
Date of publication , date of current version .

Digital Object Identifier

Analysis of an improved circuit for laser chaos
and its synchronisation
R. Concas1, A. Montori2,4, E. Pugliese5, A. Perinelli6,7, L. Ricci6,8 (Member, IEEE), and R.
Meucci3,5 (Senior Member, IEEE)
1Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Torino, Italy
2European Laboratory for Nonlinear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy
3Department of Physics, University of Florence (UNIFI), 50019 Sesto Fiorentino, Italy
4Istituto Nazionale di Ottica (CNR-INO), 50019 Sesto Fiorentino, Italy
5Istituto Nazionale di Ottica (CNR-INO), Largo E. Fermi 6, 50125 Firenze , Italy
6Department of Physics, University of Trento, Italy
7TIFPA-INFN, University of Trento, Italy
8CIMeC (Center for Mind/Brain Sciences), University of Trento, Italy

Corresponding author: Roberto Concas (e-mail: r.concas@inrim.it)

This work was supported by the Project 20FUN01 TSCAC, which has received funding from the EMPIR programme co-financed by the
Participating States and from the European Union’s Horizon 2020 research and innovation programme. Open Access Funding provided by
Istituto Nazionale di Ricerca Metrologica within the CARE-CRUI Agreement.

ABSTRACT The exploration of chaos, synchronization, and circuit implementation in analog simulations
unveils a versatile framework with diverse applications. Originating from a universal chaos model rooted in
laser physics, its adaptability extends to neural dynamics and random number generation, where both rely
on characteristic time scales. Circuit implementations using op-amps and analog multipliers offer tangible
avenues for exploration. However, challenges like bias and trajectory distortion drive the need for innovative
solutions. Through numerical integration and circuit simulations, analysis of chaotic regimes such as Sub-
harmonic Chaos (SC) and Homoclinic Chaos (HC) reveals crucial behaviors for applications like secure
communications. Despite experimental hurdles, advancements in circuit design promise novel pathways
for chaos synchronization studies. Understanding the intricate interplay between chaos and these systems
is vital, given their reliance on characteristic time scales. Additionally, exploring chaos synchronization,
especially within analog circuits, shows potential for revolutionizing information processing capabilities,
despite inherent challenges. Progress in circuit design persists, forging new avenues in chaos synchronization
studies, shaping a dynamic landscape poised for further exploration and innovation.

INDEX TERMS Analog simulations, chaos, chaos synchronisation, circuit design.

I. INTRODUCTION

THE minimal universal model for chaos [1]–[3] has its
origins in the physics of a laser subjected to a feedback

that controls its losses via a simple low-pass filter with an
appropriate cut-off frequency [4].

However, the potential of this model is not limited to laser
physics. This is because the relaxation rates of the three
variables describing the system’s evolution can be changed
in very large intervals. For example, when dynamics occurs
on time scales of the order of hundreds of milliseconds,
the model shows interesting overlaps with the dynamics of
neurons [5]. This is the case when a sub-threshold electrical
activity of a neuron is interrupted by high amplitude pulses
thus signaling action-potentials. The model can be easily
controlled by relying on a suitably chosen control frequency
[6].

Furthermore, if the dynamics is driven to higher frequen-
cies, the model was shown to be well-suited for applications
in the field of random number generation [7], which is crucial
for data transfer or storage and secure communications [8],
[9].
The paper is organized as follows: in Sec. II the circuit

design is described, starting from the analysis of the differ-
ential equations underlying the model to the description of
the proposed circuital implementation; in Sec. III the nu-
merical and electronic simulations are presented along with
the related analysis of the result in both the sub-harmonic
bifurcation type regime and the homoclinic one; in Sec. IV
the analysis of the synchronisation between two independent
circuits is discussed; in the concluding section we summarize
and provide some outlook.
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II. MINIMAL UNIVERSAL OSCILLATOR MODEL AND
CIRCUIT DESIGN
A. MODEL EQUATIONS
The minimal universal laser model is described by the follow-
ing system of first-order differential equations:

dx
dt

= −k0 (x + k1xz2 − xy), (1a)

dy
dt

= −γ (y+ xy− p0), (1b)

dz
dt

= −β (z− B0 + B1x). (1c)

In these equations: x is the ‘‘fast’’ variable that represents the
laser output intensity and has a typical unperturbed decay rate
k0 = 2 · 107 s−1; y is the ‘‘slow‘‘ variable that represents the
population inversion with pumping rate γ p0 and has a typical
decay rate γ = 105 s−1; z is the ‘‘intermediate‘‘ feedback
variable, which affects x in a nonlinear way (see the term xz2

in the first equation) even if it is regulated in a linear way
via a low-pass filter. This filter, characterized by a typical
bandwidth β = 106 s−1, is fed by the fast variable x, properly
amplified by the factor B1, along with a bias B0.
It is interesting to note that the time evolution of the system

can be modified without altering its dynamics, and thus the
related phase portraits, by scaling the three rates k , γ, β by
the same factor α: if the rates are divided by α, and α > 1
(α < 1), the dynamics is slowed (accelerated) by a factor α,
as setting τ = αt leaves Eqs. (1) unchanged.
In the following, this property was exploited to implement

an electronic simulation of Eqs. (1) and thus to cope with
the limited bandwidth response introduced by the analog
electronic components: setting α = 103, the typical values
mentioned above for the three rates become

k ′0 =
k0
103

= 2 ·104 s−1 ,

γ′ =
γ

103
= 102 s−1 ,

β′ =
β

103
= 103 s−1 ,

Consequently, the evolution becomes 103 times slower, as the
system of equations gets

dx
dτ

= −k ′0 (x + k1xz2 − xy) , (2a)

dy
dτ

= −γ′ (y+ xy− p0) , (2b)

dz
dτ

= −β′ (z− B0 + B1x) , (2c)

where
τ = 103 t .

B. CIRCUIT DESCRIPTION
The system of differential equations describing the minimal
universal laser model can be solved via analog computation
by using a suitable combination of integrated circuits, namely
op-amps and analog multipliers, and passive electronic com-
ponents.

As mentioned in the Introduction, the implementation pro-
posed by Ricci et al. [2] is affected by issues leading to the
presence of an undesired bias term and the unwanted distor-
tion of the trajectory in phase space. The circuit proposed here
provides an elegant and effective solution to these problems.

FIGURE 1: Design block of the implementation of the minimal
universal model. The architecture consists of three functional blocks
X , Y , Z , each enclosed by a blue, dashed line, that implement the
differential equations providing x, y, z.

The design block shown in Fig. 1 relies on three multipliers
and three summing integrators, which produce the outputs x,
y, z and are characterized by the time constant τX , τY , τZ ,
respectively. The circuit implementation of this architecture
is shown in Fig. 2. All active components are assumed to be
power supplied with ±15V.

The nonlinear terms are obtained by using three identical
blocks, each containing an analog multiplier AD633JN and a
noninverting amplifier based on the operational amplifier (op-
amp) AD820. Given the five multiplier inputs X̂ , X̂0, Ŷ , Ŷ0,
Ẑ0, the output Ŵ of the analog multiplier AD633JN is given
by

Ŵ =
1

V0
(X̂ − X̂0)(Ŷ − Ŷ0) + Ẑ0 ,

whereV0 = 10V. In the present implementation, X̂0 = Ŷ0 = Ẑ0 = 0.
The output Ŵ is then amplified by a factor 10 due to
Ri = 1 kΩ, Rf = 9 kΩ. Consequently, given the inputs A, B,
each nonlinear block generates an output C given by

C =
A · B
1V

.
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(a)

(b)

FIGURE 2: (a) Schematic of the circuit implementing the minimal
universal model. (b) Structure of a single nonlinear block, having
two input ports A, B and an output port C .

The integrator producing y is based on the op-amp AD820
and is fed with the terms V1, xy, y. (The one producing x is
described below.) In the frequency domain, we have

− s
γ′ ỹ = ỹ+

R6

R5
x̃y− p0

where

γ′ = (R6C2)
−1 . (3a)

p0 = −R6

R7
V1 . (3b)

By setting
R5 = R6 , (4)

the block producing y turns out to implement Eq. (2b).
The integrator producing z is based on the op-amp AD820

and is fed with the terms V2, x and z. In the frequency domain,
we have

− s
β′ z̃ = z̃− B0 + B1 x̃

where

β′ = (R9C3)
−1 . (5a)

B1 =
R9

R8
, (5b)

B0 = − R9

R10
V2 . (5c)

In this way the block producing z turns out to implement
Eq. (2c) directly.
The integrator producing x is based on the op-ampAD8676

and is fed with the terms xz2, xy, x. By using a standard
analysis in the Laplace frequency domain the output of the
op-amp is given by

− s
k ′0
x̃ = x̃ + k ′1 x̃z2 − k2(s) x̃y

where s = jω, Ã represent the Laplace transforms of a generic
time-dependent quantity A, and

k ′0 = (R1C1)
−1 , (6a)

k ′1 =
R1

R2
. (6b)

The introduced factor k2(s) is defined as:

k2(s) =
R4

R2

R1 + R2(1 + sR1C1)

R4 + R3(1 + sR4C4)
(7)

It is straightforward to show that k2(s) = 1 independently of
s if

R3

R4
=
R1

R2
, (8a)

C4 = C1
R1

R3
. (8b)

Consequently, by complying with these two conditions, the
block producing x turns out to implement Eq. (2a), as it can
be promptly verified by inverting the previous equation in the
frequency domain s.
The chosen implementation of the differential equation

for x shows different advantages compared with previous
solutions [1], [2]. First, the contribution xy being fed into the
noninverting input ofU1 via a carefully trimmed network (see
Eq. (8b) above), allows to save an op-amp to generate the
sign inversion of xy. However, the possibly most important
improvement consists in the suppression of bias effects that,
for example, had to be compensated for in the implementation
discussed by Ricci et al. [2] via a manual adjustment of two
trimmers.

III. SIMULATION AND ANALYSIS OF CHAOS
The analysis of the proposed design is carried out with two
different approaches: numerical integration and circuit simu-
lation. The results of the comparison between the numerical
integration of the model described by Eqs. (1) and the circuit
simulation based on the electronic scheme of Fig. 2 and
described by Eqs.(2) is summarised in Fig. 3.
As mentioned above, two chaotic regimes are considered.

The first one, referred to as Sub-harmonic Chaos (SC), is a
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chaotic regime obtained after sub-harmonic bifurcations of
a limit cycle originated from a Hopf bifurcation. The second
regime is named Homoclinic Chaos (HC) and is characterised
by pulses of the same height but erratically separated in time
due to the re-injection mechanism around the local chaos
SC. The re-injection mechanism is provided by the stationary
solution of Eqs. (1) with zero intensity.

A. NUMERICAL INTEGRATION
A numerical integration of Eqs (1) was performed by us-
ing Berkeley Madonna software and relying on the built-in
Runge-Kutta 4th order integrator with an integration step of
0.1µs. The fixed parameter values are:

k0 = 2 · 107 s−1 , γ = 105 s−1 , β = 106 s−1 ,

k1 = 33 , B1 = 0.222 , p0 = 1.4 .

The two chaotic regimes are obtained by setting the adjustable
parameter B0 as follows:

B0 =

{
0.0938, for SC.
0.0941, for HC.

The resulting phase portraits in the x−z space and the related
x time series are shown in Figs. 3a, 3c, 3e, 3g.

B. SPICE SIMULATION
The analog electronic simulation was carried out by using
the software spice-based LTSpice®, which allows to reliably
simulate analog or digital electronic circuits by means of
models of electronic components used therein. This type of
electronic simulation can consider nonidealities and limits
of the components and it reproduces the full electronic be-
havior of op-amps and multipliers such as output voltage
dynamic, input offset voltage, slew rate, multiplier’s non-
linearity. Consequently, simulations mostly faithfully repro-
duce what would result from real implementations.

Considering the design of Fig. 2, embedded spice models
were used for both the passive components and the op-amps,
whereas a basic spice model for multipliers was chosen.
Once the boundary conditions are assigned, and neglecting
a transient of 0.5 s, the simulation covers a span of 5 s.

The chosen nominal values of the passive components are
listed in Table (1).

Value (kΩ) Value (kΩ) Value (nF)
R1 33 R6 10 C1 1.5
R2 1 R7 10 C2 1000
R3 330 R8 4.5 C3 1000
R4 10 R9 1 C4 0.15
R5 10 R10 1

TABLE 1: Nominal values set for the passive components.

The choice complies with the constraints set by
Eqs. (8a), (8b), (4).

According to Eqs. (6a), (3a), (5a), the resulting time con-
stants are:

k ′0 = 2.02 · 104 s−1 , γ′ = 102 s−1 , β′ = 103 s−1 .

Similarly, according to Eqs. (6b), (5b), the parameters k1, B1

are given by
k1 = 33 , B1 = 0.222 ,

whereas, according to Eqs. (3b), (5c), the parameters p0, B0

are given by

p0 = −V1(V) , B0 = −V2(V) .

Finally, the tunable voltage parameters are

V1 = −1.4V ⇒ p0 = 1.4 ,

and the two chaotic regimes are obtained by setting

V2

{
−0.0956V ⇒ B0 = 0.0956, for SC.
−0.0946V ⇒ B0 = 0.0946, for HC.

The results of the electronic simulation results are displayed
in Figs. 3b, 3d, 3f, 3h.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 3: Numerical integration of Eqs.(1) (left panels): a) SC
attractor in phase space x-z; c) SC time series of the variable x; e)
HC attractor in phase space x-z; g) HC time series of the variable x.
Spice simulation of Eqs.(2) (right panels): b) SC attractor in phase
space x-z; d) SC time series of the variable x; f) HC attractor in phase
space x-z; h) HC time series of the variable x.
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Figures 3 point at a remarkable similarity between the nu-
merical integration and the spice simulation results. Figure. 3f
highlights the predicted advantage of the architecture when
HC is considered: the slightly squared-off trajectory for the
variable x it is nomore present as in previous implementations
[1], [2]. Due to the presence of the additional amplification
following the multipliers (see Fig. 2), the dynamics is kept
within the output voltage swing of the op-amps and conse-
quently it prevents the saturation for the output voltages close
to the power supply voltage.

C. EVIDENCE OF A CHAOTIC BEHAVIOR

An interesting point concerns the evidence of a chaotic be-
havior hinted at by the shape of the attractors shown in Fig. 3.
Finding the evidence of chaos is a nontrivial task, especially
when one has to rely on scalar time series. Although chaos
can be shown to exist by knowing the nonlinear differential
equations underlying a system and thereupon evaluating the
Lyapunov spectrum via the so-called standard method [10],
[11], in compliance with the approach followed in the present
work, here we carried out an analysis on the time series
stemming from the numerical simulations.

To look for chaos, we followed an approach [12] that relies
on: first, the assessment of the correlation dimension on a
‘‘lattice’’ [13] of embedding pairs (m,L), where m, L are the
dimension and the lag of the embedding, respectively; second,
the identification of a hyperbolae-bounded region in which
the correlation dimension is essentially constant and larger
than 2; the evaluation of the maximum Lyapunov exponent
(MLE) by using the ‘‘divergence rate method’’ [14], [15].

The ‘‘chasing chaos’’ protocol outlined above was carried
out on a time series made of 2.5 · 105 points corresponding
to the variable X and resulting from the numerical integra-
tion described in Sec. III-A. The correlation dimension was
evaluated by using a recently-developed method [16] on a
lattice of 380 embedding (m,L) points, where 2 ⩽ m ⩽ 20,
1 ⩽ L ⩽ 20. The diagram in Fig. 4 (a) shows the results of
the evaluation. Figure 4 (b) shows the plot of the evaluated
correlation dimension ν̂ as a function of the embedding win-
dow (m − 1)L. A horizontal straight line fit to the 15 black
points within the interval 110 ⩾ (m− 1)L ⩾ 200 provides
ν̂ = 2.25± 0.01 and a reduced χ2 of 0.86.

(a)

(b)

FIGURE 4: (a) Color map of the estimated correlation dimension ν̂
on the embedding lattice 2 ⩽ m ⩽ 20, 1 ⩽ L ⩽ 20. The dash-dotted
lines represent the two hyperbolae (m−1)L = 110, (m−1)L = 200
that bound the uniformity region. (b) Estimated correlation dimen-
sion ν̂ as a function of the embedding windows (m−1)L. The color
map represents the joint histogram of ν̂, (m − 1)L, built with a bin
size of 0.1 and 6, respectively. The black dots and errorbars corre-
spond to the average and standard deviation, respectively, of each
marginal histogram at a given embedding window. The uniformity
region highlighted in (a) corresponds to the embedding-window-
independent behavior of ν̂ between the embedding window values
110, 200. The green segment corresponds to the best-fit horizontal
straight line at ν̂ = 2.25.

The embedding pairs belonging to the uniformity region
for the correlation dimension are expected to provide reliable
embedding choices for the evaluation of the MLE too [12],
[15]. As mentioned above, this evaluation was carried out by
means of the divergence rate method. The results are shown
in Fig. 5: the estimated MLE is (23± 1)ms−1.

FIGURE 5: Histogram of the MLE computed on the embedding
pairs belonging to the uniformity region.
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IV. SYNCHRONISATION BETWEEN CIRCUITS
Synchronization of chaotic behavior in coupled lasers has
become a hot issue since the seminal paper on chaos synchro-
nization by Pecora and Carroll in 1990 [17].

Synchronization emerges as a consequence of the addition
of a forcing term to the systems or by suitably coupling
them [18]. The emergence of synchronization phenomena
is interesting for information processing processes, in order
to achieve high-rate and secure communications [19], [20].
More recently, synchronization in a network of dynamical
systems where the connected oscillators become transceiver
nodes was investigated [21].

Chaos synchronization between two lasers has been ex-
perimentally confirmed in solid state lasers [22], CO2 lasers
[23], and semiconductor lasers [24], [25]. Synchronization
of globally coupled identical modulated laser models via the
linear and nonlinear forms of diffusive couplings was also
recently investigated [26].

Synchronization between two circuits of the kind discussed
by Ricci et al. [2] failed to be experimentally observed, de-
spite a strong evidence relying on numerical simulations [3].
A plausible explanation concerns the spurious biases in the
circuital block generating the variable x that are avoided in
the improved design discussed in the present paper.

A. SYNCHRONISATION ARCHITECTURE
By operating suitable minor changes, the scheme shown in
Fig. 2 is suitable to study synchronisation among chaotic
systems. For the sake of simplicity, we focus the attention on
the synchronisation between two chaotic systems.

From a general point of view, we can supposeW as the out-
put of a generic unit and S as the synchronisation input for the
unit. In the case of a laser, W corresponds to the laser output
intensity x. Usually the ‘‘population inversion’’ variable y in
a laser is physically inaccessible. As a consequence, it is rea-
sonable to perturb the system via the feedback variable z, so
S becomes the reference signal on which the synchronisation
error is built as ε (S −W ), where ε represents the coupling
strength.

Let us now consider the bidirectional coupling between two
laser units as in Fig. 6 by means of the following synchroni-
sation error equations:

ε (S1 −W1) = ε (x2 − x1) , (9a)

ε (S2 −W2) = ε (x1 − x2) , (9b)

where x1 is the laser output intensity of the unit of interest and
x2 is the laser output intensity provided by the other unit.

FIGURE 6: Coupling scheme for synchronisation between two laser
units. W1 andW2 are the output of the units, S1 and S2 are synchro-
nisation input.

Equations (9) represent the perturbation to be added as lin-
ear term to the feedback equation (1c). The dynamic behavior
of two bidirectional coupled laser system becomes:

dz1
dt

= −β [z1 − B0 + B1x + ε(x2 − x1)] , (10a)

dz2
dt

= −β [z2 − B0 + B1x + ε(x1 − x2)] . (10b)

For the sake of simplicity, the equations for the laser units (i.e.
laser intensity x1 and x2, and population inversion y1 and y2)
are not reported in Eqs. (10).

B. CIRCUIT DESCRIPTION
The coupling dynamics can be implemented in the electrical
scheme shown in Fig. 7:

(a)

(b)

FIGURE 7: (a) Design block for synchronisation; changes with
respect to the single oscillator implementation are highlighted in red.
(b) Circuital implementation (block Z).

The functional block Z, shown in Fig. 7a contains an
additional summing node in which the synchronisation error
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is applied. The circuital implementation is shown in Fig. 7b,
where the difference term in Eqs.(9) is evaluated by using an
additional op-amp AD820 in differential configuration: the
signal x is connected to the inverting input and corresponds
to the signal x1; the signal s is connected to the noninverting
input and corresponds to the signal x2. Considering the con-
dition

R11

R12
=
R14

R13

the differential output signal is given by

Ẑ =
R11

R12
(S −W ) =

R11

R12
(x2 − x1)

By setting

R11 = R12 = R13 = R14 = 10 kΩ

the gain of the differential stage is unitary. It follows

Ẑ = (x2 − x1) .

The resistor Rε allows to adjust the coupling strength as

ε =
R9

Rε
. (11)

According to Eqs. (10), (11), the system of equations for
the bidirectional coupling implementation becomes:

− s
(R9C3)

z̃1 = z̃1 +
R9

R10
V2 +

R9

R8
x̃1 +

R9

Rε
(x̃2 − x̃1) ,

− s
(R9C3)

z̃2 = z̃2 +
R9

R10
V2 +

R9

R8
x̃2 +

R9

Rε
(x̃1 − x̃2) .

C. SIMULATION
The fixed and tunable parameter values used in Sec. III-A
for the numerical integration and in Sec. III-B for the Spice
simulation are also used for synchronisation analysis.

The numerical integration analysis was carried out with the
following settings of ε

ε


0

0.128 for SC
0.168

ε


0

0.128 for HC
0.168

The Spice simulation analysis was performed with the
following settings of Rε:

for SC for HC

Rε


1MΩ ⇒ ε = 0.001

10 kΩ ⇒ ε = 0.1

1 kΩ ⇒ ε = 1

Rε


1MΩ ⇒ ε = 0.001

10 kΩ ⇒ ε = 0.1

1 kΩ ⇒ ε = 1

where Rε = 1MΩ is the minimum resistance value that en-
sures the ‘‘no coupling’’ condition.

Numerical integration has limited resources for coupling
system analysis with elevate coupling strength whenever
ε > 0.2. Conversely, the electronic simulation allows to test
the synchronised system with larger values of correspondent
ε by decreasing the resistor Rε.

The comparison between numerical integration and Spice
simulation is displayed in Fig. 8.

(a) (b)

(c) (d)

FIGURE 8: Synchronisation of chaos as a function of coupling
strength ε. Numerical integration (left panels): (a) synchronisation
of SC in phase space x1-x2; (c) synchronisation of HC in phase space
x1-x2. Spice simulation (right panels): (b) synchronisation of SC in
phase space x1-x2; (d) synchronisation of HC in phase space x1-x2.

Figures 8a and 8c show synchronisation results (numeri-
cal integration) in SC and HC regimes for the three chosen
coupling strength values: green color refers to ε = 0 (no
coupling); red color to ε = 0.128 (full synchronisation); blue
color refers to ε = 0.168 (periodic synchronisation).
Figures 8b and 8d show synchronisation results obtained

via Spice simulation in both SC and HC regimes for the three
chosen Rε corresponding to coupling strength values: green
color refers toRε = 1M(no coupling); red color toRε = 10 k
(full synchronisation); blue color to Rε = 1 k (periodic syn-
chronisation).
As the coupling strength ε increases, in both SC and

HC regimes, the full synchronisation of chaos is suddenly
transformed in a new periodic synchronisation regime (anti-
phase synchronisation) characterised by high laser intensity
amplitudes x1 and x2, as shown in Fig. 9.

FIGURE 9: Maximum error as a function of the coupling strength
ε at the transition from full synchronisation to explosive periodic
synchronisation.
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This transition is an evidence of explosive synchronisation
as investigated by Boccaletti et al. [27].

V. CONCLUSIONS
The circuital implementation of the minimal universal laser
model has been improved by simplifying the topology and
removing the saturation effects of electronic devices. Because
simulations with two different approaches return equivalent
results, the circuital scheme is mature for new network im-
plementations. In this framework, a bidirectional coupling
scheme for studying the synchronisation in two different
chaotic regimes is proposed. In both cases, the full synchro-
nisation evolves toward an explosive synchronisation regime
that is relevant for different research fields.
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