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Abstract
As progress pushes the boundaries of both the performance
of new hardware components and the computational capac-
ity of modern computers, the requirements on the perfor-
mance of robotic systems are becoming more and more de-
manding. The objective of this thesis is to demonstrate
that concurrent design (Co-Design) is the approach to follow
to design hardware and control for such high-performance
robots. In particular, this work proposes a co-design frame-
work and an algorithm to tackle two main issues: i) how to
use Co-Design to benchmark different robotic systems, and
ii) how to effectively warm-start the trajectory optimization
(TO) problem underlying the co-design problem aiming at
global optimality.

The first contribution of this thesis is a co-design frame-
work for the energy efficiency analysis of a redundant ac-
tuation architecture combining Quasi-Direct Drive (QDD)
motors and Series Elastic Actuators (SEAs). The energy
consumption of the redundant actuation system is com-
pared to that of Geared Motors (GMs) and SEAs alone.
This comparison is made considering two robotic systems
performing different tasks. The results show that, using the
redundant actuation, one can save up to 99% of energy with
respect to SEA for sinusoidal movements. This efficiency is
achieved by exploiting the coupled dynamics of the two ac-
tuators, resulting in a latching-like control strategy. The
analysis also shows that these large energy savings are not
straightforwardly extendable to non-sinusoidal movements,
but smaller savings (e.g., 7%) are nonetheless possible. The
results highlight that the combination of complex hardware
morphologies and advanced numerical Co-Design can lead
to peak hardware performance that would be unattainable
by human intuition alone. Moreover, it is also shown how
to leverage Stochastic Programming (SP) to extend a simi-
lar co-design framework to design robots that are robust to
disturbances by combining TO, morphology and feedback
control optimization.

The second contribution is a first step towards address-
ing the non-convexity of complex co-design optimization
problems. To this aim, an algorithm for the optimal con-
trol of dynamical systems is designed that combines TO
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and Reinforcement Learning (RL) in a single framework.
This algorithm tackles the two main limitations of TO and
RL when applied to continuous-space non-linear systems to
minimize a non-convex cost function: TO can get stuck in
poor local minima when the search is not initialized close to
a “good” minimum, whereas the RL training process may be
excessively long and strongly dependent on the exploration
strategy. Thus, the proposed algorithm learns a “good”
control policy via TO-guided RL policy search. Using this
policy to compute an initial guess for TO, makes the tra-
jectory optimization process less prone to converge to poor
local optima. The method is validated on several reach-
ing problems featuring non-convex obstacle avoidance with
different dynamical systems. The results show the great ca-
pabilities of the algorithm in escaping local minima, while
being more computationally efficient than the state-of-the-
art RL algorithms Deep Deterministic Policy Gradient and
Proximal Policy Optimization. The current algorithm deals
only with the control side of a co-design problem, but future
work will extend it to include also hardware optimization.

All things considered, this work advanced the state of
the art on Co-Design, providing a framework and an al-
gorithm to design both hardware and control for high-
performance robots and aiming to the global optimality.
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Chapter 1

Introduction

This thesis mainly deals with concurrent design (Co-Design), which is a
novel technique that takes account of both hardware and control in the
design process to simultaneously optimize them and achieve top-level
performance. It is structured into five chapters and its goal is to show the
effectiveness of Co-Design, study its main limitations and propose some
methods to overcome them. More precisely, this introductory chapter 1
begins by presenting the classic techniques used to design robots, with a
particular focus on the two most popular tools for optimizing the control
strategy. The introduction ends with a table classifying the state-of-the-
art co-design frameworks present in the literature and with the list of
contributions of this thesis. The second chapter 2 presents an application
of Co-Design [1] which shows its efficacy in assessing the performance
of a redundant actuation system in terms of energy efficiency. This
study highlights the main problem affecting Co-Design which is treated
in the next chapter. The problem concerns the ease of getting stuck in
poor local optima when the co-design problem is highly non-convex and
characterized by many different solutions. This is faced in chapter 3,
which proposes an algorithm to learn a good control policy to be used
as initial guess provider for the co-design problem and escape from poor
optima aiming at global optimality [2]. This thesis ends with chapter 4
by drawing the conclusions of the study carried on so far and presenting
the possible future directions that it could take.
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INTRODUCTION

1.1 Classic Robot Design
Robotics has a long story. The term robot was coined for the first time by
the Czech play-writer Kerel Čapek when he wrote his Rossum’s Universal
Robots in 1920. From a cultural perspective though, we can find the
roots of robotics already in the Greek mythology, with legends like that
of Titan Prometheus or that of the giant Talus enacting the ambition of
human beings of giving life to their artifacts. Čapek used the term robot
to express a more specific and modern concept, which actually is the aim
of robotics nowadays: Rossum built an automaton to substitute human
beings in subordinate labor duties - indeed, robota means executive labor
in Slav languages. However, that automaton did not precisely embody
the image that people have nowadays of a robot because it was made
with organic material. We have to wait until the 1940s for the robot
to be conceived as a mechanical character, when the famous science
fiction writer Isaac Asimov referred to it as a mechanical automaton
with a programmable brain similar to a human being but without the
capability to experience and express feelings. It was Asimov himself to
use for the first time the term robotics to indicate the science of studying
robots. He also proposed the three fundamental laws that form the basis
of this science:

• A robot may not injure a human being or, through inaction, allow
a human being to come to harm.

• A robot must obey the orders given by human beings, except when
such orders would conflict with the first law.

• A robot must protect its own existence, as long as such protection
does not conflict with the first or second law.

These additional specifications regarding the behavior of a robot in-
tegrated the standard design process followed until then by engineers
and specialized technicians, which considered robots simply as common
industrial products. Disregarding the fact that in the collective imag-
ination robots have an anthropomorphic aspect, considering robots as
common industrial products is erroneous. In fact, the underlying pe-
culiar feature of robots is the capability to modify the environment in
which they operate: based on intrinsic rules of behavior and on data ac-
quired on its state and on the environment, a robot performs actions and
consequently change both its state and that of the environment. This
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INTRODUCTION

is the reason why robotics is also defined as the science that studies the
intelligent connection between perception and action.

It is clear that a robot is not a simple product, but rather a complex
mechatronic system whose design process requires skills from different
fields, such as mechanics, electronics, control and computer science. Let
us make some practical examples. The classical design process of a robot
starts with the definition of its mechanical structure, so by defining its de-
sired mechanical properties (e.g., stiffness, thermal resistance, etc.) and
limits (e.g., concerning weight, size, etc.). Then it continues with the
selection of the actuation system to provide the robot with the capabil-
ity to move its mechanical components to perform the necessary actions
to accomplish specific tasks (e.g., manipulation, locomotion, etc.). This
involves also the selection of the sensory system to enable the robot to
perceive both its state (proprioceptive sensors) and that of the environ-
ment (exteroceptive sensors). Finally, to connect perception to action, a
control architecture is designed (involving modeling and planning) and
implemented (requiring programming skills at different levels).

1.1.1 Robots classification
Robots can be classified either based on their mechanical structure or
considering their functional requirements. From a mechanical stand-
point, the basic distinction that can be made is between robots with
a fixed base, called robot manipulators, and those with a mobile base,
namely mobile robots. Whereas, from a functional perspective, robots
can be divided into two main categories: industrial robots, used in indus-
try and characterized by high execution repeatability and accuracy, and
advanced robots, featuring a high level of autonomy needed for operating
in unstructured environments.

Robot manipulators

A robot manipulator is a sequence of rigid bodies (links), starting from
a fixed base, connected by elements named joints that allow the relative
motion of the links. This sequence can be either an open kinematic chain,
when the two ends of the chains are connected by only one sequence of
links, or a closed kinematic chain if there are multiple sequences of links
connecting two joints. Each joint provides the robot with a single degree
of freedom (DoF), which can be either translational (prismatic joints)
or rotational (revolute joints). The number of DoF is equal to the num-
ber of joints in robot manipulators with an open kinematic structure,
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INTRODUCTION

whereas it is lower when the kinematics is closed because of the con-
straints modeling each loop. A manipulation task requires six DoF to
be performed because the manipulator’s extremity, consisting in a wrist
and an end-effector, needs three DoF to position an object in 3D space
and other three DoF to orient it. If the manipulator has more DoF than
the variables that the task requires to set, then the kinematics of the
manipulator is defined as redundant.

One of the key metrics to evaluate the manipulator’s capability to
reach objects is the workspace, that is the part of 3D space accessible by
the manipulator’s end effector, whose shape and volume depend on how
links and joints are distributed along the manipulator’s arm, as well as
on the joint limits. The type and sequence of joints composing the arm
are considered to further classify robot manipulators as:

• Cartesian: three prismatic joints with mutually orthogonal axes
that enclose a rectangular parallel-piped workspace and enable
straight motions in space.

• cylindrical: revolute joint at the base and two prismatic joints that
cover a portion of hollow cylinder as workspace.

• spherical: the first two joints are revolute while the last one is
prismatic and its workspace is a portion of hollow sphere.

• SCARA: stands for Selective Compliance Assembly Robot Arm
and is characterized by one prismatic joint and two revolute joints
disposed to have all the axes of motion parallel to each other.

• anthropomorphic: three revolute joints with the first joint axis or-
thogonal to the axes of the other two joints that are instead parallel
to each other. Its workspace is approximately a portion of a sphere.

All types of manipulators listed above have an open kinematics.
These robots are suited for manipulation tasks of relatively lightweight
objects. Whereas, when a task requires to position a large payload,
closed loops kinematics manipulators are the best option because of
their higher mechanical stiffness which also enables high operational
speeds. Closed-kinematics chains can be created by adding links to open-
kinematics manipulators in such a way that parallelogram geometries can
be identified in their structures. However, the mechanical stiffness gain
often implies a reduction of the workspace, such as in parallel manip-
ulators that have their base connected to the end-effector by means of
several kinematic chains.
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Mobile robots

The other class of robots is that of mobile robots, that are able to move
freely in the environment thanks to their mobile base. Typically, these
robots are used for exploration and inspection tasks rather than for tasks
requiring manipulation skills. Nonetheless, in the recent years compa-
nies (e.g. in the oil&gas sector) are promoting the development of mobile
robots with manipulation capabilities to enable full automation in their
production plants. Mobile robots can be further divided into two cate-
gories based on their locomotion system:

• Wheeled or tracked robots: the base is connected to the ground by
means of a system of (fixed, steerable, caster) wheels. They can
also have tracks over the wheels and carry trailers.

• Legged robots: they consist in multiple rigid bodies connected to
each other to form various mechanical structures, often inspired by
nature to mimic the biomechanical efficiency of animals like chee-
tahs and some insects. Locomotion is realized by the extremities
of the kinematic chain making periodic contacts with the ground.
Some examples are hexapods, quadrupeds and bipeds.

There exist also robots that merge the characteristics of both robot
manipulators and mobile robots, mounting a manipulator on their mo-
bile base and so able to perform tasks involving both manipulation and
inspection. In this case though, the design process is more challenging
since it is harder to achieve the mechanical balance of the whole robot
considering both its static and dynamic behavior, in addition to the dif-
ficulties related to the control architecture emerging from the coupling
of the two actuation systems.

Industrial robots

Industrial robots refer to the wide class of robots used in structured envi-
ronments, that is when their characteristics can be modeled a priori, that
typically are required to provide high task execution accuracy without
an high level of autonomy. Other two important features of industrial
robots are versatility and flexibility, meaning that an industrial robot
is designed to fit the widest set of potential applications (e.g. machin-
ing, assembly, welding etc.) as well as to be flexible enough to cover
the widest range of potential tasks either by physically replacing some
components (e.g. end-effector tool) or by reprogramming its software
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(e.g. to perform another motion). The general definition of a robot
given by the Robot Institute of America back in 1980 is actually what
an industrial robot represents nowadays: a reprogrammable multifunc-
tional manipulator designed to move materials, parts, tools or specialized
devices through variable programmed motions for the performance of a
variety of tasks. This set of characteristics comes from the continuously
increasing need for automation over the years, which entails the replace-
ment of human beings with robots in industrial processes for both task
execution and information processing. This is the reason why, from a
commercial perspective, these robots are by far the most widespread
robotic application. This, in turn, explains the fact that all the seminal
works that have been forming the state of the art of robot control during
the years were born from the need to solve industry related problems.

In the recent years, another important need has started emerging,
that is the capability of co-working between human beings and robots
for automatizing only specific phases of a task (e.g. heavy-duty, requir-
ing high-precision or involving repetitive and stressing operations). For
this reason, part of the robotics community has started focusing on the
development of collaborative robots (cobots).

Even though industrial robots are the most established robotic appli-
cation, there are still some challenges that roboticists are facing. They
can be shortly summarized as follows:

• Transition from nominal to human-friendly task specification to
manage foreseen and unforeseen variations occurring while the
robot is working.

• Efficient integration of manipulation capabilities into mobile plat-
forms to enhance the performance of existing solutions and design
of complete solutions combining efficiently mobility and manipu-
lation.

• Cost reduction of the components of high-performance robots, in
particular their actuation systems.

• Development of open reliable systems to be accepted for
widespread use.

• Design of robots for autonomous disassembly and recycling to en-
able sustainable manufacturing.
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Advanced robots

The two main characteristics defining advanced robots are decision au-
tonomy and capability of physical interaction with human beings. Con-
trary to industrial robots, the environment where advanced robots work
is not structured, meaning that there is no a priori knowledge on the
physical and geometrical properties of the environment. Moreover, in ad-
dition to robots that perform tasks in place of or in collaboration with
human operators (field robots), advanced robots include also robotic so-
lutions that more generally aim at enhancing the quality of life of human
beings (service robots). This category of robots is very broad and a thor-
ough discussion of the existing solutions is out of the scope of this thesis.
Nonetheless, the main subclasses are summarized in the following list.

• Legged robots: this family of advanced robots comprises hoppers,
humanoids, quadrupeds and hexapods. Legged robots are mainly
used to perform rescue, inspection and maintenance tasks in place
of human beings in hazardous environments (e.g. nuclear plants,
explosive areas, post-earthquake urban areas), in addition to other
applications including logistics (e.g., delivery) home assistance,
and agriculture.

• Unmanned Ground Vehicles (UGVs): these are wheeled or tracked
mobile platforms that are remotely controlled or teleoperated and
share the same goal of legged robots. Their technology is much
more mature, indeed they are very reliable and high-performance,
but their use is limited to rough terrains without big obstacles that
cannot be circumvented.

• Unmanned Aerial Vehicles (UAVs): commonly known as drones,
these advanced flying robots have reached an high level of auton-
omy, almost at the level of UGVs. They were initially developed
for military applications, then their range of applications rapidly
extended up to recreational use.

• Autonomous Underwater Vehicles (AUVs): mostly remotely oper-
ated vehicles (ROVs) and underwater drones for inspection. Their
main application concerns inspection and maintenance activities
in the oil&gas industry (e.g. pipelines, offshore platforms).

• Hybrid robots: they combine the features characterizing two or
more subclasses described in the previous points. A perfect exam-
ple of such advanced robots is the wheeled quadruped [3].
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Mechanical design process and criteria

Even when considering very different robots, the process to design their
mechanical architecture is rather standard and is based on the functional
requirements representing the family of tasks that they have to perform
and that translates into hardware requirements and specifications. The
different stages in the standard robot design process can be summarized
as follows:

• choose the kinematic chain topology describing the mechanical
structure. First, the robot type (serial, parallel, Π-joint or hy-
brid) is selected. Then, the type of joints of the various subchains
are chosen (e.g. revolute or prismatic).

• determine the geometry in terms of dimensions of the links (e.g. by
using the Denavit and Hartenberg (D-H) convention [4]) to satisfy
workspace requirements.

• compute the structural dimensioning of links and joints to meet
the static load requirements, considering the operation conditions
that are most demanding or most likely to occur.

• do the same to meet the dynamic load requirements (inertial effects
due to the movement of the links and the manipulation of objects).

• compute the elastodynamic dimensioning of the whole structure
to avoid those excitation frequencies that are most likely to char-
acterize the system under the operation conditions that are most
demanding or most likely to occur.

• choose the actuators and the mechanical transmissions.

Typically, a designer follows the steps listed above sequentially, but
iterations may be needed if something varies in the requirements, which
is the case when the operation conditions change or when supply chain
issues limit the choice of some components for instance. It is clear that
this process may easily become cumbersome and very long, requiring
many resources, especially if iterations are needed and they restart at
the third step.

Regarding the design criteria, they are almost always dictated by the
specific application and in most of the cases they aim at maximizing
some metrics measuring the final performance of the robot.
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The most common metrics regards the reachable workspace, which
often is desired to be symmetric (e.g. cylindrical, rectangular or spher-
ical) for control simplicity reasons. In other cases instead, it has to
assume a specific shape, for instance for safety reasons when working in
structured environments with many objects, in which case the workspace
is specified as a set of desired positions for the end-effector (task space).

Another performance metrics that is commonly used as design cri-
terium is dexterity, which is defined as the ability to move and apply
forces/torques in arbitrary directions with equal ease. Clearly the goal
in all cases is to maximize dexterity, which can be achieved by properly
design the mechanical structure besides its control strategy.

Other criteria concern the minimization of the total weight of the
robot (typical in space applications or to reduce costs), the maximization
of the stiffness of the mechanical structure to guarantee good control-
lability of the end-effector (e.g. in terms of positioning accuracy), and,
considering manipulators, the minimization of the generalized-inertia el-
lipsoid (defined as G = J−T MJ−1, where M is the inertia matrix and J
the Jacobian relating the joint velocities to those of the end-effector) to
facilitate controllability or lower the torque requirements.

If the goal of mechanical design criteria is the maximization of some
performance metrics or the minimization of some other cost-related met-
rics, it sounds natural to pose the mechanical design process as a con-
strained optimization problem, where the constraints may represents, for
instance, limits on the actuators or on the shape of the workspace. As it
will be clearer later, this is not enough to produce top-level performing
robots. Indeed, also control must be taken into account in the optimiza-
tion process, simultaneously with the hardware, and this is exactly the
premise of Co-Design.

1.2 Trajectory Optimization and Rein-
forcement Learning

This section deals with the control side of robot design and introduces a
learning technique that gained a lot of interest in the recent years, namely
Reinforcement Learning (RL), highlighting its similarities to Trajectory
Optimization (TO). Such a comparison is made because these methods
are very much used in the literature to solve co-design problems, as they
are powerful tools to find solutions of an optimization problem. Since
TO is widely used by the robotics community, this section simply re-
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calls its main concepts and properties, assuming the reader is already
familiar with the topic. The aim of this section is to provide the tools
to better analyze the literature review on Co-Design and understand in
detail the algorithm presented in chapter 3. For this reason, reviewing
the RL algorithms for continuous control is out of the scope of this sec-
tion, which focuses on the Deep Deterministic Policy Gradient (DDPG)
algorithm [5].

1.2.1 Trajectory Optimization
Optimal control (OC) is a powerful framework for formulating control
problems using the language of optimization. It has a very long history,
with its origins dating back to the calculus of variations in the 17th
century, and it has been used to solve control problems in many different
fields, such as engineering, operations research, finance, and even social
sciences. The turning point for OC was the invention of the computer in
the 1950s, which provided the computational means to solve large-scale
optimal control problems.

An optimal control problem (OCP) takes the following general form:

minimize
x(·), u(·)

∫ tf

t0

l(x(t), u(t)) + ltf
(x(tf ))dt (1.1a)

subject to ẋ(t) = f(t, x(t), u(t)) ∀t ∈ [t0, tf ] (1.1b)
x(t0) = x0 (1.1c)
g(t, x(t), u(t)) ≤ 0 ∀t ∈ [t0, tf ] (1.1d)

where l(x(t), u(t)) is the running cost, ltf
(x(tf )) is the terminal

cost, f(t, x(t), u(t)) is the system dynamics (non-linear when considering
robotic systems), x0 are the initial conditions and g(x(t), u(t), t) are the
path constraints. As it will be discussed more into detail in section 1.3,
an OCP becomes a co-design problem if one considers also some design
parameters ρ as decision variables in addition to x(·) and u(·), as follows:

minimize
x(·), u(·), ρ

∫ tf

t0

l(x(t), u(t), ρ) + ltf
(x(tf ), ρ) dt (1.2a)

subject to ẋ(t) = f(t, x(t), u(t), ρ) ∀t ∈ [t0, tf ] (1.2b)
x(t0) = x0 (1.2c)
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Table 1.1: Families of methods for solving OCPs

Search
Optimize ⇒ Discretize Discretize ⇒ Optimize

Continuous Time Discrete Time
Global Hamilton-Jacobi-Bellman Dynamic Programming

Local
Pontryagin Maximum Principle,
Calculus of Variations, Indirect

Methods
Direct Methods

g(t, x(t), u(t), ρ) ≤ 0 ∀t ∈ [t0, tf ] (1.2d)

It is worth noticing that the solutions of an OCP, namely x(·) and
u(·), are trajectories, thus infinite-dimensional objects, and that also the
constraints are infinitely many. This is the reason why such problems
are also known as Trajectory Optimization (TO) problems. Therefore,
solving an OCP - or TO problem - must involve discretization at some
point, which can be done before or after the optimization process of the
decision variables. This distinction, together with the type of search
that is performed, namely local or global, characterize the four families
of methods that have been developed during the years for solving OCPs,
as reported in Table 1.1.

This section restricts itself only to recalling some concepts of the
direct methods, as they can easily handle equality and inequality con-
straints, which is not possible with dynamic programming that also does
not scale well to high-dimensional systems, and are numerically more
stable and easier to initialize than indirect methods. Moreover, direct
methods are the only ones that have been used for the works presented
in the next chapters.

The key idea behind all direct methods is first to discrete the OCP
and then to use a non-linear programming (NLP) solver to find a local
optimum that minimizes the cost function. The discretization is per-
formed by parametrizing in some way (e.g. with polynomials) the state
and control trajectories, and then the constraints are enforced on the
discretized time grid t0 < t1 < ... < tN . There are three types of direct
methods:

• Single Shooting

• Collocation

• Multiple Shooting
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Single Shooting

This is the simplest direct transcription method for TO and it works
by removing x(·) from the decision variables and discretizing only u(·).
Most often, the continuous control input is approximated with a piece-
wise function, which implies the alignment of the discontinuities with the
steps of integration, but also other functions can be used, as orthogonal
polynomials. Once u(·) is discretized on t0 < t1 < ... < tN , the state
trajectory is obtained by integrating the dynamics with some integration
scheme (high-order integration schemes, as Runge-Kutta 4, are typically
more efficient). Since the gradient of the cost and the Jacobian of the
constraints, which depend on the state, must be evaluated to solve the
NLP, the sensitivities of the integration scheme must be computed. Sin-
gle shooting is suited for simple problems, whereas it struggles with more
complicated problems as the relationship between the decision variables
and the cost and constraints is not well approximated by the linear or
quadratic model used by the NLP solver.

Collocation

Collocation is a more advanced transcription method because it dis-
cretizes both u(·) and x(·) on a fine grid t0 < t1 < ... < tM with a
polynomial for each time interval. By doing so, the constraint represent-
ing the dynamics is replaced by M constraints ensuring the consistency
between polynomials at the M collocation nodes. The fact of having also
the state as decision variable allows one to initialize it randomly or with
some specific techniques, which is beneficial to avoiding getting stuck in
poor local minima. Collocation works well with unstable systems and,
even though the resulting optimization problem is large, it is sparse, so
easily solvable with sparse NLP solvers.

Multiple Shooting

Multiple Shooting discretizes the control piecewise on a coarse grid
t0 < t1 < ... < tN and integrates numerically the dynamics in each
interval, as single shooting does for the whole trajectory, starting with
an artificial initial value (N − 1 new decision variables). Once obtained
the trajectory pieces, the cost integral is computed numerically and N
constraints (called defects) are added to the NLP to ensure continuity
in the nodes by closing the gaps between the starts and ends of succes-
sive trajectory pieces. Even though dividing the state trajectory into
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segments increases the number of decision variables and the number of
constraints, this actually makes the optimization easier for NLP solvers.

1.2.2 Basic elements in Reinforcement Learning
Before examining in depth some of the key ideas of RL, it is worth
introducing some basic concepts. There are two main elements in any
RL problem:

• Agent: learner and decision maker that performs actions following
its policy and receives rewards and observations as results of the
interaction with the environment.

• Environment: source of rewards and observations for the agent. It
includes all the elements that are beyond the agent’s direct control.

The reward Rt is a scalar feedback signal received at time step t
and the goal of the agent is to maximize its cumulative value, namely
the return. Reinforcement Learning is based on the Reward hypothesis,
which asserts "That all of what we mean by goals and purposes can be
well thought of as maximization of the expected value of the cumulative
sum of a received scalar signal (called reward)" [6]. The observation Ot

is a set of information describing the environment and/or agent state
and the action At is the action performed by the agent that perturbs
the state of the environment and/or the agent.

Reinforcement Learning is strongly linked to the concept of state,
which is the input of both the policy and the Value function. We call state
St the set of information that describes the evolution of the interaction
between agent and environment. In general, the state can be of two
types:

• environment state Se
t , which is the comprehensive representation

of the environment that in general is not accessible to the agent
and contains all information that defines the next reward and ob-
servation.

• agent state Sa
t , which is the agent representation adopted by the

algorithm that, together with the environment state, determines
the next action that the agent will perform.

13
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Agent

Environment

action
reward
state


Figure 1.1: Schematic of a general Reinforcement Learning algorithm

1.2.3 Markov Decision Process
The mathematical mean used to formally define all elements constituting
an RL problem is the Markov Decision Process (MDP) theory.

A Markov Process (MP), or Markov chain, is a formalization of se-
quential decision making that is useful for describing the evolution of the
interaction between environment and agent in an RL problem. It relies
on the definition of Markov state.

Definition 1.1. A state St is Markov if and only if

P [St+1|St] = P [St+1|S1, . . . , St]

This means that if a state is Markov, then it completely character-
izes the environment and includes all the information about past agent-
environment interaction that altogether influences the future decisions
(Markov property).

Definition 1.2 (Markov Process). A Markov Process is a tuple
< S,P > in which S is a finite set of Markov states and P is the
state transition probability matrix.

The matrix P takes the following form:

P =

Ps1,s1 . . . Ps1,sn

... . . . ...
Psn,s1 . . . Psn,sn


where each element

Psi,sj
= P (St+1 = sj |St = si)]
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is the transition probability from si at time t to sj at time t+1 with
si, sj ∈ S.

When also a reward signal is involved in the process, the MP turns
into a Markov Reward Process, defined as follows.

Definition 1.3 (Markov Reward Process). A finite Markov Reward Pro-
cess (MRP) is a tuple < S,P,R, γ > where S is a finite set of Markov
states, P is the state transition probability matrix, R is a reward func-
tion with Rs = E[Rt+1|St = s] and γ ∈ [0, 1] ⊂ R is a discount factor.

Definition 1.4. The return Gt is the total discounted reward from time
step t onward

Gt = Rt+1 + γRt+2 + · · · =
∞∑

k=0
γkRt+k+1

The introduction of the return aims to achieve a far-sighted evalua-
tion of each state, while the discount factor γ is useful from a mathemat-
ical point of view to avoid infinite returns in cyclic Markov processes.
Therefore, one may opt for a "myopic" approach in the state evaluation
using a very small γ, or a more "far-sighted" one if γ tends to 1. The ex-
pectations in Def. 1.3 and Def. 1.4 are needed when there are sources of
stochasticity affecting the interactions between agent and environment.
In this case, an expectation is used also to compute the Value function,
defined as follows.

Definition 1.5. The Value function v(s) of an MRP is the expected
return starting from state s

v(s) = E[Gt|St = s]

In other words, the Value function measures the expected long-term
value of being in a certain state s (at time t in an episodic setting with
finite terminal reward).

The Value function defined in Def. 1.5 can be decomposed in two
terms:

v(s) = E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s] (1.3)
= E[Rt+1 + γv(St+1)|St = s] (1.4)

= Rs +
∑
s′∈S

γPs,s′v(s′) (1.5)
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In (1.4) the first term Rt+1 is the immediate reward and the second
one γv(St+1) represents the discounted value associated to the next state
St+1. (1.4) is called Bellman equation and it can be expressed in matrix
notation as follows:

v̄ = r̄ + γP v̄ (1.6)

where v̄ = [v(s1), . . . , v(sn)]T and r̄ = [Rs1 , . . . ,Rsn ]T
(1.6) can be solved analytically with respect to the Value function:

v̄ = (I − γP)−1r̄ (1.7)

However, this implies the knowledge of the transition probability ma-
trix, which is usually unknown, and requires a matrix inversion opera-
tion, whose computational complexity grows as O(n3). Therefore, iter-
ative methods are the only feasible way for solving large MRPs.

A last step is needed to pass from an MRP to a Markov Decision
Process (MDP) and it involves the modeling of an agent able to perform
actions that affect the next state.

Definition 1.6 (Finite Markov Decision Process). A finite Markov Deci-
sion Process (MDP) is a tuple < S,A,P,R, γ > where S is a finite set of
Markov states, A is a finite set of actions, P is the state transition proba-
bility matrix with probabilities Pa

s,s′ = P [St+1 = s′|St = s, At = a], R is
a reward function with Ra

s = E[Rt+1|St = s, At = a] and γ ∈ [0, 1] ⊂ R
is the discount factor.

Definition 1.7. A policy π is a distribution over actions given states

π(a|s) = P [At = a|St = s]

It is worth noticing that if the policy is deterministic, then it boils
down to a direct mapping π : S → A.

Given an MDP < S,A,P,R, γ > and a policy π(a|s), the sequence
(S1, S2, . . . , Sn) is a Markov Process < S,Pπ > and the sequence of
states and rewards (S1, R1, S2, R2 . . . , Sn, Rn) is a Markov Reward Pro-
cess < S,Pπ,Rπ, γ >. In case of a stochastic policy, the probability
matrix Pπ and reward function Rπ are redefined as follows:

Pπ
s,s′ =

∑
a∈A

π(a|s)Pa
s,s′ (1.8)
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Rπ
s =

∑
a∈A

π(a|s)Ra
s , (1.9)

where Pa
s,s′ = P [St+1 = s′|St = s, At = a] and Ra

s =
E [Rt+1|St = s, At = a].

In an MDP, also the meaning of the Value function slightly changes
compared to Def. 1.5, and another important component called action-
value function needs to be defined.

Definition 1.8. The Value function vπ(s) of an MDP is the expected
return starting from state s and following the policy π

vπ(s) = Eπ[Gt|St = s]

Definition 1.9. The action-value function qπ(s, a) is the expected re-
turn starting from state s, performing action a ∈ A, and following policy
π afterwards

qπ(s, a) = Eπ[Gt|St = s, At = a]

Thus, in an MDP, each policy is characterized by a specific Value
function. The action-value function instead is useful for determining the
search directions of the state-action space leading to improvements of
the policy.

Consequently, the Bellman equation (1.4) can be reformulated as
follows:

vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s] (1.10)
(1.10) is called Bellman Expectation Equation (BEE) and differs from

(1.4) because in this case the expectation is computed considering the
policy π. The BEE can be rewritten using the action-value function as
follows:

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1)|St = s, At = a, At+1 ∼ π] (1.11)

The last step consists in defining what is meant by solving an MDP,
that is determining the optimality condition for both Value function and
policy.

Definition 1.10. The optimal Value function v∗(s) is the maximum
Value function considering all possible policies:

v∗(s) = max
π

vπ(s)
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Definition 1.11. The optimal action-value function q∗(s) is the maxi-
mum action-value function considering all possible policies:

q∗(a, s) = max
π

qπ(a, s)

Theorem 1.1. Considering a partial ordering among policies:

π ≥ π′ ⇐⇒ vπ(s) ≥ vπ′(s), ∀s

For any MDP:

• There exists one (or more) optimal policy π∗ that is better than or
equal to all other policies π:

π∗ ≥ π,∀π

• All optimal policies lead to the optimal Value function:

vπ∗(s) = v∗(s)

• All optimal polices lead to the optimal action-value function:

qπ∗(s, a) = q∗(s, a)

At this point, we can link the concepts of optimal Value function
and optimal action-value function, obtaining the Bellman Optimality
Equations:

q∗(s, a) = Ra
s +

∑
s′∈S
Pa

s,s′v∗(s′) (1.12)

v∗(s) = max
a∈A

q∗(s, a) (1.13)

By exploiting (1.11) and (1.13) and considering Th. 1.1, we obtain a cri-
terion to characterize an optimal policy π∗. (1.13) expresses the Bellman
principle of optimality which plays a crucial role in any RL algorithm.

To conclude, given these definitions, our task is to find an optimal
policy that maximizes the Value function of an MDP.
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1.2.4 Dynamic Programming
One of the most commonly used approaches for solving an MDP is Dy-
namic programming (DP) [7]. DP leverages the Bellman principle of
optimality to break down the problem of finding the optimal control
strategy into a sequence of simpler sub-problems, whose solutions are
stored so that each sub-problem is only solved once. It is a very gen-
eral method that encompasses different strategies having in common the
convergence to an optimal solution in an iterative fashion based on the
Bellman principle of optimality.

Policy Iteration

Policy iteration [8] is a DP algorithm that, given a starting policy π0 as
initial guess, iteratively converges to the optimal policy π∗ by alternating
the two phases of policy evaluation and improvement.

In the policy evaluation phase, given a policy πk, the goal is comput-
ing its state Value function vπk

, which means sweeping through the state
space and computing the return obtained following πk starting from each
single state. Even though the value function could be computed in this
way, in practice it is much more convenient from a computational stand-
point to approach this computation iteratively, leveraging the Bellman
principle of optimality. Considering an n-dimensional state-space and,
if the environment’s dynamics is known then this process boils down to
solving a linear system of n Bellman equations:

vπ(s) = Rπ
s + γ

∑
s′∈S
Pπ

s,s′vπ(s′) ∀s ∈ S (1.14)

When the state-space is large, this computation can be done itera-
tively by using the Bellman equation as an update rule starting from an
initial approximation v0:

vk+1(s) = Rπ
s + γ

∑
s′∈S
Pπ

s,s′vk(s′) ∀s ∈ S (1.15)

The sequence of approximations vk can be shown to converge to
vπ as k → ∞ under the same conditions guaranteeing the existence
of vπ, namely that γ < 1 or that the the policy eventually leads to a
terminal state starting regardless the initial state [9]. Once computed vπ,
the algorithm proceeds with the improvement phase where the policy is
updated by acting greedily with respect to vπ. This means that, in each
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state s, the updated action a is the one that maximizes the action value
function qπ(s, a), which is known after the evaluation phase and is useful
to understand which action performs best in the short term, precisely
after one step of lookahead. Thus, the improved policy is obtained as
follows:

πk+1(s) = argmax
a∈A

Ra
s + γ

∑
s′∈S
Pa

s,s′vπ(s′) (1.16)

This alternate double-phase process is repeated with πk+1 used in
place of πk, unless vπk+1(s) = vπk

(s) for all s ∈ S, which represents the
termination condition of the algorithm.

Value Iteration

Value Iteration is a simpler DP algorithm compared to Policy Iteration,
since it deals only with the Value function and retrieves the optimal
policy only after reaching convergence. Indeed, it truncates the policy
evaluation step of policy iteration to just one sweep of the state-space
and improves the policy in the same step in which it updates the Value
function. Thus, the algorithm starts with an initial guess v0 and then it
iteratively updates the Value function vk as follows:

vk+1(s) = max
a∈A

(
Ra

s +
∑
s′∈S
Pa

s,s′vk(s′)
)
∀s ∈ S (1.17)

The sequence of vk can be shown to converge to v∗ for k →∞ under
the same assumptions made for the existence of v∗. In practice, the
iterations are stopped once the change of the Value function in a sweep
is below a given threshold. When this condition is met, the optimal
policy is simply recovered by choosing the actions that lead to the states
with highest value.

π∗(s) = argmax
a∈A

(
Ra

s +
∑
s′∈S
Pa

s,s′v∗(s′)
)

(1.18)

Since Value Iteration does only a single iteration of policy evaluation
and usually stops before converging to the actual optimal Value function,
in practice it generally performs better than Policy Iteration and finds a
good approximation of the optimal Value function in much fewer steps.
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Asynchronous Dynamic Programming

In both Policy Iteration and Value Iteration algorithms, the updates of
the Value function are carried out by sweeping the entire state space and
this is the reason why they are called synchronous approaches. In case
of large state sets these algorithms are not efficient and such computa-
tion may be prohibitively expensive from a computational point of view.
To overcome this problem, Asynchronous Dynamic Programming algo-
rithms update the values of states not systematically, without following
a specific order and skipping some states at each update. This means
that some states could be updated more frequently than others or using
old values from previous iterations, although the correct convergence is
ensured only if all states continue to be updated.

The asynchronous approach is much more flexible than the syn-
chronous one, as, for example, it enables the customization of the learn-
ing procedure by avoiding specific states that are beyond interest to focus
instead on other regions of interest of the state space. Another example
is the prioritized sweeping, which prioritizes those states whose value es-
timate is far from the true value by defining an update order that ranks
the states based on the Bellman error :

Eb(s) =
∣∣∣max

a∈A

(
Ra

s −
∑
s′∈S
Pa

s,s′vk(s′)
)
− vk(s)

∣∣∣ (1.19)

Generalized Policy Iteration

At this point, it is clear that Policy Iteration, Value Iteration and Asyn-
chronous dynamic programming can be seen as three declination of a
single general approach for solving MDPs: the Generalized Policy Itera-
tion (GPI) method. This term simply refers to the general idea of letting
the two phases of policy evaluation and policy improvement interact, in-
dependently of the details of the two processes, as the coverage extent
of the state space at each update or the number of iterations for each
policy evaluation. At the beginning, the two phases may seem to pull
in different directions, meaning that updating the policy to act greed-
ily with respect to the Value function usually makes the Value function
incorrect for the new policy, and updating the Value function consis-
tently with the new policy implies that the policy is no longer greedy.
In the long term though, the interaction of the two processes lead to a
single common solution, namely the optimal value function and optimal
policy. In practice, most of the RL algorithms can be classified as GPI

21



INTRODUCTION

frameworks. Another key to understanding the differences among GPI
algorithms is the trade-off between exploration and exploitation. If, for
instance, more steps of evaluation are performed, which means more up-
dates of the Value function, then exploration is encouraged since more
knowledge about the environment is acquired before updating the pol-
icy. Or, if the frequency of policy updates is increased, exploiting the
Value function and maximizing the outcome by acting greedily, then ex-
ploitation is favored. The same trade-off exists in the choice between
synchronous and asynchronous updates, where deciding to select more
frequently some particular states based on specific criteria is clearly a
more exploitative approach. In any case, since we are dealing with a
finite state space under the assumption of finite MDP, the convergence
to an optimal solution is guaranteed, while the rate of convergence is
strongly affected by the trade-off between exploration and exploitation.

1.2.5 Monte Carlo and Temporal-Difference
The algorithms presented so far can be used to find an optimal behavior
only if the environment is known, precisely its state transition probability
matrix Pa

s,s′ . If such information is not available, the DP principle can
still be exploited to find an optimal policy splitting the problem into two
phases: the approximation of the optimal Value function (Prediction),
and the estimation of the optimal policy (Control).

This section introduces the two main techniques based on the ac-
quisition of experience samples through interactions between agent ad
environment used by the RL community to approximate the Value func-
tion, namely Monte Carlo (MC) and Temporal Difference (TD).

Monte-Carlo Prediction

The Monte-Carlo approach for estimating the value function is probably
the most straightforward way for learning from experience. In this case
the environment is considered to be episodic, which means that each
episode has finite length. The estimation of the value of a state s is done
by considering the mean return of different episodes starting from s: as
their number increases, the average return will converge to the expected
value given by Def. 1.5.

Two types of estimations can be distinguished: First-Visit MC, which
takes into account only the first time a state is entered in an episode,
and Every-visit MC, that considers each time the same state is visited in

22



INTRODUCTION

the episode. In both cases, it can be shown that the estimates converge
quadratically to the actual state Value function as the number of visits
tends to infinity [10].

MC can be used also to estimate the action-value function, perform-
ing the policy rollouts not only starting from all states but also for all
possible initial actions. Thus, every state-action pair must be visited,
which is not guaranteed in general. One way to achieve this is simply
making each new episode start from a random state-action pair so that
every pair has non-zero probability to be chosen.

Since MC is a general method that does not require any particular
assumption on the environment, it can be applied also when the envi-
ronment is known as an alternative to DP or even if it is non-stationary,
namely when Pa

s,s′ and Ra
s,s′ change in time.

It is worth noting that the MC estimate of the value of a state does
not depend on the estimated value of the successor state as in the case
of DP, in other words MC does not perform bootstrapping.

Temporal-Difference Prediction

Temporal-Difference is a fundamental approach used in several RL al-
gorithms that combines ideas from MC and DP. As MC, its learning
process is experience-driven and does not need to model the dynamics
of the environment. Similar to iterative DP instead, it bootstraps, so
it exploits previous estimates to create targets towards which the Value
function is updated. There are many different variants of TD based on
the selected number of lookahead steps. The update rule of the simplest
TD method, namely TD(0) or one-step TD, is as follows:

vk+1(s) = vk(s) + α
[
Rπ

s + γvk(s′)− vk(s)
]

(1.20)

where α ∈ (0, 1] is the step size and the term Rπ
s + γvk(s′) is called

TD target, which is also used to define the TD error :

δt = Rπ
s + γvk(s′)− vk(s) (1.21)

In case one selects n lookahead steps, the update rule becomes:

vk+1(s) = vk(s) + α

[
i=n−1∑

i=0
Rπ

si′ + γvk(sn′)− vk(s)
]

(1.22)
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Comparison between MC and TD Prediction

By comparing MC and TD approaches, one can better understand the
effects of bootstrapping. TD can learn online, before knowing the final
outcome, and with episodes of undefined length, while MC works only
on finite episodes and has to wait their end before updating and actually
learning. These two alternatives lead to a different trade-off between
bias and variance of the value estimates. MC estimation is not biased
because the average of the returns from state s and following π is an
unbiased estimate of vπ(s); whereas, even though the true TD target
Rπ

s + γvπ(s′) is unbiased as well, the TD target Rπ
s + γvk(s′) used in

the TD update rule is actually biased due to the initial guess for the
bootstrap value. On the other hand, MC suffers from variance due to
exploration much more than TD, especially TD(0), since it performs
complete rollouts rather than only n steps in the environment.

1.2.6 Policy gradient methods for continuous control
The methods presented in the previous sections can be applied to MDPs
with discrete state spaces, which implies that both the Value function
and the action-value function can be modeled with lookup tables, where
a scalar value V (s) or q-value Q(s, a) is associated to each state or state-
action pair. This is not possible when dealing with very large or con-
tinuous MDP problems due to the well-known curse of dimensionality:
the required memory for storing the value or q-value for each state or
state-action pair would be too large and exploring the whole state or
state-action space would be unfeasible. Thus, parameterized function
approximators with parameter vector θ ∈ Rd must be used to approx-
imate the value functions. These methods can generalize the update
for states or state-action pairs that are not explored, by modifying the
parameters and consequently the shapes of the approximating functions
v̂(s, θv) ≈ vπ(s) and q̂(s, a, θq) ≈ qπ(s, a). Such function approximators
can actually be employed also in the algorithms presented so far, en-
abling their application also to partially observable problems, for which
the Markov state assumption Def. 1.1 does not hold.

There are many function approximators commonly used by the Su-
pervised Learning (SL) community that could be applied to RL problems
for both prediction and control tasks. However, in practice, some tech-
niques are more suitable than others considering the peculiar aspects
of RL. In fact, an RL algorithm differs from the general SL framework
mainly because:
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• The training samples are correlated, if updates are performed on-
line.

• When bootstrapping, the value function targets are non-stationary,
since the targets also depend on the approximated function.

• The acquisition of the training samples may depend on the cur-
rently learned policy.

All the methods presented so far rely on the computation or ap-
proximation of the optimal Value function or action-value function to
retrieve the optimal control policy, so they can be classified as action-
value methods. This section introduces instead a family of methods that
learn a parameterized policy that can be used to select actions without
the need for value functions, which are called policy gradient methods.
Policy gradient methods can be divided into two classes: actor-only and
actor-critic. The difference regards the use or not of a "critic", which
models the learned Value function or action-value function, in addition
to an "actor", which is an explicit representation of the learned policy.
In the general case of a stochastic policy, one can express the probability
to take action a at time t being in state s with parameters θπ as follows:

π(a|s, θπ) = P [At = a|St = s, θπ
t = θπ] (1.23)

The way these methods learn the optimal policy parameters is based
on the gradient of a scalar performance measure J(θπ) with respect to
θπ. The goal is maximizing the policy performance, thus they update the
policy parameters by approximating gradient ascent in the performance
measure as follows:

∆θπ = αÿ�∇θJ(θπ) (1.24)

where ÿ�∇θJ(θπ) is a stochastic estimate whose expected value approx-
imates ∇π

θ J(θπ) and α is the step size in the gradient ascent.
In most cases, the objective J(θπ) is related to the concepts of Value

function and action-value function. For example, when considering an
episodic environment starting from a non-random initial state and a
policy π(a|s, θπ) = πθ(s), one could employ the initial state value J0(θπ):

J0(θπ) .= vπθ
(s0) (1.25)

while in continuing environments or episodic ones starting from ran-
dom initial states one could use the average reward rav(πθ):
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rav(πθ) .=
∑
s∈S

dπθ
(s)

∑
a∈A

πθ(a|s)
∑
s′∈S
Pa

s,s′Ra
s (1.26)

where dπθ
(s) is the state distribution under πθ. In this case, one

should maximize the differential value, defined as:

JdiffV (s|θπ) .=
∑
a∈A

πθ(a|s)
∑
s′∈S
Pa

s,s′ [Ra
s − rav(πθ) + JdiffV (s′|θπ)]

(1.27)
Regardless the choice of J(θπ), the analytical computation of

∇θJ(θπ) turns out to be problematic. In fact, when the policy pa-
rameters θπ change, they also modify the state distribution dπθ

(s), and,
since the rewards depend on both the action choice and the distribution
of states in which those choices are made, they also affect the final per-
formance. The problem is that the way in which the policy modifies the
state distribution is dependent on the environment and is unknown in
most cases. Fortunately, the solution comes from the Policy Gradient
Theorem.
Theorem 1.2 (Policy Gradient Theorem). For any differentiable pol-
icy πθ(s) and for an objective function J ∈ {J0, 1

1−γ JavV , JavR}, the
gradient of the objective function is

∇θπ J(θπ) = Eπθ

[
∇θπ ln

(
π(a|s, θπ)

)
qπθ

(s, a)
]

which is often reformulated as follows:

∇θπ J(θπ) ∝
∑
s∈S

dπθ
(s)

∑
a∈A

qπθ
(s, a)∇θπ π(a|s, θπ) (1.28)

and in the case of deterministic policy [11]:

∇θπ J(θπ) = Eπθ
[∇aqπθ

(s, πθ(s)∇θπ π(s, θπ))] (1.29)
Thus, thanks to this theorem, ∇θπ J(θπ) can be approximated as it

does not depend anymore on the derivative of the state distribution.
It is worth noticing that the term ∇θ ln

(
πθ(a|s)

)
, which can be

rewritten as ∇θπθ(a|s)
πθ(a|s) and is often referred to as score function or el-

igibility vector, is the direction in the parameters space which leads to
an increase in the probability of taking action a. The update in that
direction is weighted by the value of taking that action and the policy
improves as result of an overall increase in the likelihood of actions with
higher values.
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Deep Deterministic Policy Gradient algorithm

Among the policy gradient algorithms, the first one that could be applied
to the case of continuous control is the Deep Deterministic Policy Gradi-
ent algorithm [5]. It will be the only policy gradient algorithm that will
be introduced in this section because it is fundamental to understand
the algorithm presented in chapter 3, which has been developed starting
exactly from DDPG.

DDPG is a model-free actor-critic algorithm that exploits NNs as
function approximators to learn control policies in continuous action
spaces, also high-dimensional ones. It uses an approach similar to Deep
Q-network (DQN) [12] for learning the critic representing the action-
value function, thus in the same spirit as Q-Learning [13], while employ-
ing the deterministic policy gradient to train the actor, namely the pol-
icy itself. It features an experience replay buffer to store the experience
transitions (st, at, rt, st+1) acquired during training and two additional
networks, one for the actor π̄(s, θπ̄) and one for the critic q̄(s, a, θq̄),
which are used as target networks and are updated slower than the actor
and critic to enhance training stability.

The actor-critic approach in this case is used to efficiently extend the
DQN algorithm to high dimensional and/or continuous action spaces.
In fact, the policy learned by DQN is greedy with respect to the action
value function, so the algorithm has to perform a maximization over
actions in order to update the networks, which is unfeasible on a large
or continuous set of actions.

The parameters θq of the critic are updated using the TD(0) target:

yT D = rt + γq̄
(
st+1, at+1, θq̄

)
, (1.30)

where at+1 = π̄θ(st+1) is the action given by the target policy.
Therefore, as DQN, DDPG minimizes the mean squared error be-
tween the value predicted by the critic and the TD(0) target, namely
LC = (yT D − q (st, at, θq))2. From a practical perspective, to improve
training stability, the experience transitions are sampled in mini-batches
of length S from the buffer and the critic loss is computed by averaging
the losses associated to each transition of the mini-batch, that is:

LC = 1
S

S∑
i=0

(yT D − q (si, ai, θq))2 (1.31)

A large mini-batch would mean a smooth update in the stochastic
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gradient descent, but if it is too large then the update would be too small
and the time to reach convergence would become excessively long.

The actor is updated (always in mini-batches) to maximize the ex-
pected return, thus the loss function is simply:

LA = − 1
S

S∑
i=0

q(si, ai, θq) (1.32)

In this way the update is done using the sampled policy gradient:

∇θπ J(θπ) ≈ 1
S

S∑
i=0
∇aiq (si, ai, θq) |ai=π(si)∇θπ π(si, θπ) (1.33)

Regarding the target networks, their parameters are updated by
slowly tracking those of the learned networks:

θq̄ ← τθq + (1− τ)θq (1.34)
θπ̄ ← τθπ + (1− τ)θπ (1.35)

where 0 < τ ≪ 1 controls the delay of the target networks updates.
DDPG is an off-policy algorithm, meaning that the policy learned

during training is different from the one used to explore the state-action
space, which is called behavior policy. The off-policy approach enables
decoupling the exploration from the policy learning process. In order to
generate the behavior policy µ(s), DDPG adds some noise sampled from
a noise process N to the currently learned policy πθ(s):

µ(s) = πθ(s) +N (1.36)

The choice of N should be carefully made based on the environment
and the task to be accomplished, because it has a strong impact on
the learning process since it determines which samples are stored in the
buffer. Indeed, when using function approximators, the regions of the
domain where the estimates are accurate depend on the data distribu-
tion, meaning that the approximation error is lower where the sample
density is higher. For the sake of completeness, the pseudocode of DDPG
is reported in Alg. 1.
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Algorithm 1: Deep Deterministic Policy Gradient
1 begin
2 Initialize replay memory D;
3 Randomly initialize actor and critic network parameters θt,wt;
4 Initialize targets parameters θ−

t ← θt,w−
t ← wt;

5 for episode in 1..M do
6 Initialize random process N ;
7 Observe initial state s1;
8 for step in t = 1..T do
9 at = π(st, θt) +Nt;

10 Apply at, observe state st+1 and reward Rt+1;
11 Store transition (st, at, Rt+1, st+1) in D;
12 st ←− st+1;
13 Sample a minibatch of M random transitions

(sj , aj , Rj+1, sj+1) from D;

14 yj =
{

Rj+1 if j + 1 = T

Rj+1 + γq̂
Ä
sj+1, π

(
sj+1, θt

−) , w−
t

ä
otherwise

;

15 Obtain wt+1 by minimizing w.r.t w
1
N

∑M
j=1

î
(yj − q (sj , aj , w))2ó, with step-size αw ;

16 Obtain θt+1 by following the gradient
1
N

∑M
j=1∇aq̂ (sj , aj , wt+1)∇θπ (sj , θ) with step-size αθ;

17 θ−
t+1 ←− τθt+1 + (1− τ)θ−

t ;
18 w−

t+1 ←− τwt+1 + (1− τ)w−
t ;

19 end
20 end
21 end
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DDPG: critical aspects

When applying DDPG, there are different aspects that are critical to
avoid poor final results or, in the worst case, divergence in training.
Indeed, this algorithm is characterized by the three elements of the so-
called deadly triad [14], which groups the three major sources of insta-
bility and divergence: function approximation, bootstrapping and off-
policy learning. As already mentioned, the effects of bootstrapping and
function approximation can be limited by using an experience replay
buffer and target networks.

The element that has not been addressed yet is the effect of the ex-
ploration strategy on the learning process: since the algorithm learns
off-policy, there could be some issues when the distribution of states
and actions stored in the replay buffer is not similar to the distribution
of states and actions that the currently learned policy would produce.
Indeed, when updating the parameters of the action-value function, ex-
trapolation errors [15] may occur. Considering deterministic environ-
ments, the sources of extrapolation errors can be of two types: if any
state-action pair (s, a) is not present in the buffer (absent data), then the
estimated action-value for those pairs can be largely different from the
real one, especially if using non-linear function approximators (e.g. neu-
ral networks); if the distribution of transitions in the buffer is different
from the distribution of states and actions that the current policy would
experience (training mismatch). In other words, if the exploration noise
causes important changes in the state-action visitation distribution, the
off-policy algorithm may achieve very poor learning performance. In an
actor-critic setting, as in DDPG, where the actor is updated using the
critic and viceversa, extrapolation errors may easily lead to divergence.
In order to mitigate the training mismatch, the choice of an exploration
noise with zero expected value and low variance may help, with the hope
that in the long run the bias to the policy’s actions distribution should
be limited. To compensate for issues due to insufficient data, especially
at the start of the training, one could consider to add an initial warm
up phase to the training, where the buffer is filled up with experience
transitions without training the networks. The aim is reducing the prob-
ability of having an initial biased estimation of the action-value function
that could quickly lead to divergence of the training. This strategy, cou-
pled with a random initialization of the state, should also decrease the
danger of running into absent data by having transitions in the buffer re-
lated to regions of the state-action space as diverse as possible. Another
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strategy that could be adopted is decoupling exploration and learning
using asynchronous updates, that means updating the neural networks
at separately from the network updates, so that to let the agent explore
more before modifying the behavior policy.

In addition to exploration, another crucial aspect is the buffer sam-
pling strategy. Since the importance of the information carried by each
transition is not the same, sampling more frequently the transitions that
are more informative helps speed up the learning process. A possible way
to weight each transition with respect to its information is considering
the associated TD error:

yT D − q (st, at, θq) (1.37)

This strategy called Prioritized Experience Replay (PER) [16] aims
at increasing the data sampling efficiency by replaying more often those
transitions that are associated with a worse approximation of the value
function, which lead to a higher learning potential. The priority pj of
transition j is defined as:

pj = |yT Dj − q (st, at, θq) |+ ϵ (1.38)

where ϵ is a small positive constant to ensure that each transition
has non-zero probability to be sampled. The probability Pj of sampling
transition j is defined as:

Pj =
pα

j∑
k pj

(1.39)

where α is an hyperparameter determining the level of prioritization:
α = 0 means uniform sampling, whereas α = 1 means fully prioritization,
which implies that the probability is directly proportional to the TD
error. However, using a non-uniform sampling would introduce bias in
the estimations, so importance sampling is needed to anneal that bias.
It consists in weighing each TD-error by a weight wj defined as follows:

wj =
Å 1

N
· 1

Pj

ãβ

(1.40)

The paper introducing DDPG [5] reports that a small bias can be
accepted at the start of the training, for this reason the hyperparameter
β ∈ [0, 1] is used to increase the compensation for the bias as the training
proceeds by linearly increasing it to 1.
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Reinforcement Learning Trajectory Optimization

Reward Cost

Value function (Return) Value function (Cost-to-go)

Trial-and-error Model-based

Policy Trajectory

Figure 1.2: Similarities and differences between RL and TO.

Other RL algorithms for continuous control

After DDPG, other algorithms have been proposed for learning continu-
ous control policies, most of them being based on it or taking inspiration
from it. The aim of this paragraph is not to describe them, but only to
provide the reader with an overview of what other options could be used
to treat the same problems solvable with DDPG. For this purpose, the
following list summarizes the RL algorithms for continuous control that
are commonly used as benchmark:

• Soft Actor Critic (SAC) [17]

• Proximal Policy Optimization (PPO) [18]

• Trust Region Policy Optimization (TRPO) [19]

• Twin Delayed DDPG (TD3) [20]

• Asynchronous Advantage Actor Critic (A3C) and its synchronous
variant A2C [21]

For the implementation details of each of these algorithms, the reader
is invited to visit the GitHub repository of Stable Baselines3 [22].

1.2.7 Dualism between RL and TO
Reinforcement Learning and Trajectory Optimization may seem two dif-
ferent approaches, sharing some common points (e.g., the goal of solving
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an OCP), but showing clear differences (e.g., the former is a trial-and
error approach whereas the latter is model-based). In fact, they are two
derivations of the same principle, that is the principle of optimality un-
derlying DP expressed by the Bellman equation (1.4). The principle of
optimality states that, considering an optimal N -step control sequence
{u∗

0, ..., u∗
N−1} leading to the state sequence {x∗

1, ..., x∗
N} starting from

state x0, the subproblem starting from x∗
k at time k of length N − k has

the truncated control sequence {u∗
k, ..., u∗

N−1} as optimal solution.
As shown in Fig. 1.2, RL and TO are dual to some extent. Indeed,

the reward function in RL plays the same role as the cost function does
in TO, with the only difference that they have opposite sign. Thus, as
already mentioned, RL aims at maximizing the return, while the goal
of TO is finding the minimal cost-to-go. Again, considering the same
problem to be solved, return and cost-to-go are actually the same thing
with opposite sign, as they both represent the Value function in the RL
and TO sense respectively.

Of course the differences do not boil down to a mere change in sign
of the function encoding the performance to be optimized, but there are
also key differences. The first one is represented by the approach that
RL and TO follow to find a solution: the former learns by trial-and-error
based on data acquired through agent-environment interactions, whereas
the latter exploits the a priori knowledge of a model of the agent inter-
acting with the environment, therefore both the system dynamics and
a structured environment must be available. The second key difference
is that RL learns a policy, so a continuous mapping between state and
action spaces in the case of deep RL, whereas TO finds trajectories con-
sidering specific initial states. This clearly implies that the times to find
a solution for RL and TO are on two totally different scales. But con-
cerning their applicability RL is actually faster than TO, as the learned
RL policy is used offline (DNN inference) whereas the use of TO is online,
for example in a Model Predictive Control (MPC) fashion, which means
that a new trajectory must be computed for each new initial state.

Such degree of complementarity between RL and TO is one of the key
concepts underlying the algorithm that will be introduced in chapter 3.
Indeed, as it will be shown, the benefits of RL and TO can be combined
within a unified framework to get faster to a solution of the problem
of interest with also higher probability that such solution is close to be
globally optimal. More specifically, the algorithm presented in chapter 3
builds upon the structure of DDPG, which has been modified accordingly
to include TO as a smart and efficient guide for exploring the state-action
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space in RL. In turn, RL learns how to properly set the starting point of
the TO optimization process to increase the likelihood of finding lower-
cost solutions, in other words, it learns a control policy whose rollouts
are used to warm-start the TO decision variables of TO.

1.3 State-of-the-art Co-Design frameworks
As highlighted in section 1.1, hardware and control of mechatronic sys-
tems have always been designed separately through two distinct pro-
cesses. However, these two aspects are intrinsically connected and their
interplay determines the final performance of the robot. Therefore, high-
performance robots are not achievable if hardware and control are ad-
dressed in two sequential phases. This is indeed the premise of Co-
Design: in order to achieve the best performance in executing a certain
task, a robot must be designed considering both its mechanical structure
and its control law in the same design process. Moreover, this process
must exploit some optimization technique to ensure that the task is ac-
complished in the best possible way.

This section reviews the main co-design frameworks from the liter-
ature, clustering them according to the optimization technique, and it
classifies them in a table, based on a specific taxonomy.

1.3.1 Evolutionary Algorithms based
The first work regarding Co-Design dates back to 1994 in the context
of computer graphics, when Sims [23] published his seminal work intro-
ducing a technique for generating virtual creatures in a simulated 3-D
world based on evolution and co-evolution. He leveraged evolutionary
algorithms (EA) and parallel computing to search over a huge number
of potential morphologies and behaviors, with the aim of finding the
right combinations defining virtual characters able to accomplish tasks
such as walking, jumping, swimming, and following a light source. To
do so, he used the same genetic language for both morphology and con-
trol: directed graphs of nodes and connections defining how signals flow
between nodes. More precisely, each node in the graph describes a rigid
part and it may contain sensors (joint angle sensors, contact sensors,
photosensors) to measure some properties related to that part or to the
world interacting with that part, or neurons containing a set of basic
functions (e.g., sum, min, if, integrate, etc.) that transform input sig-
nals (coming from sensors or describing an internal state) and send them
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to effectors (each of them controlling a degree of freedom of a joint) or
other neurons through connections to give creatures the capability to
perform arbitrary actions. Given a specific task represented by a fitness
function and starting from an initial population of genotypes, offspring
are generated by copying and combining the directed graph genotypes
of the survivors from the previous generation, namely those individu-
als whose fitness values fall within the survival percentile determined by
the survival-ratio. Despite the incredible results, the system proposed
by Sims is limited to the context of computer graphics because virtual
creatures do not need to satisfy physical constraints, as long as the re-
sulting animations look natural. Indeed, the only constraints that are
considered are joint limits, but they are just a small part of the set of
constraints characterizing a real robotic application. Moreover, another
limitation is that rigid bodies are modeled only as parallelepipeds and
this could prevent the search from finding the actual best-performing
robot design. Nonetheless, this work inspired a number of subsequent
publications also in robotics [24–47].

Twenty years after Sims and still in the context of computer science,
in 2013, Cheney et al. [27] extended [23] with the aim of creating virtual
characters that are more complex and with properties more similar to
those of natural organisms than Sims’ creatures. To do so, they evolved
morphologies composed of voxels of different materials (hard or soft to
mimic bones or soft tissues and inert or expandable to represent sup-
portive tissues or muscles) and behavioral options with a compositional
pattern-producing network (CPPN), that is an encoding able to generate
symmetry and repetition regularities and evolved according to the NEAT
algorithm [48], rather than direct encoding like in [23]. The results in
terms of morphologies and behaviors found are fascinating, showcasing
the power of evolutionary algorithms, but this method essentially shares
the same main limitation of Sims’ work, namely the limited applicability
to the virtual world.

One year later, in 2014, Digumarti et al. [28] presented the first
co-design work applied to a real robot, the quadruped StarlETH [49],
that used a direct policy search method based on the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) [50] to find the optimal
combination of design and controller enabling StarlETH to run at high
speeds. Specifically, they kept the actuators, robot symmetry, leg con-
figuration and gait type fixed, and they optimized link lengths, torso
dimensions and batteries relative position (6 design parameters) as well
as parameterized trajectories of trunk and feet and some parameters of
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the motion control (up to 27 gait and control parameters). Even though
the results obtained in simulation are not validated on real hardware,
they still demonstrate that the concurrent design of hardware and con-
trol for legged robots can substantially enhance their locomotion skills.

1.3.2 Optimal Control based
After the initial work of Sims that was EA-based and animation-
oriented, researchers started developing co-design frameworks leverag-
ing the knowledge of the model of the robot dynamics to use OC for
searching the optimal hardware-control pair. The choice of using OC for
Co-Design, which means considering some design parameters as decision
variables in addition to state and control variables, turns out to be the
most popular in the literature. This is most probably due the capability
of OC to encapsulate the interaction between robot and real world in
a single formulation through the definition of constraints that the final
solution must respect.

The first OC-based co-design work was published in 2006, when Li
et al. [24] proposed a concurrent engineering methodology for robotic
systems, named Design For Control (DFC), based on a general math-
ematical formulation that models the design problem as a single con-
strained optimization problem. Among the four variants of DFC, only
one can be properly classified as a co-design method, since the mechani-
cal structure and the controller are jointly optimized by solving a unique
optimization problem, whereas the others involve decomposing the de-
sign problem into subsequent subproblems to be solved iteratively. The
main weakness of the co-design variant of DFC lies in the potential diffi-
culty of having a mathematical model to describe such a complex design
problem and, for this reason, the other three iterative variants are actu-
ally more practical for robotic systems design.

In the context of bipedal robots, in 2009, Mombaur [26] used numer-
ical optimization to investigate the combinations of design parameters
and actuation inputs leading to self-stable motions of human-like robots.
Specifically, the problem is formulated as a multiphase OCP where the
optimization variables are: the state variables, the control variables, the
vector of phase switching times, and the vector of model parameters
(length, relative CoM location, mass and moment of inertia of each seg-
ment composing the humanoid model, and the parameters defining the
spring-damper element in each joint). The proposed formulation takes
account also of different constraints related to the hybrid dynamics of
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the robot, the design variables limits, complex relations between vari-
ables as well as switching and periodicity conditions. For solving such a
complex problem, the author firstly discretizes it using a multiple shoot-
ing algorithm (MUSCOD) [51], and then solves the resulting structured
non-linear program with an efficient sequential quadratic programming
(SQP) algorithm.

In the same year, Allison [29] applied the OC-based co-design ap-
proach to the partial redesign of mechatronic systems in case redesign-
ing control is not enough to meet the requirements of a new application
and partial hardware (plant) design changes are needed, ensuring min-
imal cost modifications. More precisely, the new methodology, called
Plant-Limited Co-Design (PLCD), involves an initial sensitivity analy-
sis based on the study of the model parameter Jacobian to identify the
(continuous) candidate plant modifications and reduce the PLCD prob-
lem complexity, and a final optimization (using a gradient-based method
called SNOPT [52]) to minimize the redesign cost while taking account
of all the system constraints. The effectiveness of PLCD is demonstrated
through the redesign of a two-link planar manipulator, that was initially
designed for a pick-and-place task and then is required to perform an-
other task that is not feasible with only control changes. The results
show that minimal redesign cost changes can be achieved with PLCD,
whereas fully redesigning the system would imply substantial plant mod-
ifications potentially not affordable.

Going back to the context of humanoid robots, Buondonno et al. [31]
introduced a framework to jointly optimize the state and control trajecto-
ries and some design parameters (e.g., step length, stiffness of the trans-
mission elements and drive inertia moments) of underactuated biped
walkers considering three types of actuators (rigid, series elastic, and
parallel elastic). The framework is based on the formulation of a single
OCP considering a time horizon of a step and solved with a newer vari-
ant of MUSCOD (MUSCOD-II). Besides the capability of finding the
optimal design and control given a specific actuator, the results high-
light also that Co-Design is the appropriate tool to effectively analyze
and fairly compare different actuator types.

In 2017 and more extensively in 2018, Ha et al. [32, 38] presented
an iterative co-design framework extending the capabilities of their pre-
vious work [30] by taking account also of the robot morphology in the
optimization process. Given a parameterized robot design and a set of
end-effector trajectories, the algorithm proceeds by iteratively adjusting
the optimization variables (link lengths, actuator placements, joint tra-
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jectories, actuator inputs, and contact forces), taking advantage of the
implicit function theorem to derive the relationships among parameters
without violating the constraints. The simulation tests were performed
on two systems, a 4-DoF manipulator and a small quadruped, and the
results obtained in simulation for the quadruped were validated by fabri-
cating the optimized design and applying the optimized control to finally
verify the expected 30% reduction of the maximum current required.

Also the interactive framework proposed by Desai et al. [34] enables
the optimization of both morphology and behavior of legged robots.
Starting from the initial user-defined robot morphology and task (e.g.,
desired direction and speed of motion), the motion is optimized by solv-
ing an optimization problem with quadratic cost terms encoding the
tracking of the desired direction, speed of motion and pose (in terms of
CoM and end-effector positions), and the constraints satisfaction. Then,
the design is automatically optimized by leveraging the adjoint method
to quickly compute the search direction and find the optimal hardware
(number of links, links length, number of actuators, and actuator posi-
tion) and motion parameters (represented as a function of the robot’s
hardware).

As shown in [31], co-design techniques can be exploited also to an-
alyze (e.g., assessing the energy efficiency) different actuators and to
enable a fair comparison between them by considering the optimal com-
bination of hardware and control for each actuator. This is precisely
what Yesilevskiy et al. have done in [35], where they formulated and
solved (using MUSCOD) a single OCP to find motion trajectories (and
the time to perform a hop), actuator inputs, and hardware parameters
(gear ratio and spring stiffness) that are optimal for each actuation sys-
tem (parallel elastic and series elastic actuators) used in a 1D hopper.

In 2020, Bravo-Palacios [53] et al. proposed a co-design framework
combining stochastic programming with TO to tackle the problem of
scalability of multi-task co-design problems. The two-stage stochastic
programming formulation (nevertheless represented by a single optimiza-
tion problem) enables the decoupling of the scenarios, each of which
obtained by randomly perturbing some features of the environment or
task at runtime to represent uncertainty, achieving faster computation
times and higher scalability than a sequential formulation. The frame-
work was applied to a two-link manipulator required to perform three
maneuvers while carrying a range of loads and a planar monoped robot
asked to perform jumps in various terrains, and the results validates the
capability of the optimized designs to balance performance across many
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different scenarios.
More recently, in 2022, Bravo-Palacios [54] et al. extended their

previous framework by considering also the optimization of the feedback
gains to add robustness reasoning for motion planning. This is the first
framework that simultaneously optimizes the nominal trajectory, the
hardware parameters and the feedback controller. The results with n-
link manipulators and a planar monopod robot show the benefits of
treating also the feedback gains as decision variables of the optimization
process in terms of robustness to external disturbances, demonstrating
also that this contributes to finding nominal trajectories that require less
effort for control stabilization. Despite the good results though, there
remains the scalability issue due to the co-optimization of the feedback
gains that limits the number of scenarios that can be assessed through
optimization.

In the same year, Dinev et al. [44] proposed a bi-level formulation
of the legged robots co-design problem, where the lower level computes
the state and control trajectories (using Crocoddyl [55]) given a task
and design parameters vector, and the upper level optimizes the lat-
ter (using the interior-point/direct algorithm KNITRO [56]). Contrary
to [43], this approach is fully gradient-based as the gradient of the co-
design metric with respect to the design parameters is needed for the
gradient-based optimization in the upper level. It as been tested on a
real-world co-design problem, that is the design of the 12-DoF version
of the quadruped SOLO considering trotting and jumping tasks, with
the design parameters vector consisting of the link lengths, attachment
points of the legs, trunk width, height and depth, payload distribution,
motor mass and gear ratio. This approach is shown to scale well up to
17-dimensional design vectors and it finds the same solution faster than
CMA-ES-based frameworks.

Lastly, it is worth mentioning also the work of Sartore [57], which
deals with the maximization of the ergonomics in the interaction be-
tween humans and humanoids when they collaborate. Specifically, the
authors formulated (in CasADi [58]) an OCP to find the optimal hard-
ware parameters (link lengths and density, CoM height) and static joint
configuration of the humanoid iCub [59] considering a collaborative pay-
load lifting task. The results show that the optimized humanoid can
reach a larger set of heights while concurrently reducing its energy con-
sumption and maintaining that of the human. Besides the typical local
minima problem of OC-based frameworks, the main limitation of this
work relies on the fact that only the static case is considered, meaning
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that no optimal control trajectories are computed, thus leading to a de-
sign that actually does not optimize the ergonomics during the whole
task execution.

It is worth stressing that, in order to avoid misleading results with
OC-based frameworks, the model of the robot must be accurate enough
and the equations modeling the relationships between physical quanti-
ties and/or hardware parameters must be smooth to avoid numerical
instability when using gradient-based solvers.

1.3.3 Reinforcement Learning based
More recently, given the fast growing number of RL applications and the
increasing computational capabilities of modern computers (e.g. GPUs),
some researchers proposed co-design frameworks embedding RL algo-
rithms to exploit their inherent exploratory nature to find optimal design
parameters and control policies.

In this sense, Schaff et al. [36] paved the way in 2018 with the first
co-design framework that uses deep RL in place of classic optimization
techniques to jointly learn how to design and control legged robots.
Their approach keeps a design distribution (Gaussian mixture model)
and leverages deep RL, more precisely a proximal policy optimization
(PPO) [18] algorithm, to find the optimal control policy that maximizes
the expected return over the distribution of designs. As training pro-
ceeds, the distribution is shifted towards designs that perform better
and the whole process ends when converging to the locally optimal pair
of design and control policy. The results obtained considering three com-
mon problems of OpenAI’s Gym [60] are very promising, but there is still
a gap to be filled to enable the use of this method in a real use case. In
addition, the main limitations of this method are the fact that the robot
morphology is kept fixed and that the training time may be excessive
with complex high-dimensional problems.

Similar in spirit to [36] but with a different approach, Chen et al. [42]
presented in 2020 another deep RL co-design framework that involves
modeling the hardware to be optimized as a computational graph, as
done for the control policy. In this way, auto-differentiation can be used
to compute gradients that can flow through the hardware policy, enabling
the joint optimization of hardware and control with RL algorithms, in
this case TRPO [18]. This approach is demonstrated to outperform both
CMA-ES and frameworks involving the use of CMA-ES for optimizing
hardware parameters and RL for learning the control policy. It has also
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been validated by co-designing and successively fabricating an underac-
tuated 3-D printed hand. Despite the promising preliminary results, it is
still unknown if this framework would be able to scale when considering
higher dimensional systems and more complex tasks.

In the same year but in the context of soft robotics, Schaff et al. [46]
presented a co-optimization framework that shows how Co-Design can
be leveraged to exploit compliance in robotics and achieve passive behav-
iors that would not otherwise be easily programmable. They proposed
a modular form of model order reduction that enables the use of finite
element analysis (FEA) within a multi-task RL framework (employing
the soft actor-critic algorithm [17], SAC). This step is crucial for obtain-
ing high accuracy results and, in turn, enabling zero-shot sim-to-real
transfer of the resulting optimized soft robots. This approach has been
validated by co-optimizing and then fabricating a legged crawling soft
robot, which demonstrates its effectiveness by crawling two times faster
than a similar legged soft robot designed by an expert.

1.3.4 Using a mix of optimization techniques
Not all the frameworks in the literature use a single optimization method
to solve co-design problems, indeed there are many works that mix differ-
ent techniques in various ways separating the optimization of hardware
and control into two interconnected loops.

The first framework that is part of this category is that of Hass et
al. [25] proposed in 2006, where numerical optimization is used to ex-
plore efficiently a six-dimensional parameter space to assess how and to
what extent the mass distribution of a passive dynamic walker influences
the walking speed and stability. The parameter space is formed by three
hardware variables (the CoM position and the joint radius of rotation)
and three control variables (the initial step length and the angular ve-
locities between the links and the uninclined ground). The resulting
optimization problem is then solved with a population-oriented simu-
lated annealing technique (NPOSA) [61] that combines the population
concept of Evolutionary Computation (EC) with Simulated Annealing
(SA) to drive the search towards the global optimum.

Ten years later, in 2016, Ha et al. [30] presented a framework that
optimizes the control and design parameters of 2D two-links and three-
links legs (of monopeds and quadrupeds) in two stages: first, the motion
of a simplified model (including CoM, momentum trajectory, contact
positions, and contact forces) is optimized (by SQP) to minimize contact
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forces; then, the leg link lengths are optimized (by CMA-ES) as well as
the related full-body motions to achieve the task while minimizing the
control effort.

In 2019, Pirron et al. [40] introduced MPERL, a tool to automat-
ically synthesize the design and control of manipulators starting from
an abstract description of the robot’s kinematics containing information
about actuators, joints, and sensors. To model the robot, MPERL builds
a labeled graph where the vertices are local frames representing the com-
ponents (predefined or user-defined), the edges connect the components,
and the labeling function maps the vertices to the component’s type and
properties. Once modeled the robot, MPERL estimates the workspace
and perform a singularity analysis, then it generates the constraints in
such a way that an inverse kinematic solver (dReal SMT solver [62] in
addition to least squares optimization and a cyclic coordinate descent
algorithm [63]) can handle them. Finally, MPERL generates the soft-
ware to move the robot based on some user-defined actuator values to
be set or target positions of the end-effector to be reached. Even though
the method was tested on some traditional industrial manipulator struc-
tures, its applicability remains limited to the design of small custom
3D-printable robots. It is also hard to classify it as a co-design tool,
since hardware and control are designed in two distinct phases, not si-
multaneously, and they are not optimized.

One year later, Chadwick et al. [41] developed an open-source Matlab
toolbox, called Vitruvio, for optimizing leg designs for walking robots
given as inputs an initial simplified robot model, a user-defined met-
ric (e.g., energy consumption minimization) and a motion plan (gen-
erated by the single rigid body dynamics trajectory generation frame-
work TOWR [64]). The optimization is performed using a genetic algo-
rithm (Global Optimization Toolbox [65]) and parallel computing (Par-
allel Computing Toolbox [66]) to speed up the process. The framework
was applied for redesigning the legs (optimizing the thigh and shank
lengths) of an existing quadruped, ANYmal [67], as well as for designing
new quadrupedal robots (optimizing link lengths, transmission ratios,
and spring parameters). Vitruvio only optimizes the design of a legged
robot, therefore it cannot be considered a co-design tool. If considering
the whole framework though, that is the sequential use of TOWR and
Vitruvio in an iterative fashion, then it can be classified as a full-fledged
co-design framework.

Another interesting work, published in 2021, is that of Fadini et
al. [43], which introduces an algorithm for the concurrent optimization of
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hardware parameters and control trajectories of legged robotic systems.
It has a double loop structure, where the inner loop solves an OCP (with
an approach [55] based on differential dynamic programming, DDP) to
find the optimal control trajectories for each individual of the population
keeping fixed the hardware parameters, and in the outer loop a genetic
algorithm (CMA-ES) generates the offspring from the best performing
individual. The algorithm proceeds by alternating these two phases until
convergence or up to meet an ending condition. It has been tested for
the design of a two-joint monoped robot (leg of the existing quadruped
SOLO [68]) required to perform a jumping task, considering the motor
mass, gear ratio, link scaling factor, task completion time and control
inputs as decision variables. The results show the effectiveness of this ap-
proach, however it is challenging to assess which level of computational
complexity can be handled and the maximum size of the OCP solvable
in a reasonable time.

One year later, Fadini et al. [45] added robustness properties to their
previous framework [43] by introducing a simulation step with perturba-
tions in between the two optimization levels. The results obtained with
this modification clearly show that including robustness reasoning can
have a crucial impact on the solution found, as highlighted by the fact
that in both tests (with a 4-DoF manipulator and the same monoped
robot used in [43]) the mechanical transparency of the optimal hardware
suggests a trade-off between energetic optimality and the capability to
react to perturbations.

Lastly, it is worth mentioning also the recent work of Belmonte-Baeza
et al. [47], which introduces a model-free co-design framework which is
used to optimally redesign the legs (thigh and shank lengths) of ANY-
mal. The first phase of the framework deals with control optimization
and uses meta RL (employing PPO), that is an RL technique to allow
quick adaptation of a policy to different tasks, to train a policy able to
track random velocity commands over different irregular terrains. As the
policy is learned, the latter is used in the second phase (involving the
use of CMA-ES) to assess various designs and find the one maximizing a
design objective. This approach has also been benchmarked against [41]
and it proved to be able to find lower-cost designs.

1.3.5 Using other optimization techniques
Most of the Co-Design literature involve the use of the aforementioned
optimization techniques: EA, OC, RL, or a mix of them. Nonetheless,
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there are some frameworks that employ other peculiar methods to si-
multaneously optimize hardware and control of robotic systems.

For instance, despite its limited applicability to real use cases, it is
worth mentioning the work by Schulz et al. [33]. They developed Inter-
active Robogami, an interactive software for the design of ground robots,
based on the composition of predefined parameterized components, that
can be fabricated as flat sheets to be folded then into 3D structures.
It is based on a database containing both geometric parts and motions
that are combined together following composition rules dictated by a
specific "grammar". In its standard use, optimization is used only in
the geometry manipulation (translation, rotation, and dimension scal-
ing) to ensure feasibility of the final desired geometry. But there is also
the possibility to automatically optimize (by COBYLA algorithm [69])
a user-define metrics by searching the optimal geometry within the full
geometry space.

Similarly to [33] and [34], also [37] tackles the problem of simplifying
and automatizing the robot creation with Co-Design. The application in
this case fits into the industrial context and is very specific, that is the au-
tonomous design of modular manipulators whose structure and program
are determined based on human demonstrations. Their method consists
of three steps: generation of the trajectories, selection of the assembly,
and generation of the controller. To generate the trajectories, first the
task is modeled using a Riemannian [70] task-parameterized (TP) GMM,
which adapts context-specific demonstrations to new contexts enabling
both position and orientation data handling, and then the TP-GMM
is transformed into task-space coordinates and, using the product of
Gaussians, a task-space distribution of trajectories (whose mean is the
desired trajectory) is finally obtained. Successively, modular components
(one base, three joint modules, five link modules and one end effector)
are assembled by hierarchically eliminating poor-performance assemblies
following the method presented in [71]. Finally, centralized model-based
controllers, that are automatically generated from dynamic and kine-
matic parameters of the modular components, are used to automatically
synthesize a passivity-based tracking controller. No optimization tech-
nique is used, but the results on real hardware show the effectiveness of
this method and its applicability to real use cases.

Still in the subgroup of catalog-based co-design frameworks, Carlone
et al. [39] in 2019 proposed a binary optimization formulation of the
co-design problem, which involves the characterization of the design
space and the classification of the design specifications in terms of per-
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formance and constraints at a system level, and implicit constraints. A
robotic system is conceived as a set of modules (e.g., actuators, sensors,
computational board, control algorithms, planning algorithms), and
each module has a catalog of potential choices and some features (e.g.,
cost, torque, weight, maximum speed, power consumption) describing
their technical specifications. The search for the modules maximizing
the system-level performance while satisfying the system-level and
module-level constraints is done by solving a binary (linearized)
optimization problem (by CPLEX [72]), where each binary variable
indicates whether a given module has to be chosen as part of the design
or not. The framework has been tested considering the design of two
robotic applications, a racing drone and a team of robots for collective
transport, and it was able to find an optimal design in both cases. As
for all the other catalog-based co-design frameworks though, also this
approach is limited by the usage of a user-defined catalog. Even if it is
true that considering only commercially available components may save
time and resources to designers, this potentially prevents them from
finding design that could provide much better performance.

Table 1.2 classifies the aforementioned works based on the criteria
listed here below:

• Formulation: whether the implementation is monolithic (hardware
and control optimized in a single phase) or not. If not, how many
phases it consists of.

• Application: the systems that have been used to test the frame-
work, specifying the number of design and control variables. Ad-
ditionally, a measure of the size or complexity of the problem con-
sidered (e.g., number of total variables, max number of DoF, time
horizon length, etc.).

• Optimization tool: if optimization is involved in the framework, the
specific optimization technique/method/tool that has been used.

• Real HW: if the framework has been validated on real hardware or
not. If yes, some information about the hardware.

• Limitations: main limits or potential issues of the framework.
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INTRODUCTION

1.4 Contributions of the thesis
The first part of the thesis presents a co-design application that shows
the efficacy of Co-Design in performing an energy efficiency analysis of a
redundant actuation system. Regardless the level of experience and the
possible application of rules of thumb, having redundancy in the system
would make it impossible for a designer to assess which combination of
hardware components and control law would achieve the best perfor-
mance. Moreover, the complexity in making this choice increases with
the number of degrees of freedom, the number of actuated joints, the va-
riety of joint types, the task complexity and the presence of limits on the
state and/or control. The analysis introduced in chapter 2 shows that
Co-Design is the suitable technique to manage such design complexity
aiming also at optimality of the solution.

As the complexity of the design problem increases in terms of non-
convexity of the objective function, Co-Design, or more generally TO,
starts suffering from the problem of getting stuck in poor local minima.
For this reason, chapter 3 focuses on this issue and introduces an algo-
rithm that combines RL and TO for the continuous control of robots
aiming at global optimality. The preliminary results are very promising
and lay the foundations for a future extension to Co-Design by including
also the optimization of hardware design variables besides the control.
Such algorithm provides also ample room for improvement and develop-
ment, such as a significant reduction of training time through the imple-
mentation of Sobolev Learning and the extension to co-design problems
involving hybrid dynamics like that of legged robots.

To summarize, here is the list the main contributions of this thesis.

1. An energy-efficiency analysis of a redundant actuation system
through Co-Design.

2. An algorithm that combines Reinforcement Learning and Trajec-
tory Optimization for the continuous control of robots aiming at
global optimality.
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Chapter 2

Co-Design application

In the last decades, many roboticists focused their research on determin-
ing which actuation mechanisms are most suitable for robotic systems
such as legged robots or industrial manipulators [78–82]. Often, the
“stiffer is better” rule of thumb has been adopted as a premise of the de-
sign process. High bandwidth force control and accurate position control
are the two main benefits, however to the detriment of safety in human-
machine interactions and high cost of the mechanical system. While
active control is able to regulate output impedance, there are fundamen-
tal limits to mechanical robustness in the case of impulsive loads. Thus,
many have taken inspiration from nature, intentionally including com-
pliance in actuation systems between the load and mechanical energy
source. Some researchers [83, 84] have tried to combine different actu-
ators to achieve both high bandwidth and high output torque, among
other benefits. Their results are promising, but the characteristics in
terms of energy efficiency of such actuator have not been investigated
and remain unclear.

Thus, this chapter presents an energy efficiency analysis of a redun-
dant actuation system that was possible to carry out only through Co-
Design. First, standard actuators and the redundant actuation systems
are introduced. Then, the methodology followed to conduct the study
is described, showing how to formulate a co-design problem, and the
results are reported, drawing conclusions about whether the redundant
actuation system is more energetically convenient compared to standard
actuators. Lastly, a variant of the co-design framework with robustness
reasoning is presented, which was the result of a collaborative work led

51



CHAPTER 2. CO-DESIGN APPLICATION

by G. Bravo-Palacios [54] that involved the author of this thesis.

2.1 Standard actuation systems
To date, there is no actuation mechanism that uniformly outperforms the
others. This is due to the strong dependency on the task (e.g., walking,
holding objects, pick-and-place operations) that the system has to per-
form, and on the environment (e.g., structured, unknown, with humans)
in which it operates. Moreover, relative performance depends heavily on
the performance index (e.g., energy consumption, task completion time,
accuracy) that is considered. Thus, in the robot design process, many
factors have to be weighed and designers inevitably have to deal with
many trade-offs.

2.1.1 Geared Motors and Quasi Direct Drives
Among those actuation mechanisms that use DC motors, the two that
are most often employed are Series Elastic Actuation (SEA) and Quasi-
Direct Drive (QDD), which is simply a Geared Motor (GM) with reduced
gear ratio [85], limited to roughly 10:1. In QDD actuation, the low-
reduction transmission results in good transparency: low backlash, back-
driveability, reduced reflected inertia of the motor, and lower friction
(i.e., higher power transmission efficiency). Moreover, QDD actuators
have high control bandwidth, active compliance tuning capabilities, and
good position controllability. Of course there are disadvantages in using
QDD motors, such as low output torque and high Joule heating due to
the necessity of working in high-current regimes [83–85].

2.1.2 Series Elastic Actuators
In an SEA, the motor is connected to a gearbox, which in turn is attached
to one end of a spring, with the other end of the spring attached to the
joint output. In terms of benefits, SEAs provide mechanically passive
energy storage and regeneration, impact mitigation, high output torque,
and increased peak output power. Moreover, an SEA can provide low
mechanical output impedance, good force controllability, and safety in
human-machine interactions. On the other hand, the drawbacks of SEAs
include low control bandwidth and difficulty in controlling impulsive
movements [78,79,84,86].
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SECTION 2.2. REDUNDANT ACTUATION SYSTEM

Figure 2.1: Schematic of the redundant actuation system: an SEA and
a QDD work in parallel to actuate a single revolute joint

2.2 Redundant actuation system
Considering advantages and disadvantages of the two actuation mecha-
nisms, there is a certain degree of complementarity between QDD and
SEA. Recently, some researchers investigated the idea of exploiting the
benefits of these two design approaches developing a high-bandwidth
redundant actuator [83, 84] that uses QDD motors and SEA in paral-
lel, as illustrated in Fig. 2.1. The results are promising, but it is still
unclear whether this redundant actuation is energetically more efficient
than SEA or QDD/GM alone.

To fairly consider the performance limitations of these systems, a
framework is proposed to optimize design parameters using Co-Design,
which simultaneously considers hardware and control in the design pro-
cess. This means that hardware parameters (e.g., spring stiffness, gear
ratio) are included in an OCP as variables to be optimized, such that the
final output is an actuation system that minimizes the energy consumed
to perform a specific task.

This research starts from the analysis of the redundant actuation ap-
plied to a 1 degree of freedom (DoF) system and then extends the study
to a 2-DoF manipulator. The analysis of the 1-DoF system compares the
energy consumption of this actuation, considering a DD motor instead
of a QDD for simplicity, with that of an SEA. In particular, considering
a periodic sinusoidal motion with fixed amplitude, the variation of con-
sumed energy as function of the oscillation frequency and other hardware

53



CHAPTER 2. CO-DESIGN APPLICATION

parameters is investigated.
Then, the same comparative analyses of energy consumption are car-

ried out with the 2-DoF manipulator for two specific tasks: the classic
swing-up problem, and a pick-and-place operation. In addition, following
a co-design approach, some hardware parameters are included as decision
variables of the optimization problem. This illustrates how Co-Design is
a suitable way to design highly-efficient manipulators, considering both
hardware and control.

2.2.1 1-DoF: OCP for determining minimal energy
controls

As schematized in Fig. 2.1, the 1-DoF system with redundant actuation
consists of a link connected to the ground by a revolute joint, which
is actuated simultaneously by a DD motor and an SEA. The DD acts
directly on the joint, while the SEA motor is connected to it by a gearbox
and a torsional spring. The link dynamics is:

Il θ̈(t) = τs(t)−m g cos (θ(t)) l

2 + τdd(t) , (2.1)

where θ(t) is the link angle, Il denotes its rotational inertia around the
revolute joint, m is its mass, l its length and g is gravity. τs(t) and τdd(t)
are respectively the output torque of the SEA spring and the DD motor.
The case with only SEA is considered setting τdd(t) = 0.

The dynamics of the SEA motor instead is:

Ise θ̈se(t) = τse(t)− τr(t) , (2.2)

where θse(t) is the SEA motor angle, τse(t) is the torque generated by
the SEA motor and τr(t) is the load torque acting on the SEA motor.
For the 1-DoF case, the spring pre-load is set to zero. The dynamics of
the SEA motor is coupled with that of the link by means of the SEA
gearbox and spring:

τr(t) = 1
Nη

Ks

Å
θse(t)

N
− θ(t)

ã
, (2.3)

with Ks the SEA spring stiffness, N the gear ratio of the SEA gearbox,
and η its efficiency [79], which accounts for the torque-dependent friction
losses inside the gearbox. Note that τs(t) = Nητr(t). For the sake of
simplicity, the dependency of the efficiency on the gearbox loading is
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neglected, as well as the fact that when the motor is not active (τse(t) =
0) then the inefficiency would increase the braking capability. Indeed,
modeling the gearbox efficiency as a factor multiplying the gear ratio
makes the breaking torque zero when the motor is not active, which is
not true for a real geared transmission subject to friction. To further
simplify the analysis in the 1-DoF case, the inertias associated with
the DD motor and with the SEA gearbox are not taken into account,
assuming that they are dominated respectively by the inertia of the link
(about four orders of magnitude lower) and that of the SEA motor (about
one order of magnitude lower). Finally, in this simple 1-DoF case, only
the thermal losses of the motors are considered, neglecting Coulomb and
viscous friction.

The motion that is chosen for this analysis is a simple sinusoid with
fixed amplitude A = 5° and frequency f around the vertical position of
the link, i.e., θ(t) = π/2 + A sin(ft). A small oscillation amplitude is
chosen to limit the required motor torque at high frequencies. Enforcing
this movement, the system of equations (2.1)-(2.3) is determined and
can be solved analytically in the case with only the SEA, since the only
control variable is the SEA motor torque. Therefore, if a solution exists
it is unique.

Considering the redundant actuation instead, the system of equations
becomes under-determined because of the DD motor torque. Thus, an
OCP is formulated to realize the desired motion of the link with the least
amount of energy:

minimize
x(·), u(·)

Φ (x(·), u(·)) (2.4a)

subject to ẋ(t) = f(t, x(t), u(t)) (2.4b)
h(t, x(t), u(t)) ≤ 0 (2.4c)
g(tf , x(0), x(tf )) ≤ 0 (2.4d)

The state and control trajectories, with values x(t) ∈ Rn and u(t) ∈
Rm, are the decision variables. The objective function is represented by
Φ(·), while the dynamics, path and boundary constraints respectively by
(2.4b), (2.4c) and (2.4d).

The cost function is the energy consumed to complete a cycle such
that the time horizon is tf = 2π/f . Any capability to regenerate energy
from braking is initially neglected:

Φ (·) =
∫ tf

0
max(0, Pse(t)) + max(0, Pdd(t)) dt , (2.5)
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with Pse and Pdd the power associated respectively to the SEA and the
DD motor, expressed as:

Pse(t) = τse(t) θ̇se(t) + τse(t)2

Km
(2.6)

Pdd(t) = τdd(t) θ̇(t) + τdd(t)2

Km
, (2.7)

where Km denotes the motor constant. The introduction of the
max(·) function would cause numerical problems because of its non-
differentiability at zero. To avoid this non-smooth cost, the cost is re-
formulated by introducing two additional variables, ϵse(t) and ϵdd(t):

Φ(·) =
∫ tf

0

Pse(t) + ϵse(t)
2 + Pdd(t) + ϵdd(t)

2 dt (2.8)

while enforcing the constraints:

ϵse(t) ≥ −Pse(t), ϵse(t) ≥ Pse(t) (2.9)

ϵdd(t) ≥ −Pdd(t), ϵdd(t) ≥ Pdd(t) (2.10)

With this formulation, when P < 0 the solver optimizes to ϵ = −P so
that P +ϵ

2 = 0. When instead P ≥ 0 the solver optimizes to ϵ = P so
that P +ϵ

2 = P .
Also the case of energy regeneration is considered, accounting for a

battery that can be charged with 60% efficiency (as in the case of [87]):

Φ(·) =
∫ tf

0

ï
Pse(t) + ϵse(t)

2 + Pdd(t) + ϵdd(t)
2

−0.6
Å

ϵse(t)− Pse(t)
2 + ϵdd(t)− Pdd(t)

2

ãò
dt

(2.11)

The dynamic equations, (2.1)-(2.3), represent (2.4) in the OCP,
and the constraint to track a desired angular acceleration θ̈(t) +
f2 A sin(f t) = 0 is included in the path constraints (2.4c). The remain-
ing path and boundary constraints (torque limits, initial and periodicity
conditions), together with some implementation details are reported in
the following list:

1. Remaining path constraints of the 1 DoF OCP:

− τmax ≤ τse ≤ τmax

− τmax ≤ τdd ≤ τmax

(2.12)
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2. Initial conditions of the 1 DoF OCP:

θ(0) = π/2, θ̇(t) = fA, Φ(0) = 0 (2.13)

3. Periodicity conditions of the 1 DoF OCP:

τse(0) = τse(tf )
τdd(0) = τdd(tf )
ϵse(0) = ϵse(tf )
ϵdd(0) = ϵdd(tf )
Pse(0) = Pse(tf )
Pdd(0) = Pdd(tf )

(2.14)

4. The accuracy of the model improved introducing a viscous friction
term with constant friction coefficient β. It appears also in the
SEA motor dynamics:

(Ise + Ig) θ̈se(t) = τse −
Ks

ηse Nse

Å
θse

Nse
− θ

ã
− β θ̇se(t) (2.15)

5. The OCP (2.4) is specified using the optimization modeling lan-
guage Pyomo [88] and solved using IpOpt [77] with the MA57 linear
solver [89]. In order to express integral variables, as in the case of
the OCP cost function, it is not taken advantage of the Integral()
component that Pyomo provides with the framework pyomo.dae
because it is still under development. An implicit definition is
used instead, that is to declare the consumed energy as a simple
variable, i.e. using the Var() component, and its derivative, the
total power, with DerivativeVar(). Then the expression of the total
power is provided as constraint. In this way the total energy con-
sumed by the system from time 0 to tf is obtained interrogating
Pyomo about the value of the energy variable at time tf .

2.2.2 2-DoF: OCP for Co-Design
For the 2-DoF case, a small gearbox is introduced on the DD motor
because of the demanding torque requirements. Thus, what previously
is called DD, is now referred to as Quasi-Direct Drive (QDD), since the
gear ratio is limited to 10 [90].
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The energy consumption analysis begins by considering the
swing-up problem, illustrated in Fig. 2.2. It consists of mak-
ing the manipulator lift a weight from the downward vertical con-
figuration (θ1(0) = −π/2, θ2(0) = 0) up to the upward vertical one
(θ1(tf ) = π/2, θ2(tf ) = 0). Thus, an OCP is formulated to minimize
both the energy consumed and the time to complete this task. In an
industrial context, task completion time and energy consumption both
impact profits. The weights w1 and w2 are used in the cost function
to set the relative importance of these two quantities. The choice of
minimizing a single objective function, rather than performing a multi-
objective optimization, is taken in light of the fact that both energy and
time can be converted into money, using appropriate weights. Thus,
carefully selecting the weights based on the type of company consid-
ered, the solution to our co-design problem represents the choice that
minimizes the overall cost that the company has to bear for the design
and control of such a robotic system achieving the task considered. In
this 2-DoF case, some simplifying assumptions taken in the 1-DoF case
are abandoned. Indeed, the inertias of gearboxes and QDD motors, as
well as the viscous friction of joints and motors, are considered in the
dynamic equations of the system.

First, the case with no energy regeneration is investigated, then the
case with it. The co-design OCP is formulated as:

minimize
tf , x(t), u(t), ρ

Φ (tf , x(tf ), u(tf ), ρ) (2.16a)

subject to ẋ(t) = f(t, x(t), u(t), ρ) (2.16b)
h(t, x(t), u(t), ρ) ≤ 0 (2.16c)
g(tf , x(0), x(tf /2), x(tf ), ρ) ≤ 0 (2.16d)

The key aspect making this problem one of Co-Design is the additional
decision variables in ρ, which contains the design parameters: motor
masses, spring stiffnesses and gear ratios. The motor constant and in-
ertia of each motor are related to the motor mass by the relationships
presented in [35]. For the sake of completeness, the following list reports
the dynamic equations (2.16b), path (2.16c) and boundary constraints
(2.16d) of the 2-DoF manipulator, as well as other implementation de-
tails:

1. The two degrees of freedom θ1(t) and θ2(t) are respectively the
angle of the first link with respect to the horizontal and of the
second link with respect to the first one. The redundant actuation
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introduces four control variables represented by the torques τse1(t),
τse2(t), τgm1(t) and τgm2(t) provided respectively by the two SEAs
(characterized by gear ratios Nse1 and Nse2, gearbox efficiencies
ηse1 and ηse2 and spring stiffnesses Ks1 and Ks2) and by the two
GMs (with gear ratios Ngm1 and Ngm2 and gearbox efficiencies
ηgm1 and ηgm2). The gearbox efficiency is modeled as in the 1
DoF case. Mass, length and distance of center of mass from the
joint have a subscript that specifies which link they refers to. I1
and I2 are not only the rotational inertias of the links around the
joints, namely Il1 and Il2. The first includes also the inertia of
the GM (motor and gearbox inertias) on the first joint and the
presence of the SEA and the GM on the second joint. The second
one takes into account also the inertia of the GM on the second
joint. They are expressed as follows:

I1 = Il1 + (mse2 + mgm2 + 2mg) l2
1 + (Igm1 + Ig) N2

gm1 (2.17)
I2 = Il2 + (Igm2 + Ig) N2

gm2 (2.18)

Where mse2 and mgm2 are the masses of the SEA and GM motors
on the second joint, while mg and Ig are mass and inertia of the
gearboxes. mg and Ig are considered as constants and not depen-
dent on the gear ratio because it is observed that their real values
do not vary much for the selected range of gear ratios [91].

2. Dynamics of the 2 DoF system (in addition to (2.15) for the SEAs):(
ml1 l2

cm1 + ml2(l2
1 + l2

cm2 + 2 l1 lcm2 cos(θ2)) + I1 + I2
)

θ̈1+
(ml2

(
l2
cm2 + l1 lcm2 cos(θ2)

)
+ I2)θ̈2−(

ml2 l1 lcm2 sin(θ2)θ̇2
2 + 2 ml2 l1 lcm2 sin(θ2) θ̇1 θ̇2

)
+

g cos(θ1)(ml1 lcm1 + ml2 l1) + ml2 lcm2 g cos(θ1 + θ2)−

Ks1

Å
θse1

Nse1
− θ1

ã
−
(
τgm1 − β Ngm1θ̇1

)
ηgm1 Ngm1 = 0

(2.19)(
ml2 l2

cm2 + I2
)

θ̈2 +
(
ml2

(
l2
cm2 + l1 lcm2 cos(θ2)

)
+ I2

)
θ̈1+(

ml2 l1 lcm2 sin(θ2)θ̇2
1
)

+ (ml2 lcm2 g cos(θ1 + θ2))−

Ks2

Å
θse2

Nse2
− θ2

ã
−
(
τgm2 − β Ngm2θ̇2

)
ηgm2 Ngm2 = 0

(2.20)
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Similarly to the 1 DoF model, to consider the case of only SEAs,
the last terms in (2.19)- (2.20) involving the GMs should be ne-
glected.

3. Path constraints of the 2 DoF OCP:

ηk −N−0.0952
k = 0 k = 1 . . . 4

Pse,k − τse,k θ̇se,k −
τ2

se,k

Kmse,k

= 0 k = 1, 2

Pgm,k − τgm,k θ̇k Ngm,k −
τ2

gm,k

Kmgm,k

= 0 k = 1, 2

Kmse,k
− 0.0567 m1.8

se,k = 0 k = 1 . . . 2
Kmgm,k

− 0.0567 m1.8
gm,k = 0 k = 1 . . . 2

Ise,k − 2.85 10−5 m1.72
se,k = 0 k = 1 . . . 2

Igm,k − 2.85 10−5 m1.72
gm,k = 0 k = 1 . . . 2

(2.21)

4. Boundary constraints of the 2 DoF OCP for the swing up task:

θ1(0) = −θ1(tf ) = −π/2
θ2(0) = θ2(tf ) = 0

(2.22)

5. Boundary constraints of the 2 DoF OCP for the pick-and-place
task:

θ1(0) ≥ 0, Φ(0, ρ) = 0, θ1(tf ) ≥ 0

l1 cos(θ1(0)) + l2 cos(θ1(0) + θ2(0)) = l1
2

l1 sin(θ1(0)) + l2 sin(θ1(0) + θ2(0)) = 0

l1 cos(θ1(tf /2)) + l2 cos(θ1(tf /2) + θ2(tf /2)) = 3l1
2

l1 sin(θ1(tf /2)) + l2 sin(θ1(tf /2) + θ2(tf /2)) = l1

l1 cos(θ1(tf )) + l2 cos(θ1(tf ) + θ2(tf )) = l1
2

l1 sin(θ1(tf )) + l2 sin(θ1(tf ) + θ2(tf )) = 0
θse1(0) = θse1(tf ), θse2(0) = θse2(tf )

(2.23)

6. Due to the non-convexity of the OCP in the case of the 2 DoF
system, in many simulations IpOpt failed to find a local minimum.
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Trajectory Optimization

Two-Link Robotic Manipulator: SEA Configuration

14
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Initial 
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Initial/Final 
Position
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Position

Final 
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TASK 1

TASK 2

Initial Position

Initial/Final 
Position

Intermediate 
Position

Final Position

Actuator

End-effector

Actuator
End-effector

Figure 2.2: Swing-up task and pick-and-place operation performed by
the 2-DoF system. The green and blue circles represent instantaneous
position domains for the first and second link, respectively

The capability of IpOpt to find a solution is enhanced and the
time of the simulations is reduced by replacing the standard linear
solver with the MA57 linear solver [89].

Without energy regeneration, the expression of the cost function
(2.16a) is:

Φ(·) = w1

∫ tf

0

( 2∑
k=1

Pse,k(t, ρ) + ϵse,k(t, ρ)
2 +

+
2∑

k=1

Pdd,k(t, ρ) + ϵdd,k(t, ρ)
2

)
dt + w2t2

f

(2.24)

To avoid trivial solutions that would have exploited only the torque
given by the pre-load of the SEAs springs, for this task the pre-load is
set to zero.

The effects of this redundant actuation are also studied considering
a pick-and-place operation for a 2-DoF manipulator (see Fig. 2.2). The
task consists of moving the manipulator from an initial configuration to
a certain position of the end-effector, and then bringing it back to the
initial configuration. Specifically, the initial/final configuration is given
by the end-effector being at the same height of the first joint and at
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a distance of l1/2 from it, while in the intermediate configuration the
end-effector reaches a height of l1 and a distance of 3l1/2.

For this task, the springs pre-load are let remain free, but added a
constraint that the final pre-load must be equal to the initial one.

2.3 Results
This section reports the results for the 1-DoF and 2-DoF models. First,
the energy consumption of the redundant actuator and SEA for the
1-DoF system is analyzed. It turns out that for sinusoidal motions the
energy saving using the redundant actuation can exceed 90%. Moreover,
the resulting optimal control strategy is very similar to the latching
control used in energy harvesters [92, 93], which consists in locking the
moving body of a heaving buoy device at the end of the oscillation, so
when its velocity is zero, and then releasing it when its velocity is back
in phase with the wave excitation force.

With the 2-DoF system, the comparison extends also to GMs (i.e.,
DC motors attached to gearboxes with gear ratios up to N = 200),
redundant actuation at both the joints, and redundant actuation at the
first joint and SEA at the second joint. The 2-DoF system carried out
two different tasks: swing-up and pick-and-place. A co-design framework
is built to find optimal hardware parameters and control trajectories for
each task. Our analysis shows that, even though latching-like control
is not optimal for non-sinusoidal motions, the redundant actuation can
still be more efficient than SEAs and GMs.

In addition, also the closed-loop behavior of the actuators under per-
turbations is studied. It turns out that tracking the desired trajectories
while maintaining low energy consumption can sometimes be facilitated
by the actuator redundancy.

2.3.1 1-DoF: Test Details
The test with the 1-DoF system consists of fixing the motion of the joint
(sinusoid) and optimizing the redundant actuation control to minimize
the energy consumption. In the case with only the SEA, the motor
torque is analytically determined. The frequency range in the analysis
goes from 0.1 to 10 Hz, with 0.1 Hz resolution. The set of values for
the spring stiffness is [30, 50, 100] Nm/rad, while for the gear ratio of the
SEA it is [5, 10, 15, 20, 30, 50, 100, 150, 200].
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Figure 2.3: Energy use as a function of the oscillation frequency for the
SEA with spring constant Ks = 30 Nm/rad and 9 different gear ratios
N .

The same brushless DC motor model is considered for both the
SEA and the DD motor. Motor specifications include: peak torque
τmax = 7.13 Nm, rotor inertia Ise = 10−5 kg ·m2 and motor constant
Km = 0.64 Nm/

√
Watt. The gearbox efficiency is considered to scale

exponentially with the gear ratio as suggested in [35].
For all the possible combinations of oscillation frequency, spring stiff-

ness and gear ratio, the OCP (2.4) is solved after transcription using di-
rect collocation with a Lagrange-Radau scheme, 30 finite elements, and
3 collocation points per element.

2.3.2 1-DoF: Test Results
Our results show that the redundant actuation is energetically more effi-
cient than the SEA. Fig. 2.3 shows the energy consumption of the SEA,
considering a 30 Nm/rad spring stiffness and different gear ratios, while
Fig. 2.4 shows the case with redundant actuation. Both cases assumed
no energy regeneration. The valleys in Fig. 2.3 occur at the system nat-
ural frequencies, which vary depending on the gear ratio. Indeed, the
higher the gear ratio, the lower the system natural frequency. The nat-
ural frequency also depends also on the spring stiffness: fixing the gear
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Figure 2.4: Energy use as a function of the oscillation frequency for
the redundant actuator with spring constant Ks = 30 Nm/rad and 9
different gear ratios N .

ratio, the natural frequency shifts to higher values as the spring stiffness
increases.

To better understand the energy advantage of the redundant actu-
ation, Fig. 2.5 shows the energy savings achieved with the redundant
actuation in absolute terms while Fig. 2.6 illustrates the energy savings
as a percentage of the SEA energy consumption. To improve readability,
the data of Fig. 2.5 and Fig. 2.6 are filtered with a digital Butterworth
filter of order 1 with critical frequency equal to 0.2 half-cycles/s (sam-
pling frequency = 2 half-cycles/s). The energy savings can be very large,
up to 99%, depending on the oscillation frequency, the gear ratio and
the spring stiffness. For instance, in the range 3-4 Hz with N = 100 and
Ks = 30 Nm/rad, the redundant actuation can save more than 90% of
energy compared to the SEA, which means saving about 10 J. In the
same frequency range, if one considers N = 200 then the relative energy
saving decreases to about 70% but the absolute value of energy saving
increases approximately to 100 J. On the other hand, at 1 Hz the energy
saving is much lower: about 40% for high gear ratios (N ≥ 100), and
less than 20% for low gear ratios (N ≤ 20).

Insight into the large energy savings achievable with the redundant
actuation comes from how each actuator produces the desired joint
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Figure 2.5: Energy saving of the redundant actuation expressed in ab-
solute values.

torque. With only the SEA, the torque is provided only by the spring,
while with the redundant actuation it comes also from the DD motor.
The spring torque mainly stems from the motion of the SEA rotor being
opposite to that of the joint. Since in this test the joint trajectory is
fixed, the SEA rotor angle completely defines the spring torque. Thus,
with only the SEA, the analytical solution for the rotor angle trajectory
can be computed. To make the rotor achieve this motion, the motor must
provide a sinusoidal torque (opposite to the spring torque which is seen
as load torque by the SEA). For instance, Fig. 2.7 compares the torque,
angular velocity, and power from the SEA and the load for N = 100,
Ks = 30 Nm/rad and f = 3 Hz, which led to energy savings of more
than 90%. As the figure shows, the SEA motor must be always powered,
which implies a high energy consumption due to the SEA motor velocity
reaching very high values (up to 1500 rad/s). In two large time intervals
the SEA positive power (due to no energy regeneration) is greater than
zero and reaches almost 100 W.

With the redundant actuation instead, the SEA motor is powered
only during two short intervals (0.07 − 0.1 s and 0.22 − 0.26 s), when
it almost halts the motion of its rotor (see Fig. 2.8). The SEA ro-
tor is not completely blocked so that the thermally dissipated power is
compensated by negative mechanical power, resulting in nearly always
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Figure 2.6: Energy saving of the redundant actuation expressed as per-
centage of SEA energy consumption.

Figure 2.7: SEA: torque, velocity and power of (top) motor and (bottom)
joint required to perform a 3Hz sinusoidal motion. The SEA positive
power is the maximum between zero and the power consumed by the
SEA (no energy regeneration case).

non-positive total power. It is interesting to notice that the solver found
a control strategy very similar to the latching control, which is imple-
mented in many energy harvesters to maximize energy generation, by
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Figure 2.8: Redundant actuation: torque, velocity and power of motors
and joint required to perform a 3Hz sinusoidal motion. The DD and SEA
positive power is the maximum between zero and the power consumed
respectively by the DD and the SEA (no energy regeneration case).

keeping the SEA rotor velocity in counter-phase with the joint veloc-
ity [92,93]. Indeed, in heaving buoy wave energy converters, the oscillat-
ing body is often latched when its velocity vanishes in order to keep the
latter in phase with the wave excitation force. This condition is proved
to be required for the maximization of the energy generation [94]. In the
redundant actuation, this strategy is applicable thanks to the DD motor,
which provides the additional torque needed to perform correctly the si-
nusoidal motion. Since this torque is rather small, as well as the joint
velocity, the overall energy consumption remains small (peak positive
power less than 8 W).

2.3.3 2-DoF: Test Details
Four actuation architectures are considered: only GMs, only SEAs, re-
dundant actuation on both joints (Full redundant) and redundant actua-
tion on the first joint with SEA on the second one (redundant+SEA). For
both tasks, the weights w1 (associated to energy) and w2 (associated to
time) in the cost function (2.24) are set to 1 and 0.1, respectively. More-
over, to improve accuracy, the number of finite elements are increased to
100. Finally, the case with 60% energy regeneration is also investigated.

Since the solution that IpOpt could find is strongly dependent on the
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Figure 2.9: Results of 40 simulations considering the pick-and-place task
and the actuation architecture with only SEAs. Because of the non-
convexity of the problem, the solution strongly depends on how the de-
cision variables are initialized.

initial guess of the hardware design parameters, the initialization values
are randomized and the simulations are repeated 40 times. Beyond 40
random initial guesses, the change in the best solution is found to be
negligible. To highlight the non-convexity of this co-design problem,
which explains the dependency of the solution on the initial guesses,
Fig. 2.9 illustrates the results of 40 simulations considering the pick-
and-place task and the actuation architecture with only SEAs. In this
case, 65% of simulations lead to the same minimum-cost solution.

2.3.4 2-DoF: Test Results - Swing-Up

The following results concern a swing-up task with no load. Tab. 2.1
summarizes the results with no energy regeneration and compares the
energy consumption and task completion time of the different actua-
tion architectures. The Full redundant actuation turned out to be the
least effective, in terms of both energy consumption and task comple-
tion time. Instead, the redundant+SEA configuration performed the
best. It allowed for a 5% energy saving compared to only SEAs, with a
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Table 2.1: Task Completion Time and Energy Consumption with Dif-
ferent Actuation Architectures

Architecture

Task Time [s] Energy [J] Cost function

Swing Pick Swing Pick Swing Pick
Up &Place Up &Place Up &Place

GMs 5.71 3.38 226.68 42.57 229.94 43.72
SEAs 4.17 1.36 225.17 0.86 226.90 1.04
Full

redundant 10.89 1.59 264.72 1.16 276.59 1.42

Redundant
+ SEA 5.25 1.37 214.01 0.80 216.77 0.99

Table 2.2: Co-design Results for Swing Up Task

Architecture Motor Mass [kg] Gear Ratio Spring Stiffness
GM QDD GM QDD [N·m/rad]

1st GM 10.00 — 18.79 — —
2nd GM 0.10 — 1.00 — —
1st SEA 10.00 — 21.25 — 139.12
2nd SEA 0.10 — 200.00 — 17.21

1st Redundant 10.00 10.00 8.51 8.47 43.61
2nd Redundant 0.10 0.10 200.00 1.00 74.88
1st Redundant 10.00 0.10 13.35 10.00 70.65

2nd SEA 0.10 — 200.00 — 24.75

26% increase in task completion time. In contrast, when compared to
only GMs, around the same energy saving comes accompanied by an 8%
reduction in completion time. Tab. 2.1 reports also the objective func-
tion values, supporting the fact that the redundant+SEA configuration
seems to be the optimal choice for the swing-up problem.

Tab. 2.2 lists the optimal hardware parameters found from solution
of the OCP (2.16a) using a co-design framework. In all cases, the mass
of the motors on the first joint is equal to its upper bound (10 kg), while
for the motors on the second joint the optimal mass corresponds to the
lower bound (0.1 kg). This is reasonable: the inertia seen at the first
joint would increase if the motors on the second joint are heavier, while
the motors actuating the first joint are located at the robot base and
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thus do not increase the inertia. The optimal gear ratios on the second
joint in both cases with GMs and with Full redundant actuation are at
the lower bound, namely 1. Therefore, the GM and QDD at the second
joint contribute very little to the motion, while considerably increasing
the inertia of the system; for this reason the solver sets also the motor
masses to the lower bound.

This finding motivated us to investigate the design with redundant
actuation at the first joint and only SEA at the second one. That the
optimal gear ratios of the SEAs on the second joint are at their upper
bound means that the solver tries to maximize the contribution of these
SEAs without increasing the inertia of the system. However, if the gear-
box mass is modelled as function of the gear ratio, then the optimal gear
ratios would be lower than 200 because they would affect directly the
system inertia and so the energy use.

2.3.5 2-DoF: Test Results - Pick and Place
Tab. 2.1 summarizes the results of the pick-and-place operation. The
three actuation systems that employ SEAs clearly outperform the one
with GMs. This is due to the task periodicity, which enables exploiting
the springs pre-load to perform the motion. As observed with the swing-
up task, also in this case the best results are achieved using the redundant
actuation on the first joint and SEA on the second one. Compared to the
Full redundant actuation, the energy savings is 31% and the completion
time is reduced by 13.8%. Considering the case with only SEAs instead,
the task can be performed taking almost the same time but consuming
7% less energy.

Tab. 2.3 presents the resulting optimal hardware parameters for the
pick-and-place task. As observed with the swing-up task, in all cases the
optimal mass of the motors on the first joint is the maximum allowed,
as it happens also for the gear ratios of the SEAs on the second joint,
while the optimal motor mass of the QDD on the second joint of the Full
redundant actuation as well as its gear ratio hit the lower bounds. The
fact that the values of gear ratio of the SEAs on the first joint are equal
to their upper bound may be due to the high-torque demanding static
conditions set for this task in the initial-intermediate-final configurations.
With this task, it is not convenient to adopt the strategy of using the
SEAs to store and release mechanical power through the swinging motion
of the links, as in the case of the swing-up task. This may explain why
the solver sets the spring stiffnesses of the SEAs on the first joint to the
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Table 2.3: Co-design Results for Pick&Place Task

Architecture Motor Mass [kg] Gear Ratio Spring Stiffness
GM QDD GM QDD [N·m/rad]

1st GM 10.00 — 89.41 — —
2nd GM 4.34 — 10.71 — —
1st SEA 10.00 — 200.00 — 250.00
2nd SEA 3.17 — 200.00 — 9.23

1st Redundant 10.00 10.00 200.00 5.66 250.00
2nd Redundant 2.75 0.10 200.0 1.00 5.51
1st Redundant 10.00 10.00 200.00 4.52 250.00

2nd SEA 3.18 — 200.00 — 9.18

maximum value, so as to increase the bandwidth of the SEAs.
As presented so far, the co-design results for both tasks show that the

hardware design parameters hit the upper or lower bounds many times.
Whereas in some cases this phenomenon can be explained quite easily,
in other cases finding an intuitive explanation is much more complicated
and the results may actually be misleading. A solution to this problem
could be the use of regularization terms in the cost function that prevent
those hardware parameters from hitting their upper and lower bounds.

The results up to this point suggest that a periodic task can be effi-
ciently achieved in ideal settings using SEAs, thanks to their capability
to store and release mechanical power without wasting energy. The ben-
efits of adding a DD in parallel to the SEA in the 1-DoF system, that
allows for a latching control strategy, are observed only to a small extent
with the 2-DoF system and the tasks considered. Nonetheless, choosing
other tasks may highlight more effectively the energy efficiency of the
redundant actuation.

2.3.6 2-DoF: Feedback Control
The previous subsections investigated the energy efficiency of different
actuation architectures (SEA, GM, Full redundant, redundant+SEA) in
ideal settings, showing that the redundant actuator and redundant+SEA
can lead to energy savings. However, this does not suffice to claim that
this actuator could perform well in the real world. For this reason, the
behavior of different actuators is now analyzed in more realistic settings,
in which the system has to cope with modeling errors and disturbances
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Figure 2.10: Swing-Up Task: energy consumption and maximum final
joint-state error with PD control and disturbances in the optimized hard-
ware parameters as well as impulsive variations of joint accelerations.
The dots and crosses mark the position and velocity error against en-
ergy, respectively.

using feedback control.
To this end, a PD controller with hand-tuned gains is used to ob-

serve how energy consumption and task completion accuracy varied due
to modeling errors in the hardware parameters and joint acceleration
disturbances. 10 simulations are carried out for each actuation system,
randomly selecting the magnitude of the disturbances up to 1% of the
nominal value of the optimized hardware parameters and considering
impulsive variations of the joint accelerations (10 rad/s2) randomly oc-
curring between 25% and 75% of the task completion time. Figs. 2.11
and 2.10 show the energy consumption and the maximum joint state
error for the pick-and-place operation and swing-up task, respectively.
The error is measured at the intermediate and final state for the pick-
and-place task and only at the final state for the swing-up task. The
dashed vertical lines represent the energy consumption in absence of any
disturbance, while the dashed horizontal line is a subjective threshold
representing the maximum position error (0.5◦) below which the task
is considered to be successful. Since nominal energy consumption with
only SEAs and with redundant+SEA are very similar (respectively 0.86
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Figure 2.11: Pick-and-Place Task: energy consumption and maximum
between intermediate and final joint-state error with PD control and
disturbances in the optimized hardware parameters as well as impulsive
variations of joint accelerations. The dots and crosses mark the position
and velocity error against energy, respectively.

J and 0.80 J), the corresponding lines overlap.
In the pick-and-place task, the open-loop behavior of the system

with redundant+SEA also extends to closed-loop with disturbances: the
energy consumption is very close to the nominal one, although the maxi-
mum joint position error exceeds the threshold in half of the simulations.
The GM actuation also ensures an energy consumption very close to the
nominal one, in addition to an overall high accuracy and precision. The
other two actuation systems instead perform poorly both in terms of
actual energy consumption and task accuracy. Overall, the maximum
position and velocity errors considering the intermediate and final con-
figurations remain consistently bounded.

The results are different for the swing-up task: SEA and redun-
dant+SEA perform similarly, while good accuracy is obtained with Full
redundant actuation to the detriment of a high increment in energy con-
sumption. In Fig. 2.10, the results of only 5 simulations with GMs are
shown because in half of the simulations the controller failed to stabi-
lize the system. In terms of accuracy compared to the pick-and-place
task, the results for the swing-up task may be explained by the insta-
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bility of the desired final configuration. An exception is represented by
the Full redundant actuation, which may benefit from the combined ac-
tion of QDD and SEA on the second joint to better reject acceleration
disturbances.

2.4 Robustness reasoning

This section briefly describes how to modify a co-design framework as
the one presented in this chapter to add robustness reasoning and find a
pair of optimized hardware and nominal control trajectories that sustain
their efficiency when stabilized via feedback control. This framework
is the result of the collaborative work led by G. Bravo-Palacios at the
University of Notre Dame, which involved also the author of this thesis
and was presented in a recent publication [54]. Thus, this section merely
outlines the methodology and the key findings. Although the results
reported in [54] concern robotic systems that are different from the re-
dundant actuation system considered in this chapter, its applicability to
such robotic system would be straightforward.

As highlighted in [95], if a nominal trajectory is computed by consid-
ering factors such as modeling uncertainties, unplanned external forces,
or state estimation errors, the control effort to track such a trajectory
should decrease. Following the same intuition, this effect may be even
more pronounced if the hardware is co-optimized with the nominal tra-
jectory and controller. For this reason, the proposed co-design frame-
work variant is based on the premise that the solution of the classic
co-design problem can be made more robust by incorporating feedback
design in the optimization process. This framework utilizes a probabilis-
tic model to make design decisions by accounting for potential perturba-
tions to a nominal scenario. These perturbations may entail alterations
in the environment’s geometry (e.g., changes in terrain inclination angle
or height) or the application of external forces to the robot during a
task. Stochastic Programming (SP) is used to model uncertainty and
extend the co-design problem to account for multiple scenarios. The re-
sults demonstrate the benefits of co-optimizing the hardware, nominal
trajectory, and feedback controller in terms of robustness to external
disturbances, as well as the fact that the hardware selection significantly
influences the robot’s control actions, overall performance, and energy
efficiency.
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2.4.1 Stochastic Programming (SP) formulation
This subsection outlines the formulation of the robust variant of a co-
design framework, as the one presented in Chapter 2. The framework
bases its design decisions on probabilistic models of possible perturba-
tions ωξi (e.g., random push or change in terrain’s properties) to a nom-
inal scenario ξ∗. By combining a nominal scenario with a perturbation,
the framework generates a disturbed scenario ξi = ξ∗ + ωξi

. Considering
the SP syntax [96], the co-design problem is expanded from (2.16a)-
(2.16d) to encompass multiple scenarios via a two-stage SP problem.
This problem is denoted as P({ωξi}

Ns
i=1), indicating the disturbance sce-

narios ξi that are taken into consideration. In SP context, the term
“stage” refers to an abstract phase of construction of a mathematical
program. The first stage encompasses decisions related to nominal state
and control trajectories, as well as hardware and feedback control pa-
rameters. These first-stage decisions are consistent across all perturbed
scenarios, which are addressed in the second stage. Conversely, second-
stage decisions are related to each perturbed scenario. It is important to
note that passing through each stage does not mean solving a distinct
problem but entails incorporating variables and constraints to create a
unified optimization problem. Thus, the problem formulation is as fol-
lows:

P({ωξi}
Ns
i=1) .= (2.25)

minimize
tf ,γ∗(·),{γξi

(·)},ρ,µ(·)
Φξ∗ (γ∗(·), ρ) +

Ns∑
i=1

p(ξi)Φξi
(γξi

(·), ρ) (2.26a)

subject to ẋξ∗(t) = f(t, γ∗(t), ρ) (2.26b)
hξ∗(t, γ∗(t), ρ) ≤ 0 (2.26c)
g(tf , γ∗(0), γ∗(tf ), ρ) ≤ 0 (2.26d)
ẋξi(t) = f(t, γξi(t), ωξi(t), ρ) (2.26e)
hξi(t, γξi(t), ωξi(t), ρ) ≤ 0 (2.26f)
g(tf , γξi(0), γξi(tf ), ωξi(ti), ωξi(tf ), ρ) ≤ 0 (2.26g)
uξi(t) = µ(xξi(t), γ∗(t)) (2.26h)

where γ(t) = (x(t), u(t)) is the state-control trajectory, (2.26e)-(2.26g)
are respectively the dynamics, path and boundary constraints for the
perturbed scenarios ξi, i ∈ {1, ..., Ns}, (2.26h) indicates a feedback con-
trol policy µ(·), and p(ξi) ∈ [0, 1] is the probability of occurrence of
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Algorithm 2: Robust Co-Design
1 Inputs: γ0

r , ρ0
r, K0

r , N0
s

2 k ← 0
3 repeat
4 {γ∗k, ρ∗k, Kk} = solve(P({ωξi}

Nk
s

i=1), γk
r , ρk

r , Kk
r )

5 γk+1
r ← γ∗k

6 ρk+1
r ← ρk

7 Kk+1
r ← Kk

8 Nk+1
s ← Nk

s + ns

9 k ← k + 1
10 until stopping criterion is satisfied;

the scenario ξi. The feedback control policy is in the form of a linear
feedback:

µ(x(t), γ∗(t)) = u∗(t)−K(t)(x(t)− x∗(t)) (2.27)

and it is optimized by including the time-varying gain matrix K(t) as a
decision variable in the optimization process.

2.4.2 Robust co-design algorithm
As presented in [54], to exploit effectively the SP formulation (2.26)
and to deal with scalability, one can follow a homotopy approach that
iteratively refines a warm-start solution γr(·), ρr and Kr(·) as additional
scenarios are taken into account. This strategy is illustrated in Algorithm
2. At each iteration of the algorithm, ns new scenarios are added to
the co-design problem P({ωξi

}Ns
i=1), which is solved via TO to compute

γ∗, ρ∗, K(·) that are used to warm-start the co-design problem at the next
iteration. The stopping criterion can be represented by not observing
changes in the design variables or when the co-design problem becomes
not feasible.

2.4.3 Results
The experiments reported in [54] involve three systems, namely a 7-DoF
manipulator actuated by gear motors, a 3-link manipulator with SEAs,
and a 5-DoF planar monopod robot. The first case study, in which the
manipulator has to lift a load while being perturbed by external forces
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applied along its last link, shows that the co-optimized nominal trajec-
tory and feedback controller led to the smallest tracking error for the
considered scenarios, with the co-optimized nominal trajectory requir-
ing less energy than the fixed one. Considering 10 scenarios used during
the optimization, the robust co-design allowed to reduce the tracking
error of 91% and the energy consumed of 5.4% with respect to the de-
coupled nominal co-design controlled via LQR. The second case study,
which considers the same task as the previous test, highlighted even more
the importance of coupling hardware, nominal trajectory and feedback
design: LQR was not able to make the manipulator with decoupled co-
optimized design track the reference trajectory when disturbances are
applied, whereas the co-optimized controller was able to do so. Finally,
the last case study involving a planar monopod robot that has to jump
over a stair obstacle whose height is varied in the perturbed scenarios
showcased the potential of the proposed formulation also in the more
complex case of hybrid dynamics. Results show that the robustness
reasoning added through SP makes it possible to find a combination
of hardware, nominal trajectory and controller that reduces the cost of
transport (CoT) in perturbed scenarios compared to an LQR-controlled
monopod with decoupled co-design: the increase in CoT with respect
to the nominal trajectory when performed without perturbations drops
from 142% to 5.9%.

Despite the good results obtained with these three case studies, im-
proving the scalability of this this co-design framework variant remains a
challenge, mainly because the number of scenarios that can be assessed
is limited by the feedback gains co-optimization. As stressed in [54],
a potential solution may be the use of strategies derived from the Al-
ternating Direction Method of Multipliers (ADMM) [97] and Bender’s
decomposition [98].

2.5 Conclusions

This chapter introduced a co-design framework for the energy efficiency
analysis of a redundant actuation system. The analysis started with a
basic case study that evaluated the energy consumption of an oscillating
1-DoF system. A frequency analysis was conducted to examine the en-
ergy consumption behavior of the redundant actuation system compared
to a single SEA. Subsequently, a 2-DoF planar manipulator performing
two tasks (swing-up maneuver and pick-and-place operation) was con-
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sidered, and Co-Design was employed to optimize hardware and control
choices. Finally, the closed-loop performance of the distinct actuation
systems was assessed under modeling errors and disturbances using PD
control to track the previously computed optimal state trajectories.

The results obtained from the study indicate that the proposed re-
dundant actuation system is more energy-efficient than traditional ac-
tuators such as GMs or SEAs. When testing the system on a 1-DoF
system performing a sinusoidal motion, energy savings compared to an
SEA were significant, with savings sometimes exceeding 90%. For the 2-
DoF system, the optimal configuration was found to consist of redundant
actuation on the first joint and an SEA on the second. This configuration
outperformed GMs, with energy consumption reductions of up to 99%,
but led to limited savings (up to 7%) compared to using only SEAs. Task
dependency was also observed in the energy savings of the 2-DoF sys-
tem. Additionally, the study investigated the closed-loop behavior of the
different actuation systems under modeling errors and disturbances us-
ing PD control to track optimal trajectories obtained through co-design.
The results imply that the development of transmission systems, which
relate the sinusoidal angle/torque input trajectory of the actuator to non-
sinusoidal output trajectories, could be pursued to achieve substantial
energy savings for other tasks. Moreover, the energy-efficient benefits of
redundant actuation extend to closed-loop control with disturbances for
a pick-and-place task. The proposed co-design framework enables not
only the analysis and confirmation of the advantages in terms of energy
efficiency of redundant actuation but also the identification of optimal
values for the hardware parameters and state-control trajectories. Addi-
tionally, co-design analysis indicates that there is an increased incentive
to use redundant actuation for joints closer to the base. Therefore, the
importance of designing transmission systems to relay power over long
distances will be even more critical for designs using redundant actuation
schemes.

In order to enhance the analysis of closed-loop energy efficiency across
various actuation systems, future investigations will explore the utiliza-
tion of parametric optimization to calculate optimal feedback gains, as
well as advanced control techniques such as MPC. Lastly, a mixed-integer
optimal control problem could be formulated to enable the solver to de-
termine which actuation system is optimal for each individual joint.

This chapter concludes by briefly introducing a method to extend
such co-design framework to add robustness reasoning. This work was
presented in a recent publication [54] first-authored by G. Bravo-Palacios
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at the University of Notre Dame and co-authored by the author of
this thesis. The proposed framework extension aims to enhance the
robustness of robot motion planning by optimizing simultaneously the
hardware, nominal trajectory, and feedback controller and by employing
Stochastic Programming to produce robots that can handle external per-
turbations. The optimization problem is split into two stages, where the
first stage optimizes variables that are invariant to uncertain events, such
as hardware, nominal trajectory, and feedback gains. The second stage
considers uncertain conditions caused by the stochastic application of
disturbances and accounts for the feedback controller’s action. Despite
the two-stage abstraction, a single optimization problem is solved. Three
case-studies were considered and all of them demonstrated the impact of
hardware/morphology choices on performance, control actions, and en-
ergy efficiency. Moreover, the co-optimization of feedback gains turned
out to play a crucial role in finding nominal trajectories that require
less to be stabilized, thereby improving the robustness of the system.
Although the three case-studies considered in [54] involve other robotic
systems, such extension is straightforwardly applicable to the co-design
framework reported in this chapter which was used to study the redun-
dant actuation system. Currently, this robust variant of the co-design
framework has two main limitations. First, the inclusion of more hard-
ware parameters for optimization is limited by the trade-off between
increased design space exploration and the resulting problem size and
computation time. However, as certain combinations of hardware pa-
rameters may lead to poor quality local minima, this problem can be
mitigated by requiring tighter bounds on such parameters to restrict the
design space. Second, the co-optimization of feedback gains presented a
challenge for problem scalability, limiting the number of scenarios that
could be assessed through optimization. To address this challenge, a po-
tential solution may be to consider decomposing and iteratively solving
the co-design problem. In this direction, framework variants are being
investigated that use approaches derived from the Alternating Direction
Method of Multipliers [97] and Bender’s decomposition [98].
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Chapter 3

Towards global
optimality

As demonstrated in chapters 2, when a model of the system to be con-
trolled is available, one of the most powerful and flexible techniques to
compute optimal trajectories is gradient-based Trajectory Optimization.
Starting from a specific initial state, TO can find the control sequence
that minimizes a cost function representing the task to be accomplished,
where the system dynamics and possible state and control limits are con-
sidered as constraints. Such a powerful framework has led to excellent re-
sults when the problem is convex or slightly non-convex, especially when
used in an MPC fashion. For example, it has been successfully employed
to control high-dimensional non-linear systems such as quadrupeds and
humanoids [99–102]. However, when the task to be accomplished re-
quires a highly non-convex cost function and/or the dynamics is highly
non-linear, the presence of multiple local minima, some of which are of
poor quality (i.e., associated to a cost that is significantly worse than
the global minimum), often prevents TO from finding a satisfying con-
trol trajectory. A possible solution to this problem is providing TO with
a good initial guess, which turns out to be very complex—not to say
impossible—without a deep prior knowledge about the system, which is
often unavailable in practice. The IREPA algorithm [103] tackles this
problem by building a kinodynamic Probabilistic Road Map (PRM) and
approximating the Value function and control policy, which is then used
to warm-start an MPC. The method produced satisfying results on a 3-
DoF system, but it is limited to problems with a fixed terminal state, and
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scaling to high dimensions seems not trivial due to its need to explicitly
store the locally optimal trajectories in the PRM edges.

Approaches that can find the global optimum of non-convex problems
exist, and are based on the Hamilton-Jacobi-Bellman equation [104] (for
continuous-time problems) or Dynamic Programming (for discrete-time
problems). However, these methods suffer from the curse of dimen-
sionality, which restricts their applicability to systems with extremely
few degrees of freedom. Some efficient solutions exist, but for specific
problems, such as simple integrator dynamics with control-independent
cost [105, 106]. Alternatively, the tensor-train decomposition [107] has
been used to reduce the computational complexity of value iteration, by
representing the Value function in a compressed form. However, the ap-
proach has been tested on stochastic optimal control problems with at
most 7-dimensional state and scalar control. Subsequent improvements
of that approach [108] could solve problems with a 12-dimensional state,
but required some restrictions on the form of the dynamics and cost.

On the other hand, as mentioned in the previous chapters, in the
recent years deep RL has shown impressive results on continuous state
and control spaces, which represented its greatest challenge until 2015,
when DDPG [5] was presented. Successively, many variants have been
developed to further improve its performance, such as TD3, SAC, and
RTD3 [17, 20, 109]. In 2021, Zhang et al. [110] managed to speed up
DDPG’s training time and enhance the effectiveness of its learning with
their expansion called AE-DDPG, by making the agent latch on “good”
trajectories very soon through the use of asynchronous episodic control
and improving exploration with a new type of control noise. However,
deep RL is intrinsically limited by its low sample efficiency, which implies
the need for a considerable number of interactions with the environment
to reach a good performance level.

To mitigate this problem, Levine et al. [111] proposed to guide the
exploration process by using DDP as a generator of guiding samples that
push the policy search towards low-cost regions. However, the imitation
component of this approach makes its capability to find an optimal con-
trol policy strongly dependent on the quality of the guiding samples.
This downside applies also to the method proposed by Mordatch and
Todorov [112] combining policy learning and TO through the Alternat-
ing Direction Method of Multipliers (ADMM), which involves imitation
in that the policy learning problem is reduced to a sequence of trajectory
optimization and regression problems. In general, all the methods that
are imitation-oriented (e.g. [113–115]) suffer from the same limitation:
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the quality of what the RL algorithm can learn is limited by the quality
of the demonstrations or guiding trajectories found by TO.

Recently, Morgan et al. [116] proposed an algorithm combining MPC
and SAC that does not involve imitation and guarantees near-optimal
performance if errors in the value function and model approximation are
below a certain threshold. Even though this algorithm shares the same
core idea of combining OC and RL as the one introduced in this chapter,
they actually differ much in the way they learn a close-to-optimal policy.
Indeed, the former merges MPC and whatever deep RL algorithm, which
makes it very versatile but also inevitably inherit the problems of the
selected RL algorithm as hyperparameters sensitivity or the need to learn
also the Q-value function, whereas the algorithm presented here is stand-
alone and requires the learning of only one critic representing the Value
function.

In a similar spirit to [111], but with an imitation-free approach
as [116], the algorithm presented in this section, named CACTO (Con-
tinuous Actor-Critic with TO), aims to mitigate both problems: the
local minima issue affecting TO, and the low sample efficiency of RL. To
do so, CACTO combines TO and RL in such a way that their interplay
guides the search towards the globally optimal control policy.

3.1 CACTO: Continuous Actor Critic with
TO

This section presents an optimization algorithm to solve a finite-horizon
discrete-time OCP that takes the following general form:

minimize
X,U

J(X, U) =
T −1∑
k=0

lk (xk, uk) + lT (xT ) (3.1a)

subject to xk+1 = fk(xk, uk) ∀k = 0 . . . T − 1 (3.1b)
uk ∈ U ∀k = 0 . . . T − 1 (3.1c)
x0 = xinit (3.1d)

where the state and control sequences X = x0...T , U = u0...T −1, with
xk ∈ Rn and uk ∈ Rm, are the decision variables. The cost function J(·)
is defined as the sum of the running costs lk (xk, uk) and the terminal
cost lT (xT ). The dynamics, control limits and initial conditions are
represented by (3.1b), (3.1c) and (3.1d), with U = {u ∈ Rm : |u| ≤
umax}.
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Agent

Critic 
Cost-to-go computation

Trajectory Optimization
(TO)

Warm-startActor

Replay buffer
Sample mini-batch

Figure 3.1: Scheme of CACTO: at each episode, a TO problem is warm-
started with a policy rollout and solved, then the cost-to-go associated
with each state of the trajectory found by TO is computed and the
related transition is stored in the replay buffer. Finally, both critic and
actor are updated by sampling a mini-batch of transitions from the replay
buffer.

The algorithm presented in this section combines ideas from RL and
TO. The core idea is to exploit TO to guide the exploration towards
low-cost regions, so as to make the learning process more efficient. In
turn, a rollout of the currently learned policy is used to initialize the next
TO problem. In this way, the RL and TO components of the algorithm
help each other, making convergence faster: as training proceeds, the TO
solver is provided with better initial guesses and this increases the chance
of obtaining better solutions; in turn, these trajectories drive the agent
along lower-cost paths, pushing the critic towards a better approximation
of the optimal Value function and, consequently, the actor towards the
optimal policy. Fig. 3.1 shows a scheme of CACTO.

3.1.1 Algorithm description
As shown in Fig. 3.1, our algorithm can be broken down into four phases.
In the TO phase (green block), the optimal state and control trajectories
are computed considering a random initial state. Then, the cost-to-go is
computed (red block) for each state of the optimal trajectory and stored
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in a buffer (orange block). This buffer is then sampled to update both
the critic and actor (blue block). Finally, to close the loop, a rollout of
the actor is used to warm-start the next TO problem.

A more detailed description is reported in Algorithm 3. In the initial
phase (lines 1-4), the critic V (x|θV ) and actor µ(x|θµ) networks (“Agent”
blue block in Fig. 3.1) are initialized, as well as the target critic network
V ′(x|θV ′) (copying the weights of the critic), and a buffer R is created.
This buffer will store the transitions (xt, uT O,t, V̂t, xmin(t+L+1,T )), where
V̂t is the partial cost-to-go until state xmin(t+L+1,T ) after a rollout of
either L steps, or the number of steps to reach T (whichever is lower).
In this way, to update the critic one can choose between n-step Temporal
Difference (TD) (L = n−1) and Monte-Carlo (L = T −1− t) by setting
the hyperparameter L [117].

After the initialization phase, M episodes are performed (lines 5-
29) starting from a random initial state x0 (line 6). The state vector
has a dimension of n and includes the time as its last component. The
starting time index for each episode (and partial cost-to-go computa-
tion) is based on x0[n] (lines 14 and 17), so the length of each episode
can vary. At the beginning of each episode, the state and control vari-
ables (x◦

T O, u◦
T O) of a TO problem are initialized (line 11) with a roll-

out (x◦
µ, u◦

µ) of the policy network µ(x|θµ) (lines 7-10, “Warm-start”
arrow in Fig. 3.1). The TO problem is then solved, the control inputs
uT O are applied starting from x0, and the resulting costs are computed
and saved (lines 14-16). Then, for each step of the episode the par-
tial cost-to-go V̂t is computed and the related transition is saved in R
(lines 17-20, from “Cost-to-go computation” block to “Replay Buffer”
one in Fig. 3.1). Finally, every eupdate episodes the critic and the actor
are updated: for K times a minibatch of S transitions is sampled from
R (line 23, “Sample mini-batch” arrow in Fig. 3.1), for each of them the
complete cost-to-go V̄i is computed (line 24) by either adding the tail
of the Value to V̂i or copying the partial cost-to-go, which is the cost-
to-go itself in case the lookahead window exceeds the episode length
T . Then the critic and actor loss functions are minimized (lines 24-
25). Considering that CACTO deals with finite-horizon problems, it is
worth noting that V ′ is used only when i + L + 1 ̸= T , namely when
the costs-to-go are computed with n-step TD. The critic and actor loss
functions are respectively the mean squared error between the costs-to-
go and the values predicted by the critic

(
V̄i − V (xi)

)2 and the Q-value,
namely Q(xt, ut) = l(xt, ut) + V (xt+1), which represents the policy’s
performance.
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Algorithm 3: CACTO
1 Inputs: dynamics f(·, ·), running cost l(·, ·), terminal cost lT (·), T ,

M , S, K, L
2 Output: trained control policy µ(x)

3 θV ← random, θµ ← random, θV ′
← θV

4 Initialize replay buffer R
5 for episode← 1 to M do
6 x0 ← random, x◦

T O,0 ← x0

7 for t← x0[n] to T do (policy rollout)
8 u◦

µ,t ← µ(x◦
µ,t|θµ)

9 x◦
µ,t+1 ← Environment(x◦

µ,t, u◦
µ,t)

10 end
11 (x◦

T O, u◦
T O)← (x◦

µ, u◦
µ) (TO warm-start)

12 Solve TO problem and get control trajectory uT O

13 Agent’s initial state ← x0
14 for t← x0[n] to T do (episode rollout)
15 xt+1, lt ← Environment(xt, uT O,t)
16 end
17 for t← x0[n] to T do

18 Compute partial cost-to-go: V̂t =
min(t+L,T −1)∑

j=t

lj

19 R←(xt,uT O,t,V̂t,xmin(t+L+1,T ))
20 end
21 if episode % eupdate = 0 then
22 for k ← 1 to K do (critic & actor update)
23 Sample minibatch of S transitions (xi, uT O,i, V̂i, xmin(i+L+1,T ))

24 Compute cost-to-go: V̄i =
®

V̂i if i + L + 1 > T

V̂i + V ′(xi+L+1) otherwise
Update critic by minimizing the loss over θV :

Lc = 1
S

S∑
i=1

(
V̄i − V (xi|θV )

)2

25 Update actor by minimizing the loss over θµ:

La = 1
S

S∑
i=1

Q(xi, µ(xi|θµ))

26 Update target critic: θV ′
← τθV + (1− τ) θV ′

27 end
28 end
29 end
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3.1.2 Differences with respect to DDPG
This approach takes inspiration from DDPG, but presents a few key dif-
ferences, which are highlighted in this subsection. A first difference is
that the Q-value is replaced with the Value function, which is approx-
imated by the critic network. By doing so, the complexity is reduced
since the critic’s input is only the state, thus there is no need to explore
the control space. Keeping a Q-value approach instead, one could not
explore the control space using only TO because only the locally-optimal
control inputs would be chosen. Therefore, one should alternate the use
of TO trajectories with other exploration techniques (e.g., acting greedily
w.r.t. the Q-value function and adding some noise), which would dilute
the benefits of our algorithm, making it more similar to standard RL.
Contrary to DDPG, this algorithm is on-policy, meaning that the critic
estimates the Value of the exploratory policy being followed. This is
the policy obtained by initializing TO with rollouts of the current policy
network. This implies that it is important to size R not too large, so that
only the most recent TO trajectories obtained by warm-starting TO with
similar policies are stored; in this way, the critic, after its update, will
approximate the Value function associated to that policy. Otherwise,
the risk is having a critic that represents a meaningless Value function,
because it used trajectories generated with very different policies.

Another difference with respect to DDPG is that CACTO consid-
ers finite-horizon problems because TO cannot be used to solve arbi-
trary infinite-horizon problems. Therefore, the Value function is time-
dependent. This is addressed by considering time as the last component
of the state vector (x[n] = t).

As in DDPG, also CACTO makes use of a target network V ′ to
improve the stability of our algorithm. It is a copy of the critic net-
work, whose weights θV ′ are updated slower than the critic’s ones θV

by performing only partially the update of the critic, that is θV ′ ←
τθV + (1− τ) θV ′ with τ ≪ 1 being the target learning rate.

Implementation Details

Each TO problem was solved using collocation, which was available in
the Pyomo library and solved with the non-linear programming solver
IpOpt.

The following details are not fixed as part of the proposed method.
They are reported here for the sake of clarity and to help understand
how the results in section 3.2 have been obtained. Concerning the critic’s
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neural network, a structure with two small preprocessing fully-connected
layers with respectively 16 and 32 neurons is used, followed by two other
fully-connected hidden layers with 256 neurons each, all with ReLU ac-
tivation functions. The actor instead is represented by a residual neural
network with two fully-connected hidden layers with 256 neurons each
and ReLU activation functions, whose outputs are added and passed as
inputs to the last layer with a tanh activation function to bound the final
controls in [−1, +1]. A residual neural network is chosen to better prop-
agate the gradient to the first layer and limit the effects of the potential
combination of the vanishing gradient problem due to the tanh in the
last layer and the dying ReLU problem [118] which would prevent the
network from continuing to learn. Finally, the output of this last layer is
multiplied by the control upper bound. To stabilize the training of these
networks, the inputs are normalized and L2 weight and bias regularizers
are used in each layer, with weight equal to 10−2.

The critic and actor loss functions were minimized with a stochas-
tic gradient descent optimizer Adam [119]. The maximum number of
episodes is set to 80000 and stopped early the training of the neural
networks if the results were satisfactory.

3.1.3 Global convergence proof for discrete spaces
As for most continuous-space RL algorithms, it is hard to give any for-
mal guarantee of convergence for CACTO. However, we can show that,
considering a discrete-space version of CACTO using look-up tables in-
stead of DNN, the algorithm converges to a globally optimal policy. This
version of CACTO performs sweeps of the entire state space as in clas-
sic DP algorithms (e.g., Policy Iteration), rather than the asynchronous
approach characterizing RL algorithms. Moreover, we consider the Pol-
icy Iteration version of our algorithm meaning that each phase of policy
evaluation and policy improvement converges before the other begins.
This proof does not extend easily to the original CACTO algorithm, but
it gives us an insight into the soundness of its key principle.
Theorem 3.1. Consider the following assumptions.

• State and control spaces are finite.

• The optimal Value function V ∗ is bounded.

• We have access to a discrete-space TO algorithm that can perform
a local search and return a trajectory with a cost not greater than
the cost of the initial guess.
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Let us define kπT O as the control policy obtained solving a TO problem
using a rollout of the policy kπ as initial guess. Then, starting from
an arbitrary initial policy 0π, the following algorithm converges to the
optimal Value function V ∗ and an optimal policy π∗:

kV πT O = PolicyEvaluation(kπT O)
k+1π = argmin

u∈U
[l + kV πT O ]

Proof. Let us define π′(x) as the policy obtained by minimizing the
Action-value function of πT O, namely QπT O (x, u):

π′
t(xt) ≜ argmin

u∈U
[lt(xt, u) + V πT O

t+1 (xt+1)] ∀xt, t (3.2)

where xt+1 = ft(xt, u), and V πT O
t+1 (xt+1) is the cost-to-go following πT O

from xt+1 at time t + 1.
Since TO always finds a solution that is at least as good as the

provided initial guess, we have that:

V π
t (x) ≥ V πT O

t (x) ∀x, t (3.3)

Since π′ is the minimizer of QπT O (see (3.2)), we know that:

V πT O
t (x) = QπT O

t (x, πT O,t(x)) ≥ QπT O
t (x, π′

t(x)) (3.4)

Starting from (3.4), and following the same idea of the convergence proof
of Policy Improvement [120], we can write:

V πT O
t (xt) ≥ min

u∈U
[lt(xt, u) + V πT O

t+1 (xt+1)] (3.5)

(by (3.2)) = lt(xt, π′
t(xt)) + V πT O

t+1 (xt+1) (3.6)
(by (3.4)) ≥ lt(xt, π′

t(xt)) + QπT O
t+1 (xt+1, π′

t+1(xt+1)) (3.7)
= lt(xt, π′

t(xt)) + [lt+1(xt+1, π′
t+1(xt+1)) (3.8)

+ V πT O
t+2 (xt+2)]

. . .

≥
T −1∑
k=t

lk(xk, π′
k(xk)) + lT (xT ) ≜ V π′

t (xt) (3.9)

(by (3.3)) ≥ V
π′

T O
t (xt) (3.10)

To infer (3.9) from (3.8) we can iteratively apply the same reasoning
we used to go from (3.6) to (3.8). This proves that the updated policy
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Table 3.1: Time, number of DNN updates, number of environment steps,
and learning rates (LRC for critic and LRA for actor) used for each test.

System Time [h] # updates # env. steps LRC , LRA

Single Int. 5.46 110k 3.4M 5e−3, 1e−4

Double Int. 7.29 130k 4.1M 5e−3, 5e−4

Dubins Car 10.45 260k 4.1M 1e−3, 5e−4

Manipulator 30.68 385k 6M 1e−3, 5e−5

π′
T O cannot be worse than the previous one πT O. Since V πT O is non-

increasing and always bounded from below by the optimal value V ∗, it
follows from the monotone convergence theorem that V πT O converges to
a constant value V ∞. At convergence we must have:

V ∞
t (xt) = min

u∈U
[lt(xt, u) + V ∞

t+1(xt+1)] ∀xt, t

This is Bellman’s optimality equation, which is a sufficient condition
for global optimality, so it follows that the algorithm converges to the
optimal Value (V ∞ = V ∗) and to an optimal policy (π∞ = π∗).

3.2 Results
This section presents the results of four different systems of increasing
complexity: single integrator, double integrator, Dubins car, and 3-joint
planar manipulator. For each system, the task consists of finding the
shortest path to a target point (related to the end-effector’s position
for the manipulator) while ensuring low control effort and avoiding an
obstacle. The aim is verifying the capability of CACTO to learn a con-
trol policy to warm-start TO so that it can find “good” trajectories,
where other warm-starting techniques, such as using the initial condi-
tions (ICS) or random values, would make it converge to poor local
minima. More precisely, the ICS warm-start uses the initial state (vary-
ing at each episode) as initial guess for the state variables in the OCP,
for all time steps, and 0 as initial guess for the control variables.

For each system, the XY-plane is divided in a grid of 961 points and,
starting from each point with 0 initial velocity, the results of TO when
warm-started with either the policy learned by CACTO, or a random
initial guess, or the ICS for x and y (and 0 for the remaining variables)
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Figure 3.2: Cost function without the control effort term (3.15), consid-
ering a target point located at [−7, 0] with weights wd = 100, wp = 5·105

and wob = 1 · 106. The green rectangle delimits the Hard Region.

are compared. Table 3.1 reports the time and number of updates needed
to train the critic and the actor for each test.

In the four tests, the dynamics of the system under analysis is
changed keeping the same highly non-convex cost function to ensure
the presence of many local minima, that takes the following form:

l(·) = 1
c2

( 4∑
i=1

li(·)− c1

)
(3.11)

l1(·) = wd((x− xg)2 + (y − yg)2) (3.12)

l2(·) = wp

α1
ln(e−α1

Ä√
(x−xg)2+c2+

√
(y−yg)2+c3+c4

ä
+ 1) (3.13)

l3(·) = wob

α2

3∑
i=1
− ln (e

−α2

Å
(x−xob,i)2

(ai/2)2 +
(y−yob,i)2

(bi/2)2 −1
ã

+ 1) (3.14)

l4(·) = wu||u||22 (3.15)

where (xg, yg) are the target point coordinates, c1 = 10000 and c2 = 100
are two constants, while c3 = 0.1, c4 = −2c3−2√c3, α1 = 50 and α2 = 50
are the parameters that define the smoothness of the softmax functions
used to model respectively a cost valley in the neighborhood of the target
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and the three ellipses (centered at (xob,i, yob,i) and with principal axes
ai and bi) forming the obstacle. The four terms composing the cost
describe the task to be performed: (3.12) and (3.13) push the agent to
reach the target point (with weights wd and wp, respectively), (3.14)
makes it avoid the C-shaped obstacle represented by three overlapping
ellipses (with weight wob) and (3.15) discourages it from using too much
control effort (with weight wu). Fig. 3.2 illustrates the cost function
without the control effort term (3.15), where the cost peaks correspond
to the obstacle penalties (3.14) and the cost valley to the term (3.13).
Table 3.1 reports the time and number of updates needed to train the
critic and the actor for each test.

The critic is updated with Monte-Carlo (MC) for the 2D point, and
with 50-step TD for the car and the manipulator. The reason for us-
ing TD rather than MC lies in the stability of the training of critic and
actor. Indeed, in the early phase of training, using Monte-Carlo could
lead to large variations of the critic, and indirectly also of the actor,
because the target Values would be extremely different from the current
Values. Moreover, in the early training phase TO could compute ex-
tremely poor trajectories because of the poor initial guess provided by
the actor. In turn, these poor trajectories result in hard-to-learn Value
functions. Therefore, it is empirically observed that these two effects can
destabilize the training, leading to either longer training times, or even
divergence of the algorithm.

To summarize the results, Table 3.2 reports the number of times that
CACTO made TO find lower-cost solutions than the other two warm-
starts, considering both the whole grid and the region from which it is
harder for TO to find “good” solutions (Hard Region).

3.2.1 Single Integrator
The first problem that is considered is a simple 2D single integrator that
has to reach a target point avoiding a C-shaped obstacle. The state
is [x, y, t] ∈ R3, while the controls are the 2D velocities [vx, vy] ∈ R2,
bounded in [−4, 4] m

s .
The task is simple except when the system starts from the Hard

Region (x ∈ [1, 15] m and y ∈ [−5, 5] m), where TO can easily get stuck in
local minima. Most of the times this means that the resulting trajectories
point immediately towards the target, making the 2D point stay at the
right boundary of the vertical ellipse, as in the case with ICS warm-start
illustrated in Fig. 3.3(a). But since the C-shaped obstacle is modeled
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(a) ICS warm-start (b) Random warm-start

Figure 3.3: Optimal trajectories of the 2D single integrator obtained
with ICS and random warm-starts.

Figure 3.4: Single integrator: 3D-colormap of the Value function ap-
proximated by the critic after 110k updates considering t=0s.

as three overlapping ellipses represented by three soft penalties (3.14)
in the cost function, it can also occur that the 2D point passes through
them to reach the target, albeit at high cost, as shown in Fig. 3.3(b).
Table. 3.2 reports the percentage of the time that warm-starting TO
with CACTO rollouts leads to lower costs than using random values and
the initial conditions for x and y and 0 for the remaining variables as
initial guess. CACTO warm-start wins over the other two techniques,
particularly if considering the agent starting from the Hard Region where
warm-starting TO with CACTO leads to lower-cost solutions 99.11%
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Table 3.2: Percentage of the time that warm-starting TO with CACTO
leads to lower costs than using random initial guesses (CACTO vs. Ran-
dom) and the initial conditions for x and y and 0 for the remaining
variables (CACTO vs. ICS) as initial guess. Also the percentages when
CACTO has lower or equal cost (i.e., including ties) as its competitor
are reported. The best result out of 5 runs is reported for random warm-
start. For each system, a 31x31 grid is sampled for the initial x and y
coordinates (those of the end effector for the manipulator) and setting
the remaining initial state components to 0 (the joint positions of the
manipulator are obtained by fixing the orientation of the end-effector
and inverting the kinematics). The Hard Region is the region delimited
by x ∈ [1, 15] m ([1, 23] m in the manipulator test) and y ∈ [−5, 5] m.

System

Whole Space Hard Region
< (≤) < (≤) < (≤) < (≤)

Random ICS Random ICS

Single Int. 99.88% 14.49% 99.11% 91.96%
(99.88%) (99.88%) (99.11%) (99.11%)

Double Int. 99.88% 12.38% 99.11% 91.96%
(99.88%) (99.88%) (99.11%) (99.11%)

Dubins Car 89.72% 15.65% 100% 92.86%
(98.83%) (95.56%) (100%) (100%)

Manipulator 91.78% 77.94% 87.50% 100%
(91.91%) (78.33%) (87.50%) (100%)

and 91.96% of the time compared to using random values and the ICS
as the initial guess, respectively. Indeed, as it can be noticed in Fig. 3.4,
at the end of the training the critic gives a good approximation of the
globally optimal Value function, whose gradient in the Hard Region does
not point towards the right boundary of the vertical ellipse but to the
opposite direction. As the actor’s updates follow the critic’s gradient
during training, this allows the actor to learn how to make the agent
escape that region.

3.2.2 Double Integrator
The same experiment is run with the 2D point considering a double
integrator dynamics. Therefore, now the state includes also the veloc-

94



SECTION 3.2. RESULTS

(a) ICS warm-start (b) CACTO warm-start

Figure 3.5: Optimal trajectories (red) of the 2D double integrator ob-
tained with ICS and CACTO warm-starts. In (b), the magenta lines
represent the CACTO policy rollouts.
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(b) CACTO vs. ICS warm-starts

Figure 3.6: Double integrator: cost difference between CACTO warm-
start and other two warm-starts normalized by the largest cost difference.

ities [x, y, vx, vy, t] ∈ R5 and the control inputs are the accelerations
[ax, ay] ∈ R2. As illustrated in Fig. 3.5(b), the rollouts of the CACTO
policy are already close to the globally optimal trajectories, therefore TO
only needs to refine them when they are used as initial guess. Trajecto-
ries are referred to as globally optimal if their cost is the lowest among
those obtained solving several TO problems warm-started with random
initial guesses. Fig. 3.6 shows instead the cost difference (normalized
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Figure 3.7: Dubins car model: cost difference between CACTO warm-
start and other two warm-starts normalized by the largest cost difference.

by the highest difference in absolute value) when TO is warm-started
with rollouts of the CACTO policy in place of random values or the
ICS, respectively. Fig. 3.6(a) clearly shows that using rollouts of the
policy learned by CACTO as an initial guess makes TO find lower-cost
solutions from almost any initial state compared to those found with a
random initial guess. In Fig. 3.6(b) instead, it can be noticed that ICS
are a good initial guess for the majority of initial states and TO finds
the same solutions as when warm-started with CACTO rollouts. How-
ever, when starting the agent in the Hard Region, the ICS warm-start
makes TO find poor local minima, where the agent remains stuck in that
region or passes through the obstacle, whereas CACTO enables TO to
successfully bring the agent to the target without touching the obstacle.
Also in this case, in the Hard Region, warm-starting TO with CACTO
rollouts rather than with random values or ICS makes TO find lower
costs with the same percentage as in the previous test.

3.2.3 Dubins Car
To test CACTO with a higher-dimensional system, a jerk-controlled ver-
sion of the so-called Dubins car model [121] is selected, while keeping the
same environment and cost function of the previous tests. Now the state
has size 6 because it includes the steering angle θ, the tangential veloc-
ity v, and acceleration a, in addition to the coordinates x and y of the
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Figure 3.8: TO solutions considering 12 different initial configurations
of the manipulator and ICS warm-start. The red dotted lines represent
the trajectories performed by the end-effector (EE).

car’s center of mass and time t: s = (x, y, θ, v, a, t) ∈ R6. The control
is still bi-dimensional and it consists in the steering velocity and the
jerk [ω, j] ∈ R2. When the car starts from the Hard Region, TO warm-
started with CACTO always finds a lower cost than that obtained by
warm-starting TO with random values, and it does so the 92.86% of the
time when compared to using ICS warm-start, as reported in Table 3.2.
In addition, Fig. 3.7(b) shows that TO warm-started with ICS is not
able to find the globally optimal solution also when the car starts from
a point along the vertical line passing through the target point. This is
due to the fact that in that region the gradient of the cost is zero along
the initialization itself.

3.2.4 3-DoF Planar Manipulator
Finally, CACTO is tested on a problem with a 7D state and 3D con-
trol space. It consists of a 3-DoF planar manipulator with base fixed at
[−7, 0] m, working in the same environment of the previous tests, whose
end-effector has to reach a target point located at xg = −20 m and
yg = 0 m. The cost function is always (3.11), where x and y represent
the coordinates of the end-effector. Fig. 3.8 shows some solutions found
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Figure 3.9: 3-DoF Manipulator: normalized cost difference when warm-
starting TO with CACTO compared to using the initial conditions as
initial guess for the joint positions and 0 for the remaining variables.

by TO when warm-started with the ICS. It may seem that TO succeeds
in some cases in finding the globally optimal trajectories for those ini-
tial configurations, but actually all of them are only locally optimal, as
shown by the negative cost difference in Fig. 3.9 when those solutions are
compared to the ones obtained by warm-starting TO with CACTO. This
test is harder, meaning that it is much easier for TO to find poor local
minima, not only due to the larger state-action space, but also because
the actor has to intrinsically learn the manipulator kinematics. Indeed,
considering the whole manipulator workspace, CACTO warm-start wins
over using the ICS or random values 77.94% and 91.78% of the time,
respectively, as reported in Table 3.2.

3.2.5 Comparison with DDPG and PPO perfor-
mance

To compare CACTO and DDPG, a custom implementation of DDPG
with hand-tuned hyper-parameters (DDPG-c) is used, as well as that
from Stable Baselines (DDPG-sb), to find a warm-starting policy for the
2D double integrator test of section 3.2.2. In addition, the comparison is
extended also to PPO from Stable Baselines. Fig. 3.10 shows the costs
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Figure 3.10: Cost of the trajectory found by TO (starting the 2D point
from [5, 0]m with 0 velocity) when warm-started with rollouts of the pol-
icy learned with CACTO (green), custom DDPG (DDPG-c in orange),
Stable Baselines’ DDPG (DDPG-sb in blue) and PPO (red) as their
trainings proceed. The shaded area denotes the standard deviation over
5 different runs.

obtained by TO as functions of the computation time allocated to each
algorithm to train its warm-starting policy. Clearly, CACTO was faster
than the other RL algorithms in learning a policy enabling TO to find
lower-cost solutions, and its training was also more stable (rollouts with
lower variance).

Besides this quantitative comparison, one could also try to qualita-
tively compare the results reported in the previous sections with the ones
reported for DDPG in [5]. Among their tests, the most similar to the
ones here is the fixedReacher, where a 3-DoF arm must reach a fixed
target; this has the same dimensions as the manipulator test. However,
the cost/reward used here function is highly non-convex, particularly
due to the obstacle avoidance term, while theirs was quadratic and con-
sisted of only two terms. This makes it harder to reach convergence
in the DNN training. Using CACTO in such a simple setting, with a
convex cost-function, would not make sense: TO would converge to the
global optimum even with a trivial warm-start (indeed DDPG converged
to roughly the same policy found by iLQG). Consequently, it makes no
sense to use these results for a comparison with CACTO, which should
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instead be based on highly non-convex problems, where TO cannot find
the global optimum with a naive initial guess.

3.3 Potential improvements

Despite the encouraging results, CACTO can still be improved, in par-
ticular concerning its computation time. This can be achieved by some
different techniques. For instance, a possible direction to speed up the
learning of the critic is to use Sobolev Training [122], so as to exploit
the derivatives of the Value function computed by a DDP-like TO algo-
rithm [55]. With Sobolev Training, the critic is updated by minimizing
the weighted sum of the mean squared error between the predicted and
computed cost-to-go and some norm of their gradients. The critic’s up-
date is thus more informative, which means that one could afford to
choose a higher learning rate or a smaller minibatch size. In turn, as
the critic reaches faster a good approximation of the Value function, the
actor will also be faster in learning a good control policy to warm-start
TO. Considering that CACTO is based on the interplay between TO and
RL, this should make it converge faster to the globally optimal policy.
However, there may be potential drawbacks related to this approach,
that are the addition of a new hyperparameter that may not be easy
to tune, since it would depend on the problem considered, and stabil-
ity issues that typically occur when updating deep neural networks too
aggressively.

One could also consider to implement CACTO using sampling-based
multi-query planners, similarly in spirit to what [103] proposes with
PRMs or [123] with RRTs. This could also accelerate the learning pro-
cess, but to the detriment of the applicability of the algorithm beacuse
of two reasons. First, such sampling-based planners need a target state
to reach, whereas CACTO works simply with a cost function. Even
though in the tests reported in this chapter the cost function always
encodes a target state, this is not at all a requirement for CACTO. Sec-
ond, CACTO produces a continuous policy, which can be used from any
state, whereas sampling-based algorithms produce a graph with a lim-
ited number of nodes. This means that if the agent starts from a state
that is not part of the graph, it first needs to connect the current state
with one of the nodes of the graph, resulting in extra computations for
online applications.

In addition, also using a prioritized replay buffer (e.g., w.r.t. the
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TD error) or the Hindsight Replay Buffer (HER) [124] may be beneficial
for speeding up the learning process. From preliminary tests, it was
observed that the use of a prioritized replay buffer strongly impacts the
training stability, as the state space is no longer sampled uniformly and
so the value in some regions may diverge. Therefore, other additional
techniques may be needed to compensate such instability which deserve
further investigation.

Another potential improvement could be the use of randomized
smoothing [125] to manage non-differentiability in the dynamics of the
system when it becomes hybrid due to contacts, as it occurs in legged
locomotion or manipulation problems for instance.

Regarding the practical use of CACTO, besides using it as initial
guess provider for TO, where the RL and TO environments must match,
it would be interesting to use it as a deep RL technique to find directly a
control policy, where the two environments do not need to match (e.g.,
the TO problem could be a simplified version of the RL environment
without noise sources).

Finally, CACTO will be extended to include also the optimization
of hardware parameters, so as to create a co-design framework which is
robust against the local minima problem.
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Chapter 4

Conclusions

This thesis dealt with the concurrent design (Co-Design) of hardware and
control for robots and it can be divided into two parts. The first part
highlighted the importance and effectiveness of following a co-design ap-
proach when benchmarking different robotic systems, specifically when
carrying out a comparison in terms of energy efficiency between different
actuation systems. The second part tackled the issue of convergence to
“poor” local minima, which typically occurs with highly non-convex op-
timal control problems as those of Co-Design, by proposing an algorithm
to learn a “good” control policy to be used as initial guess provider for
trajectory optimization problems. Even though the current stage of this
algorithm considers only control in the optimization process, the next
step will be to extend it by including also the hardware optimization so
as to enable its applicability to co-design problems.

4.1 Summary
Chapter 2 presented an application of Co-Design for the energy efficiency
analysis of a redundant actuation system consisting in a series elastic
actuator (SEA) working in parallel with a quasi-direct drive (QDD) to
actuate the same joint. This kind of actuator was firstly introduced in
the late 90’, but it was not clear yet whether it was energetically more
convenient than a SEA or a geared motor (GM) working alone. The
analysis started from a simple case-study, which examines the energy
consumption of an oscillating 1-DoF system. Then, the analysis focused
on a 2-DoF planar manipulator. Two tasks were considered and Co-
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Design was used to make optimal choices in the simultaneous design of
hardware and control. Finally, the closed-loop behavior of the different
actuation systems subject to modeling errors and disturbances was in-
vestigated using PD control to track the previously computed optimal
trajectories. The results showed that the proposed redundant actuation
is energetically convenient compared to standard actuators as GMs or
SEAs. With the 1-DoF system performing a sinusoidal motion, the en-
ergy savings compared to an SEA can be very large, sometimes exceeding
90%. For the 2-DoF system instead, the energy savings turned out to
be task dependent, but in any case the optimal configuration seems to
consist of having redundant actuation on the first joint and an SEA on
the second one. This system can outperform GMs (up to 99% energy
consumption reduction), but it leads to limited savings (up to 7%) with
respect to only SEAs. This finding suggests that transmission designs
(e.g, as in [126]) relating sinusoidal angle/torque input trajectory of the
actuator to nonsinusoidal output trajectories might be pursued to en-
able significant energy savings for other behaviors. In addition, for a
pick-and-place task, the energetic advantages of the redundant actua-
tion also extend to closed-loop control with perturbations. With the
proposed co-design framework, it was possible not only to study and
verify the energy convenience of this redundant actuation, but also to
obtain optimal values for its hardware parameters and optimal state-
control trajectories. This gives flexibility in the design process, since
with little changes to the framework (e.g., to constraints, objective func-
tion etc.) one can obtain new designs of a robotic system tailored to
different specific tasks. Furthermore, Co-Design showed that there is in-
creased incentive for adopting redundant actuation for more proximally
located joints. This suggests that the importance of designing trans-
mission systems to relay power distally will be even more important for
designs adopting redundant actuation schemes.

Chapter 3 presented a new algorithm (CACTO) for finding quasi-
optimal control policies, whose rollouts are meant to be used as initial
guess for trajectory optimization problems. In particular, this work ad-
dressed the open problems affecting TO and Deep Reinforcement Learn-
ing (RL): the possibility of getting stuck in poor local minima when TO
is not properly warm-started on one side, and the low sample efficiency
(in addition to the strong dependence on the exploration process) of
Deep RL. The proposed algorithm relies on the combination of TO and
Deep RL in such a way that their interplay guides in an efficient way
the RL exploration process towards a globally optimal control policy.
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A proof of policy improvement for a discrete-space version of the algo-
rithm was provided, which gives insight into its underlying theoretical
principles. The effectiveness of the algorithm was shown by testing it
on four systems of increasing complexity, with highly non-convex cost
functions, where TO struggles to find “good” solutions. More precisely,
the systems considered are a 2D point with single and double integrator
dynamics, a Dubins car and a 3-link manipulator, and the task to be ac-
complished consists of finding the shortest path to a target point while
ensuring low control effort and avoiding an obstacle. Using rollouts of
the policy learned by CACTO to warm-start the TO problem of interest
outperformed standard warm-starting techniques in all tests. Moreover,
it was demonstrated that CACTO is faster than other state-of-the-art
RL algorithms in learning a policy enabling TO to find lower-cost so-
lutions, and that its training is also more stable (rollouts with lower
variance). Overall, even though preliminary, the results validated the
proposed methodology and unlocked a wide range of possible applica-
tions.

4.2 Discussion and future work

This section points out the potential impact of this thesis for the scien-
tific community, stressing the limitations and the possible future devel-
opments of the presented methods and algorithms. The work presented
in this thesis advanced the current state of the art in the field of Co-
Design. Hopefully, the efforts put in this work represent another step
towards the widespread adoption of Co-Design for the design of hardware
and control of high-performance robotic systems.

Concerning the co-design application introduced in chapter 2, the
main implication of the reported results is that such redundant actua-
tion system should be further analyzed considering other systems and
tasks where energy efficiency is of fundamental importance, for instance
in rescue or delivery applications of battery-powered legged robots or
energy harvesting applications with other devices than wave energy gen-
erators [92, 93], particularly when the kinetic energy source generates
sinusoidal movements. More generally, given the flexibility and capa-
bility of such framework to compute optimal hardware-control pairs in
those scenarios where human intuition does not suffice, it can be used to
fairly benchmark novel actuation systems against already existing ones
by changing only some constraints of the OCP.
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However, the main limitation of this work is represented by the po-
tential presence of many different “poor” local minima, which may pre-
vent the solver from finding the most performing pair of hardware and
control strategy for each actuation system, thus making the comparison
misleading. A solution to this issue could be the application of CACTO
(chapter 3) to such optimal control problem as soon as it will be ex-
tended to include also the hardware optimization. Moreover, to improve
the analysis of closed-loop energy efficiency for different actuation sys-
tems, future work could consider also the optimization of the feedback
gains, as done in [54] and briefly described at the end of chapter 2, as well
as the use of more advanced control methods such as Model Predictive
Control. Another potential future development is the extension of this
study to a single leg of a quadruped subject to different gaits, obtaining
optimal hardware designs and control trajectories via simulation, and
analyzing the energy efficiency of diverse actuation configurations in a
real application. Finally, a mixed-integer OCP could be formulated to
let the solver choose which actuation system is the best to actuate each
single joint.

The algorithm presented in chapter 3 (CACTO) can have impor-
tant consequences in the robotics field and significant impact on future
works. Considering its current development stage, it can be used with-
out much modifications to find a “good” warm-starting strategy for any
OCP involving very non-convex objective functions, which may repre-
sent multi-goal tasks, and systems with state-action space that is not of
high-dimensionality. This use of CACTO can help researchers increase
the confidence level about the global optimality of the solutions of their
trajectory optimization problems, which is currently not achievable with
any other tool or technique. This is not limited to the robotics commu-
nity as CACTO is application-agnostic, indeed it can be applied in any
field where it is required to optimize state and control trajectories gener-
ated by whatever system whose dynamics is differentiable. Nonetheless,
its greatest implication is that it paves the way for the design of a family
of algorithms merging model-based and model-free techniques, which is a
research direction that is gaining increasingly traction among roboticists
in the very recent years.

Despite the encouraging results, CACTO can still be improved, in
particular concerning its computation time. A potential solution that
is currently being investigated to speed up the learning of the critic is
using Sobolev Training [122]. This technique pushes the critic to match
also the gradient of the Value function, which can be easily computed
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by any DDP-like TO algorithm, such as [55]. Moreover, besides using
CACTO as initial guess provider for TO, where the RL and TO environ-
ments must match, it is worth testing it also as a deep RL technique to
find directly a control policy, where the two environments do not need
to match (e.g., the TO problem could be a simplified version of the RL
environment without noise sources). Finally, the most promising devel-
opment direction for CACTO is its extension to co-design problem by
including also the hardware optimization, so as to propose a co-design
framework robust to local minima, which is a crucial issue in co-design
applications.
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