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Abstract. Gap junction arrangement is a major determinant of car-
diac conduction velocity. Importantly, structural remodeling of the my-
ocardium may lead to pathological CV and a pro-arrhythmic substrate.
In this work we aim at quantifying the side-to-side conduction velocity
in a sub-micrometer model of the myocardium that accounts for gap
junctions. We consider the Extracellular-Membrane-Intracellular (EMI)
model, which describes the evolution of the electric potential within each
cell and in the extracellular space. For the solution of the model, we pro-
pose a boundary integral formulation of the cell-to-cell model that leads
to small system of ODEs. We study several configurations of lateral gap
junction distribution, as well as different shapes and sizes of the cell-to-
cell connection. We find that irregular positioning of gap junctions from
cell to cell is of utmost importance to obtain realistic CV values, while
gap junction’s shape is of secondary importance.

Keywords: Electrophysiology · Cell-by-Cell Model · Gap Junctions ·

EMI Model · Boundary Element Method.

1 Introduction

The cardiac tissue has a complex cellular and subcellular organization. Most
of the myocardium is occupied by cardiomyocytes, excitable cells responsible
for electric propagation and active force generation. Cardiomyocytes form the
cardiac syncytium, a network of tightly connected cells that ensures a smooth
propagation of the action potential [8]. Macroscopically, the propagation ap-
pears anisotropic because cell-to-cell coupling occurs mostly in the longitudinal
direction, yielding a fiber bundle structure. Transverse-to-fiber conduction is
generally much slower, of a ratio 1:3 to 1:6 [12]. Several factors compete for the
anisotropy ratio. Gap junctions distribution is of utmost importance. Gap junc-
tions are responsible for the cell-to-cell coupling, and are mostly found in the
fiber direction, with only a few of them in the lateral direction. Additionally,
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transverse conduction is affected by geometrical factors such as cell thickness
and branching.

In this work, we are interested in studying in a quantitative manner how
lateral gap junction distribution and the geometry of the connection affect the
macroscopic conduction velocity in the myocardium. For this, we consider an
Extracellular-Intracellular-Membrane (EMI) model [18]. The EMI model is a
degenerate parabolic PDE: stationary on the intra- and extra-cellular, but time-
dependent on the transmembrane boundary. The EMI model is also coupled
with a cellular membrane model. Within the EMI framework, the anisotropic
propagation of the action potential results from the geometrical arrangement of
the cells and the gap junction distribution. In contrast, the anisotropy ratio and
electric conductivity in the standard bidomain model must be given a priori,
e.g., based on experimental data. As a matter of fact, it has been shown that the
bidomain model can be rigorously justified by a homogenization procedure ap-
plied the EMI model [9]. In particular, the intra- and extra-cellular conductivity
tensors in the bidomain model could be estimated by solving a cell problem [11].

From a computational point of view, the EMI model is significantly more ex-
pensive than the bidomain model [10], and it requires fine meshes [18]. Since we
are interested only in the transmembrane potential, we adopt here a boundary
integral formulation of the problem that avoids the computation of the intra-
and extra-cellular potentials. In this way, we recast the full EMI model to a set
of ordinary differential equations with a structure similar to the monodomain
equation [15]. The reduced membrane model, fully equivalent to the original
EMI formulation, only lives on the membrane domain. Thus, we can employ an
unprecedented spatial resolution (below 1 µm) for simulating gap junctions. Fi-
nally, thanks to a fast boundary element implementation, we can quickly explore
multiple realizations of gap junctions distribution, thus assessing the conduction
velocity in a statistical manner.

2 Methods

The EMI model considers cells represented by bounded domains Ωi ⊂ R
d, d ≥ 2,

for i = 1, . . . , N , all embedded in a extracellular space denoted by Ω0 ⊂ R
d \

∪N
i=1Ω̄i. The electric potential is in general discontinuous, with jumps across cell-

to-cell boundaries and the cellular membrane. We denote by ui, i = 0, . . . , N ,
the electric potential in the subdomain Ωi. We denote the interfaces with Γij =
Γi∩Γj , 0 ≤ i, j ≤ N , where Γi = ∂Ωi. The intercellular connections, named gap
junctions, occur at Γij for 1 ≤ i, j ≤ N , whereas the transmembrane boundaries

are Γi0. The outer boundary is Σ = ∂Ω0 \
⋃N

i=1 Γi0. The normals ni point
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outwards to Ωi. The EMI model reads as follows:



















































−σi∆ui = 0, in Ωi for i = 0, . . . , N,

−σi∂ni
ui = Cm∂tVi + Iion(Vi, zi), on Γi0 for 1 ≤ i ≤ N,

−σ0∂n0
u0 = σi∂ni

ui, on Γi0 for 1 ≤ i ≤ N,

ui − u0 = Vi, on Γi0 for 1 ≤ i ≤ N,

∂tzi = g(Vi, zi), on Γi0 for 1 ≤ i ≤ N,

−σi∂ni
ui = κ(ui − uj) on Γij for 1 ≤ i, j ≤ N,

−σ0∂n0
u0 = 0, on Σ.

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

(1g)

The electric conductivities, denoted by σi, i = 0, . . . , N , are assumed constant
but possibly different from each other. The membrane electric capacitance is Cm,
Iion represents the sum of ionic currents and zi are vectors representing the ionic
model’s state variable. We note that the system is stationary on the cellular
and extracellular domains, as well as on the gap junctions where an algebraic
condition is imposed (with permeability κ). Time dynamics occur only on the
transmembrane boundary Γm = ∪N

i=1Γi0.
Problem (1) has already been solved by means of the finite element method

[17,18]. With the boundary element method (BEM), it has been solved only for
simple geometries of isolated cells [4,6,7]. Here, we consider the BEM approach
proposed in [15], with no geometrical restriction on the problem. For the numer-
ical solution of Eq. (1) we make use of the following result (see [15] for a proof.)

Theorem 1. The BEM space discretization of (1) is equivalent to the ordinary

differential equations system















Cm

dVm

dt
+ Iion(Vm, z) = ψ(Vm),

dz

dt
= g(Vm, z),

(2a)

(2b)

where ψ(Vm) = λm and λm ∈ R
Mm , λg ∈ R

Mg , β ∈ R
N are solutions to
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Vm

0

0



 , (3)

with

Fmm = AmFA
⊤
m, Fmg = AmFA

⊤
g , Fgm = AgFA

⊤
m, Fgg = AgFA

⊤
g . (4)

For the space discretization of (1) we adopt a collocation BEM with trigono-
metric Lagrange basis functions and, in Theorem 1, Mm and Mg represent the
number of collocation nodes lying on the transmembrane boundary Γm and on
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Fig. 1. Conduction velocity across a vertical array of 30 cells. Red boundaries represent
gap junctions with uniform permeability κ. Each cell is 100 µm long and 10 µm thick.
On the right, the CV for increasing values of κ.

the union of all gap junctions Γg = ∪N
i,j=1,i ̸=jΓij . Variables Vm and z are the spa-

tial discretizations of Vi and zi, i = 1, . . . , N , respectively. Therefore, ODE (2)
lives on the transmembrane boundary Γm and the remaining model constraints,
as Laplace problems, flux continuities and gap junction algebraic conditions, are
encoded into the linear map ψ defined by the linear system (3).

Every time that ψ(Vm) has to be evaluated, e.g. when approximating (2) with
a time marching scheme, system (3) has to be solved. This system is symmetric
and has size Mm+Mg +N hence, when the number of degrees of freedom is not
overly large, it is factorized only once. This is the approach adopted here.

Let M = Mm +Mg, matrices Am ∈ R
Mm×M , Ag ∈ R

Mg×M are projection
operators, from a global system of degrees of freedom representing functions
on Γm ∪ Γg to local ones. Matrix F ∈ R

M×M encodes Laplace equations in all
subdomains Ωi, i = 0, . . . , N , and flux continuities. It is based on pseudo inverses
of the Dirichlet-to-Neumann maps. Matrix G ∈ R

M×N enforces condition Vi =
ui − u0 and as well solvability of problems involving pseudo inverses.

Finally, for the time integration of (2) we employ the mRKC method [1],
which is a multirate explicit stabilized method.

3 Numerical Results

In this section we report four numerical experiments. The main goal is to inves-
tigate dependence of conduction velocities (CVs) on the distribution, size and
shape of the gap junctions on the cellular boundaries parallel to the fiber direc-
tion. In all experiments, parameters are set as following [17]: Cm = 1 µF cm−2,
σe = 20mS cm−1, σi = 3mS cm−1, and κ = 1/Rm = 690mS cm−2. For the
membrane, we consider the Courtemanche-Ramirez-Nattel model [3].

In the first experiment, we evaluate the transverse CV in a vertical array of
30 cells, as shown in Figure 1 (left panel). For the experiment, we considered
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Fig. 2. Cells with non-zero permeability κ only on the Permeable Curve (PC), indicated
in red. We consider aligned and centered PCs (left panel), and alternating PCs (middle
panel). PC are also parametrized with different shapes (right panel), amplitude a, and
length l.

the parameters given as above, except for the gap junction permeability κ. The
transverse CV is defined as the difference in activation time between last and first
cell boundary in the array, over their distance (300 µm). The activation time at
x is set as the earliest time of Vm(x, t) > −60mV. As shown in the right panel of
Figure 1, when we vary the permeability κ the transverse CV increases rapidly.
In particular, the value of κ = 690mS cm−2 yields a very high, non-physiological
value of velocity by several orders of magnitude. In fact, a physiological value of
CV, e.g., 0.1m s−1 to 0.2m s−1 would be achieved by a value of κ of the order
of 10−2 mScm−2. We conclude that only a very small portion of the boundary
should be permeable.

Hence, in the second experiment we consider a similar setup of 30 vertically-
stacked cells, but now the permeable portion of the boundary is small, between
1% and 15% of the whole length. We also vary the shape of the connection,
from flat to wave-like, and its position along the boundary. Henceforth, we call
“Permeable Curve” (PC) the permeable portion of the boundary. In Figure 2 we
report different options for the PC. The connection is parameterized with the
length l and the amplitude a of the PC.

The results of the second experiment are summarized in Figure 3. Firstly,
we notice that there is a major difference in CV when moving from an aligned
pattern of PCs (first row of Figure 3) to an alternating pattern (second row). In
the case of aligned PCs, the CV is always above 1m s−1, thus non-physiological,
for all combinations of PC shape and size. We also tested the case of PCs are not
centered but still aligned, and the results are the same (not shown). This suggests
that gap junction alignment between cells can sensibly enhance the transverse
CV. On the other hand, alternating PCs yields realistic values of CV for a wide
range of shape parameters. A lack of alignment of gap junctions in the transverse
direction is indeed possible, in contrast to the longitudinal direction. (However,
in the fiber direction the cell is elongated, and we expect less end-to-end influence
between gap junctions.)

It is also interesting to observe how CV varies with PC shape and size (see
Figure 3). The flat configuration always yields the fastest conduction, as ex-
pected. For large l, the flat PC is very similar to the “Wave” PC in terms of
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Fig. 3. Transversal CV [m s−1] for different shapes and positions of the Permeable
Curve (PC). For area we mean the surface area of the PC, which in R

2 is the length.
For Squared Wave, for instance, the area is 2a+ l, and for Squared Wave OP is 2a. We
vary the area by varying l and a, while keeping the ratio l/a = 2.5 constant.

CV, but this is not the case for the other shapes. Somewhat paradoxically, the
“Wave” and “Squared Wave” shapes do not always lead to similar CVs, although
the difference is small. We conjecture that the contact area along the propagation
direction, rather than the total area is what matters in determining the CV. This
is quite apparent in the “Squared Wave OP” case, where the CV is generally
lower than the other cases. Interestingly, here we still observe an increase in CV
with l, which is due to the permeable vertical segments being better distributed
along the cell’s side, allowing the potential to propagate more uniformly through
it. We also report that increasing the amplitude a of the PC leads to a decrease
in CV for the “Wave” and “Squared Wave” shape. This is due to a decrease in
smoothness of the propagation, when the amplitude of the PC is too large com-
pared to its length. In summary, the major determinant of transverse CV in this
experiment is gap junction alignment, followed by the length and smoothness of
the PC.

The third experiment aims at exploring more in detail the effect of alignment
of gap junctions. In fact, within a block of cells, the location of gap junctions
is likely not structured. In this experiment we consider again the same array of
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Fig. 4. Transverse CV distribution for randomly positioned PCs in a vertical array of
30 cells. For a graphical representation of PC shapes we refer to Figure 2.

cells, however the position of the PCs is randomized. For every shape of PC (see
Figure 2) we perform 1000 experiments. For each experiment, the PC relative
position p follows a uniform distribution p ∼ U(l/cl, 1− l/cl), where cl = 100 µm
is the cell length. The length l and amplitude a of the PC are respectively fixed
to 2.5 µm and 1 µm, except for the Segment PC where l = 0.5 µm. With this
choices, for all PC shapes we recover a CV of 0.2m s−1 when p = 0.2 with
alternation, similarly to Figure 2, middle panel.

The resulting distribution of CV is displayed in Figure 4. Interestingly, CV
values are physiological in all cases, and the dispersion is low. The average CV is
approximately 0.3m s−1 in all cases. The standard deviation is lower in the case
of flat PC (0.033m s−1), when compared to the other PC shapes (0.051m s−1).
Since the PC are positioned randomly, an alignment is unlikely to occur and the
potential propagates following a zigzag curve, similarly to the case of alternating
PC positioning of the previous experiment. The smaller standard deviation of the
“Segment” PC is hard to explain. The histograms in Figure 4 suggest that fast
CVs are less likely to occur in the “Segment” case, thus reducing the dispersion.

The final experiment uses a 2-dimensional array of 20 × 20 cells, with a
stimulus delivered at the bottom-left corner. In particular, we study how random
deactivation of transversal PCs affect longitudinal, transversal and diagonal CVs.
In a way, we are trying to mimic random deposition of endomysial fibrosis, as
observed in the atria in patients with atrial fibrillation [13]. Here, we consider
flat PCs with length l = 0.5 µm. For fixed P ∈ [0, 1], we runM = 40 experiments
where transversal PCs are randomly placed and their conductivity κ is set to
zero with probability P . Next, we compute the average longitudinal, transversal
and diagonal CVs over the M experiments.

In Figure 5 we display the average CVs and confidence interval of one stan-
dard deviation with respect to the probability P . As expected, a decrease in
transversal PCs permeability is associated with a decrease in diagonal and
transversal CV. A block in conduction occurs for a large value of P > 0.8.
The CV decreases also in the longitudinal direction as P increases, and it is
about a half of its original value for P = 1. This is because the lower fiber of
cells is isolated from the rest of the tissue, since the top boundary has zero cur-
rent flux. Finally, the standard deviation is very small for the transversal CV,
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Fig. 5. Average longitudinal, transversal, and diagonal conduction velocities when
transversal PCs are deactivated with probability P . The shaded area represents the
confidence interval of one standard deviation.

because it is computed on the left boundary and so the signal does not cross the
whole tissue. In contrast, the diagonal CV standard deviation is very high for
the same reason.

4 Discussion

In this work we show that the transverse conduction velocity in a sub-µm mi-
crostructural model of cardiac tissue is strongly affected by lateral gap junction
distribution and shape. We found that the major determinant of CV is the
cell-to-cell alignment of gap junctions. The CV is non-physiologically fast when
gap-junctions are vertically aligned. A lack of alignment leads to a transverse CV
of 0.1m s−1 to 0.3m s−1, within a physiological range. The second determinant
of CV is the smoothness of the cell-to-cell connection or permeable curve, but
only the case of aligned gap junctions. These results are statistically robust, in
the sense that also a random distribution of gap junctions yields similar CVs.

The EMI model can be effectively used to study the effect of gap junction
remodeling in heart failure and cardiac arrhythmia [2]. It has been observed
that gap junctions in a diseased myocardium may shift from a classical end-
to-end (longitudinal) distribution towards a more side-to-side (transversal) ar-
rangement, with a lower longitudinal CV [14]. In patients with history of atrial
fibrillation, structural remodeling in terms of fibrosis is a major determinant of
the arrhythmic substrate [13]. Here, endomysial fibrosis leads to endo-epicardial
dissociation of the propagation due to a reduced transmural coupling of the
myocardium [5]. This is consistent with the last numerical experiment, where
transverse velocity is significantly reduced.
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This work has some limitations too. We focused only on 1-D and 2-D cell
arrangements, with cells of fixed shape and size. We also did not include the
extracellular space between cells in all our experiments, since cell-to-cell distance
is typically less than 0.2 µm, see Spach et al. [16]. In reality, the myocardium has a
complex 3-D structure with branching and extracellular space surrounding most
of the cells. Reproducing this arrangement in 2-D is difficult if not impossible.
We are working on extending the BEM formulation of the EMI model to the
3-D case. We believe that our implementation of the EMI model is fast and
sufficiently flexible for studying complex geometries. In conclusion, our model
can be used to determine CVs to be employed in the a bidomain or monodomain
formulation, e.g., in cases where the tissue presents fibrosis, and the effective
model parameters are hard to determine experimentally.
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9. Pennacchio, M., Savaré, G., Franzone, P.C.: Multiscale modeling for the bioelectric
activity of the heart. SIAM Journal on Mathematical Analysis 37(4), 1333–1370
(2005)



10 G. Rosilho de Souza et al.

10. Pezzuto, S., Hake, J., Sundnes, J.: Space-discretization error analysis and stabi-
lization schemes for conduction velocity in cardiac electrophysiology. International
Journal for Numerical Methods in Biomedical Engineering 32, e02762 (2016)

11. Richardson, G., Chapman, S.J.: Derivation of the bidomain equations for a beating
heart with a general microstructure. SIAM Journal on Applied Mathematics 71(3),
657–675 (2011)

12. Roth, B.J.: Electrical conductivity values used with the bidomain model of cardiac
tissue. IEEE Transactions on Biomedical Engineering 44(4), 326–328 (1997)

13. Schotten, U., Verheule, S., Kirchhof, P., Goette, A.: Pathophysiological mechanisms
of atrial fibrillation: a translational appraisal. Physiological Reviews 91(1), 265–
325 (2011). https://doi.org/10.1152/physrev.00031.2009

14. Severs, N.J., Bruce, A.F., Dupont, E., Rothery, S.: Remodelling of gap junctions
and connexin expression in diseased myocardium. Cardiovascular research 80(1),
9–19 (2008)

15. de Souza, G.R., Krause, R., Pezzuto, S.: Boundary integral formulation of the
cell-by-cell model of cardiac electrophysiology, submitted, arXiv:2302.05281

16. Spach, M.S., Heidlage, J.F.: The stochastic nature of cardiac propagation at a mi-
croscopic level: electrical description of myocardial architecture and its application
to conduction. Circulation research 76(3), 366–380 (1995)

17. Stinstra, J.G., Hopenfeld, B., MacLeod, R.S.: On the passive cardiac conductivity.
Annals of Biomedical Engineering 33, 1743–1751 (2005)

18. Tveito, A., Mardal, K.A., Rognes, M.E.: Modeling Excitable Tissue: The EMI
Framework. Springer Nature (2021)

https://doi.org/10.1152/physrev.00031.2009

	 Effect of Gap Junction Distribution, Size, and Shape on the Conduction Velocity in a Cell-by-Cell Model for Electrophysiology 

