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Eletromagneti Passive Loalization and Traking ofMoving Targets in a WSN-Infrastrutured Environment
F. Viani, P. Roa, M. Benedetti, G. Oliveri, and A. Massa

AbstratIn this paper, an innovative strategy for passive loalization of transeiver-freeobjets is presented. The loalization is yielded by proessing the reeived signalstrength data measured in an infrastrutured environment. The problem is reformu-lated in terms of an inverse soure one, where the probability map of the presene ofan equivalent soure modeling the moving target is looked for. Towards this end, austomized lassi�ation proedure based on a support vetor mahine is exploited.Seleted, but representative, experimental results are reported to assess the feasibil-ity of the proposed approah and to show the potentialities and appliability of thispassive and unsupervised tehnique.
Key words: Objet traking, wireless sensor networks, transeiver-free objets, reeivedsignal strength indiator, lassi�ation problem, support vetor mahine.2



1 IntrodutionIn the reent years, there has been a wide and rapid di�usion of wireless sensor networks(WSNs) [1℄ thanks to the availability of suh low-power and pervasive devies integratingon-board sensing, proessing, and radio frequeny (RF ) iruitry for information trans-mission. Usually, short-range ommuniations are at hand sine the wireless nodes aregenerally densely distributed and haraterized by low power onsumption to ensure along lifetime. Therefore, WSNs have been also pro�tably used for loation and trakingpurposes. In suh a framework, the main e�orts have been devoted to develop ad-ho sys-tems based on dediated transponders/sensors [2℄ or assuming an �ative� target equippedwith a transmitting devie [3℄[4℄. Di�erent properties of the reeived signal, suh as thetime of arrival (TOA) and the diretion of arrival (DOA), have been suessfully exploitedto address the loalization problem [5℄[6℄. Other modalities to loate ative targets arebased on the evaluation of the reeived signal strength (RSS) [7℄[8℄[9℄[10℄. This is aneasily measurable quantity that has been also used to loalize the wireless nodes of thenetwork through e�etive triangulation strategies [8℄. Moreover, the distane betweennodes has been estimated thanks to simpli�ed radio propagation models. Although easierthan a �passive� loalization tehnique, the main drawbak of these approahes is the needof the target to be equipped with an ad-ho devie. Whether suh a fat an be onsid-ered negligible when traking either objets or animals (although the osts unavoidablyinrease), other problems arise when dealing with people (e.g., privay) and espeiallywith non-ooperative subjets as for elderly people. Moreover, suh wearable devies anundergo (asual or voluntary) damages thus limiting the reliability of the traking system.Other strategies onerned with transeiver-free targets have been also presented in thesienti� literature. State-of-the-art approahes are based on Doppler radar systems ableto estimate the distane between the target and the sensor [11℄. As a matter of fat,moving targets an be traked through the analysis of the Doppler signature induedby the objet motion [12℄. Unfortunately, the arising performane in real environmentsan be strongly in�uened by non-negligible instabilities leading to several false alarms.Furthermore, slow-moving targets [13℄ are not generally deteted.3



This paper is aimed at presenting an inversion proedure, preliminary validated in [14℄, forthe loalization and traking of passive objets starting from the measurements of the RSSindexes available at the nodes of a WSN . Sine the transmission of information amongthe wireless nodes is allowed by RF signals, the arising eletromagneti radiations an bealso pro�tably exploited to sense the surrounding environment. Indeed, any target lyingwithin the environment interats with the eletromagneti waves radiated by the nodes.Therefore, the measurements of the perturbation e�ets on the other reeiving nodesis dealt with a suitable inversion strategy to determine the equivalent soure modelingthe presene of the target/satterer generating the perturbation itself. By virtue of thefat that the number of nodes in a WSN an vary and the need to have a simple and�exible traking/loalization method allowing real-time estimates, a learning-by-examples(LBE) strategy based on a Support Vetor Mahine (SV M) is used. Although onlyreently applied for the solution of eletromagneti inverse problems, e�etive approahesbased on learning-by-examples tehniques have been already proposed for the estimationof the diretion of arrival of desired/undesired signals [15℄[16℄, the detetion of buriedobjets [17℄[18℄[19℄, and the early beast aner imaging [20℄ thanks to their e�ieny andversatility.The outline of the paper is as follows. The mathematial issues onerned with the pro-posed approah are detailed in Set. 2 where the SV M-based method is desribed, as well.In Set. 3, representative results from a wide set of experiments dealing with the trakingof single as well as multiple targets in both outdoor and indoor WSN deployments areshown. Eventually, some onlusions are drawn (Set. 4).2 Mathematial FormulationLet us onsider the two-dimensional (2D) senario shown in Fig. 1(a). The investigationdomain D is inhomogeneous and onstituted by a set of obstales and moving targets tobe loalized/traked all lying in free-spae. The known host senario (i.e., the target-freedomain) is desribed by the objet funtion τh (r) = εh (r) − 1 − j
σh(r)
ωε0

where ω is theworking angular frequeny, r = (x, y) is the position vetor, εh and σh being the dieletri4



permittivity and the ondutivity, respetively. Moreover, the target/s is/are identi�edby the dieletri distribution τo (r), r ∈ Do. The area under test is infrastrutured witha WSN and S nodes are deployed at rs, s = 1, ..., S spatial loations. The s-th wirelessnode radiates an eletromagneti signal, ξinc
s (r) (1) , and the �eld measured by the other

S−1 nodes and arising from the interations of the inident �eld with the senario undertest is given by
ξtot
s (rm) = ξinc

s (rm) +
∫

D
J (r′)G0 (r′, rm) dr′ (1)where G0 is the free-spae Green's funtion [21℄ and rm is the position of the m-th (m =

1, ..., S − 1) reeiving node. As a matter of fat, the �eld indued in D is equivalent tothat radiated in free-spae by an equivalent urrent density J (r) = τ (r) ξtot (r), r ∈ D[22℄ modeling the presene of whatever disontinuity of the free-spae (i.e., both theobstales and the moving targets) where τ (r) = τo (r) if r ∈ Do and τ (r) = τh (r) if
r ∈ Dh = D − Do, Do and Dh being the support of the targets and its omplementaryarea.Equation (1) an be reformulated in a di�erent fashion by de�ning a di�erential equivalenturrent density Ĵ (r) radiating in the inhomogeneous host medium [21℄ [Fig. 1(b)℄. Sinethe host medium is a-priori known, the radiated �eld an be then expressed as

ξtot
s (rm) = ξ̂inc

s (rm) +
∫

Do

Ĵ (r′)G1 (r′, rm) dr′ (2)where
ξ̂inc
s (rm) = ξinc

s (rm) +
∫

D
τh (r′) ξtot

s,u (r′)G0 (r′, rm) dr′ (3)is the �eld of the senario without targets and equivalent to an �inident� �eld on thetargets, Ĵ (r) = τ̂ (r) ξtot
s,p (r) and τ̂ (r) = τ (r) − τh (r) is the di�erential objet funtion.In (3), the seond term on the right side is the �eld sattered from the host mediumwithout targets, ξtot

s,u being the eletri �eld related to ξinc
s in orrespondene with the

(1) The salar ase has been onsidered to simplify the notation. However, the extension to thevetorial ase is straightforward. 5



target-free senario. Moreover, G1 is the inhomogeneous Green's funtion for the target-free on�guration [21℄, whih satis�es the following integral equation
G1 (r, r′) = G0 (r, r′) +

∫

D
τh (r′)G0 (r, r”)G1 (r”, r′) dr”. (4)With the knowledge of G1 (i.e., the knowledge of the target-free senario) the satteringproblem turns out to be the retrieval of the di�erential soure Ĵ oupying the targetdomain Do. The detetion of the target position and the de�nition of the target trajetoryin D an be then formulated as the de�nition of the support of the di�erential equivalentsoure, whih satis�es the inverse sattering equation (2), starting from the measurementsof ξtot (rm), m = 1, ..., S−1. This is possible in a WSN -infrastrutured environment sinethe nodes at hand are simple and heap devies that give an indiret estimate of the �eldvalue through the RSS index. Aordingly, the RSS is measured at the m-th nodewhen the s-th node is transmitting by onsidering both the target-free senario [ξinc

s (rm)knowledge℄ and the presene of targets within D [ξtot
s (rm) knowledge℄ and the di�erential�eld ξsct

m,s = ξtot
s (rm) − ξ̂inc

s (rm) ould be used for the inversion proedure.However, it is worth to take into aount that the power radiated by the WSN nodes anvary due to several fators (e.g., battery level of the WNS nodes, environmental ondi-tions) thus �blurring� the data aquisition and, onsequently, ompliating the solution ofthe inverse problem at hand. To overome this drawbak, the inversion is statistially re-ast as the de�nition of the probability that a target is loated in a position of D startingfrom the knowledge of ξsct
m,s, s = 1, ..., S, m = 1, ..., S, m 6= s. The arising lassi�ationproblem is then solved by means of a suitable SV M-based approah. Suh a strategy al-lows one to improve the generalization apability of the loalization and traking systemsine it is less sensitive to the instantaneous variations of the measurements by virtue ofthe underlying probabilisti model. Moreover, it is also able to deal with senarios notonsidered in the training phase as well as to perform the real time traking of multipletargets. More spei�ally, the proposed approah works as follows. The region D wherethe targets are looked for is partitioned into a grid of C ells entered at rc, c = 1, ..., C.Eah c-th ell is haraterized by its state, χc, whih an be either empty (χc = −1) or6



oupied (χc = 1) whether a target (i.e., the orresponding di�erential equivalent soure)is present or absent. Moreover, the probability that a target belongs to the c-th ell,
αc = Pr {χc = 1| (Γ, c)}, is given by

αc =
1

1 + exp
{

pH
[

ϕ (Γ, c)
]

+ q
} , c = 1, ..., C (5)where Γ =

{

ξsct
m,s; s = 1, ..., S; m = 1, ..., S; m 6= n

}, and p, q are unknown parameters tobe determined [23℄. In (5), the funtion ϕ (·) is a non-linear mapping from the data ofthe original input spae, Γ, to a higher dimensional spae (alled feature spae) where thedata are more easily separable through a simpler funtion (i.e., the hyperplane H).The hyperplane H is o�-line de�ned throughout the training phase by exploiting theknowledge of a set of T known examples where both the input data (Γ, t = 1, ..., T ) andthe orresponding maps (χ
t

= {χc,t; c = 1, ..., C}, t = 1, ..., T ) are available. Usually, alinear deision funtion is adopted
H

[

ϕ (Γ, c)
]

= w · ϕ (Γ, c) + b, c = 1, ..., C (6)
w and b being an unknown normal vetor and a bias oe�ient, respetively.The deisionfuntion parameters unequivoally de�ne the deision plane and are omputed in thetraining phase by minimizing the following ost funtion

Ψ (w) =
‖w‖2

2
+

λ
∑T

t=1 C
(t)
+

T
∑

t=1

C
(t)
+

∑

c=1

η
(t)
c+ +

λ
∑T

t=1 C
(t)
−

T
∑

t=1

C
(t)
−

∑

c=1

η
(t)
c− (7)subjet to the separability onstraints

w · ϕ (Γ, c) + b ≥ 1 − η
(t)
c+, c = 1, ..., C

w · ϕ (Γ, c) + b ≤ η
(t)
c− − 1, c = 1, ..., C

(8)where λ is a user-de�ned hyperparameter [24℄ that ontrols the trade-o� between thetraining error and the model omplexity to avoid over�tting. Moreover, η
(t)
c+ and η

(t)
c− arethe so-alled slak variables related to the mislassi�ed patterns. They are introduedbeause the training data are usually not ompletely separable in the feature spae by7



means of a linear hyperplane.The minimization of (7) is performed following the guidelines detailed in [17℄ and alsoexploiting the so-alled kernel trik method [23℄.3 Experimental ValidationThe feasibility and the e�etiveness of the proposed approah have been assessed throughan extensive experimental validation arried out in both indoor and outdoor senarios(Fig. 2). The nodes have been plaed at �xed positions rs = (xs, ys), s = 1, ..., S, on theperimeter of the investigation area D. In all experiments, the region D has been assumedhaving the same size (−20λ ≤ x ≤ 20λ and −12λ ≤ y ≤ 12λ) whatever the senario athand, λ being the free-spae wavelength of the wireless signals transmitted by the nodes(e.g., f = 2.4 GHz), and S = 6 Tmote Sky nodes have been used to obtained a suitabletrade-o� between the omplexity of the sensor network (i.e., the number of sensor nodes)and the e�ieny of the system (i.e., the sampling rate) while guaranteeing a ompleteoverage of D (i.e., eah sensor node is onneted at least to another node of the network inase of target-free senario). Although the same topology has been adopted for outdooras well as indoor situations, two di�erent trainings of the SV M-based approah havebeen performed sine the arising eletromagneti phenomena signi�antly di�er (e.g., theeletromagneti interferenes). Otherwise, the alibration of training examples (T ), theseparation hyperplane H (λ), and the disretization of the investigation area (C) has beenperformed only one, namely for the outdoor ase, sine the format of the data proessedby the SV M does not hange. More in detail, the following setup has been onsidered:
T ∈ [100, 700] with step ∆T = 100, λ = 10i, i = {0, 1, 2, 3}, and C ∈ [15, 960] from arough disretization with C = 5 × 3 ells of dimension 4λ × 4λ to the �nest one having
C = 40×24 ells of dimension λ×λ. These values have been alibrated with referene tosingle-target experiments by evaluating the behavior of the loalization error de�ned as

ρ =

√

(

xact
j − xest

j

)2
+

(

yact
j − yest

j

)2

ρmax

(9)where ract
j =

(

xact
j , yact

j

) and rest
j =

(

xest
j , yest

j

) are the atual and estimated positions of the8



target, ρmax being the maximum admissible loation error. As for the test ase at hand,it turns out that ρmax =
√

X2
D + Y 2

D and rest
j has been alulated from the probabilitymap aording to the following relationships

xest
j =

∑C
c=1 αcxc

∑C
c=1 αc

yest
j =

∑C
c=1 αcyc

∑C
c=1 αc

. (10)Figure 3 gives the normalized values of the loation indexes obtained for di�erent ombi-nations of the ontrol parameters. Eah plot refers to the variation of a ontrol parameterkeeping onstant the others (T opt = 500, λopt = 100, Copt = 60).As far as the SV M training phase is onerned, the referene measurements have been�rst olleted in the target-free senarios [i.e., τ̂ (r) = 0 ⇒ ξsct
m,s = 0, m, s = 1, ..., S,

m 6= s℄. Suessively, the sets of RSS measurements [i.e., RSSm,s (t), m, s = 1, ..., S,
m 6= s, t = 1, ..., T ℄ have been olleted with the target loated at T di�erent positions,
rj = (xj , yj), j = 1, .., T , randomly seleted within D to over as uniformly as possiblethe whole area under test. Conerning the required omputational time, the burden ofthe training phase grows proportionally with the number of training samples and thedisretization of D from a minimum of 3 × 102 [s] when T = 100, C = 15 up to amaximum of 104 [s] (i.e., almost three hours) when T = 700, C = 960.As regards the SV M test step, both single (J = 1) and multiple (J = 2) target trak-ing problems have been onsidered. Sine o�-the-shelf sensor nodes are used for theseexperiments, they allow to obtain one RSS measurement eah 5 × 10−2 [s]. Therefore,onsidering the situation where eah node has to ollet a RSS measurement for all other
S − 1 nodes, the maximum aquisition time is 2 [s]. The system is then able to proessthe data and de�ne a loalization map αc, c = 1, ..., C, in 0.1 [s] using a 3 GHz PC with
2 GB of RAM.The �rst experiment deals with the outdoor traking of a single human being moving inside
D. Figure 4 shows the probability map estimated when the target is at ract

1 = (−16λ, 8λ).9



The irle gives the atual position. Two di�erent ases have been onsidered. Morespei�ally, Figure 4(a) shows the probability map assuming that the same experimenthas been taken into aount in the training phase. Di�erently, the map in Fig. 4(b) hasbeen obtained the example not belonging to the training data set. It is worth noting thatthe target is orretly loalized in both maps sine the enter of the target lies within theregion with higher probability. The same experiment has been suessively onsidered forthe indoor senario. The results of the SV M-based loalization proess are shown in Fig.5. As for the previous test, the results when the same example has been either onsidered[Fig. 5(a)℄ or not [Fig. 5(b)℄ in the training phase have been reported. As expeted, thevalues of the loalization errors inrease whatever the training beause of the omplexityof the eletromagneti interations arising from the presene of the walls (i.e., multiplere�etions) in indoor environments. Nevertheless, the region with high probability stillontains the atual position of the target thus demonstrating a good degree of reliabilityof the approah also in this ase.Let us now onsider a single target moving outdoor inside D along the straight line shownin Fig. 6. The RSS values have been measured at 6 di�erent time instants, but it is worthto point out that the aquisition time an be further shortened to reah an almost real-time traking. The samples of the loalization maps and the estimated path are reportedin Fig. 7 and Fig. 6, respetively. As it an be observed, there is a good mathingbetween the atual path and the estimated one assessing the e�etiveness of the approahin real-time proessing, as well. The same analysis has been arried out for the indoorase. Although the moving target is quite arefully loalized, the result in Figure 8 andthe loation indexes in Tab. I on�rm the higher omplexity of traking the target asompared to the outdoor ase.In order to deal with the traking of multiple targets, the SV M lassi�er has been trainedwith a mixed data-set ontaining examples with one (T1 examples with J = 1) and two(T2 examples with J = 2) targets. Sine T = T1 +T2 examples have been used also for thesingle-target training, some experiments have been arried out to analyze the dependeneof the loalization on the perentage of training samples from T1 and T2. The probability10



maps in Fig. 9 show that the position of one target an be orretly loated although asmaller set of single-target examples has been used for the training phase (i.e., T1 < T2).Vie versa, a larger number of example is needed for an e�etive loalization of the twotargets as pointed out by the maps in Fig. 10 and quanti�ed by the loation indexesin Tab. II. Suh a behavior was expeted sine the number of di�erent ombinationswith two targets is higher if ompared to the single-target ase. Therefore, T1 = 150 and
T2 = 350 examples have been suessively used for the training phase of the followingtraking experiments.As representative examples, two di�erent situations with J = 2 have been dealt with.In the former, one target (j = 1) is moving within D while the other (j = 2) remainsimmobile in the same position. Instead, both targets are moving in the seond example.The atual trajetory and the estimated one are shown in Fig. 11 and Fig. 12, respe-tively. Whatever the example at hand, a quite areful indiation on the position and pathfollowed by the targets has been obtained as further on�rmed by the average values ofthe loalization errors (outdoor: ρ1 = 0.070, ρ2 = 0.061 - indoor: ρ1 = 0.101, ρ2 = 0.070).4 ConlusionsIn this work, the loalization and traking of passive targets have been addressed by ex-ploiting the RSS values available at the nodes of a WSN . The problem at hand hasbeen reformulated into an inverse soure one aimed at reonstruting the support of anequivalent soure generating a perturbation of the wireless links among the WSN nodesequal to that due to the presene of targets within the monitored area. The inversionhas been faed with a learning-by-examples approah based on a SV M lassi�er devotedto determine a map of the a-posteriori probability that a di�erential equivalent soure ispresent within the investigation domain. Experimental results have assessed the e�etive-ness and reliability of the proposed approah in dealing with the traking of single andmultiple human beings both in indoor and outdoor environments.
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Fig. 1 - Equivalent Traking Problem - Sketh of (a) the traking senario and (b) theequivalent inverse problem.15
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Fig. 2 - Problem Geometry - Plots of (a) the outdoor and (b) the indoor environmentswith WSN -based traking system.16
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Fig. 4 - Single-target loalization - Outdoor Senario - Probability maps of theinvestigation region D obtained when the test data (a) belongs and (b) does not belongto the training data set.18
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Fig. 5 - Single-target loalization - Indoor Senario - Probability maps of theinvestigation region D obtained when the test data (a) belongs and (b) does not belongto the training data set.19
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Fig. 6 - Single-target traking - Outdoor Senario - Atual and estimated trajetories.20
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Fig. 7 - Single-target traking - Outdoor Senario - Sreenshots of the probability mapof the investigation region D aquired during the target motion.21
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Fig. 8 - Single-target traking - Indoor Senario - Atual and estimated trajetories.22
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Fig. 9 - Single-target loalization - Outdoor Senario (T1 ∈ [0, 500], T2 ∈ [0, 500],
λ = 100, C = 60) - Probability maps of the investigation region D when using (a)

100%T1 and 0%T2, (b) 80%T1 and 20%T2, () 60%T1 and 40%T2, (d) 40%T1 and 60%T2,(e) 20%T1 and 80%T2, and (f ) 0%T1 and 100%T2 of samples in the training phase.23
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Fig. 10 - Multiple-targets loalization - Outdoor Senario (T1 ∈ [0, 500], T2 ∈ [0, 500],

λ = 100, C = 60) - Probability maps of the investigation region D when using (a)
100%T1 and 0%T2, (b) 80%T1 and 20%T2, () 60%T1 and 40%T2, (d) 40%T1 and 60%T2,(e) 20%T1 and 80%T2, and (f ) 0%T1 and 100%T2 of samples in the training phase.24
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Fig. 11 - Multiple-targets traking - Outdoor Senario - Atual and estimatedtrajetories.25
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Fig. 12 - Multiple-targets traking - Outdoor Senario - Atual and estimatedtrajetories.26



Outdoor Indoor

T ime Instant ρ ρ × ρmax [λ] ρ ρ × ρmax [λ]

1 0.071 3.32 0.209 9.76

2 0.070 3.30 0.131 6.09

3 0.060 2.78 0.115 5.38

4 0.057 2.67 0.048 2.23

5 0.045 2.09 0.089 4.15

6 0.074 3.46 0.140 6.53

Average Error : ρ 0.063 2.94 0.122 5.69

Tab. I - Single-target traking - Loalization errors for the outdoor and the indoorsenarios.27



Single Target Multiple Target

j = 1 j = 1 j = 2

ρ ρ × ρmax [λ] ρ ρ × ρmax [λ] ρ ρ × ρmax [λ]

(a) 0.044 2.07 0.217 10.12 0.158 7.37

(b) 0.059 2.77 0.196 9.14 0.135 6.31

(c) 0.093 4.34 0.151 7.02 0.074 3.44

(d) 0.150 6.98 0.149 6.96 0.062 2.91

(e) 0.262 12.23 0.063 2.93 0.106 4.94

(f) 0.357 16.67 0.031 1.46 0.063 2.93

Tab. II - Multiple-targets loalization - Outdoor Senario - Loalization errors for thesingle and multiple target ase.28


