labor evolved. Cells must inhibit their growth to
avoid killing (overwriting) neighboring cells, which would
reduce organism fitness. The only mechanism that evolu-
tion has to work with is genetic robustness, implemented as
redundancy of the inhibitory behavior. We ask: Does the
selective pressure for inhibited cellular proliferation during
cellular reproduction increase with organism size? Specif-
ically, do larger organisms evolve more redundancy for in-
hibited cellular proliferation on average?

Simulation

To test our hypothesis, we simulated evolving populations
of multicellular organisms in a system that we named Pri-
mordium. Computer simulations of multicellular organ-
isms have often been utilized to study the relationship be-
tween intra- and inter-cellular competition (Goldsby et al.,
2014a,b; Pfeiffer and Bonhoeffer, 2003; Moreno and Ofria,
2022; Rose et al., 2020). We focused solely on organism
growth (tissue accretion), avoiding complexities associated
with more evolved multicellular life, such as specialized cell
types and developmental patterns. Each organism begins as
a single cell near the middle of a square grid; as soon as the
grid is filled, the organism reproduces. As such, the size of
the grid represents the organism’s body size, and the speed
of filling the grid is the organism’s fitness. Within an organ-
ism, each cell attempts to replicate into a random neighbor-
ing grid position. An unrestrained cell will always place its
offspring in the selected grid position, even if doing so re-
places and kills an existing cell. A restrained cell will abort
replication rather than replace a neighbor, since replacement
would restart replication from that position. In practice,
an organism consisting of restrained cells reproduces up to
20% faster than an organism with all unrestrained cells. Or-
ganisms that begin with a restrained cell but develop un-
restrained cells during their lifetime (due to somatic muta-
tions) end up with intermediate fitness values depending on
how early unrestrained cells arose.
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A cell’s level of restraint is determined by its genome of
zeros and ones. Organisms also have a sequestered germ cell
whose genome is used to produce its initial somatic cell and
is inherited by any offspring organisms. A cell is restrained
if the number of ones in its genome is greater than a restraint
threshold (60% of the genome in this work). The number of
ones beyond the restraint threshold is termed the restraint
value of that cell. A somatic mutation may induce a bit flip
when a cell replicates, changing the daughter cell’s restraint
value. Likewise, germ-level mutations may occur when a
whole organism reproduces. Since the restraint value of an
organism’s germ cell is inherited, it is under selection at the
population level; we term this value the restraint buffer of
the organism since it sets the initial cell’s restraint value.
A higher restraint buffer means that more somatic mutations
can be sustained by cells (on average) before restraint is lost.
(For full details on Primordium, see Methods below).

Results overview

In experiments with Primordium, we demonstrated that
larger organisms have a stronger selective pressure for high
restraint buffers, but many complicating factors exist. These
include that mutation-selection balance can have a profound
effect on the outcome of evolution, especially when restraint
mechanisms require substantial genetic material. While
larger organisms benefit more from a higher restraint buffer,
the fitness benefit they gain declines with each additional
step in restraint, making it more difficult for evolution to
achieve. Thus, while we see that increasing organism size
heightens selective pressure for large restraint buffers, we
also find that it can easily be countered by mutational drift or
the effects of a noisy fitness function. We conclude that se-
lection technically favors higher levels of restraint in larger
organisms, but other factors may prevent evolution from re-
alizing those levels. Only under perfectly idealized condi-
tions are we able to observe a positive relationship between
organism size and restraint buffer value that continues into
the largest sizes, indicating that additional factors may need
to be present in nature.

Methods

Below, we detail the implementation of Primordium (Fer-
guson et al., 2022), the experimental methods used for data
collection, and the statistical analyses performed on the re-
sults.

The Primordium evolution system

Primordium is a digital system that simulates an evolving,
well-mixed population of multicellular organisms, useful for
investigating how organism size influences the evolution of
cellular restraint. Each organism maintains a sequestered
germ cell that is used to initialize its body (with a single so-
matic cell, or ‘soma’) and for the genetic material passed
to its offspring. At birth, the initial soma is placed near
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the center of a two-dimensional square grid (see Figure 1).
Cells copy themselves into neighboring grid positions and
are subject to somatic mutations with each replication. An
organism reproduces when its entire grid is filled with cells.
The population of organisms is kept at a constant size, with
new offspring always replacing a random existing organism;
this replacement is the only mechanism for organism death.
As such, organisms that reproduce faster are more likely to
produce offspring before being overwritten, creating a selec-
tive pressure for organisms that fill with cells as rapidly as
possible.

EE———— ) - —
-20 -10 0 10 20

Restraint value

Figure 1@ A visualization of six example 16x16 organisms,
The color scale for cells is shown above, and empty cells
are shown in black. Organism A is a brand new orgnaism.
Organisms B and C have the same restraint buffer (3) and
have both grown for 300 updates, but unrestrained cells have
only appeared in organism C. The second row shows three
organisms with restraint buffers of 5 (D), 2 (E), and -5 (F).
All three organisms have received 2,732 updates, which is
how long it took for organism D to fill and thus reproduce.

Inside an organism, each cell has a replication timer that
starts when the cell is bom. A cell’s replication time is cal-
culated as a base number of cycles (100} plus a noise factor
(uniform between zero and 50 cycles) o stagger replication,
When the timer elapses, the cell randomly chooses an off-
spring position from the eight options in its Moore neigh-
borhood. If the selected position is empty, the cell replicates
into it. If the position is occupied, however, the behavior
depends on whether the parent cell’s genome encodes for
restraint. If the cell is restrained, the offspring cell is dis-
carded, leaving the neighbor unaffected; if the cell is wnre-
strained, the neighboring cell is overwritten by the offspring,
which then starts replicating itself from the beginning. In ei-
ther case, the parent cell’s timer is then reset o zero and a
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new replication time is caleulated.

Each genome is a bitstring (length 100 by default) that de-
termines if its cell is restrained. A restraint threshold indi-
cates the minimum number of ones in the bitstring required
for the cell to be restrained (here, 60% of genome length).
While restrained behavior is determined merely by whether
the number of ones in a genome is greater than the threshold,
we also measure a cell’s reseraint value as the difference be-
tween these values. For restrained cells, this value indicates
how many restraint-reducing mutations can be sustained be-
fore restraint is lost, For unrestrained cells, restraint value is
negative, indicating how far away from restraint the cell is.
Note that the data in a cell’s genome is fully encapsulated
in its restraint value, as order does not matter. Mutations do,
however, function as they would in a bitstring; for example if
a length 100 genome has 70 ones, that corresponds to a 30%
chance of a mutation increasing the number of ones and a
T0% chance of it decreasing.

Given that the default restraint threshold requires at least
60% ones in a genome, somatic mutations will reduce re-
straint on average; as such, mutation accumulation during
soma growth moves toward unrestrained behavior. Since re-
strained cells never overwrite their neighbors, they are at a
competitive disadvantage against any unrestrained cells that
may appear.

Organism reproduction also has some probability of mu-
tation when the parent organism’s sequestered germ cell is
passed o the child organism. This probability is parame-
terized as the germ mutation rate; we used, by default, a
2% chance per orgamism reproduction event, If a mutation
occurs, a single bit in the germ cell’s genome is flipped,
increasing or decreasing the offspring’s germ cell restraint
value by one. To create a distinetion between the cellular and
organismal levels, we record the restraint value of the germ
cell as the organism's restraint buffer. The restraint buffer
provides an indication of how large the organism can grow
before mutation accumulation starts producing unrestrained
cells, Thus, different restraint bufTers can result in different
reproduction times for organisms and is the only factor sub-
ject to evolution in between-organism competition. Larger
organisms undergo more cell replications and therefore re-
quire higher restraint buffers to avoid unrestrained cells aris-
ing within their lifetime.

Simulation controls for infinite population sizes
and genome lengths

To exclude the possibility that our results were caused by in-
sufficient population size or genome length, we performed
controls to simulate infinite-size populations and infinite-
length genomes.

In a finite genome, a bit flip from a zero o a one would
decrease the number of zeros and thus decrease the likeli-
hood that subsequent mutations would hit a zero. We simu-
lated an infinite genome by removing this feedback on sub-
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sequent probabilities; specifically, we locked both germ and
somatic mutations to a 60% probability of reducing restraint,
which is the same probability as finite genomes at the re-
straint threshold. We also removed all limits on restraint
values and restraint buffers.

To simulate an infinite population, we converted the prin-
ciples of Primordium into a population genetics model. For
each replicate, we first used Primordium to gather the dis-
tribution of organism fitness at each restraint buffer value.
We then applied an iterative formula to determine the re-
straint buffer distribution after a given number of genera-
tions (based on models of asexual haploids in discrete, non-
overlapping generations (Crow and Kimura, 1970)). Each
generation was represented by the portion of the popula-
tion with each restraint buffer. The weighted proportion of
offspring was initially determined as the current proportion
times its (empirically measured) expected fitness. After nor-
malizing these values (such that all proportions again add up
to one), we accounted for mutations, moving an appropriate
portion of each group to a restraint buffer category of plus or
minus one. Full details of the model can be found in Section
10 of the supplement (Ferguson et al., 2022).

Experiment design

In our baseline experiment for this work, we examined the
effect of six organism sizes (16x16, 32x32, 64x64, 128x128,
256x256, and 512x512) on the evolution of restraint using
all default parameters. We conducted more limited studies
at organism size 1024x1024, but these experiments proved
too slow to include for all results and are included in sup-
plement Sections 2 and 9 (Ferguson et al., 2022). The initial
experiment produced results partially opposing our hypoth-
esis, so we then conducted additional experiments to tease
apart the underlying dynamics. Specifically, we analyzed
the importance of the germ mutation rate, somatic mutation
rate, genome length, and population size.

We experimentally determined the default values for each
parameter by conducting preliminary experiments where we
swept each value (data available in supplement Sections 3-
6 (Ferguson et al., 2022)). By default, all of our experi-
ments consisted of a population of 200 multicellular organ-
isms evolving for 10,000 generations with 100-bit genomes,
and each treatment was replicated 100 times with different
random number seeds. The restraint threshold was always
set such that 60% of the genome must be ones in order to
confer restraint. All organisms in the population begin with
a restraint buffer of zero (i.e., evolution always begins at the
restraint threshold).

With Primordium’s default parameters, there is a 50%
chance that a single somatic mutation will occur when an
individual cell replicates and a 2% chance of a single germ
mutation when a whole organism reproduces. Both types
of mutations toggle a single bit and will therefore either in-
crease or decrease the restraint value of the genome by one.
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To make the computational costs feasible, we pre-
generated the replication time data for organisms before evo-
Iution. We simulated 100 organisms at each possible combi-
nation of restraint buffer value and organism size to produce
a distribution of the time required for the organism to repro-
duce. During evolution, each time an organism is born, we
pull from these distributions to determine when it will repro-
duce instead of simulating each individual cell. Comparison
experiments demonstrated that this limited number of fitness
samples has no qualitative effects on the overall evolution of
restraint (see supplement Section 5 (Ferguson et al., 2022)).

At the beginning of the simulation, all organisms are
given a generation value of zero. When an organism repro-
duces, the offspring’s generation is set to its parent’s gen-
eration plus one. Every time the average generation value
of organisms in the population surpasses a whole number,
we collect the average restraint buffer of all organisms in the
population. Examining these values from preliminary data,
we determined that populations had stabilized by the time
the average generation crossed 10,000 (i.e., running the sim-
ulation longer produced no additional changes in the evolved
restraint buffer values). Most analyses focused on the aver-
age restraint buffers at the end of 10,000 generations of evo-
lution. Additionally, we analyzed the pre-generated repli-
cation times for organisms under various configurations to
determine how different parameters affected fitness.

Statistics and data availability

All statistics were calculated by first performing a Kruskal-
Wallis test to determine if significant variation existed across
treatments. When significance was indicated, we deter-
mined which treatments were significantly different with
a pairwise Wilcoxon Rank-Sum test and Bonferroni-Holm
corrections for multiple comparisons. Statistics have been
included in the figures where appropriate, and all statistics
are available in the supplement (Ferguson et al., 2022). Pri-
mordium was developed with the Empirical C++ library for
scientific software (Ofria et al., 2020). Analyses and visu-
alizations were conducted using R version 3.6.3 (R Core
Team, 2020) and the ggplot2 library (Wickham, 2016). All
source code, analyses, and other supplemental material can
be found on GitHub (Ferguson et al., 2022).

Results & Discussion

For our baseline analysis, we examined the evolved restraint
buffer for a range of organism sizes. Larger multicellular
organisms, by definition, undergo more cellular replication
on average. As such, a higher restraint buffer is required to
avoid unrestrained cells appearing during organism growth
and slowing reproduction. Indeed, we found that (on aver-
age) the evolved restraint buffer initially increases with or-
ganism size. A turning point emerges at size 128x128, how-
ever, beyond which the evolved restraint buffer decreases, in
opposition to our expectation (see Figure 2).
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Figure 2:  Boxplots show the evolved restraint buffers

of populations with varying organism sizes and 100-bit
genomes. Each boxplot represents 100 independent repli-
cates. Each replicate is summarized as the average restraint
buffer of all organisms at the end of 10,000 generations. Col-
ors are unique for each organism size and consistent across
all figures. Statistics between adjacent organism sizes are
shown (for all figures: 'ns’ for p > 0.05, ’*’ for p < 0.05,
7#E for p < 0.01, 7*** for p < 0.001)

Due to the simplicity of this system, there are only two
key pressures acting on the population: selection and muta-
tional drift. Selection acts on both the population level (im-
proved organism restraint can speed up reproduction) and
the cellular level (unrestrained cells spread faster). Muta-
tional pressures are always biased toward an equal balance
of zeros and ones, which is below the 60% ones needed for
restraint. At the population level, this biased mutational
pressure acts counter to selection, pulling down germ re-
straint buffers. Mutational pressure from somatic mutations
provides a selective advantage for organisms with a higher
restraint buffer, as their cells remain restrained for longer.
Where mutation-selection balance leaves a genome at the
end of evolution depends on the strength of each pressure
and the nuances of their interactions. Below, we disentan-
gle how these pressures interact across levels to create the
observed peak and subsequent decline in evolved restraint
values.

Mutation rates for germ and somatic cells push
evolution in opposing directions

Mutations to organism germ cells provide variation for evo-
lution to act upon. If the mutation rates for these cells are too
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Figure 3: Boxplots show the evolved restraint buffers of
populations of 256x256 organisms evolved under varying
A) germ and B) somatic mutation rates. Both mutation rates
are quantified per-genome. Each boxplot represents 100 in-
dependent replicates. Each replicate is summarized as the
average restraint buffer of all organisms at the end of 10,000
generations.

high, however, they create a strong mutational pressure for
less restrained organisms, overwhelming selection. Figure
3A shows how evolution is less capable of producing high
restraint buffers as germ mutation rates increase; 256x256
organisms are used for illustrative purposes, but a qualita-
tively similar effect can be seen at all organism sizes (see
Section 4 of the supplement (Ferguson et al., 2022)).

Conversely, resistance to somatic mutations is why higher
levels of restraint are valuable in the first place. If the
somatic mutation rate drops too low, then a high restraint
buffer is no longer valuable and is not selected by evolution.
Figure 3B demonstrates this effect by measuring evolved re-
straint buffers in tests of 256x256 organisms at various so-
matic mutation rates. If the somatic mutation rate is too
high (above 0.2), however, we see that selection is no longer
able to counter mutational decay and the organisms evolve
smaller restraint buffers than they did at lower somatic mu-
tation rates. Data for all organism sizes are available in Sec-
tion 3 of the supplement (Ferguson et al., 2022))

In considering how these effects play out in nature, germ
cells are sequestered in most organisms in order to keep their
mutation rates low. Somatic cells, on the other hand, do all
of the dirty work for the body and thus tend to be subjected
to mutation rates two orders of magnitude higher (Milhol-
land et al., 2017). As such, the combination of mutation
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rates that we use as our default parameters appear to be re-
alistic for natural evolution.

Longer genomes reduce mutational pressure

In our baseline experiment, each genome consists of 100
bits, with 60 bits (60%) needing to be ones for a cell to
be restrained. As such, a cell with a restraint value of zero
(exactly 60 ones) would have a 60% chance of a mutation
eliminating its restraint and a 40% chance of increasing it.
A restraint value of 10 would shift these values to a 70%
chance of reduction and only a 30% chance of increase.

We examined the comparable situation in genomes of
other lengths, from 25 bits to 400 bits in length, each with a
60% threshold for restraint. A cell with a length 400 genome
and a restraint value of 10 has 250 ones in it, and thus only a
62.5% chance of a restraint-reducing mutation and a 37.5%
chance of a mutation increasing restraint. At the other ex-
treme, a cell with a length 25 genome and a restraint buffer
of 10 consists of all ones, and so it has a 100% chance of a
mutation reducing its restraint.

What effect should a longer genome have on evolution?
At the population level, it should reduce the incremental mu-
tational pressure against restraint, and thus allow higher re-
straint buffers to evolve in organisms. Within cells, however,
a longer genome also decreases the probability of restraint-
reducing somatic mutations, reducing the rate at which re-
straint decays, and thus weakening selection for high re-
straint buffers. We created an additional control that isolated
the change in mutational pressure, but the results were qual-
itatively identical to those described below (see Section 8 of
supplement for details (Ferguson et al., 2022)).

Figure 4A shows that, when we evolve 256x256 organ-
isms with differing genome lengths, longer genomes result
in the evolution of higher restraint buffers. The range of
evolved restraint buffers also increases with genome length,
because all genome lengths have results that extend to the
median of the genome, which is at a lower restraint buffer in
longer genomes. Indeed, examining length-400 genomes at
all organism sizes, we see in Figure 4B that restraint buffers
now peak at organisms of size 256x256, but drop again for
the largest organisms.

To ensure these trends were not the result of insufficient
genome length, we repeated the experiment with infinite
genomes (i.e., all mutations have a 60% chance of decreas-
ing restraint and restraint buffers are not capped). These
results were qualitatively the same. While the “peak” or-
ganism size increased, the constant mutational pressure was
still strong enough to cause a downturn in evolved restraint
at the largest organism sizes (see Section 9 of supplement
(Ferguson et al., 2022)).

Natural genomes are, of course, not infinite, yet they are
far longer than the finite genomes used in this study, though
only a small portion of a natural genome is related to cellu-
lar restraint. The system we use is also far simpler than the
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Figure 4: Subplot A shows the evolved restraint buffer for
each genome length with a 256x256 organism, while sub-
plot B shows the evolved restraint buffer at each organism
size for a 400-bit genome. Each boxplot represents 100 in-
dependent replicates. Each replicate is summarized as the
average restraint buffer of all organisms at the end of 10,000
generations.

complex regulatory networks involved in real-world organ-
isms, and in future work it will be important to examine how
those complications play out.

The selective pressure for restraint has diminishing
returns

Next, we analyzed how the selective pressure at different re-
straint values changes with organism size. While each suc-
cessive increment to the restraint buffer proved to be ben-
eficial, we observed a diminishing return in that benefit in
practice (see Figure 5). Small organisms see the greatest
fitness boost just above the restraint threshold, after which
the fitness advantage for additional restraint quickly dimin-
ishes once an organism’s restraint buffer is high enough that
unrestrained cells never appear during its lifetime. Larger
organisms have a smaller initial spike, but given that they
experience more cell divisions, the saturation point occurs
at larger restraint buffer values. Thus, selective pressure
persists longer in larger organisms. In fact, in the largest
organisms (256x256 and 512x512), this saturation point is
unreachable with the 100-bit genome.

While the fitness data shows that additional bits of re-
straint still provide a small selective advantage to larger or-
ganisms (Figure 5), the evolved restraint buffers decline for
organisms larger than 128x128 (Figure 2). We know that

#20z Atenuer Lg uo Jesn O LNIHL 1A VLISHIAINN Aq 4pd° 26500 € 1eSI/6G7SE0Z/L/vE/2Z0zIes!ypd-sBulpaadoid)les)/npajiw-joalip//:diy woly papeojumoq



16x16 32x32

0.03
0.02
0.01
0.00

64x64 128x128

vwaj\"vwvws

256x256 512x512

0.03
0.02
0.01
0.00

-20 0 20 40-20 0 20 40
Simulated restraint bufffer

Figure 5: Lines show the average benefit of each additional
bit of restraint buffer for various organism sizes. Values are
calculated as the measured difference in fitness between n
bits of restraint and n — 1 bits of restraint, and each restraint
buffer value was averaged over 10,000 samples. Larger val-
ues on the y-axis indicate a greater increase in benefit. Data
were calculated to a restraint value of -60, but all values be-
low -20 fluctuate around zero across all organism sizes.

populations are expected to evolve to the restraint value
where mutational and selection pressures are in equilib-
rium. Thus, the selection pressure for additional bits of re-
straint must have become too weak to oppose the mutational
pressure against additional bits. From evolutionary theory,
we know that population size greatly affects selective pres-
sure, with larger populations experiencing increased selec-
tive pressure (Gossmann et al., 2012). Thus, we replicated
the original experiment with larger populations to observe
the results of increased selective pressure. Indeed, Figure 6
shows that increasing the population size from 200 to 2,000
increased the evolved restraint buffer at every organism size.
Even with this larger population, however, the evolved re-
straint buffers still decrease at sizes greater than 128x128.

Natural populations are often huge, so we extended this
experiment with a population genetics model to simulate the
selection pressure in an infinite population. In Figure 7A, we
see that populations of size 256x256 organisms evolve more
restraint than the 128x128 populations, but the 512x512
populations still evolve less restraint. Therefore we con-
clude that the mutational pressure is a limiting factor in the
evolution of restraint in our system.
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Figure 6: Boxplots show the evolved restraint buffers of

populations with 100-bit genomes. Each subplot shows a
particular organism size evolved with two population sizes:
200 organisms (left boxplot, default) and 2,000 organisms
(right boxplot). Each boxplot represents 100 independent
replicates, each summarized as the average restraint buffer
of all organisms at the end of 10,000 generations. All com-
parisons between population sizes of 200 and 2,000 organ-
isms are highly significant (p < 0.001).

When all other factors are controlled for, larger
organisms evolve greater restraint

Even with the increased selective pressure of an infinite pop-
ulation size, the largest organisms are unable to overcome
the mutational pressure of the finite genome to evolve more
restraint than the next largest organism size. Thus, we asked
if combining the infinite population with an infinite genome
to neutralize mutational pressure would be sufficient to con-
tinue the expected trend. Figure 7B shows that, indeed,
when both the infinite population and infinite genome con-
trols are in place, the evolved restraint buffer continues to
increase with organism size. Since this combination of con-
trols changes the trend, we conclude that the downturn pat-
tern must be a combination of increasing mutational pres-
sure and decreasing selective pressure as restraint buffers
increase.

In nature, populations are not unlimited, but are often
much larger than the size-2,000 populations that we tested.
Similarly, while biological genomes are not unlimited, they
are typically significantly larger than modeled here. Thus,
our system’s infinite population and genome model high-
lights factors that are clearly important for these dynamics,
but are reasonable to assume that they would exist in nature.
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Figure 7: Boxplots show the average restraint buffer value
after 10,000 updates in an infinite population model. Each
boxplot represents 100 independent replicates. Subplot A
shows the results for the default 100-bit genome, while sub-
plot B shows the results for the infinite genome.

Conclusions

We have shown evidence that the pressure imbued by simple
space management can select for genetic robustness to im-
prove cooperation. Larger organisms optimize their fitness
advantage if their genomes are more mutations away from
an unrestrained state. After an initial transition to multicel-
lularity, these dynamics appear sufficient to create a selective
pressure for increased restraint on cellular replication with-
out the need for developmental patterning.

While larger organism sizes do have increased selective
pressure for larger restraint buffers, we have also found
that this is not a strong effect. As the restraint buffer in-
creases, so too does mutational pressure. Larger organisms
can have mutational pressure so strong (and selective pres-
sure so weak) that the evolved restraint buffer actually de-
creases.

In Primordium, being unrestrained results in at most a
20% fitness loss for an organism, making it possible to over-
come with other pressures. More complex aspects of mul-
ticellular organisms (such as developmental patterns) would
make unrestrained cellular behaviors more harmful or even
fatal. As a result, “the cells of multicellular organisms, even
those with body plans as simple as sponges, have evolved
mechanisms to maintain appropriate numbers of cells within
tissues” (DeGregori, 2011). Avoiding the turning point that
we saw in Primordium required unrealistic controls, indi-
cating that there must, indeed, be other factors in natural

352

systems increasing the selective pressure for restraint. The
dynamics we observed, however, may help explain the ini-
tial bootstrap as multicellular organisms first evolved to be
large enough for developmental processes to become ben-
eficial. The benefit to biological organisms of being larger
also applies a strong indirect selective pressure for restraint.
Dedicating more energy and more of their genome to re-
straint mechanisms imposes a cost on organisms, but helps
not only in avoiding diseases such as cancer, but also facil-
itates achieving larger body masses. A larger body size can
improve predation success, defense against predation, range
of food sources, mating success, longevity, and intelligence
(with increased brain size) (Hone and Benton, 2005).

From the perspective of cancer research, it is clear that
Peto’s paradox (i.e., larger/longer-lived species are expected
to exhibit proportionally higher rates of cancer, but do not
in practice) is the result of many evolutionary forces and dy-
namics (Peto, 1977). Here, we focused only on the pressure
imbued by the management of space as a resource, disallow-
ing the evolution of most parameters (organism size, genome
length, cell replication strategies, efc.).

Furthermore, Primordium uses binary genomes and a sim-
ple restraint mechanism. In a real-world biological system,
restraint would be harder to build than destroy—worsening
mutational pressures—but a smaller region of the genome
would encode for it, making it a smaller mutational target.

Many of these complications would be exciting to study
to identify their effects on genetic robustness in multicellu-
lar organisms. For example, we should examine the effect
of a more complex genome alphabet and genes that code for
functional fitness. Primordium would also be ideal to study
the evolution of genome length, with large genomes allow-
ing for increased cellular robustness, trading off against a
higher mutational load.

In nature, multicellular organisms can be huge, despite
undergoing vastly more cell divisions. Indeed, the largest
(blue whales) coordinate quadrillions of cells. Deciphering
how this is possible will allow us to not only better under-
stand our natural world, but also give us insights on how to
evolve larger and more complex artificial organisms.

Acknowledgements

We thank Heather Goldsby, Acacia Ackles, Ben Kerr, the
members of the MSU Digital Evolution Lab, and prior
anonymous reviewers for their contributions. This work was
supported by U.S. National Science Foundation grant DEB-
1655715, the BEACON Center for the Study of Evolution
in Action, and the Department of Defense (DoD) through
the National Defense Science & Engineering Graduate (ND-
SEG) Fellowship Program. Computational resources were
provided by the MSU Institute for Cyber-Enabled Research.

#20z Atenuer Lg uo Jesn O LNIHL 1A VLISHIAINN Aq 4pd° 26500 € 1eSI/6G7SE0Z/L/vE/2Z0zIes!ypd-sBulpaadoid)les)/npajiw-joalip//:diy woly papeojumoq



References

Calcott, B. and Sterelny, K., editors (2011). The Major Transitions
in Evolution Revisited. Vienna Series in Theoretical Biology.
MIT Press, Cambridge, MA.

Callier, V. (2019). Core Concept: Solving Peto’s Paradox to better
understand cancer. Proceedings of the National Academy of
Sciences, 116(6):1825-1828.

Crow, J. and Kimura, M. (1970). An introduction to population
genetics theory. Harper and Row, Publishers.

De Visser, J. A. G. M., Hermisson, J., Wagner, G. P., Meyers, L. A.,
Bagheri-Chaichian, H., Blanchard, J. L., Chao, L., Cheverud,
J. M., Elena, S. F.,, Fontana, W., Gibson, G., Hansen, T. F.,
Krakauer, D., Lewontin, R. C., Ofria, C., Rice, S. H., Dassow,
G. v., Wagner, A., and Whitlock, M. C. (2003). Perspective:
Evolution and Detection of Genetic Robustness. Evolution,
57(9):1959-1972.

DeGregori, J. (2011). Evolved Tumor Suppression: Why Are
We So Good at Not Getting Cancer?  Cancer Research,
71(11):3739-3744.

Ferguson, A. J., Ofria, C., and Skocelas, K. (2022). Primordium
Supplemental Material.  GitHub. https://doi.org/10.5281/
zenodo.6564985.

Goldsby, H. J., Knoester, D. B., Kerr, B., and Ofria, C. (2014a).
The effect of conflicting pressures on the evolution of division
of labor. PLoS ONE, 9(8):¢102713.

Goldsby, H. J., Knoester, D. B., Ofria, C., and Kerr, B. (2014b).
The evolutionary origin of somatic cells under the dirty work
hypothesis. PLoS Biology.

Gossmann, T. L., Keightley, P. D., and Eyre-Walker, A. (2012). The
effect of variation in the effective population size on the rate
of adaptive molecular evolution in eukaryotes. Genome Biol-
ogy and Evolution, 4(5):658-667.

Gu, Z., Steinmetz, L. M., Gu, X., Scharfe, C., Davis, R. W., and Li,
W.-H. (2003). Role of duplicate genes in genetic robustness
against null mutations. Nature, 421(6918):63-66.

Hone, D. W. and Benton, M. J. (2005). The evolution of large
size: How does Cope’s Rule work? Trends in Ecology and
Evolution, 20(1):4-6.

Kitano, H. (2004). Biological robustness. Nature Reviews Genet-
ics, 5(11):826-837.

Lauring, A. S., Frydman, J., and Andino, R. (2013). The role of
mutational robustness in RNA virus evolution. Nature Re-
views Microbiology, 11(5):327-336.

Lenski, R. E., Barrick, J. E., and Ofria, C. (2006). Balancing Ro-
bustness and Evolvability. PLoS Biology, 4(12):e428.

Laruson, A. J., Yeaman, S., and Lotterhos, K. E. (2020). The
Importance of Genetic Redundancy in Evolution. Trends in
Ecology & Evolution, 35(9):809-822.

Masel, J. and Siegal, M. L. (2009). Robustness: mechanisms and
consequences. Trends in Genetics, 25(9):395-403.

Milholland, B., Dong, X., Zhang, L., Hao, X., Suh, Y., and Vijg, J.
(2017). Differences between germline and somatic mutation
rates in humans and mice. Nature Communications, 8(1):1-8.

353

Moreno, M. A. and Ofria, C. (2022). Exploring Evolved Multicel-
lular Life Histories in a Open-Ended Digital Evolution Sys-
tem. Frontiers in Ecology and Evolution, 10:750837.

Nunney, L. (1999). Lineage selection and the evolution of mul-
tistage carcinogenesis. Proceedings of the Royal Society of
London. Series B: Biological Sciences, 266(1418):493-498.

Ofria, C., Moreno, M. A., Dolson, E., Lalejini, A., Papa, S. R.,
Perry, K., Boyd, S., Fenton, J., Jorgensen, S., Hoffman, R.,
Miller, R., Edwards, O. B., Stredwick, J., Clemons, R., Vosti-
nar, A., Moreno, R., Nitash C G, Zaman, L., Schossau, J.,
and Rainbow, D. (2020). Empirical. https://doi.org/10.5281/
zenodo.2575606.

Peto, R. (1977). Epidemiology, multistage models, and short-term
mutagenicity tests. In Hiatt HH, Watson JD, W. J., editor, The
origins of human cancer, Cold Spring Harbor conf. on cell
proliferation., pages 1403-1428. Cold Spring Harbor Labo-
ratory Press, Cold Spring Harbor, NY.

Pfeiffer, T. and Bonhoeffer, S. (2003). An evolutionary scenario for
the transition to undifferentiated multicellularity. Proceed-
ings of the National Academy of Sciences, 100(3):1095-1098.

Queller, D. C. (2000). Relatedness and the fraternal major transi-
tions. Philosophical Transactions of the Royal Society of Lon-
don. Series B: Biological Sciences, 355(1403):1647-1655.

R Core Team (2020). R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing,
Vienna, Austria.

Rose, C. J., Hammerschmidt, K., Pichugin, Y., and Rainey, P. B.
(2020). Meta-population structure and the evolutionary tran-
sition to multicellularity. Ecology Letters, 23(9):1380-1390.

Smith, J. M. and Szathmary, E. (1997). The Major Transitions in
Evolution. Oxford University Press, New York, NY.

Thatcher, J. W., Shaw, J. M., and Dickinson, W. J. (1998). Marginal
fitness contributions of nonessential genes in yeast. Proceed-
ings of the National Academy of Sciences, 95(1):253-257.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analy-
sis. Springer-Verlag New York.

#20z Atenuer Lg uo Jesn O LNIHL 1A VLISHIAINN Aq 4pd° 26500 € 1eSI/6G7SE0Z/L/vE/2Z0zIes!ypd-sBulpaadoid)les)/npajiw-joalip//:diy woly papeojumoq



The Information Complexity of Navigating with Momentum

Bente Riegler, Daniel Polani and Volker Steuber

School of Physics, Engineering and Computer Science, University of Hertfordshire
b.riegler @herts.ac.uk

Abstract

Many models of organism navigation concern themselves in
essence just with the sequence of locations visited and how
to manage it. However, larger and bulkier organisms have
also to deal with managing momentum. We expect that this
affects the cognitive management of movement. Here we pro-
pose a simple model for the information processing complex-
ity of navigation when velocity and acceleration are consid-
ered, moving away from a kinematic perspective to a partially
dynamic model, to separate the effects of location and mo-
mentum management.

The work is discussed in the context of recent neurobiological
research suggesting that biological agents plan around accel-
eration and deceleration phases, showing high neural activity
during their body’s velocity changes.

Introduction

Commonly, navigation and movement tasks are modeled by
defining movements through a sequence of positions, and
eventually to a final position, be it via key poses or through
forward and inverse kinematics. In more physically involved
scenarios other approaches had great successes modelling
the specific dynamics of the agent and their domain. Such
models include the presence of momentum and inertia and
the use of force to effect changes. The inverse pendulum bal-
ancing task is a classical example and benchmark in nonlin-
ear control theory (Boubaker, 2013). It has been solved with
multiple algorithms taking the position and angular velocity
as well as the mass and force into account (Boubaker, 2013;
Furuta et al., 1992) to highlight few. In autonomous vehicle
control, speed, angular velocity and vehicle mass constitutes
the dynamic of the system. Reinforcement learning with hi-
erarchical temporal abstraction has achieved safe control in
merging traffic lanes (Shalev-Shwartz et al., 2016). In he-
licopter control, differential dynamic programming (Abbeel
et al., 2006) allows for difficult maneuvers such as tail-in
funnel or flip. Similarly, in legged robots approaches such
as Zero-Moment-Point walking (Kajita et al., 2003; Mitobe
et al., 2000) that generate walking motion while balancing
the dynamical center of the particular agent. In all these ap-
proaches, the use and limits of force are largely given by
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real world physical models and the dynamics are centered
around the specific use case.

Evidence from neurobiological research suggests that or-
ganisms whose brains include a cerebellum do in fact model
and simulate their world in a dynamic instead of a kine-
matic way when controlling movement. Recent research by
Becker and Person focusing on the cerebellar control activity
of a mouse in regards to precisely reaching a goal position
showed the importance of controlling velocities (Becker and
Person, 2019). While the task is still defined by kinemat-
ics, the control very much requires velocity management. In
their experiment, they measured both the velocity and the
neural activity in the cerebellum of the mouse. While reach-
ing for the goal, the mouse shows moderately high neural
activity at the start of the reaching motion, during accelera-
tion, and high activity during the deceleration phase, towards
the end of the movement.

Having to consider velocity creates a timing component
and thus requires some temporal planning. When operat-
ing with velocities, one has to manage momentum which
requires the ability to integrate the application of forces. In
fact, specific neural circuits in the cerebellum have the abil-
ity to integrate (Maex and Steuber, 2013). This suggests that
an agent with a cerebellum is endowed with the capacity to
predict or simulate possible future positions through forward
integration which permits it to plan when the agent needs to
manage velocity.

While the various scenarios of momentum/velocity
management are specific to particular agents or organ-
isms, we wish to extract several general insights which
emerge from the information processing cost that momen-
tum/velocity management requires as compared to purely
kinematic/location-based navigation models. Current mod-
els that allow for velocity management be it in autonomous
vehicle control, legged robot control or the inverse pendu-
lum — though achieving balanced and precise movements
within their problem domain — are too concerned with the
specific agent, its physics and the task at hand to allow
general insight. These models, furthermore, are not con-
cerned with the pressure towards parsimonious information
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processing which would not be necessary for a merely opti-
mally performing solution in the given problem domain, but
becomes highly relevant once it comes to biological agents
(Polani, 2009). Therefore, we will introduce a minimalistic
model to study aforementioned phenomena.

The paper is organized as follows: in section 2 we will
define our models and in section 3 we will define how we
measure cognitive cost. In section 4 we will present our
experiments and results which we will discuss in section 5.

Perception-Action Models

The perception-action loop setup throughout this paper is
in line with the general Reinforcement Learning framework
modeled as a Markov Decision Process (MDP) (Sutton and
Barto, 2018). States are given by s € S and actions are
given by a € A. We assume the individual transitions, given
by p(st,|st,,a), with s;, being the state at time ¢1, a the ac-
tion taken in s;, and s;, being the resulting state after the
action is performed at to, to be deterministic. A policy is
denoted as m(als), which denotes the probability that ac-
tion a is selected in state s; such transitions incur rewards r
that the agent aims to maximize over the run. The achieved
rewards are summarized by the Q-function Q™ (s, a) which
expresses the reward that is accrued when, starting in state
s and selecting first action a, the agent proceeds to follow
policy 7. In traditional MDPs, one seeks to find Q*(s, a)
which maximises this value over all possible policies. Given
a state s, an optimal action in the state can be directly read
off this quantity, by selecting the action a that achieves the
highest Q*(s, a) for the state s. This forms the basis of the
reward structures we consider in the following.

In the following we will introduce two models: The stan-
dard kinematic/location-based (K/L) model which we will
use as a baseline and our new proposed acceleration/velocity
(A/V) model which includes velocity and acceleration. This
allows us to model and handle inertia of the agent though
we will not be specifically modeling mass or other physi-
cal implications. We will limit ourselves to look at abstract
simple one-dimensional grid-like models to make the salient
differences between the two setups as apparent as possible.

Kinematic/Location-based Model without Velocity

A typical way to represent navigation or movement tasks
in reinforcement learning models uses actions that comprise
the agent taking a single step from one location to a neigh-
bouring one. Technically, this means accelerating the agent,
moving it one step and immediately stopping it. Interpreted
physically, this can be considered a model for high-friction
where a movement stops immediately when the applied ac-
tion a ceases.

As defined by the MDP framework there exists a state
space (S) and an action set (A). The state space (.S consists
of a set of discrete positions (P) aligned in one dimension.
The action set (A) consists of actions that move the agent to

355

an adjacent state, here move left (m = —1) and move right
(m = +1). Every action incurs a cost of 1. We apply no
discount over time, but consider episodic tasks only. Specif-
ically, we assume there exists a single goal state which can
be any state of S or a set of such states. Any goal state is
modeled as a trapping state, i.e. once reached, it does not
allow further action and does not incur further costs. In RL
terminology, an episode ends once the agent reaches a goal
state. Note that the trapping property is important for an
appropriate calculation of the informational costs. The grid
world is finite and limited by walls. An action that pushes
the agent into a wall leaves the agent in the same state but
still incurs the usual cost of 1. Since in the present paper
we only consider optimal policies, no agent will walk into
walls.

Acceleration/Velocity Model

In the following we describe the extended model. In this
model, the states are not only defined by their position on the
grid world but also the agent’s velocity. Thus, each state of
the MDP is now a tuple of position and velocity. The states
are now tuples of positions (P) and velocities (V). For sim-
plicity, we only consider integer velocities!. The state space
isnow S = P x V. In our model, during each time step,
the dynamics of the world moves the agent to a new position
based on its current position and velocity:

D41 = Pt + ¢ (D

In our simplistic one-dimensional model, the agent can
chose between three actions: positive acceleration to the
right (a = +1) and negative acceleration to the left (a =
—1), and no change (a = 0) which are added to the veloc-
ity:

Vi1 = V¢ + Qg (2)

Note the agent can not directly affect its position. It can
only influence its velocity which then affects the position
change mediated through the velocity. The agent’s change
of velocity will happen at the same time as the change in
position which means any position change due to the choice
of an action will only be observable at the subsequent time
step.

The cost function incurs a cost of 1 for each time step
outside of the goal regardless of the action taken. This grid
world is limited by walls keeping the agent inside the world.
Just like in the K/L model the agent will on its own try to
avoid hitting the wall when it would not be optimal other-
wise (note, though, that there are starting position-velocity
pairs in which the agent cannot avoid hitting a wall).

Reaching the goal We will use two types of goal sets.
Both are specified by a goal position.

LA velocity specification includes directionality
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The first type allows for any velocity: {py} x V" (i.e. asin-
gle given position, but with arbitrary velocity). When reach-
ing/passing p,, the agent will automatically be stopped, ef-
fectively reducing its velocity to O instantaneously, even if
the agent would overshoot the goal otherwise. In this sce-
nario the responsibility to decelerate the agent is placed on
the environment (we interpret this as offloading the informa-
tional cost of an instantaneous stop to the embodiment of the
agent). As a real-life analogue, one can compare this to the
arresting gear for airplanes landing on an aircraft carrier.

The second type of goal set, on the other hand, requires
the velocity to reach precisely zero for the goal to be consid-
ered satisfactorily achieved: (pg, 0). This goal type requires
the agent to explicitly decelerate/break before reaching the
goal position. In particular, overshooting will be considered
a miss.

Cognitive Cost

Cognitive processing in natural agents requires neural ac-
tivity which is energetically expensive yet crucial for the
survival of the agent in question (Laughlin, 2001; Polani,
2009). As such, keeping the processing cost as minimal
as possible without losing optimality with regards to some
value function becomes an important secondary objective.
In vivo, measurements of the cognitive load or neural activ-
ity of a living being can be measured using EEG (Nieder-
meyer and da Silva, 2005), fMRi (Huettel et al., 2004) or
intrusive methods like implanted optical fibres (Becker and
Person, 2019).

However, our minimal and theoretical model employs a
different method of determining the cognitive cost. Neu-
ral computation which processes sensory inputs to make a
decision which then in turn is communicated to the actu-
ators of the agent can be directly translated to a message
sent from the sensors to the actuators (Tanaka and Sand-
berg, 2015). This opens the way to use information the-
ory as the basis to measure the information flow through the
agent’s perception-action loop which can be interpreted as
the cognitive cost of any agent — theoretical or not (Polani,
2009). The main objective in our work is the considera-
tion of utility-optimizing behaviours in the MDP while re-
specting the secondary objective of minimizing this cogni-
tive cost. In general, one can further reduce cognitive cost
by trading in some utility (Polani et al., 2006). However, for
simplicity, we focus entirely on optimal policies.

Specifically, we will use the formalism of relevant infor-
mation to measure the cognitive cost of the agent to control
its movement (Polani et al., 2006). Relevant information
for an MDP is defined as the minimal information required
about the current state to select an action to achieve a given
utility. It represents a lower bound of how much cognitive
cost per decision is required to achieve a given utility. For-
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mally, relevant information is defined as

min
m(A|S)s.t.E™[Q(s,a)]=Q

1(5; 4) ©)

i.e. as the minimum amount of information the actuators A
use about the state .S as to achieve a given utility, with Q be-
ing the desired utility of the MDP. We will typically choose
Q as Q*, the optimal utility. By introducing a Lagrangian
factor (3, this constrained minimization can be converted into
the unconstrained minimization:

min(I(S; A) — BE[Q(S, A))) “)

In this paper we will focus on achieving the optimal values
only, e.g. the Lagrangian 4 will be considered for 5 tending
towards the infinite limit. We further exclude the goal states
from the calculation of the mutual information I(S; A), as
these are at the end of an episode and contribute no relevant
decision in the policy. Since, I(S; A) is a concave function
of p(s) for a fixed p(als) and a convex function of p(als)
for a fixed p(s), the relevant information minimization is
formally equivalent to the standard rate-distortion problem
known from information theory (Cover and Thomas, 1991)
with a different fixed point. The rate-distortion problem
is solved with the Blahut-Arimoto fixed-point iteration al-
gorithm (which implements in essence a sequence of mu-
tual projections between two convex sets, see (Cover and
Thomas, 1991). We use practically the same algorithm here,
replacing the information-theoretical distortion of a signal
by the optimal utility Q* (Polani et al., 2006).

Note that the naive use of Blahut-Arimoto in the present
context is only possible since (* does not depend on the
policy but only on the MDP. When one considers the gen-
eral case of suboptimal policies, such a simplification is no
longer possible (see Polani et al., 2006; Polani, 2009) for
details).

Crucially, this optimization gives us two results: The min-
imal information cost the agent has to pay per step to en-
sure it reaches the goal with perfect cost expenditure and the
policy with which to achieve this. Thus the informational
cost of a particular setup which in turn is used to compare
the overall cognitive cost of kinematic/location-based agent
movement and the acceleration/velocity-based agent.

Model Comparison

We now compare the two presented models (K/L and
V/A) directly and use the two goal types of the veloc-
ity/acceleration model(V/A model) using two different goal
sets {pg} x V) and (py, 0). s We will look at a “border goal”

%to see the equivalence with the rate-distortion problem, note
that our regret Q™ (s, a™) — Q™ (s, a) here effectively acts as a dis-
tortion, where s is the sent symbol, a* is the desired transmitted
symbol — the correct action — and a the actually received symbol
— the actually chosen action.
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as one extreme and the goal in the middle as the most gen-
eral non-border position on the other end of the spectrum.
Throughout these experiments we will limit the maximum
velocity to one. Further acceleration is possible but does not
affect the velocity. Thus, the agent in both models can at
most move one position (to the left or right) in each time
step.

The agent starts randomly in one of the non-goal states of
the MDP. This means in the V/A model the agent can start
with a velocity. This of course has an effect on its perfor-
mance as it may already be on track to the goal or needs
to decelerate first. There is no counterpart for this in the
Kinematic/location-based (K/L) model.

Since the reward function is entirely based on the amount
of time passed, no adjustments are needed. Note that the
agent starting with zero velocity will be one time step slower
to reach the goal in the V/A case compared to the K/L case.
Thus, the comparison is not about directly analyzing the ex-
act performance or specific information cost but rather to in-
vestigate the general behavior change of the agent within the
proposed V/A model as compared to the K/L model, as well
as identifying exactly when behavioral changes take place
and where cognitive costs are incurred.

Result 1 — border goal with fully trapping goal
position

We observe no significant difference in the behavior of the
policy or the information cost between the K/L and the V/A
model. As shown in figure 1, both policies only include a
single action (m = +1 and @ = +1) in all possible states,
resulting in a relevant information of 0 since no states need
to be distinguished from others to decide on an action to
take.

We observe that none of the agents selects the “no
change”-action. In the case of the K/L model this action
is suppressed by the optimality requirement because using
this action would mean a “lost” time step and thus subopti-
mal performance. In the acceleration-based model however,
the “no change”-action appears in some optimal policies if
one purely optimizes in terms of value (e.g. the MDP solu-
tion with *). When additionally optimizing under the rele-
vant information constraint, this constraint reduces the set of
possible optimal policies; the policy with the “no change”-
action is now suppressed in favour of the policy shown in
figure 1 since the former would require distinguishing a state
on whether to apply @ = 41 or a = 0 whereas the latter does
not.

Result 2 — middle-of-the-field goal with fully
trapping goal position

We see the same general behaviour as in the first setup but
now the goal can be reached from two directions (see Figure
2). Both agents directly move towards the goal from their
respective side. The agent now needs to distinguish at every
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K/L Model
Po D1 D2 D3 D4 Ds De b7 ps

+_1) m=+1 i m=—1
V/A Model
Po P P2 p3 P4 Ps Pe pr Ps
F1a | +1a | +1x | +1a | +1a | +1x | +1x | +1
v=1 G
+L1a | +Ls | +La [ +Ls | +1a |41y | +1x | +1
v=20 G
F1a | +1la | +1a | +1a | +1a | +1x | +1a | +1
v=-—1 G

+}':a:+1 7:(1:71

Figure 1: Top: The resulting policies of the K/L. model in
terms of m in which the arrows symbolize the action to take
one step in the marked direction. This policy only contains
a single action m = +1, with an information of 0 bit per
step and the goal marked with the letter ”G”. Bottom: The
resulting policy of the V/A model in terms of a with again
an information of 0 bit per step and the goal marked with the
letter ”G”. Here, the arrow indicates the immediate change
in velocity and the delayed change in location induced by
the action (a = +1).
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K/L Model
Po P1 P2 p3 P4 ps Pe pr ps
+1 +1 +1 +1 G —1 —1 —1 —1
— — | — | — — | — | — | —
+_1>: m=+1 i: m=—1
V/A Model
Po p1 P2 b3 y2 Ps Pe p7 Ps
+1 +1 +1 +1 -1 -1 -1 -1
v=1 G
+1 +1 +1 +1 -1 -1 -1 -1
v=20 G
+1 +1 +1 +1 -1 -1 -1 -1
v=-—1 G

Figure 2: Top: The resulting policy of the K/L model in
terms of m in which the arrows symbolize the action to take
one step in the marked direction. The policy shows two
equally large sets of states (1 bit per step) in which the same
action is taken and the goal marked with the letter ”G”. Bot-
tom: The resulting policy of the velocity/acceleration model
in terms of a which also shows two equally large sets of
states (1 bit per step) and the goal marked with the letter "G”.
Here, the arrow indicates the immediate change in velocity
and the delayed change in location induced by the action.
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V/A Model with self stopping

Po P D2 p3 P4 Ps Pe pr Ps

1 FLa | F1la | H+la | HLa [ +1La | F1la 1| -1, | —1
v =
F1a | +1la | +1a | +1a | +1a | +1a | +1x | +1
v=20 G
+1a | +1la | +1a | +L1a | +1a | +1x | +1a | +1a | +1
v=-—1 /I

+7‘:(1:+1 7:

Figure 3: The resulting policy of the acceleration-based
model with self stopping and an informational cost of > 0
bit per step and the goal marked with the letter ”G”. There
two states which require a different action than the rest.

time its state amongst two equally large sets of states which
results in a relevant information of 1 bit per step. (We note
here that the relevant information formalism used here as-
sumes that the agent has no memory, so it has to “look up”
its state at each decision point).

Result 3 — border goal with active stopping

Here, we see for the first time a specific behavior of decel-
eration and its cost near the goal because the latter can only
be reached with zero velocity. Far away from the goal the
agent behaves the same in all states but, once near the goal,
it has to decelerate (see Figure 3). We see now a slight in-
crease in relevant information compared to the 0 in the pre-
vious fully trapping border goal. This increase results from
the two states (p7,+1) and (ps,+1) in the top right cor-
ner which require the action a = —1 to decelerate the agent
while in the rest of the states the action a = —1 is taken. The
exact value of information depends on the number of states
because the relevant information is an average over all states.
In this particular example the relevant information is 0.39 bit
per step. Importantly, the agent now does not only need to
move towards the goal but needs also to plan (slightly) ahead
to arrive and stop once reaching the goal position.

Result 4 — middle goal with active stopping

We observe a combination of the behaviors in setups 2 and
3. Again observe that around the goal the state space is par-
titioned into two behaviors, now not purely based on the po-
sition but also on the velocity. In contrast to the K/L model
(see Figure 2), however, we do not have the same action
overall on one side of the goal (see Figure 4). Instead, we
can see that the process of decelerating timely is more diffi-
cult in this scenario.

From these experiments we see that velocity-based move-
ments only show differences in strategy if the responsibility
to stop is placed on the agent itself.
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V/A Model with self stopping

Po P1 P2 P3 Ppa Ps Pe pr ps

F+1n | +1la | +1a | —1 -1 -1 -1, | -1 -1
v=1 /

+1a | +14 | +1 +1 -1 -1 -1 -1
v=20 G

FLa | +1a |41 [ +1x [ +1x | +1x | =1, | =1, | ~1
v=-—1 /I

J7‘:(1:+1 7:

Figure 4: The resulting policy with active deceleration. This
policy also has only two equally large sets of states (1 bit
per step) and the goal marked with the letter ”G”. However,
we clearly see that the area around the goal is the important
part.

Increasing the Maximum Velocity

In our previous experiments we limited the possible veloci-
ties in our V/A model to create agent trajectories comparable
to the K/L model. In the following experiments we now al-
low higher velocities and thus faster movements. This has no
counterpart in the K/L model without expanding the model
significantly.

Again, we investigate the cost of stopping at the right po-
sition e.g. (py,0). The agent again starts randomly in one of
the non-goal states of the MDP.

In the first experiment we restrict the agent to a maximum
velocity of 2 in both directions and in the second we discuss
the theoretical case of no restriction to velocity. To avoid
dealing with infinite state spaces in our simple framework,
we consider various maximum velocities v,,,, = k where
k € N. The agent can still only accelerate or decelerate by
1 at each time step which means it may have to overshoot
the goal or hit walls if it starts with a too high velocity at the
wrong location.

S et up Relevant  Braking "No
Self Infor- ; Change”
Goal  velmag Stopping| mation Distance utilisegd

S Border - - 0 bit 0 no
Middle - - 1 bit 0 no
Border 1 No 0 bit 0 no

g Middle 1 No 1 bit 0 no
§ Border 1 Yes 0.39 bit 1 no
< Middle 1 Yes 1 bit 1 no
= Middle 2 Yes 1.06 bit 3 yes
Middle  k Yes | 1-15bit  BEED yeq

Table 1: Cognitive cost, in relevant information, braking dis-
tance, and use of the "No-Change” action for all tested se-
tups.
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V/A Model with max velocity 2 and self stopping

-1 -1 -1 -1 -1 —1 -1 -1 -1
v=2

+1 -1 -1 -1 -1 -1 -1
v=1 0 0

+1 +1 +1 +1 -1 -1 -1 -1
v=0 G

4+1a | +1x | +1a | +1a | +1a | +1 -1
v=—1 0 0

FLa | F1la |+l | +La [ +1a | F1la | +1a | +1a | 41
v=-2 v

a=0

J7':0L=-H 7:51:—1 0:

Figure 5: The resulting policy of an agent with a maximum
velocity 2 and the goal marked with the letter ”G”. The cost
of this policy is more than 1 bit per step because the "no
change”-action (0) is the only optimal action in four states.

Result 5 — setting the maximal velocity v,,,,,. to 2

We see an extension of the effects in experiment 4. The
larger the velocity, the further away from the goal the decel-
eration process needs to be initiated to avoid overshooting
the goal. We observe for the first time the necessity of a “no
change”-action a = 0 to achieve optimal cost. In the states
(p2, +1), (p1,+1), (ps, —1) and (p7, —1) in which the agent
is two positions away and already moves towards the goal,
the agent can neither accelerate nor decelerate without wast-
ing time but rather has to keep its velocity steady (shown as
0 in Figure 5). This further increases the cognitive cost of
deceleration and managing velocity. As a result, the policy
has a relevant information of more than 1 bit per time step,
again the exact increase depends on the amount of positions
in the world as positions further away from the goal are not
affected. For this particular setup the relevant information is
1.06 bit per step.

In summary, this experiment shows that stopping with
higher velocity requires measurably more complex decision-
making.

Result 6 — larger maximal velocities v,

We again see a continuation of the effect in experiment 5.
Higher velocities require even earlier deceleration and plan-
ning (see Figure 6 resulting in a relevant information of 1.31
for the shown example. In fact, the agent needs to start de-
celerating Zle i = @ positions away from the goal,
where k is the current velocity. The agent can only reduce
its velocity by 1 each time step but will still be moving to-
wards the goal, in other words the braking distance of the
agent is that long. The “no change”-action appears more of-
ten and on all levels of velocity in a specific pattern: 2 state
for velocity 1, 3 for velocity 2, 4 for velocity 3 and so on
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V/A Model with unlimited velocity and self stopping

Po 1 P2 P3 Pa Ps Pe p7 P8 P9 P1o

—

|
—
|
—_
|
—
|
—_
|
—_
|
—
|
—_
|
—
|
—
|
—_

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1
v=2 | 0 V4
+1 +1 -1 -1 -1 -1 -1 -1 -1
v=1 0 0
+1 +1 +1, | +1 +1 -1 -1 -1 -1 -1
v=20 G
+1 +1 +1 +1 +1 +1 +1 -1 -1
v=—1 0 0
9 FLn | +1a | +Lx | 4La | +1a | +La |+l +Lx | +1x | +1 o
v=—
FLa | +1a | +Lx [ 4La | +1a | +La [ +1a | +La [ 4+L1x | +1a | +1
v=-3 /
+1 -1
/:a=+1 /:a=71 0:a=0

Figure 6: Part of the policy with unlimited velocities show-
ing the longer deceleration phase and the pattern of “no-
change”-actions(a = 0) necessary to reach the goal opti-
mally.

directly before the position in which the deceleration phase
starts. For a velocity of 2 there are three states in which
the agent has to maintain its velocity in order to neither stop
before reaching the goal position nor overshooting it. This
increases to four states when the velocity is 3 and continues
growing linearly with the velocity. The number of states in
which the agent has to maintain its velocity is tied to the dis-
placement the agent will experience before its next decision
— e.g. before it can start the actual deceleration phase.

Discussion

We have introduced a model for movement or navigation
of an agent that extends the typically studied perspective
from a kinematic to a dynamic view. This proposed Ve-
locity/Acceleration model (V/A model) expands the agent’s
state space to include its current velocity. In the V/A model,
the actions are accelerations which directly affect only the
velocity which in turn affects the position. We took this as a
step to understand the agent’s dynamics when it has to con-
tend with momentum and inertia as opposed to the typical
high-friction scenarios where this is not necessary.

In the first two experiments (trapping goals) we have seen
that both models effectively function in the same fashion
when it is the environment that is responsible for decelera-
tion (e.g. {py} % V) (compare row 1-4 in Table 1). Once we
transfer this responsibility to the agent (Experiment 3 to 6,
non-trapping), the agent needs to carry out a deceleration be-
havior. Around the goal position the policy shows a distinc-
tive pattern of actions to generate this deceleration behav-
ior. Our first minimalistic model offers a glimpse into how
we can model movement and understand the recent findings
by Becker and Person, investigating the neural activity of
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a mouse reaching for an object (Becker and Person, 2019).
Their results showed that mice show an increase in neural
activity — which we interpret as investment of cognitive
processing cost — in the cerebellum while decelerating and
correcting 3.

In experiments 5 and 6 our model predicts that agents with
richer velocity spaces require more cognitive cost and plan-
ning. Perhaps the introduction of more semantic actions —
decelerate to zero — via options (Sutton et al., 1999), scripts
(Riegler et al., 2021) or subgoals (van Dijk and Polani, 2011)
might be interesting approaches to reduce the cognitive cost
at the decision-making level.

Maex and Steuber have suggested that specific neural cir-
cuits in the cerebellum are capable of mathematical integra-
tion (Maex and Steuber, 2013). This would theoretically
provide the computational capabilities which would allow
the integration-based forward planning when velocities are
involved.

The idea of the present work is to explicitly consider the
necessity to manage momentum and inertia and suggest pos-
sible consequences for the cognitive processing and possi-
bly the brain structure of the respective biological organ-
isms as compared to organisms that live in high-friction en-
vironments where they only manage positioning directly.
In particular, we propose that information-processing con-
siderations may directly suggest evolutionary pressures to-
wards brain structures geared towards processing of partic-
ular types of movement control information and thus help
contributing to the prediction of the presence and function-
ality of certain components of the brain across organisms.
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Abstract

String is a new computer language designed specifically
for the implementation of ‘ribozymes’, the active enti-
ties within a new (highly simplified) model of protocel-
lular life. The purpose of the model (which is presented
here, only in outline) is the study of the abstract nature
of simple cellular life and its relationship to computa-
tion. This model contains passive and active entities;
passive entities are data and active ones are executable
data (or programs). All programs in our model are writ-
ten or evolved in String. In this paper, we describe String
and provide examples of both hand-written and evolved
String programs belonging to different functional cat-
egories needed for cellular operation (e.g., mass trans-
porter, information transporter, transformer, replicator
and translator). Results from the evolutionary runs are
presented and discussed, where almost all ribozymes
reached their optimum fitness.

Introduction

The cell is the unit of all known life forms, and
all cells have three common sub-systems: a heritable
information-laden genome partly coding for proteins,
a metabolic network of chemical reactions mostly cat-
alyzed by protein enzymes, and a selective protein-
infused lipid membrane that greatly influences mate-
rial and informatic exchanges with the environment.
It is generally agreed that all cells descended from a
Last Universal Common Ancestor (or LUCA), which
is likely to have had an embryonic form of all three
sub-systems. And, LUCA must have had its own actual
and abortive pre-cellular ancestors, which could legiti-
mately be called protocells. The messy transitions from
open non-living systems to (semi-) closed proto-cellular
systems to LUCA and beyond are of great interest to
scientists, as they offer a host of intriguing questions.
However, our interest is in simple models of protocel-
lular ‘life’, including models that may (/not) have had
material reifications in pre-LUCA times. We believe
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this line of investigation will enhance our understand-
ing of the computational nature of manifestation of life,
since everything in a computational simulation must be
described in purely informatic terms.

Evolving self-replicating digital organisms in the logi-
cal/informational medium (using assembly like instruc-
tions) is a well studied phenomenon in Artificial Life
(Rasmussen et al., 1990; Ray, 2003; Ofria et al., 2009).
Many of these automatons are developed using string
molecules (bases) in artificial chemistry (Varetto, 1993;
Clark et al., 2017). Recently a whole cell simulation
was presented by (Das and Mitra, 2021) where protein
clusters are densely connected and spatially localized,
but it lacks in genetic representation.
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Figure 1: A highly abstracted diagram of the ProtoCell
model. It shows the three sub-systems of ProtoCell: the
Membrane, Metabolism and Genome.

The ProtoCell Model. We describe a computational
protocell (figure 1), inspired by models of biological
protocells — all of which are hypothetical — a model that
is as simple as possible, but not simpler. The model
aims to mimic, in computational terms, the essential
processes of cellular life as a system, but without copy-
ing every little detail of current cellular biology. Ul-
timately, our aim is to build an autonomous computa-
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tional entity that exhibits the common properties of life,
which we assert are (A) self-maintenance and growth
within a non-trivial dynamic environment, leading to
(B) conservative, but imperfect self-reproduction, gen-
erating (C) a diverse population, which under selection
pressure leads to inter-generational adaptation (i.e., evo-
lution). These are more than the necessary properties
of life as, for example, a cell that fails to reproduce is
still alive, but these appear to be necessary for the phe-
nomenon of life to exist and persist. The current Proto-
Cell model has three interacting sub-systems, each with
specific central functions, which are thought to be suf-
ficient but possibly not necessary for the emergence of
properties A-C above. The sub-systems are (1) the ge-
nomic sub-system (or Genome); (2) the metabolic sub-
system (or Metabolism); (3) the membrane sub-system
(or Membrane).

The Genome functions as inherited ‘institutional mem-
ory’ influencing, both directly and indirectly, the op-
erations taking place in a cell. The metabolism is the
‘cell’s factory’, through which a cell is able to make,
break and re-cycle those molecules, including energy-
carrying molecules, that a cell needs to survive and pro-
liferate, but is unable to efficiently get from the envi-
ronment. The Membrane is essentially the cell’s ‘selec-
tive boundary’, which maintains certain working con-
ditions, such as molecular concentrations and temper-
ature, within optimal or at least survivable ranges; the
exportation of waste and importation of nutrients is cen-
tral to that work.

l'lrﬂmut‘.:r slari pans shop
l Iranscripdian

transiafion RMA

l

Siring Program
(Source Code)

R

Figure 2: Gene Structure and Translation

In ProtoCell, everything is made of atoms and en-
ergy. (A) Atoms are the indivisible building blocks
of molecules. From a computational perspective,
molecules are strings of data atoms from the set
¢,h,n,0,p,s linked by bonds with energies, which are
a function of the bonded atoms. Atoms and most
molecules are ‘passive’ entities that do not enter any
kind of reaction without the aid of the ‘active’ entities:
the ribozymes. (B) Energy in ProtoCell has two forms:
‘diffuse’ and ‘concentrated’. Diffuse energy is ‘heat’,
which is either provided from the external environment
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or is given out by exothermic chemical reactions. In
contrast, concentrated energy is stored in the ‘bonds’
between the atoms of molecules, which in ProtoCell
means the transformation (making/breaking) and move-
ment of molecules (= data).

All operations inside a ProtoCell — including its mem-
brane — are carried out by ‘ribozymes.” A ribozyme is
an ‘RNA’ molecule, a string of nucleotides (A, U, C,
G) made, as all other molecules, from strings of atoms.
This RNA molecule ‘folds’ into an active molecule,
which is a computer program (in String) capable of
processing passive molecules. Ribozymes can be di-
vided into a small number of ‘pure’ classes — as a ri-
bozyme can deliver a mix of functionalities — that in-
clude (A) Transformers, which are analogous to typ-
ical ‘enzymes’ catalyzing the various reactions of the
metabolism; (B) Translators, which transcribe (figure 2)
a ‘gene’ into an RNA molecule, which then ‘folds’ into
a working ribozyme/program; (C) Transporters, which
are embedded in the membrane and selectively pass
atoms/molecules or information across it; (D) Replica-
tors, which are similar to translators, except that they
make a mutated copy of the whole genome, to be passed
on to a daughter ProtoCell.

The goal of ProtoCell is to develop a computational
protocell model consisting of the three essential inter-
dependent sub-systems of a cell (membrane, genome,
metabolism). A distinguishing feature of the model is a
new programming language (String), which is designed
and will be developed to maximize the robustness and
evolvability (Hu and Banzhaf, 2018) of programs (= ri-
bozymes) written in it. In fact, there should not exist
a genetic encoding that maps into invalid (i.e., unexe-
cutable) programs and, the genetic encoding of a pro-
gram should be both robust in the presence of muta-
tions, and (theoretically) evolvable into any other pro-
gram (needed by the cell). In the following sections, we
describe String, and present examples of different types
of hand-written and evolved ribozymes (in String).

String, the Language

A String program is a sequence of symbols. It fol-
lows from the discussion above that a genome can be
interpreted as a program. This is the basis of the Pro-
toCell simulation. Like other programming languages,
String is defined by an instruction set. This might sug-
gest that String programs are fragile in the same way
as programs written in other languages: a small change
to the program results in a “syntax error" or “semantic
error" that renders the program non-executable. String,
however, is designed to be extremely robust: arbitrary
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sequences of symbols can be interpreted without failure
and, in the worst case, parts of the program have no ef-
fect. This robustness ensures that all programs, includ-
ing mutated programs, will execute without “crashing",
although they are not guaranteed to do anything useful.

Program = { Operator {Operand } } .
Operator = cut | emit | joinl | joinr | jump |
jumpf | jumpt | match | move |
sensee | sensei | shiftl | shiftr |
sitee|sitei | show.
Operand = Pattern | Operator | [ Sign] Number .
Pattern = <™ { Atom | Wild } >T .
Atom=c|h|n|o|p]s.
Wild = 2 | * .
Sign=+]-.
Number =0[1]2|3]4]5|6|7.

Syntax. In String grammar (presented below) the
symbol x* stands for “one or more instances of x”.
Each String program is a collection of operators with
operands. There are 16 operators with three operand
types Pattern, Operator and signed numbers.

There are eight registers, denoted by a digit in
{0,1,...,7}. Most ribozymes will need less than eight
registers, but we provide eight for particularly complex
ribozymes. A register stores a molecule. There are three
kinds of registers. An external register provides access
to the environment (figure: 1) of the cell while an inter-
nal register provides access to the cytoplasm (figure: 1).
Other registers store molecules within the ribozyme.

Semantics. Each instruction can accept zero, one, or
two operands. If an operator does not have one of the
choices of operand given in table 1, it has no effect.
Here we describe the convention used in table 1: X and
Y stand for arbitrary registers Rn. A register is either
empty or contains a molecule. “X = E — actions”
means that register X has value E before the operations
on the right of the arrow are performed. XY stands
for the concatenation of X and Y. E.g., if R1 = chn
and R2 = ops, then R1"R2 = chnops. P stands for a
pattern. X ~ P stands for the value (in [0, 1]) obtained
by matching molecule X and pattern P. In all cases,
X ~P=P~X. X =M stands for the value obtained
by comparing molecule X and molecule M. An exact
match yields 1; anything else yields 0. In all cases, X =
M =M = X. X := & means that the contents of register
X are emitted into the environment and X is left empty.

3
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Operator Operand Description

cut RO=L"R—+R0:=L;Rl:=R.

cut X X=LR—X:=L;Rl:=R.

cut XY X=LR—X:=LY:=R.

emit Move contents of all registers into the environment.

emit X Move contents of register X into the environment.

emit XY Move contents of registers X and Y into the environment.
joinl joinr

joind RO :=R0ORI; Rl:=&. RO :=R1“R0; Rl := &.

joind X RO:=R0X; X:=0. RO:=XR0; X := Q.

joind XY X =XY;Y=0. X =YX;Y:=0.

jumpb N Transfer control N operations or to the end of the program.

Jjumpb o Transfer control to the next instance of operation O.

jumpb ON Transfer control an instance of operation O as defined below.

match CR:=R0=RI.

match X CR:=R0=X.

match XY CR:=X=Y.

match XpP CR:=X~P.

match PX CR:=P~X.

move EmitR1; R1:=R0; R0 := & =move RO RI.

move Y EmitY; Y :=R0; R0 := & =move RO Y.

move XY EmitY; YV :=X; X :=O.

sensed P Set CR depending on whether there are molecules matching
P in the cytoplasm (d = 1) or the environment (d = e).

shiftd Move the cursor of R0 to the extreme left/right end.

shiftd X Move the cursor of X to the extreme left/right end.

shiftd P Search left/right for the best match RO ~ P and set CR.

shiftd XP Search left/right for the best match X ~ P and set CR.

shiftd PX Search left/right for the best match P ~ X and set CR.

sited X Designate X as an internal/external site. CR is not changed.

sited XpP Designate X as an internal/external site and look for a
molecule that matches P to bind to it. Set CR to 1 if a match
is found, O otherwise.

sited XY Designate X as an internal/external site and look for a
molecule that matches the molecule in Y to bind to it. Set
CR to 1 if a match is found, O otherwise.

Table 1: String Instructions

Pattern Matching. The operations jump, match,
sense, shift, and site accept patterns as operands.
A pattern is a string that may contain atoms (c, h, n, o,
p, s) and wild cards (?, *). In general, when a molecule
is matched to a pattern, ? matches exactly one atom and
* matches any sequence of atoms.

Operations. We describe the operations in alphabeti-
cal order. Most operations set the value of the condition
register, CR, which almost always is set to either 0 or 1.

The Cut operation splits a molecule into two parts and
stores them in separate registers. Emit disposes of
molecules into the environment. If the register is an ex-
ternal register, it is part of the external environment. If it
is an internal register, it is the cytoplasm. There are two
types of Join operations that concatenate groups: joinl
(join left) and joinr (join right). The second operand is
joined to the first in the manner suggested by the qual-
ifier. In table 1, jumpb stands for all three possibili-
ties: b € {e, f,t}, where € stands for the empty string.
Match compares two strings and sets CR accordingly.
If either or both of the strings are patterns (i.e., con-
tain “?” or “*”), then the simulator performs a pattern
match (indicated by ~) yielding a result in [0, 1]. Move
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is used to transport molecules around the cell or, more
precisely, from one register to another. Sense is used
to detect the presence of molecules outside or inside
the cell. The shift operations have two forms: shiftl
(shift left) and shiftr (shift right). Their effect is to
move the cut point of the molecule in the specified di-
rection. There are two operations that define binding
sites: sitee (external) and sitei (internal).

Translation. Translation is (for our purposes) the
process of constructing a ribozyme (program) from
RNA (figure 2). Although RNA is ultimately composed
of atoms, this section treats it as a sequence of bases.

Gene Structure. A gene is a sequence of bases with
the following structure:

Gene = Operation™ ;
Operation = Junk OpCode (Junk Type Value )* .

A gene consists of zero or more operations. An opera-
tion has an opcode followed by zero or more operands.
An operand has a type and a value. Opcodes and types
may be preceded by junk. Junk means simply any se-
quence of base pairs that cannot be interpreted as an op-
code or type. Whenever junk is allowed in the gene, the
translator performs a matching operation which works
as suggested by the following pseudo-code:

match(g[i]) = if g[i,i+7] € nby(opcodes[o])
return opcode opcodes[o]
else if g[i,i +4] € nba(types[t])
return type types|t]
elsei:=i+1.

The procedure match takes as input a gene g with cur-
sor position at base i. The sequence g[i,i+ 7] consists of
8 bases starting at base i; the procedure checks whether
this sequence is in the 2-neighbourhood! of each op-
code and returns a matching one. If no opcodes match,
the procedure checks with the 5-base sequence g[i,i+4]
within the 2-neighbourhood of an operand type, return-
ing the matching type if there is one. No junk is allowed
between an operand type and its value. If there is no
matching type or opcode, the procedure tries again at
gli+ 1] and continues until it finds a match or reaches
the end of the gene.

Encoding. This section explains how a String pro-
gram is encoded as a sequence of bases. Each operator

' The k-neighbourhood of a sequence g, written nby(g) is
the set of sequences within k point mutations of g.

has an 8-base code, as shown in Table 2. The codes are
chosen so that dist(0,0’) > 5 for any pair of operators,
with o # 0.

Genetic

Genetic encoding Operand Type
encoding Operator AAARA Register
AUCGAUCG cut Uyuuu Pattern
UCGAUCGA emit cceee Operator
CGAUCGAU joinl GGGGG Signed number
GAUCGAUC joinr
ACACACAC Jump . :
UeUCUEUG | Sumpf Table 3: Type encoding
CACACACA |  jumpt Genetic
GUGUGUGU | match encoding | Atom
AAAAGGGG move ~auc | ¢
GGGGCCCC sen56§ CAU h
Ccccecuuuu seflsel GCU n
UUUUAAAA Sh}ftl cuG °
AAAUAUUU Sh‘l ftr cGA IS
GGAAACGU s%teg UAG s
ACGUCAUG sitei Uy *
CAUGAUGA show AAR ?

cce N

Table 2: Operator GGG

encodin
£ Table 4: Pattern Encoding.

Each type has a 5-base code, as shown in Table 3. The
codes are chosen so that dist(¢,¢) = 5 for any pair of
operators with ¢ # /. As mentioned above, no junk
is allowed between the type and value of an operand.
For registers and the signed numbers required for jump
operations, we assign the following numerical values
to bases: A =0; U=1; C =2; G = 3. The total v ob-
tained by adding the base values varies from ARAARA — 0
to GGGGG — 15. We use v/2, giving values in [0,7].
The register r € [0,7] is encoded as a 5-base sequence
b1,b2,b3, b, bs with r = 10203 tbuths Gjened num-
bers use the same encoding as registers, but with an
offset of —3 to allow negative values. Operators are
encoded with the same 8-base codes as in figure 2. Pat-
terns consist of the atoms c, h, n, o, p, s and the special
symbols *, ?,>.

Algorithm 1 Simple genetic programming algorithm

1: procedure GENETICPROGRAMMING

2 population = initializePopulation()

3 generation =0

4 while generation < maxGenerationNo do
5 parent Pool = parentSelection()
6
7
8

childList = createChildPopulation(parent Pool)
childrenSelection(population, childList)
: generation = generation+ 1
9: end while
10: end procedure

Evolution of Ribozymes

To develop an efficient evolutionary algorithm for the
evolution of String programs, we evolved instances
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(programs) of five ribozyme categories using a sim-
ple Genetic Programming (GP) algorithm (algorithm 1)
(Koza, 1992, 1994; Krawiec, 2016). The parameters
used for GP for an individual category are listed in table
7.

Simple GP Algorithm

The simple GP algorithm (algorithm 1) that we used to
evolve ribozymes, begins by initializing a population of
genes. This initialization happens by continuously gen-
erating random bases (&, U, C & G) and concatenating
them, up to a fixed length. The maximum length of
each gene is presented in table 7. Once a population is
generated, the next step is to select a parent population.
We use tournament selection fot that purpose. Next, we
generate an offspring population from the parents, us-
ing several variation operators. We used a crossover and
three different mutation operators for doing that.

Algorithm 2 Mutation

1: procedure POINTMUTATION(gene)
2: location <— Random location between 0 to max gene
length
3: newChar < Random nucleotide different than in
location of gene.
Replace newChar in location of gene.
: end procedure
: procedure INSERTION(gene)
location < Random location between 0 to max gene
length
8: newChar < Random nucleotide different than in
location of gene.
9: Insert newChar in location of gene.
10: end procedure
11: procedure DELETION(gene)

A

12: location <— Random location between 0 to max gene
length
13: Delete nucleotide at [ocation of gene.

14: end procedure

Horizontal Gene Transfer Crossover. In Nature,
Horizontal Gene Transfer (HGT) happens mostly in
bacteria but also in other species. In bacteria a section
of the genome of a pathogenic bacteria is inserted into
a non-pathogenic one, resulting in the reproduction of
two daughter cells. We designed a crossover operation
inspired by this process. Here, two parents are selected
from the parent population, and a random portion of
the gene from one parent is placed at a random location
in the gene of the other parent, creating a child that is
identical to a parent, and another containing a modified
genome, part of which is from the other parent (figure
3(b), algorithm 3).
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(a) Three different mutation operators used in the GP algorithm.
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(b) The crossover operator used in GP algorithm is inspired by
bacteria’s horizontal gene transfer.

Figure 3: Variation operators used in Genetic Program-
ming

Mutation. We use three different mutation operators
(figure 3(a), algorithm 2), replacement (or point) mu-
tation and insertion and deletion mutations; some are
applied more often than others (table 7). In Point Mu-
tation a base within the gene is selected at random, and
changed to a different base vale. Insertion happens
when a base is selected at random and hence, is inserted
at a random location within the gene. For deletion we
pick a random base from the gene and simply delete it.

Algorithm 3 HGT Crossover

1: procedure APPLYHGTCROSSOVER(parentl, parent2,
childList)

2: subGene <— Find random sub gene (sub string) in
parent1.gene

3: location < Find random location in parent2.gene

4: childl.gene <Position subGene in location of

parent?2.gene replacing equal number of bases.
5: child2.gene < parent2.gene
6: Add child] and child?2 to childList return childList
7. end procedure
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Algorithm 4 Ribozyme Fitness

procedure GETRIBOZYMEFITNESS(gene)
: cyt <+ Create instance of Cytoplasm
ect <+ Create instance of Environment
cell < Create Cell instance using ¢yt and ect
Insert input molecules in cyt
rib <— Create Robosome instance using gene
Transcribe gene using ribosome to produce ribozyme
Insert ribozyme (String code) into cytoplasm
Execute the ribozyme (String program)
Test output molecule type and count in cyf and ect to
compare with expected output using MED distance.
return sum total of MED distance
11: end procedure

1:
2
3
4
5:
6
7
8
9

10:

Table 6: Mass trans-
porter test cases.
Table 5: Mass trans- Input mol. Output mol.
X chnops chnops
porter: ideal vs evolved chnopsc chnopsc
program chnopsch chnopsch
Evolved chnopschn chnopschn
Ideal Mass (Normalized chnopschno chnopschno
Transporter fitness: 1) chnopschnop chnopschnop
sitee 0 <chn chnopschnops chnopschnops
ops*> sitee +1 <c*> hnops B
sitei 0 joinr nops ©
ops B
ps ”
S =

Fitness evaluation. To evaluate fitness of an indi-
vidual, the algorithm (algorithm 4) places one or
more molecules at an input site, and expects a certain
molecule at an output site of the program, at the end
of execution. Multiple test cases are used to evolve
each program. The various input and output molecules
used as test cases for every type of ribozyme are listed
in tables 6, 9, 10, 13 & 14. The output molecules
from each evolved program is compared with the ex-
pected molecules using MED (Levenshtein, 1966) dis-
tance. The sum of distances between the actual and ex-
pected molecules, over all test cases is normalized, and
the resulting value is considered the fitness of the eval-
uated program.

Transporter. In nature, there are different kinds of
transporters, some passive, others active, some have
pores in them and others not. A ProtoCell has a much
simpler organization where pure transporters may trans-
port molecules or information. Mass transporters ac-
tually move a molecule from one site to another, typ-
ically from outside/inside the cell to inside/outside the
cell, respectively. Information transporters do not move
molecules; they typically recognize the binding of a
molecule to an internal/external site and hence, act on
another molecule bound to an opposite site, in response.
As such, what moves here is a signal, not a molecule.
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Table 8: Replicator and Translator: ideal vs evolved
program

Evolved Evolved
Ideal Replicator (Normalized Ideal Translator (Normalized
fitness: 0.97) fitness: 0.97)
sitel 3 <*nc*>
sitei 0 <*co*>
sitei 1 <*>
joinr sitei 2 <cc?nn>
sitei 1 <*> sensee
joinr L N sitei 2 <cc?nn>
nove 7 sme;n6 ;nicohnn joinr 1 <h>
sitei 0 <*oh*> zzﬁonizcom joinl 2
sitei 1 <*> *cchonnechnn sitei 2 <cc??nn>
sitel 1 <ror> ccohnncconn aea
joinr N sitei 2 <cc?nn>
i cchonn*> e
sitei 1 <*co*> shiftr 6 <ccohnn sitei 2 <cc?nn>
sitei 1 <*co*> cconncchnn joinl 2 1
joinr cchonncconn> siteli 2 2
sitei 1 <> shiftr 6 <ccrnn> | Joinl 2
joinr shiftr 6 <cc*nn> | Jumpf 4
sitei 1 <*oh*> shiftr 6 <cc*nn> | sitei 2 <cc?hnn>
joinr shiftr 6 <cc*nn> sitei 1 <cc?onn> %
sitei 6 <*ccohnn sitei 1 <*> shiftr 6 <cc*nn> joinl 1 2
cconncchnn joinr cut 6 0 sitei 2 <cc?nn>
cchonnccohnn*> §if,ei 1 <*co*> shiftr 0 <cchonn j:o:mr 17
shiftr 6 <ccohnn | JOMIF cchnnecohnn joinl 2
cconncchnn sitei 1 <*o*> cconncchonn> sitei 2 <cco?n>
cchonnccohnn> sitel 1< cut 0 7 joinl 2
cut 6 0 Joinr shiftl 0 jumpf 4 1
joinr 0 6 sitel 1 <*oh*™> | .ot/ 0 <co*nn> sitei 2 <cc?h?n>
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We designed a mass transporter using String (table 5),
which accepts molecules of the pattern chnops*, and
simply moves it from the external environment register
0 to the internal one, from which it is emitted to the
cytoplasm. The ideal information transporter (table 11)
senses the molecule chnops in the environment. When
it finds it’s presence, the transporter performs a trans-
formation in the cytoplasm, by collecting and joining
two molecules of the pattern c* and n*, and releasing
it back in the cytoplasm. Table 6 & 9 contain the mass
and information transporter test cases respectively.

Transformer. In Nature, real transformers are en-
zymes, and they accelerates the rate of a chemical reac-
tion, which results in the re-organization of the atoms in
the reactants to make the products. In ProtoCell the pro-
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Table 7: Parameters for Genetic Programming used for each Ribozyme
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Ribozyme type ~ &} [ = & & O = ade= | EEE | AS = | 2 Z O O @
Mass Transporter 1000 100 | 40% 50 20% 0% 100% 80% 10% 10% 20 1000 15
Information Transporter 10000 150 | 40% 500 20% 0% 100% 80% 10% 10% 20 4000 15
Transformer 10000 150 | 40% | 500 20% 0% 100% 80% 10% 10% 20 4000 15
Replicator 1000 500 | 20% 50 20% 20% 80% 70% 16% 14% 20 10000 1
Translator 1000 500 | 20% 50 20% 20% 80% 70% 16% 14% 20 10000 1
iF -~ -
Table 9: Information Transporter Test Cases i
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Table 11: Information Transporter and Transformer: (a) Average fitness evolution of Ribozymes
ideal vs evolved program —
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ops> sitei +1 <n*> shiftl 3 2 gt
jumpf show sitee 4 <*> sitei 0 <c*> sitei 7 <*> .-1-: b5 ‘_
sitei 0 <c*> jumpf <c?ch> sitei 1 <n*> joinr ‘,'_"' i
sitei 1 <n*> sensee 7 <?shp> sitei 2 <p*> joinr 7 <c*po -:i'a ! 1
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2. ! Transfomar
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Translpbor
cess of transformation starts when a transformer binds 8
and then accepts the reactant molecules. In table 11 we a P a0 00 10000

present a simple transformer where the ideal program
accepts the patterns ' c*’, 'n*’ and 'p*’. Hence, the
molecule with the first pattern is joined with the second
molecule, and their product is then ligated to the third
molecule. Finally the resulting large molecule is emit-
ted in to the cytoplasm. The test molecule sequences for
the transformer test cases are listed in table 10.

Replicator. In Nature, cells have DNA genomes. In
contrast, ProtoCell has an RNA genome, which it must
replicate, in order to reproduce. This process is carried
out by a replicator program written in String. The ideal
String replicator presented in table 8 initiates the repli-
cation process upon encountering the origin of replica-
tion (OR) sequence of GUCAG. When the OR sequence is
identified, the program continues to read chunks of the
pattern cc*nn, from the original sequence, and keeps
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(b) Best fitness evolution of Ribozymes

Figure 4: Results of evolution of Mass and Information
Transporter, Transformer, Translator and Replicator. In
these figures the x-axes show the number of genera-
tions, while the y-axes show the increase in normalized
fitness.

joining copies of the identified molecules to the new
sequence. This continues until the complete sequence
is copied, when the program breaks and releases both
the original genome and an identical copy into the cy-
toplasm. Table 13 presents all the replicator sequences
used in evolution of a replicator. String programs are
only capable of identifying atoms and strings of atoms
(molecules); table 12 shows how the conceptual four
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Molecule
(Base) Atoms
A cchonn
C cchnn
G ccohnn
U cconn

Table 12: Atomic
encoding of
molecules (bases)

Input mol (OR: GUCAG) Output mol \Count A | U [¢] G Actual Output
AGCUAG GUCAGCU GUCAGCU AGCUAG 3 3 3 4 GUGAGCUCGCUAA
GCAUCA GUCAGG GUCAGG GCAUCA 3 2 3 4 GUGAGCGCCUAA
AGCUAG GUCAGGUA GUCAGGUA AGCUAG 4 3 2 5 GAUAGCUCGGGUAA
GCAUCA GUCAGAUCG GUCAGAUCG GCARUCA 4 3 4 4 GAUAGCUCGCGCUAA
UGACAG GUCAGAUCGAU GUCAGAUCGAU UGACAG 5 4 3 5 UUAAGAUAGAUCGCGCG
AGAGCU GUCAGAUCGAUCG GUCAGAUCGAUCG AGAGCU 5 4 4 6 GUAAGAUAGAUCGCGCGCU
AGCUAG GUCAGRARUC GUCAGAUCGAU GUAAGAUA

GAUCGAUCG CGAUCG AGCUAG 6 5 5 7 GAUCGAGCGCCCUUG
UGCAGU GUCAGAUC GUCAGAUCGAUC GUAAGAUAGAUCGAGCG
GAUCGAUGCCGCAU GAUGCCGCAU UGCAGU 6 7 7 8 CCCCCUUUUGG

Table 13: Comparison between the expected vs the actual output of the evolved replica-
tor. Bold molecules in the last column (Actual Output) differentiates the expected.

Input mol (Start: GUCAU End: ACGUR) Output mol \Count A | U | C | G | Actual Output

AGCUAG GUCAU AUG ACGUA GCUAAGC AUG 1 0 1 1 AUG

UGCAUA GUCAU AGUU ACGUA AGCUAG AGUU 1 2 0 1 UUAG

CGAUCC GUCAU CUAGG ACGUA GCAUCA CUAGG 1 1 1 2 CUAGG

AGAGCU GUCAU UGCAGU ACGUA UGACUA UGCAGU 1 2 1 2 UUCAGG

GCAUCA GUCAU CAUAUCG ACGUA CUGAUA CAUAUCG 2 2 2 1 GACAUCU

UGACAG GUCAU CAGAUCGAU ACGUA GCAUCA CAGAUCGAU 3 2 2 2 GACAUCGAU

AGAGCU GUCAU CGAAUC GAUCG ACGUA UGACUA CGAAUCGAUCG 3 3 3 2 GACAUCGAUCG

UGCAUA GUCAU GGARAUC GAUCGAUGC ACGUA AGCUAG GGAAUCGAUCGAUGC 4 3 3 5 GACAUCGAUCGAUGG
UGCAGU GUCAU UACAUC GAUCGAUGCCGCAU ACGUA AUGCUA UACAUCGAUCGAUGCCGCAU 5 5 6 4 GACAUCGAUCGAUGCCUCAU

Table 14: Comparison between the expected vs the actual output of the evolved translator. Bold molecules in the last

column (Actual Output) differentiates the expected.

bases are encoded as strings of atoms.

Translator. In Nature, proteins expression starts with
DNA to RNA transcription followed by RNA to protein
translation. In contrast, in the ProtoCell model, a gene
is an RNA sequence (on the genome) sandwiched be-
tween universal start and stop sequences, and its trans-
lation is defined as making (or ’transcribing’) an RNA
copy of the gene by a ’translator’ ribozyme (or pro-
gram). Hence, the RNA copy autonomously ’folds’ into
its own active ribozyme (also, a program), via the appli-
cation of (hidden) laws of Nature within the simulation
(figure 2). The ideal translator in table 8 starts reading
the genome until it finds the start sequence. In our test
cases (table 14) we used the start pattern GUCAU. At this
point the translator will start copying the RNA gene to
a new molecule by identifying the pattern cc*nn, one
molecule at a time. This continues until the stop pat-
tern ACGUA is found when, the translator will release
the newly created molecule, and leave the genome. To
evolve the translator, we use all the patterns presented
in table 14), which present the start and stop patterns, as
well as the gene in between.

Results and Analysis

The results of the evolutionary runs, for all five ri-
bozyme categories, are presented in figure 4. Three mu-
tation operators were used: insertion, deletion and re-
placement. Figure 3(a) exhibit how these operators mu-
tate a gene. The HGT crossover operator is introduced

to evolve the most difficult String programs, the replica-
tor and the translator (figure 3(b)). Figure 4 shows the
average and best fitness curves of 50 GP runs, for all the
ribozymes. We can observe that three ribozymes (mass,
information transporter and transformer) have reached
their best fitness within 1000 generations. A larger pop-
ulation of 10,000 is used to evolve the transformer and
the information transporter, as they are comparatively
large and sophisticated programs. The best evolved pro-
grams and their fitness values are presented in tables 5,
and 11 along with their hand-written equivalents. Evo-
lution produced replicators and the translators with >
96% accuracy, but only after utilizing a 1:4 measure of
crossover relative to mutation (figure 4), and after long
runs of up to 10,000 generations. Table 7 contains the
optimum parameter set, used during evolution. Table 13
and 14 present the imperfect outputs of the best evolved
replicator and translator, respectively.

Conclusion. This paper presents a new language,
String, that is used to write and evolve all active entities,
called ribozymes, within a new computational proto-
cell model (under development). We present both hand-
written and functionally-equivalent evolved String pro-
grams, from five functional categories: mass and in-
formation transporters, transformers and replicators as
well as translators. For all of these categories, we
evolved programs that are functionally optimal and al-
most equivalent to the hand-written ones. In realizing
that, we utilized three traditional mutation operators:
insert, delete and replace. For the replicator and the

#20z Atenuer Lg uo Jesn O LNIHL 1A VLISHIAINN Aq 4pd° 26500 € 1eSI/6G7SE0Z/L/vE/2Z0zIes!ypd-sBulpaadoid)les)/npajiw-joalip//:diy woly papeojumoq



translator cases, we also developed a new biologically-
inspired crossover operator (HGT). This improved the
result of the evolutionary runs, giving us a replicator
with 0.96 normalized fitness and a translator with a 0.97
one. In addition, the sizes of the various String pro-
grams stayed within tolerable limits too (< 100 lines of
code). Next, we intend to evolve the whole set of pro-
grams needed for a stable ProtoCell simulation, observe
its behavior and hence, evolve the whole cell towards
different behaviours. Our current results provide evi-
dence that such effort is worth pursuing.
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Introduction

Living systems process sensory data to facilitate adaptive
behaviour, but the same sensors can receive inputs both from
purely external (environmental) sources, and as the result of
internally driven activity. We can hear sounds in the world
around us, but we can also hear our own voice when talking,
and our own footsteps when walking. We can see our envi-
ronment, but we also see our own bodies. Not only do we
perceive both the world and the results of our own actions,
but the exact same sensory stimulus can be the result of an
external event, or caused by our own activity. For example
the sight of a hand being waved before our eyes could be
your own hand or a friend snapping you out of a daydream.
The phenomenology of a self-caused stimulus can be very
different from that of an externally caused one. A great ex-
ample of this is the sensation of touch, which can reduce you
to helpless laughter when externally applied - but trying to
tickle yourself just isn’t the same! (Blakemore et al., 2000)

In psychology, research on the sensory attenuation of
self-caused stimuli studies how these stimuli are perceived
as diminished in comparison to externally caused stimuli
(Hughes and Waszak, 2011). A clear example of this ef-
fect is seen in the force-matching paradigm. Here an ex-
ternal force is applied to a subjects finger, after which they
must use their other hand to recreate that force as precisely
as possible. This takes place under two conditions. In the
direct condition, the subject applies force to their finger in
a manner as close to pressing on their own finger as pos-
sible. In the indirect condition, they apply the force via a
mechanism, such as a lever to one side. Healthy subjects
consistently apply too much force when pressing directly on
their finger, indicating that the perceived force is attenuated
compared to the other conditions (Pares et al., 2014).

The canonical explanation of this effect is that when the
brain issues a motor command, an internal model receives
a copy of that command, from which it predicts the sen-
sory consequences of the resulting motor activity. The pre-
dicted sensory input is then subtracted from the actual sen-
sory input, resulting in the attenuation of the stimuli (Klaf-
fehn et al., 2019).
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Methods

We developed a model of a simple embodied system with
self-caused sensorimotor dynamics. Following the evolu-
tionary robotics methodology, we explored the space of pos-
sible solutions using a genetic algorithm (GA) (Harvey et al.,
2005). We aimed to learn whether solutions like the predict-
and-subtract approach would evolve, and to assess the via-
bility of non-predictive solutions for coping with self-caused
sensory inputs interfering with perceiving the world.

The embodiment is a simulated, two-wheeled robot with
a pair of light sensors. It moves about an infinite, flat plane
which contains a light source. Its motor activity is specified
by a continuous-time, recurrent neural network (CTRNN)
(Beer, 1995) with six fully connected interneurons and two
neurons each for sensor inputs and motor outputs. The ac-
tivation of each sensor is a linear combination of environ-
mental stimulation (determined by the sensor’s distance and
facing relative to the light) and interference generated from
the ipsilateral motor’s activity by by one of three interfer-
ence functions (Figure 1).

This model is designed to allow for both the canon-
ical, representationalist solution and alternative, non-
representationalist solutions to emerge. The canonical so-
Iution can be realised because the interfering dynamics are
produced by simple, smooth functions, and thus can be fully
modelled by a CTRNN (Beer, 2006). Since the interference
is summed with the actual sensor data, the problem can be
solved by predicting the interference and subtracting it out.
However, as the interfering dynamics are a function of the
system’s motor activity, and are coupled to the controller
in a tight sensorimotor loop, this model embraces situated,
embodied and dynamical explanations of cognition, and al-
lows for the emergence of other (non-representationalist) so-
lutions that do not involve an internal, predictive model.

We used a GA to select parameters for the CTRNN, and
examined the best solution found under several conditions.
Our GA is tournament based, like the microbial GA (Har-
vey, 2011), although it does not use crossover. We evolved
a population of 50 individuals to seek the light (phototaxis)
without any motor-driven interference. We then evolved five
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populations of solutions for each of the three interference
functions, in each case starting from the population evolved
without interference rather than from an initially random
population. This lets us study how an existing phototactic
system can be adapted to continue to perform successfully in
the presence of various forms of motor-driven interference.

Results

Here we catalogue the adaptations observed in the fittest sin-
gle individual evolved with each interference function, none
of which rely on predicting the interference. In each case,
the evolved system performs phototaxis successfully.

Avoidance: When self-caused sensory interference is
only triggered by certain motor outputs, and the task at hand
can be accomplished while avoiding those outputs, it may be
easiest for a control system to simply modify its behaviour
to do exactly that. We observed this with the sigmoidal in-
terference. With the squared interference, we instead saw
interference minimisation via reduced motor activity.

Coordination: The timing of motor-driven interference
with a sensor may be regulated to coincide with environmen-
tal stimulation of that same sensor. With a one dimensional
sensor like those used in this model, this leads to a sort of
constructive interference, where the coincidence of motor-
driven and environmental stimuli amplifies the effect of the
environmental stimuli on the sensor. We observed this with
the squared interference.

Time scale: The previous solutions don’t work for in-
terference which is continually varying in such a manner
that its extrema are not determined purely by the motor ac-
tivity (e.g. Figure 1C). However if such interference is of
a high enough frequency relative to the frequency of envi-
ronmental stimuli, then this difference in time scale can be
leveraged to separate the interference from the environmen-
tal stimuli. Slowly varying stimuli can be perceived through
quickly varying interference, which we observed in the case
of the sinusoidal interference. We also found that this system
evolved elevated motor activity, which raises the frequency
of the interference and amplifies the time scale difference.

Shaping environmental stimuli: The solution evolved
with no interference made use of sharp spikes of environ-
mental stimuli. We found that spikes like these could be
completely lost in the high frequency sinusoidal interfer-
ence. In addition to raising the frequency of the interfer-
ence, the behaviour of the solution evolved with sinusoidal
interference tended to lower the frequency of environmental
stimulation compared to the no interference solution.

Incorporating interference functionally: Removing
motor-driven interference from a system optimised to per-
form a task in the presence of that interference does not
necessarily improve performance, and may instead degrade
it significantly. Furthermore, we found that motor-driven
sensor stimulation played a functional role in the successful
phototactic behaviour of some evolved systems.
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A sigmoidal squared
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Figure 1: Three functions which depend on motor activity
are used to generate sensory interference. Interference deter-
mined by the right motor is added to the right sensor’s input
stream, and likewise for the left sensor and motor. Figures
A and B plot pure functions of motor activity, while Figure
C plots a function of time whose frequency is determined
by the motor activity. The solid blue line shows the interfer-
ence, while the dotted green line shows the motor activity.

Conclusions

This all suggests that prediction and subtraction do not tell
the whole story when it comes to coping with self-caused
sensory stimuli. In some ways this is obvious, as self-
caused sensory stimuli are involved in a range of activities
in which they do not play an interfering role. For exam-
ple, the sensation of self-touch when kneading an aching
muscle, or occlusion of the visual field when engaging in
visually guided reaching and grasping. In these activities,
self-caused sensory stimuli are actually desirable. However,
our model shows that even in a situation where clear per-
ception of the environment seems obviously beneficial, self-
caused sensory stimuli may not play an entirely interfering
role. Furthermore, we can see that even when responsive-
ness to the environment is needed, prediction and subtrac-
tion are not the only games in town.
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Abstract

Natural evolving populations experience constantly fluctuat-
ing selection strength, which also creates a fluctuating trade-
off between exploration and exploitation. Range expansion,
for example, creates semi-persistent spatially-distributed
differences in selection strength, particularly among the pi-
oneering agents along the leading edge of each range expan-
sion. The pioneers experience reduced selection strength
and in turn experience greater potential for exploration,
while selection on the remainder of the population ensures
that prior discoveries are not lost.

Here we describe a method to augment pre-existing selec-
tion algorithms inspired by the exploration-boosting proper-
ties of range expansion events. The key insight is that for
productive exploration on deceptive landscapes, mutations
must be able to accumulate and persist in some, but not all,
lineages. We create artificially drifting lineages of “super
explorers” and show that they can be used to improve the
performance of another selection algorithm.

Introduction

All search algorithms, be they natural selection or com-
puter models of evolution, are subject to the fundamental
limitations of the no-free-lunch theorems (Ho and Pepyne,
2002), and particularly to the explore-exploit tradeoff (Mil-
lidge et al., 2021). Managing this tradeoff is typically a main
concern in the development of computational selection al-
gorithms. In this work, we introduce the “super-explorer
method” which can be sued to augment pre-existing selec-
tion algorithms. The super-explorer method allows us to
tune the trade-off between exploration and exploitation to
better align with the ruggedness of a fitness landscape.

The super-explorer method augments other selection al-
gorithms by adding agents (“super explorers”), that are al-
lowed to drift (i.e, freely accumulate mutations). In essence,
our method allows a pre-existing selection algorithm to fo-
cus on exploitation, while super explorers enhance explo-
ration. We compare three implementations of the super-
explorer method on two different kinds of fitness landscapes:
an NK-fitness landscape (Kauffman et al., 1993), and a
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saw-tooth fitness landscape (Ragusa and Bohm, 2021), and
across a wide array of configurations. We show that for both
types of fitness function, there are configurations where evo-
lution augmented with super explorers preforms better than
without.

Biological inspiration

Natural selection does not act with consistent strength; Shift-
ing balance theory (Wright, 1932, 1982), range expansion
(Slatkin and Excoffier, 2012; Peischl et al., 2013; Peischl
and Excoffier, 2015; Peischl et al., 2015; Gilbert et al., 2017;
Burton and Travis, 2008), environmental noise (Wang and
Zhang, 2011; Van Egeren et al., 2018; Ragusa and Bohm,
2021), population size changes (Jain et al., 2011; Ochs and
Desai, 2015; Rozen et al., 2008), sexual selection (Bohm
et al., 2019), and mass-extinction events (Mathias and Ra-
gusa, 2016; Engholdt and Mathias, 2021) all describe sce-
narios where selection strength changes over time or space.

As a consequence of naturally occurring fluctuations in
selection strength, a population’s ability to explore their fit-
ness landscape also fluctuates. Furthermore, during the pe-
riods of increased exploration, the population may discover
new fitness peaks that, under stronger selection, would have
been unlikely or impossible to discover. Range expansion
events are one particular scenario that can cause a reduction
in selection strength. As a species enters new territory, a
lack of competition can result in an accumulation of dele-
terious mutations in lineages on the leading edge of the ex-
pansion for as long as uncolonized territory remains (Burton
and Travis, 2008). The continued accumulation of delete-
rious mutations in one lineage can result in adaptation via
valley-crossing, a process known to be critical for evolution-
ary adaptation (Covert et al., 2013; Oliveto et al., 2018).

In this work, we present a method designed to augment
existing selection algorithms with the exploration-boosting
power of range expansion, without requiring that popula-
tions have spatial structure. In addition, unlike range ex-
pansion, the exploratory advantages are maintained indef-
initely. The key insight underlying our method is that for
sufficient exploration to occur, mutations must be able to ac-
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cumulate in some—but not all—lineages before purifying
selection acts on them. To achieve this, we introduce super
explorers, agents that always have exactly one offspring ev-
ery generation. As super explorers propagate regardless of
fitness, they experience the same mutation-accumulation as
organisms at the leading edge of a range expansion.

Similar selection algorithms

The hybrid selection algorithms resulting from augmenta-
tion with the super-explorer method share similarities with
previously defined selection algorithms.

Particle Swarm Optimization (PSO) (Poli et al., 2007)
models agents as particles and simulates forces that attract
the particles to the highest observed fitness (analogous to
selection). However, the individual particles in PSO do not
move directly to the higher gradients, but instead chaotically
trend towards it, often exploring areas of the fitness land-
scape more distant from known optima.

Lexicase selection (Helmuth et al., 2014; La Cava et al.,
2016) and real-valued tournament selection (Ragusa and
Bohm, 2021) are examples of selection algorithms that prob-
abilistically ignore some or all fitness gradient information.
Novelty search (Lehman and Stanley, 2011) foregoes fol-
lowing the fitness gradient altogether and instead focuses on
collecting a catalog of functionally distinct solutions, evalu-
ating them for relevance to the fitness function ex post facto.

Island models (Whitley, 2001) protect innovations by
removing the competitive interactions of agents between
separate mutually-exclusive subpopulations, called islands.
When all agents are considered together, the overall effect is
areduction in the selection strength. Restricting competition
to be within individual islands also creates small-population
drift effects that can facilitate valley-crossing.

Systems augmented with super explores are different
from the examples above in key ways. While super ex-
plorers do experience a form of occasional selection during
the decay-replace process (described in Methods), they do
not individually experience a fitness gradient, even in the
form of selection for novelty. While some other selection
algorithms, such as lexicase and real-valued Tournament,
can occasionally allow for several generations of drift on
some lineages, super explorers are maintained separately
from the main population, ensuring their lineages experience
sustained periods free of selection. While island models do
break up a population into separate pools, they generally re-
strict selection and reproduction to be within each island.
The super-explorer method makes every agent visible to the
selection algorithm in use, allowing for the immediate adop-
tion of a beneficial mutation. Furthermore, although island
models facilitate drift, it does not result in sustained drift on
lineages for long periods as in the super-explorer method.
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Methods
Augmenting evolution with super explorers

Super explorers can augment any well-mixed discrete-
generation agent-based selection algorithm. In our imple-
mentation, super explorers are added to a selection algo-
rithm by dividing a population into two mutually exclusive
pools, the active selection pool (or ASP) and super-explorer
pool (or SEP) (see Fig. 1). The ASP evolves via the rules of
an externally defined selection algorithm (such as, roulette,
tournament, lexicase, etc.), except that parents can be drawn
not only from the ASP, but also from the SEP. On the other
hand, the agents in the SEP each produce one offspring, with
the standard mutation load, regardless of fitness. While lin-
eages in the ASP survive and perish following the rules of
the selection algorithm in use, lineages in the SEP end only
by decay. Whenever an agent in the SEP is about to repro-
duce, there is a chance (the decay rate) that the agent will be
removed and replaced by some other agent in the population.
The number of agents in the ASP and SEP, the decay rate,
the process used to replace decayed SEP agents, the muta-
tion settings, and the selection algorithm used in the ASP
(and related settings) are all parameters established by the
user.

Time

t Active Selection Pool Super Exporers Pool Global Max

selection +
mutation§y ’ nutation ' copyy

t+1 | Active Selection Pool Super Exporers Pool Global Max

v

Figure 1: A diagram of an evolving system augmented with super
explorers. Here, the population is divided into the active selection
pool (ASP) and the super-explorer pool (SEP). While selection in
the ASP (green arrows) is determined by a pre-existing selection
algorithm (such as roulette, tournament, lexicase, etc.) with par-
ents drawn from the ASP and SEP, agents in the SEP are free from
selection and simply accumulate mutations (red solid arrow). From
time to time, agents in the SEP decay and are replaced. Replace-
ments (red dashed arrows) are drawn from either the ASP and SEP,
or the global max, depending on the replacement process, where
the global max maintains a copy of the highest scoring agent seen
to date (blue arrows).

Because the super explorers reproduce regardless of their
fitness, they are able to accumulate mutations without con-
sequence. The decoupling of survival from fitness allows
super explorers to explore the fitness landscape in directions
that selection might prohibit; they may descend into, and
possibly cross, fitness valleys. The mutational paths of su-
per explorers are, in fact, random walks (i.e., undirected and
unfocused), so they are an inefficient selection algorithm on
their own. However, by introducing super explorer decay
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and replacement, we provide a degree of focus to help keep
the search process “on track.” The search pattern of the su-
per explorers can be seen as a genotypic radiation where the
center of the radiation is determined by the replacement pro-
cess, the radiation distance is determined by the decay rate,
and the density of the search is determined by the number of
agents in the SEP.

Since the selection algorithm used to choose parents in
the ASP has access to both the ASP and the SEP, super ex-
plorers can migrate into the ASP if their fitness is compet-
itive.Thus, a selection algorithm augmented with super ex-
plorers has the advantage of simultaneously exploring freely
(in the SEP) while exploiting discoveries (in the ASP), com-
pared to a non-augmented selection algorithm that must bal-
ance the explore-exploit trade-off with only an ASP.

Tunable parameters of super explorer systems

When employing the super-explorer method, the user must
choose a selection algorithm to augment, as well as a mu-
tation scheme. These choices will introduce a number of
parameters. In addition, the supper-explores methods in-
troduces three more parameters: SEP size, decay rate, and
replacement process, which we describe below.

Parameter: super-explorer pool size SEP size sets the
number of agents in the SEP and can be set to any integer
value, from O to population size. SEP size controls the in-
tensity of the search conducted by the super explorers. Note
that ASP size is not a parameter and is simply defined as
population size minus SEP size.

Parameter: decay rate Decay rate is the per-generation
probability that each agent in the SEP is replaced, and di-
rectly controls the explore-exploit trade-off of the SEP. The
decay rate can be set to any value 7, such that 0 < r < 1.
The decay rate determines the average amount of time,
t ~ 1/r, that a super-explorer lineage persists before re-
placement, which in turn determines how far super explorers
can drift (i.e., explore). While lower decay rates can result
in more exploration, they can also be wasteful if the valleys
in the fitness landscape do not require such distant explo-
rations.

Parameter: replacement process The replacement pro-
cess defines the process used to replace a decayed agent in
the SEP. In this work, we consider three replacement pro-
cesses, shown in Fig. 1, though many others are possible.

The first process, the PopSelect (PS) process, replaces de-
cayed SEP agents with a new agent generated using the same
selection algorithm used for reproduction in the ASP.

The second process, the PopMax (PM) process, replaces
decayed SEP agents with the max of the population (i.e., the
max of all the agents in the combined ASP and SEP).

The third process is the GlobalMax (GM) process. In ad-
dition to the ASP and SEP, this replacement requires that the
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global max, a copy of the highest fitness agent seen to date in
either pool, is maintained. The global max is used to replace
decayed SEP agents.

Fitness functions

We use two types of fitness functions to collect performance
data for the parameter sweeps. First, we chose a typical NK-
landscape to provide an intuition regarding the performance
of super explores in a familiar context. Then, we turn to
a saw-tooth function to provide a different perspective on
the operation of the super-explorer method under more con-
trolled conditions.

Fitness function: NK-landscape The first fitness func-
tion is the well studied NK-landscape (Kauffman et al.,
1993). This landscape has a rugged topology and a global
optimum. The NK function, NK_eval(i, g;| N, K), decides
the fitness contribution of the ¢-th gene, g;. The fitness land-
scape is randomly generated with parameters N = 20 and
K = 5 which control genome size, G = {g1, ..., gn }, and
strength of epistasis respectively. The score assigned to each
organism by NK is given by

N
score(G) = %ZNK,eval(i,gAN, K) (1)

i=1

Addressing diminishing returns The NK-landscape ex-
hibits diminishing returns (Orr, 2005), which means that the
ratio of beneficial to deleterious mutations and the fitness
gain per beneficial mutation decreases as fitness increases.
As a result, the optimal explore-exploit ratio changes over
the course of evolution. Strong exploitation initially maxi-
mizes the rate at which fitness increases, but later is likely to
result in getting stuck on local optima. Conversely, stronger
exploration, though slower at first, can achieve higher final
performance in the long run, because it is able to escape lo-
cal optima.

In order to disambiguate the effects of diminishing returns
from other dynamics, we included the saw-tooth landscapes,
which do not exhibit diminishing returns and allow us to
study the behavior of a system with a constant difficulty.

Fitness function: saw-tooth landscape The second fit-
ness function, the saw-tooth fitness function, (Ragusa and
Bohm, 2021) defines a saw-tooth mapping function from ge-
nomic values to scores along an infinite set of ever higher
fitness peaks (like the teeth of a saw) as shown in Fig. 2.
The saw-tooth landscape has two special properties. First,
it has no global optimum. Second, every fitness valley is
self-similar; regardless of absolute position on the fitness
landscape, the difficulty of descending into and the bene-
fit of crossing every valley is the same. These two prop-
erties together result in a landscape that presents a constant
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challenge to an evolving population, without diminishing re-
turns. In this landscape, agents have 10 independent genes,
G = {41, ..., 910}, where each gene is a single integer value.
Applying the mapping function to each gene results in 10
gene scores that are summed to produce the agent’s overall
score. The saw-tooth function saw(z|w, p, b) is specified by
a valley width (w), a fitness penalty per mutation into each
valley (p), and a fitness benefit per valley crossed (b):

10
score(G) = Z saw(g;|w, p, b) @)
i=1

Here we test four versions of saw-tooth functions. In all
four, p = —0.05 and the b = 1.0. We varied w to create
four versions of the function with different difficulties, from
w = 4 (easy) to w = 7 (hard). These functions are shown in
Fig. 2.

a b c d
width 4 width 5 width 6 width 7

SRRl

+ +ay oy oty
0 4 8121620 0 4 8 121620 0 4 8 121620 0 4 8 121620
"genome value" "genome value" "genome value" "genome value"

score

o r N W AU

Figure 2: The saw-tooth functions that map gene values to
“scores”, used in Fig. 4. Panels [a] through [d] show the val-
ley widths (w) 4 through 7, respectively. The values for penalty
(p = —0.05) and benefit (b = 1.0) are the same in all 4 functions.

Roulette selection

We use roulette selection in the ASP to determine which par-
ents in the current population will produce the next genera-
tion. The fitness of every agent in the current population
(i.e., all agents in the ASP and SEP) is calculated, and then
for each new ASP agent, each parent has a chance to repro-
duce proportional to their share of the total population fit-
ness. Roulette selection is known to suffer from a diminish-
ing selection pressure as the absolute value of agents’ scores
increases during evolution. In order to ensure that equivalent
relative increases to score result in the same relative increase
in offspring production, the scores generated from both the
NK-landscape and the saw-tooth landscape are exponenti-
ated before fitness shares are determined (i.e., when agent
fitness is calculated).

f(G) = exp(score(G)) ©)

Experiment conditions

In order to determine the effectiveness of super explor-
ers, we compare roulette selection with and without super-
explorer augmentation on two classes of fitness function
(NK and saw-tooth). We use a total population (ASP + SEP)
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size of 1024 in all experiments. For each combination of
selection regime and function, we run a three-dimensional
sweep of SEP size, decay rate, and replacement process. We
run decay rates {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1,
0.2, 0.5, 1.0}, pool sizes {0, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024}, and replacement processes {GM, PM, PS}.

We run 101 replicates for each condition using the NK-
fitness landscape (N = 20 and K = 5) for 10,000 gen-
erations and record the final maximum fitness from each
replicate. Each replicate evolves on the same NK landscape,
which is randomly generated a priori. A bit genome was
used where mutations are introduced with a bit-flip muta-
tion operator, with a 0.0005 per-site mutation rate (i.e., a
0.01 per-agent mutation rate).

We run one replicate for each condition using the saw-
tooth landscape for 40,000 generations and record the num-
ber of valleys crossed (running one replicate on the saw-
tooth function and counting the number of valleys crossed
efficiently generates the same results as running many repli-
cates of shorter duration (Ragusa and Bohm, 2021)). In ad-
dition to the parameter sweep described above, we used four
saw-tooth functions with w = {4, 5,6, 7} (shown in Fig. 2).
An integer genome was used where mutations are introduced
with a point-offset mutation operator that modifies a genome
value by +1, with a 0.05 per-site mutation rate (i.e., a 0.5
per-agent mutation rate, as each agent has 10 loci).

The MABE evolution framework was used to run exper-
iments (Bohm et al., 2017). Code and instructions to allow
for replication can be found at https://github.com/
cliff-bohm/SuperExp_ALIFE_2022.

Results
NK landscape

Figure 3 displays the data collected from 101 replicates run
on the NK-landscape with parameters N = 20 and K = 5.
The figure presents three grayscale maps (labeled [1], [2],
and [3]) each showing results generated using a different re-
placement process (GM, PM, and PS). The cells in each map
show the averages, across replicates, of the maximum fitness
detected at the end of each replicate. Note that values in each
plot associated with SEP size = 0 are the same, since decay
rate only matters if there are super explorers. The fitness
differences between the max-fitness, min-fitness, and con-
trol configurations of each panel are computed and checked
for significance with a two sample z-test (shown in Table 1).

The NK-landscape results show that the GM and PM pro-
cesses provide similar results, both of which are quite dif-
ferent from the PS data. In the GM and PM results, we
see that the addition of any super explorers improves per-
formance under almost all conditions. In addition, as SEP
size increases, low decay rates tend to improve adaptation
while high decay rates tend to have the opposite effect. In
fact, a population made up entirely of super explorers (SEP
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Figure 3: Average maximum final fitness on an NK landscape
from 101 replicates using super explorers with three replacement
processes: [1] GM, [2] PM, and [3] PS. Lighter shades correspond
with higher final fitness, and darker shades correspond with lower
final fitness. The color range is set so that gray is associated with
the control condition where SEP size = 0 (i.e., no super explorers).
The stars and crosses indicate the highest-fitness and lowest-fitness
configuration of each panel, respectively. The largest increase and
decrease of fitness, relative to the control, are shown in Table 1.

size = 1024) combined with decay rate = 1.0, shows little to
no signs of improvement over a non-augmented population.

We note a band of relatively high performance in the
PS data, highlighting the conditions with the greatest fi-
nal scores. This band appears to show a trade-off between
SEP size and decay rate. To the right and above the high-
performance band, we see values that conform closely to
the non-augmented system, while to the left and below the
band, we see that final recorded scores are lower than the
non-augmented system. The area of low values correlates
with a large SEP size and low decay rate.

Note that the values in the column associated with decay
rate = 1.0 in the PS data all match the values associated with
SEP size = 0. In these conditions, SEP agent replacement
happens every generation and uses the same replacement
process used in the ASP. As a result, the two pools act as
a single ASP (small fluctuations are the result of sampling
noise).

Decay Method | Largest Increase | Largest Decrease
GM +2.76% * —0.15%
PM +2.61% * +0.00%
PS +1.51% * —6.44% *

Table 1: The fitness differences between the max-fitness, min-
fitness, and control configurations of the NK-landscape data in Fig-
ure 3. “** indicates a p-value of p < 1. x 107 (two sample z-test).

Saw-tooth landscape

Figure 4 shows grayscale maps illustrating the number of
valleys crossed at the end of the 40,000 generations, with
agents evolved on saw-tooth fitness functions. Each of the
letters [a] though [d] indicate a different valley width, from
4 to 7. The numbers [1] through [3] indicate the replace-
ment process used (GM, PM, and PS). Note that values in
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GlobalMax

Figure 4: Total number of valleys crossed after 40k generations on
saw-tooth landscapes. Horizontal panel groups [a], [b], [c], and [d]
show data for w = {4, 5,6, 7} saw-tooth functions, respectively.
Vertical panel groups [1], [2], and [3] show data for replacement
processes GM, PM, and PS, respectively. The stars and crosses
indicate the highest-fitness and lowest-fitness configuration of each
panel, respectively. Note: the scales on each color bar (i.e., for each
row) are different.

each panel associated with SEP size = 0 are the same within
each row, since decay rate only matters if there are super
explorers.

As we saw in the NK data, the saw-tooth landscape results
show that the GM and PM processes provide similar results
that are quite different from the PS data.

Across all panels of the saw-tooth data, there are vertical
trends, associated with SEP size, and horizontal trends, asso-
ciated with decay rate. As we move from top to bottom and
introduce a higher ratio of super explorers (larger SEP size)
relative to the size of the ASP, we generally see a smooth
transition from SEP size = 0 to SEP size = 1024. Con-
versely, as we move from low decay rates to higher decay
rates, particularly larger SEP sizes, we see that the change in
performance is not as simple to describe. In all GM and PM
results, while we see that large SEP combined with a high
decay rate reduces fitness gain relative to the non-augmented
system, the effect of large SEP and low decay rate is not
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constant. Rather, in the data for large SEP and low decay
rate, the final scores flip from worse than non-augmented
to better as we move from less deceptive to more deceptive
landscapes.

In the PS results Fig. 4[a,b,c,d][3], we see a different
trend. As in the NK data, when decay rate = 1.0 agents in
the SEP experience the same selection as agents in the ASP
(i.e., replaced every generation using the selection algorithm
from the ASP). Therefore, as in the NK data, the two pools
act as a single ASP (small fluctuations are the result of sam-
pling noise). Unlike the NK data, we see that larger SEP
sizes perform as well as or better than the non-augmented
system, except in the lower left of [a, b].[3] where SEP is
very large, and decay rate is very low. The highest rates of
valley crossing appear to correlate with large SEP sizes and
middling decay rates (i.e., around 0.05 to 0.1).

Discussion

In this work, we show that augmenting a selection algorithm
with super explorers can result in improved adaptation to
a range of landscapes and parameter settings. In this dis-
cussion, we are primarily interested in describing the super-
explorer augmentation method.

The conditions where SEP size = 0 show the behavior of
the non-augmented system. In these conditions, there are no
super explorers, so decay rate has no effect. Hereafter we
will refer to these conditions as the ’control’ and they will
serve as the baseline for all of our comparisons.

In our experiments, we test conditions with different SEP
sizes, but we do not alter the number of agents in the total
population or the mutation inflow per agent. Therefore, the
populations always experiences the same number of agent
evaluations and have the same potential for discovery in the
form of mutations. As a result, differences in performance
between the control and other conditions must have some
other explanation. As we will see, the observed differences
can be explained in terms of a trade-off between exploration
and exploitation.

The explore-exploit trade-off of super explorers

In evolutionary systems (natural or computational) the
explore-exploit trade-off explains how the conditions that
allow for effective navigation on smooth fitness landscapes
hinder navigation on deceptive fitness landscapes and vice
versa. On a smooth landscape the paths towards higher fit-
ness are easy to discover, so unfocused distant explorations
are wasteful: it is prudent to spend energy exploiting the lo-
cal fitness gradient. Conversely, on deceptive landscapes the
paths to higher fitness often require crossing fitness valleys,
so focusing on local search only results in short-term super-
ficial gains: it is prudent to spend time on long shots.

Our initial inspiration for the super-explorer method was
the biological phenomenon of range expansion. There, we
observed that the freedom from selection along the leading
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edge of a range expansion creates lineages in which muta-
tions could accumulate, while the remainder of the popula-
tion experiences purifying selection. To mimic this effect,
we designed a method that divides a population into two
pools: the SEP that specializes in exploration, and the ASP
that specializes in exploitation.

Decay rate Generally speaking, the amount of genetic
change that any lineage can accumulate is related to the
strength of selection, and how long the lineage can avoid
extinction. SEP lineages (unbroken phylogenies in the SEP)
are special in that they are free from selection, and so their
potential for genetic change is only limited by how long they
persist, which in turn depends on the decay rate. Meanwhile,
the decay rate also establishes the only selective force at
work in the SEP: how often replacements occur. Thus, the
conditions likely to enhance exploration, high drift potential
and low selection strength, are conditions generated by low
decay rates while the conditions likely to enhance exploita-
tion, low drift potential and strong selection, are conditions
generated by high decay rates.

Replacement process The three replacement processes
we chose to test correlate with a range of selection strengths.
The GM process provides the strongest selection strength
because it always maintains the best solution. The GM
process insures that small fitness changes (potentially un-
detectable by the ASP’s selection algorithm) are always ex-
ploited, but this comes at a cost: the inability to forget can
inhibit escape from local optima. Moreover, when the GM
process is combined with an SEP size equal to population
size and decay rate equal to 1.0, the resulting system is syn-
onymous with an elitism selection algorithm; every agent
tests one mutation, and then either becomes the new global
max or is forgotten.

Compared to the GM process, the PS process results in
weaker selection, which cannot exceed the selection strength
of the ASP’s selection algorithm. This is because at decay
rate = 1.0, all agents in the population are replaced using
the ASP selection algorithm every generation (regardless of
SEP size).

The PM process represents a middle ground in terms of
selection strength. However, since we are using a relatively
large population size relative to decay rate, forgetting high
quality solutions is unlikely, so the GM and PM processes
generate similar results.

SEP size The SEP size parameter determines the degree
to which each pool (ASP and SEP) drives the system. As
SEP size increases, particularly when decay rates are low,
there are more low quality solutions in the total population,
which increases the chance that low quality solutions will
be selected during ASP reproduction. As a result, larger
SEP sizes result in weaker selection in the ASP. This demon-
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strates another way that low decay rates can enhance explo-
ration.

Analyzing the NK data

GM and PM Processes Fig. 3[1,2] show the results of
using the GM and PM processes to evolve populations on
the NK-landscape. We see that enhancing exploration with
low decay rate improves performance, while maximizing ex-
ploitation, with either low SEP size or high decay rate, re-
sults in performance that is not significantly different from
the control. The fact that the results of elitism are similar to
the control suggest that the ASP is already generating elitist-
like behavior that hinders exploration. It follows then that
improved adaptation associated with lowered decay rates re-
sults from increased exploration.

The sudden jump in fitness from SEP = 0 to SEP =2 in
Fig. 3[1,2] occurs because the GM and PM processes select
max perfectly when making replacements into the SEP. Us-
ing the GM process, it is impossible to forget a high-value
solution once it has been discovered; forgetting is only very
unlikely when using the PM process. As a result, the GM
and PM process are able to identify and exploit fitness im-
provements that the ASP selection algorithm alone may not
detect.

Finally, the decrease in fitness from top to bottom of the
right-most column (decay rate = 1.0) shows that the behav-
ior of the ASP alone is not exactly the same as elitism.
While the ASP can allow for the accumulation of small (i.e.,
nearly-neutral) deleterious mutations, a system experiencing
elitism can never move in a direction that results in any loss
of fitness. As a result, the highest fitness in this column oc-
curs at SEP size = 2, indicating that the best performance
is generated by a large ASP (that does have the ability to
explore, if only locally), augmented by a SEP that does not
forget (but cannot explore).

PS Process Fig. 3[3] shows the results of the PS process
used to evolve populations on the NK-landscape. The low
fitness recorded in the low left is the result of weak selection
that is unlikely to find effective solutions, and it is likely
to forget what it does find. The most interesting feature in
this panel is the relatively bright band—indicating the high-
est scores—that appears to show a trade-off between SEP
size and decay rate. SEP size = 1024 and decay rate = 0.1
marks the bottom of this band, and suggests that lineages
that survive for about 10 generations are optimal when the
entire population is in the SEP. As we decrease the size of
the SEP, we see that lower decay rates, (i.e., drifting lineages
that persist for longer) are optimal. This is because the larger
ASP results in more exploitation and less exploration. Ap-
parently, the trade-off exists because when there are fewer
SEP agents they need more time to drift in order to make dis-
coveries, but larger ASPs are better at exploiting beneficial
fitness gradients. The entire right side of the panel evolves
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similarly to the control because along this edge agents are
replaced every generation using the same algorithm used in
the ASP.

Analyzing the saw-tooth data

GM and PM Processes Fig. 4[a].[1,2] show the results
of the GM and PM processes on a saw-tooth function with
only limited deception. Here we see that small SEP sizes
generate the best performance, while larger SEP size de-
grades performance. This indicates that the ASP selection
settings are well tuned for this function, and evolution does
not improve with the addition of super explorers. More-
over, elitism results in the lowest levels of performance,
since valley crossing is required to optimize this function.
In Fig. 4[b,c.d].[1,2] we find the results from the other three
saw-tooth landscapes, each with an increasing level of de-
ception. As the functions become harder to adapt to, we
see that the control does not produce the best performance
because it does not allow enough exploration. As a conse-
quence, larger SEP sizes become more effective. In Fig. 4[d]
(the hardest function), the best performance occurs when the
entire population is SEP agents and SEP lineages persist for
about 200 generations (decay rate = 0.005). This suggests
that navigation on this landscape requires a high degree of
exploration. The fact that the highest performance values
are not at the lowest decay rates means that too much explo-
ration, beyond what is necessary, is wasteful.

PS Process The results generated by the saw-tooth
landscape wusing the PS process are displayed in
Fig. 4[a,b,c,d][3]. As in the NK data, and for the
same reason, the entire right side of the panel evolves
similarly to the control. However, the main results differ
significantly from the NK-landscape PS process results
(in part due to the absence of diminishing returns — see
Methods). Except in the case of the least deceptive function
([a]), the best performance across the three replacement
processes is found in the PS data. This supports the idea
that weakened selection is beneficial for valley crossing on
the harder saw-tooth functions.

Super explorers alone

The bottom row of each panel in Figures 3 and 4 corresponds
to conditions where the entire population is in the SEP; there
are no agents in the ASP. The high performance observed in
some SEP-only configurations demonstrates that the com-
bination of drift and replacement is a viable search process
in its own right. In fact, for several of the fitness functions,
a configuration with SEP = population size achieves max-
imum or nearly maximum performance. We call this new
drift-and-replace search process “Drift Pool Optimization”
or DPO.

There is a surprising similarity between DPO and particle
swarm optimization (PSO). Both DPO and PSO operate as
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a swarm of particles, as opposed to implementing evolution
by natural selection. The main difference is that while the
particles in PSO tend to converge towards known optima,
the particles in DPO originate near current optima and are
allowed to drift. In both cases, the degree to which solutions
can diverge from know optima is critical to success: too lit-
tle divergence will stifle innovation, while too much diffu-
sion will result in chaotic behavior incapable of effectively
making discoveries.

Super explorers and recombination

In addition to the experiments shown in this work, we
tested the saw-tooth functions with recombination (results
not shown). When producing offspring in the ASP and when
picking replacements using the PS process, we select two
parents and perform three-point recombination to generate
offspring (while GM and PM processes replacements are
still asexual). We found that while scores with recombina-
tion tended to be higher, the trends in the data were almost
identical.

Extending the super-explorer method

In this work, we presented the super-explorer method, an
augmentation that can be used to enhance pre-existing se-
lection algorithms. Here we present some potential modifi-
cations and extensions.

While a super-explorer-augmented system is already able
to simultaneously support enhanced exploration (in the SEP)
and exploitation (in the ASP), the method could be enhanced
so that it automatically modifies both decay rate and SEP
size based on observed rates of fitness gain in an adaptive
manner, for example by monitoring the time the population
spends in stasis.

Another possible modification to the super explorer-
method would be to encourage diversity in the SEP, which
would ensure that the SEP explores genetic space more uni-
formly. Both genetic diversity and phenotypic diversity
could be investigated. Furthermore, an archive of high fit-
ness agents, like the kind used in MAP-Elites(Mouret and
Clune, 2015), could replace the global max pool and offer a
more diverse alternative to elitism.

An interesting alternative to super-explorer augmentation
would be to simply use another selection algorithm in place
of the SEP. This would allow two selection algorithms with
different behaviors to synergize. We are particularly inter-
ested in investigating augmenting Particle Swarm Optimiza-
tion (PSO) with super explorers, and also in using PSO in
place of the SEP to augment other selection algorithms.

There is no reason that a system must be limited to only
two selection algorithms. A population could be subdivided
into any number of pools, each acting as an ASP or SEP
with unique selection algorithms and parameterization. Au-
tomation in the form of pool-size balancing and parameter
adjustments could also be considered.
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Finally, super explores could be used to augment selection
algorithms that do not have discrete generations, but instead
implement overlapping or other less standard evolutionary
modules. In these cases, the method would need to be en-
hanced to determine when reproduction and replacement in
the SEP should occur. The method could otherwise be unal-
tered.

Using the super-explorer method to study evolution

The super-explorer method could be used to further our un-
derstanding of general evolutionary processes related to the
trade-off between exploration and exploitation. Since the
behavior of the SEP can be related directly to the explore-
exploit trade-off, super explorers could be used to gauge the
relative explore-exploit trade-off of various selection algo-
rithms. For example, in Fig. 4[c,d][1,2], SEP size = 1024
with decay rate = 0.05 performs about as well as the control.
We theorize that the explore-exploit trade-off in these condi-
tions is similar, but further investigations would be required
to support this conjecture. If correct, we believe this hypoth-
esis could be extended to state that any conditions that share
performance values likely also experience similar explore-
exploit trade-offs.

In this work, we only considered a single selection algo-
rithm for the ASP: roulette selection. Other configurations
of roulette-wheel selection, representing different selection
strengths, as well as other selection algorithms should be
tested. This approach could allow us to ask a number of dif-
ferent questions, such as: how does tournament size affect
the explore-exploit trade-off?

Conclusion

In this work, we introduced a new bio-inspired optimiza-
tion technique called “the super-explorer method” and we
demonstrated the efficacy of the method on a number of de-
ceptive fitness landscapes. There is a wealth of literature
exploring how population size, selection strength, and mu-
tation rate affect rates of adaptation. In addition to these,
we argue that the frequency at which selection is applied
and the distance a lineage can drift before it is evaluated
also affect the success of a selection algorithm. Other se-
lection algorithms have experimented with changing the fre-
quency with which selection is applied (e.g., lexicase and
real-valued tournament) or ignoring fitness altogether (e.g.,
novelty search), but we believe we are the first to design a
method that intentionally protects lineages in order to pro-
mote discovery by drift.

Acknowledgments

Computational resources were provided by the Institute for
Cyber-Enabled Research (iCER) at Michigan State Univer-
sity. We thank Chris Adami, for insights that helped develop
this work.

#20z Atenuer Lg uo Jesn O LNIHL 1A VLISHIAINN Aq 4pd° 26500 € 1eSI/6G7SE0Z/L/vE/2Z0zIes!ypd-sBulpaadoid)les)/npajiw-joalip//:diy woly papeojumoq



References

Bohm, C., Ackles, A. L., Ofria, C., and Hintze, A. (2019). On
sexual selection in the presence of multiple costly displays. In
ALIFE 2019: The 2019 Conference on Artificial Life, pages
2477-254. MIT Press.

Bohm, C., C G, N, and Hintze, A. (2017). MABE (modular agent
based evolver): A framework for digital evolution research.
Proceedings of the European Conference of Artificial Life,
pages 76-83.

Burton, O. J. and Travis, J. M. (2008). The frequency of fitness
peak shifts is increased at expanding range margins due to
mutation surfing. Genetics, 179(2):941-950.

Covert, A. W., Lenski, R. E., Wilke, C. O., and Ofria, C. (2013).
Experiments on the role of deleterious mutations as stepping
stones in adaptive evolution. Proceedings of the National
Academy of Sciences, 110(34):E3171-E3178.

Engholdt, K. and Mathias, H. D. (2021). A biologically-inspired
model for mass extinction in genetic algorithms. In 2027
IEEE Congress on Evolutionary Computation (CEC), pages
1078-1085. IEEE.

Gilbert, K. J., Sharp, N. P, Angert, A. L., Conte, G. L., Draghi,
J. A., Guillaume, F., Hargreaves, A. L., Matthey-Doret, R.,
and Whitlock, M. C. (2017). Local adaptation interacts with
expansion load during range expansion: maladaptation re-
duces expansion load. The American Naturalist, 189(4):368—
380.

Helmuth, T., Spector, L., and Matheson, J. (2014). Solving uncom-
promising problems with lexicase selection. IEEE Transac-
tions on Evolutionary Computation, 19(5):630-643.

Ho, Y.-C. and Pepyne, D. L. (2002). Simple explanation of the
no-free-lunch theorem and its implications. Journal of opti-
mization theory and applications, 115(3):549-570.

Jain, K., Krug, J., and Park, S.-C. (2011). Evolutionary ad-
vantage of small populations on complex fitness landscapes.
Evolution:  International Journal of Organic Evolution,

65(7):1945-1955.

Kauffman, S. A. et al. (1993). The origins of order: Self-
organization and selection in evolution. Oxford University
Press, USA.

La Cava, W., Spector, L., and Danai, K. (2016). Epsilon-lexicase
selection for regression. In Proceedings of the Genetic and
Evolutionary Computation Conference 2016, pages 741-748.

Lehman, J. and Stanley, K. O. (2011). Novelty search and the
problem with objectives. In Genetic programming theory and
practice IX, pages 37-56. Springer.

Mathias, H. D. and Ragusa, V. R. (2016). An empirical study
of crossover and mass extinction in a genetic algorithm for
pathfinding in a continuous environment. In 2016 IEEE
Congress on Evolutionary Computation (CEC), pages 4111—
4118. IEEE.

Millidge, B., Tschantz, A., Seth, A., and Buckley, C. (2021).
Understanding the origin of information-seeking exploration
in probabilistic objectives for control.  arXiv preprint
arXiv:2103.06859.

382

Mouret, J.-B. and Clune, J. (2015). Illuminating search spaces by
mapping elites. arXiv preprint arXiv:1504.04909.

Ochs, I. E. and Desai, M. M. (2015). The competition between
simple and complex evolutionary trajectories in asexual pop-
ulations. BMC evolutionary biology, 15(1):1-9.

Oliveto, P. S., Paixao, T., Heredia, J. P.,, Sudholt, D., and
Trubenovd, B. (2018). How to escape local optima in black
box optimisation: When non-elitism outperforms elitism. A/-
gorithmica, 80(5):1604-1633.

Orr, H. A. (2005). The genetic theory of adaptation: a brief history.
Nature Reviews Genetics, 6(2):119-127.

Peischl, S., Dupanloup, I., Kirkpatrick, M., and Excoffier, L.
(2013). On the accumulation of deleterious mutations during
range expansions. Molecular ecology, 22(24):5972-5982.

Peischl, S. and Excoffier, L. (2015). Expansion load: recessive mu-
tations and the role of standing genetic variation. Molecular
ecology, 24(9):2084-2094.

Peischl, S., Kirkpatrick, M., and Excoffier, L. (2015). Expansion
load and the evolutionary dynamics of a species range. The
American Naturalist, 185(4):E81-E93.

Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm
optimization. Swarm intelligence, 1(1):33-57.

Ragusa, V. R. and Bohm, C. (2021). Connections between noisy
fitness and selection strength. In ALIFE 2021: The 2021 Con-
ference on Artificial Life. MIT Press.

Rozen, D. E., Habets, M. G., Handel, A., and de Visser, J. A. G.
(2008). Heterogeneous adaptive trajectories of small popula-
tions on complex fitness landscapes. PloS one, 3(3):e1715.

Slatkin, M. and Excoffier, L. (2012). Serial founder effects during
range expansion: a spatial analog of genetic drift. Genetics,
191(1):171-181.

Van Egeren, D., Madsen, T., and Michor, F. (2018). Fitness vari-
ation in isogenic populations leads to a novel evolutionary
mechanism for crossing fitness valleys. Communications bi-
ology, 1(1):1-9.

Wang, Z. and Zhang, J. (2011). Impact of gene expression noise on
organismal fitness and the efficacy of natural selection. Pro-
ceedings of the National Academy of Sciences, 108(16):E67—
E76.

Whitley, D. (2001). An overview of evolutionary algorithms: prac-
tical issues and common pitfalls. Information and software
technology, 43(14):817-831.

Wright, S. (1932). The roles of mutation, inbreeding, crossbreed-
ing, and selection in evolution. Proc. 6th Intern. Congress
Genetics, 1:356-366.

Wright, S. (1982). The shifting balance theory and macroevolution.
Annual review of genetics, 16(1):1-20.

#20z Atenuer Lg uo Jesn O LNIHL 1A VLISHIAINN Aq 4pd° 26500 € 1eSI/6G7SE0Z/L/vE/2Z0zIes!ypd-sBulpaadoid)les)/npajiw-joalip//:diy woly papeojumoq



Simulations and the evolution of consciousness

Joshua Bensemann; Padriac O’Leary, Yang Chen, Ludmila Miranda-Dukoski, and Michael Witbrock

University of Auckland

Abstract

We hypothesize that the emergence of consciousness in hu-
mans is directly related to the complexity, number of, and
evolution of specialized cognitive systems. Here, we present
our rationale and plan for an ongoing project to investigate
the pathway to the emergence of consciousness via computer
simulations of humans’ evolutionary niche using artificial-
intelligence agents. Agents will contain subsets of the spe-
cialized cognitive systems and will complete tasks modeled
after pressures encountered by early humans. We will ob-
serve whether the increase in cognitive complexity, measured
by the number and complexity of the specialized cognitive
systems, leads to an increase in task performance.

Introduction

Consciousness has been the topic of speculation and anal-
ysis across multiple fields in the academic community. A
drawback of the broad appeal that the study of consciousness
has is that there is no consensus on the most basic concepts,
including its definition. Some authors define a conscious
agent as one that possesses a cognitive architecture with fea-
tures such as memory, internal representations of the world,
et cetera (Aleksander, 2007; Arrabales et al., 2010; Bense-
mann and Witbrock, 2021; Tononi and Koch, 2015). Propo-
nents of Global Workshop Theory (Baars, 2005) go further
along this route, suggesting that consciousness is itself a sys-
tem built from interactions between highly-specialized cog-
nitive systems (e.g., attention, memory, etcetera.). This defi-
nition implies that consciousness is an emergent property of
highly-specialized cognitive systems (Zlomuzica and Dere,
2022). In other words, the evolution of consciousness in Ho-
minini (i.e., modern humans and their ancestors) is taken to
be directly related to the evolution of these specialized sys-
tems.

Our project focuses on investigating the emergence of
consciousness in humans by replicating the conditions under
which Hominini evolved. We will be defining consciousness
using a third-person introspective model (Choifer, 2018).
The specialized system central to this definition is the The-
ory of Mind (ToM; Premack and Woodruff, 1978). ToM
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is the capacity to create models that are used to predict the
knowledge and motivations of others. Once an agent can
model the minds of others, that agent can also apply that
capability to itself, resulting in a model of its own mind.

We hypothesize that various evolutionary pressures lead
to increases in complexity as well as the interconnected-
ness between various specialized cognitive systems such as
attention, communication, and, critically, ToM. In order to
methodically examine the characteristics of the set of inter-
connected specialized cognitive systems required to produce
given levels of cognitive complexity along with the ecolog-
ical niches that lead to these characteristics, we will build
digital environments and agents using computer simulations
and artificial intelligence (AI). This approach is known as
synthetic ethology (MacLennan, 2007).

The core of our research strategy is the creation of a
computer-simulated environment based on early hominin
ecology. However, allowing computer scientists to create
environments for testing can introduce an implicit bias to-
wards producing desired results by only incorporating what
they consider important (Laird, 2001). To minimize this, we
are using current models of evolutionary ecology to guide
the development of the simulation. Our initial approach will
build on the human evolution models of Kim Sterelney, who
views our cognitive evolution as based on the gradual pro-
gression of interaction between individual and social feed-
back loops (Sterelny, 2012; Sterelny et al., 2013).

Our work on creating artificial replicas of early hominin
environments is in progress. Once completed, we will intro-
duce Al agents. Various agents controlled by different cog-
nitive models of varying complexity will be tested. Control-
ling both the composition of the environment and the agent’s
cognitive makeup will enable us to experimentally identify
any advantages that various sets of specialized cognitive sys-
tems afford us. In essence, we are performing a step-wise
regression to generate enough data to analyze the character-
istics of the set of specialized cognitive systems that might
underpin human consciousness while accounting for factors
such as model complexity.
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Conscious Agents

Our Al agents will have various subsets of the specialized
cognitive systems whose development is thought to corre-
late to the emergence of consciousness. The agents’ goal
will be to complete tasks thought to have been encountered
by early humans. We will observe whether cognitive com-
plexity leads to improvements in task performance.

Our approach to building artificial consciousness is sim-
ilar to those suggested by others in prior work (e.g., Alek-
sander, 2007; Horton et al. 2013). One such approach is the
ConsScale (Arrabales et al., 2010), an ordinal scale devel-
oped to incorporate other consciousness models. To reach
each level in the scale, the agent must possess a minimum
set of architectural and behavioral features from all previous
levels, with levels ordered based on the likely phylogenetic
path to our species’ consciousness. Pre-existing plans such
as the ConsScale will be used as starting point for our agents.
However, the development will be guided by the work of
others to ensure its cognitive development is consistent with
our working definition of consciousness.

We turned to evolutionary psychology to make an edu-
cated guess about the highly-specialized cognitive systems
that we must be included. Mounting evidence from the field
suggests that sociality and solving other niche-specific prob-
lems played a significant, if not pivotal, role in the evolution
of human consciousness and cognition. Of the number of
systems involved in human socialization, ToM is of particu-
lar interest to us and the current research.

The first generation of our agents will be built using com-
ponents from the various existing computational ToM mod-
els. These core components include beliefs, desires, and
memory (or functional equivalents). We will inject ToM
into Al agents and provide them with basic knowledge of the
conditions of their virtual environment and an array of pref-
erences for manipulating the contents of the environment.
Our ultimate aim is to build an agent capable of cooperative
behavior and formulate causal stories about their environ-
ments and other agents.

We know from the literature that various versions of cog-
nitive capacities will produce varied results. For exam-
ple, variations of ToM components can have noticeable ef-
fects on an agent’s performance when learning to compete
or cooperate with other agents. Experiments with the re-
cursive aspects of ToM have shown that agents who could
model deeper levels of recursion increased group perfor-
mance when cooperating and bested competitors who pos-
sessed lesser recursive capabilities (Devaine et al., 2014).
Similarly, having a more extended memory of the past ac-
tions of other agents allows an agent to better compete or
cooperate with other agents (Anh et al., 2011). However, in-
creasing memory length increases the cognitive cost, which
might outweigh the gain in performance (Han et al., 2012).
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The Environment

Deriving the environment that led to the emergence of con-
sciousness is a critical requirement in understanding the con-
ditions that gave rise to consciousness. By recreating the en-
vironment that human ancestors evolved in digitally, other
researchers have uncovered conditions that may have led
to the evolution of communication (Gong and Shuai, 2013;
MacLennan, 2007; Miikkulainen and Li, 2016). For exam-
ple, Miikkulainen and Li created a “jungle world” where
pairs of agents’ fitness increased if both agents chose to hunt
or both chose to mate. They demonstrated that the evo-
Iution of communication was unnecessary when the sim-
ulation was full-observable to both agents. Communica-
tion became necessary when the environment was partially-
observable and increased fitness when shared information
was needed for cooperation. While our simulation will not
necessarily require evolution, the principle is the same; our
environment will be designed to test whether cognitive com-
ponents provide any fitness advantage to agents that possess
them. This allows a theoretical test for the utility of con-
sciousness by adding its theoretical precursors to the agents.

Our core design principle for the environment is repli-
cating resource-gathering and predation problems from our
evolutionary niche. There will be multiple agents within
an environment, each having partial information about the
world. An agent’s ability to forage individually and in
groups will affect their fitness. Group activities include
hunting or division of labor to increase overall fitness. By
having both group and independent tasks, the environment
will test fitness values of agents when acting alone compared
to acting within a group.

The first version of the environment will be a 2D turn-
based grid word. These settings were chosen to begin testing
our agents as quickly and efficiently as possible as our agents
will not require complex visual recognition systems as in the
agents tested by the animal-Al testbed (Crosby et al., 2020).
By creating a grid-based system, we can provide the agents
with a simpler world representation. However, we will im-
plement various grids - each containing information from a
different sensory modality - to increase environmental com-
plexity.

Multiple metrics such as survival time, resources gath-
ered, and others will be used to measure evolutionary fitness.
We will also measure cognitive efficiency by comparing the
cognitive complexity of the agents to their task scores. Cog-
nitive complexity will be measured using metrics such as the
number of operations required for decisions, memory size,
learning rates, or any commonly used metric in either psy-
chology or the computer sciences. Suppose we normalize
any survival metrics we use concerning an agent’s cognitive
complexity and show that an agent’s gains in survival exceed
the price. In that case, we have evidence that such cognitive
capacities evolved due to their significant advantage.
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Introduction

The emergence and evolution of acoustic interactions have
been studied in ALife (Suzuki and Cody, 2019), including the
evolution of communication and language (Nolfi and Mirolli,
2010). There is also interest in applying complex systems
approaches to ecoacoustics (Farina and Gage, 2017) for
conservation studies (Eldridge, 2021).

Agent-based modeling has contributed to understanding the
evolution of complex signals, and recent research focused on
the evolution of audible or acoustic signals (Eldridge and
Kiefer, 2018; Kadish et al., 2019; Suzuki et al. 2021). The
emerging signals purely from computational processes may
have different types of complexity from those in natural
ecological systems, making it difficult to discuss their roles in
ecological contexts and limiting interactions between artificial
and natural systems. On the other hand, deep learning
techniques enabled us to generate artificial objects that have
equivalent complexity to natural objects, such as images,
videos, audio, and texts, by using a large network with a large
data set of natural objects, including animal vocalizations
(Sainburg et al., 2020).

We propose a research framework for understanding the
evolutionary and ecological roles of acoustic behavior by
combining agent-based modeling and machine learning (Fig.
1), focusing on bird vocalizations, which is one of the
significant components that create natural soundscapes. We
use a latent space of a generative model as a genotype space
and regard a generated object as a corresponding phenotype in
an evolutionary model, then further observe the roles of the
evolved phenotypes in a real ecological context.

This paper introduces two independent trials to show the
feasibility of the approach. We first introduce an agent-based
evolutionary model of syllables in Zebra Finch songs based on
the coevolution of syllable structures and preferences. Then,
we show that artificially generated songs of Japanese Bush
Warbler can affect the behavior of conspecifics in the wild.

Evolutionary Model

The model is inspired by a seminal mathematical model of
sympatric speciation by sexual selection (Higashi et al., 1999),
assuming that the spectral structure of syllables of Zebra
Finch (Taeniopygia castanotis) songs could have effects on
the mating preferences of females. We created a two-
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Fig. 2: (a) Model overview, (b) KDE distribution of syllable genotypes.

dimensional latent space of syllables of captive Zebra Finch.
We trained a variational autoencoder (an encoder that has 8
convolutional layers and three fully connected layers that
represents the two-dimensional latent space, and a decoder
that has the symmetric to the encoder) using 128 x 128
spectrogram images of syllables in songs (18,000 syllables).
We assume male and female populations, each composed of
200 individuals. Each individual has two positions on the
latent space as genotypes (Fig. 2 (a)). Each male individual
expresses a spectrogram image as his syllable generated from
the decoder network using a syllable genotype as an input.
Each female also expresses a spectrogram generated from a
preference genotype as her preference for syllables. In the
mating process, each female evaluates every male using the
formula: exp(-Wx), where x is the average difference in the
pixel values between the syllable spectrogram of the focal
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response of the focal individual against replayed artificial songs.
male and the preference spectrogram of the focal female, and
W is a coefficient. Then, the female sclects a male
stochastically proportional manner to the evaluation values
and produces a pair of male and female offspring using a
BLX-alpha crossover and a mutational change in the
genotypic values with a small probability.

Fig. 2 (b) illustrates the KDE (kernel density estimation)
distribution of syllable genotypes of males accumulated over
600 generations in a typical trial. The background images
represent spectrograms generated using a genotype on the
corresponding position, showing that the space well reflects
the acoustic property of syllables. A prezygotic isolation of
individuals emerged through a kind of runaway process in that
the population segregated into a few subgroups. The
population was composed of a majority group with a
relatively simpler vocalization pattern (top left) while the
other small subgroups had more unique and complex acoustic
features. This is because simpler phenotypes would be
moderately preferred by many females while complex
phenotypes would be chosen by the limited number of females
with a high probability. The evolved complex syllables tended
to exist on the peripheral or outer side of the distribution of
natural syllables in the space. The next step is to see whether
and how the real Zebra Finch individuals may respond to
artificially modified songs that incorporate these evolved
syllables, and to incorporate song structures into the model.

Playback Experiment

We conducted a playback experiment to see if artificially
created sounds using a generative model can provoke
responses from wild songbirds in the forest. We focused on
the Japanese Bush Warbler (Horornis diphone) (Fig. 3), a
popular songbird species in Japan. Males sing two types of
songs: type-H and type-L, similar but slightly different
(Hamao, 2007). The frequency of the type-H song is relatively
high, and the type-L song has intermittent whistles, and the
frequency is relatively low. The type-L song is known as a
threat to rivals in the vicinity because territory owners
frequently use this type in the periphery of their territory.

We trained a variational autoencoder, which has a similar
structure to in the previous section, using the spectrograms of
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type-H songs and type-L songs (3,000 songs) recorded in
another field observation of a single male individual. The dots
(green: type-L, blue and orange: type-H) in Fig. 3 (right)
represent the positions of original data on the 2D latent space.

We used a similar protocol to that employed in (Suzuki et al.
2018). A loudspeaker was placed in an open space surrounded
by trees in the experimental forest in Nagoya University. We
conducted a 15-minute playback session for each artificial
song generated from a corresponding position on the latent
space indicated by an orange dot in Fig. 3 (right) on the same
individual (25 trials in total). The song was replayed at an
interval of 30 seconds. A male individual of the same species
came into the space and then wondered and sang songs around
the speaker, which is known as more aggressive responses
against conspecific song playback according to the field
observation and the previous reports (Hamao 2007, Suzuki et
al. 2018). We measured the proportion of the type-L songs
among all response songs and the average change in the
direction of arrival of the consecutive songs estimated by a
microphone array around the loudspeaker using HARKBird
(Sumitani et al. 2020). The higher values of these indices
indicate more aggressive behavior wandering and singing
type-L songs around the loudspeaker more actively.

Each bar graph in Fig. 3 (right) indicates the two indices in
the corresponding case of the replayed song (generated with
the feature (orange dot) on the graph). This illustrates that the
target male responded actively against artificially created bird
songs generally, except for a few cases when the individual
flew away (no bars). This implies that those artificial sounds
have essential acoustic properties to be recognized as
conspecific songs. A circular histogram (left) illustrates the
behavioral pattern in the case of the most aggressive response
of the focal individual. Notably, this replayed song (orange)
located close but a bit outside position from the clusters of
original type-L songs, implying that its artificial but unique
property of the type-L-like song could bring about active
responses. The next research step is to explore the fitness
definition or model assumptions that will bring about the
evolution of the unique trait in the evolutionary model.

Conclusion

We introduced an individual-based evolutionary model of
sexual selection for song syllables and preferences using a
generative model, showing that the complexity of spectral
features brought about the asymmetric segregation of
syllables. We also demonstrated that artificially generated
songs can evoke aggressive responses of wild birds in the
forest. Still, these are from independent works, they showed
that combining modeling and experimental approaches using a
generative model can contribute to further understanding of
evolutionary and ecological roles of bird vocalizations.
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Abstract

Evolution and development are related processes although
their relationship is still not well understood. Attempts to ex-
plore their relationship are challenged by scales of time and
space, but also by the limitations of studies focused on spe-
cific constraints of model organisms. To help gain insight
into these phenomena, we create an abstract, general model
of a developmental process that guides an agent’s trajectory
through a “tunably rugged” NK fitness landscape. The devel-
opmental process is represented by a genotype that is evolved
and allows us to investigate periods of exploration and ex-
ploitation as they relate to periods of an agent’s lifetime and
a given landscape’s difficulty. Results show that evolution
selects for time-sensitive periods of exploration and exploita-
tion, which vary with the difficulty of the landscapes being
traversed. Furthermore, our analysis suggests that pheno-
typic diversity via random exploration present in both early
and mid-life can aid the development of superior phenotypes.

Introduction

Learning, development, and evolution work together to pro-
duce diverse forms of adaptive organisms. Whereas the rela-
tionship between learning and evolution has frequently been
explored, development is often overlooked or regarded as a
subset of the learning process in many models (Soltoggio
et al., 2018). Yet, development is distinct from learning in
that it involves structural changes in both the body and brain
over time according to a set of processes, though such pro-
cesses themselves may allow plastic adaptations to environ-
mental cues (West-Eberhard, 2005). Sensitive periods ex-
emplify one such process, and necessitate that development
is distinguished from learning with varying degrees of plas-
ticity at different life periods (Knudsen, 2004). Given the
limited efforts to explore the relationship between develop-
ment and evolution, there has been little progress in under-
standing why certain developmental processes have emerged
from evolution as well as how the specific forms observed in
nature have arisen (Frankenhuis and Walasek, 2020).

Most models of development have been focused on spe-
cific organisms and the various constraints on them. There
is an opportunity, however, to develop more abstract models
that can explore developmental plasticity generally across
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different developmental processes (Belew, 1990; Sommer,
2009; Smart, 2019). One example of such an abstraction
is the NK model by Kauffman and Levin (1987), which
has been successfully applied to a variety of modeling tasks
(Altenberg, 1996; Geard et al., 2002; Fragata et al., 2019;
Rhodes and Dowling, 2018). By employing this model as a
“tunably rugged” fitness landscape, our work seeks to ex-
plore the evolution of developmental strategies in an ab-
stract, but general manner. Our approach is to evolve a
representation of different permutations of developmental
processes throughout an organisms’ full development. This
simple developmental “program” is then used to guide an
individual from a starting location within an NK model to-
ward, hopefully, locations with higher fitness.

The model and analysis in this work extend previous work
in three important directions. First, evolution is shown to
produce developmental steps that explicitly explore the land-
scape in a random manner. Second, evolution drives devel-
opment to be time-sensitive, with non-uniform patterns of
exploration and exploitation comprising the developmental
strategy. Third, evolution selects for a more complex devel-
opmental strategy marked by multiple transitions between
predominantly exploitative and exploratory phases, as the
landscape becomes more complex with a greater number of
interdependent factors. Furthermore, this work presents a
simple yet effective model that can simulate various interac-
tions between evolution and development.

The primary aim of this work is to explore the evolution
of development in an abstract model. The rest of this paper
is organized to accomplish this goal. First, we summarize
related work in in evo-devo models, abstract models in bi-
ology, developmental models, and adaptive walks. Next, we
provide an overview of the model in this work, including the
landscape, agents, actions, and evolution. We then present
results from experiments in a gradual sequence of general-
ization for starting locations, different landscapes, and evo-
Iutionary runs. Subsequently, we discuss the major findings
and explore them in the context of evolution and develop-
ment. Lastly, future work identifies major directions to ex-
tend upon the results presented in this work.
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Related Work

In this section we will discuss areas of relevant literature and
their shortcomings. First, we provide a brief background on
evo-devo models to offer insight into their particular chal-
lenges and limitations. Next, we review the use of abstract
models, especially relating to understanding complex phe-
nomena similar to our own domain of interest. Finally, we
review developmental models and identify a lack of desir-
able features which we seek to address.

Evo-Devo Models

Evolutionary developmental biology (evo—devo) has stimu-
lated biological research enormously, both empirically and
theoretically (Miiller, 2007). For the last two decades,
Evo-devo models have been mostly based on evo-devo
model organisms such as Drosophila melanogaster and
Caenorhabditis elegans by building on the analysis of
those organisms. Although there has been a fruitful expan-
sion in this era of research, the past trend—increasing num-
bers of organism species such as T'ritbolium castaneum
and Nasonia vitripennis (Roth and Hartenstein, 2008;
Lynch et al., 2006) has led to severe challenges in the scien-
tific methodology and technical difficulties (Sommer, 2009).
These new models have driven researchers to build more so-
phisticated tool kits to investigate the mechanisms of evo-
lutionary change in developmental processes. Developing
these involve gene knockout or knockdown, and experimen-
tal manipulation which necessitates high complexity and sci-
entific precision. Furthermore, these methods mostly de-
pend on empirical optimizations, which are largely species
specific such that protocols cannot be transferred from one
organism to another (Sommer, 2009). To overcome these
limitations and to capture interactions among complicated
phenomena—evolution, development, learning—the mod-
els must necessarily become extremely simplified (Belew,
1990) such that an abstract computational model would be
advantageous for modeling evo-devo.

Abstract Models

Abstract models have been successfully used to study high
level processes, which are otherwise difficult to investigate
due to their complexity and scale in time and space. Various
abstract models have been developed to explore the relation-
ship between learning and evolution.

One early abstract model developed by Hinton and
Nowlan (1987) demonstrated how learning can guide evo-
lution through an idealized simulation model. Similarly,
Kauffman and Levin (1987) introduced another abstract
model, the NK model, which is a tunably rugged land-
scape adjustable by two parameters N and K. As this model
exhibits how interactions affect dynamics on rugged land-
scapes, it has been applied to various fields such as learn-
ing strategies (Campbell et al., 2020) and ontological de-
velopment (Panchanathan and Frankenhuis, 2016; Walasek
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et al., 2021). NK landscapes are commonly used for ex-
amining adaptive walks, which proceed to fitter neighbors
resulting from strategies such as ascent, steepest ascent, or
minimum ascent (Pitzer and Affenzeller, 2012; Wilke and
Martinetz, 1999; Hebbron et al., 2008; Kauffman and Levin,
1987). Extending the NK model, Hebbron et al. (2008) and
Wilke and Martinetz (1999) demonstrated significant behav-
ior changes of adaptive walks, while Park et al. (2015) im-
plemented greedy adaptive walks to study haploid asexual
population.

Recently, Todd et al. (2020) developed an idealized model
of lifetime and evolutionary learning and examined the ef-
fect of task-difficulty on the optimal trade-off between learn-
ing and evolution. In their model, there are two types of
lifetime learning—stochastic hill-climbing and steepest hill-
climbing, but the model focuses on learning rather than de-
velopment and fails to include mechanisms for random ex-
ploration, which we believe to be an important component
of lifetime adaptation. Overall, NK fitness landscapes have
been successfully used to study high level processes in mul-
tiple fields and as a result appear viable as a candidate model
for studying evo-devo as well.

Developmental Models

There is a need for abstract developmental models which are
specific to the field of evo-devo that could address scientific
questions in a computational manner. By applying abstract
models to developmental, there is an opportunity to gain a
deeper understanding of the evolution of development.

Some developmental models have examined the evolu-
tionary selection pressures that produce sensitive periods
(Panchanathan and Frankenhuis, 2016; Walasek et al., 2021;
Frankenhuis and Walasek, 2020). Unlike a two-stage life
history, in which organisms first obtain environmental cues
and later develop phenotypes, Walasek et al. (2021) pro-
posed a model where individuals incrementally respond
to local environmental conditions with sensitive periods
emerging during life. In this model, if an environmen-
tal change or migration occurs during its lifetime, then an
organism must infer the environmental state and consider
environmental change-becoming a complicated inferential
task. Due to the complicated inferential nature, the model
is highly specific which is a limitation in a developmental
context.

Given that most previous models are complex, lack signif-
icant mechanisms, and lack tasks with epistatic interactions,
we have an opportunity to formulate a novel way of model-
ing developmental processes. Using this approach, we hope
to identify sufficient conditions for the evolution. Further-
more, we aim to explore the relationship between difficulty
and different developmental strategies. Ultimately, this pa-
per’s goal is to enable work utilizing a computational model
to challenge and reformulate existing ideas and produce new
hypotheses.
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Methods

In this section, we explain the methods used o simulate our
model, conduct experiments, and analyze results. First, we
will discuss the NK fithess landscape and how it is used
within this context. Mext, we explain the constraints on the
agents’ development within the landscape. Afterwards, we
describe the process in which the development strategies of
the agents are evolved. We then explain the baseline models
used for comparison to the evolved strategies. Finally, we
describe the universal parameters given to the model across
Our experiments.

NK Model

In order to mode] the development of organisms within var-
ious environments, we used the NK model as described in
(Kauffman and Levin, 1987). Within a NK landscape. the
i-value presents the dimensionality of a landscape and the
k-value represents the number of epistatic interactions when
determining a bitstring’s fitness. As k increases its “rugged-
ness” or the number of local maxima increases. All experi-
ments within this paper are run wsing landscapes of n = 15
and k varying from 0 (smooth) 1o 14 (rugged). Within the
real world, a lower k represents a situation where there are
fewer factors in play, and a higher k represents a situation
where there are many factors in play. The NK model allows
us to adjust the difficulty of the landscape an agent traverses
through, allowing us to observe trends within those agents
across different model parameters. Agents are placed within
this landscape and improve as follows.

Agents and Actions

We define agents to start at a specific location (bitstring se-
quence) within an NK fitness landscape, this represents the
starting point of the agent's developmental strategy. Rather
than evolving (i.e. mutating) the starting locations in the
landscape, in this work we focus on a consistent starting
location and focus on the evolution of a “developmental
program.” Example target organisms for this model include
Salmon and other migrant species (e.g. sea rtles) that are
consistently bom at a particular location and experience a
similar lifelong sequence of challenges.

For our model, the “developmental program”™ consists of
encoding two types of actions over an agent’s lifetime: look-
ing and walking. By separating looking actions and walking
actions, we get further insight into the patterns of explo-
ration and exploitation that emerge. Taking a look action
allows an agent to collect information about the fitness of a
bitstring location exactly one bit different from the agent’s
current location. Alternatively, taking a walk action allows
the agent to use its information collected through looking
actions to move from its current location to whichever loca-
tion had the highest recorded fitness. If the highest fitness
level of the collected information is lower than the current
fitness, then the agent does not move. After a walk action,
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the information gathered from previous looks is discarded.
Taking combinations of these actions effectively allow an
agent 1o emulate exploratory and exploitative developmen-
tal patterns, in a non-Markovian manner.

When an agent explores every possibility around it before
walking, i.e. taking all possible look actions before a walk
action, we describe it as a steepest hill climb. Conversely,
when an agent does not take any looking actions before a
walk action, we describe it as a random walk, as it results
in the agent blindly moving to a new location without any
knowledge of its surrounding landscape. Figure 1 illustrates
the actions of an agent on a small (N=3) landscape with a
genome of length 4.

[w,L,Lw]

(w,L,LWw]

Figure 1: Hlustration of an agent performing actions accord-
ing to its genotype. W's represent walks and L's represent
looks, Each graph { A-D) shows the connectivity of an N=3
landscape, with the nodes representing locations and their
labels representing fitness (with 7s representing unknown
fitness). A: The agent's initial location is represented by
the black circle, It takes its first action as eéncoded by its
genotype, a walk (W, red). There were no previous look ac-
tions so it takes a random walk (in this case 1o the right). B:
Agent's new location is again represented by the black cir-
cle, but this time takes a look action (L., brown), resulting
in a random adjacent location's fitness value being observed
and recorded. C: Agent is still in the same location as in B
and takes another look action (L, blue), resulting in another
random adjacent location’s fitness value being observed and
recorded. D: Agent is still in the same location as it was in
B and C, but this time takes a walk action (W, purple). The
agent moves up and to the right 1o the highest fitness loca-
tion recorded (8) and forgets the previous observations,
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In this work, we define the lifespan of an agent to be its
full developmental period, with a predetermined number of
walk and look actions distributed across its lifespan. We
take this model, as constrained in the following section, to
provide a generalization for the development of organisms.
More specifically, we aim to study high level processes guid-
ing a lifetime learning strategy including exploitation and
exploration, as represented by combinations of looking and
walking steps. While we primarily focus on the evolution
of lifetime learning strategies, the model could easily be ex-
tended to capture further biological processes, such as sen-
sitive periods.

Evolutionary Algorithm

Within this model, we consider the combination of looking
and walking actions over each agent’s lifetime development
to be its genotype, that is to say the encoding of a process
that guides its developmental trajectory. These genotypes
are constrained by having a set number of looking and walk-
ing actions, to be distributed over the lifetime of the organ-
ism. In other words, we are looking at the times within the
agent’s lifespan that it chooses to explore versus exploit.

By implementing these constraints, we create a common
ground to analyze the genotypes. The genotypes of the or-
ganisms are evolved through a genetic algorithm as follows.
First, the organisms within the population are selected based
on their fitness at the end of their lifetime (i.e. fitness at the
final location in the NK model). The top 50% of the or-
ganisms are directly copied to the next generation, and the
remaining 50% of the new generation is comprised of mu-
tations of these survivors, where one of the walk steps is
randomly moved to a different part of the strategy to mod-
ify how look steps are distributed throughout the strategy.
The new generation of organisms are then allowed to de-
velop starting from the same starting locations as the pre-
vious generation. Through this process, the population of
agents evolves their developmental strategy, finding a geno-
type that generally leads to a higher ending fitness.

In essence, an agent can develop using one of two primary
developmental processes: exploration and exploitation. Ex-
ploration allows an organism to take risks for the sake of
improvement, while exploitation focuses on refinement and
efficiency. Within this model, we define exploration as tak-
ing multiple consecutive walk actions (resulting in “random
walk” steps), while exploitation is taking look actions be-
fore a walk action. By allowing agents to evolve the distri-
bution of their looking steps, i.e. choose when in their life
to have exploratory and exploitative periods, we can observe
the tendencies of these exploratory and exploitative periods
to emerge from the evolutionary process.

Baseline Genotypes

We establish several baseline strategies for comparison with
the evolved strategies. In order to do so, we will use three
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Figure 2: An artistic rendering of an NK landscape to
demonstrate the behavior of agents. The starting location
of an agent is marked as a red dot. The red path continu-
ing from this depicts a possible path taken with a random
walk action. The random walk ends at the red arrow, where
the agent then continues its development with a steepest
hill climb, reaching a higher optima than its original loca-
tion. This demonstrates the utility in random walks allowing
agents to escape from a local optima.

predetermined types of Walkers for comparison:

A ‘Random Walker’ (RW) takes exclusively walk actions
throughout its entire lifetime. This simulates purely random
decision making, with no environmental feedback. This
walker is not expected to perform well, but will be used to
demonstrate the importance of using look actions.

A ‘Steepest Hill Climber’ (SHC) walker looks at every
possible adjacent location on the landscape before ever tak-
ing a walk action - purely steepest hill climb. This means
that a ‘Steepest Hill Climber’ will always take the path of
steepest ascent, and creates purely-exploitative behavior.

An ‘Alternating SHC/RW’ walker was designed to com-
bine the strengths of RW and SHC. It accomplishes this by
repeatedly taking two SHC steps and then a single RW step.
This means it will spend the majority of its developmental
process exploiting and ascending to a local optima, but will
also have RW steps that allow it to escape local optima it
may find itself in, creating potential performance improve-
ments over the normal SHC strategy. Figure 2 provides a
simple visualization how an agent at a local optima can use
a RW step followed by a SHC step in order to escape a local
optima.

Experimental Setup

Across all of our experiments, the parameters of the evolu-
tionary process were held constant. Each evolutionary pro-
cess consisted of a population of 100 initially randomized
strategies simulated for 50 generations. These parameters
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