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Outline

This thesis is structured as follows. In Chapter 1 (Introduction) an elementary foundation for
the understanding of quantum computing is laid out. Starting with the basic definition and
representation of single and multi-qubit states, the argument progresses through the concept
of quantum superposition in the context of measurement, culminating in the exploration of
quantum algorithms and their formulation as quantum circuits. Special emphasis is placed on
the intricate process of quantum gate decomposition, an elementary lynchpin that underpins the
development of quantum algorithms and plays a crucial role in this research. In particular, this
concerns the implementation of quantum algorithms designed to simulate the dynamic evolution
of multi-particle quantum systems, the so-called Hamiltonian simulations.

Chapter 2 (Quantum gate decomposition and circuits) introduces the concept of quantum
gate decomposition and quantum circuit optimisation, which allows to decompose the entire
qubit transformation into a sequence of elementary gates available in the quantum computing
architecture. The specific decomposition of a unitary transformation plays a crucial role in
fault-tolerant quantum computing. An optimal implementation of a quantum gate is essential
to efficiently perform a quantum simulation, especially for near-term quantum computers. In
fact, the number of gates we use to implement a given evolution affects the execution time, and
the fidelity of the simulation decreases as the simulation time increases. In general, there is no
universal procedure that is optimal for every situation, but their knowledge can help in choosing
and defining the best way to implement a particular quantum algorithm. In this chapter a bunch
of useful information is gathered about quantum gates, summarising properties and equivalences
that can be used to optimise, manipulate and generate quantum circuits. A simple tool that
we can use to construct a naive compiler is then presented. The chapter ends with an overview
of the current methods that can be used to perform quantum gate decomposition, trying to
motivate the fact that at this stage of quantum computing there is no optimal method for doing
this, but the choice strongly depends on the problem we are approaching.

The quantum gate decomposition has to take into account not only the particular physical
problem we are tackling, but also the quantum machine we are using. This point can be sum-
marised in what is called machine aware compilation. Chapter 3 (Trapped-ion based quantum
computing) introduces the special architecture based on trapped ions and highlights its advan-
tages. This type of hardware is used in the last part of this thesis for a practical application of
a simulation of many-body quantum systems.

The aim of Chapter 4 (An explicit tensor notation for quantum computing) is to develop a
new explicit tensor notation, which, at the best of my knowledge, has never been used in any
work related to quantum computing developed by physicists, but which may be more intuitive
for mathematicians. Two notations are commonly used in the literature to describe quantum
computing theory. The first is the Dirac notation and the second is based on what is known
as the computational basis. The main disadvantage of the latter is the exponential growth of
vector and matrix dimensions, which makes classical computing resources insufficient to predict
the evolution of a number of qubits just above ten. The second disadvantage of this notation
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is that it hides some relevant quantum properties of the operations by increasing the apparent
number of independent variables. This chapter presents a third possible notation which is
explicitly tensorial with particular attention on its advantages in terms of detection of separable
and entangled systems, and in terms of quantum gate representations. The notation is applied
to the description of the remarkable quantum teleportation algorithm. This chapter is the one
that most diverges and differs from the rest of the work presented in this text and comes from
a transdisciplinary collaboration with the mathematics department.

The last two chapters present a practical application of quantum computing to simulate
a quantum many-body system governed by weak interactions. Chapter 5 (Collective flavour
oscillation) presents the basic concept behind the physics of neutrinos in high-density situa-
tions, and the detailed derivation of the Hamiltonian governing the collective flavour oscillation
phenomena. These phenomena are of particular interest in extreme astrophysical settings such
as core-collapse supernovae, neutron star mergers and the early universe, as demonstrated by
previous research. The dynamics are particularly interesting and hard to solve on a classical
computer, and therefore provide a useful context in which to explore the benefits of quantum
computing.

Finally, the aim of Chapter 6 (Quantum algorithm and results) is to design, optimise, apply
and analyse a quantum algorithm allowing the dynamics of collective flavour oscillations to be
simulated on a trapped-ion-based quantum computer. This is an application of quantum com-
puting to the so-called Hamiltonian simulation, which requires the quantum gate decomposition
of the real-time unitary propagator generated by the system Hamiltonian. After the quantum
gate decomposition and the machine-aware optimisation, the quantum circuit implementing the
algorithm has been run on the Quantinuum machine and the results are presented and dis-
cussed. The chapter ends with a section giving a comprehensive analysis of the Trotter error
and evaluating the complexity scaling of the algorithm, whose explicit calculations are reported
in the Appendix A (Full Trotter error calculations).
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Chapter 1

Introduction

Quantum computing uses the principles of quantum mechanics to revolutionise the way we
process and manipulate information. Unlike classical computers, which operate on bits of in-
formation b ∈ Z2 = {0, 1} represented as either 0 or 1, quantum computers use quantum bits
|q⟩ ∈ C2, or qubits, which can exist in superpositions of |0⟩ and |1⟩ at the same time. At the
heart of quantum computing are the amazing phenomena of quantum superposition and entan-
glement. Superposition allows qubits to occupy multiple states simultaneously, exponentially
increasing computational power compared to classical bits. Entanglement, on the other hand,
allows qubits to be correlated in such a way that the state of one qubit depends on the state of
another, regardless of their physical distance.

The power of quantum computing lies in its ability to perform certain calculations and solve
complex problems exponentially faster than classical computers. This potential has profound
implications for a wide range of fields, including cryptography, optimisation, materials science,
artificial intelligence and particle physics. However, realising the potential of quantum com-
puting does not come without challenges. Quantum systems are highly sensitive and prone to
noise and decoherence, which can lead to computational errors. Building and maintaining sta-
ble qubits and developing robust error correction techniques are critical areas of research in this
field. Several approaches are being pursued in the development of quantum computers. One
of the most prominent is based on the use of trapped ions (as Quantinuum and IonQ), where
individual ions are manipulated to represent qubits. Other approaches include superconducting
circuits (as Google and IBM), topological qubits, photon-based systems and neutral atoms (as
QuEra and Pasqal). Each approach has its own advantages and challenges, and researchers
are actively exploring different ways to build practical and scalable quantum computers. In
recent years, quantum computing has made significant progress, even with claims of having
demonstrated quantum supremacy - the ability of a quantum computer to solve a problem that
would be practically impossible for classical computers. However, quantum computing is still
in its infancy and many technological and theoretical hurdles must be overcome before it be-
comes a widespread reality. Despite these challenges, quantum computing is an exciting and
rapidly evolving field that holds great promise for the future of computing. Its ability to harness
the principles of quantum mechanics to process information in fundamentally new ways opens
up a realm of possibilities for solving complex problems that are beyond the reach of classical
computers.

This chapter introduces the basic concepts of quantum computing (Sec. 1.1), focusing on
the representation of single and multi-qubit states, the concept of quantum superposition in
the context of measurement, and the quantum circuit formulation of quantum algorithms. A
key concept is quantum gate decomposition, which is related to the implementation of quantum
algorithms designed to simulate the dynamic evolution of multi-particle quantum systems -
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12 CHAPTER 1. INTRODUCTION

the so-called Hamiltonian simulations (Sec. 1.2). This always requires two main ingredients, an
encoding map and a unitary implementation, which must take into account the physical problem
and aim to produce an efficient quantum algorithm.

1.1 Quantum computing in a nutshell

1.1.1 Qubits with binary mapping to states

We can define a qubit as a two-level quantum system belonging to the Hilbert space H = C2.
A qubit state is identified, in Dirac notation, by a unit vector |φ⟩ ∈ C2 which satisfies the
normalisation condition ∥|φ⟩∥ = 1 and the equivalence up to a global phase |φ⟩ ∼= eiϕ |φ⟩,
reflecting the fact that it is physically impossible to access the global phase of a wavefunction.
One of the main properties of a qubit with respect to a classical bit is the so-called quantum
superposition, according to which the state of a single qubit can be in any linear combination
of the basis elements B = {|0⟩ , |1⟩} ⊂ C2 of the Hilbert space, namely

|φ⟩ = α |0⟩+ β |1⟩ , (1.1.1)

where α, β ∈ C. The linear combination must satisfy the normalisation condition |α|2+ |β|2 = 1,
which guarantees ∥|φ⟩∥ = 1, and the equivalence up to the global phase. These two conditions
together allow us to identify a state with only two parameters according to the parameterisation

|φ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ , (1.1.2)

where θ ∈ [0, π] and ϕ ∈ [0, 2π). This parameterisation is consistent with the Bloch sphere
representation of a single qubit, according to which there is a one-to-one correspondence between
the single qubit states and the points on the surface of the S2 sphere in R3 with radius r = 1.
The parameterisation is the same as in Eq. (1.1.2) if we place the basis elements along the z axis
and identify the zenith angle with θ and the azimuth angle with ϕ, as shown in the Figure 1.1.
Using this notation, a qubit state can also be represented as a three-dimensional unit vector

|φ⟩ =

xy
z

 =

sin θ cosϕ
sin θ sinϕ

cos θ

 , (1.1.3)

expressed in Cartesian or spherical coordinates. On the other hand, one of the most common
way to express the state of a qubit is the one based on the canonical basis

B =

{(
1
0

)
,

(
0
1

)}
⊂ C2, (1.1.4)

also called computational basis, on which a qubit state is a two-dimensional normalised vector

|φ⟩ =
(
α
β

)
=

(
cos θ/2
eiϕ sin θ/2

)
∈ C2. (1.1.5)

It is well known that the physics of a two-level quantum system can be described by the SU(2)
group, whose algebra su(2) is generated by the Pauli matrices, which on the canonical basis
correspond to the following hermitian, unitary, traceless, (-1)-determinant matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.1.6)
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Figure 1.1: Bloch sphere representation of a single-qubit state.

It is easy to prove that the Cartesian coordinates in Eq. (1.1.3) correspond to the expectation
values of the Pauli matrices on the qubit state expressed as a two-dimensional vector, i.e. k =
⟨φ|σk|φ⟩, where k ∈ {x, y, z}, due to the isomorphism SU(2) ∼= SO(3)/Z2.

When considering a system composed of n qubits, the states characterising it belong to the
tensor product Hilbert space H = (C2)⊗n of dimension dim(H) = 2n, whose states are generally
identified by linear combination of all basis elements

|φ⟩ =
2n−1∑
i=0

αi |i⟩ , (1.1.7)

where αi ∈ C are the complex coefficients of the linear combination,
∑

i |αi|2 = 1, and |i⟩ are
the basis elements of

B = {|i⟩ , s.t. i ∈ {0, . . . , 2n − 1}} , (1.1.8)

and can be expressed in binary or decimal notation. |i⟩ is in decimal notation if i ∈ {0, . . . , 2n−1}
and |[i]⟩ is in binary notation if [i] is the bit string representation of the decimal number i with
the most significant bit on the left. Using the common computational basis, each basis element
|i⟩ corresponds to a 2n dimensional vector with only one non-zero entry at position i.

1.1.2 Measurement, quantum superposition and entanglement

In the transition from classical to quantum computing, there is an evident increase in the amount
of information stored in the information unit. In fact, a bit can take either of the two possible
values 0 and 1, instead a qubit can be in any possible linear combination of the basis elements
|0⟩ and |1⟩. There is another crucial difference between the information stored in a bit and that
stored in a qubit, and it relates to the probabilistic nature of the measurement of a qubit state.
When we look at a bit state, we observe with absolute certainty a certain value in Z2 = {0, 1}.



14 CHAPTER 1. INTRODUCTION

On the other hand, when we measure a qubit, we observe the state |0⟩ with probability |α|2 and
the state |1⟩ with probability |β|2. This means that we can only get probabilistic information
about the state by measuring the same qubit state |φ⟩ several times and sampling its probability
distribution. The post-measurement state changes due to the measurement itself and collapses
to a well-defined basis element. For this reason the measurement procedure can be seen as a
projection along the basis and it physically causes the wave function collapse in the obtained
basis element. This means that if we measure |φ⟩ and get |0⟩, a later measurement will give |0⟩
with probability 1. This characterises the measurement procedure as an irreversible operation.

Of particular interest is the concept of measuring a many-qubit system. In this case, the
measurement is not only related to the quantum superposition property, but also to the entan-
glement property. It is well known that when we measure a qubit that is entangled with another
one, we automatically cause the collapse of the state of the other qubit that is entangled with
the first one, even if we haven’t touched it. This brings into the field of quantum computing
a subtle difference between the concept of a qubit and that of a qudit. Let’s consider three
qubits |q0⟩, |q1⟩ and |q2⟩ and a general state indicated by |φ⟩qqq. The whole system belongs to

the Hilbert space H = C2 ⊗ C2 ⊗ C2 with dimension dim(H) = 23 = 8. Using the isomorphism
(C2)⊗3 ∼= C8, we can describe the three-qubit state with a single qudit of dimension 8 (i.e a
three-level quantum system). This is true in general, but we must be careful when dealing with
partial measurements of the system. Indeed, when we measure the state of the qudit, we collapse
the state to a basis element |i⟩qudit, where i ∈ {0, . . . , 7}, which corresponds to a basis element
of three qubits. On the other hand, if we’re dealing with three different qubits, we can assume
that only a subset of them can be measured. Let’s consider, for example, the three-qubit system
in the state

|φ⟩qqq =
|000⟩+ |110⟩√

2
:=
∣∣Φ+

〉
⊗ |0⟩ ∈ (C2)⊗3, (1.1.9)

where the first two qubits are in an entangled (Bell) state and the third is separated. The same
state can be described by the following qudit state

|φ⟩qudit =
|0⟩+ |6⟩√

2
∈ C8, (1.1.10)

which is a superposition of two basis elements. If we measure it, we can either get |0⟩ or |6⟩,
which corresponds to |000⟩ and |110⟩ in the space (C2)⊗3, with the same probability 1/2. If we
measure the third qubit of the three-qubit system instead, we won’t change the overall state,
and the first two qubits will be in an entangled state |Φ+⟩ again. This is a link between quantum
superposition and entanglement. In the first case we observe a partially entangled state and
in the second we have a system in a superposition state. The description is exactly the same
in both cases, but the states behave differently under a partial measurement because quantum
superposition and entanglement are physically different properties.

1.1.3 Quantum algorithms and circuits

As first hypothesized by Feynman [1], quantum computers can in principle help to fight the
exponential growth of resources needed to simulate quantum systems of increasing size. To
appreciate that, consider the classical memory required to store a fully general state |φ⟩ of n
qubits. The Hilbert space Hqubit = (C)⊗n is spanned by 2n orthogonal states, and the n qubits
can be in a superposition of all of them. To store this description of the quantum state in a
classical computer, we need to store all 2n complex numbers of the linear combination. The
inefficiency of a classic computer to describe a quantum system is evident. But if a system can
simulate its own evolution it is possible to arrive at the solution of a certain class of problems
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U


|φ⟩

Figure 1.2: Schematic representation of a quantum circuit.

exponentially faster than any classical computation can do. It was Deutsch [2] that first for-
malized a standardized quantum computer model, and defined the classes of problems for which
it would become dominant. According to the Deutsch model, given a system in a pure state
|φ⟩ ∈ Hqubit, a quantum algorithm consists of a unitary transformation which produces a certain
final state |φ′⟩ = U |φ⟩ ∈ Hqubit, also represented by

|φ⟩ / U / |φ′⟩ . (1.1.11)

It is then possible to perform quantum measurements yielding the probability of finding the
systems in a given state of a given basis, probability that constitutes the result of the calculation.
So, a quantum algorithm is by definition a unitary transformation U of an initial qubit state |φ⟩
into a final one |φ′⟩ = U |φ⟩ according to quantum mechanical rules and we usually represent
this by a quantum circuit as the one in Fig. 1.2. We can identify three main steps in a quantum
algorithm:

(i) Initialisation of the qubits in a desired initial state |φ⟩. The horizontal lines are called
quantum wires and the set of qubits involved is the quantum register. If n is the number
of qubits in the system, the states belong to the Hilbert space H = (C2)⊗n ∋ |φ⟩ and can
be written as in Eq. (1.1.7).

(ii) Unitary evolution of the initial state, at the end of which we have a final quantum
state |φ′⟩ = U |φ⟩. This part is the heart of the quantum algorithm and is usually the
most difficult step in developing simulations. If the system contains n qubits, the unitary
transformation is an element of the U(2n) ∋ U group. The final state can be expressed in
a similar way as the one in Eq. (1.1.7) with different coefficients α′

i.

(iii) Measurement of the final state |φ′⟩ that allows us to extract probabilistic information
about the evolved state and constitutes the result of the simulation. To extract the proba-
bility distribution of |φ′⟩, the simulation must be run several times. After the measurement,
all the qubits collapse to a basis element (see Eq. (1.1.8)) carrying classical information in
the form of an n-bit string. After the measurement, each qubit is identified by a classical
wire, denoted by two horizontal lines, the set of which constitutes the classical register.

1.1.4 Operation on qubits and quantum gate decomposition

In general, quantum computers can be divided into two main categories: analog quantum ma-
chines, which is a type of quantum computing architecture that operates using continuous vari-
ables, and digital quantum machines, also known as gate-based quantum computers. The latter
is a quantum computing architecture in which computation is performed by applying a finite se-
quence of quantum logic gates to manipulate and transform the qubit state. Each quantum logic
gate is defined as a unitary transformation of a small set of qubits, usually one or two, belonging
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to a library, i.e. a universal gate set, proper to a particular quantum testbed. Quantum gates
that act on a single qubit |qi⟩ belong to the group U(2) ∋ Gi, and are represented, on the com-
putational basis, by 2× 2 unitary matrices. Instead, operations acting on two qubits |qi⟩ ⊗ |qj⟩
belong to the unitary group U(4) ∋ Gij and can be represented by 4× 4 unitary matrices. The
main property of a two-qubit gate belonging to the library is the ability to generate entangle-
ment between the qubits on which it acts. Note that each library contains a particular subset of
U(2) and U(4) that can be engineered by the quantum hardware. When designing a quantum
algorithm for a digital quantum computer, the entire unitary transformation U ∈ U(2n) must be
broken down into a finite sequence of elementary gates that can be implemented by the quantum
computer. This process is known as quantum gate decomposition, and it is the most important
and difficult step in any digital quantum algorithm design.

The Solovay-Kitaev theorem (see for example Refs. [3, 4]) guarantees that a finite sequence
of operations can be found to implement U with an arbitrarily small error, and that, for a given
error, the length of such sequence scales logarithmically with the inverse of the error itself. More
formally, for any ε > 0 and U ∈ U(2n), there exists a constant c and a gate sequence Ũ of length
O(logc(1/ε)) which approximates U with precision ε, namely∥∥∥Ũ − U∥∥∥

op
≤ ε, (1.1.12)

where ∥·∥op is the operator norm defined by:

∥A∥op := sup
|φ⟩≠0

∥A |φ⟩∥
∥|φ⟩∥

. (1.1.13)

Quantum circuits are prone to errors arising from various sources, including different types of
noise, decoherence and imperfect gate operations. Optimisation strategies are therefore needed
to improve the fidelity and accuracy of quantum computation. Since every operation performed
on a qubit introduces an error, a necessary strategy to ensure the robustness of a quantum
algorithm is to optimise the quantum gate decomposition procedure. This consists of finding
the shortest possible gate sequence that implements the desired unitary.

We define a layer as an n-qubit global operation composed of smaller operations that can be
performed simultaneously. For example, we can have a separable layer like Ul = G0⊗· · ·⊗Gn−1,
where Gi ∈ U(2), or an entangling layer that can act non-trivially on two or more pairs of qubits.
For example, Ul = G01⊗ In−2 which contains only one two-qubit gate, or Ul = G01⊗G23⊗ In−4,
which entangles two pairs. All qubits not involved in the action are acted on by a tensor product
of identity operators. An optimal quantum circuit involves the smallest possible number of
layers and the maximum simplicity of each layer, for example by preferring single qubit gates to
entangled ones.

1.2 Hamiltonian simulation

For the physics community, one of the key areas of focus in quantum computing is the simulation
of complex quantum systems, in particular the simulation of Hamiltonians. The Hamiltonian
plays a fundamental role in quantum mechanics, representing the energy operator that governs
the behaviour of quantum systems. It describes the dynamics and evolution of physical systems
by capturing the relationships between different quantum states. The simulation of Hamilto-
nians is crucial for understanding and predicting the behaviour of quantum systems, allowing
researchers to study the properties of molecules, materials and other quantum phenomena. The
simulation of Hamiltonians becomes particularly challenging as the size and complexity of the
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quantum system increases. Classically, the simulation of such systems becomes incredibly diffi-
cult due to the exponential growth in the number of parameters required to describe the quantum
states. Important exceptions to this behavior are found, for instance, in stabilizer states [5, 6]
or in systems with low levels of bipartite entanglement [7, 8]. However, quantum computers
offer a promising way to efficiently simulate Hamiltonians by exploiting the inherent parallelism
and superposition properties of quantum mechanics [1, 9]. The advantage of this is that we do
not need an exponential amount of computational resources as the size of the system increases.
For example, consider a physical system consisting of n two-level quantum systems (such as n
spins). The wave function |ψ⟩ ∈ (C2)⊗n of this system can be a general linear combination of all
the basis elements as in Eq. (1.1.7). To simulate the evolution of this system we need to store
2n complex coefficients and the needed resource increases exponentially by increasing n1. On
the other hand, using a machine that is intrinsically quantum, we would need a linear amount
of qubits. This property is called exponential speedup.

The most natural use of quantum computers is to implement Hamiltonian simulation algo-
rithms aiming to efficiently implement the time evolution of quantum systems governed by the
Schrödinger equation

|ψ(t)⟩ = e−iHt |ψ(0)⟩ , (1.2.1)

where H is the Hamiltonian of the system. The fact that the operator e−iHt := U(t) is unitary
allows us to design a suitable quantum algorithm to implement it. Hamiltonian simulation is thus
at the heart of quantum computing, providing a powerful tool for exploring and understanding
quantum systems by naturally predicting their evolution and taking into account all quantum
properties such as superposition, interference and entanglement.

1.2.1 Efficiency of a quantum algorithm

When using a classical approach to solve the dynamical problem in Eq. (1.2.1), classical com-
puters become increasingly expensive as the size of the system increases, due to both memory
requirements and operational costs. On the other hand the application of quantum computing
to solve quantum system dynamics presents an exponential speedup showing advantage in the
memory required and in the computational cost of the propagation that classically would require
to perform 2n× 2n matrix multiplications. For this reason, a large part of the scientific commu-
nity is investing efforts in the development of quantum algorithms that predict the evolution of
multi-body physical systems (see, e.g., Ref. [10] for a recent review).

The efficiency of such algorithms is defined according to various criteria, which include
different characteristics of the algorithms. First, the memory required to store the degrees of
freedom of interest within the qubit states plays a fundamental role, since it places a limit on
the size of the systems that we can describe with a well-defined set of qubits. The second
fundamental aspect to be analysed in order to define an algorithm as efficient is the study of the
complexity of the algorithm itself. By complexity we mean the number of elementary operations
that a quantum circuit contains, and this obviously influences the quality of the results obtained
from a simulation, since each operation introduces errors. Therefore, both properties (memory
requirements and circuit complexity) have to be analysed in relation to the size of the physical
system to be described.

1.2.2 Ingredients for the Hamiltonian simulation

In order to carry out a quantum Hamiltonian simulation one always needs two ingredients.

1For example, if we fix n = 27 and use 32 bits to store each float number αi, we would need 227 · 32 bits =
227 bytes = 89 bytes, which is almost 1 Gbyte of memory just to store one wavefunction in a classical computer.
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(i) State encoding map |ψ⟩ 7−→ |φ⟩ which makes it possible to identify the states of the sys-
tem |ψ⟩ ∈ Hsystem we want to describe with the states of the system of qubits |φ⟩ ∈ Hqubit

allowing for initialization and measurement interpretation of the quantum simulation. The
number of qubits required to store the wave function of the physical system quantifies the
complexity of the algorithm in terms of the memory required, and generally scales linearly,
depending on the chosen mapping, with the number of particles in the physical system.

(ii) Operator-gate compilation U(t) 7−→ Ũ , also called quantum gate decomposition in the
case of digital quantum computing, that consists of encoding of the real-time propagator

U(t) = e−iHt (1.2.2)

in a language understandable by the quantum machine being used. This procedure consists
in decomposing U(t) into a sequence of quantum gates (grouped in layers) from a fixed
set. It is the most challenging part of creating quantum algorithms and more importantly
it depends on the machine used. The time evolution operator U(t) is represented on
the computational basis by a 2n × 2n unitary matrix, whose dimension obviously grows
exponentially with the number of qubits. The quantum gate decomposition of this type of
operation would generally require an exponential number of elementary operations if one
used a standard universal way to compile it. This would make any quantum algorithm
inefficient due to the enormous complexity in terms of the number of operations. To avoid
this, one has to use smart expedients to reduce the complexity to polynomial scaling. For
example, taking into account the physics of the system, the presence of possibly sterile
degrees of freedom, the presence of symmetries in the Hamiltonian, or the presence of
reducible subspaces in the Hilbert space could help to reduce the number of layers required.
If an approximate implementation is required, the Solovay-Kitaev theorem ensures that a
finite sequence exists and the length can be reduced by accepting a larger error. In the
latter case, the analysis of the scaling of the error is necessary to prove the efficiency of
the algorithm.



Chapter 2

Quantum gate decomposition and
circuits

Quantum gate decomposition is a procedure that consists of translating a unitary U ∈ U(2n),
acting on n qubits, into a language understandable by a quantum computer. This requires break-
ing down the entire operation U into a sequence of simpler and more elementary gates, arranged
in layers. Qubit evolutions are represented by 2n × 2n unitary matrices, which describe the
transformations of quantum states according to quantum mechanics. However, as mentioned in
Chapter 1, not all unitary matrices can be implemented directly by physical quantum hardware.
It is therefore essential to decompose them into a sequence of basic operations that can be easily
implemented by the machine. The process of quantum gate decomposition is driven by the prin-
ciples of quantum circuit synthesis and compilation. By using various decomposition techniques
and algorithms, some of which are presented in this chapter, the large unitary can be expressed
as a sequence of simpler gates that are available in the quantum computing architecture and
therefore belong to the respective library. Moreover, the decomposition of quantum gates plays
a crucial role in fault-tolerant quantum computing in the sense that an optimal implementation
of a unitary is essential to efficiently perform a quantum simulation, especially for near-term
quantum computers. In fact, they are limited by a finite fidelity of the implemented unitaries
and a finite coherence time due to the unavoidable coupling between the qubit system and the
environment. The fidelity of the simulation decreases as the simulation time increases, and the
number of gates we use to implement a given evolution affects the execution time. Finding the
optimal decomposition is therefore crucial to ensure the desired accuracy of a simulation.

In this chapter, after defining the notation used (Sec. 2.1), a list of useful circuit equivalences
is given (Sec. 2.2). The concept of quantum gate decomposition is then explained in more detail,
and the sections even provide a simple tool that we can use to construct a rudimentary compiler
(Sec. 2.3). Note, however, that the main goal here is not to find the fastest way to decompose
these quantum building blocks, but to show how important and complex this process is in the
world of quantum computing. At the end of this chapter there is a tentative of overview of the
current methods that can be used to perform quantum gate decomposition (Sec. 2.4), trying to
motivate the fact that at this stage of quantum computing there is no optimal method for doing
this, but the choice strongly depends on the problem we are approaching.
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2.1 Notation

In the following sections and chapters we will use the following convention for one and two qubit
gates. First, the Pauli matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (2.1.1)

also denoted as σk for k ∈ {x, y, z}, form a complete basis for the SU(2) group and can therefore
be used as generators of its algebra su(2). Any single qubit rotation of an angle α ∈ R can be
expressed as

Rn̂(α) = ei
α
2
n̂·σ = cos

(α
2

)
I+ i sin

(α
2

)
n̂ · σ, (2.1.2)

where σ = (X,Y, Z) is the vector of Pauli matrices and n̂ is the unit 3-dimensional vector
indicating the direction of the Block sphere with respect to which we are performing the rotation.
By setting the unit vector n̂ to (1, 0, 0), (0, 1, 0) or (0, 0, 1) we can define the elementary rotations
with respect to the x, y and z axes respectively (see Fig. 1.1 of Chapter 1). On the computational
basis the elementary rotations correspond to the unitary matrices

Rx(α) =

(
cos (α/2) i sin (α/2)
i sin (α/2) cos (α/2)

)
, (2.1.3)

Ry(α) =

(
cos (α/2) sin (α/2)
− sin (α/2) cos (α/2)

)
(2.1.4)

and

Rz(α) =

(
eiα/2 0

0 e−iα/2

)
. (2.1.5)

Other very common single-qubit gates are the Hadamard gate and the phase gate. The first is
represented by the matrix

H =
1√
2

(
1 1
1 −1

)
, (2.1.6)

and is used to generate a superposition state starting from a basis state, i.e.

H : |0⟩ 7−→ |0⟩+ |1⟩√
2

:= |+⟩ , H : |1⟩ 7−→ |0⟩ − |1⟩√
2

:= |−⟩ . (2.1.7)

The second one corresponds to

S =

(
1 0
0 i

)
(2.1.8)

and add a phase only on the |1⟩ contribution. All single qubit gates are represented, in terms
of quantum circuit, by a box

G , (2.1.9)

where G ∈ U(2). The most common two-qubit gate is the CNOT, which is the quantum
equivalent of the classical control NOT, and applies an X gate to the target qubit depending on
the state of the control qubit. In matrix notation this corresponds to

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (2.1.10)
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which acts on the second qubit and is controlled by the first one, and

CNOTinv =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , (2.1.11)

which acts on the first one depending on the state of the second. The corresponding quantum
circuits are

•
,

•
. (2.1.12)

The SWAP operation that invert two qubit state is

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (2.1.13)

and in terms of quantum circuit it corresponds to

×

×
=

• •

•
=

•

• •
. (2.1.14)

2.2 Quantum circuit equivalences

In this section we summarise some useful properties that can be used to manipulate, adapt to
the qubit topology and optimise a quantum circuit. Some of these properties will be used later to
optimise quantum circuits and to define quantum gate decomposition procedures. Some of the
information presented here can be found in more specific texts such as [4] and also in Ref. [11],
where the authors used some quantum circuit equivalences to obtain the quantum teleportation
protocol, starting from the SWAP gate circuit and applying only equivalence properties.

2.2.1 Identity gates

Some special sequences of operations have a trivial effect and can therefore be replaced by an
identity. For example, gates followed by their inverse GG† = I, gates with the control qubit
in the |0⟩ state and gates acting on their positive eigenstate (for example X |+⟩ = |+⟩ and
Z |0⟩ = |0⟩).

2.2.2 Inverse rotations

The rotation of single qubits along the axes y and z can be inverted if they are between two X
gates according to the relations

XRy(α)X = Ry(−α) , XRz(α)X = Rz(−α) . (2.2.1)

2.2.3 Rotation mergers

A simple feature that can be used to reduce the number of single qubit operations is to merge
similar qubit rotations that are performed sequentially. In fact, we have

Rk(α+ β) = Rk(α)Rk(β) (2.2.2)

for all k ∈ {x, y, z}.
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2.2.4 Hadamard properties

Some relations coming from the Hadamard gate can be used to change the basis of a qubit state.
Consider, for example,

HXH = Z, HY H = −Y, HZH = X, (2.2.3)

which more generally correspond to

HRx(α)H = Rz(α), HRy(α)H = Ry(−α), HRz(α)H = Rx(α), (2.2.4)

and can be used to go from one axis in the Bloch sphere to another.

2.2.5 Commutation properties

Some equivalences can be used to change the order in which two operations act. For example,
rotation with respect to the z axis always commutes with control because Rz(α) does not change
the probability of measuring a state on the computational basis. So we have

• Rz(β)
=

Rz(β) •
. (2.2.5)

On the other hand, a rotation with respect to x always commutes with the target

•

Rx(α)
=

•

Rx(α)
. (2.2.6)

Note that the two properties above are derived from each other thanks to the introduction of
Hadamard gates. This, together with the properties in Eq. (2.2.4), suggests a difference between
the rotations Rx and Rz as opposed to Ry which does not have a similar equivalence. This is of
course due to the use of the CNOT as the native two-qubit gate. Other interesting commutation
properties include

• X
=

X •

X

(2.2.7)

and

Z

•
=

Z

Z •
. (2.2.8)

2.2.6 Control-target inversion

In some cases, reversing the action of a controlled gate can lead to a reduction in the quantum
operation. The switching between the control and the target qubit can be done in several ways.
For the CNOT case, we can go from the CNOT in Eq. (2.1.10) to that in Eq. (2.1.11) using
Hadamard gates according to

H • H

H H

=

•
(2.2.9)
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or some similar equivalences1, which can be proved using the identity in Eq. (2.2.3), according
to which

•
=

•

H Z H

(2.2.10)

together with the fact that the control-Z gate CZ, which applies a Z gate to the target qubit if
the control qubit is in |1⟩, is symmetric under the control and target exchange, namely

•

Z

=
Z

•
, (2.2.11)

since it changes the sign of the overall state only when both qubits are in the |1⟩ state. Another
similar property, which allows to invert the action performed on the target with that on the
control qubit, is

• Rx(α) •

Rz(β)

=

Rz(β)

• Rx(α) •
(2.2.12)

for any α, β ∈ R. This can be easily proved by inserting two SWAPs and using the commutation
properties in Eq. (2.2.5) and (2.2.6).

2.2.7 CNOT properties

Some manipulations can be used to adapt a network to a particular topology of the qubit
architecture. In fact, different machines present a different connectivity between the qubits. In
such a situation, two qubits to be entangled must be connected in hardware, and if this is not
possible, other CNOTs can be added according to the equivalences

•
=

• •
• • =

• •
• • , (2.2.13)

from which we also obtain

• •
=

•
• • . (2.2.14)

Other useful equivalences are that two sequential CNOTs acting either on the same control qubit
or on the same target one commute, namely:

• •
=

• •
,

•
• =

•
• . (2.2.15)

1such as

H • H
=

H • H

,
H •

H

=
H

• H

.
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Figure 2.1: Fidelity, as a function of the angle θ, between a Rz(θ) rotation in the middle of two CNOTs
and a single Rz(θ) rotation as suggested by Eq. (2.2.19). The fidelity between the two operations A and
B, represented by matrices of dimension d = 4, is calculated as F = tr

(
A†B

)
tr
(
B†A

)
/d2.

If, instead, we want to swap two CNOTs, with one targeting the control of the other, we can
use

•
• =

• •
• . (2.2.16)

2.2.8 Local action of an entangling circuit

In some situations, a quantum circuit containing entangling gates can have the effective effect
of a local operation. Some simple examples are:

• X •
=

X

X

(2.2.17)

and

• •

Z

=
Z

Z

. (2.2.18)

In Chapter 4 we will see a trick to detect whether a two-qubit operation is local or not. Another
less trivial property in this context is the following approximation:

• •

Rk(θ)
≈

Rk(θ)
(2.2.19)

for k ∈ {y, z}, whose error can be approximated by a Gaussian as suggested by the Figure 2.1,
where we have plotted the fidelity between the operation in the left hand side of Eq. (2.2.19) and
the one in the right hand side. This suggests that a small rotation in the middle of two CNOTs
can be achieved by a small rotation alone. Of course, this is an approximation and introduces
an angle-dependent error that must be taken into account. However, the theoretical error
introduced by the approximation may be less than the error introduced by the hardware noise
caused by the two CNOTs and the right part of Eq. (2.2.19) could therefore be advantageous.
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2.3 Naive compiler

A very rudimentary compiler can be constructed by combining three decomposition methods.
The first is the two-level matrix decomposition, which allows a large unitary to be decomposed
into a product of more simple unitaries of the same dimension. These two-level matrices can be
interpreted as fully controlled quantum gates, which can be decomposed into networks containing
only CNOTs and a single qubit gate. Finally, the Euler decomposition can be used to implement
each single-qubit operation in terms of elementary rotations. These three decompositions are
presented in reverse order in the following sections.

2.3.1 Euler decomposition for single qubit gates

According to the Euler decomposition, also called zyz decomposition, we can write any special
single-qubit quantum gate SU ∈ SU(2) as the composition of three elementary rotations

SU = Rz(α)Ry(θ)Rz(β) , (2.3.1)

where α, θ, β ∈ R are called Euler angles. In terms of quantum circuit, the single-qubit gate
corresponds to the following

SU = Rz(β) Ry(θ) Rz(α) . (2.3.2)

Every unitary matrix U ∈ U(2) can be written as the product of a phase for a special unitary
matrix, namely

U = Ph(δ)SU = eiδSU, (2.3.3)

where Ph(δ) = eiδI2. So the Euler property allows us to decompose any single qubit gate into
a sequence of four elementary operations. The relationships between the Euler angles and the
elements of the special unitary matrix can be easily determined from the definition:

SU =

(
a b
b∗ a∗

)
(2.3.4)

and calculating the product of the three rotations in Eq. (2.3.1) to obtain the relations:

α = arctan

(
Im a

Re a

)
+ arctan

(
Im b

Re b

)
, (2.3.5)

β = arctan

(
Im a

Re a

)
− arctan

(
Im b

Re b

)
, (2.3.6)

θ = 2arctan

(√
Im b2 +Re b2

Im a2 +Re a2

)
, (2.3.7)

δ =
1

2
arctan

(
Imdet(U)

Re det(U)

)
. (2.3.8)

Note that if det
(
e−iδU

)
= −1 then we need to add a contribution π/2 to the phase, namely

δ 7→ δ + π/2. A very simple example is the Hadamard gate which can be decomposed as

H =
1√
2

(
1 1
1 −1

)
= ei

π
2Rz(−π)Ry(π/2)Rz(0). (2.3.9)
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2.3.2 Fully controlled gate decomposition

A fully controlled operation, also called generalised Deutsch-Toffoli, is a special quantum gate
that acts on a single qubit according to the state of all the others. Following the convention used
in the literature, and considering a total number of qubit equal to n, we refer to these operations
as Λn−1(U), where U ∈ U(2) acts on a single qubit according to the state of the other n−1 := m
control qubits, which define the subspace in which the gates U and the orthogonal one I act.
For example, for n = 3 the fully controlled operation acting on the last qubits is represented by
the 8× 8 unitary matrix

Λ2(U) =

(
I6 0
0 U

)
(2.3.10)

and the quantum circuit is

•
•

U

. (2.3.11)

Some special cases are Λ0(U) = U which corresponds to a single qubit gate, Λ1(U) = CU
which is a controlled operation with only one control qubit, the common CNOT= Λ1(X) and
the Toffoli gate which is Λ2(X) and has two control qubits. In the work of A. Barenco et al.
in Ref. [12], a basic method for decomposing a fully controlled quantum gate acting on several
qubits simultaneously is introduced. The quantum gate decomposition is based on the universal
gate set

{Λ0(U),Λ1(X)} = {U,CNOT} (2.3.12)

for U ∈ U(2), and on the fact that every 2×2 special unitary matrix SU ∈ SU(2) can be written
as

SU = CσxBσxA, (2.3.13)

such that

A,B,C ∈ SU(2) and CBA = I. (2.3.14)

The proof is straightforward using the Euler decomposition. In fact we can always write SU =
Rz(α)Ry(θ)Rz(β) ∈ SU(2) for some Euler angles, and express SU as in Eq. (2.3.13) using

C = Rz(α)Ry

(
θ

2

)
, B = Ry

(
−θ
2

)
Rz

(
−α+ β

2

)
, A = Rz

(
β − α
2

)
, (2.3.15)

which satisfy the two conditions in Eq. (2.3.14). Note that the choice of matrices A,B,C is not
unique and one can also choose

C ′ = Rz

(
α− β
2

)
, B′ = Rz

(
−α+ β

2

)
Ry

(
−θ
2

)
, A′ = Ry

(
θ

2

)
Rz (β) . (2.3.16)

Using the property in Eq. (2.3.13), we can directly implement the controlled gate Λ1(SU) using
the following quantum circuit

•

SU

=
• •

A B C

. (2.3.17)

The network implements the desired operation because if the first qubit is in the |0⟩ state, the
circuit applies CBA = I, instead if it is in the |1⟩ state it applies CσxBσxA = SU . If the



2.3. NAIVE COMPILER 27

controlled gate is a phase gate the circuit is:

•

Ph

=
E

(2.3.18)

where

E = Rz(−δ)Ph
(
δ

2

)
=

(
1 0
0 eiδ

)
. (2.3.19)

We conclude that any quantum gate Λ1(U), with U ∈ U(2), can be implemented as a two-
qubit network containing four single-qubit gates Λ0 (which are E,A,B,C) and two Λ1(X) gates
(which are CNOTs). The complete quantum circuit is

•

U

=
E • •

A B C

, (2.3.20)

which, using only elementary rotations, corresponds to

Ph
(
δ
2

)
Rz (−δ) • •

Rz

(
β−α
2

)
Rz

(
−α+β

2

)
Ry

(
− θ

2

)
Ry

(
θ
2

)
Rz (α)

. (2.3.21)

The same property can be used to implement a two-qubit controlled gate, where the control
qubit is the second and the target qubit is the first, by simply applying the operations to the
opposite qubit, or where the operation is applied when the control qubit is in the state |0⟩ using:

U

=
X • X

U

. (2.3.22)

In addition, if the operator U satisfies some special properties, then the network that implements
Λ1(U) can be further simplified. For example, if we have W = Rz(α)Ry(θ)Rz(α), then the
Λ1(W ) operation is reduced to

•

W

=
• •

A′ B′
=

• •

B C

, (2.3.23)

where

A′ = Ry

(
θ

2

)
Rz (α) , B′ = Rz (−α)Ry

(
−θ
2

)
, C ′ = I (2.3.24)

and

A = I, B = Ry

(
−θ
2

)
Rz (−α) , C = Rz (α)Ry

(
θ

2

)
. (2.3.25)

The property obviously holds for Ry(ξ) = Rz(0)Ry(ξ)Rz(0) and Rz(ξ) = Rz(ξ/2)Ry(0)Rz(ξ/2)
(but not for Rx(ξ) = Rz(π/2)Ry(ξ)Rz(−π/2)), whose circuit is as follows

•

Rk(ξ)
=

• •

Rk(ξ/2) Rk(−ξ/2)
=

• •

Rk(−ξ/2) Rk(ξ/2)
(2.3.26)
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for any ξ ∈ R and for k ∈ {y, z}. Another special case is when we can write the operation
as W ′ = Rz(α)Ry(θ)Rz(α)σx and the control gate Λ1(W

′) reduces to a network with only one
CNOT, namely

•

W ′
=

•

A B

. (2.3.27)

This property holds e.g. for Y = Rz(π/2)Ry(2π)Rz(π/2)σx, Z = Rz(0)Ry(π)Rz(0)σx and of
course for X, and is obviously related to the choice of CNOT for the elementary two-qubit gate.

The extension of this quantum gate decomposition to a fully controlled gate acting on three
qubits is straightforward using the following network equivalence between a single Λ2(U) and a
sequence of Λ1(V ) and CNOTs:

•

•

U

=

• • •

• •

V V † V

, (2.3.28)

where V ∈ U(2) and V 2 = U . Obviously, a similar network also holds for different target qubits,
e.g.

•

U

•

=

• • •

V V † V

• •

, (2.3.29)

or different control conditions. The proof is trivial: if only one of the first two qubits is in the
|0⟩ state, the circuit applies V V † = I or V †V = I. If both qubits are in |0⟩, the circuit does
not perform any operations, and if instead both qubits are in |1⟩, it performs V V = U . We can
decompose it again by implementing all the two-qubit controlled operators Λ1(V ) and Λ1(V

†)
in single-qubit gates and CNOTs using the network in Eq. (2.3.20) and the adjoint quantum
circuit:

•

V †
=

• • E†

C† B† A†
. (2.3.30)

In summary, each Λ2(U) operation can be implemented using two CNOTs and three Λ1(V ),
which can be implemented using two CNOTs and four Λ0. However, by sequencing them, some
gates can be combined into a single gate. For example, C of the first Λ1(V ) and C† of the second
one become an identity (see property in Sec. 2.2.1). Similarly, A† of the second Λ1(V

†) and A of
the third Λ1(V ). The final number is eight CNOTs and eight Λ0, as shown in the final quantum
circuit below

•

•

U

=

• • E • •

E • • • • E†

A B B† B C

.

(2.3.31)
This is the result obtained in Ref. [12]. However, the quantum circuit can be further optimised
by reducing the number of CNOTs, which are usually the most noisy in a real quantum machine.



2.3. NAIVE COMPILER 29

First of all, we can see that the E gates commute with the control of the CNOT (but not with
the target). In fact:

CNOT(E ⊗ I) =
(
I 0
0 X

)(
I 0
0 Ph(δ)

)
=

(
I 0
0 XPh

)
(2.3.32)

and, since [X,Ph(δ)] = 0, we have the circuit equivalence:

E •
=

• E
. (2.3.33)

So we can identify two triplets of CNOTs for which we can use the property in Eq. (2.2.14).
Both of them can be implemented with two CNOTs each and the final count for Λ2(U) is six
CNOTs and eight Λ0, as shown below

•

•

U

=

• • E • •

E • E† •

A B B† B C

. (2.3.34)

We can extend this procedure to any arbitrary Λn−1(U) gate. Using the construction described
in detail in Ref. [12], we find that the total number of elementary quantum gates needed to
implement a general Λn−1(U) is

2nΛ0 + (3 · 2n−1 − 6)CNOT = O(2n) , (2.3.35)

which scales exponentially with the number of qubits and is therefore inefficient. Note that to
obtain the function in Eq. (2.3.35) we considered the cancellation of Λ0(U) gates, as done in
the previous work, and also the optimisation of the CNOT triplets done here, which reduces the
number of CNOTs by two, with respect to the result in the previous work, but keeps the scaling
exponential.

As shown in Ref. [12], we can make the gate decomposition efficient and obtain polynomial
scaling by allowing the use of generalised Toffoli gates Λn−1(X). In fact, any Λn−1(U) operation
can be implemented by a network containing two Λ1(V ), two Λn−2(X) and one Λn−2(V ), as
shown below for n = 5

•

•

•

•

U

=

• • •
• • •
• • •

• •

V V † V

, (2.3.36)

where V 2 = U . The complexity of Λ1(V
(†)) is O(1), that of Λn−2(X) (which is not fully-

controlled) is O(n) (by Lemmas 7.2 and 7.3 in Ref. [12]), so the cost of Λn−1(U) is the cost of
Λn−2(V ) plus a linear contribution for the generalised Toffoli. The recursion formula

C (Λn−1(U)) = C (Λn−2(V )) +O(n) (2.3.37)
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implies that the cost is quadratic, i.e.

C (Λn−1(U)) = O(n2), (2.3.38)

and therefore efficient.
Moreover adding a certain number of working qubits allows a controlled gate to be imple-

mented more efficiently [4]. Let’s take, for example, Λn−1(U) for n− 1 = 4, which has 4 control
qubits. We add n−2 = 3 working qubits to the system initialized in the |0⟩ state. At this point,
the quantum gate is a non-fully controlled operation that can be implemented by the network

•

•

•

•
|0⟩
|0⟩
|0⟩

U

=

• •
• •
• •
• •

|0⟩ • •

|0⟩ • •

|0⟩ •

U

. (2.3.39)

In fact, the last working qubit is the one that actually controls the action of U , so it must
contain all the information about the state of the initial 4 control qubits. We assume that they
are in a certain initial state |q0⟩ ⊗ |q1⟩ ⊗ |q2⟩ ⊗ |q3⟩, where qi ∈ {0, 1}. The last working qubit
must contain the information q0 ∧ q1 ∧ q2 ∧ q3 = q0 · q1 · q2 · q3. The first Toffoli gate changes
the state of the first working qubit to |q1 · q0⟩, the second changes the second working qubit
to |q2 · q1 · q0⟩, the third produces |q3 · q2 · q1 · q0⟩ in the last working qubit. This applies U to
the last qubit only if all the controlling qubits satisfy the AND condition. The following gates
are used to restore the initial state of the circuit by returning the first 4 qubits to the state
|q0⟩ ⊗ |q1⟩ ⊗ |q2⟩ ⊗ |q3⟩ and the working qubits to |000⟩. This implementation requires a linear
number of gates, since O(n) operations are needed to simulate the Toffolis and the complexity
of Λ1(U) is O(1). So we conclude that

C (Λn−4(U)) = O(n) (2.3.40)

using a sufficient number of auxiliary qubits.

2.3.3 Two-level matrix decomposition

We present here a way to decompose a unitary U ∈ U(N) as a sequence of two-level unitary
matrices. The procedure is also given in Ref. [13] and can be used as a first step to implement
a universal compiler as proposed in Sec. 2.3.4.

A two-level unitary matrix, also called a Givens rotation, is a unitary matrix which acts
non-trivially only on two vector components and can therefore be obtained from the identity
matrix by changing a 2 × 2 principal submatrix. Given a unitary matrix U ∈ U(N) there are
N − 1 two-level classes, each corresponding to a fixed 2 × 2 principal submatrix. Consider the
vector P = (k1, k2, ..., kN ), where ki ∈ {0, 1, ..., N − 1}, defined as a permutation of (0, 1, ..., N −
1). A P-unitary matrix of type p is defined as a unitary matrix with a non-trivial principal
submatrix in correspondence of columns and rows kp and kp+1. The unitary decomposition
into two-level matrices can be very useful for quantum computation if we consider a special
permutation P := Gn called Gray code [14]. If the unitary matrix U ∈ U(N) corresponds to an
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n-qubit quantum gate, then N = 2n and the Gray code allows us to decompose the quantum
operation as a sequence of fully controlled quantum gates. By definition Gn is a permutation of
(k1, k2, ..., kN ) where each kp corresponds to the decimal representation of the binary sequence
of n bits (xn−1, . . . , x1, x0) = [k] where xi ∈ {0, 1}:

k = x02
0 + x12

1 + x22
2 + · · ·+ xn−12

n−1 =
n−1∑
i=0

xi2
i (2.3.41)

such that two neighboring elements kj and kj+1 (and also the two elements k1 and kN ) differ
only by the value of one bit in binary notation. The Gray code can be constructed using a
recursive procedure. Given the first element G1 := (0, 1), any Gray code of n+ 1 qubits can be
constructed as

Gn+1 = (0[k1], . . . , 0[kN ], 1[kN ], . . . , 1[k1]) = (0Gn, 1G
′
n), (2.3.42)

for all n ≥ 1, where we have defined the inverted vector G′
n = (kN , . . . , k1). Note that adding

a qubit doubles the length of the Gray code, and the first N elements start with 0 and are
followed by the previous Gray code, while the next N elements start with 1 and are followed by
the previous Gray code inverted from right to left. For example:

G2 = (0G1, 1G
′
1) = (0(0, 1), 1(1, 0)) = (00, 01, 11, 10) = ([0], [1], [3], [2]) . (2.3.43)

The next Gray code is

G3 = (0G2, 1G
′
2) = (000, 001, 011, 010, 110, 111, 101, 100)

= ([0], [1], [3], [2], [6], [7], [5], [4]) , (2.3.44)

and similarly for any n. It is easy to prove that, given a Gray code Gn, a generic U ∈ U(2n),
where N = 2n, can be written as the product of m two-level matrices with m ≤ N(N − 1)/2. If
U ∈ SU(2n) then each of themmatrices has a determinant equal to 1. This property follows from
the fact that a N×N unitary matrix has N2 elements, but the unitarity condition automatically
fixes a number of elements equal to the elements of the triangular matrix (including the diagonal),
and then removes N(N +1)/2 degrees of freedom. This leaves N2−N(N +1)/2 = N(N − 1)/2
elements. The combination of the concept of two-level unitary matrices and the Gray code can
be used to decompose any quantum gate U ∈ U(2n) as the product of no more than 2n−1(2n−1)
two-level matrices, corresponding to a fully controlled single-qubit quantum gate Λn−1(V ), where
V ∈ U(2), with n− 1 control qubits.

For example, consider a two-qubit gate U ∈ U(4), to which we associate the Gray code G2

in Eq. (2.3.43). There are N − 1 = 3 classes of two-level matrices defined by G2 which are of
type 1 (with non-trivial submatrices in columns and rows 0 and 1), of type 2 (with non-trivial
submatrices in positions 1 and 3), and of type 3 (with non-trivial entries in 3 and 2). All three
types correspond to a controlled gate CV = Λ1(V ). Type 1 is

v0 v1 0 0
v2 v3 0 0
0 0 1 0
0 0 0 1

 =

V

, (2.3.45)

type 2 is 
1 0 0 0
0 v0 0 v1
0 0 1 0
0 v2 0 v3

 =
V

•
, (2.3.46)



32 CHAPTER 2. QUANTUM GATE DECOMPOSITION AND CIRCUITS

and type 3 is 
1 0 0 0
0 1 0 0
0 0 v0 v1
0 0 v2 v3

 =
•

V

, (2.3.47)

where the single-qubit gate is

V =

(
v0 v1
v2 v3

)
. (2.3.48)

In the case of a three-qubit quantum gate U ∈ U(8) there are N − 1 = 7 classes of two-level
matrices generated by G3 in Eq. (2.3.44), and thus 7 corresponding types of fully controlled
operations. For example, type-1 matrices have the non-trivial submatrix in position (0, 1), type-
2 matrices in (1, 3), and so on. Below are the quantum circuits of type 1 to 7 from left to
right

V

V

•

•

V

V

•

•

•

V

•

V

•

•

V

. (2.3.49)

The procedure for decomposing a unitary U ∈ U(4) is described in detail in Ref. [13] and
can be easily extended to any number of qubits. In the case of n = 2 the number of two-level
matrices is 2n−1(2n − 1) = 6 and they can be found by diagonalising U according to the Gray
code order, which fixes the element on the triangular matrix to be set to zero and the two-level
matrix type from 2n − 1 to 1. At the end of the procedure we have

2n(2n−1)
2∏

k=1

Uk

U = I (2.3.50)

where the product is on the left. For example, for n = 2 we have U6 . . . U1U = I which gives
U = U †

1 . . . U
†
6 . The type of each two-level matrix Uk, for k ∈ {1, . . . , 2n−1(2n−1)}, is determined

by the table in Fig. 2.2a, which produces the controlled gates U †
k = CVk = Λ1(Vk) in the following

quantum circuit

U =

• V †
5

• V †
2

•

V †
6

• V †
4 V †

3
• V †

1

. (2.3.51)

This decomposition can be improved by noting that two consecutive gates with the same target
qubit can be merged. In fact

•

B A

=
•

A−1B A

(2.3.52)

because (
A 0
0 I

)(
I 0
0 B

)
=

(
A 0
0 B

)
=

(
A 0
0 A

)(
I 0
0 A−1B

)
. (2.3.53)

This reduces the number of fully controlled operations of (2n−2)/2 by adding the same number
of non-fully controlled gates. The same property holds for the case n = 3. The decomposition
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Type 1 2 3

U3 U2 U1

U5 U4

U6

(a)

Type 1 2 3 4 5 6 7

U7 U6 U5 U4 U3 U2 U1

U13 U12 U11 U10 U9 U8

U18 U17 U16 U15 U14

U22 U21 U20 U19

U25 U24 U23

U27 U26

U28

(b)

Figure 2.2: The two tables show the type of two-level matrices obtained from the diagonalisation of a
unitary U ∈ U(2n). Panel (a) for n = 2 and panel (b) for n = 3.

procedure now follows the order in the table in Fig. 2.2b, from which we obtain a network of
the form

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • •

.

(2.3.54)
Here we can use the simplification property

•

B A

=

•

A−1B A

, (2.3.55)

which corresponds to U †
kU

†
k+1 for k + 1 = 8 of type 7 and k = 7 of type 1. An equivalent

property can be used for k = 7, 18, 25. The optimal network was found in Ref. [15]. The number
of controls that can be removed is equal to the number of different consecutive controls in similar
controlled gates.

2.3.4 Compiler

Putting together the three decomposition methods just presented: (1) the two-level matrix
decomposition in Sec. 2.3.3, (2) the fully controlled gate decomposition in Sec. 2.3.2, and (3) the
zyz decomposition for single-qubit gate in Sec. 2.3.1, we can build a very naive compiler. We
first decompose the matrix U ∈ U(2n) into 2n−1(2n − 1) two-level matrices, each corresponding
to a fully controlled gate Λn−1(Vk). Then these fully controlled operations can be implemented
by a network containing only CNOTs and single-qubit rotations, and finally each single-qubit
gate can be implemented using at most three elementary rotations.

This compiler potentially works for any number n of qubits and for any general unitary
U ∈ U(2n), but the number of gates needed grows exponentially with the size of the system. In
fact, we need O(4n) fully controlled gates Λn−1(V ) (two-level matrices). Each of these requires
O(n) for the Toffoli gates and O(n2) for the non fully controlled gates. So the total complexity
is:

C(U ∈ U(2n)) = O(n34n). (2.3.56)
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By adding auxiliary qubits, we can implement the Λn−1(V ) gates with a complexity of O(n),
reducing the total complexity to

C(U ∈ U(2n)) = O(n24n), (2.3.57)

that is still larger than the theoretical lower bound that is2 O(4n) as stated in Ref. [16]. This
naive compiler can be optimised by reducing the complexity scaling to the theoretical lower
bound, as proposed in Ref. [15], where the authors used the approaches analysed so far and
combined them to a further optimisation that allows to remove the superfluous controls. The
complexity is obviously still exponential.

2.4 Methods for quantum gate decomposition

There are many different methods in the literature for decomposing unitary transformations
into elementary gates. In general, there is no universal procedure that is optimal for every
situation. However, the information we have about the properties of the problem to be solved
can help in choosing and defining the best way to implement a particular quantum algorithm.
Note that the exponential scaling of complexity with the number of qubits n is intrinsic to
the universal decomposition of quantum gates, and in order to avoid this, which would make
quantum computation inefficient, a scientist must take into account the greatest number of
properties that can reduce complexity, such as symmetry, conservation laws, scaling of the error
in the approximations, reducible Hilbert subspaces and any other property that can help reduce
the number of operations required to implement a desired unitary. After the quantum gate
decomposition, some circuit optimisations can be easily performed by exploiting the circuit
equivalences presented in Sec. 2.2.

2.4.1 An overview

To give an attempted (though not exhaustive) overview of quantum gate decomposition tech-
niques, we list below some well-known methods. Some of them will be analysed in detail and
sometimes improved in the following sections.

1. The zyz-decomposition implements arbitrary single-qubit gates U ∈ U(2) with three
elementary rotations using the Euler angles. This simple decomposition was presented in
Sec. 2.3.1, where we also gave a practical way to implement it as code.

2. The magic-basis method gives an optimal decomposition procedure to implement a
generic two-qubit gate U ∈ U(4) with three CNOTs, which is the theoretical lower bound
to generate all elements in U(4). The procedure is presented in Refs. [16–18] and verified
in detail in Sec. 2.4.2, where we also give an alternative derivation and results.

3. The Qiskit function .decompose() is a practical and open source implementation of the
unitaries U ∈ U(4) decomposition, which returns a quantum circuit with no more than
three CNOTs. However, the function has some limitations because it does not work for
certain special gates, which should be even simpler, because it performs a division by a
determinant of a submatrix that could be zero. It also involves a random search for the
solution, following an over-fitting parameter approach, which gives high fidelity but makes
the simulation very susceptible to noise. In other words, to achieve maximum fidelity, it
sets values for the rotation angles that theoretically produce an equivalent transformation,

2The number of needed CNOTs for implementing U ∈ U(2n) is 4n−3n−1
4

.
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but which are less accurate experimentally. Finally, it produces a circuit that is not optimal
in terms of the number of single-qubit gates, as will be clear in Sec. 2.4.2. Note that the
Qiskit package uses a different convention for elementary rotations3 than the one used in
this thesis (Eqs. (2.1.3), (2.1.4) and (2.1.5)).

4. The implementation of quantum gates generated by Pauli strings (see e.g. Ref. [4]) allows
an efficient and analytical implementation of a certain set of unitaries, which can be used
whenever the unitary U coincides with an operator generated by a simple tensor of Pauli
matrices, but can also be used to implement an operation generated by a sum of Pauli
strings, provided that a Trotter error (see Sec. 6.2 for more details) due to the separation of
the different exponents is accepted. Since any Hermitian operator can be written as a sum
of Pauli strings, this method can be used to decompose any time propagator generated by
a Hamiltonian. The procedure is analysed in Sec. 2.4.3.

5. The fully controlled gate decomposition method proposed in Ref. [12], allows to
decompose a fully controlled single qubit gate as a network containing only CNOTs and
single qubit gates. This method has been analysed and implemented in Sec. 2.3.2.

6. The unentangling method, first proposed in Ref. [19] and presented in other works such
as Refs. [20, 21], exploits the action of a unitary U ∈ U(2n) on the basis state vectors.
This procedure consists in decomposing the unitary as a set of multiple controlled gates,
which disentangles the last qubit of the system. The procedure is applied recursively so
that the final state is separable.

7. The method based on two-level matrices decomposition, or Givens rotations, allows
to decompose a unitary into a sequence of fully controlled operations. This method is
proposed in Ref. [13], analysed and implemented also in Sec. 2.3.3, and optimised in
Ref. [15]. As we have seen, this method, together with the decomposition of a fully
controlled operation, can be used to implement a simple and naive compiler, presented in
Sec. 2.3, which would work for any number n of qubits.

8. The cosine-sine decomposition (CSD) method, proposed and implemented in Refs. [22,
23], is a way to decompose a unitary into three parts: a block-real diagonal matrix, con-
taining sine and cosine rotations, and a left and right uniformly controlled operations, also
called multiplexer4. The recursive application allows the unitary to be decomposed as a

3The single qubit gate definitions used by Qiskit are

Rx(α) =

(
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

)
, Ry(θ) =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, Rz(α) =

(
1 0
0 eiα

)
. (2.4.1)

4The quantum miltiplexer gates are uniformly controlled operations, i.e. unitary operations that act on the
target qubits in a way determined by any possible value of the control qubits. The matrix representation of an
n-qubit multiplexer is:

U(2n) =

(
U0(2

n−1) 0
0 U1(2

n−1)

)
, (2.4.2)

where U0,1 acts on n− 1 qubits. When the control qubit (the first of the system) is in the |0⟩ state, the operator
acts with U0 while, when it is in the |1⟩ state it acts with U1. To identify a multiplextor we can also use the
direct-sum notation

U = U0 ⊕ U1 . (2.4.3)

These gates implement the if-then-else condition in the context of classical computation. In the quantum field,
on the other hand, the control qubit can be in a superposition of if and else, then the multiplexer creates a linear
combination of these two actions. The most simplest example of a multiplexer is CNOT = I⊕X.
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sequence of multiplexers. An alternative application of CSD using eigenvalue decomposi-
tion is the Quantum Shannon Decomposition (QSD) method proposed in Ref. [21]
and then optimised in Ref. [20].

9. The Quantum Signal Processing method [24, 25], also called Qubitisation, allows to
implement the unitary time propagator U(t) = e−iHt generated by a sparse matrix H
by transferring the eigenvalues of H to the state of an ancilla qubit, using the ancilla
to perform a controlled unitary rotation, finally projecting the ancilla at the end of the
procedure.

10. Several methods have been proposed in the literature to implement a diagonal unitary.
Some of the seminal ones are the method based on the Walsh basis, e.g. presented
in Ref. [26] and summarised in Sec. 2.4.4, and the so-called phase kick-back method
presented in Ref. [27]. Regarding the Walsh-based method, Sec. 2.4.4 present a connection
between the results in Ref. [26] and another result proposed in Ref. [28], where the authors
identify a certain subset of diagonal operators that are also local. In addition, Sec. 2.4.4
proposes a generalisation of this last result by defining a more general set of diagonal
operators that can be implemented by a local quantum circuit.

2.4.2 The magic basis

Given a two-qubit gate U ∈ U(4) with a matrix representation one can prove that three CNOTs
and 15 elementary rotations are always sufficient to implement it as a quantum circuit. The
theory behind this statement can be found e.g. in Refs. [16–18].

Let’s define the magic basis, also called maximally entangled, as:

M =
1√
2


1 i 0 0
0 0 i 1
0 0 i −1
1 −i 0 0

 , (2.4.4)

that can be implemented by the quantum circuit

M =
S

S H •
, (2.4.5)

where the S gate is a π phase operation (matrix in Eq. (2.1.8)) and H is the Hadamard (matrix
in Eq. (2.1.6)). The proof of Eq. (2.4.5) is trivial by performing the matrix product between the
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operations5. The operationM maps the elements of the two-qubit basis onto the so-called Bell
states, i.e.

M : |00⟩ 7−→ |00⟩+ |11⟩√
2

:=
∣∣Φ+

〉
M : |01⟩ 7−→ |00⟩ − |11⟩√

2
:=
∣∣Φ−〉

M : |10⟩ 7−→ |01⟩+ |10⟩√
2

:=
∣∣Ψ+

〉
M : |11⟩ 7−→ |01⟩ − |10⟩√

2
:=
∣∣Ψ−〉 .

(2.4.7)

It is known that any unitary matrix U ∈ U(4) can be written as

U = (A1 ⊗A2)N (α, β, γ)(A3 ⊗A4) (2.4.8)

where Ai ∈ U(2) are single qubit gates and

N (α, β, γ) = ei(αX⊗X+βY⊗Y+γZ⊗Z) (2.4.9)

for α, β, γ ∈ R. From this property we have the following quantum circuit implementation of U :

U =
A3

N
A1

A4 A2

. (2.4.10)

We can prove that the gate N expressed on the magic basis is a diagonal matrix. In fact the
exponent is

αX ⊗X + βY ⊗ Y + γZ ⊗ Z =


γ 0 0 α− β
0 −γ α+ β 0
0 α+ β −γ 0

α− β 0 0 γ

 := N ′, (2.4.11)

5Proof of Eq. (2.4.5)

M = CNOT′(I⊗H)(S ⊗ S)

= CNOTinv

(
H 0
0 H

)[(
1 0
0 i

)
⊗

(
1 0
0 i

)]

= CNOTinv
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1



1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 −1



=
1√
2


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



1 i 0 0
1 −i 0 0
0 0 i −1
0 0 i 1



=
1√
2


1 i 0 0
0 0 i 1
0 0 i −1
1 −i 0 0

 .

(2.4.6)
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which, on the magic basis, is equivalent to

M†N ′M =


α− β + γ 0 0 0

0 −α+ β + γ 0 0
0 0 α+ β − γ 0
0 0 0 −α− β − γ

 . (2.4.12)

At this point, the exponential of a diagonal matrix is still diagonal with the exponentials on the
diagonal, namely

D =M†NM =


ei(α−β+γ) 0 0 0

0 e−i(α−β−γ) 0 0

0 0 ei(α+β−γ) 0

0 0 0 e−i(α+β+γ)



:=


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

 , (2.4.13)

where we have defined a, b, c, d for the sake of simplicity. This gives N = MDM†, which
corresponds to the circuit

N =
S†

D

S

• H S† S H •
. (2.4.14)

One can easily see that (S ⊗ S)D(S† ⊗ S†) = D is still equal to the original diagonal matrix, so
we have

N = D

• H H •
. (2.4.15)

The gate in the middle of the two CNOTs is

(I⊗H)D(I⊗H) =
1

2


a+ b a− b 0 0
a− b a+ b 0 0
0 0 c+ d c− d
0 0 c− d c+ d

 , (2.4.16)

that is in the form of a single qubit gate V1 applied to the second qubit, followed by a controlled
one Λ1(V2) = CV2, i.e.

CV2(I⊗ V1) =
(
I 0
0 V2

)(
V1 0
0 V1

)
=

(
V1 0
0 V2V1

)
, (2.4.17)

which corresponds to the circuit:

D

H H

=
•

V1 V2

, (2.4.18)

where

V1 =
1

2

(
a+ b a− b
a− b a+ b

)
= eiγ

(
cos(α− β) i sin(α− β)
i sin(α− β) cos(α− β)

)
(2.4.19)
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and

V2 =
1

2

(
c+ d c− d
c− d c+ d

)
V †
1 = e−2iγ

(
cos(2β) i sin(2β)
i sin(2β) cos(2β)

)
. (2.4.20)

We can now decompose V1 using Euler angles obtaining

V1 = eiγRz(−π/2)Ry(2(β − α))Rz(π/2)

= eiγRz(π/2)Ry(2(α− β))Rz(−π/2),
(2.4.21)

and similar for V2 getting

V2 = e−2iγRz(π/2)Ry(4β)Rz(−π/2)
= e−2iγRz(−π/2)Ry(−4β)Rz(π/2) .

(2.4.22)

We now use the property in Eq. (2.3.13) to write

V2 = e−2iγCσxBσxA, (2.4.23)

where

A = Ry(2β)Rz(−π/2), B = Ry(−2β), C = Rz(π/2), (2.4.24)

and implement the gate CV2 using the circuit in Eq. (2.3.20), which reads

•

V2

=

eiγRz(2γ) • •

Rz(−π
2 ) Ry(2β) Ry(−2β) Rz(

π
2 )

, (2.4.25)

where the controlled phase is implemented with a single qubit gate E = eiγRz(2γ) on the first
qubit. Combining, merging, and eliminating the maximum number of gates, we have

N =

eiγRz(2γ) • •

• eiγRz(−π
2 ) Ry(2α) Ry(−2β) Rz(

π
2 ) •

,

(2.4.26)
where the two phases eiγ can be eliminated because they represent a global phase that is not
observable. Now we can manipulate the last part of the circuit by inserting an identity formed
by two CNOTs and inverting the operation between the two qubits according to the property
in Eq. (2.2.12)

•

Rz •
=

• • •

Rz •
=

Rz •

• • •
. (2.4.27)

This means that we can remove a CNOT from the circuit in Eq. (2.4.26) because the action is
simply to swap the two qubits. One gets

N =

Rz(2γ) • Rz(π/2) ×

• Rz(−π
2 ) Ry(2α) Ry(−2β) • ×

.

(2.4.28)
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This result is slightly different from the one obtained in the literature (Refs. [16–18]) that is

N =

Rz(2γ − π/2) • Rz(−π/2)

Rz(π/2) • Ry(π/2− 2α) Ry(2β − π/2) •
(2.4.29)

up to a global phase of e−iπ/4. Noticing that the two external Rz rotations can be merged with
the gates A1 and A4 in Eq. (2.4.10), we obtain that any unitary U ∈ U(4) can be implemented
with a quantum circuit with three CNOTs and up to 15 elementary rotations (or 7 general
single-qubit rotations):

U =

A3 Rz(2γ − π
2 ) • A′

1

A′
4 • Ry(

π
2 − 2α) Ry(2β − π

2 ) • A2

, (2.4.30)

where A′
1 := A1Rz(−π/2) and A′

4 := Rz(π/2)A4. This is an optimal decomposition because
there is no other decomposition made from the same library and with fewer quantum gates.

2.4.3 Implementation of Pauli string-generated operations

An interesting and useful quantum gate decomposition is that of a unitary operator generated
by a Pauli string P, namely an n-qubit separable operator composed of single qubit operations
σi ∈ {I, σx, σy, σz}, where i indicates the qubit |qi⟩ to which they are applied, i.e.

P =
n−1⊗
i=0

σi = σ0 ⊗ σ1 ⊗ · · · ⊗ σn−1. (2.4.31)

The Pauli string decomposition can be used for the quantum circuit implementation of the
unitary evolution operator U(t) = e−iHt, by first decomposing the Hamiltonian H as a sum of
Pauli strings

H =
∑
k

ckPk :=
∑
k

hk, (2.4.32)

where hk is a Hamiltonian term acting on all n qubits in a separable way. The exponential can
be decomposed into a product of individual Pauli string exponentials

U(t) = e−it
∑

k hk =
(
e−i

∑
k hkt/r

)r
≈

(∏
k

e−ihkt/r

)r

, (2.4.33)

at the cost of introducing a Trotter error∼ O(t2/r). The main advantage is that each exponential
can be implemented exactly by a cascade of CNOTs before and after a Rz rotation on the last
qubit [4]. Consider a single term

e−ihkt := e−i θ
2
σ0⊗···⊗σn−1 , (2.4.34)

where θ := 2t, the quantum gate decomposition procedure is as follows:

(i) For each qubit |qi⟩, where i ∈ {0, . . . , n− 1}, on which we act with σi ̸= I, rotate the basis
in the z axes, namely if σi = σz apply an identity, if σi = σx apply a Hadamard gate (see
Eq. (2.2.3)), and if σi = σy apply a Hadamard followed by a Rz(π/2) rotation (see the
relation Y = Rz(−π/2)HZHRz(π/2)).
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(ii) For each qubit |qi⟩, where i ∈ {0, . . . , n − 1}, to which we apply σi ̸= I, we add a CNOT
gate controlled in |qi⟩ and targeted to the first |qj⟩ for j > i such that σj ̸= I.

(iii) Apply Rz(θ) to the most significant qubit |qk⟩ to which we apply σk ̸= I. An equivalent
way is to target all CNOTs in the last significant qubit.

(iv) Apply the cascade of CNOTs in reverse order and recover the initial bases using the adjoint
single qubit operators of the first step.

A practical example of this quantum gate decomposition is the following

ei
θ
2
X⊗Z⊗I⊗X =

H • • H

• •

H Rz(θ) H

, (2.4.35)

which can also be achieved by applying the targets to the last qubit:

ei
θ
2
X⊗Z⊗I⊗X =

H • • H

• •

H Rz(θ) H

. (2.4.36)

If we quantify the complexity of the circuit as the number of two-qubit gates, then the number
of CNOTs required is equal to

# CNOTs = 2(p− 1), (2.4.37)

where p is the number of qubits to which we apply σi ̸= I,

2.4.4 Walsh basis decomposition

In the work in Ref. [26], the authors present an efficient way to implement a diagonal unitary
D on n qubits with a quantum circuit using 2n+1 − 3 one- and two-qubit gates. The method is
based on the connection between the Walsh functions and the basis of diagonal operators, and
the problem of finding the shortest quantum circuit implementing D = eif , where f is diagonal
and hermitian, coincides with the problem of finding the shortest series of Walsh functions wi

that reconstruct f according to

f =

2n−1∑
k=0

akwk. (2.4.38)

The key point of this approach is that there is a connection between the Walsh basis and the
diagonal operator basis, also called Walsh operators. Let’s consider a separable n-qubit state
|q0 . . . qn−1⟩, for qi ∈ {0, 1}, and define the Pauli Zi operator acting on the qubit |qi⟩ as

Zi |q0 . . . qn−1⟩ = (−1)qi |q0 . . . qn−1⟩ . (2.4.39)

A Walsh operator of order k ∈ {0, . . . , 2n − 1} is a string of Zi Pauli operators, for all i ∈
{0, . . . , n− 1}, i.e.

Wk =
n−1⊗
i=0

(Zi)
ki = Zk0

0 ⊗ Z
k1
1 ⊗ · · · ⊗ Z

kn−1

n−1 , (2.4.40)
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where [k] = (kn−1 . . . k1k0) is the binary notation of k (note the reverse order with respect to
the qubit labelling). If ki = 0 then the operator applied to |qi⟩ is Zki

i = Z0
i = I and if ki = 1

then Zki
i = Z1

i = Zi is applied to |qi⟩. So using any possible bit string [k] we identify all the
possible combinations of Z and I. The set {Wk}k=0,...,2n−1 forms a complete orthonormal basis
of diagonal operators on n qubits. The diagonal unitary operator is therefore

D = eif = ei
∑2n−1

k=0 akWk =
2n−1∏
k=0

eiakWk :=
2n−1∏
k=0

Dk, (2.4.41)

where we have used the fact that each Walsh operator commutes with all the others so that we
can split the exponential into a product of exponentials. Each term Dk is in the form of an
exponential of a Walsh operator:

Dk = eiakwk := e
−i

θk
2

(
Z

k0
0 ⊗···⊗Z

kn−1
n−1

)
, (2.4.42)

where θk := −2ak, and is a special case of the Pauli string-generated operator introduced in
Sec. 2.4.3. The circuit implementing this type of diagonal gate has a Rz(θ) rotation on the qubit
|ql⟩ corresponding to the most significant bit (kl = 1), preceded and followed by two cascades
of CNOTs targeted on the same qubit |ql⟩ and with controls on the qubits |qi⟩ corresponding to
ki = 1.

For example, consider a system of n = 3 qubits. The Walsh operators can be found using
the binary strings [0] = 000, [1] = 001, [2] = 010, [3] = 011, [4] = 100, [5] = 101, [6] = 110 and
[7] = 111, which give

W0 = I⊗ I⊗ I, W1 = Z ⊗ I⊗ I, W2 = I⊗ Z ⊗ I, W3 = Z ⊗ Z ⊗ I,
W4 = I⊗ I⊗ Z, W5 = Z ⊗ I⊗ Z, W6 = I⊗ Z ⊗ Z, W7 = Z ⊗ Z ⊗ Z.

(2.4.43)

If we write the diagonal unitary D as

D = D7D6 . . . D0 = e−i
θ7
2
W7 . . . e−i

θ2
2
W1 , (2.4.44)

the quantum circuit is the sequence of networks implementing each Walsh operator

R1 • • • • • •

R2 R3 • • • •

R4 R5 R6 R7

,

(2.4.45)
where vertical dashed lines highlight different Walsh operators and we have used the compact
form Rz(θk) := Rk. Using this approach, the number of Walsh operators required to implement
D on n qubits is 2n − 1. Each of them requires one Rz(θk) rotation and up to n − 1 CNOTs.
The complexity is therefore

C(D) ∼ O(n2n), (2.4.46)

which scales exponentially and is not efficient.
We can optimise this approach by noting that each Walsh operator commutes with all the

others, and we can order them to reduce the number of CNOTs. In particular, when two Walsh
operators are sequenced, the cascade of CNOTs can be simplified by cancelling the sequential
CNOTs applied to the same control qubit (see the CNOTs between R6 and R7 in the circuit of
Eq. (2.4.45)). This follows from the circuit equivalence in Eq. (2.2.15). The CNOTs remaining
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between two Walsh circuits Wk and Wl are those applied to the qubits |qi⟩ whose corresponding
bits in [k] and [l] are different, namely ki ̸= li. This means that the optimal order is the one
that minimises the flipped bits between two orders k and l of the sequential Walsh operator,
which by definition coincides with the Gray code. For the case n = 3, the Gray code is G3 =
([0], [1], [3], [2], [6], [7], [5], [4]) (see Eq. (2.3.44)), and the optimal quantum circuit is:

R1 • • • •

R3 R2 • •

R6 R7 R5 R4

. (2.4.47)

The Walsh operator Wk, where the most significant bit is k0, has only one rotation. If the
second bit k1 is the most significant, there are two Walsh operators with a total of two rotations
and two CNOTs. If the third bit k3 is the most significant, there are four Walsh operators with
a total of four rotations and four CNOTs. So if ki is the most significant bit, the number of
rotations applied to |qi⟩ is 2i and the number of CNOTs applied to |qi⟩ is 2i if i > 1 and 0 if
i = 0. Summing all the Walsh operators up to n qubits, we have

# CNOTs =
n−1∑
i=1

2i = 2n − 2, (2.4.48)

and the number of rotations is

# Rz =
n−1∑
i=0

2i = 2n − 1, (2.4.49)

which gives a total number of quantum operations equal to

# of operations = 2n+1 − 3. (2.4.50)

We conclude that the number of operations grows exponentially with the number of qubits, even
for the optimal Walsh-based method. As proposed in Ref. [26], the number of operations can
be reduced at the cost of only approximately implementing the propagator. The strategy uses
a truncated Walsh series.

Related to the Walsh basis decomposition there is another interesting result which allows
to implement a certain set of diagonal unitaries using only single qubit gates. Therefore, by
definition, this set contains separable operations. In the work in Ref. [28], the authors identify a
particular set of diagonal unitaries called diagonal evenly-spaced (DES) operators, which can be
expressed as the exponential of a diagonal matrix A whose elements depend on a linear function
on the computational basis, namely

D = eiA = ei
∑2n−1

i=0 g(i)|i⟩⟨i| =
2n−1∑
i=0

eig(i) |i⟩⟨i| , (2.4.51)

where g(i) is a linear function of i. The authors proved this statement by considering a particular
operator: the bosonic number one. In this case g(i) = i, which gives the evenly-spaced diagonal

A =
2n−1∑
i=0

i |i⟩⟨i| = diag(0, 1, 2, . . . , 2n − 1). (2.4.52)

Considering the case n = 2, the binary notation of i, and using the relations

|0⟩⟨0| = I+ Z

2
, |1⟩⟨1| = I− Z

2
, (2.4.53)
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it is easy to verify that the operator A becomes a sum of local gates, each acting on a single
qubit. In fact

A = |01⟩⟨01|+ 2 |10⟩⟨10|+ 3 |11⟩⟨11|

=
I+ Z

2
⊗ I− Z

2
+ 2

I− Z
2
⊗ I+ Z

2
+ 3

I− Z
2
⊗ I− Z

2

=
1

4
(II− IZ + ZI− ZZ) + 2

4
(II+ IZ − ZI− ZZ) + 3

4
(II− IZ − ZI+ ZZ)

=
3

2
II− 1

2
IZ − ZI.

(2.4.54)

This result holds of course for any function g(i) = αi where α ∈ C and the generated operators A
can be expressed as a sum of a subset of Walsh operators Wk where k = 2j for j ∈ {0, . . . , n−1}
plus potentially W0 which is a trivial phase contribution. The Walsh series corresponding to an
evenly-spaced diagonal unitary is

f = a0w0 + a1w1 + a2w2 + a4w4 + · · ·+ a2n−1w2n−1

=

α n−1∑
j=0

2j

w0 +

n−1∑
j=0

(
−α2j

)
w2j .

(2.4.55)

For n = 2 and α = 1/2 we recover the bosonic operator (since a1 = −α = −1/2, a2 = −2α = −1
and a0 = 3α = 3/2), but we can do better than that. Indeed, the result suggests that the
locality property can be extended to any Walsh function containing at most n contributions in
the list {w0, w1, w2, w4 . . . w2n}, all of which correspond to Walsh operators Wk where k = 2j

for some j and whose bit string [k] contains all zeros except a single bit. Thus

f = a0w0 +

n−1∑
j=0

a2jw2j (2.4.56)

which includes the evenly spaced diagonal unitaries, but also other diagonal unitaries that can
be expressed using the subset of Walsh operators {W2j}. In particular, for the case n = 2 we
have

eif = eia2W2eia1W1eia0W0 = eia2I⊗Zeia1Z⊗Ieia0I⊗I. (2.4.57)

In matrix form, this diagonal unitary can be expressed by eiB, where

B =
2n−1∑
i=0

g(i) |i⟩⟨i| ⇐⇒ g(i) =
n−1∑
j=0

βj(−1)ij + const, (2.4.58)

for each βj ∈ C, where ij is the i-th bit of the string identifying |j⟩. The evenly-spaced diagonal
is a special case of the function g(i) where

g(i) =
n−1∑
j=0

βj(−1)ij = i =
n−1∑
j=0

j2ij =⇒ βj = j(−2)ij . (2.4.59)



Chapter 3

Trapped-ion based quantum
computing

The scientific community is investing energy and resources in developing and improving dif-
ferent types of quantum machines. As quantum computing research has progressed, several
different types of quantum computers have emerged, each with its own unique architecture,
strengths and challenges. Different testbeds are generally based on different definitions of qubit
systems and different implementations of their evolution (see, for example, Ref. [29] for a recent
review). These quantum computing platforms include superconducting, trapped-ion, neutral
atoms, topological qubits, photonic quantum computers and quantum annealers. Each of these
testbeds must fulfil certain characteristics, defined by Di Vicenzo’s criteria [30], in order to
be defined as efficient. The necessary characteristics of a quantum machine are (1) a scalable
physical system with well-defined qubits, (2) the possibility to initialise it, (3) a long time coher-
ence allowing not to lose the quantum superposition during the computation, (4) the definition
and implementation of a universal quantum gate set, and finally (5) the possibility to make
measurements of final states allowing to obtain information.

An interesting and promising quantum testbed is the one based on trapped ions, which
will be used to test the quantum algorithm presented in the last part of this thesis. Before
analysing the Di Vicenzo’s criteria fulfilled by this type of quantum machine (Sec. 3.2), we will
briefly present the physical description of a trapped-ion system (Sec. 3.1) and, at the end of the
chapter, summarise the main advantages of this type of machine (Sec. 3.3). For a more detailed
study, we refer the reader to more specific texts such as the Nielsen-Chuang manuscript [4] or
the works in the Refs. [31–33].

3.1 Trapped-ion system and Hamiltonian

The qubit system in a trapped-ion based machine is defined by a set of two orthogonal quantum
states implemented by two atomic levels of nuclei, such as 40Ca+ and 171Y b+, with a closed
shell plus a valence electron. Two of the possible states in which the valence electron can be
found are used as basic orthogonal states |0⟩ and |1⟩ for the computational definition of the
qubit state. The chosen states must have a long lifetime and not be easily perturbed. A simple
way to encode the memory of a qubit at the atomic level of the ion is to take a ground and
an excited state, defining a so-called optical qubit as an alternative to the hyperfine qubit type,
which stores the information in two stable states in a hyperfine structure1.

1A hyperfine structure is an energy split caused by an electromagnetic field (generated by a multipole between
the charges in the nucleus and the electron) between two atomic levels that would otherwise be degenerate.

45



46 CHAPTER 3. TRAPPED-ION BASED QUANTUM COMPUTING

The total Hamiltonian of the valence electron used as a qubit contains three terms:

Hion = H0 +Htrap +Hint, (3.1.1)

where H0 is the free part, Htrap is the external potential used to create the trap, and Hint is the
atom-light interaction term, which describes the way we will act on the ion with a laser beam.

3.1.1 Free term

The free Hamiltonian is given by

H0 = ℏω0 |1⟩⟨1| , (3.1.2)

where ω0 is the frequency distance between the ground state |0⟩ and the excited one |1⟩ (in the
case of optical qubits). The frequency distance is of the order of ω0 ∼ 100 THz (optical range)
which is compatible with a laser frequency that can be used to manipulate the qubit state, but
of course depends on the particular ion used to define the qubit.

3.1.2 Trap term

Because the ions are charged, it is possible to apply an electromagnetic field to them, but
according to Earnshaw’s theorem based on Gauss’s law, an electric potential alone cannot trap
a charged particle (∇ · E = 0). A static field cannot actually create a 3D confining potential,
only a saddle potential, so the trap is constructed using an electric field plus a magnetic field
(Penning trap) or a dynamic electric field (Paul trap). Both technologies create a rotating saddle
that confines in all radial directions, and the ion is forced into a periodic motion of very small
amplitude around an equilibrium point. Considering the dimensional scale of the ions ∼ 100 pm
and the distance scale of different ions in the trap ∼ µm, we can treat the ions in the trap
as classical charged points and the Hamiltonian of this system can be modelled by a harmonic
oscillator in which the ions, of mass m, perform phonon modes:

Htrap =
p2

2m
+

1

2
mω2

phx
2. (3.1.3)

Due to the confining we can consider here the vibration degree of freedom in only one direction.
Replacing the operators p and x by the ladder operators according to

x =

√
ℏ

2mωph

(
a+ a†

)
, p = i

√
mωphℏ

2

(
a† − a

)
, (3.1.4)

one gets

Htrap = ℏωph

(
a†a+

1

2

)
, (3.1.5)

where ωph is the frequency and a(†) are the annihilation (creation) operators of the harmonic
oscillator levels.

3.1.3 Atom-light interaction term

The interaction with the valence electron is usually performed by a laser beam, which can be
described by a time-dependent electric field

E(t) = E0ε cos(kLx− ωLt+ φ), (3.1.6)
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where E0 is the amplitude, ε is the polarisation vector, kL is the wave vector, ωL is the frequency
and φ is the phase. Note that the bold symbols here indicate three-dimensional vectors. The
Hamiltonian for the interaction of an electron in an electric field is

Hint = e(r ·E) = D ·E, (3.1.7)

where D := er is the dipole operator which is defined by the position distance r. If the electron
can occupy two possible states, the interaction Hamiltonian can be written as

Hint = (|0⟩⟨0|+ |1⟩⟨1|) (D ·E) (|0⟩⟨0|+ |1⟩⟨1|) =
∑

i,j∈{0,1}

|i⟩⟨i| (D ·E) |j⟩⟨j| , (3.1.8)

where we have inserted two identities I = |0⟩⟨0|+ |1⟩⟨1|. We can see that the terms with i = j are
zero due to parity properties, because atomic orbitals ψ(r) are in general symmetric (like S-wave)
or antisymmetric (like P-wave), which means that the parity operator mapping P : r 7−→ −r
transforms them into Pψ(r) = ±ψ(r). Since P is self-adjoint and unitary, we have that P 2 = I
and we can calculate the matrix elements of the operator as

⟨i|D · ε|i⟩ = ⟨i|PPD · εPP |i⟩ = ⟨i|P (D · ε)P |i⟩ = −⟨i|D · ε|i⟩ := 0, (3.1.9)

where we used P |i⟩ = ± |i⟩ and P (D · ε)P = −D · ε. So the interaction Hamiltonian contains
only off-diagonal elements

Hint = ⟨0|D ·E|1⟩ |0⟩⟨1|+ ⟨1|D ·E|0⟩ |1⟩⟨0|
= E0 cos(kLx− ωLt+ φ) ( ⟨0|D · ε|1⟩ |0⟩⟨1|+ ⟨1|D · ε|0⟩ |1⟩⟨0|)
:= ℏΩcos(kLx− ωLt+ φ) (|1⟩⟨0|+ |0⟩⟨1|)
= ℏΩcos(kLx− ωLt+ φ)σx,

(3.1.10)

where we defined d10 := ⟨1|D · ε|0⟩ = ⟨0|D · ε|1⟩ and the Rabi frequency

Ω :=
d10E0

ℏ
. (3.1.11)

3.1.4 The Lamb-Dicke regime

The Lamb-Dick parameter η is a measure of the ratio between the oscillation energy induced by
the laser beam and that of the trap:

η :=

√
ℏ2k2L/2m
ℏωph

. (3.1.12)

The numerator meant to produce the electron transition (recoil energy from photon absorption)
and the denominator corresponds to the energy distance between different levels of the harmonic
oscillator. Using the first relation in Eq. (3.1.4) we also have the equivalence

kLx = η
(
a+ a†

)
. (3.1.13)

The Lamb-Dicke regime corresponds to the condition that η ≪ 1. In this limit the interac-
tion term in the Hamiltonian can be approximated by neglecting kLx ∼ 0 and the interaction
contribution becomes

Hint = ℏΩcos(−ωLt+ φ) (|1⟩⟨0|+ |0⟩⟨1|)

=
ℏΩ
2

(
ei(−ωLt+φ) + e−i(−ωLt+φ)

)
(|1⟩⟨0|+ |0⟩⟨1|) .

(3.1.14)
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Physically, the Lamb-Dicke limit creates a condition where the energy phonon (the vibration
of the ion in the harmonic potential) is not sufficient to trigger the flip from the ground to the
excited state, i.e. it cannot change the state of the qubit, and the two external manipulations,
namely the one that keeps the ion trapped and the one that manipulates the state of the valence
electron, do not interfere with each other. This is a fundamental requirement for trapped-ion
quantum computing because it allows precise and controlled manipulation of the qubits, leading
to precise quantum operations. This establishes a point to which the trapped ions should be
cooled. In general, the Lamb-Dicke parameter η is small but not negligible, and this is also a
necessary condition to couple the electron levels with the phonon motion in the trap. We can
write the interaction Hamiltonian considering the relation in Eq. (3.1.13) and obtaining

Hint =
ℏΩ
2

(
ei(−ωLt+φ)eiη(a

†+a) + e−i(−ωLt−φ)e−iη(a†+a)
)
(|1⟩⟨0|+ |0⟩⟨1|)

≈ ℏΩ
2

(
ei(−ωLt+φ)(1 + iη(a† + a)) + e−i(−ωLt+φ)(1− iη(a† + a))

)
(|1⟩⟨0|+ |0⟩⟨1|) ,

(3.1.15)

where we have expanded the relation for small values of η.

3.1.5 The rotating wave approximation

If we consider a single ion in the trap, we can describe its internal state using the free plus
interaction Hamiltonian in the Lamb-Dicke regime (see Eq. (3.1.14)) which coincides with

H0 +Hint = ℏω0 |1⟩⟨1|+
ℏΩ
2

(
ei(−ωLt+φ) + e−i(−ωLt+φ)

)
(|1⟩⟨0|+ |0⟩⟨1|) . (3.1.16)

Note that the trap term in the Hamiltonian is not needed if we want to describe only the electron
state in the ion. In the rotating frame of the free term H0, one obtains a Hamiltonian in the
interaction picture according to the relation

H ′ = U †
0HU0 − iℏU †

0

dU0

dt
= U †

0HintU0 , (3.1.17)

where here H = H0+Hint and U0 = e−iH0t. This eliminates the first term in Eq. (3.1.16) adding
a rotation with a new frequency, namely

H ′ =
ℏΩ
2

(
ei(−ωLt+φ) + e−i(−ωL+φ)

)(
U †
0 |1⟩⟨0|U0 + U †

0 |0⟩⟨1|U0

)
=

ℏΩ
2

(
ei(−ωLt+φ) + e−i(−ωL+φ)

) (
eiω0t |1⟩⟨0|+ e−iω0t |0⟩⟨1|

)
=

ℏΩ
2

(
eiφe−i(ωL−ω0)t + e−iφei(ωL+ω0)t

)
|1⟩⟨0|+

+
ℏΩ
2

(
eiφe−i(ωL+ω0)t + e−iφei(ωL−ω0)t

)
|0⟩⟨1| ,

(3.1.18)

where we have used

U †
0 |1⟩⟨0|U0 = eiω0t |1⟩⟨0| , U †

0 |0⟩⟨1|U0 = e−iω0t |0⟩⟨1| . (3.1.19)

The Rotating Wave Approximation (RWA) allows us to neglect terms that define oscillations
with a much faster frequency than the Rabi oscillation. In particular ωL + ω0 ∼ GHz while
Ω ∼ MHz so we can neglect the first oscillations and keep only the contribution with ωL−ω0 := δ,
called detuning, because the fast rotating terms average out before the system has had time to
react. The Hamiltonian is then

H ′ =
ℏΩ
2

(
eiφe−iδt |1⟩⟨0|+ e−iφeiδt |0⟩⟨1|

)
. (3.1.20)
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When considering more than one ion in the trap we need to combine both the internal and
the external degrees of freedom. The space describing this system is then spanned by the space
of the valence electron basis |i⟩q coupled to the harmonic oscillator basis |n⟩ph, namely

B = span
(
|n⟩ph ⊗ |i⟩q s.t. i ∈ {0, 1}, n ∈ R

)
, (3.1.21)

where n denotes the harmonic oscillator levels. The Lamb-Dicke parameter contains the con-
nection between the manipulation of the internal levels of the ion and the external degree of
freedom of the harmonic potential. For this reason, to describe a system with more than one ion
in the trap, we have to work in a situation where η is small but not negligible (see Eq. (3.1.15)).
This allows us to couple the two degrees of freedom. The Hamiltonian is now H0+Htrap+Hint

where the interaction term is as in Eq. (3.1.15). This Hamiltonian in the rotating frame of
H0 +Htrap is given by

H ′ = U †HU − iℏU †dU

dt
= U †HintU, (3.1.22)

where now H = H0+Htrap+Hint and U = e−i(H0+Htrap)t. Using Eq. (3.1.15) for the interaction
part we have

H ′ =
ℏΩ
2

(
ei(−ωLt+φ)U †

(
1 + iη

(
a† + a

))
σxU + e−i(−ωLt+φ)U †

(
1− iη

(
a† + a

))
σxU

)
.

(3.1.23)

Making the two Hilbert spaces explicit (ordered as in the basis (3.1.21)), the two contributions
are of the form

U †
(
I⊗ σx ± iη

(
a† + a

)
⊗ σx

)
U (3.1.24)

and the interaction picture Hamiltonian is

H ′ =
ℏΩ
2
U † (I⊗ σx)U

(
e−iωLteiφ + eiωLte−iφ

)
+

+
ℏΩ
2
iηU †

((
a† + a

)
⊗ σx

)
U
(
e−iωLteiφ − eiωLte−iφ

)
:= H ′

q +H ′
ph⊗q.

(3.1.25)

In the equation above, we defined H ′
q as the term that can only act on the valence electron

energy level, preserving the harmonic oscillation, and H ′
ph⊗q as the term that couples the two

Hilbert spaces. Calculating

U † (I⊗ σx)U = I⊗ eiH0t/ℏσxe
−iH0t/ℏ

= I⊗ (eiω0t |1⟩⟨0|+ e−iω0t |0⟩⟨1|),
(3.1.26)

H ′
q becomes explicitly

H ′
q =

ℏΩ
2

(
e−iωLteiφ + eiωLte−iφ

) (
I⊗

(
eiω0t |1⟩⟨0|+ e−iω0t |0⟩⟨1|

))
(3.1.27)

and is dominant in the regime ωL ∼ ω0, where the RWA keeps only the slowly rotating term
containing δ = ωL − ω0, giving the result obtained in Eq. (3.1.20). This transformation is
represented by the black transition in the Figure 3.1. Let’s calculate

U †
((
a† + a

)
⊗ σx

)
U = eiHtrapt/ℏ(a† + a)e−iHtrapt/ℏ ⊗ eiH0t/ℏσxe

−iH0t/ℏ

=
(
eiωphta† + e−iωphta

)
⊗
(
eiω0t |1⟩⟨0|+ e−iω0t |0⟩⟨1|

)
= ei(ωph+ω0)ta† ⊗ |1⟩⟨0|+ ei(ωph−ω0)ta† |0⟩⟨1|+

+ e−i(ωph−ω0)ta⊗ |1⟩⟨0|+ e−i(ωph+ω0)ta⊗ |0⟩⟨1| ,

(3.1.28)
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Harmonic oscillation levels

E
n
er
gy

|n− 1⟩ ⊗ |0⟩
|n⟩ ⊗ |0⟩

|n+ 1⟩ ⊗ |0⟩

|n− 1⟩ ⊗ |1⟩
|n⟩ ⊗ |1⟩

|n+ 1⟩ ⊗ |1⟩

Figure 3.1: Sketch of the action of the interaction Hamiltonian Hint in the three main regimes. The
red and blue transitions are generated by the red and blue regimes of the Hamiltonians in Eq. (3.1.32)
and (3.1.33), and the black one describes the transition of the qubit state generated by Eq. (3.1.27).

where we have used the substitutions

a† 7−→ eiωphta†, a 7−→ e−iωphta (3.1.29)

obtained from the annihilation and creation operators in the rotating frame of the Htrap
2. The

term H ′
ph⊗q becomes

H ′
ph⊗q =

ℏΩ
2
iη
(
e−iωLteiφ − eiωLte−iφ

) (
ei(ωph+ω0)ta† ⊗ |1⟩⟨0|+ ei(ωph−ω0)ta† |0⟩⟨1|+

+e−i(ωph−ω0)ta⊗ |1⟩⟨0|+ e−i(ωph+ω0)ta⊗ |0⟩⟨1|
)
.

(3.1.31)

This contribution is dominant in two different regimes. In the first one, called red sideband,
when ωL ∼ ω0 − ωph, the Hamiltonian reads(

H ′
ph⊗q

)red
=

ℏΩ
2
iη
(
eiφe−i(ωL+ωph−ω0)ta⊗ |1⟩⟨0| − e−iφei(ωL+ωph−ω0)ta† ⊗ |0⟩⟨1|

)
, (3.1.32)

where we have neglected the fast rotating terms. This physically described the effect of increasing
the electron energy level and decreasing the harmonic oscillator one, or decreasing the first and
increasing the second (red transition in Fig. 3.1). The second regime corresponds to ωL ∼
ω0 + ωph and is called blue sideband. In this case the Hamiltonian is(

H ′
ph⊗q

)blue
=

ℏΩ
2
iη
(
eiφe−i(ωL−ωph−ω0)ta† ⊗ |1⟩⟨0| − e−iφei(ωL−ωph−ω0)ta⊗ |0⟩⟨1|

)
, (3.1.33)

2The explicit calculation for the creation operator in the rotating frame of the trap is

eiHtrapt/ℏa†e−iHtrapt/ℏ |n⟩ = eiωpha†ata†e−iωpha†at |n⟩

= eiωpha†ata† |n⟩ e−iωphnt

= eiωpha†at√n+ 1 |n+ 1⟩ e−iωphnt

= eiωph(n+1)t
√
n+ 1 |n+ 1⟩ e−iωphnt

= eiωphta† |n⟩ .

(3.1.30)
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Figure 3.2: Sketch of the initialisation process. The transparency of the dots represents the occupation
probability of the state, the red arrows are the transformations performed by Xini and the blue ones
represent the spontaneous decay. We repeat the step Xini + decay until all occupation probabilities are
in the state |0⟩.

and has the physical effect of raising or lowering the energy levels of both the electron and
the harmonic oscillator (blue transition in Fig. 3.1). This Hamiltonian term is the necessary
ingredient to implement a two-qubit gate, where the electrons of two ions can communicate with
each other through the trap.

3.2 Di Vicenzo criteria for trapped-ion QC

3.2.1 Qubit definition

The first requirement that makes a two-level quantum system a good candidate for a qubit is
that it has two orthogonal well-defined states that can be mapped to |0⟩ and |1⟩. As seen in
the previous section, we can identify two energy levels for the valence electron of the ion, which
can represent the two basis elements. The system is scalable by simply adding more ions to the
trap. The typical number of ions is of the order of ∼ (1−100) with a geometry that is generally
linear and with a typical scale distance of ∼ (1− 10)µm.

3.2.2 Initialization

The state of the valence electron is initialised and changed by a laser beam. As far as we are
concerned at this stage, let us imagine that we have an additional state |aux⟩ for the electron,
and an operation that performs Xini |1⟩ = |aux⟩. The auxiliary state is chosen to satisfy some
necessary properties: (1) it must be unstable, (2) it must have a typical decay time in state |0⟩
that is shorter than the decay time in state |1⟩, and (3) the frequency distance with |1⟩ must be
different from that with |0⟩. In this way, given a certain unknown initial state |φ⟩ = α |0⟩+β |1⟩,
we can initialise it in the state |0⟩ by repeatedly applying Xini according to the procedure shown
in Figure 3.2, obtaining a final state |φ0⟩ ≈ |0⟩ with a fidelity of F = |⟨0|φ0⟩|2 > 99.9%.

3.2.3 Coherence

Quantum coherence is a key aspect of quantum computing as it ensures the conservation of
quantum superposition. A two-level quantum system, such as the valence electron of the trapped
ion, is a good definition of a qubit if it maintains coherence between the two possible levels for
a time scale longer than the time required to perform the computation and obtain information
from the measurement. In the specific case of an ion machine, the decay of the state from |1⟩
to |0⟩ has a typical time of the order of τdecay ∼ s, which is orders of magnitude larger than
the typical time of the gates that implement the simulation, which operate on a time scale of
the order of τgate ∼ (10 − 100)µs. In fact, the main source of error in trapped-ion qubits is
due to magnetic field fluctuations, which cause the frequency of the free Hamiltonian to depend
on time, namely H0 = ℏω0(t) |1⟩⟨1|. When acting on the basis states e−iω0(t)|1⟩⟨1| |0⟩ = |0⟩
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and e−iω0(t)|1⟩⟨1| |1⟩ = e−iω0(t) |1⟩ it has the effect of a random σz gate which affects the phase
information.

3.2.4 Universal quantum gate set

Another necessary requirement is the ability to perform single-qubit and two-qubit operations,
which can be used to manipulate the qubit system and form a universal set of gates. Single-qubit
gates are applied using the laser beam, which changes the qubit state depending on the duration
of its application. To prove this, let’s focus on the Hamiltonian of a single ion in the rotating
frame of H0 and in the Lamb-Dicke limit, as obtained in Eq. (3.1.20). Without losing generality,
we can set the laser frequency ωL such that δ ∼ 0, and obtain

H ′ =
ℏΩ
2

(
eiφ |1⟩⟨0|+ e−iφ |0⟩⟨1|

)
=

ℏΩ
2

(
0 e−iφ

eiφ 0

)
, (3.2.1)

which, for φ = 0 and φ = π/2 respectively, corresponds to

H ′ =
ℏΩ
2
σx, H ′ =

ℏΩ
2
σy. (3.2.2)

Applying this Hamiltonian, the system evolves according to the unitary evolution described by

eiH
′t/ℏ = eiΩσxt/2 = cos(Ωt/2)I+ i sin(Ωt/2)X = Rx(Ωt), (3.2.3)

for φ = 0, and by

eiH
′t/ℏ = eiΩσyt/2 = cos(Ωt/2)I+ i sin(Ωt/2)Y = Ry(Ωt), (3.2.4)

for φ = π/2. By changing the duration of the laser, we can obtain any angle Ωt ∈ R, and the
two single-qubit rotations form a universal single-qubit gate set. The typical time scale for a
single-qubit rotation is of the order of ∼ 10µs.

The two-qubit entangling gate is implemented by the laser beam which couples the internal
qubit state with the collective phonon motion. Thus, the basis used to implement this kind of
operation is the one in Eq. (3.1.21). The Hamiltonian describing the coupling between the two
degrees of freedom is given by Eq. (3.1.25) in the rotating frame of H0 +Htrap. Using the RWA
in the red sideband (Eq. (3.1.32)) and fixing the laser frequency to ωL = ω0−ωph and the phase
to φ = −π/2, we get (

H ′
ph⊗q

)red
=

ℏΩ
2
η
(
a⊗ |1⟩⟨0|+ a† ⊗ |0⟩⟨1|

)
, (3.2.5)

that generates the unitary

Uph⊗q(t) := e−iH′
ph⊗qt/ℏ = e−iΩη

2 (a†⊗|0⟩⟨1|+a⊗|1⟩⟨0|)t. (3.2.6)

This maps

Uph⊗q(t) : |0⟩ph ⊗ |1⟩q 7−→ cos

(
Ωη

2
t

)
|0⟩ph ⊗ |1⟩q − i sin

(
Ωη

2
t

)
|1⟩ph ⊗ |0⟩q

Uph⊗q(t) : |1⟩ph ⊗ |0⟩q 7−→ cos

(
Ωη

2
t

)
|1⟩ph ⊗ |0⟩q − i sin

(
Ωη

2
t

)
|0⟩ph ⊗ |1⟩q .

(3.2.7)

Using this operation, we can implement the so-called Cirac-Zoller gate, first proposed in
Ref. [34] and demonstrated in Ref. [35]. For simplicity, let’s consider two ions and two states
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{|0⟩q1 , |1⟩q1} for the first one and three states {|0⟩q2 , |1⟩q2 , |aux⟩q2} for the second one, where
the auxiliary state is never occupied. The basis elements are of the form

|n⟩ph ⊗ |i⟩q1 ⊗ |j⟩q2 ∈ L
2(R)⊗ C2 ⊗ C2. (3.2.8)

First we apply the operator in Eq. (3.2.6) to the first ion for a duration of Ωt = π. This π pulse
maps

U1 : |0⟩ph ⊗ |1⟩q1 ⊗ |j⟩q2 7−→ −i |1⟩ph ⊗ |0⟩q1 ⊗ |j⟩q2
U1 : |1⟩ph ⊗ |0⟩q1 ⊗ |j⟩q2 7−→ −i |0⟩ph ⊗ |1⟩q1 ⊗ |j⟩q2 .

(3.2.9)

We now apply a 2π pulse to the second ion at a frequency which includes |0⟩q2 and |aux⟩q2 ,
namely

U2 := e−i 2π
2 (a

†⊗|0⟩⟨aux|+a⊗|aux⟩⟨0|). (3.2.10)

So there is only one state that changes under its action:

U2 : |1⟩ph ⊗ |i⟩q1 ⊗ |0⟩q2 7−→ − |1⟩ph ⊗ |i⟩q1 ⊗ |0⟩q2
U2 : |1⟩ph ⊗ |i⟩q1 ⊗ |1⟩q2 7−→ |1⟩ph ⊗ |i⟩q1 ⊗ |1⟩q2 ,

(3.2.11)

and it acquires a phase of π. This is due to the use of the auxiliary state. In fact, using the
excited |1⟩q2 for this transition would also change the phase of the second line in the Eq. (3.2.11).
Then we again apply the U1 operator to the first ion and the chain of operators U1U2U1 := UCZ

is the so-called Cirac-Zoller gate which transforms, as follows, the states of the form |0⟩ph⊗|ij⟩qq
where |ij⟩qq := |i⟩q1 ⊗ |j⟩q2 :

U1 U2 U1

|0⟩ph ⊗ |00⟩qq 7−→ |0⟩ph ⊗ |00⟩qq 7−→ |0⟩ph ⊗ |00⟩qq 7−→ |0⟩ph ⊗ |00⟩qq
|0⟩ph ⊗ |01⟩qq 7−→ |0⟩ph ⊗ |01⟩qq 7−→ |0⟩ph ⊗ |01⟩qq 7−→ |0⟩ph ⊗ |01⟩qq
|0⟩ph ⊗ |10⟩qq 7−→−i |1⟩ph ⊗ |00⟩qq 7−→ i |1⟩ph ⊗ |00⟩qq 7−→ |0⟩ph ⊗ |10⟩qq
|0⟩ph ⊗ |11⟩qq 7−→−i |1⟩ph ⊗ |01⟩qq 7−→−i |1⟩ph ⊗ |01⟩qq 7−→− |0⟩ph ⊗ |11⟩qq .

(3.2.12)

This gate thus has the final effect of a CZ = Λ1(σz) gate, which is equivalent to a CNOT if
we apply a Hadamard gate to the target qubit, changing the basis according to the circuit in
Eq. (2.2.10) of Chapter 2. The action is in fact

I⊗H CZ I⊗H
|0⟩ ⊗ |0⟩ 7−→ |0⟩ ⊗ |+⟩ 7−→ |0⟩ ⊗ |+⟩ 7−→ |0⟩ ⊗ |0⟩
|0⟩ ⊗ |1⟩ 7−→ |0⟩ ⊗ |−⟩ 7−→ |0⟩ ⊗ |−⟩ 7−→ |0⟩ ⊗ |1⟩
|1⟩ ⊗ |0⟩ 7−→ |1⟩ ⊗ |+⟩ 7−→ |1⟩ ⊗ |−⟩ 7−→ |1⟩ ⊗ |1⟩
|1⟩ ⊗ |1⟩ 7−→ |1⟩ ⊗ |−⟩ 7−→ |1⟩ ⊗ |+⟩ 7−→ |1⟩ ⊗ |0⟩

(3.2.13)

and has a typical time scale of the order of ∼ (10− 100)µs.

3.2.5 Measurement

The ability to measure the qubit state is the final requirement for a machine to become an efficient
quantum computer. In a trapped-ion based testbed, the measurement part is performed using
a procedure similar to that used for initialisation. A transformation Xmeas is applied, which
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|0⟩

|1⟩

|aux′⟩

|0⟩

|1⟩

|aux′⟩

|0⟩

|1⟩

|aux′⟩ γ

Figure 3.3: Sketch of the qubit measurement process. Red arrow is the transformation performed by
Xmeas and the blue one represents the spontaneous decay. A photon is only detected if the valence
electron is measured in the |1⟩ state.

transfers the occupancy probabilities from the state |1⟩ to an auxiliary state |aux′⟩. The decay
of the new state |aux′⟩ emits a photon with a time scale of the order of τ ∼ ns, which is detected
and we have the correspondence |1⟩ 7→ light and |0⟩ 7→ dark. A crucial aspect in the definition
of the auxiliary state is that the transition |0⟩ 7→ |aux′⟩ must be strongly off-resonant. The
procedure is shown in Fig. 3.3.

3.3 General features of a trapped-ion machine

Trapped-ion quantum computers offer several distinct advantages compared to other quantum
computing architectures, such as superconducting qubits or topological qubits. These advantages
arise from the unique properties of trapped ions and their interactions with electromagnetic
fields. A key point is that trapped ions have relatively long qubit coherence times, which
is related to how well quantum information is preserved before it decoheres. This extended
coherence allows for more complex and longer quantum computations. In addition, trapped-ion
qubits can be manipulated with extremely high fidelity using well-controlled laser interactions.
This precision allows the implementation of high-quality quantum gates, which will also make
near-term quantum devices suitable for relatively complex quantum algorithms, as well as a
high-fidelity measurement technique using laser-induced fluorescence. The inherently stable and
isolated nature of trapped ions allows the construction of large-scale quantum processors with
relatively large numbers of qubits. A crucial and very useful aspect of this type of architecture is
that entanglement can be created between arbitrarily distant ions using a variety of techniques,
resulting in a fully connected qubit system in which all qubits can interact with all others. As we
will see in Chapter 6, this feature makes a trapped-ion testbed suitable for implementing a class
of quantum algorithms that describe the Hamiltonian evolution of quantum systems involving
an all-to-all interaction term between the different degrees of freedom.



Chapter 4

An explicit tensor notation for
quantum computing

Two notations are commonly used in the literature to describe quantum computing theory,
where we establish a convention for the definition of qubits, gates and quantum algorithms.
The first is the Dirac notation, which has its origins in the mathematical formalism of quantum
mechanics and uses the ket symbol |φ⟩ to denote the quantum state of the qubit system, and
operators Ĝ to denote quantum gates. This notation is purely physical and generally intuitive,
and is useful for analysing algorithms that operate on many qubits.

The other standard formalism is based on the so-called computational basis, where qubit
states are vectors and quantum gates are unitary matrices. This notation is very useful when
we use quantum computation in physical applications, such as the description of many-body
quantum systems. Indeed, it allows one to predict the results of a quantum simulation in
a classical way by performing simple matrix multiplications. The main disadvantage of this
notation is the exponential growth of vector and matrix dimensions, which makes classical
computing resources insufficient to predict the evolution of a number of qubits just over ten. In
fact, quantum operations are represented by potentially huge matrices in which the significant
variables are often few. The second disadvantage of this notation is precisely that it hides some
relevant quantum properties of the operations by increasing the apparent number of independent
variables. As we shall see, this notation derives from the use of the Kronecker product ⊠, which
is always denoted in literature (and also in all other chapters of this work) by the symbol of the
tensor product ⊗ — a instance of notational abuse.

The aim of this chapter is to develop a new explicit tensorial notation, which, to my knowl-
edge, has never been used in any work developed by physicists related to quantum computing,
but which could be more intuitive for mathematicians. This notation describes the qubit states
as tensors and the quantum gate as multilinear (or quasi-multilinear) maps, which has the main
advantage of preserving the internal structure of the qubit states and the operations on them.
The second advantage is that it minimises the computational effort, allowing any quantum
transformation to be performed classically by computing only 2× 2 matrix multiplications.

After a summary of the mathematical background necessary to understand the concept of
tensors in the field of quantum computing (Sec. 4.1) and a detailed description of the notations
commonly used in quantum computing (Sec. 4.2), this chapter introduces an explicit tensorial
notation to describe the state of multi-qubit systems and the quantum gates operating on them
(Sec. 4.3). Some advantages of the tensorial notation of states with respect to the detection
of separable and entangled states and with respect to the measurement procedure are shown.
The special cases of local and control gates are analysed, showing the disadvantages of their
description in the standard notation. Finally, the notation is applied to the description of the
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remarkable quantum teleportation algorithm (Sec. 4.4). The chapter ends by pointing out a
possible connection between the rank of quantum gates expressed in tensorial notation and the
complexity of the quantum circuit implementing them (Sec. 4.5). This chapter, far from being
conclusive, is only a starting point for a new powerful and potentially useful way of describ-
ing quantum computing, for understanding the physical transformation that happens along a
quantum algorithm, and could lead us to new developments in quantum gate decomposition
methods.

4.1 Mathematical background

In this section we summarise the basic mathematical concept needed to introduce the concept
of tensors. For more details we refer the readers to any common text of linear algebra (see for
example Ref. [36]).

We define a vector space V on a field F ∈ {R,C} as the set of elements equipped with two
internal operations: the addition + : V ×V −→ V and the scalar multiplication · : F ×V −→ V .
Any linear combination of elements in V remains in V , namely αv+βw ∈ V for all v, w ∈ V and
α, β ∈ F . Given a vector space, we define the dual space V ∗ as the space of maps v∗ : V −→ F .
If we define the basis B = {ei} of V and the dual basis B∗ = {e∗j} of V ∗, their elements satisfy
the property e∗i (ej) = δij . Note also that dim(V ) = dim(V ∗). Given two vector spaces V and
W , on a field F , with dimensions dim(V ) = n and dim(W ) = m, we define a linear map the
application f : V −→ W . There is an isomorphism between linear maps and the space of
m × n matrices, namely Hom(V,W ) ∼= Mm×n, which means that we can represent any linear
map by a matrix. Given three vector spaces V, W, K on a field F we define a bilinear map the
application ϕ : V ×W −→ K and the same definition can be extended to multilinear maps as
ϕ : V1 × · · · × Vd −→ K.

4.1.1 Tensor product space

The tensor product [37] is a map

⊗ : V ×W −→ V ⊗W (4.1.1)

that maps two elements of two vector spaces to another element of the tensor product space,
namely

⊗ : (v, w) 7−→ v ⊗ w ∈ V ⊗W, (4.1.2)

for all v ∈ V and w ∈ W . The space V ⊗W is uniquely defined up to isomorphisms and its
dimension is the product of the dimensions, namely dim(V ⊗W ) = dim(V ) · dim(W ) = n ·m.
The elements of the tensor product space of the form v ⊗ w ∈ V ⊗W are called simple tensors
or pure tensors. The space of simple tensors is the image of the tensor product map, that is

V ⊗W = span(v ⊗ w|v ∈ V,w ∈W ). (4.1.3)

The basis of the tensor product space is the tensor product of the elements of the two bases,
namely, given BV = {ei} the basis of V and BW = {fi} the basis of W , BV⊗W = {ei ⊗ fj} is
the natural basis of V ⊗W . A general tensor is a linear combination of simple tensors, i.e.

A =
∑
i

αivi ⊗ wi ∈ V ⊗W, (4.1.4)

for vi ∈ V , wi ∈ W and αi ∈ F and can be represented as a two-dimensional array, namely a
n×m matrix, where n = dim(V ) and m = dim(W ). To express a tensor product of more than
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V × W

V ⊗ W

Kϕ

⊗ f

Figure 4.1: Sketch of the definition 4.1.1.

two elements as
A =

∑
i

αiv
1
i ⊗ · · · ⊗ vdi , (4.1.5)

one can use hypermatrices, which are the coordinate representation of tensors. The number d
of spaces connected by the tensor product is called order of the tensor and will be denoted also
as n in the rest of the chapter.

Property 4.1.1 (Associative property) The tensor product is associative, namely (V⊗W )⊗
K = V ⊗ (W ⊗K).

Definition 4.1.1 (Bilinear maps and tensor algebra) Given a bilinear map ϕ : V ×W −→
K, there exists a unique linear map f : V ⊗W −→ K such that

ϕ(v, w) = f ◦ ⊗(v, w), (4.1.6)

where v ∈ V , w ∈W and ϕ(v, w) ∈ K.

This means that each bilinear map is a linear map after the correct embedding via the tensor
product. This property can be extended to the multilinear maps ϕ : V1 × V2 × · · · × Vd −→ K
that can be represented by a linear map acting on the tensor product space, namely f : V1 ⊗
V2 ⊗ · · · ⊗ Vd −→ K. The property is represented by the scheme in Figure 4.1.

4.1.2 Operations on tensors

A tensor A is transformed into another tensor B through the application of tensor products of
linear maps (see Ref. [38] for more details), namely

B =M1 ⊗ · · · ⊗Md(A), (4.1.7)

where Mk are linear maps and d is the order of tensors A and B, or equivalently under a
multilinear map

B = (M1, . . . ,Md) ·A. (4.1.8)

This is related to the Property 4.1.1 that allows us to express the multilinear map (M1, . . . ,Md)
as a linear map M1 ⊗ · · · ⊗Md. Writing the tensor as a linear combination of pure tensors we
have

B = (M1, . . . ,Md) ·
∑
i

a1i ⊗ · · · ⊗ adi

=
∑
i

(M1a
1
i )⊗ · · · ⊗ (Mda

d
i )

=
∑
i

b1i ⊗ · · · ⊗ bdi .

(4.1.9)
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4.1.3 Natural maps defined by tensors

Given a tensor A ∈ V1 ⊗ ...⊗ Vd we define the following natural maps:

(i) Multilinear map:

V ∗
1 ⊗ ...⊗ V ∗

d ∋ (v1, ..., vd) 7−→ (v1, ..., vd)
T ·A ∈ F, (4.1.10)

where T stands for transpose. This map corresponds to a bilinear map

V ∗ ⊗W ∗ ∋ (v, w) 7−→ vTAw ∈ F (4.1.11)

if the tensor is of order d = 2.

(ii) Sesquilinear map:

V ∗ ⊗W ∋ (v, w) 7−→ vHAw ∈ F, (4.1.12)

where H stands for transpose conjugate, also indicated as †.

(iii) Linear maps:

V ∗ ∋ v 7−→ AT v ∈W, (4.1.13)

W ∗ ∋ w 7−→ Aw ∈ V. (4.1.14)

4.1.4 Tensor rank decomposition

The tensor rank decomposition (TRD) consists of writing a tensor as the shortest linear combi-
nation of simple tensors:

A =
r∑

i=1

αi(v
1
i ⊗ ...⊗ vdi ), (4.1.15)

where r = rank(A), αi ∈ F and vki ∈ Vk. A simple tensor has r = 1 by definition.

Property 4.1.2 (Rank and multilinear maps) The rank r of a tensor does not increase
under multilinear multiplication, namely

rank((M1, . . . ,Md) ·A) ≤ rank(A), (4.1.16)

and remains the same if all matrices Mk have linearly independent columns.

4.2 Quantum computing in standard notation

4.2.1 Qubit states as vectors

The most common notation used in quantum computing is based on the Kronecker product and
expresses the qubit states as exponentially large vectors. Given n qubits, whose states belong
to the Hilbert space H = (C2)⊗n, we use as basis a set of 2n vectors of dimension 2n, called the
computational basis, which coincides with the canonical one

B = {δi,∀i ∈ {0, . . . , 2n − 1}}, (4.2.1)

where δi is a vector with 0 entries in rows j ̸= i and 1 entry in row i. This basis comes from the
isomorphism (C2)⊗n ∼= C2n and the basis elements can be found by performing the Kronecker
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product between n single qubit basis states. For example, the four basis states of a system of
n = 2 qubits are

|00⟩ =


1
0
0
0

 , |01⟩ =


0
1
0
0

 , |10⟩ =


0
0
1
0

 , |11⟩ =


0
0
0
1

 , (4.2.2)

where we used the Kronecker product definition, for example

|01⟩ =
(
1
0

)
⊠

(
0
1

)
=

1

(
0
1

)
0

(
0
1

)
 =


0
1
0
0

 . (4.2.3)

The generalisation to n qubits is straightforward and the Kronecker product between two tensors
increases the dimensions by keeping the order of the tensor constant. For this reason, we can
think of an n qubit state as a tensor of order 1 and dimension 2n, i.e. a vector.

4.2.2 Quantum gates as matrices

If we use vector notation to denote qubit states, we can act on them using matrix multiplication.
In particular, a single-qubit gate Gi ∈ U(2) is a 2× 2 unitary matrix which is the representation
of a linear map Gi : C2 −→ C2. This follows from the property Hom(C2,C2) ∼= M2×2. In this
sense, single-qubit gates belong to the space C2 ⊗ C2. For the two-qubit case, quantum gates
Gij ∈ U(4) are 4 × 4 unitary matrices, and a general operation on n qubits can be expressed
as a 2n × 2n unitary. Again, this notation comes from the Kronecker product definition. For
example, consider two single-qubit gates G1, G2 ∈ U(2) expressed as 2 × 2 matrices acting on
two different qubits. The global two-qubit operation can be seen as a 4 × 4 matrix, resulting
from the Kronecker product of the two, namely

G1 ⊠G2 =

(
a0 a1
a2 a3

)
⊠

(
b0 b1
b2 b3

)
=

a0
(
b0 b1
b2 b3

)
a1

(
b0 b1
b2 b3

)
a2

(
b0 b1
b2 b3

)
a3

(
b0 b1
b2 b3

)
 . (4.2.4)

So we can think of a two-qubit gate as an operation belonging to (C2 ⊗ C2) ⊠ (C2 ⊗ C2) and
each two-qubit gate can be expressed as a sum of single Kronecker products as

G12 =

r∑
i=1

Gi
1 ⊠Gi

2 ∈ U(4). (4.2.5)

The Kronecker-based notation can be useful in several situations, such as when we classically
predict the evolution of a qubit state during the Hamiltonian simulation by performing the
multiplication between the matrix representing a gate and the vector representing a state. How-
ever, this is only possible for a small number of qubits because the dimension of the vectors
(qubit states) and matrices (quantum gates) grows exponentially with the number n of qubits
involved. A disadvantage of this notation is precisely the exponential growth of the computa-
tional resources required to perform this matrix multiplication. Another disadvantage is that
the Kronecker product increases the non-trivial coefficients in the matrix and hides the local
property of quantum gates, as explained in the following section.



60 CHAPTER 4. AN EXPLICIT TENSOR NOTATION FOR QUANTUM COMPUTING

4.2.3 Local gate detection

Given a random gate on n qubits, it is generally not trivial to determine whether the gate is
local or entangled by looking at the matrix notation which has 2n × 2n elements. On the other
hand, we know that a tensor is separable if and only if it is a rank-1 tensor. At this point it
is necessary to pay attention to the space in which the rank is computed and to what is meant
by the separability of a tensor in relation to the separability of a gate. For example, consider a
local two-qubit gate GL = G1 ⊠G2 ∈ U(4) like the one in Eq. (4.2.4), which gives the matrix

GL = G1 ⊠G2 =

(
a0 a1
a2 a3

)
⊠

(
b0 b1
b2 b3

)
=


a0b0 a0b1 a1b0 a1b1
a0b2 a0b3 a1b2 a1b3
a2b0 a2b1 a3b0 a3b1
a2b2 a2b3 a3b2 a3b3

 . (4.2.6)

If we calculate the rank we get rank(GL) = 4 and the same applies to the identity gate I4.
Calculating the rank of a local quantum gate acting on n qubits in this notation would always
give the result rank(GL) = 2n. The reason is that we are not using the correct space on which
to define the separability of a multi-qubit gate. Going back to the two-qubit gate definition,
it can be useful to define the tensor space of gates as (C2 ⊗ C2) ⊗ (C2 ⊗ C2) = V1 ⊗ V2 where
V1 = C2 ⊗ C2 is the space of gates on the first qubit and V2 = C2 ⊗ C2 on the second. The
locality property of a gate is the property of acting independently on qubits, so the separability
of a two-qubit gate must be defined in the space V1⊗V2. Elements of C2⊗C2 are 2×2 matrices,
but elements of V1 are arrays of dimension 4 due to the isomorphism C2 ⊗ C2 ∼= C4. A tensor
product of two 4-dimensional vectors G1 ∈ V1 and G2 ∈ V2 is a tensor of order 2, namely a 4× 4
matrix:

GL = G1 ⊗G2 =


a0
a1
a2
a3

(b0 b1 b2 b3
)
=


a0b0 a0b1 a0b2 a0b3
a1b0 a1b1 a1b2 a1b3
a2b0 a2b1 a2b2 a2b3
a3b0 a3b1 a3b2 a3b3

 , (4.2.7)

whose columns are all linearly dependent. Using this notation, the separable gate satisfies the
condition rank(GL) = 1. The map between the standard notation and the one we should use to
detect the separability is:

G1 ⊠G2 =


a0b0 a0b1 a1b0 a1b1
a0b2 a0b3 a1b2 a1b3
a2b0 a2b1 a3b0 a3b1
a2b2 a2b3 a3b2 a3b3

 7−→


a0b0 a0b1 a0b2 a0b3
a1b0 a1b1 a1b2 a1b3
a2b0 a2b1 a2b2 a2b3
a3b0 a3b1 a3b2 a3b3

 = G1 ⊗G2.

(4.2.8)

4.2.4 Controlled gates

A quantum controlled gate is a non-local operation that acts on the target qubits depending
on the state of the control qubits. In the case of two-qubit operations acting on |q1⟩ ⊗ |q2⟩,
there are four possible controlled gates, denoted by Λ1(G) according to the notation introduced
in Chapter 2. The four types are CcG which act on |q2⟩ with G if the condition |q1⟩ = |c⟩ is
satisfied, and GCc which act on |q1⟩ if |q2⟩ = |c⟩. The matrix notation results from the sum of
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two Kronecker products as follows:

C0G = |0⟩⟨0|⊠G+ |1⟩⟨1|⊠ I
C1G = |0⟩⟨0|⊠ I+ |1⟩⟨1|⊠G

GC0 = G⊠ |0⟩⟨0|+ I⊠ |1⟩⟨1|
GC1 = I⊠ |0⟩⟨0|+G⊠ |1⟩⟨1| .

(4.2.9)

The corresponding quantum circuit representations are

G

•

G

G G

•
. (4.2.10)

For example, the controlled gate C1G acts with G on the second qubit if the first one is in the
state |1⟩ and with the identity if it is in |0⟩. Writing the matrix explicitly, we have

C1G = |0⟩⟨0|⊠ I+ |1⟩⟨1|⊠G

=

(
1 0
0 0

)
⊠

(
1 0
0 1

)
+

(
0 0
0 1

)
⊠

(
a0 a1
a2 a3

)

=


1 0 0 0
0 1 0 0
0 0 a0 a1
0 0 a2 a3

 .

(4.2.11)

Due to the fact that a controlled gate can be written as the sum of two simple Kronecker
products, we conclude that a controlled two-qubit gate can also be represented by a rank-2
tensor if we replace ⊠ by ⊗.

4.3 Quantum computing in tensor notation

We usually identify a multi-qubit state using Dirac notation and taking unit vectors |φ⟩ in the
Hilbert space H = (C2)⊗n, where n is the number of qubits in the system. The dimension of the
space is dim(H) = 2n and the natural basis is given by the tensor product of the single-qubit
basis, namely

B = {|q0⟩ ⊗ · · · ⊗ |qn−1⟩ , ∀ qi ∈ {0, 1}}. (4.3.1)

Each basis element can be identified by |i⟩ where i ∈ {0, . . . , 2n− 1} corresponds to the decimal
notation of the binary number (qn−1 . . . q0) in reverse order, namely

i = q0 + q12
1 + . . . qn−12

n−1, (4.3.2)

as defined in Eq. (1.1.8) of the Introduction 1. On this basis, a multi-qubit state is a normalised
linear combination

|φ⟩ =
2n−1∑
i=0

αi |i⟩ where αi ∈ C and
2n−1∑
i=0

|αi|2 = 1. (4.3.3)

Note that according to Schmidt’s theorem there exists an orthonormal basis {|ϕk⟩1 ⊗ . . . |ϕk⟩n}
such that we can write the state as a linear combination of the minimum possible number of
terms, namely

|φ⟩ =
s∑

k=1

βk |ϕk⟩ ⊗ . . . |ϕk⟩ where βk ∈ C and

s∑
k=1

|βk|2 = 1. (4.3.4)
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(c) n = 3

Figure 4.2: Representation of n = 1, 2, 3 qubits in the tensor product space (C2)⊗n using an explicit
tensor notation.

s is called Schmidt number and we have that s = 1 if and only if |φ⟩ is a pure (separable) state
and s ≥ 2 implies that |φ⟩ is entangled. So far we have two standard notations for representing
a multi-qubit state: the Dirac and the vector notation. We now propose a third notation that
exploits the explicit tensor formalism.

4.3.1 Qubit states as tensors

In this section we define an explicit tensor notation that can be used to represent multi-qubit
states. Let’s start by considering a system with n = 1. Single-qubit states on the computational
basis are vectors of two elements |φ⟩ ∈ C2 as defined in Eq. (1.1.5) in Chapter 1. Since we are
not doing a Kronecker product, the state is the same in vector and tensor notation, and we can
interpret the vector as a rank-1 tensor. Using a pictorial representation, a general single-qubit
state is a line with two vertices as shown in Fig. 4.2a, where the top vertex corresponds to |0⟩
and the bottom vertex corresponds to |1⟩. Increasing to n = 2, a two-qubit state belongs to the
space H = C2 ⊗C2, but in standard notation we use the homomorphism with C4 and therefore
represent |φ⟩ ∈ C4 as a four-dimensional vector which is a linear combination of the four basis
elements in Eq. (4.2.2) computed using the Kronecker product. If we replace the Kronecker
product by the tensor product, we get instead an order-2 tensor |φ⟩ ∈ C2 ⊗ C2, expressed as a
linear combination of the basis elements

|00⟩ =
(
1 0
0 0

)
, |01⟩ =

(
0 1
0 0

)
, |10⟩ =

(
0 0
1 0

)
, |11⟩ =

(
0 0
0 1

)
, (4.3.5)

derived from the tensor product between two elements in C2. For example

|01⟩ =
(
1
0

)
⊗
(
0
1

)
=

(
1
0

)(
0 1

)
=

(
0 1
0 0

)
. (4.3.6)

Using a pictorial representation, a general two-qubit state can be represented as the square in
Fig. 4.2b where we have added, to the vertical direction corresponding to the first qubit |q1⟩, an
additional dimension (the horizontal one) representing the qubit |q2⟩. The left vertex corresponds
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to |q2⟩ = |0⟩ and the right one to |q2⟩ = |1⟩. The map between the two representations is

C2 ⊠ C2 ∋


α
β
γ
δ

 7−→ (
α β
γ δ

)
∈ C2 ⊗ C2. (4.3.7)

Increasing the number of qubits to n = 3, a state |φ⟩ ∈ C2 ⊗ C2 ⊗ C2 is represented on the
computational basis as a vector |φ⟩ ∈ C8 with eight elements by using the Kronecker product.
Replacing the Kronecker with the tensor product definition we get an order 3 tensor, i.e. a cube,
as shown in Fig. 4.2c. The generalisation to an n qubit system is straightforward and gives an
order-n tensor instead of a 2n dimensional vector in the standard formalism.

4.3.2 Separable and entangled states

The explicit tensorial notation can be useful to identify separable states in a simpler way because
it makes it clear which qubit of the system is in a particular state. For example, consider two
separable three-qubit states |φ⟩ = |ϕ⟩⊗|0⟩⊗|0⟩ and |φ′⟩ = |0⟩⊗|ϕ⟩⊗|0⟩ (where |ϕ⟩ = α |0⟩+β |1⟩),
which in vector notation are

|φ⟩ =
(
α
β

)
⊠

(
1
0

)
⊠

(
1
0

)
=



α
0
0
0
β
0
0
0


,
∣∣φ′〉 = (1

0

)
⊠

(
α
β

)
⊠

(
1
0

)
=



α
0
β
0
0
0
0
0


. (4.3.8)

The corresponding order-3 tensors are instead

|φ⟩ =

α

0

0

0

β

0

0

0
, |φ′⟩ =

α

0

β

0

0

0

0

0
, (4.3.9)

which highlight the fact that for |φ⟩ only the first qubit is in a linear combination and the other
two are in |0⟩, and for |φ′⟩ the second is in a linear combination and the others are in |0⟩. This
can be seen because the only non-trivial entries for |φ⟩ are in the intersection edge between the
front face (|q3⟩ = |0⟩) and the left face (|q2⟩ = |0⟩). The vertical dimension (first qubit) instead
represents a linear combination of the two states |0⟩ (top face) and |1⟩ (bottom face). On the
other hand, the state |φ′⟩ has non-trivial entries only in the direction of the second qubit, which
corresponds to the horizontal one, and at the upper (|q1⟩ = |0⟩) front (|q3⟩ = |0⟩) edge.

This notation is particularly intuitive and useful for distinguishing between separable and
entangled states. For example, consider the three-qubit entangled state, also called the GWZ
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state, written in Dirac and vector notation as

|GWZ⟩ = |000⟩+ |111⟩√
2

=
1√
2



1
0
0
0
0
0
0
1


. (4.3.10)

The corresponding order-3 tensor is

|GWZ⟩ =

1√
2

0

0

0

0

0

0

1√
2

, (4.3.11)

which has only two non-trivial elements, like the tensors in Eq. (4.3.9), but they belong to
opposite vertices. The Figure 4.3 shows some examples of separable, partially entangled and
fully entangled states, where non-trivial entries are represented by bold coloured dots. The
first panel (Fig. 4.3a) highlights the fact that separable states are represented by cubes with
non-trivial entries that can be connected by a line along an edge. On the other hand, the cubes
representing the tensor of partially entangled states, such as the one in second panel (Fig. 4.3b),
have at least two non-trivial vertices that must be connected along a diagonal. The surface
to which the diagonal belongs defines the dimension along which the state is entangled. Each
partially entangled state belongs to a plane which defines the separable qubit and its state.
Finally, for tensors of fully entangled three-qubit states in third panel (Fig. 4.3c), we must
cross each dimension along a diagonal to connect all non-trivial vertices. We conclude that the
tensor state representation can provide a useful intuitiveness for the detection of separable and
entangled three-qubit states. The number of non-trivial entries obviously corresponds to the
number of basis elements in the linear combination, but the way in which we can connect them
can be related to the degree of entanglement of the state.

4.3.3 Quantum local gates as multilinear maps

In this section we define the action of separable quantum gates on multi-qubit states expressed
in the tensor notation. The Fig. 4.4 shows a sketch about the action of quantum gates on tensor
states of n = 1, 2, 3 qubits. Considering the case n = 1, single-qubit states are two-dimensional
vectors and, in the common vector notation, operations on them are 2 × 2 unitary matrices
G ∈ U(2). Since the state is the same using the computational basis or the tensor basis, then
also the action of gates is the same and we can define single-qubit quantum gates as linear maps

U(2) ∋ G : C2 −→ C2 (4.3.12)

that can be represented by 2×2 unitary matrices according to the isomorphism Hom(C2,C2) ∼=
M2×2. The action of a single-qubit gate G1 ∈ U(2) is therefore a 2× 2 matrix multiplication

G1 |φ⟩ =
(
a0 a1
a2 a3

)(
α
β

)
. (4.3.13)
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(a) Tensor representation of the states |0⟩ ⊗ |0⟩ ⊗ |0⟩, |0⟩ ⊗ |+⟩ ⊗ |0⟩, |0⟩ ⊗ |+⟩ ⊗ |+⟩ and |+⟩ ⊗ |+⟩ ⊗ |+⟩ from
left to right.

(b) Tensor representation of states |00⟩+|11⟩√
2

⊗ |0⟩, |0⟩ ⊗ |00⟩+|11⟩√
2

, |0⟩ ⊗ |00⟩+|01⟩+|11⟩√
3

and |00⟩+|11⟩√
2

⊗ |+⟩ from left
to right.

(c) Tensor representation of states |000⟩+|111⟩√
2

, |001⟩+|010⟩+|100⟩√
3

, |000⟩+|011⟩+|110⟩√
3

and |000⟩+|001⟩+|111⟩√
3

from left to
right.

Figure 4.3: Some examples of tensor representations of three-qubit states, showing separable states
(panel (a)), partially entangled states (panel (b)) and fully entangled states (panel (c)). The figure
shows the relationship between the dimensionality of the entanglement and the connecting lines between
non-trivial vertices.
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The Figure 4.4a pictorially represents this operation.
In the case of a two-qubit system, local operations on states are described in standard

notation by a 4 × 4 unitary matrices Gij ∈ U(4), which can be written as a single Kronecker
product of two single-qubit gates, namely GL = G1 ⊠ G2, as defined in Eq. (4.2.6), where
Gi ∈ U(2) act on the qubit i. This local gate acts as a linear map U(4) ∋ GL : C4 −→ C4. The
Property 4.1.1 tells us that a linear map is equivalent to a bilinear map after we have chosen the
correct embedding of the space by the tensor product and in this case the embedding corresponds
to the Kronecker product. This means that if we want to express GL as an operation on order-2
tensors, it can be defined as a bilinear map

GL : C2 ⊗ C2 −→ C2 ⊗ C2. (4.3.14)

However, there is an important property to consider: a local operation transforms a quantum
state while keeping the degree of entanglement constant. This means that GL cannot create
or destroy entanglement between the two qubits. The gate locality can be interpreted, in this
explicit tensor formalism, as the Property 4.1.2 corresponding to the action of a multilinear map
preserving the rank of the tensors. In the two-qubit case, a separable state is represented by
an order-2 tensor of rank 1, and after the GL transformation it remains a rank-1 tensor. This
is the reason why only local gates can be represented by multilinear maps. The general case of
non-local gates will be analysed in Section 4.3.5. One of the main advantages of the bilinear
definition is that it preserves the separability property of the operation. The common Kronecker
product definition uses a 4 × 4 unitary matrix with 16 elements. However, only 8 of these are
relevant and independently defined. In fact, the matrix must respect the separability property.
However, this property is not manifest and furthermore the inverse step (from the 4× 4 matrix
GL to the tensor product G1 ⊗G2 of two 2× 2 matrices) is not immediate at all. On the other
hand, if we use an explicit tensor notation, the gate is given by a set of two linear maps

GL = (G1, G2) =

((
a0 a1
a2 a3

)
,

(
b0 b1
b2 b3

))
, (4.3.15)

and therefore the separability structure is preserved. Using the definition of bilinear map this
local gate acts as defined by the natural map in Eq. (4.1.11), namely

GL |φ⟩ = (G1, G2) ·
(
α β
γ δ

)
= G1

(
α β
γ δ

)
GT

2 . (4.3.16)

Equivalently, we can consider the most general two-qubit state, which is by definition a rank-2
tensor |φ⟩ = v1 ⊗ v2 + w1 ⊗ w2 for vi, wi ∈ C2 and define the transformation GL |φ⟩ as

(G1, G2)(v1 ⊗ v2 + w1 ⊗ w2) = G1v1 ⊗G2v2 +G1w1 ⊗G2w2

= G1v1(G2v2)
T +G1w1(G2w2)

T

= G1(v1v
T
2 + w1w

T
2 )G

T
2

= G1(v1 ⊗ v2 + w1 ⊗ w2)G
T
2 .

(4.3.17)

A pictorial representation of this action is represented in Figure 4.4b.
This definition can be extended to a three-qubit local gate, which in the standard notation

is an 8× 8 unitary matrix coming from the Kronecker product definition

GL =

(
a0 a1
a2 a3

)
⊠

(
b0 b1
b2 b3

)
⊠

(
c0 c1
c2 c3

)
(4.3.18)

and containing 64 potentially non-trivial complex elements which is absolutely bigger than the
number of free parameters after considering the unitary and separability constraints. In terms of
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α

β

G1

(a) Action of a single-qubit gate
G1 ∈ U(2) on the trivial system
composed by n = 1 qubit.

α β

γ δ

G1

α β

γ δ

G2

(b) Action of the single-qubit gates G1, G2 ∈ U(2) on a system
composed by n = 2 qubits. G1 acts on the dimension of the first
qubit |q1⟩, and G2 acts vertically on the dimension of the second
qubit |q2⟩.

α

β

γ

δ

σ

ρ

ξ

η
G1

α

β

γ

δ

σ

ρ

ξ

η

G2

α

β

γ

δ

σ

ρ

ξ

η

G3

(c) Action of single-qubit gates G1, G2, G3 ∈ U(2) on a system composed by n = 3 qubits. Each Gi

acts on the qubit |qi⟩ along the orthogonal direction of the corresponding dimension.

Figure 4.4: The figures highlight the dimension and the direction along which single-qubit gates act on
states of n = 1, 2, 3 qubits expressed as tensors.
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G1 :

α

β

γ

δ

σ

ρ

ξ

η

7−→

a0α+ a1σ

a0β + a1ρ

a0γ + a1ξ

a0δ + a1η

a2α+ a3σ

a2β + a3ρ

a2γ + a3ξ

a2δ + a3η

Figure 4.5: Action of a single qubit gate on the first qubit of a system composed by n = 3 qubits. The
matrix representation of G1 is defined in Eq. (4.3.21).

an operation on tensors, the same gate can be viewed as a single triplet expressing a multilinear
map:

GL : C2 ⊗ C2 ⊗ C2 −→ C2 ⊗ C2 ⊗ C2 (4.3.19)

acting on an order-3 tensor and preserving its rank. Instead of a 8× 8 unitary matrix we have
now a triplet of 2× 2 unitary matrices

GL = (G1, G2, G3) =

((
a0 a1
a2 a3

)
,

(
b0 b1
b2 b3

)
,

(
c0 c1
c2 c3

))
, (4.3.20)

where each single-qubit gate Gi ∈ U(2) acts in the dimension corresponding to the qubit |qi⟩.
To understand which kind of transformation is induced by a bilinear map on a order-3 tensor,
consider a three-qubit gate acting non-trivially only on the first qubit, namely

GL = (G1, I, I) =
((

a0 a1
a2 a3

)
,

(
1 0
0 1

)
,

(
1 0
0 1

))
. (4.3.21)

The first qubit introduces the vertical dimension and is oriented downwards. This means that
the gate G1 is applied as a matrix multiplication in the orthogonal direction (from left to right),
on both the front and back faces, and the tensor transformation is sketched in Fig. 4.5. In the
same way, the second qubit introduces the horizontal dimension oriented from left to right and
a gate G2 applied on it, acts as a matrix multiplication in the orthogonal direction on both the
bottom and top faces. Finally, the third qubit introduces the depth dimension and a gate G3

acts as a matrix multiplication from the bottom to both the right and left faces. The Figure 4.4c
summarizes them.

In addition to minimising the number of non-trivial elements in the gate representation, this
explicitly tensorial formalism also minimises the number of matrix multiplications that must be
performed to calculate the transformation of a state. To show it, consider the very famous gate
H⊗H⊗H (where H is the Hadamard gate as defined in Eq. (2.1.6) of Chapter 2) that generate
the maximum superposition state, namely

H ⊗H ⊗H : |0⟩ ⊗ |0⟩ ⊗ |0⟩ 7−→ |+⟩ ⊗ |+⟩ ⊗ |+⟩ = 1√
8

7∑
i=0

|i⟩ . (4.3.22)



4.3. QUANTUM COMPUTING IN TENSOR NOTATION 69

1

0

0

0

0

0

0

0

1√
2
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4

0
1√
4

0

1√
4

0
1√
4

0

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

Figure 4.6: Action of the local gate H ⊗ H ⊗ H and it’s explicit partial transformations of (H, I, I),
(I, H, I) and (I, I, H) respectively from left to right.

In the common matrix notation it would be

H ⊠H ⊠H =
1√
2

(
1 1
1 −1

)
⊠

1√
2

(
1 1
1 −1

)
⊠

1√
2

(
1 1
1 −1

)

=
1√
8



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


.

(4.3.23)

Using the explicit tensor notation instead, we can represent each Hadamard gate as a 2 × 2
matrix multiplication on the correct dimension of the tensor. The transformation, making
explicit the action on different qubits, is represented in Fig. 4.6. In order to apply a generic
GL = G1 ⊗ G2 ⊗ G3 on a system with n = 3 qubits in vector notation, we have to perform a
multiplication between an 8 × 8 matrix and a vector, i.e. it requires 8 · 8 = 64 multiplications
and 7 · 8 = 56 sums. Calculating instead the action of the multilinear map GL = (G1, G2, G3)
requires 8 · 6 = 48 multiplications and 4 · 6 = 24 sums because for each qubit we need to act
on two faces calculating two 2 × 2 multiplications and the number of faces is 6. Considering a
generic number of qubit n, applying GL in standard notation requires 2n ·2n = 4n multiplications
and (2n−1)2n sums and using instead the tensor notation requires 8n multiplications and 4(2n)
sums.

4.3.4 Controlled gates as quasi-multilinear maps

We have seen in Sec. 4.2.4 that controlled gates are rank-2 operations because we identify two
orthogonal states of the control qubit that influence the action on the target qubit. For example,
the CNOT case can be written as

CNOT = |0⟩⟨0| ⊗ I+ |1⟩⟨1| ⊗X , (4.3.24)

and acts on the two-qubit space H = C2 ⊗ C2 flipping the state of the second qubit if the first
one is in |0⟩. If we want to define its action on an order-2 tensor, we can use a sum of bilinear
maps as follows:

CNOT = (M0, I) + (M1, X) =

((
1 0
0 0

)
,

(
1 0
0 1

))
+

((
0 0
0 1

)
,

(
0 1
1 0

))
, (4.3.25)
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α β

γ δ

C1

X

7−→

α β

δ γ

(4.3.28)

Figure 4.7: Action of the CNOT gate on the order-2 tensor representing a two-qubit state.

where we have defined Mi := |i⟩⟨i|. We stress that the sum of bilinear maps is not the bilinear
map of the sums and it is not even generally a bilinear map. If we now consider a general
two-qubit state, the action is

CNOT |φ⟩ =M0

(
α β
γ δ

)
IT +M1

(
α β
γ δ

)
XT

=

(
1 0
0 0

)(
α β
γ δ

)(
1 0
0 1

)T

+

(
0 0
0 1

)(
α β
γ δ

)(
0 1
1 0

)T

=

(
α β
0 0

)
+

(
0 0
δ γ

)
=

(
α β
δ γ

)
.

(4.3.26)

However, we can do better than this by noting that if the control condition is not satisfied, the
action is trivial. Therefore, we can compute the action by performing the matrix multiplication
only on the dimension corresponding to the target qubit and in the half of the tensor that satisfies
the control condition. This decreased by a factor of 2 the number of operations. Considering
an order-2 tensor representing a two-qubit state, to fix the condition |q1⟩ = |1⟩ means that we
restrict the transformation to the lower part of the square. So the CNOT gate can be written
as the sum of the bilinear maps, as in Eq. (4.3.25), or as a local operation X acting only on the
half tensor that satisfies the condition. Let’s represent it with two elements: the first one C1 is
the condition |q1⟩ = |1⟩ and the second one is the operation X acting on |q2⟩, namely

CNOT = (C1, X) =

(
C1,

(
0 1
1 0

))
. (4.3.27)

The action of the CNOT on the order-2 tensor is pictorially represented in Fig. 4.7. We can
generalise the controlled two-qubit operation for any control condition Ci for i ∈ {0, 1} and for
any operation G on the target qubit. The four types of controlled gate actions C1G, C0G, GC1,
GC0 are represented in Fig. 4.8.

In the case of three qubits the approach is the same and the control condition fixes the part
of the tensor on which we have to act. If we have a single control qubit, the control condition
fixes a face. For example, the gate CNOT⊗ I, represented by the quantum circuit

•
, (4.3.30)

acts with the X gate on the second qubit only if the first one is in |1⟩, i.e. we do the matrix
multiplication only on the bottom face as shown in Fig. 4.9. The same operation, in standard
matrix notation, would be represented by an 8 × 8 unitary matrix multiplication where the
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α β

γ δ

C1

G

α β

γ δ

C0

G

α β

γ δ
C1

G

α β

γ δ
C0

G

(4.3.29)

Figure 4.8: Action of control gates C1G, C0G, GC1, GC0, from left to right, on an order-2 tensor
representing a two-qubit state.
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7−→
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δ
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η

σ

ρ

(4.3.31)

Figure 4.9: Action of CNOT⊗ I on a system composed by n = 3 qubits.

matrix can be obtained by performing the Kronecker products

CNOT⊗ I = |0⟩⟨0|⊠ I⊠ I+ |1⟩⟨1|⊠X ⊠ I. (4.3.32)

The multilinear representation is instead

G = (M0, I, I) + (M1, X, I)

=

((
1 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 1

))
+

((
0 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
0 1

))
(4.3.33)

and to identify the operation on the cube as in Fig. 4.9 we have defined it as

G = (C1, X, I) =
(
C1,

(
0 1
1 0

)
,

(
1 0
0 1

))
, (4.3.34)

where C1 identifies the control condition |q1⟩ = |1⟩.
Another case of controlled operations are the so-called fully controlled gates, also introduced

in Section 2.3.2 of Chapter 2. They are defined as operations Λn−1(G) acting on a single qubit
with G ∈ U(2) depending on the state of all other n − 1 qubits. To fix the condition for n − 1
qubits means that we restric the action of the controlled gate on a single edge of the order-n
tensor. A very famous example of a fully controlled three-qubit gate is the Toffoli gate Λ2(X)
corresponding to the quantum circuit

•

•

(4.3.35)
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C1 7−→
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δ
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ρ

η

ξ

(4.3.39)

Figure 4.10: Action of the Toffoli gate on a system composed by n = 3 qubits. The X gate is applied
on the third qubit but only on the edge fixed by the intersection of the two conditions that are |q1⟩ = |1⟩
(bottom face) and |q2⟩ = |1⟩ (right face).

and which acts on the third qubit if the first two satisfy |q1⟩ ⊗ |q2⟩ = |1⟩ ⊗ |1⟩. In standard
notation the operation would be represented as a rank-4 gate because we have four possible
states for the first two qubits |q1⟩ and |q2⟩, namely

Λ2(X) = |0⟩⟨0|⊠ |0⟩⟨0|⊠ I+ |0⟩⟨0|⊠ |1⟩⟨1|⊠ I+ |1⟩⟨1|⊠ |0⟩⟨0|⊠ I+ |1⟩⟨1|⊠ |1⟩⟨1| ⊗X, (4.3.36)

that can be expressed as the following sum of multilinear maps

Λ2(X) = (M0,M0, I) + (M0,M1, I) + (M1,M0, I) + (M1,M1, X). (4.3.37)

Writing it as a quasi-multilinear map, Λ2(X) becomes a single operation with two conditions:

Λ2(X) = (C1, C1, X) , (4.3.38)

which acts on the order-3 tensor as in Fig. 4.10. The interesting thing is that the more the
control conditions and the fever multiplication we have to do.

4.3.5 Quantum non-local gates

As we have seen in Sec. 4.2.2, a quantum gate acting on two qubits is represented, on the
computational basis, by a 4 × 4 unitary matrix Gij ∈ U(4) thanks to the Kronecker product
convention. This is equivalent to defining the operation as a linear map Gij : C4 −→ C4 which
transforms four-dimensional vectors. Using explicit tensor notation instead, we want to define a
two-qubit gate as an operation on the order-2 tensor representing a two-qubit state. Equivalent
to what is defined in Eq. (4.2.5), we can always write a two-qubit gate as a sum of simple tensors

G12 =
r∑

i=1

Gi
1 ⊗Gi

2 ∈ U(2)⊗ U(2) (4.3.40)

where r ≤ 4 is the rank. This can be thought of as a linear map resulting from the embed-
ding of the space by the Kronecker product, and coincides with a bilinear map if we use the
Property 4.1.1. Therefore, we can define the two-qubit gate as the sum of linear maps

G12 =
r∑

i=1

(Gi
1, G

i
2), (4.3.41)
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which cannot be written in general as a single bilinear map, and acts on a two-qubit state as
follows

G12 |φ⟩ =
r∑

i=1

Gi
1

(
α β
γ δ

)
(Gi

2)
T . (4.3.42)

In the case of a three-qubit gate, it becomes a sum of triplets, and the generalisation to n-qubit
gates is straightforward and gets

Gn =
r∑

i=1

(Gi
1, . . . , G

i
n). (4.3.43)

If we define a general rank-s tensor representing an n-qubit system according the Schmidt
theorem (see Eq. (4.3.4)), the gate Gn acts as

Gn |φ⟩ =
s∑

k=1

r∑
i=1

βk
(
Gi

1 |ϕk⟩1 ⊗ . . . G
i
n |ϕk⟩n

)
. (4.3.44)

We can compare the number of calculations needed to obtain the action of a general n-qubit
gate Gn. Using the standard notation it corresponds to a matrix multiplication which requires
2n · 2n = 4n multiplications and (2n − 1)2n sums. Using instead the explicit tensor notation we
have to apply at most 2n linear maps, eventually summing the results, with a total of 4(2n)
multiplications and 4(2n) + 2n sums where 2n is the number of faces and 2n is the number of
multilinear maps.

4.3.6 Measurement interpretation

The interpretation of the measurement of the qubit state is also more intuitive in this explicit
tensorial notation. Let’s consider a three-qubit state, represented by the cube in Figure 4.2c. The
probability of measuring the state |000⟩ is |α|2, and in general the absolute value squared of the
complex value on each vertex, is the probability of measuring the corresponding state. Moreover,
if we measure two qubits out of the three, the state of the unmeasured one is highlighted in the
edge corresponding to the intersection of the two faces selected by the measurement of the other
two qubits This means that when we measure a single qubit we collapse the tensor of order n to
a tensor of order n− 1. Once we have measured all the qubits in the system, we are left with a
single basis element |i⟩ and the probability of measure it at the beginning of the measurement
procedure was |k|2, where k was the original value at the corresponding vertex.

4.4 The quantum teleportation algorithm in tensor formalism

This algorithmic protocol facilitates the transfer of quantum states between distant particles, not
through the transfer of physical matter, but by exploiting entanglement and classical commu-
nication. The quantum teleportation algorithm, first formulated by Bennett et al. in Ref. [39],
exemplifies the profound departure from classical notions of information transfer, involving the
delicate interplay of entanglement, superposition and measurement, which give quantum parti-
cles the capacity to exist in multiple states simultaneously and to establish non-local correlations.
Quantum teleportation allows to transmit an unknown quantum state |ϕ⟩ from a sender, con-
ventionally referred to as Alice, to a receiver, designated as Bob who share an intermediary
entangled pair of particles at the beginning and can use only local operations and classical
communication.



74 CHAPTER 4. AN EXPLICIT TENSOR NOTATION FOR QUANTUM COMPUTING

|q1⟩ = |ϕ⟩ • H •

|q2⟩ = |0⟩ H • •

|q3⟩ = |0⟩ Z X |ϕ⟩

(4.4.1)

Figure 4.11: Quantum circuit implementing the teleportation algorithm. The first block represents the
Bell’s state preparation, the second block is the local operation performed by Alice and finally the last
block corresponds to the classical communication from Alice to Bob and the local operation performed
by Bob.

The algorithm starts with the preparation of the entangled two-qubit state (first block in
the quantum circuit of Fig. 4.11:

∣∣Φ+
〉
=
|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B√

2
, (4.4.2)

also called the Bell state. The two qubits can then be moved very far apart while maintaining the
entanglement between them. Alice’s goal is to send another quantum state |ϕ⟩ = α |0⟩ + β |1⟩
to Bob, and she can perform operations and measurements on only her two qubits. Alice
acts on her qubits using the quantum operations described by the second block in Fig. 4.11,
eventually performing a joint measurement on both the sender’s particle and the intermediary
particle. This measurement collapses the sender’s particle and the intermediary particle and
instantly projects the receiver’s entangled particle (Bob qubit) into a particular state. Alice
then classically transmits the measurement results, after which Bob performs a certain local
operation that allows him to transform his qubit into |ϕ⟩ (last block in Fig. 4.11). Note that
the quantum state is now in Bob’s qubit memory and Alice doesn’t have it anymore. This is
consistent with the no cloning theorem [40].

4.4.1 Quantum state evolution

We now see the power of the explicit tensor notation in the study of the state evolution along
the quantum teleportation algorithm described in Fig. 4.11. We label Alice’s qubits with |q1⟩
(the sender’s) and |q2⟩ (the intermediary’s) and Bob’s qubit with |q3⟩ (the receiver’s). The state
evolution along the quantum circuit is described below in both Dirac and tensor notation, and
we omit the vector formalism, which would consist of 8-dimensional vectors transformed by
matrix multiplication and would require more computational effort. The order-3 tensor of the
initial state is

∣∣φ(0)
〉

=

α

0

0

0

β

0

0

0
, (4.4.3)

which has non-zero entries in the first qubit dimension and in the edge coming from the in-
tersection between the face |q2⟩ = |0⟩ and the face |q3⟩ = |0⟩. In Dirac notation it’s

∣∣φ(0)
〉
=

|ϕ⟩ ⊗ |0⟩ ⊗ |0⟩ and has rank(
∣∣φ(0)

〉
) = 1. The first operation is a local gate which acts with the

Hadamard on the second qubit, and in terms of the multilinear map is G(1) = (I, H, I). In terms
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of an action on the tensor, it transforms the upper and lower faces, giving

∣∣φ(1)
〉

=

α√
2

0
α√
2

0

β√
2

0
β√
2

0
. (4.4.4)

The operation G(1) is local, so the tensor preserves the rank, namely rank(
∣∣φ(1)

〉
) = 1. In

Dirac notation the state is
∣∣φ(1)

〉
= |ϕ⟩ ⊗ |+⟩ ⊗ |0⟩. The first CNOT gate corresponds to the

quasi-multilinear map G(2) = (I, C1, X), so we act with the X gate on the right face, which
corresponds to the third qubit dimension and the condition |q2⟩ = |1⟩. We obtain:

∣∣φ(2)
〉

=

α√
2

0

0

α√
2

β√
2

0

0

β√
2

. (4.4.5)

The CNOT is a non-local gate that can change the rank and in this case we have transformed
the rank-1 tensor into a rank-2 tensor. In Dirac notation the state is∣∣∣φ(2)

〉
= |ϕ⟩ ⊗ |0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩√

2
= |ϕ⟩ ⊗

∣∣Φ+
〉
. (4.4.6)

The preparation block is concluded and now Alice transforms her qubits by first applying a
CNOT which acts with X on the down face corresponding to the second qubit dimension and
the condition |q1⟩ = |1⟩. The quasi-multilinear map is G(3) = (C1, X, I) and we get

∣∣φ(3)
〉

=

α√
2

0

0

α√
2

0

β√
2

β√
2

0
. (4.4.7)

that corresponds to a rank-4 tensor. In Dirac notation the state is∣∣∣φ(3)
〉
=

α√
2
|0⟩ ⊗ (|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩) + β√

2
|1⟩ ⊗ (|1⟩ ⊗ |0⟩+ |0⟩ ⊗ |1⟩)

=
1√
2
(α |000⟩+ α |011⟩+ β |110⟩+ β |101⟩) .

(4.4.8)

We then apply the local gate H on the first qubit, which consists of the linear map G(4) =
(H, I, I), and get

∣∣φ(4)
〉

=

α
2

β
2

β
2

α
2

α
2

−β
2

−β
2

α
2

. (4.4.9)
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α

β

0

0

0

0

0

0

0

0

β

α

0

0

0

0

0

0

0

0

α

−β
0

0

0

0

0

0

0

0

−β
α

Figure 4.12: Tensor representation of the four possible post-measure states obtained by Alice at the
end of the second block of the algorithm.

that corresponds to∣∣∣φ(4)
〉
=

1√
2
(α |0⟩ ⊗ |+⟩ ⊗ |0⟩+ α |0⟩ ⊗ |−⟩ ⊗ |1⟩+ β |1⟩ ⊗ |−⟩ ⊗ |0⟩+ β |1⟩ ⊗ |+⟩ ⊗ |1⟩)

=
1

2
(α(|000⟩+ |010⟩) + α(|001⟩ − |011⟩) + β(|100⟩ − |110⟩) + β(|101⟩+ |111⟩)) ,

(4.4.10)

and is still a rank-4 tensor since G(4) is a local operation and a multilinear map.

4.4.2 Measurement and classical communication

Measuring two out of three qubits collapses the state to an edge corresponding to the intersection
of the two results obtained. Let’s focus on the final qubit state in Eq. (4.4.9). If we measure the
first qubit in |q1⟩ = |0⟩ we collapse the system in the upper face and with |q2⟩ = |0⟩ we collapse
the system in the left face. The two conditions together identify the upper edge on the left.
This edge identifies the state for the third qubit, which in this case is |q3⟩ = |ϕ⟩ = α |0⟩+ β |1⟩.
If we measure |q1⟩ = |0⟩ and |q2⟩ = |1⟩ we identify the upper edge on the right, which means
|q3⟩ = β |0⟩+ α |1⟩, so Bob has to apply X to recover |ϕ⟩. With |q1⟩ = |1⟩ we identify the lower
face and with |q2⟩ = |0⟩ the left one, so the state is |q3⟩ = α |0⟩ − β |1⟩ and Bob apply Z to
recover |ϕ⟩ and finally measureing |q1⟩ = |q2⟩ = |1⟩ the result is at the bottom right edge and
the final state is |q3⟩ = −β |0⟩+α |1⟩ and using XZ Bob gets |ϕ⟩. The post-measurement states
in the four cases are shown in Fig. 4.12.

This simple quantum algorithm demonstrates one of the potential features of an explicit
tensor notation, which guarantees a more immediate visualisation of the state of the qubits and
a smaller amount of computation required to calculate the transformations.

4.5 Circuit complexity and quantum gate rank

This section presents a tentative connection between the rank of the matrices representing a
two-qubit gate (computed in the correct tensor space as discussed in Sec. 4.2.3) and the number
of CNOTs needed to decompose it as a quantum circuit.

4.5.1 Rank and number of CNOTs

Some examples of common two-qubit circuit structures are reported here organised by rank,
where white boxes represent a general single-qubit operation ∈ U(2). Note that in this section
we denote a two-qubit gate as a tensor living in the space

G12 ∈ (C2 ⊠ C2)⊗ (C2 ⊠ C2) ∼= C4 ⊗ C4, (4.5.1)
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which means that it’s represented by a 4×4 matrix with rank = 1 if it is a local operation. This
notation is not the explicit tensorial notation proposed in the previous sections, where we use
tensors to represent qubit states and multilinear or quasi-multilinear maps to represent quantum
gates.

(i) Rank-1 circuits. A rank-1 tensor is by definition a separable operation, and the most
general one is G12 = A⊗B where A,B ∈ U(2) in the standard notation and A,B ∈ C4 in
this section. The circuit of G12 is

. (4.5.2)

(ii) Rank-2 circuits. Let’s start with the simplest rank-2 quantum gates, namely the common
CNOTs gate and it’s generalization to C1G:

CNOT =M0 ⊗ I+M1 ⊗X , C1G =M0 ⊗ I+M1 ⊗G . (4.5.3)

Obviously we can add local operations before and after them without changing the rank
(two quantum gates are called locally equivalent [41] if they differ only by local operations).
The corresponding quantum circuits are

•
,

•
,

•
,

•
.

(4.5.4)
Using the approach presented in Sec. 2.3.2 of Chapter 2, and in particular the result in
Eq. (2.3.20), we see that to decompose a controlled gate Λ1(G) two CNOTs are sufficient.
We conclude that even a circuit with two CNOTs can be a rank-2 operation. For example,
consider the following circuits

• •
,

• •
, (4.5.5)

where the left one is derived from the decomposition in Eq. (2.3.20) and the right one can
be obtained by inverting the two CNOTs by adding 4 Hadamards each as in Eq. (2.2.9).
A similar but less trivial rank-2 circuit is

• • •
, (4.5.6)

or also

• • •
, (4.5.7)

which are not in their more compact form. In fact, we can see that a chain of equally
oriented CNOTs and arbitrary gates, always applied to the same qubit, constitutes a rank-
2 operation that can be reduced to an optimal quantum circuit with at most 2 CNOTs.
Obviously, it makes no difference whether the gates are applied to the control or the
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target qubit, since it is sufficient to rotate them by inserting Hadamard gates. Consider
the following example:

• •

A
=

•

A XAX
=

•

A XAXA†
, (4.5.8)

which corresponds to G12 =M0⊗A+M1⊗XAX, and is by definition a rank-2 operation.
A similar result can be obtained using a chain of 3 or more CNOTs. In fact, we can always
reduce the network to a single controlled operation (plus local gates):

• • •

A B
=

•

BA XBXAX
=

•

BA XBXAXA†B†
.

(4.5.9)
We conclude that every rank-2 gate is actually a controlled gate, because it can always be
written as G12 =M0 ⊗A+M1 ⊗B up to global multiplication by local gates.

(iii) Rank-4 circuits. Some examples are

• •
,

•

•
,

•

•
,

• •

•
,

(4.5.10)
which correspond to rank-4 operations if we put general single qubit gates in the boxes. If
we use some special qubit rotations, the operations can be reduced to rank-2 operations.
For example:

• Rz(α)

• •
=

• • •

Rz(α)
, (4.5.11)

where we used the property in Eq. (2.2.12) and get a chain of equally oriented CNOTs. If
instead we apply a Rx(α) rotation that commute with the targets (property in Eq. (2.2.6)),
the last two CNOTs can be merged and cancelled out, and the network is reduced to a
single CNOT.

Remark 4.5.1 (Rank and number of CNOTs) The following holds:

(i) Each rank-2 gate Gij ∈ U(4) can be written equivalently as a controlled gate multiplied by
local operations, i.e. single-qubit gates. These gates can be implemented by circuits with a
maximum of 2 CNOTs. To represent a rank-2 operation two CNOTs are always sufficient
but not necessary.

(ii) Each chain of equally oriented CNOTs and local operations always applied to one qubit
only, can be written as a controlled gate and therefore can be implemented with 2 CNOTs.

(iii) To represent a rank-4 operation, two CNOTs are always necessary but not sufficient.



4.5. CIRCUIT COMPLEXITY AND QUANTUM GATE RANK 79

4.5.2 Further analysis

There is much more to be explored in this area. Several entanglement measures for quantum
gates have been proposed in the literature. These aim to quantify the average degree of entan-
glement they can generate when applied to separable states. The most well-known are Schmidt
strength, linear entropy and concurrence. In the work in Ref. [41] the authors show that these
three measures are equivalent for gates with Schmidt number equal to two (rank-2 operations),
but not for operators with Schmidt number equal to four. It might be interesting to study these
three measures in terms of the complexity of the circuit implementing the gate, rather than
in terms of the entanglement generated. Indeed, the SWAP gate is classified as a maximally
entangled operation by these measures. However, it does not produce any entanglement at all.
If instead we interpret the entanglement measure as the number of CNOTs (or non-local oper-
ations in general) required to implement it, the result is consistent with what we observe, since
the SWAP requires the maximum number of CNOTs to be implemented.

Another thing that would be interesting is to study these measures of entanglement (or
complexity, in a sense) using different isomorphisms of Hilbert space. For example, in the case
of two qubits we can use C2 ⊗ C2 ⊗ C2 ⊗ C2, (C2 ⊗ C2) ⊠ (C2 ⊗ C2) (which is the one used in
vector formalism), or even (C2 ⊠ C2) ⊗ (C2 ⊠ C2) (as suggested in Sec. 4.2.3). These different
isomorphisms may highlight different properties of entanglement and have their roots in the
tensor representation of quantum computation and in the different flattering modes of a tensor.
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Chapter 5

Collective flavour oscillation

Collective flavour oscillations of neutrinos due to forward neutrino-neutrino scattering provide
an intriguing many-body system for time evolution simulations on a quantum computer. These
phenomena are of particular interest in extreme astrophysical settings such as core-collapse su-
pernovae, neutron star mergers and the early universe, as demonstrated by previous researches
(see Refs. [42–48]). Understanding the dynamics of flavor oscillations is paramount in such stud-
ies, since the behaviour of matter under extreme conditions shows strong flavor dependence [49,
50], and, furthermore, different energy spectra characterise different neutrino flavors [51]. A
comprehensive description of the dynamic evolution of flavor in these processes is hampered
by the substantial computational resources required for simulations involving large numbers
of interacting neutrinos. To address this challenge, a common strategy is to use a mean-field
approximation to the equation of motion, which allows the study of extensive systems with
complicated geometries as done in Refs. [52–55]. However, a thorough treatment of correlation
effects in the full many-body evolution can be achieved in relatively compact systems with about
10 neutrinos [56–58]. This is particularly feasible in scenarios with significant symmetries [59–
62] or limited levels of bipartite entanglement, which can be effectively addressed using tensor
network methods proposed in Refs. [63–65]. Another class of approaches, known as semiclassi-
cal methods, preserves certain correlations while maintaining computational efficiency. These
methods have recently been applied to the neutrino problem in Ref. [66]. Quantum simulations
offer an alternative way to study out-of-equilibrium flavor dynamics in regimes beyond the reach
of classical approaches. Initial calculations have been performed on small systems containing up
to four neutrinos, using both digital quantum computers [67, 68] and quantum annealers [69].
These studies highlight the need for careful algorithm design and implementation of error mitiga-
tion techniques when tackling this formidable challenge on current generation quantum devices.
The aim of this chapter is to give an overview of the physics behind the collective neutrino
oscillation phenomena.

This chapter begins with a detailed description of the physical phenomena and environments
in which collective flavour oscillations occur (Sec. 5.1). Emphasis is placed on the supernova
neutrino case, where the high density makes the neutrino-neturino interaction important in the
dynamical description. The supernova explosion mechanism is also summarised. Finally, the
derivation of the Hamiltonian governing the evolution of flavor oscillations is detailed (Sec. 5.2).

5.1 Neutrinos in a high-density environment

Neutrinos are particles in the Standard Model (SM) that belong to the lepton family, along
with the other two families of quarks and bosons. There are six types of lepton, divided into
three generations according to flavour, each of which contains a charged lepton and its neutral
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Figure 5.1: Some of the neutrino physics experiments conducted around the world.

counterpart, the neutrino, which is a fermionic stable particle with extremely low mass. The
former interact through the electroweak force, the latter only through the weak nuclear force.
We recall that, contrary to what the SM allows, neutrinos have a non-zero mass. This property
was first observed experimentally thanks to β decays (p −→ n+ e+ + νe and n −→ p+ e− + νe)
and is the cause of an important phenomenon called flavour oscillation. Nowadays, the physics
community invests substantial efforts and resources in studying the physics of neutrinos. Fig.
5.1 shows a few of the past and currently active experiments worldwide.

5.1.1 Neutrino mixing

The main observation leading to the hypothesis that neutrinos have a non-zero mass was that of
neutrino flavour oscillation. Neutrinos of the three generations νe, νµ, ντ do not have a definite
mass, but they are rather linear combinations of three mass eigenstates ν1, ν2, ν3 with a defined
mass m1, m2, m3 (of the order of ∼ 0.05 eV/c2). This means that a neutrino of one flavour,
after travelling a certain distance, develops the presence of other flavours that were not present
at the beginning. This is due to the fact that wave functions, associated with a different mass
eigenstates, will oscillate at different frequencies. We will therefore observe a relative phase
between the components.

It is well known that the flavor of neutrinos changes under three contributions, each corre-
sponding to different oscillation length and frequency scales, giving rise to different oscillation
modes. The vacuum term describes the flavour oscillation caused by the mismatch between
the mass and flavour eigenstates. This term gives rise to the so-called slow mode oscillations
with an oscillation length of

lvac ∼
2E

δm2
, (5.1.1)

which is of the order of lvac ∼ (100−1000) m using E ∼ 10 MeV, δm2 ∼ (10−3−10−4) eV2 and
introducing ℏc to the numerator.
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(a) (b) (c) (d)

Figure 5.2: Scattering processes generating the MSW effect. Panels (a) and (c) for neutrinos and
corresponding amplitude

√
2GF (ne − ne) and panels (b) and (d) for antineutrinos and corresponding

amplitude −
√
2GF (ne − ne). Time runs from left to right. Panels (a) and (b) contain two diagrams

each depending on the exchanged charged boson, which is fixed depending on the direction of the boson
current.

The matter term describes the interaction with the surrounding matter through a boson
exchange between the neutrino and the corresponding charged lepton. This happens mainly
with the electrons, so we refer to this phenomenon as νe − e−, νe − e+, νe − e+ and νe − e−
scattering represented by the Feynman diagrams in Fig. 5.2. This interaction obviously depends
on the density of the leptons and, according to the SM, on the Fermi coupling constant GF . In
particular, this contribution depends on the difference between the electron density ne and the
positron density ne (for neutrinos and with opposite sign for antineutrinos) and gives rise to the
so-called MSW (Mikheyev-Smirnov-Wolfenstein) effect [70]. It is associated with the slow mode
with an oscillation length of the order of

lmat ∼
1

GF (ne − ne)
, (5.1.2)

where the Fermi constant is measured in GeV ·m3, the number density is in m−3 and recovering
ℏc to the numerator we obtain a length.

Finally, the neutrino-neutrino term describes the ν − ν scattering and depends on the
Fermi constant and the difference between the neutrino density nν and the antineutrino density
nν . This type of oscillation is also called the fast mode and has an oscillation length of the order
of

lνν ∼
1

GF (nν − nν)
. (5.1.3)

This term is responsible for the so-called collective flavour oscillations, a very interesting phe-
nomenon that dominates at high density and is predicted to occur in extreme astrophysical
environments such as core-collapse supernovae, neutron star mergers and the early universe.

5.1.2 Supernovae neutrinos

When very massive stars (M ⪆ 8M⊙) run out of fuel, a transformation begins that will eventually
lead to a supernova explosion and the creation of a neutron star. During this mechanism, which
takes a few seconds, a large amount of energy ∼ 1053 ergs1 is released in the form of an enormous
number of neutrinos ∼ 1058 (called supernova neutrinos SN), which escape with an energy of the
order of Eν ∼ (10− 30) MeV. This process, together with others such as the merging of massive
stars, is one of the most interesting and not fully understood phenomena in the Universe. The
explosion mechanism of supernovae is shown in Fig. 5.3 and can be summarised by the following
steps.For a more in-depth study, we refer the reader to more specific texts, such as Ref. [71]

11 erg = 10−7J.
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νe

νe
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να

Figure 5.3: Scheme of the core collapse of a massive star. From left to right: first the collapse begins,
increasing the density of the interior and forming the proto-neutron core. The falling matter reaches the
wall, causing the so-called shock. When the inner neutrinos reach the neutrino sphere, they are emitted.
The next step of neutrino emission cools the inner region and heats the outer region through the short
mean free paths. This can revive the expansion and eventually cause the explosion, releasing a huge
number of neutrinos.

1. Pre-collapse. The steady state period of a star’s life is on the order of ∼ 107 years, during
which different fusion states occur in sequence (hydrogen, helium, carbon, oxygen, silicon
and finally iron)2. During the nucleosynthesis process, pre-SN neutrinos are produced and
emitted, cooling the star. In addition, when iron 56Fe is produced by fusion inside a star,
no heavier element can be produced with a corresponding release of energy. This element
accumulates in the interior of the star, forming an inert core. The core is now supported
only by the electron degeneracy pressure, as no further energy is available from fusion
processes. When the mass of the iron core exceeds ∼ 1.44M⊙, the degeneracy pressure is
no longer sufficient to support the core. These two factors together (lack of energy and
neutrino cooling) trigger the collapse.

2. Collapse. Due to the rapid increase in density and temperature, two main processes occur
during this phase. The first is iron photodisintegration

γ + 56Fe −→ 13 4He+ 4n, (5.1.7)

which is an endothermic reaction that costs ∼ 1.7 MeV/nucleon and reduces the energy
in the nucleus, increasing the contraction. The neutrons remain stable due to the large e−

energy. Secondly, the atoms are neutronised by the electron capture reaction

e− +A(Z,N) −→ A(Z − 1, N + 1) + νe, (5.1.8)

2An example of a nucleosynthesis reaction is the proton-proton chain, in which hydrogen nuclei are converted
into helium nuclei in a series of reactions. In the first step, two hydrogen nuclei form a deuterium nucleus by β
decay

1H + 1H −→ 2H + e+ + νe , n −→ p+ e+ + νe. (5.1.4)

Then the reaction
1H + 2H −→ 3He+ γ + 5.49 MeV (5.1.5)

creates an isotope of helium. At this point three different cases can follow, depending on the temperature. One
of the possibilities is the completion of the chain thanks to the reaction

3He+ 3He −→ 4He+ 1H + 1H + 12.93 MeV . (5.1.6)
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where nucleons are released from nuclei and protons capture electrons by emitting neutrino
beams. This causes electrons to disappear from the system, reducing the degeneracy
pressure and further accelerating the implosion. The star is now in an extremely unstable
equilibrium, influenced by the beta equilibrium

e− + p←→ n+ νe. (5.1.9)

At this stage, neutrinos dominate the energy emission of the star and play a crucial role
in the explosion mechanism. The collapse dynamics are determined by the entropy and
the lepton number, which are modified by the weak-dominated processes described above.
When the equilibrium is broken, the star begins to collapse under its own weight due to
gravity. Something important happened to the neutrinos in this process. Initially, the
neutrinos produced by the electron capture reactions were free to flow out of the star, but
once the matter density has reached ∼ 1012 g/cm3, their diffusion times become longer
than the collapse time due to scattering with nuclei. Neutrinos in the high-density region
are then trapped in a region called the neutrino-sphere.

3. Shock. At some point during the collapse phase, the density of the innermost core be-
comes so high (∼ 1014 g/cm3) that the matter becomes almost incompressible, forming
an impenetrable wall. As a result, the gravitational collapse suddenly stops and the core
undergoes a bounce, creating a shock wave that propagates outwards as the outer layers
continue to collapse. When the shock front reaches the neutrino sphere, it causes the
neutrino burst emission in which neutrinos convert the high degeneracy energy to thermal
energy.

4. Explosion. When the shock reaches the outer region can stop the collapse and cause
the explosion, but can also happen that the explosion arrests due to energy loss. In this
scenario the nascent neutron star contains degenerate electrons and trapped neutrinos
which perform short mean free paths until they reach, in a fraction of second, the neutrino
sphere with a thermal neutrinos emission. This has the important effect of cooling the
inner parts and heating the outer parts (throughout νe+n→ e−+p and νe+p→ e++n)
increasing the pressure and causing the explosion. The explosion releases ∼ 1051 ergs of
energy, which is actually only 1% of the neutrino energy and 99% of the gravitational
energy trapped by the collapse. Subsequently, the ∼ 1058 emitted neutrinos carry away
1053 ergs of energy in a time τ ∼ (2 − 10) s after traversing the core by a random walk
process with short mean free paths. After the collapse, the remaining core has a size of
∼ 10 km and a mass comparable to that of the Sun.

5.1.3 Why we care about supernovae neutrinos

Observing and describing the evolution of neutrinos from supernovae and binary mergers is an
area of great interest to modern physics, as it provides information about various phenomena
that occur in them. The description of the flavour evolution is equally important, since these
environments are dominated by weak interactions and are therefore very sensitive to the neutrino
flavours. Some reasons why we care about the description of supernova neutrinos are listed below.

(i) Neutrinos interact very weakly with the medium through which they travel and are
therefore valuable astronomical messenger of information, together with gravitational
waves, from very distant points in time and space in the Universe, where nature is de-
scribed by physics under extreme conditions (high densities ρ ∼ 1015 g/cm3 and energies
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T ∼ 1010 K3).

(ii) Neutrinos are emitted at different stages of the supernova explosion and provide different
information about the life stage of the star. In fact, we can identify pre-collapse supernovae
neutrinos emitted from nucleosynthesis, neutronisation neutrinos from the homonymous
process and post-explosion neutrinos. Observing the neutrinos emitted during the super-
nova explosion is a useful way of obtaining information about the life stage of the star and
the processes taking place within it. Note, for example, that the luminosity of the post-
collapse neutrinos emitted exceeds that of photons, making neutrinos excellent candidates
for observable particles from the supernova explosion.

(iii) Neutrinos are the main carriers of the lepton number in the reactions that take place inside
the nucleus. The main process is represented by nucleosynthesis reactions and electron
capture. A crucial aspect is that these processes are governed by the weak interaction,
so they involve neutrinos and are strongly flavour dependent [49, 50]. For example, con-
sider that only electron neutrinos can change the neutron/proton ratio, depending on the
equilibrium of the following processes:

νe + n←→ p+ e− , n←→ p+ e− + νe , νe + p←→ n+ e+. (5.1.10)

This is one reason why we are interested in the evolution of flavour oscillation.

(iv) Neutrinos play a crucial role in the core collapse explosion mechanism for several reasons.
They are responsible for the loss of entropy that occurs during the collapse, which can
increase the instability and eventually cause the explosion [72], and they also heat and
cool different regions of the inner part of the core, increasing the instability [71].

(v) During core collapse, different neutrinos are emitted with different spectra [51]. In partic-
ular, electron neutrinos are emitted with generally lower energies than muonic and tauonic
neutrinos Eνe < Eνx . This is because electronic neutrinos can decouple from matter later,
giving them more time to cool. On the other hand, muonic and tauonic neutrinos, which
come from an inner neutrino sphere4 at a higher temperature, can also decouple from
matter earlier. However, some results suggest that at a certain distance from the emis-
sion point, the phenomenon known as spectrum splitting occurs, producing more energetic
electronic neutrinos [54, 72].

5.2 Hamiltonian formalism in two-flavor approximation

To write the flavor Hamiltonian of a many-neutrino system emitted from a collapsing core and
composed of N neutrinos, we first make the approximation of considering only two possible
flavors, which allows us to exploit the algebra of SU(2) and describe the flavor state as a flavor
isospin. The two-flavour approximation is supported by evidence showing that this description
can be quite suitable in some astrophysical situations where we can neglect the mixing angle
between ν1 and ν3 (namely θ13 = 0), as shown in [73]. In any case, it would certainly be
interesting to add the third flavour, but at the cost of complicating the Hamiltonian and thus

3Temperatures are measured in energy units kBT where the Bolzmann constant is kb ≈ 8.617 × 10−5 eV/K.
For example 1010 K ≈ 861700 eV ∼ 1 MeV.

4Note that while electronic neutrinos are also produced in beta decay, muonic and tauonic neutrinos are mainly
produced from electron-positron pairs:

e− + e+ −→ να + να. (5.1.11)
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the implementation of the quantum simulation, which in the case of qubits is intrinsically based
on the su(2) algebra. A recent paper analysing the role of the third flavor in the entanglement
between neutrinos is, for example, the one in Ref. [74]. An important point is that studying the
system in the two flavour approximation contains some physical properties that are also present
in the three flavour case, and the SU(2) model has the great advantage of making the physical
description and quantum implementation feasible on a near-term quantum computer at a not
too high price.

In the two-flavour context, each flavour state is a linear combination of two mass eigenstates,
and we can write the relation between the annihilation (creation) operators on the flavour basis
{|νe⟩ , |νx⟩} and on the mass one {|ν1⟩ , |ν2⟩} using a unitary transformation(

a
(†)
e

a
(†)
x

)
=

(
cos(θν) sin(θν)
− sin(θν) cos(θν)

)(
a
(†)
1

a
(†)
2

)
, (5.2.1)

where θν is the mixing angle. The inverse relationship is(
a
(†)
1

a
(†)
2

)
=

(
cos(θν) − sin(θν)
sin(θν) cos(θν)

)(
a
(†)
e

a
(†)
x

)
. (5.2.2)

This unitary transformation is the two flavour version of the so-called PMNS matrix [75]. At
this point we calculate the three main terms of the flavour Hamiltonian introduced in Sec. 5.1.1,
as done in Refs. [72, 76], obtaining

H = Hvac +Hmat +Hνν . (5.2.3)

In the above equation,Hvac is the vacuummixing term, which describes the oscillations caused by
the misalignment between the flavour and mass eigenstates, and Hmat is the matter term, which
describes the interaction with the electrons of the surrounding matter causing the MSW effect.
Both are mathematically represented by one-body interaction terms describing the effect of an
external field. Finally, the Hνν describes the neutrino-neutrino interaction generated by forward
scattering, which causes the so-called collective flavour oscillations. The latter is expressed as
two-body interactions and adds a non-linear contribution to the equations of motion, making
the description of their dynamics both hard and interesting.

5.2.1 Vacuum term

On the mass basis, the free Hamiltonian of the mass eigenstates is obviously diagonal and can
be expressed as

Hvac = E1a
†
1a1 + E2a

†
2a2, (5.2.4)

where each eigenstate is associated with a fixed energy Ei and a
(†)
i are annihilation (creation)

operators. Using the approximation

Ei =
√
p2 +m2

i =

√
p2
(
1 +

m2
i

p2

)
≈ p

(
1 +

m2
i

2p2

)
≈ p+ m2

i

2p
≈ p+ m2

i

2E
(5.2.5)

we obtain

Hvac =
m2

1

2E
a†1a1 +

m2
2

2E
a†2a2 + p

(
a†1a1 + a†2a2

)
=
m2

1

2E
a†1a1 +

m2
2

2E
a†2a2 + pI.

(5.2.6)
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We can express this Hamiltonian on the flavour basis by replacing the mass eigenstates in the
above equation by the linear combination of flavour eigenstates in Eq. (5.2.2). We have:

Hvac =
m2

1

2E

(
cos2 θνa

†
eae + sin2 θνa

†
xax

)
+
m2

2

2E

(
sin2 θνa

†
eae + cos2 θνa

†
xax

)
+

− m2
1

2E

(
cos θν sin θν

(
a†eax + a†xae

))
+
m2

2

2E

(
cos θν sin θν

(
a†eax + a†xae

))
+ pI (5.2.7)

and after simple calculations:

Hvac = cos2 θν

(
m2

1

2E
a†eae +

m2
2

2E
a†xax

)
+ sin2 θν

(
m2

1

2E
a†xax +

m2
2

2E
a†eae

)
+

+ sin θν cos θν

(
a†eax + a†xae

) m2
2 −m2

1

2E
+ pI. (5.2.8)

Now, using simple trigonometric properties5, defining the square mass difference δm2 := m2
2−m2

1

between mass eigenstates, and neglecting the terms proportional to the identity, we have

Hvac =
δm2

4E
sin(2θν)

(
a†eax + a†xae

)
+
δm2

4E
cos(2θν)

(
a†xax − a†eae

)
. (5.2.10)

In matrix form, a†iai and a†iaj are diagonal and off-diagonal elements, respectively, and are
related to Pauli matrices by

Z = a†eae − a†xax, X = a†eax + a†xae (5.2.11)

thanks to the quasi-spin algebra. Note that here and in the following we will use both the
notation σ(x), σ(y), σ(z) and X,Y, Z to identify the Pauli matrices. The matrix form of the
vacuum Hamiltonian is

Hvac =
δm2

4E
(sin(2θν)X − cos(2θν)Z) =

δm2

4E

(
− cos(2θν) sin(2θν)
sin(2θν) cos(2θν)

)
:=

ω

2
b · σ, (5.2.12)

where we have used bold symbols to denote 3-dimensional vectors, we have defined the external
field

b := (sin(2θν), 0,− cos(2θν)) , (5.2.13)

the energy scale ω := δm2/2E, and the vector of Pauli matrices σ = (X,Y, Z). It’s also common
in the literature to define the vacuum potential as ∆ := δm2/(4E).

5.2.2 Matter term

The matter term describes the scattering between the neutrinos and the surrounding matter.
At low energies, neutrinos can only exchange a W± boson with a charged lepton of the same
family, i.e. they can only perform the elastic scattering shown in Fig. 5.4a. Since the only
lepton present (in sufficient quantity) in a supernova environment is the electron e−, only the
electronic neutrino νe and antineutrino νe interact with the surrounding matter via W±, as
shown in Fig. 5.2 (panel (a) and (d)). This is due to the fact that to exchange W± with a
lepton of a different family, the neutrino-lepton scattering should be anelastic, as the one shown

5

cos2(θ) =
1 + cos(2θ)

2
, sin2(θ) =

1− cos(2θ)

2
, cos(θ) sin(θ) =

sin(2θ)

2
. (5.2.9)



5.2. HAMILTONIAN FORMALISM IN TWO-FLAVOR APPROXIMATION 89

(a) (b) (c) (d)

Figure 5.4: Feynman diagrams of neutrino-lepton scattering, with time going conventionally from left
to right. Panel (a) shows the general W± exchange between a neutrino and a lepton of the same family
(the charged boson depends on the direction of the boson current). Panel (b) is the main process νe− e−
which produces the MSW effect throughout the exchange of charged bosons, panel (c) is the inelastic
scattering in the case of α ∈ {µ, τ}, which is suppressed at low energy, and panel (d) is the neutral boson
exchange, which is flavour independent (α ∈ {e, µ, τ}) and adds a term proportional to the identity.

in Fig. 5.4c compared to the case in Fig. 5.4b. This makes the matter contribution to the
flavour dynamics dependent on the flavour itself. The νe − e− interaction potential depends on
the electron density ne and the Fermi coupling constant GF via the relation A = ±

√
2GFne

(where ± stands for neutrinos and antineutrinos respectively), and this gives rise to a diagonal
contribution Hamiltonian term which leads to the MSW effect. Note that neutrinos also interact
with matter through the neutral Z0 boson exchange (diagram in Fig. 5.4d). However, since this
interaction affects neutrinos independently of flavor, it does not modify the flavor evolution
and gives a contribution to the Hamiltonian that is proportional to the identity. The matter
Hamiltonian is

Hmat = A

(
1 0
0 0

)
=
A

2

(
1 0
0 −1

)
+
A

2

(
1 0
0 1

)
=
A

2
(Z + I) , (5.2.14)

where we have rewritten it using the su(2) algebra. The identity term can be neglected, as for
the Z0 boson exchange, and we end with

Hmat =
GFne√

2
(a†eae − a†xax) =

A

2
Z. (5.2.15)

We can interpret the vacuum plus matter Hamiltonian as an effective oscillation in the vacuum
with different parameters, i.e. with a different external field. We have

Hvac +Hmat =
δm2

4E

(
− cos(2θν) sin(2θν)
sin(2θν) cos(2θν)

)
+
A

2

(
1 0
0 −1

)
=
δm2

4E

(
−
(
cos(2θν) +

A
2

4E
δm2

)
sin(2θν)

sin(2θν)
(
cos(2θν)− A

2
4E
δm2

)) . (5.2.16)

To rewrite it in the same form as Hvac, we define

cos
(
2θ′ν
)
:=

(
cos(2θν)−

A

2

4E

δm2

)
C, sin

(
2θ′ν
)
:= sin(2θν)C, δm′2 =

δm2

C
. (5.2.17)

From the first two relations we get the equation

C2

(
sin2(2θν) +

(
cos(2θν)−

A

2

4E

δm2

)2
)

= cos2(2θ′ν) + sin2(2θ′ν), (5.2.18)
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(a) (b) (c)

Figure 5.5: Feynman diagram for neutrino-neutrino scattering mediated by the neutral Z0 boson. Time
runs from left to right. Panel (a), where α, β ∈ {e, µ, τ} gives a diagonal contribution that does not affect
the flavour mixing, while panel (b) represents the momentum exchange (if α ̸= β) between two neutrinos
and is an off-diagonal term that contributes to the flavour oscillation. Panel (c) shows that the s-channel
is also possible, but is flavour independent and therefore does not affect the flavour oscillation at low
energies.

which gives

C =

√
sin2(2θν) +

(
cos(2θν)−

A

2

4E

δm2

)2

. (5.2.19)

The vacuum plus matter Hamiltonian becomes

Hvac +Hmat =
δm′2

4E

(
− cos(2θ′ν) sin(2θ′ν)
sin(2θ′ν) cos(2θ′ν)

)
, (5.2.20)

which is in the same form as the vacuum term alone but with a different parameter δm′2 and a
different external field b′ := (sin(2θ′ν), 0,− cos(2θν)).

5.2.3 Neutrino-neutrino term

The ν−ν scattering is described by a two-body interaction term depicted in Fig. 5.5. As for the
neutrino-electron scattering, this contribution is proportional to the Fermi coupling constant
GF and the neutrino density nν = N/V by the amplitude η :=

√
2GFnν := µ/N . Note that N

is the number of neutrinos, V is the volume of the system and we also defined the total energy
µ := Nη. The ν − ν interaction also depends on the relative angle of propagation between two
different neutrinos νi and νj , which can be accounted for by the coupling constant

Jij = (1− cos(θij)) , (5.2.21)

where θij is the scalar product between the two propagation directions according to

pi · pj

∥pi∥∥pj∥
= cos(θij), (5.2.22)

where pi is the momentum vector of the neutrino νi. This means that the neutrinos that interact
the most are those that propagate in directions with a larger relative angle. Note that this result
is consistent with what we would get by calculating the ultrarelativistic limit of the cross section.
The Hamiltonian term describing the interaction between two different neutrinos νi and νj is
then given by the SU(2) invariant product of Pauli matrices

Hij =
√
2GFnν

(
1−

pi · pj

∥pi∥∥pj∥

)
σi · σj =

µ

N
Jijσi · σj , (5.2.23)
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where the expression σi · σj is the scalar product between vectors of Pauli matrices, giving

σi · σj = Xi ⊗Xj + Yi ⊗ Yj + Zi ⊗ Zj . (5.2.24)

In matrix form6, the interaction between two neutrinos is given by

Hij =
µ

N


Jij 0 0 0
0 −Jij 2Jij 0
0 2Jij −Jij 0
0 0 0 Jij

 . (5.2.25)

5.2.4 Total isospin Hamiltonian

The complete Hamiltonian describing the flavour oscillation of a system of N neutrinos is given
by the sum of the three contributions (Eqs. (5.2.12), (5.2.15) and (5.2.23)) summed over all the
particles in the system, namely

H =
1

2

N−1∑
i=0

ωib · σi +
A

2

N−1∑
i=0

Zi +
N−1∑
i<j

µ

N
Jijσi · σj . (5.2.26)

Note that in the above equation there are implicit tensor products with the particles that are
not written explicitly. For example, in the one-body terms

σ
(k)
0 = σ(k) ⊗ I⊗ · · · ⊗ I , σ

(k)
1 = I⊗ σ(k) ⊗ I⊗ · · · ⊗ I, (5.2.27)

for k ∈ {x, y, z}, and the two-body contribution contains terms of the form

σ
(k)
0 σ

(k)
1 = σ(k) ⊗ σ(k) ⊗ I⊗ · · · ⊗ I , σ

(k)
0 ⊗ σ

(k)
2 = σ(k) ⊗ I⊗ σ(k) ⊗ · · · ⊗ I. (5.2.28)

The flavour isospin Hamiltonian in Eq. (5.2.26) is standard in studies of collective flavour
oscillation as can be seen, for example, in Ref. [76]. To further illustrate the simple struc-
ture of the neutrino-neutrino interaction in this formulation, we observe that the last term in
Eq. (5.2.26) contains a sum over all possible N(N − 1)/2 pairs. The all-to-all character of the
interaction is a product of two main ingredients: the consideration of neutrinos as plane-waves
and the Z-mediated weak interaction as a contact term in coordinate space. Further extensions
of the model that more realistically account for the spatial extension of neutrinos using wave
packets, an important ingredient for inhomogeneous systems (see, e.g., Ref. [77]), are possible
but are left for future work. In conclusion, the Hamiltonian of a many-neutrino system used in
this work is equivalent to an all-to-all coupled spin system, and thus represents an interesting
strongly coupled many-body quantum problem governed by the weak interaction, in which we
can demonstrate the usefulness of quantum computing.

6We have used the standard notation which represents a composite system belonging to the tensor space with
the Kronecker product convention indicating it with ⊗ instead of ⊠.
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Chapter 6

Quantum algorithm and results

Quantum computing can offer a significant advantage in the characterisation of multi-particle
quantum systems, as anticipated in Sec. 1.2 of Chapter 1, without the strict need for compu-
tational resources to grow exponentially with the system’s dimension. The global push to use
quantum devices to explore the principles of Standard Model physics has sparked a worldwide ef-
fort to design algorithms and implement them on currently available quantum platforms. Given
a quantum system in an initial state |ψ(0)⟩, its time evolution governed by the Hamiltonian H is
realised by the unitary operator U(t) = e−iHt, which evolves the state as dictated by the time-
dependent Schrödinger equation |ψ(t)⟩ = U(t) |ψ(0)⟩. In general, a straightforward approach
based on this interpretation encounters a growing computational cost on classical computers as
the size of the system increases. This is due both to the large memory requirements for encoding
the system states and to the operational overhead of performing matrix multiplications.

As mentioned in Sec. 1.2.2, the digital quantum simulation of the real-time evolution of a
quantum system requires the decomposition of the propagator into a sequence of layers composed
of elementary quantum gates, usually consisting of one- or two-qubit elementary operations.
Quantum gate decomposition plays a crucial role in the use of near-term devices, where noise
dominates the quality of the simulation. Optimisation of the quantum circuit, by minimising
the number of operations to be performed and using the specific language of the machine, allows
the quality of the results to be improved. All these aspects can be summarised in what is
known as machine-aware optimal compilation. The aim of this chapter is to reproduce the
evolution of the many-neutrino system presented in Chapter 5 using a quantum algorithm. The
matrix dimension of the propagator grows exponentially with the number N of neutrinos, and
in general would require an exponential number of operations to implement it exactly. This
would make the quantum computing approach not really efficient in Hamiltonian simulations.
To avoid exponential scaling, it is crucial to specialise the gate decomposition with respect to the
particular physical problem we are tackling, for example by exploiting all the physical features
that are present, such as the range of the interaction, the number of interacting bodies in each
term, the Hamiltonian symmetries, the presence of reducible Hilbert spaces, and so on. The
algorithm developed and the results presented in this chapter come from a joint work carried
out with Dr Alessandro Roggero and can be found in the paper in Ref. [78].

This chapter introduces the approximation model used in the rest of the work for the dynam-
ics of the collective flavour oscillation, and presents the theoretical evolution of a system with
a limited number of neutrinos (Sec. 6.1). In order to cope with the computational complexity,
the Trotter approximation of the time evolution operator is used (Sec. 6.2), which mitigates
the exponential growth of the circuit complexity with special attention to the qubit topology
and its error dependence. Then, the quantum algorithm designed to work on a trapped-ion-
based testbed is presented in detail (Sec. 6.3), and the machine-aware optimisation is carried out
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Figure 6.1: Scheme of the neutrino oscillation environment in a core-collapse supernova assuming
spherical symmetry. The matter term is dominant in a large distance r ∼ 1000 km from the core where
the density of neutrinos is low enough but the density of matter is still relevant. The neutrino-neutrino
term is dominant in a middle distance r ∼ (10 − 100) km from the core where the neutrino density is
high.

(Sec. 6.4). The results obtained are finally presented (Sec. 6.5) for both single and multi-step
evolution. The chapter ends with a comprehensive analysis of the Trotter error and evaluates
the complexity scaling of the algorithm (Sec. 6.6).

6.1 System model and theoretical evolution

The study of extreme astrophysical environments is fundamental to understanding many as-
pects of astrophysics and cosmology, and requires a suitable model to describe many-neutrino
systems. Based on the composition of the core-collapsed nucleus and the emitted neutrinos,
layers are defined around the collapsing supernova core in which a particular behaviour of neu-
trinos dominates. A simple diagram showing the regions where different neutrino processes are
active in a core-collapse supernova, assumed to have spherical symmetry, is shown in Fig. 6.1.
Collective neutrino oscillations are generally expected to dominate in a region of intermediate
distance from the core (∼ 100 km) where the density of neutrinos is large, while the external
lepton-electron density is not too large to suppress flavor oscillations [72]. The outer shell, where
the neutrino density is lower, is instead dominated by vacuum oscillations and interactions with
the surrounding matter, leading to the MSW effect.

The quantum simulation we want to implement corresponds to the collective flavor oscillation
of a system of N neutrinos in a high-density environment. At this stage we decided to neglect
the matter term in the Hamiltonian of Eq. (5.2.26)1 and we fixed the neutrino energy to obtain
the same coupling constant for the one-body and two-body energies, namely

µ

N
=
ω

2
, (6.1.1)

and measure time in units of µ−1. Thus the quantum simulation aims to implement the evolution

1This is mainly because the matter term is too large in magnitude and would be the dominant source of error
in the Trotter approximation presented in the next sections. Methods to deal with this problem exist, such as the
interaction picture approach, but are left for future work.
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generated by:

H =
N−1∑
i=0

b · σi +
N−1∑
i<j

Jijσi · σj :=
N−1∑
i=0

hi +
N−1∑
i<j

hij := H(1b) +H(2b), (6.1.2)

where Hvac := H(1b) is the only one-body contribution and Hνν := H(2b) is the two-body one.
We used, for the mixing angle in the external field b of Eq. (5.2.13), the value θν = 0.195, as
previously used in the work [67], and we take a simple grid of angles

θij = arccos(0.9)
|i− j|
(N − 1)

, (6.1.3)

meant to reproduce a narrow cone of forward peaked neutrinos in accordance to the geometry
displayed in Fig. 6.1. With this choice of angular distribution and for even N , the neutrino
Hamiltonian in Eq. (6.1.2) turns out to be symmetric under the particle exchange

νk ←→ νN−1−k, (6.1.4)

for k ∈ {0, . . . , N/2}. In this model, the geometry of the problem fixes the interaction between
the neutrinos through the relative angles of propagation.

6.1.1 Encoding map

As mentioned in Sec. 1.2.2 of Chapter 1, two main ingredients are needed to perform a quantum
Hamiltonian simulation: a state encoding map |ψ⟩ 7−→ |φ⟩ of physical states |ψ⟩ into device
states |φ⟩, and an operator to quantum gates mapping e−iHt 7−→ U . In this section we see its
implementation specialised in the case of a simulation of the collective flavor oscillation of a
system of N neutrinos, where the Hamiltonian is the one defined in Eq. (6.1.2).

Due to the two-flavour approximation presented in Sec. 5.2, the flavour state of each neutrino
corresponds to a flavour isospin. A single-neutrino state is generally given by the two-flavour
superposition |ψ⟩ = α |νe⟩+ β |νx⟩ and can be completely described in terms of a qubit state by
the mapping

|νe⟩ 7−→ |0⟩ =
(
1
0

)
, |νx⟩ 7−→ |1⟩ =

(
0
1

)
, (6.1.5)

which is the simpler way to encode such a system. In this way, a system of N neutrinos can
be completely characterised by N qubits, and the two spaces Hqubit = (C2)⊗N and Hsystem =
(C2)⊗N have the same dimension. The initial state of the system used for all the simulations
presented in this work consists in using an even value of N and setting the first N/2 neutrinos
in the |νe⟩ flavour state and the other N/2 in the |νx⟩ state as follows

|ψ(0)⟩ = (|νe⟩)⊗N/2 ⊗ (|νx⟩)⊗N/2. (6.1.6)

In this way, the initial state is symmetric under the composition of the particle exchange in
Eq. (6.1.4), and the flavour inversion |νe⟩ ←→ |νx⟩, while the Hamiltonian is symmetric under
the particle exchange alone. The encoding map is trivial, so the initial qubit state is

|φ(0)⟩ = (|0⟩)⊗N/2 ⊗ (|1⟩)⊗N/2 (6.1.7)
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and corresponds to a 2N dimensional vector with the only non-zero element at position 2N/2−12.
We emphasise that the algorithm we propose in this chapter works for any initial state |ψ⟩ ∈
Hsystem, and different initial states allow the dynamics to be analysed at different points in
the spectrum. For example, if the neutrinos were all the same, the system would be in the
most energetic tail of the spectrum and, most importantly, we would not observe any dynamics.
If, instead, the neutrinos are evenly distributed, as we have chosen, the system will be at an
intermediate point in the spectrum, close to many other possible initial states. Moreover, we
can interpret this initial state in another way, which may have a more physical meaning. This
consists in interpreting the first half qubits in the register as fermions |νe⟩ , |νx⟩, to which we
assign |νe⟩ 7−→ |0⟩ and |νx⟩ 7−→ |1⟩, and the second half as antifermions |νe⟩ , |νx⟩ with the same
mapping. In this way we interpret the state differently depending on the position of the qubits.
This has the advantage of allowing us to consider somewhat more realistic systems in which we
have neutrinos and antineutrinos.

Finally, we would like to point out that the memory required by the quantum machine
depends on the encoding map and is directly related to the size of the matrix representing e−iHt

and the vector representing |ψ⟩. In general, the size of the quantum register varies depending on
whether symmetries of the problem are considered or not. Including symmetries tends to reduce
the number of qubits required to encode the problem, resulting in a smaller quantum register
size. While this may suggest that the use of symmetries in quantum computing always offers
advantages by providing a more concise representation that focuses on the relevant aspects, it
is important to recognise that this advantage may not always be true if it leads to increased
complexity in quantum algorithms. Consequently, the efficiency of a quantum algorithm depends
on both the chosen encoding method and the design of the algorithm itself. It is worth noting
that there are alternative encoding maps beyond the direct spin encoding in Eq. (6.1.5), which
we leave for exploration in future research.

6.1.2 Ideal unitary propagator

Due to the fact that the encoding map is trivial, the real-time propagator expressed on the
computational basis is the same as the one expressed on the flavour basis and is given by the
exponential

U(t) = e−iHt = e−i(
∑

i b·σi+
∑

i<j Jijσi·σj)t, (6.1.9)

which corresponds to a 2N×2N unitary matrix calculated as the exponential of the Hamiltonian
in Eq. (6.1.2). One can obtain the exact time evolution by directly performing a matrix multi-
plication |ψ(t)⟩ = U(t) |ψ(0)⟩. On the spin basis, the flavour content of an individual neutrino

is obtained from the expectation value of the Pauli matrix σ
(z)
i = Zi, namely

⟨Zi(t)⟩ = ⟨ψ(t)|Zi|ψ(t)⟩ , (6.1.10)

where we have left implicit the tensor products with identities related to the other particles. A
neutrino in the |νe⟩ state has an expectation value of ⟨νe|Z|νe⟩ = 1 and the flavour state |νx⟩

2For example, the initial state for the case of N = 4 neutrinos is given by a 16-dimensional vector with entry-1
at position 3, namely

|φ(0)⟩ =
(
1
0

)
⊗

(
1
0

)
⊗

(
0
1

)
⊗

(
0
1

)
=



0
0
0
1
0
...
0


. (6.1.8)

where we replaed the Kronecker product ⊠ to the tensor one ⊗.
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Figure 6.2: Exact evolution of a system of N = 4 (panel (a)) and N = 8 (panel (b)) with initial

states |φ(0)⟩(4) = |0011⟩ and |φ(0)⟩(8) = |00001111⟩ respectively. The top panels show the evolution of
the expectation value ⟨Zi(t)⟩ for each neutrino |νi⟩, while the bottom panels show the evolution of the
flavour inversion probability Pi(t).

has the value ⟨νx|Z|νx⟩ = −1. In a similar way, the inversion probability Pi(t) can be expressed
as

Pi(t) =
|⟨Zi(0)⟩ − ⟨Zi(t)⟩|

2
, (6.1.11)

and represents the probability that a neutrino has inverted the flavour with respect to the initial
one. We display the exact evolution of both quantities for systems of N = 4 and N = 8
neutrinos in Figures 6.2a and 6.2b respectively. In both figures, the top panel shows the results
for ⟨Zi(t)⟩, while the bottom panel shows the inversion probabilities Pi(t). As expected from
the exchange symmetry in Eq. (6.1.4) and the asymmetric choice of initial state in Eq. (6.1.6),
the flavour evolution of neutrinos |ν0⟩ and |ν1⟩ is the mirror image of neutrinos |ν3⟩ and |ν2⟩
(respectively and for the case of 4 neutrinos). This is reflected in the equivalence of the inversion
probabilities for these neutrinos. Due to the presence of this symmetry, in the following sections
of this chapter we will only present results for the inversion probabilities. The Figure 6.3 shows
the oscillation phenomenon carried by different contribution terms in the Hamiltonian: the
inversion probability caused by Hvac alone in Fig. 6.3a, while the oscillation caused by Hνν

alone in Fig. 6.3b. Note that the vacuum oscillation occurs separately for each neutrino and also
occurs for a system in which the neutrinos are all in the same flavour state. On the other hand,
the ν − ν interaction causes the flavour oscillation due to a flavour exchange mechanism, and
therefore it cannot occur if all the neutrinos are in the same flavour state. Finally, the matter
interaction that causes the MSW effect cannot produce flavour oscillation by itself, but only
influences the vacuum oscillation, as proved in Sec. 5.2.2.

We would like to emphasise that the number of neutrinos used in this work is of the order of
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Figure 6.3: Exact evolution of the expectation value ⟨Zi(t)⟩ for a system of N = 4 neutrinos generated
by Hvac alone (panel (a)) and by Hνν alone (panel (b)). The initial state is |φ(0)⟩ = |0011⟩ also in this
case.

N ∼ 10, and improvements in quantum technology will probably allow us to simulate N ∼ 100
in the next few years. In any case, a full quantum simulation of the flavour evolution of all 1058

neutrinos produced during a core-collapse supernova will always be beyond the reach of any
simulation method. However, there are two main reasons to expect that a simulation of flavor
evolution with a reasonable number of degrees of freedom would be valuable for understanding
neutrino oscillations in supernovae. First, the simulation of a limited number of neutrinos
can be useful to investigate purely quantum properties that cannot be included in mean-field
approaches, such as the degree of entanglement. Previous work on this topic has clearly shown
how the analysis of small-scale simulations can shed light on the conditions necessary for the
emergence of collective flavor modes, as well as the role played by beyond mean-field effects (see,
e.g., Refs. [58, 60, 62–64]). And second, the number of neutrinos that should be considered for
a simulation is the number of neutrinos in a causally connected region of space, which may be
much smaller than the whole region where the supernova explosion takes place. Furthermore,
the underlying assumption that neutrinos are treated as exact plane-waves cannot be applied
in a straightforward way when large regions of space are considered. A proper description that
considers wave packets instead would be required [79]. We leave this extension for future work.

6.2 Trotter decomposition of unitary propagator

One way to decompose the operator in Eq. (6.1.9) is to explicitly exploit the actual interaction
of the physical system. In fact, the most difficult part of the Hamiltonian in Eq. (6.1.2) is the
all-to-all ν − ν interaction term, which makes the problem nonlinear. However, this part of the
interaction occurs in pairs and can therefore be implemented by considering only one pair of
neutrinos (and hence qubits) at a time. The approach taken in the previous work (Ref. [67])
uses the exact pair propagator obtained in two steps. First, they symmetrize the one-body term
and express the total Hamiltonian as a sum of two-body terms, namely

H =
N−1∑
i<j

(
b · (σi + σj)

N − 1
+ Jijσi · σj

)
:=

N−1∑
i<j

ĥij , (6.2.1)

where

ĥij :=
hi + hj
N − 1

+ hij . (6.2.2)
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Then they approximate the total propagator by a product of pair propagators accordingly:

U(t) ≈ Ũ sym(t) :=

N−1∏
i<j

e−iĥijt :=

N−1∏
i<j

ûij(t). (6.2.3)

The approximation introduces an error which scales as ∼ O(t2) due to the non-commutativity
of the symmetrized two-body terms[

ĥij , ĥik

]
=

1

N − 1
([hi, hik] + [hij , hi]) + [hij , hik] ̸= 0. (6.2.4)

A first improvement to this implementation can be made by considering that the entire one-
and two-body terms commute, namely[

H(1b), H(2b)
]
= 0 (6.2.5)

in the case of a particle-independent external field (i.e. bi = b for all i ∈ {0, . . . , N − 1}), and
therefore their separation does not introduce any errors, namely

U(t) = e−iH(2b)te−iH(1b)t := U (2b)(t)U (1b)(t). (6.2.6)

At this point, the one-body contribution U (1b)(t) is a product of N one-body operators, since
the one-body terms referring to different particles commute: [σi,σj ] = 0 if i ̸= j. We have:

U (1b)(t) = e−iH(1b)t = e−i
∑N−1

i=0 hit =
N−1∏
i=0

e−ihit :=
N−1∏
i=0

ui(t), (6.2.7)

where we have defined the single-neutrino propagator ui(t) = e−ihit in terms of the one-body
Hamiltonian hi. Subsequently, the two-body term alone can be efficiently implemented by the
pair decomposition

U (2b)(t) ≈ Ũ (2b)(t) :=
N−1∏
i<j

e−ihijt :=
N−1∏
i<j

uij(t), (6.2.8)

where we have defined the single-pair propagator uij(t) = e−ihijt of the neutrinos νi and νj .
Again, this approximation introduces an error which scales as ∼ O(t2) but with a smaller
prefactor, and the approximated propagator is now

U(t) ≈ Ũ(t) := Ũ (2b)(t)U (1b)(t). (6.2.9)

The implementation in Eq. (6.2.3) not only fails to exploit the commutativity of the two terms
(Eq. (6.2.5)), but may also lead to an increase in the error due to the lack of commutativity
between individual one- and two-body contributions (terms [hi, hij ] ̸= 0 in Eq. (6.2.4)), and
may lead to an explicit breaking of symmetry under particle exchange. This property will be
analysed in detail in Sec. 6.2.2. However, the approach can still be useful in the case of a particle-
dependent external field, where b→ bi, as occurs when different neutrinos have different energies
E → Ei (a necessary ingredient to observe spectral splits [58, 72]). In this case we can separate
the external field of each neutrino into a mean part and a variation part, namely bi := b+ δbi.
At this point we can separate out the one-body term associated with the common external field
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Figure 6.4: Panel (a) shows the swap network (SN) scheme for N = 4 qubits, which implements the

two-body part Ũ (2b)(t) using a chain of linearly connected qubits. Vertical lines represent the qubit
interaction and crosses the SWAP operations. Panel (b) shows the network for the implementation of
the two-body part using a system of fully connected qubits. This scheme implements the optimal pair
order (OO) and minimises the decomposition error caused by the non-commutativity property.

b, which commutes with everything else, and use the exact pair approximation in Eq. (6.2.3)
only for the variation part δbi. This approach is equivalent to using the Hamiltonian:

H =
N−1∑
i=0

b · σi +
N−1∑
i<j

(
(δbi · σi + δbj · σj)

N − 1
+ Jijσi · σj

)

:=
N−1∑
i=0

hi +
N−1∑
i<j

ĥij ,

(6.2.10)

where ĥij is the two-body Hamiltonian that includes the ν − ν interaction and the one-body
interaction term related to the energy differences.

6.2.1 Pair order and qubit topology

Once we have encoded each neutrino state into a qubit and interpreted the U (2b)(t) propagator
as a product of pair interactions, we need to consider the effect of the qubit topology, which
determines the ability of a quantum machine to make two qubits interact. The Hamiltonian in
Eq. (6.1.2) contains an all-to-all interaction term H(2b), which means that all neutrinos interact
with all others during evolution. This means that in order to implement the total interaction
between the N neutrinos of the system, we have to implement all

(
N
2

)
= N(N − 1)/2 pair

interactions, and in terms of the quantum algorithm, the implementation of Ũ (2b)(t) in Eq. (6.2.8)
requires that allN qubits interact with all others at least once during the simulation. In quantum
computing, this means that the algorithm design must be adapted to the particular topology of
the quantum device used for the simulation. As shown in Ref. [67], it is possible to implement
the two-body propagator using a linearly connected chain of qubits with N layers using the so-
called swap network (SN) (the same scheme was later adopted for tensor network simulations in
Ref. [63]). The algorithm consists of applying the uij(t) propagator to a pair of qubits, followed
by a SWAP gate that exchanges the qubit states. The new unitary wij(t) is thus

wij(t) := SWAP · uij(t), (6.2.11)

where in the computational basis the SWAP unitary is represented by the matrix in Eq. (2.1.13)
of Chapter 2. For example, the swap network required for the case N = 4 is shown in Fig. 6.4a,
where the vertical lines represent the interaction terms uij(t) and the crosses represent the SWAP
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Figure 6.5: Optimal ordering for N = 4 implemented in a linearly connected chain of qubits, showing
that five layers are needed to implement U (2b)(t) as a product of pairs ordered according to the OO
scheme and using only unitaries as in Eq. (6.2.11).

operations. The structure of the swap network, dictated by the available qubit topology, imposes
a constraint on the possible ordering of the pair propagators. Once the network structure is fixed,
the order can be chosen by varying the initial encoding of each neutrino in the qubits. For our
case, we found that the ordering (q0, q1, q2, q3) = (ν0, ν2, ν1, ν3) (the same as in Ref. [67]) is the
best. In principle, any order could be achieved by adding additional SWAP gates, but at the
cost of increasing the complexity of the scheme. For our Hamiltonian and in the case of N = 4
we found that the best interaction order would be that described by the network in Fig. 6.4b
for the encoding map (q0, q1, q2, q3) = (ν0, ν1, ν2, ν3). This best decomposition order cannot be
expressed as a swap network of only four layers when restricted to linear qubit connectivity, but
at least five layers would be needed, as explicitly shown in Fig. 6.5. However, with all-to-all
connectivity, this algorithm can be implemented in one layer less than the swap network, and
each layer is full in the sense that we perform the maximum number of possible operations
simultaneously. As we will see in the next sections, this type of qubit topology allows to reduce
the theoretical Trotter error of the unitary implementation (Sec. 6.2.2) to obtain more accurate
and longer simulations, and to reduce the complexity of the quantum circuit (Sec. 6.3).

6.2.2 Pair order and Trotter error

Importantly, the error introduced by the approximation in Eq. (6.2.8) also depends on the order
in which the pairs interact, since the error is given by a sum of the commutators [hij , hkl] with
a given order3. To see this, consider that for any number N of neutrinos, we can always group
them into triplets (νi, νj , νk) to which we assign the two-body commutators [hij , hik], [hij , hjk]
and [hik, hjk] which are identified by 2N × 2N matrices with the same non-trivial elements
and with magnitudes depending on Jij , Jik and Jjk. An optimal order allows to maximise the
cancellations between the commutators while minimising the decomposition error, and this is
exactly what happens in the OO scheme of Fig. 6.4b. For example, the Figure 6.6 shows the
three commutators associated with the triplet (ν0, ν1, ν2) in the case of N = 4 neutrinos. If we
decompose e−i(h01+h12+h02)t ≈ e−ih01te−ih12te−ih02t, we minimise the error due to the fact that
the first commutator [h01, h02] and the last one [h12, h02] in the figure are opposite in magnitude
and cancel each other out. Determining the optimal ordering for large systems is not feasible
in general as this would require a super-exponential cost in the system size N . There are, in
fact,

(
N
2

)
pairs and

(
N
2

)
! possible orderings in total, which is an upperbound because lots of

them are overcounted since we can swap neighboring pairs in a list if the indices do not match
(ie. the two-body terms commute). However the possible orders that one should test is still
super-exponential in N , and for large systems a randomization procedure for the order could
prove valuable to control the error [80, 81].

3The approximation eA+B+C ≈ eAeBeC introduces an error of [A,B] + [A,C] + [B,C] at first order.
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Figure 6.6: Commutator matrices of the triplet of neutrinos ν0, ν1 and ν2 of a system of N = 4 particles.
From left to right: [h01, h02], [h01, h12] and [h12, h02].
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Figure 6.7: The two figures show the inversion probability Pi(dt) after single Trotter step evolutions
for different time steps dt ∈ [0, 40]µ−1 of a system with N = 4 neutrinos. Panel (a) shows the evolution
for neutrinos ν0 and ν3, and panel (b) for ν1 and ν2. Dotted black lines are the ideal perfect evolutions
obtained by applying e−iHdt to the initial state |ψ(0)⟩ = |0011⟩ (as in the first time interval in the bottom
panel of Fig. 6.2a). The solid blue lines are the evolution obtained using the implementation proposed
in this work (Eqs. (6.2.6) - (6.2.8)) and the scheme in Fig. 6.4b. The dashed orange and red lines are
the evolution using the implementation proposed in Ref. [67] and described by Eqs. (6.2.1) - (6.2.3) and
scheme 6.4a.

The two panels in Fig. 6.7 show the inversion probability, for the 4 neutrinos system, for
a single Trotter step evolution using times dt ∈ [0, 40]µ−1 for different implementations of the
propagator: (1) the exact one U(dt), (2) the one proposed in the previous work (Ref. [67]), and
(3) the optimal one implemented in the present work. The ideal data were obtained by applying
the exact propagator U(dt) = e−iHdt to |φ(0)⟩ = |0011⟩ through 16× 16 matrix multiplications.
The data corresponding to the SN model used in Ref. [67] were obtained by applying to |φ(0)⟩
the exact pairwise propagator in Eq. (6.2.3) and following the swap network ordering in Fig. 6.4a.
While the data denoted by OO are obtained using the approach proposed in this work, which
uses the separation of the one- and two-body parts as in Eq. (6.2.9) and the best pair ordering
as shown in Fig. 6.4b for the two-body part. The result highlights that the implementation
proposed here always preserves the exchange symmetry of Eq. (6.1.4). In this case, this feature
is given by the separation of the one- and two-body propagators U (1b)(dt) and U (2b)(dt), but the
relationship between optimal order and symmetry preservation is actually more complicated. In
fact, using the OO scheme in Fig. 6.4b the evolution preserves symmetry even without the one-
and two-body separation, while using the SN scheme in Fig. 6.4a the separation is necessary to
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Figure 6.8: The figure shows the infinite norm distance between the ideal propagator and the pair
approximated one in function of Trotter step dt for the best possible swap network (dashdot orange line)
and the optimal ordering (solid blue line).

restore symmetry. This is due to the fact that when using the OO and the exact propagator in
pairs (Eq. (6.2.3)) the spurious commutators of type [hi, hij ] cancel each other out.

The Fig. 6.7 seem to suggest that the SN best approximates evolution for time steps less
than dt < 30µ−1. This is mostly an effect of choosing a particular initial state |φ(0)⟩ = |0011⟩
and a particular observable Pi(t). In Fig. 6.8 we show the error of the effective approximated
propagator Ũ(dt), as a function of the Trotter step dt, in the cases of the two implementations:
Ũ(dt) = Ũ sym(dt) as in Eq. (6.2.3) and with SN order, and Ũ(dt) = Ũ (2b)(dt)U (1b)(dt) as
in Eqs. (6.2.7) - (6.2.8) and with the OO scheme. We calculate the error using the infinite
(spectral) norm distance

ε(dt) =
∥∥∥Ũ(dt)− U(dt)

∥∥∥
∞
, (6.2.12)

which is the largest error we can have for the eigenstates associated with the largest eigenvalue.
For general initial states and observables, the error displayed in Fig. 6.8 shows that the OO
approximation indeed has the smallest worst case error for all time steps. We note that the
Trotter error bound scales with O(dt2), but Fig. 6.8 shows that the error actually scales sub-
quadratically with dt. The deviation from the quadratic shown in the figure is most likely only
due to the fact that the maximum error in the spectral norm is bounded as ε ≤ 2, since we have
a difference of unitary operators.

The usual way to reduce the Trotter error is to set a sufficiently small value for the time step
dt and to iteratively apply the approximated propagator, namely

|ψ(kdt)⟩ = Ũ(dt)k |ψ(0)⟩ . (6.2.13)

In particular, if we want to evolve the state up to T = rdt, the error will scale as O(T 2) =
O(r2dt2) if we apply U(T ) once, and will instead scale as O(rdt2) using r steps in which we
apply U(dt). The reduction of the Trotter error is particularly advantageous when the aim of
the simulation is to represent the evolution of the system over a long total time T , during which
the accumulation of errors predominates. To show the consistency of the error accumulation,
we plot in Fig. 6.9 the evolution of the 4-neutrinos system with dt = 16µ−1 up to T = 1200µ−1

using the two approaches OO and SN. In the first case, the multiple Trotter step evolution is
obtained as follows

|ψ(kdt)⟩(OO) = (Ũ (2b)(dt))k(U (1b)(dt))k |ψ(0)⟩ , (6.2.14)

while in the second case we used

|ψ(kdt)⟩(SN) = Ũ sym(dt)k |ψ(0)⟩ . (6.2.15)
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Figure 6.9: Long-time evolution of a system composed of N = 4 neutrinos. Panel (a) for neutrinos
ν0 and ν3 and panel (b) for ν1 and ν2. Dotted black lines represent the ideal perfect evolution. The
solid blue lines are the evolution obtained by applying Eq. (6.2.14) and the OO scheme, and the dashed
orange and red lines are the evolution using Eq. (6.2.15) and the SN scheme. Both for the same time
step dt = 16µ−1.
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Figure 6.10: Long time evolution of a system composed of N = 4 neutrinos using dt = 4µ−1. The lines
correspond to the different implementations and follow the same convention of Fig. 6.9. Here the ideal
data, shown as a black dotted line, is almost overwritten by the blue solid line.

We note that by using the OO scheme instead of the SN one, we can fix a larger value of dt
and still obtain accurate results for longer time evolution, since we reduce the implementation
error ε(dt) (see Fig. 6.8) and consequently its accumulation. With a sufficiently small time step
the two implementations are almost equal at the beginning of the evolution, but eventually
the accumulation of error becomes relevant again. The evolution with dt = 4µ−1 for the two
implementations compared to the ideal one is shown in Fig. 6.10. To compare the error induced
by the two implementations, we have plotted in Fig. 6.11 the accumulated error calculated using

ε(T ) =
∥∥∥Ũ(dt)k − U(T )

∥∥∥ (6.2.16)

where T = kdt, k ∈ {0, . . . , 10} and dt = 4µ−1, and we compare it with the linear bound

ε(T ) ≤ kε(dt). (6.2.17)

6.3 Optimal quantum gate decomposition

In the previous sections we have seen the Trotter approximation used in the development of this
quantum algorithm, and we have analysed its connection with the qubit topology and with the
theoretical simulation error. We now specialise the algorithm in the case of a fully connected
quantum machine performing the quantum gate implementation of the algorithm. We show
quantum circuits for the case of N = 4 and its extension for N = 8, or other values of N , can be
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Figure 6.11: Accumulated error for the two implementations OO and SN, calculated as in Eq. (6.2.16).

done in a similar way. In terms of quantum circuits, the commutation property in Eq. (6.2.5) is

U(dt) = U (1b)(dt) U (2b)(dt) . (6.3.1)

At this point, we can implement the one-body propagator in Eq. (6.2.7) as a tensor product of
single-qubit gates

U (1b)(dt) =

N−1⊗
i=0

ui(dt), (6.3.2)

since it is a product of operators that can be implemented by layers that act non-trivially on
only a single neutrino (e.g. I ⊗ u1(dt) ⊗ I ⊗ I act only on ν1) and they also commute between
each other, namely [ui(t), uj(t)] = 0. So, in terms of a quantum circuit, we have

U (1b)(dt) =

u0(dt)

u1(dt)

u2(dt)

u3(dt)

, (6.3.3)

and each ui(t) can be implemented with at most three elementary rotations according to the zyz
decomposition presented in Sec. 2.3.1 of the Chapter 2. The two-body propagator, according to
the approximation in Eq. (6.2.8), becomes a product of

(
N
2

)
terms, which act non-trivially on

two qubits. In addition, using the OO scheme in Fig. 6.4b, we can run two terms simultaneously
in each layer, giving a total of N − 1 = 3 layers for the case of four neutrinos. Following the
optimal order, the pair decomposition allows us to implement the U(t) propagator using the
quantum circuit in Fig. 6.12. The first four blocks represent single-qubit gates implementing
ui(dt), while the following six wider blocks represent the two-qubit gates implementing the terms
uij(dt). The pair decomposition procedure can be extended to any value of N . For example, in
the case of N = 8 we can use the quantum circuit shown in Fig. 6.134, which again implements
the propagator Ũ (2b)(dt) with N − 1 layers.

4This network is an improvement on the one used in Ref. [78].
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ν0

ν1

ν2

ν3

=

Figure 6.12: Scheme of the quantum circuit implementing the propagator Ũ(dt) after the one- and
two-body separation in (6.3.1), the implementation of U (1b)(dt) in (6.3.3) and the pair decomposition in
Eq. (6.2.8) with the OO scheme in Fig. 6.4b corresponding to the pair order P (4) = (02, 13, 01, 23, 12, 03).
The right-hand side highlights the possibility of performing simultaneous interaction terms within a layer,
as they involve different qubits. The total number of layers is 3 and each layer is full.

ν0

ν1

ν2

ν3

ν4

ν5

ν6

ν7

Figure 6.13: Scheme of the quantum circuit implementing the propagator Ũ(dt), after one- and
two-body separation in Eq. (6.3.1), for the case of N = 8 neutrinos. The pair-order decomposition
is P (8) = (01, 24, 37, 56, 05, 13, 26, 47, 06, 14, 27, 35, 07, 12, 36, 45, 03, 17, 25, 46, 04, 16, 23, 57, 02, 15, 34, 67),
which again corresponds to N − 1 = 7 layers.
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Figure 6.14: Optimal CNOT-based quantum circuit implementing Ũ(dt) = Ũ (2b)(dt)U (1b)(dt) for N =
4. Different colors, as in the Fig. 6.12, represent different pair interaction terms.

At this point we need to implement each pair interaction uij(dt) as a sequence of one- and
two-qubit gates taken from a library. The optimal way to do this is to consider the magic basis
decomposition explained in Sec. 2.4.2 of Chapter 2. In fact, we can see that the pair interaction
terms are of the form

uij(dt) = e−iJijσi·σjdt = e−idtJij(Xi⊗Xj+Yj⊗Yj+Zi⊗Zj), (6.3.4)

which is a special case of the gate N (α, β, γ) in Eq. (2.4.9), where α = β = γ = −dtJij .
Therefore, we can implement each term using the optimal CNOT-based quantum circuit in
Eq. (2.4.29), i.e. for our parameters:

uij(dt) =

Rz(2α− π
2 ) • Rz(−π

2 )

Rz(
π
2 ) • Ry(

π
2 − 2α) Ry(2α− π

2 ) •
, (6.3.5)

up to a global phase of eiπ/4. Note that the circuit in Eq. (6.3.5) is symmetric under the left-to-
right exchange5, and also under qubit inversion6. The full optimal CNOT-based quantum circuit,
evolving a system ofN = 4 neutrinos by a single application of U(dt), is shown in Fig. 6.14, where
we have deleted and merged the maximum number of gates and omitted the rotation angles.
Note that full connectivity allows to reduce the number of single qubit rotations, because the
operation wij(dt) in Eq. (6.2.11) is not in the useful form as in Eq. (6.3.4). The implementation
of wij(dt) requires, a priori, three CNOTs and 15 elementary rotations as proved for example
in Ref. [18] (see circuit in Eq. (2.4.30)). Practically the authors of the paper in Ref. [67] used
the Qiskit compiler, which implements the wij(dt) ∈ U(4) with a quantum circuit containing
8 general single-qubit rotations ∈ SU(2), represented by white boxes in the following quantum
circuit

• • •
. (6.3.8)

5Quantum circuit symmetry under left-to-right inversion

uij(dt) =

Rz

(
−π

2

)
• Rz(2α− π

2
)

• Ry(2α− π
2
) Ry(

π
2
− 2α) • Rz(

π
2
)

. (6.3.6)

6Quantum circuit symmetry under qubit inversion

uij(dt) =

Rz(
π
2
) • Ry(

π
2
− 2α) Ry(2α− π

2
) •

Rz(2α− π
2
) • Rz(−π

2
)

. (6.3.7)
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Expressing each general rotation in terms of elementary rotations (i.e. using the zyz decompo-
sition) it results in 24 elementary rotations instead of 15. A very good improvement of the swap
network algorithm is to use the circuit in Eq. (2.4.28) derived in Chapter 2, which reduces the
number of single qubit rotations to 4, coinciding with only 5 elementary rotations. Each pair
interaction uij(dt) followed by the SWAP gate can be in fact implemented by the circuit

uij(dt)
×

×
=

Rz(2α) • Rz(π/2)

Rz(−π
2 ) • Ry(2α) Ry(−2α) •

.

(6.3.9)
This result has never been used in any other work and could provide a significant improvement
in quantum simulation performed on quantum testbeds with linear topology.

In order to evolve the initial state up to a long time T , we can first split the evolution into
a sequence of Trotter steps as in Eq. (6.2.13), which, in terms of quantum circuits, is as follows

U(T ) = U(dt)

. . .

U(dt)
. . .

. . .

. . .

, (6.3.10)

and then implement each propagator U(dt) ≈ Ũ(dt) in the same way as described above. First,
we split the one-body and two-body parts, which reads

U(T ) =

u0(dt)

U (2b)(dt)

. . . u0(dt)

U (2b)(dt)
u1(dt) . . . u1(dt)

u2(dt) . . . u2(dt)

u3(dt) . . . u3(dt)

, (6.3.11)

and then we use the commutativity between them to get

U(T ) =

u0(dt) . . . u0(dt)

U (2b)(dt)

. . .

U (2b)(dt)
u1(dt) . . . u1(dt) . . .

u2(dt) . . . u2(dt) . . .

u3(dt) . . . u3(dt) . . .

, (6.3.12)

which means that we can exactly implement the one-body evolution for the whole evolution

time T , since U (1b)(T ) =
(
U (1b)(dt)

)k
for T = kdt. So

U(T ) =

u0(T )

U (2b)(dt)

. . .

U (2b)(dt)
u1(T ) . . .

u2(T ) . . .

u3(T ) . . .

. (6.3.13)

Finally, we introduce the only error contribution in the implementation, i.e. the two-body
evolution approximated as a product of pair interactions. The implementation of the multiple
Trotter step according to the procedure just described is shown in Fig. 6.15.
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ν0

ν1

ν2

ν3

Figure 6.15: Quantum circuit representation of the multiple Trotter steps evolution exploiting the
properties in Eqs. (6.3.11), (6.3.12) and (6.3.13), and the OO scheme for the pair decomposition.

ν0

ν1

ν2

ν3

Figure 6.16: Quantum circuit representation of the multiple Trotter steps evolution exploiting the
properties in Eqs. (6.3.11), (6.3.12) and (6.3.13) and using inverse order for the OO pair decomposition
scheme for the case of r = 2 total steps. The four general two-qubit interactions u03(dt) ·u12(dt) ·u03(dt) ·
u12(dt) inside the red dashed square, can be merged and be performed together in a single layer, namely
u03(2dt) · u12(2dt).

The total number of operations for the circuit can be further optimised by using an inverted
order of interactions (which is also an equally optimal order) in alternate steps, as shown in
Fig. 6.16 for two steps. This means that the last interactions u12(dt) · u03(dt) are performed at
the beginning for steps indicated by even values of k. In this case, the total number of gates
for the circuit results in a reduction of N/2 general two-qubit gates uij(dt) for each step, since
the last layer of the k-th step and the first layer of the (k + 1)-th step can be combined and
implemented in a single layer. This alternating scheme can also reduce the overall approximation
error since it then becomes equivalent to a second order Trotter step with time step 2dt (see
Sec. 6.6 for additional details).

6.4 Machine aware compilation

When performing a quantum simulation, it is always advisable to write and optimise the circuit
using the physical gates actually implemented by the machine. This approach, as already men-
tioned, allows us to reduce the number of gates needed for the simulation and to keep under
control the actual quantum circuit that the machine will execute.

We have tested the quantum algorithm presented in this chapter using the Quantinuum
System Model (QSM) H1-2, powered by Honeywell, which is a trapped-ion device similar to
the machine described in Ref. [82] and in Chapter 3. Each trapped-ion quantum machine,
although based on the same type of technology, can use a different set of gates as long as it
provides the universality feature. The compilation of a certain quantum circuit should always
be carried out using the library provided in order to (1) have control over the transformation
that is actually implemented by the machine and (2) ensure that the circuit is as short as possible
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and therefore optimal. The basic concepts of the quantum gate compilation for a trapped-ion
quantum machine can be found, for example, in Ref. [83] for a different library.

6.4.1 Quantinuum system model

Like other trapped-ion-based quantum devices, the QSM testbed offers the advantage of full
connectivity between the qubits. The qubit system is defined by the stable orbitals of the
valence electron of the 171Y b+ atom, which are controlled by a laser beam. The two available
machines (H1-1 and H1-2) allow a high fidelity gate implementation with a single-qubit gate
error of εq ∼ 10−4 and a two-qubit gate error of εqq ∼ 10−3. Single and two-qubit gates
are implemented in assignment zones, which rearrange the physical position of the ions. This
means that any pair of qubits can be moved into the action zone and made to interact. This
architecture thus creates an all-to-all connectivity hardware. Furthermore, because there are
multiple interaction zones, multiple quantum operations can be performed in parallel. At the
time we tested our algorithm, the machine had three interaction zones available (now the H1-1
machine has five interaction zones), meaning that a maximum of three pairs of qubits could be
brought into contact in the same layer.

The native single-qubit gates used are

R′
z(λ) =

(
e−iλ/2 0

0 eiλ/2

)
, (6.4.1)

where we have defined the z rotation with R′
z to distinguish it from the z rotation defined in

Eq. (2.1.5) of Chapter 2, which uses a different convention (the relation is Rz(α) = R′
z(−α)),

and

Uq(θ, ϕ) =

(
cos θ/2 −ie−iϕ sin θ/2

−ieiϕ sin θ/2 cos θ/2

)
, (6.4.2)

which, depending on the value of θ and ϕ, can generate Rx and Ry rotations. In most trapped-
ion-based quantum machines, such as the Quantinuum, the Rz rotations are implemented vir-
tually. This means that the testbed only stores the phase and these operations take zero time
and cause no error. The two-qubit gate is

ZZ = e(−iπ
4
Z⊗Z) =


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

 , (6.4.3)

up to a global phase of e−iπ/4, and its parametric version

Rzz(θ) = e(−i θ
2
Z⊗Z) =


1 0 0 0
0 eiθ 0 0
0 0 eiθ 0
0 0 0 1

 (6.4.4)

is also recently available. Actually, the QSM compiler accepts the Rx and Ry commands as
well as the CNOT gate, but translating all the operations into the native language could help
the user to further optimise the quantum circuit. This will bee discussed in Sec. 6.5.4. Some
properties of the above one- and two-qubit operations are listed below and used in the next
section to translate and optimise our quantum algorithm for this particular quantum machine.

(i) The Pauli matrices can be implemented with X = Uq(π, 0), Y = Uq (π, π/2), Z = R′
z(π),

and the Hadamard gate is H = R′
z(π)Uq(π/2,−π/2).
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(ii) The other non-native elementary rotations correspond to

Ry(θ) = Uq

(
θ,−π

2

)
= Uq

(
−θ, π

2

)
, Rx(θ) = Uq (θ, π) = Uq (θ,−π) . (6.4.5)

(iii) The adjoint of Uq(θ, ϕ) can be obtained by changing only the first angle

U †
q (θ, ϕ) = Uq(−θ, ϕ). (6.4.6)

This means that Uq(θ, ϕ)Uq(−θ, ϕ) = I, but the same property does not hold for the second
angle.

(iv) Two sequential Uq(θ, ϕ) can be easily merged if ϕ1 = ϕ2 := ϕ, namely

Uq(θ2, ϕ) · Uq(θ1, ϕ) = Uq(θi + θ2, ϕ). (6.4.7)

(v) At the time of this research, only two possible values θ ∈ {π, π/2} for Uq(θ, ϕ) were natively
available on the device. This means that up to three physical gates were needed to compile
a general unitary ∈ SU(2) as follows

Uq(θ, ϕ) = Uq

(π
2
, ϕ+

π

2

)
R′

z (θ)Uq

(π
2
, ϕ− π

2

)
. (6.4.8)

(vi) If the quantum circuit is to be assembled using the Qiskit package, the following relation-
ships must be taken into account

Uq(θ, ϕ) = u
(
θ, ϕ− π

2
,
π

2
− ϕ

)
(6.4.9)

where u(θ, ϕ, λ) ∈ SU(2) is the general single-qubit gate supported by Qiskit, and

ZZ = Rzz(π/2) (6.4.10)

up to a global phase.

(vii) The Rz rotation commute with the two-qubit gate ZZ.

(viii) Note that, unlike the case of CNOT, the ZZ gate is not self-adjoint, i.e. two consecutive
ZZ gates cannot be eliminated, but they give a separable gate, namely ZZ · ZZ = Z ⊗ Z
up to a global phase.

The cost of a submitted quantum circuit is measured in Honeywell Quantum Credits (HQC)
and depends on the number of single-qubit rotations Nq, the number of two-qubit rotations Nqq,
the number of state preparations and measurements Nm, and the number of shots M used to
repeat the circuit through the relation

HQC = 5 +
Nq + 10Nqq + 5Nm

5000
M. (6.4.11)

6.4.2 Optimal quantum circuit

The QSM compiler also works for non-native quantum gates such as CNOT, Rx and Ry opera-
tions, but a machine-aware translation of the circuit allows it to be further optimised by choosing
the best translation of each operation to maximise the number of merges and cancellations. To
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do this, we used the ZZ-based quantum circuit, which implements the CNOT operation, up to
a global phase eiπ/2, as follows

•
= ZZ

Rz(
π
2 )

Uq(−π
2 ,

π
2 ) Uq(

π
2 , π) Rz(

π
2 )

. (6.4.12)

Here Rz(α) is defined as in Eq. (2.1.5) and Uq(θ, ϕ) as in Eq. (6.4.2). We can directly replace
the CNOTs in the circuit (6.3.5) with the circuit (6.4.12) and use all the properties (i) - (viii).
After some calculations we get

Uq(−π
2 ,

π
2 )

ZZ

Uq(
π
2 , π) Rz(2α+ 3

2π)

ZZ

Uq(−π
2 ,

π
2 )

ZZ

Uq(
π
2 , π)

Uq(−2α, π2 ) Rz(
3
2π) Uq(−2α, π2 ) Rz(

π
2 )

,

(6.4.13)
where α := −dtJij . The circuit in Eq. (6.4.13) implements the pair interaction uij(dt) up to a

global phase of7 e−i 5
4
π and is completely written using the QSM library, up to the rotation Rz(θ),

which should be changed to R′
z(−θ) according to the notation in Eq. (6.4.1). At this point one

can compile the complete quantum circuit in Fig. 6.12, for N = 4 and in Fig. 6.13, for N = 8,
by replacing Eq. (6.4.13) into the two-qubit operations that implement the pair interactions.
This gives a single Trotter step evolution, for the case of N = 4 neutrinos, implemented by the
following network

• • • • • • • • •
• • • • • • • • •

• • • • • • • • •
• • • • • • • • •

, (6.4.14)

where the white boxes represent general unitaries ∈ SU(2) and we have used the convention

ZZ :=
•

•
. (6.4.15)

The quantum circuit can easily be extended to a larger number of particles. As can be seen,
the total number of gates is 18 ZZ operations and 36 general single qubit rotations. On the
other hand, using the circuit (6.3.8) for each pair interaction (which is necessary to implement
wij(dt) = SWAP · uij(dt) using the Qiskit compiler) would give an overall circuit with still 18
CNOTs, but 40 general single qubit gates. The new result in Eq. (6.3.9) would further reduce
the number of operations in the algorithm performed on a linearly connected qubit chain and
using a machine whose library is based on the CNOT gate (18 CNOTs and 24 unitaries ∈ SU(2)
or 30 elementary rotations Ry and Rz).

6.5 Results

In this section we report the results of the simulations carried out on the real quantum machine
presented in the previous sections. To obtain the results from the QSM, we submit the quantum

7The circuit (6.3.5) comes from the magic base decomposition, which implements uij(dt) up to a global phase
of eiπ/4. It contains three CNOTs, which are implemented using the ZZ-based circuit (6.4.12) up to a global
phase of e−iπ/2. So the final global phase is ei(π/4−3π/2).
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circuit using the Open Qasm language as a job. The job returns the results in the form of a
dictionary in which the element called results contains a sub-item called c where the count of
each output is expressed as a number associated to a string of n bits. One can convert the result
given by the machine using a simple function that translates the dictionary into a histogram
and then into a probability for each qubit to be measured in a given state ∈ {|0⟩ , |1⟩}.

We perform two different simulations: first we approximate the full time evolution with a
single Trotter step (see Eq. (6.3.1)) with different values of dt, as done in Ref. [67], and then
we perform a multi-step simulation (as in Eq. (6.3.13)) with dt = 4µ−1. The results of the
simulation are reported as inversion probabilities for each neutrinos to reproduce the evolution
in Fig. 6.7 (blue line) for the first type of simulation and the evolution in Fig. 6.10 (blue line)
for the second type of simulation. The results are reported with an error bar representing the
statistical error calculated as in the next section.

6.5.1 Statistical error

For each simulation, the circuit is repeated M = 200 times to collect statistics on the measure-
ment results. The results of the simulation are then analysed by calculating statistical confidence
intervals using the Bayesian approach already used in Ref. [67]. Assuming that we measure M
times a single qubit |q⟩ and obtainm times the state |1⟩, the probability distribution of obtaining
m results against the M measurements is given by the binomial distribution of the probability
p we sample:

Pb(m|p) =
(
M
m

)
pm(1− p)M−m. (6.5.1)

According to Bayes’ theorem, the conditional probability of getting a probability p given the m
measures is

P(p|m) =
P(m|p)P(p)
P(m)

=
P(m|p)P(p)∫
dqP(m|q)P(q)

. (6.5.2)

This relation can be interpreted as the transformation of the prior distribution P(p) into the
posterior distribution P(p|m) according to a likelihood distribution P(m|p). A distribution is
called the prior conjugate of the likelihood function if it is transformed by Bayes’ theorem into
a distribution with the same algebraic form but with different parameters. Using the binomial
distribution in Eq. (6.5.1) as the likelihood distribution, we have that the prior conjugate is the
Beta distribution:

B(α, β) = Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1. (6.5.3)

If we replace the Beta as the prior distribution and the binomial as the likelihood distribution in
Eq. (6.5.2), we can see that the posterior distribution is still a Beta distribution with different
parameters, namely

P(p|m) =
Pb(m|p)B(α, β)∫
dqPb(m|p)B(α, β)

=
pm(1− p)M−mpα−1(1− p)β−1∫
dqqm(1− q)M−mqα−1(1− q)β−1

=
pm+α−1(1− p)M−m+β−1∫
dqqm+α−1(1− q)M−m+β−1

:=
pα

′−1(1− p)β′−1∫
dqqα′−1(1− q)β′−1

= B(α′, β′),

(6.5.4)
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where we have defined the parameters of the posterior distribution α′ := α + m and β′ :=
β+M−m. We set the parameters of the prior distribution so that it is constant, i.e. α = β = 1.
After having performed M simulations of a circuit and obtained m times a certain result for a
fixed qubit, we can estimate the confidence interval so that it contains the 68% or the 90% of
the data generated by the posterior distribution B(m+ 1,M −m+ 1) by calculating the value
pmin and pmax so that P(pmin < p < pmax) = 0.68 or 0.90 (using the percentile). In this chapter
we present the 68% and 90% confidence intervals of the results with error bars with and without
caps respectively.

6.5.2 Single Trotter step evolution

The single-step results are obtained both for a system with N = 4 neutrinos, equivalent to the
one studied in Ref. [67] on a superconducting device and in Ref. [69] on a quantum annealer,
and for a larger system with N = 8. A more recent paper (Ref. [84]) has applied the same
algorithm on the same quantum hardware for a system of N = 12 and obtained excellent results
for the case of single Trotter evolution. This suggests the possibility of increasing the number
of neutrinos to be simulated.

The initial flavour states for N = 4 and N = 8 are chosen to contain a mixture of both νe
and νx flavours as in Eq. (6.1.7). In particular, we set

|φ(0)⟩(4) = |0011⟩ , |φ(0)⟩(8) = |00001111⟩ , (6.5.5)

respectively, and initialise the quantum register with single qubit gates Uq(π, 0) = X. We then
apply the Trotter step according to the diagram in Fig. 6.12 (and it’s generalisation to the case
N = 8), using the gate decomposition in Eq. (6.4.13) for each

(
N
2

)
two-qubit operation. Once

the initial state is set for all simulations, the propagation of a single Trotter step is performed
by applying the circuit with the parameter α = −Jijdt, for each pair and using different values
of dt. This requires a number of ZZ gates equal to 18 for N = 4 and 84 for N = 8.

Since the trapped-ion device has more than four qubits at our disposal, in order to minimise
the execution cost of the N = 4 experiments (see the constant contribution to the cost in
Eq. (6.4.11)), we always use two sets of four qubits simultaneously, each of which performs the
circuit corresponding to two different values of dt1 and dt2, where dt2 = dt1+4µ−1. The results
presented below are therefore all from experiments with eight qubits, as follows

|0⟩

U(dt1)
|0⟩
|1⟩
|1⟩
|0⟩

U(dt2)
|0⟩
|1⟩
|1⟩

and

|0⟩

U(dt)

|0⟩
|0⟩
|0⟩
|1⟩
|1⟩
|1⟩
|1⟩

, (6.5.6)

for N = 4 and N = 8 respectively. In the case of N = 4, the two-qubit gate depth is equal to
9, as can be easily seen in Fig. 6.12, where we have three ZZ gates for each of the three layers.
In the case of N = 8 the quantum circuit, similar to the one shown in Fig. 6.13, contains 7
layers, corresponding to a two-qubit gate depth of 7 · 3 = 21. Using this algorithm, the gate
depth for the circuit implementing the single Trotter-step evolution of a system of N neutrinos
is 3(N − 1).
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Figure 6.17: Single Trotter step evolution for the inversion probability starting from the initial state

|φ(0)⟩(4) = |0011⟩. Panel (a) is for neutrinos ν0 and ν3, and panel (b) is for ν1 and ν2. The black dotted
line represents the ideal results using the exact propagator, while the black solid line represents the ideal
result using a single Trotter step for dt ∈ [0, 40]µ−1. The results obtained from the experiments on QSM
H1-2 are represented by data points and error bars with and without caps corresponding to 68% and 90%
confidence intervals, respectively, and for time steps dt = 4k µ−1 where k ∈ {1, . . . , 10}.

Figure 6.17 shows the results for the inversion probability obtained for the simulation of
a system of N = 4 neutrinos, while Fig. 6.18 shows those for a system of N = 8 neutrinos.
In both figures, the pairs of neutrinos related by the exchange symmetry of Eq. (6.1.4) are
shown in the same panel. In the limit of negligible machine errors, the implementation of the
propagator proposed in this work guarantees perfect symmetry under particle exchange in the
case of N = 4, and the results obtained on the real device almost always respect this symmetry
within a confidence interval of 68% and always in the interval of 90%. For N = 8 neutrinos our
implementation of the propagator respects the symmetry of particle exchange up to dt ≈ 24µ−1,
as can be seen from the theoretical results shown as solid lines in Fig. 6.18. The real data respect
the same symmetry within the 90% confidence interval. The results obtained for the evolution
of a single step are very promising and much more compatible with the theoretical ones than
those obtained in Ref. [67] and reported also here in Fig. 6.19. To further compare the results
obtained in this work using a trapped-ion device and all-to-all connectivity with the previous
results obtained using the swap network on the IBMQ Vigo superconducting device [67], in
Table 6.1 we present the values for χ2 of the inversion probabilities of each neutrino for the
N = 4 simulation. The quality of the results is assessed by measuring the distance of the

calculated results Pi(t) from the theoretical prediction of the inversion probability P
(th)
i (t) of

ν0 ν1 ν2 ν3
OO + QSM H1-2 (bare) 0.36 0.35 0.27 0.14
SN + IBMQ Vigo (bare) 424.31 527.64 545.28 502.60
SN + IBMQ Vigo (mit) 71.35 73.64 126.38 142.72
SN + IBMQ Vigo (bare*) 10.36 12.88 13.31 12.27

Table 6.1: Values of χ2 for each neutrino calculated on the results obtained from the propagation of a
single Trotter step. The results denoted IBMQ Vigo are taken from Ref. [67] (see Fig. 6.19), while the
QSM H1-2 ones are from the present work.
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Figure 6.18: Single Trotter step evolution for the inversion probability starting from the initial state

|φ(0)⟩(8) = |00001111⟩ of a system with N = 8 neutrinos. The results are calculated using a single
Trotter step evolution for dt ∈ {8, 16, 24, 32}µ−1. Panel (a) shows the result for the pair (ν0, ν7), panel
(b) for (ν1, ν6), panel (c) for (ν2, ν5) and panel (d) for (ν3, ν4). Curves and data points follow the same
convention as in Fig. 6.17.
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Figure 6.19: Results for the inversion probability for the N = 4 system obtained in previous work
(Ref. [67]) using the swap network scheme and the IBMQ Vigo quantum machine.
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Figure 6.20: Single Trotter step evolution for the system of N = 4 neutrinos for time steps dt ∈
{16, 24, 32}µ−1, using three parallel simulations of four neutrinos each.

the neutrino νi at time t using the following function:

χ2
i =

1

10

10∑
k=1

(
Pi(kdt)− P (th)

i (kdt)
)2

δPi(kdt)2
, (6.5.7)

where δPi(t) is the estimated variance (taken to coincide with the 68% confidence interval) and
10 is the number of simulated points, for each neutrino, used to calculate χ2. The third row of
table 6.1 shows results from the superconducting IBMQ device after error mitigation, for our
current simulation we did not attempt to mitigate errors and report the bare results directly.
As can be seen from these results, there is a significant increase in fidelity with the new results
presented here. This is an effect of both the higher gate fidelity provided by the trapped-ion
device and the reduction in one-qubit rotations provided by the different Trotter decomposition
adopted here. The number of general single-qubit operations ∈ SU(2) in a single step for N = 4
is indeed reduced from 40 with the decomposition adopted in Ref. [67] to 36 in the present
work. More importantly, the 40 rotations adopted in the previous work have arbitrary angles
due to the combination of the pair propagator and the SWAP gate. Three elementary rotations
are always required to implement them. Instead, by exploiting the full connectivity and the
optimal decomposition in Fig. 6.14, about 2/3 of the unitaries consist of rotations of angles
that are multiples of π/2. This helps to reduce the effect of coherent errors in the final results.
Finally, the results of the IBMQ simulations are obtained using a much larger statistical sample
(8192 circuit repetitions instead of 200). In order to compare the new results more directly with
those obtained there, in the last line of Table 6.1 we also report the estimated χ2 we would have
expected to see if we had reduced the statistics of the bare IBMQ results (obtained by multiplying
by 200/8192). The same procedure cannot be applied consistently to the mitigated results, since
such an estimate is also affected by systematic errors (for more details see Refs. [67, 85, 86]).
However, the strong effect of increased gate fidelity is still evident. The use of error mitigation
techniques could further improve the quality of the results. These techniques, including but not
limited to symmetry protection (as elucidated by Tran et al. in Ref. [87]), virtual distillation (as
introduced by Huggins et al. in Ref. [88]), and symmetry verification (as articulated by Bonet et
al. in Ref. [89]), hold the promise of substantially ameliorating the noise-induced perturbations
that affect the simulation results.

Because we chose to use 8 qubits to run two simulations in parallel for N = 4, the result
errors could in principle be affected by cross-talk between the two simulations. However, we have
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Figure 6.21: Real-time evolution of a system with N = 4 neutrinos for time step dt = 4µ−1 and for
a total time of T = kdt with k ∈ {1, . . . , 10} using the QSM H1-2 trapped-ion device. Panel (a) for
neutrinos ν0 and ν3 and panel (b) for ν1 and ν2. Dashed black lines are the ideal evolutions, which, using
this small time step, is almost the same as the Trotter approximated propagation (black points).

analysed the results of three parallel runs over 12 qubits using time steps dt = (16, 24, 32)µ−1

and the results are shown in Fig. 6.20. Since we found them to be compatible with the results
shown in Fig. 6.17, this suggests that cross-talk effects are minimal. Furthermore, the quantum
machine has three interaction zones, which means that at most three pairs of qubits can be made
to interact simultaneously. Since in this last simulation we ran the same circuit (with different
angles in the individual qubit rotations) on three quartets of qubits, the moment of interaction of
the pairs via the ZZ gate should presumably occur at the same time. It can therefore be assumed
that the excess pairs are made to interact at a later time during compilation, which could cause
the so-called idle error. However, since the data are compatible with the compilation of the
4 + 4 circuit, we can conclude that also this error did not significantly affect the simulation.

6.5.3 Multiple Trotter step evolution

As mentioned in the previous sections, in order to achieve long simulation times while keeping
the error under control, the standard approach is to divide the full interval into time steps which
are then approximated by a short time step. The real-time evolution of the system of N = 4
neutrinos, initially in the state |φ(0)⟩(4) = |0011⟩, is achieved by the sequential application of
the trotterised evolution, as shown in the scheme in Fig. 6.15, a number of times k ∈ {1, . . . , 10}
to obtain the final state |φ(kdt)⟩ = Ũ (2b)(dt)kU (1b)(dt)k |φ(0)⟩ with dt = 4µ−1. The results are
plotted in Fig. 6.21. In this case, too, in order to make the best use of the whole machine, we
ran the simulations in pairs, allowing the first four neutrinos to evolve up to a time T = kdt and
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the last four up to T = (k + 1)dt, as follows:

|0⟩

U(dt)

. . .

U(dt)
|0⟩ . . .

|1⟩ . . .

|1⟩ . . .

|0⟩

U(dt)

. . .

U(dt) U(dt)
|0⟩ . . .

|1⟩ . . .

|1⟩ . . .

. (6.5.8)

This means that the circuit simulating the first two times T = dt and T = 2dt contains 18 ZZ
gates applied to the first four qubits and 36 to the last four. The Table 6.2 summarises the
number of ZZ gates and single qubit gates needed to simulate the system up to a given evolution
time T = kdt. For each step we need

(
N
2

)
3 = 18 two-qubit gates, while exploiting cancellations

between neighbouring pair propagators, the number of general single-qubit rotations required
is 32k + 4. In fact, the first step involves 36 rotations ∈ SU(2), two of which are applied to
neutrinos ν0 and ν1 at the end of the circuit. When we add the second step, the one-body part
goes to the beginning and adds nothing, so 34 gates are added. But the second step still has
two gates applied to ν0 and ν1 at the beginning of the circuit, which can then be merged. So
the final count is

#SU(2) = 36 + (34− 2)(k − 1) = 32k + 4. (6.5.9)

Considering the two blocks of 4+4 qubits isolated from each other, the data for T = 5dt is
obtained with a circuit of 90 gates applied on 4 qubits so the deep is compatible with the circuits
used to simulate each single Trotter step of the system of N = 8 qubits, presented in Fig. 6.18,
for which 84 ZZ gates are used. Their comparison underlines the compatibility of the error and
therefore suggests again that the cross-talk contribution is negligible. Regarding the idle error,
we can make another observation. In this quantum machine, by default, measurements are taken
at the end of the circuit (contrary to what is called Mid-circuit measurement). Our simulations
include two independent circuits applied to two separate packets of qubits, where the first ends
before the second. This means that the first 4 qubits are subject to idle errors which, in the
case of trapped ions, are mainly related to dephasing. One way to improve the simulation could
be to use the dynamical decoupling approach [90], which consists in applying a sequence of
single-qubit gates to the observing qubits, which have the overall effect of an identity. However,
if the idle error had significantly affected the results, we should observe some degradation in the
results related to the odd value of k.

# of steps k 1 2 3 4 5 6 7 8 9 10

# of ZZ gates 18 36 54 72 90 108 126 144 162 180
# of SU(2) gates 36 68 100 132 164 196 228 260 292 324

Table 6.2: Number of single-qubit gates ∈ SU(2) and two-qubit ZZ gates to evolve the system of N = 4
neutrinos to a fixed time T = kdt to produce the results in Fig. 6.21.
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6.5.4 Machine-aware vs automatic compilation

As already mentioned, the QSM compiler does not apply quantum gates as Rx, Ry and CNOT,
but allows them to be read and translated from the Qasm language. What the compiler does is
to decompose such operations using native gates, for example using the circuit in Eq. (6.4.12) for
the CNOT case. However, it should be clear at this point that an important aspect of quantum
circuit optimisation is precisely the translation of the quantum algorithm into the native library.
This guarantees to have control over the quantum circuit that will actually be run, and increases
the optimisation of the decomposition. To appreciate how important the machine-aware feature
of the compiler is, we tested two different quantum circuits for the 4-neutrino system on the noisy
Honeywell Quantum Emulator (HQE), which theoretically implements the noise of the machine
H1-1. The first implementation consists in using the Qiskit compiler, which allows to decompose
uij(dt) ∈ SU(4) using three CNOTs and 8 single-qubit rotations, as shown in Eq. (6.3.8). This
approach is the same used in previous work (Ref. [67]) to implement wij(dt) = SWAP · uij(dt).
The Qasm code is then given to the HQE, which automatically translates the quantum circuit
into its own library. The second approach is instead the optimal quantum circuit, as used to
obtain the real evolution results in Fig. 6.21, and consists in optimising the quantum circuit
using the native gate set of the quantum machine. Thus, in theory, the machine does not need
to perform any translation or optimisation and can directly apply the algorithm written in
Qasm. The Figure 6.22 shows the results obtained by the emulator using the two approaches
just described. The top panels show results using the first approach and the bottom panels the
second. We observe a clear reduction in errors using the machine-aware optimisation approach.
To further compare the results we reported in Table 6.3 the χ2, for each neutrino, relative to
the results of the two decomposition methods.

6.6 Error scaling and gate cost

In this section we analyse the scaling of the Trotter error and the gate cost of the circuit
required to simulate the collective neutrino oscillation as a function of the numberN of neutrinos.
To compare the different decomposition techniques, we look at the scaling corresponding to a
description of a system in which we fix the neutrino density nν = N/V and increase the dimension
of the system. Further details and full calculations of the results presented here can be found
in the Appendix A (Sec. A.1 for the first order and Sec. A.2 for the second order).

6.6.1 First order Trotter error for the interaction Hamiltonian

The two-body part of the neutrino system Hamiltonian describes the ν−ν scattering and consists
of a sum of Γ =

(
N
2

)
= N(N − 1)/2 terms

H(2b) =
N∑
i<j

hij :=
Γ∑

K=1

hK , (6.6.1)

ν0 ν1 ν2 ν3
CNOT-based circuit 0.57 0.32 0.12 0.49
ZZ-based circuit 0.11 0.32 0.55 0.11

Table 6.3: Values of χ2 for each neutrino calculated on the results obtained from the multiple-Trotter
step propagation on the HQE shown in Fig. 6.22. First line for the CNOT-based automatically optimised
quantum circuit and second line for the machine-aware compilation.
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Figure 6.22: Real-time evolution of a system with N = 4 neutrinos for time step dt = 4µ−1 and for
total time T = kdt with k ∈ {1, . . . , 8} using the noisy QSE. Panels (a) and (b) show results using a
CNOT-based quantum circuit automatically optimised by the Honeywell compiler (neutrinos ν0 and ν3
in panel (a) and ν1 and ν2 in panel (b)), and panels (c) and (d) show the results obtained by running
on the emulator the optimal machine-aware optimised quantum circuit (neutrinos ν0 and ν3 in panel (c)
and ν1 and ν2 in panel (d)).
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where hij = µJijσi · σj/N and we count the neutrinos from 1 to N instead of from 0 to N − 1.
Using the first-order Trotter decomposition, we can implement the propagator (see Eq. (6.2.8))
using a standard first-order product formula

U (2b)(dt) ≈ L1(dt) :=
N∏
i<j

e−ihijdt =

Γ∏
K=1

e−ihKdt. (6.6.2)

Using the result from Proposition 9 of Ref. [91], we bound the first-order Trotter error as

ε1(dt) =
∥∥∥L1(dt)− U (2b)(dt)

∥∥∥ ≤ dt2

2

Γ∑
K=1

∥∥∥∥∥
Γ∑

L=K+1

[hK , hL]

∥∥∥∥∥, (6.6.3)

where in our case K and L correspond to pair indices K = (i, j) and L = (k, l). The sum
inside the norm in the expression above can be expressed explicitly using the double indices and
separating the sum for L > K into two contributions: those for which the first index of K is
equal to the first index of L and those for which the first index of L is greater than the first
index of K. Finally, considering that a commutator [hij , hkl] is different from zero if at least
one index in (k, l) matches an index in (i, j), we obtain that the Trotter error bound for a small
time step dt is

ε1(dt) ≤
dt2

2

N∑
i<j

∥∥∥∥∥∥
j−1∑

k=i+1

[hij , hkj ] +

N∑
l=j+1

([hij , hil] + [hij , hjl])

∥∥∥∥∥∥. (6.6.4)

The commutators between different two-body Hamiltonians can be calculated in a straightfor-
ward way as follows

[hij , hik] =
µ2

N2
JijJik[σi · σj ,σi · σk] =

µ2

N2
2iJijJikσi · (σj ∧ σk), (6.6.5)

where we have used a∧b to denote the standard cross product in three dimensions. Substituting
this equation into Eq. (6.6.4) we have

ε1(dt) ≤ dt2
µ2

N2

N∑
i<j

∥∥∥∥∥∥Jij
 N∑

l=j+1

(Jil − Jjl)σi · (σj ∧ σl) +

j−1∑
k=i+1

Jkjσj · (σi ∧ σk)

∥∥∥∥∥∥, (6.6.6)

where we used the cyclic permutation equivalence of the cross product. Then, considering
that the coupling matrix Jij is positive and using the bound ∥σi · (σj ∧ σk)∥∞ ≤ 4 for all
i, j, k ∈ {1, . . . , N} we get

ε1(dt) ≤ 4dt2
µ2

N2

N∑
i<j

Jij

∥∥∥∥∥∥
N∑

l=j+1

(Jil − Jjl) +
j−1∑

k=i+1

Jkj

∥∥∥∥∥∥. (6.6.7)

For a specific choice of angular distributions the sums can be computed straightforwardly. How-
ever, in order to obtain a general bound on the error we can introduce

Θ := max
i,j

(1− cos(θij)) (6.6.8)

and obtain the upperbound

ε1(dt) ≤ 12dt2
µ2Θ2

N2

(
N

3

)
= O

(
dt2µ2N

)
. (6.6.9)
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Fixing a total evolution time T and evolving the system for r1 = T/dt steps, the total error can
be bounded by

ε1(T ) ≤ r1ε1(dt) ≤ r112
T 2

r21

µ2Θ2

N2

(
N

3

)
= 12

T 2µ2

r1

Θ2

N2

(
N

3

)
. (6.6.10)

where we used the union bound to obtain ε1(T ) ≤ rε1(dt). One also finds that the total number
of steps r1(T, ϵ) required to evolve to a time T while keeping the total error below ϵ scales
linearly with the system size, namely

r1(T, ϵ) ≤ 12
T 2µ2

ϵ

Θ2

N2

(
N

3

)
= O

(
T 2µ2

ϵ
N

)
. (6.6.11)

We can then bound the gate cost C1(T, ϵ) of a quantum circuit implementing the full evolution
in terms of the number of general two-qubit gates ∈ SU(4) needed to implement all the steps.
For N neutrinos, we have

(
N
2

)
= N(N − 1)/2 interaction terms in each Trotter step, so the gate

cost using a first-order product formula scales as

C1(T, ϵ) ≤
(
N

2

)
r1(T, ϵ) = 12

T 2µ2Θ2

ϵN2

(
N

3

)(
N

2

)
= O

(
T 2µ2

ϵ
N3

)
. (6.6.12)

Since all transformations ∈ SU(4) can be decomposed with at most three entanglement gates [17],
as we proved for the native gate set available on the QSM H1-2 system in Eq. (6.4.13) and proved
in Sec. 2.4.2, the total number of two-qubit gates is given by 3C1(T, ϵ).

6.6.2 Second order Trotter error for the interaction Hamiltonian

It is possible to get a more accurate approximation of U (2b)(dt) using a second order Trotter-
Suzuki formula, which can be expressed as

U (2b)(dt) ≈ L2(dt) = L1
(
dt

2

)
L†1
(
−dt

2

)
, (6.6.13)

Using the result of Proposition 10 from Ref. [91], the second order Trotter error can be bounded
by:

ε2(dt) ≤
dt3

12

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

Γ∑
M>K

[hL, [hM , hK ]]

∥∥∥∥∥+ dt3

24

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

[hK , [hK , hL]]

∥∥∥∥∥. (6.6.14)

To bound the second term, we use a similar procedure to the one adopted in the first order case
by expanding the sums and keeping contributions [hij , [hij , hkl]] with one of the (k, l) indices
matching one of the (i, j) indices. Translating the sums into a double index sums (K = (i, j)
and L = (k, l)) the second term becomes:

dt3

24

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

[hK , [hK , hL]]

∥∥∥∥∥ =

dt3

24

N∑
i<j

∥∥∥∥∥∥
N∑

l=j+1

[hij , [hij , hil]] +

j−1∑
k=i+1

[hij , [hij , hkj ]] +
N∑

l=j+1

[hij , [hij , hjl]]

∥∥∥∥∥∥. (6.6.15)

The bound can then be found by using the expression for the nested commutator

[hij , [hij , hik]] = −4J2
ijJikσi · (σj ∧ (σj ∧ σk)), (6.6.16)
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together with the bound ∥σi · (σj ∧ (σj ∧ σk))∥ ≤ 8. The result reads

dt3

24

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

[hK , [hK , hL]]

∥∥∥∥∥ ≤ 4dt3
µ3Θ3

N3

(
N

3

)
. (6.6.17)

We now turn our attention to the first contribution in Eq. (6.6.14). Using the double indices
K = (i, j), L = (k, l) and M = (p, q) we have

dt3

12

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

Γ∑
M>K

[hL, [hM , hK ]]

∥∥∥∥∥ =

dt3

12

N∑
i<j

∥∥∥∥∥∥
 N∑

l=j+1

δki +
N∑

k=i+1

N∑
l=k+1

 N∑
q=j+1

δpi +
N∑

p=i+1

N∑
q=p+1

 [hkl, [hpq, hij ]]

∥∥∥∥∥∥ (6.6.18)

which can be bound as the sum of the different norms. After long and boring calculations, which
can be found in Appendix A.2, we found that the first contribution gives

N∑
i<j

N∑
l=j+1

N∑
q=j+1

∥[hil, [hiq, hij ]]∥ ≤ 32
µ3

N3
Θ3

(
2

(
N

4

)
+

(
N

3

))
, (6.6.19)

the second gives

N∑
i<j

N∑
l=j+1

N∑
p=i+1

N∑
q=p+1

∥[hil, [hpq, hij ]]∥ ≤ 32
µ3

N3
Θ3

(
3

(
N

4

)
+

(
N

3

))
, (6.6.20)

the third gives

N∑
i<j

N∑
k=i+1

N∑
l=k+1

N∑
q=j+1

∥[hkl, [hiq, hij ]]∥ =≤ 32
µ3

N3
Θ3

(
6

(
N

4

)
+

(
N

3

))
, (6.6.21)

and the last one gives

N∑
i<j

N∑
k=i+1

N∑
l=k+1

N∑
p=i+1

N∑
q=p+1

∥[hkl, [hpq, hij ]]∥ ≤ 32
µ3

N3
Θ3

(
10

(
N

4

)
+ 3

(
N

3

))
. (6.6.22)

The final bound we found for the first contribution in Eq. (6.6.14) is then

dt3
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∥∥∥∥∥
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12
32
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4

)
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(
N

3

))
≤ 1

9
dt3µ3Θ3 (N − 1)(N − 2)

N2
(21N − 39) .

(6.6.23)

We conclude that the second order Trotter error can be bound, also in this case, by a linear
scaling with N . In particular,

ε2(dt) ≤ dt3
µ3Θ3

N3

(
20

(
N

3

)
+ 56

(
N

4

))
= O(dt3µ3N). (6.6.24)

Evolving up to T using r2 steps, the total error can be bounded by

ε2(T ) ≤ r2ε2(dt) =
T 3

r22

µ3Θ3

N3

(
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(
N

3

)
+ 56

(
N

4

))
= O

(
T 3µ3N

r22

)
, (6.6.25)
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and the necessary number of steps to have a target error ϵ is

r2(T, ϵ) ≤
(TµΘ)3/2
√
ϵN3/2

√
20

(
N

3

)
+ 56

(
N

4

)
= O

(
T 3/2µ3/2

√
N√

ϵ

)
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Finally, the complexity in terms of two-qubit gates is

C2(T, ϵ) ≤
(
2

(
N

2

)
− N

2

)
r2(T, ϵ) = O

(
(Tµ)3/2√

ϵ
N5/2

)
. (6.6.27)

The scaling with the number of neutrinos N has improved considerably within this scheme. The
use of even higher order formulas may allow one to achieve a near optimal scaling C(N2+δ) for
δ ≪ 1, but with possibly much larger constant prefactors.

6.6.3 Qubitisation scaling

Finally, we would like to comment on the prospect of using more modern approaches to simulate
the time evolution operator, such as qubitisation [25, 92]. This scheme also approximates the
propagator over small time intervals, but unlike Trotter-Suzuki based approaches, it is able to
achieve optimal scaling in both T and the error ϵ for the number of steps

rQ = O
(
TαH + log

(
1

ϵ

))
, (6.6.28)

where αH is a suitable norm of the Hamiltonian operator, which for the two-body neutrino
Hamiltonian is given by

αH =
µ

N

∥∥∥∥∥∥
N∑
i<j

(1− cos(θij))σi · σj

∥∥∥∥∥∥
= 3

µ

N

N∑
i<j

(1− cos(θij))

= O(µN).

(6.6.29)

For a general angular distribution, the gate cost for each of the steps scales with the number of
different coefficients, and thus the gate cost for the algorithm scales as

CQ(T, ϵ) = O
(
TµN3 +N2 log

(
1

ϵ

))
. (6.6.30)

For a fixed evolution time T and target error ϵ, the second-order Trotter-Suzuki scheme then
scales better than a qubitisation-based approach. This is not a special property of the neutrino
system and has been observed in other applications. Rather, it is related to the fact that
qubitisation does not exploit the commutation properties of the terms that form the Hamiltonian.

Figure 6.23 shows the scaling of the 2-qubit operations C(T, ϵ) required to evolve a system
of N neutrinos up to a total time T = 40µ−1 as a function of the number of particles N and
for different methods of propagator decomposition. The error limit has been set to ϵ = 0.15
and we use a strength of Jij = 1/N for all particles that coincide with neutrinos propagating
in the orthogonal direction θij = π/2. We also summarise the results for the bounds on both
the number of time steps and the circuit (gate) complexity of a simulation with N neutrinos,
maximum time T and error tolerance ϵ in Table 6.4. As can be seen, the qubitisation approach
wins for arbitrarily small error threshold ε and arbitrarily long evolution time T , but for fixed
times and errors there exists a value of N for which the second order Trotter decomposition is
advantageous.
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Figure 6.23: Number of two-qubit universal operations needed to evolve a system of N neutrinos for a
time T = 40µ−1 guaranteeing an error ϵ ≤ 0.15. Dashed blue line represents the asymptotic scaling of the
complexity C1(T, ϵ) using the first order product formula (Eq. (6.6.12)) and the solid red one is C2(T, ϵ)
for the second order product formula (Eq. (6.6.27)). Finally, the dashed green line is for qubitization
complexity CQ(T, ϵ) in Eq. (6.6.30).

Decomposition type Single-step error Number of steps Circuit complexity

First order Trotter O(dt2µ2N) O
(
T 2µ2

ϵ N
)

O
(
T 2µ2

ϵ N3
)

Second order Trotter O(dt3µ3N) O
(
T 3/2µ3/2

√
ϵ

√
N
)

O
(
T 3/2µ3/2

√
ϵ

N5/2
)

Qubitization - O
(
TµN + log

(
1
ϵ

))
O
(
TµN3 + log

(
1
ϵ

)
N2
)

Table 6.4: Asymptotic scaling of the error, needed steps, and number of two-qubit operations to evolve
a system until T , keeping the error below ϵ as a function of the number of particles N and for different
methods of propagator decomposition.
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Figure 6.24: Number of two-qubit operations Ci(T, ϵ), as a function of N , needed to evolve the system
of total time T = 40µ−1 with an error εi(T ) ≤ ϵ = 0.15 for order decomposition i ∈ {1, 2}. The solid
blue line corresponds to the first order bound and the green band to the real scaling achievable using
different pair orders. The solid red line instead refers to the second order bound and the yellow band is
the corresponding real achievable complexity. Using the optimal decomposition, for the system of N = 4
neutrinos, the number of two-qubit universal operations required is 10N(N − 1)/2 = 60 and corresponds
to 180 CNOT or ZZ gates, which we actually use to obtain the last point in Fig. 6.21.

6.6.4 Real numerical cost

The actual implementation cost is several orders of magnitude lower than predicted by the
theoretical bounds. Moreover, as shown in Section 6.2.2, the cost can be further reduced by
using a good decomposition of the propagator, which guarantees a smaller error and therefore
allows us to use a larger value of the time step dt. For a total evolution time of T = 40µ−1 and a
target error of ϵ = 0.15, we show in Fig. 6.24 the theoretical limits of the number of gates C1(T, ϵ)
and C2(T, ϵ) for the first and second order decompositions as solid blue and red lines, respectively.
We also numerically determine the actual range of gate counts required for this simulation as we
vary the order in the Trotter decomposition, which we show in Fig. 6.24 as the shaded green and
yellow bands for the first and second formulas, respectively. The real complexity is computed
using a linear accumulation error, i.e. we search for dt such that r = T/dt guarantees

r
∥∥∥e−iH(2b)T/r − Ũ (2b)(T/r)

∥∥∥ ≤ ϵ, (6.6.31)

where Ũ2b(T/r) = L1(T/r) or Ũ2b(T/r) = L2(T/r) as defined in Eqs. (6.6.2) and (6.6.13)
respectively. Using the exact error accumulation instead of the linear accumulation boundary,∥∥∥e−iH(2b)T − Ũ (2b)(T/r)r

∥∥∥ ≤ ϵ, (6.6.32)

the number of steps required may be smaller.



Conclusions

This thesis deals with the topic of digital quantum computing applied to the simulation of many-
body systems, with a particular application to collective flavour oscillation. After an introduction
to the general concept of quantum computing, the second chapter introduced the concept of
quantum gate decomposition and its formulation in terms of quantum circuits. The design of
quantum algorithms in general, and especially in the era of noisy quantum computers, reduces
to the definition of the gate decomposition of the unitary transformation to be implemented. An
overview of existing methods has been given. However, none of them can be considered efficient,
since exponential scaling is intrinsic to the group of unitary transformations that define the
evolution of a qubit system. To circumvent this problem two possible solutions exist. The first
is to push for substantial improvements in the hardware. This should increase the decoherence
time of the qubits and reduce the error introduced by the quantum gates, so that the simulation
error becomes small enough to be negligible even with exponential scaling of the complexity.
The second, which is more realistic and also applicable today, is to adapt the decomposition
procedure to the particular problem we are dealing with. An optimal universal compiler that does
not require exponential complexity does not yet exist. Therefore, a computer scientist should be
familiar with the various existing decomposition methods, taking into account all their drawbacks
and potentials. This will firstly ensure that one can consciously choose the most appropriate
method for a given problem and, more importantly, lay the foundation for the search for further,
increasingly sophisticated and efficient decomposition methods. While it is necessary to be aware
of the different methods of decomposition, the development of quantum algorithms cannot be
separated from the knowledge of the different types of existing hardware and, consequently,
the different approaches that need to be taken to use them. This argument applies to both
a software perspective (each machine has its own library and computational language) and
a hardware perspective (each machine has its own topology and natural interactions). Each
quantum computer can be deeply different from the others, and each hardware manifests its
own advantages and challenges. The hope of this work was also to convey the importance of
machine-aware compilation and how this affects the cost of a circuit and the quality of the results
obtained. The aim of the chapter on a trapped-ion machine was to present the physics behind
the construction of a quantum computer in a comprehensive and didactic way.

The key message of the chapter on the tensor notation of quantum computing was that a
given problem can be approached from different perspectives, each with different potentials and
advantages. This is true for both the quantum gate decomposition problem and the quantum
computing formulation. Each representation hides and reveals different features that may be
important from a mathematical, computational and physical point of view. The complexity of
a problem can hardly be tamed, but it can most likely be shifted and reformulated in a different
way, perhaps allowing it to be tackled more efficiently. The aim of this part of the thesis was
certainly not to propose a better way to study and teach quantum computation, but rather to
display the richness of describing and observing the same theory from different perspectives.
The standard matrix approach is of course still very powerful and, above all, directly applicable
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without the need for much effort in representation; the explicit tensor approach simply wants to
allow looking at the same problem in an alternative way, proposing advantages and disadvantages
of both.

The thesis concluded with a more applied and purely physical part, as opposed to the com-
puter science nature of the first half. Quantum computing has incredible potential to describe
complex physical systems. This is because a classical and at the same time rigorous approach
to the dynamics of quantum systems inherently requires more effort than is generally available.
Instead, the best approach we can think of to describe a quantum many-body system is to mimic
it with a quantum system itself. The key requirement is that the system used to represent the
original problem is controllable. This application is called Hamiltonian simulation and was an
idea of Feynman. Although it is not the only application of quantum computing, it is one of
the most promising areas related to it due to its intrinsic exponential speed-up. The last part of
this thesis focuses on the simulation of neutrinos which, when emitted at high density, undergo
coherent flavour oscillations, also called collective oscillations. Such dynamics are particularly
important in the field of astrophysics, where supernova explosions, massive star mergers and the
physics of the early universe represent interesting and not fully understood phenomena. Using
appropriate approximations, we can write the Hamiltonian describing the flavour part of these
neutrinos as an isospin Hamiltonian with an all-to-all interaction between the particles. Solving
this dynamics without introducing mean-field approximations is almost impossible for a suffi-
ciently large number of neutrinos, precisely because of the exponential growth of the Hilbert
space to which the system belongs. However, given the exponential speed-up inherent in Hamil-
tonian simulations, the use of a system of qubits is feasible and natural. The quantum algorithm
designed to simulate the dynamics of the collective flavour oscillation mechanism is presented in
detail. Its formulation, written in terms of a quantum circuit, has been obtained and optimised
to run on a trapped-ion-based machine. The unexpectedly accurate results, obtained without
any error mitigation techniques, and the gentle complexity scaling guarantee that future appli-
cations will be even more accurate and physically useful. To define a quantum algorithm as
efficient, it is necessary to analyse its complexity scaling. Therefore, the last part of this chapter
is the core of the discussion as it proves the usefulness and scalability of the proposed algorithm.
The algorithm offers substantial room for further refinement and improvement. Given the qual-
ity of the results, it would be possible to increase both the number of neutrinos in the system
and the duration of its evolution. The incorporation of various error mitigation strategies could
further improve the quality of the simulations. Other approaches can be explored to develop
and enhance the collective neutrino oscillation algorithm. One promising avenue could involve
alternative encoding maps, strategically designed to reduce the size of the quantum register by
exploiting the symmetries inherent in the Hamiltonian, such as flavour conservation. In order
to describe more realistic and phenomenologically rich neutrino systems, it will be important to
extend the algorithms presented here to simulate neutrinos with different energies. This can be
modelled with a particle-dependent external field. Finally, a relevant direction for future inves-
tigations concerns the description of collective oscillations in the presence of electrons, thereby
incorporating the matter component into the Hamiltonian framework. This extension will serve
to address a crucial aspect of physical reality and pave the road for a more comprehensive
understanding of neutrino behaviour in extreme environments.

The transdisciplinary nature of this work, crossing from a more computational part to a
more physical part, is consistent with the fact that the research effort should be projected in
two directions. The first is the purely computational part and aims to develop and improve the
hardware of quantum machines and, in parallel, to study, develop and optimise the compilation
of unitary transformations into sequences of logic gates. The second direction is the development
of efficient quantum algorithms that can solve realistic physical problems in different domains



6.6. ERROR SCALING AND GATE COST 131

without requiring approximations that would destroy the quantum nature of the dynamics. On
the other hand, there is a risk of introducing different but still strong approximations in an
attempt to simplify the mapping of a system into the qubit world. This would make quantum
computation efficient for today’s noisy machines, but not useful from a physical point of view.
Therefore, the two efforts should be balanced and eventually converge. The convergence of the
two research directions will make it possible to simulate large and highly entangled systems
without introducing uncontrolled approximations and without simplifying the description by
forcing the mapping onto the Pauli algebra. When the two directions work hand in hand
towards a common goal, the fields that can be explored will be incredibly broad.
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Appendix A

Full Trotter error calculations

A.1 Explicit calculations for the first order Trotter error

The two-body part of the neutrino system Hamiltonian describes the ν−ν scattering and consists
of a sum of Γ =

(
N
2

)
= N(N − 1)/2 terms

H(2b) =
N∑
i<j

hij :=
Γ∑

K=1

hK , (A.1.1)

where hij = µJijσi · σj/N and we count the neutrinos from 1 to N instead of from 0 to N − 1.
Using the first-order Trotter decomposition, we can implement the propagator (see Eq. (6.2.8)
in the main text) using a standard first-order product formula

U (2b)(dt) ≈ L1(dt) :=
N∏
i<j

e−ihijdt =

Γ∏
K=1

e−ihKdt. (A.1.2)

and from Proposition 9 of Ref. [91] we bound the first-order Trotter error as

ε1(dt) =
∥∥∥L1(dt)− U (2b)(dt)

∥∥∥ ≤ dt2

2

Γ∑
K=1

∥∥∥∥∥
Γ∑

L=K+1

[hK , hL]

∥∥∥∥∥, (A.1.3)

where in our case K and L correspond to the pair indices K = (i, j) and L = (k, l). The sum
within the norm in the above expression can be expressed explicitly using the double indices as

Γ∑
L=K+1

[hK , hL] = δik

N∑
l=j+1

[hij , hkl] +

N∑
k=i+1

N∑
l=k+1

[hij , hkl]

=
N∑

l=j+1

[hij , hil] +
N∑

k=i+1

N∑
l=k+1

[hij , hkl],

(A.1.4)

where we have split the sum for L > K into two contributions: those for which the first index
of K is equal to the first index of L and those for which the first index of L is greater than the
first index of K. The last contribution can be simplified by splitting the sum around the index
j and realising that for the commutator [hij , hkl] to be different from zero, at least one index in
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(k, l) must match an index in (i, j). So

N∑
k=i+1

N∑
l=k+1

[hij , hkl] =

 j−1∑
k=i+1

+δkj +
N∑

k=j+1

 N∑
l=k+1

[hij , hkl]

=

j−1∑
k=i+1

N∑
l=k+1

[hij , hkl] +

N∑
l=j+1

[hij , hjl] +

N∑
k=j+1

N∑
l=k+1

[hij , hkl]

=

j−1∑
k=i+1

N∑
l=k+1

[hij , hkl] +

N∑
l=j+1

[hij , hjl]

=

j−1∑
k=i+1

[hij , hkj ] +

N∑
l=j+1

[hij , hjl].

(A.1.5)

Note that the last term in the second step is zero because there is no case where the Hamiltonian
pair has a common index (indeed l > k > j > i), and the first term in the third step is nonzero
only when l = j. The Trotter error over a small time step dt is thus

ε1(dt) ≤
dt2

2

N∑
i<j

∥∥∥∥∥∥
j−1∑

k=i+1

[hij , hkj ] +

N∑
l=j+1

([hij , hil] + [hij , hjl])

∥∥∥∥∥∥. (A.1.6)

The commutators between different two-body Hamiltonians can be easily calculated as

[hij , hik] =
µ2

N2
JijJik[σi · σj ,σi · σk] =

µ2

N2
2iJijJikσi · (σj ∧ σk), (A.1.7)

where we used a ∧ b to denote the standard cross product in three dimensions. So we have

ε1(dt) ≤
dt2

2

N∑
i<j

∥∥∥∥∥∥
N∑

l=j+1

([hij , hil] + [hij , hjl]) +

j−1∑
k=i+1

[hij , hkj ]

∥∥∥∥∥∥
≤ dt2 µ

2

N2

N∑
i<j

∥∥∥∥∥∥
N∑

l=j+1

Jiji (Jilσi · (σj ∧ σl) + Jjlσj · (σi ∧ σl)) +

j−1∑
k=i+1

JijJkjiσj · (σi ∧ σk)

∥∥∥∥∥∥
≤ dt2 µ

2

N2

N∑
i<j

∥∥∥∥∥∥
N∑

l=j+1

(JijJil − JijJjl)σi · (σj ∧ σl) +

j−1∑
k=i+1

JijJkjσj · (σi ∧ σk)

∥∥∥∥∥∥
≤ dt2 µ

2

N2

N∑
i<j

∥∥∥∥∥∥Jij
 N∑

l=j+1

(Jil − Jjl)σi · (σj ∧ σl) +

j−1∑
k=i+1

Jkjσj · (σi ∧ σk)

∥∥∥∥∥∥,
(A.1.8)

where we used the cyclic permutation equivalence of the cross product. Then considering that the
coupling matrix Jij is positive and using the bound ∥σi · (σj ∧ σk)∥∞ ≤ 4 for all i, j, k ∈ [1, N ]
one arrives at

ε1(dt) ≤ 4dt2
µ2

N2

N∑
i<j

Jij

∥∥∥∥∥∥
N∑

l=j+1

(Jil − Jjl) +
j−1∑

k=i+1

Jkj

∥∥∥∥∥∥. (A.1.9)

The number of terms in the sums is:

N∑
i<j

2

N∑
l=j+1

+

j−1∑
k=i+1

 = 2

N∑
i<j<l

+

N∑
i<k<j

= 3

(
N

3

)
, (A.1.10)
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where (
N

k

)
=

N !

k!(N − k)!
(A.1.11)

is the binomial coefficient and corresponds to the number of possible combinations of 3 elements
taken from N elements. For a particular choice of angular distributions, the sums can be
computed straightforwardly. However, to obtain a general bound on the error, we can introduce

Θ := max
i,j

(1− cos(θij)) (A.1.12)

and obtain the upperbound

ε1(dt) ≤ 12dt2
µ2Θ2

N2

(
N

3

)
= O

(
dt2µ2N

)
. (A.1.13)

Given a total evolution time T and evolving the system for r = T/dt steps, the total error can
be bounded by

ε1(T ) ≤ rε1(dt) ≤ r12
T 2

r2
µ2Θ2

N2

(
N

3

)
= 12

T 2µ2

r

Θ2

N2

(
N

3

)
, (A.1.14)

where we used the union bound to obtain ε1(T ) ≤ rε1(dt). We also find that the total number
of steps r1(T, ϵ) required to evolve for a final time T while keeping the total error below ϵ scales
linearly with system size, namely

r1(T, ϵ) ≤ 12
T 2µ2

ϵ

Θ2

N2

(
N

3

)
= O

(
T 2µ2

ϵ
N

)
. (A.1.15)

We can then bound the gate cost C1(T, ϵ) of a quantum circuit by implementing the full evolution
in terms of the number of general two-qubit gates ∈ SU(4) needed to implement all the steps.
For N neutrinos, we have N(N − 1)/2 interaction terms in each Trotter step, so the gate cost,
using a first-order product formula, scales with

C1(T, ϵ) ≤
(
N

2

)
r1(T, ϵ) = 12

T 2µ2Θ2

ϵN2

(
N

3

)(
N

2

)
=
T 2µ2Θ2

ϵN2
12
N(N − 1)(N − 2)

3!

N(N − 1)

2!

=
T 2µ2Θ2

ϵN2
12
N2(N − 1)2(N − 2)

12

=
T 2µ2Θ2

ϵ
(N − 1)2(N − 2) = O

(
T 2µ2

ϵ
N3

)
.

(A.1.16)

Since any two-qubit transformation ∈ SU(4) can be decomposed with at most three entangling
gates [17], as we did for the native gate set available on the QSM H1-2 system, the total number
of two-qubit gates is given by 3C1(T, ϵ).

A.2 Second order Trotter error for the interaction Hamiltonian

It is possible to get a more accurate approximation of U (2b)(dt) using a second order Trotter-
Suzuki formula, which can be expressed as

U (2b)(dt) ≈ L2(dt) =
1∏

L=Γ

e−i dt
2
hL

Γ∏
K=1

e−i dt
2
hK

= L1
(
dt

2

)
L†1
(
−dt

2

)
,

(A.2.1)
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where we have used the multi-index notation K = (i, j), L = (k, l) and Γ = N(N − 1)/2 as
before. Using the result of Proposition 10 from Ref. [91], the second order Trotter error can be
bounded by

ε2(dt) ≤
dt3

12

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

Γ∑
M>K

[hL, [hM , hK ]]

∥∥∥∥∥+ dt3

24

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

[hK , [hK , hL]]

∥∥∥∥∥. (A.2.2)

To bound the second term we use a similar procedure to the first order case by expanding the
sums and keeping contributions [hij , [hij , hkl]] with one of the (k, l) indices matching one of the
(i, j) indices. Translating the sums into a double index sum (K = (i, j) and L = (k, l)), the
second term becomes

dt3

24

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

[hK , [hK , hL]]

∥∥∥∥∥ =

=
dt3

24

N∑
i<j

∥∥∥∥∥∥
 N∑

l=j+1

δki +

N∑
k=i+1

N∑
l=k+1

 [hij , [hij , hkl]]

∥∥∥∥∥∥
=
dt3

24

N∑
i<j

∥∥∥∥∥∥
N∑

l=j+1

[hij , [hij , hil]] +

 j−1∑
k=i+1

+δkj +

N∑
k=j+1

 N∑
l=k+1

[hij , [hij , hkl]]

∥∥∥∥∥∥
=
dt3

24

N∑
i<j

∥∥∥∥∥∥
N∑

l=j+1

[hij , [hij , hil]] +

j−1∑
k=i+1

N∑
l=k+1

[hij , [hij , hkl]] +

N∑
l=j+1

[hij , [hij , hjl]]

∥∥∥∥∥∥
=
dt3

24

N∑
i<j

∥∥∥∥∥∥
N∑

l=j+1

[hij , [hij , hil]] +

j−1∑
k=i+1

[hij , [hij , hkj ]] +
N∑

l=j+1

[hij , [hij , hjl]]

∥∥∥∥∥∥.

(A.2.3)

We now use the following expression for the nested commutator

[hij , [hij , hik]] =
µ3

N3
J2
ijJik[σi · σj , [σi · σj ,σi · σk]]

=
µ3

N3
2iJ2

ijJik[σi · σj ,σi · (σj ∧ σk)]

= −4 µ
3

N3
J2
ijJikσi · (σj ∧ (σj ∧ σk)),

(A.2.4)

together with the bound ∥σi · (σj ∧ (σj ∧ σk))∥ ≤ 8. Considering that the above sums contain
3
(
N
3

)
terms, the result is

dt3

24

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

[hK , [hK , hL]]

∥∥∥∥∥ ≤ dt3

24
4 · 8µ

3Θ3

N3
3

(
N

3

)
= 4dt3

µ3Θ3

N3

(
N

3

)
=

2

3

(N − 1)(N − 2)

N2
dt3µ3Θ3. (A.2.5)

We now turn our attention to the first contribution in Eq. (A.2.2). Using the double indices
K = (i, j), L = (k, l) and M = (p, q) we have

dt3

12

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

Γ∑
M>K

[hL, [hM , hK ]]

∥∥∥∥∥ =

=
dt3

12

N∑
i<j

∥∥∥∥∥∥
 N∑

l=j+1

δki +

N∑
k=i+1

N∑
l=k+1

 N∑
q=j+1

δpi +

N∑
p=i+1

N∑
q=p+1

 [hkl, [hpq, hij ]]

∥∥∥∥∥∥,
(A.2.6)
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which can be bound as the sum of the different norms. The first term in Eq. (A.2.6) means to
contribute as

N∑
i<j

N∑
l=j+1

N∑
q=j+1

∥[hil, [hiq, hij ]]∥ =

=

N∑
i<j

 N∑
l=j+1

δlq∥[hil, [hiq, hij ]]∥+
q∑

l=j+1

N∑
q=l+1

∥[hil, [hiq, hij ]]∥+
l∑

q=j+1

N∑
l=q+1

∥[hil, [hiq, hij ]]∥


=

N∑
i<j<l

∥[hil, [hil, hij ]]∥+
N∑

i<j<l<q

∥[hil, [hiq, hij ]]∥+
N∑

i<j<q<l

∥[hil, [hiq, hij ]]∥,

(A.2.7)

where the first norm contains a sum of combinations of 3 indices out ofN and gives a contribution
of
(
N
3

)
. The second one contains 4 indices and gives

(
N
4

)
and the same for the last one which

contains
(
N
4

)
elements. So the result can be bounded by

dt3

12

N∑
i<j

∥∥∥∥∥∥
N∑

l=j+1

N∑
q=j+1

∥[hil, [hiq, hij ]]∥

∥∥∥∥∥∥ ≤ dt3

12
32
µ3

N3
Θ3

(
2

(
N

4

)
+

(
N

3

))

=
2

9

(N − 1)2(N − 2)

N2
dt3µ3Θ3. (A.2.8)

The second contribution in Eq. (A.2.6) is

N∑
i<j

N∑
l=j+1

N∑
p=i+1

N∑
q=p+1

∥[hil, [hpq, hij ]]∥ =

=
N∑
i<j

N∑
l=j+1

 j−1∑
p=i+1

+δpj +
N∑

p=j+1

 N∑
q=p+1

∥[hil, [hpq, hij ]]∥

=
N∑
i<j

 N∑
l=j+1

j−1∑
p=i+1

N∑
q=p+1

∥[hil, [hpq, hij ]]∥+
N∑

l=j+1

N∑
q=j+1

∥[hil, [hjq, hij ]]∥+

+
N∑

l=j+1

N∑
p=j+1

N∑
q=p+1

∥[hil, [hpq, hij ]]∥


=

N∑
i<j

 N∑
l=j+1

j−1∑
p=i+1

∥[hil, [hpj , hij ]]∥+
N∑

l=j+1

N∑
q=j+1

∥[hil, [hjq, hij ]]∥


=

N∑
i<p<j<l

∥[hil, [hjq, hij ]]∥+
N∑

i<j<q,l

∥[hil, [hjq, hij ]]∥.

(A.2.9)

The first term gives
(
N
4

)
and the second includes i < j < q < l and i < j < l < q giving 2

(
N
4

)
and also i < j < l = q which adds

(
N
3

)
. So the above contribution can be bound by

dt3

12

N∑
i<j

∥∥∥∥∥∥
N∑

l=j+1

N∑
p=i+1

N∑
q=p+1

∥[hil, [hpq, hij ]]∥

∥∥∥∥∥∥ ≤ dt3

12
32
µ3

N3
Θ3

(
3

(
N

4

)
+

(
N

3

))

=
1

9

(N − 1)(N − 2)

N2
(3N − 5)dt3µ3Θ3. (A.2.10)
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The third contribution in Eq. (A.2.6) gives

N∑
i<j

N∑
k=i+1

N∑
l=k+1

N∑
q=j+1

∥[hkl, [hiq, hij ]]∥ =

=
N∑
i<j

 j−1∑
k=i+1

+δkj +
N∑

k=j+1

 N∑
l=k+1

N∑
q=j+1

∥[hkl, [hiq, hij ]]∥

=

N∑
i<j

 j−1∑
k=i+1

N∑
l=k+1

N∑
q=j+1

∥[hkl, [hiq, hij ]]∥+
N∑

l=j+1

N∑
q=j+1

∥[hjl, [hiq, hij ]]∥+

+

N∑
k=j+1

N∑
l=k+1

N∑
q=j+1

∥[hkl, [hiq, hij ]]∥


=

N∑
i<j

 j−1∑
k=i+1

N∑
q=j+1

∥[hkj , [hiq, hij ]]∥+
j−1∑

k=i+1

N∑
q=j+1

∥[hkq, [hiq, hij ]]∥+

+

N∑
l=j+1

N∑
q=j+1

∥[hjl, [hiq, hij ]]∥+
N∑

k=j+1

N∑
l=k+1

∥[hkl, [hik, hij ]]∥+

+
N∑

k=j+1

N∑
l=k+1

∥[hkl, [hil, hij ]]∥


=

N∑
i<j

 j−1∑
k=i+1

N∑
q=j+1

(∥[hkj , [hiq, hij ]]∥+ ∥[hkq, [hiq, hij ]]∥) +
N∑

l=j+1

N∑
q=j+1

∥[hjl, [hiq, hij ]]∥

+

N∑
k=j+1

N∑
l=k+1

(∥[hkl, [hik, hij ]]∥+ ∥[hkl, [hil, hij ]]∥)


=

2

N∑
i<k<j<q

+

N∑
i<j<l,q

+2

N∑
i<j<k<l

 ∥[hkl, [hil, hij ]]∥.
(A.2.11)

The first sum gives 2
(
N
4

)
, the second

(
N
3

)
, which corresponds to i < j < l = q and 2

(
N
4

)
to

i < j < l < q and i < j < q < l. The last one will give us 2
(
N
4

)
. So we can rewrite it as

dt3

12

N∑
i<j

∥∥∥∥∥∥
N∑

k=i+1

N∑
l=k+1

N∑
q=j+1

∥[hkl, [hiq, hij ]]∥

∥∥∥∥∥∥ ≤ dt3

12
32
µ3

N3
Θ3

(
6

(
N

4

)
+

(
N

3

))

=
1

9

(N − 1)(N − 2)

N2
(6N − 14)dt3µ3Θ3. (A.2.12)
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Finally the last contribution in Eq. (A.2.6) is

N∑
i<j

N∑
k=i+1

N∑
l=k+1

N∑
p=i+1

N∑
q=p+1

∥[hkl, [hpq, hij ]]∥ =

=
N∑
i<j

N∑
k=i+1

N∑
l=k+1

 j−1∑
p=i+1

+δpj +
N∑

p=j+1

 N∑
q=p+1

∥[hkl, [hpq, hij ]]∥

=
N∑
i<j

 N∑
k=i+1

N∑
l=k+1

j−1∑
p=i+1

N∑
q=p+1

∥[hkl, [hpq, hij ]]∥+

+
N∑

k=i+1

N∑
l=k+1

N∑
q=j+1

∥[hkl, [hjq, hij ]]∥+
N∑

k=i+1

N∑
l=k+1

N∑
p=j+1

N∑
q=p+1

∥[hkl, [hpq, hij ]]∥


=

N∑
i<j

 N∑
k=i+1

N∑
l=k+1

j−1∑
p=i+1

∥[hkl, [hpj , hij ]]∥+
N∑

k=i+1

N∑
l=k+1

N∑
q=j+1

∥[hkl, [hjq, hij ]]∥


=

N∑
i<j

 j−1∑
k=i+1

+δkj +

N∑
k=j+1

 N∑
l=k+1

j−1∑
p=i+1

∥[hkl, [hpj , hij ]]∥+

+

 j−1∑
k=i+1

+δkj +

N∑
k=j+1

 N∑
l=k+1

N∑
q=j+1

∥[hkl, [hjq, hij ]]∥


=

N∑
i<j

( j−1∑
k=i+1

(δkp + δlj) + δkj

)
N∑

l=k+1

j−1∑
p=i+1

∥[hkl, [hpj , hij ]]∥+

+

(
j−1∑

k=i+1

δlj + δkj +
N∑

k=k+1

(δqk + δql)

)
N∑

l=k+1

N∑
q=j+1

∥[hkl, [hjq, hij ]]∥


=

N∑
i<j

 j−1∑
k=i+1

N∑
l=k+1

∥[hkl, [hkj , hij ]]∥+
j−1∑

k=i+1

j−1∑
p=i+1

∥[hkj , [hpj , hij ]]∥+
N∑

l=j+1

j−1∑
p=i+1

∥[hjl, [hpj , hij ]]∥+

+

j−1∑
k=i+1

N∑
q=j+1

∥[hkj , [hjq, hij ]]∥+
N∑

l=j+1

N∑
q=j+1

∥[hjl, [hjq, hij ]]∥+

+
N∑

k=j+1

N∑
l=k+1

(∥[hkl, [hjk, hij ]]∥+ ∥[hkl, [hjl, hij ]]∥)

 .

(A.2.13)

The first term includes the sum over i < k < j < l and over i < k < l < j and i < k < j = l
giving 2

(
N
4

)
+
(
N
3

)
. The second allows i < k < p < j, i < p < k < j and i < k = p < j so it

contains a number of terms of 2
(
N
4

)
+
(
N
3

)
. The third allows only i < p < j < l which gives

(
N
4

)
.

The fourth includes i < k < j < q giving
(
N
4

)
, the fifth has i < j < l < q, i < j < q < l and

i < j < q = l giving 2
(
N
4

)
+
(
N
3

)
, and finally the last term has i < j < k < l giving 2

(
N
4

)
. So we
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bound it as

dt3

12

N∑
i<j

∥∥∥∥∥∥
N∑

k=i+1

N∑
l=k+1

N∑
p=i+1

N∑
q=p+1

∥[hkl, [hpq, hij ]]∥

∥∥∥∥∥∥ ≤ dt3

12
32
µ3

N3
Θ3

(
10

(
N

4

)
+ 3

(
N

3

))

=
2

9

(N − 1)(N − 2)

N2
(5N − 9)dt3µ3Θ3. (A.2.14)

The sum of all four contributions (Eqs. (A.2.8), (A.2.10), (A.2.12) and (A.2.14)) transforms
Eq. (A.2.6) into

dt3

12

Γ∑
K

∥∥∥∥∥
Γ∑

L>K

Γ∑
M>K

[hL, [hM , hK ]]

∥∥∥∥∥ ≤ dt3

12
32
µ3

N3
Θ3

(
21

(
N

4

)
+ 6

(
N

3

))
=

1

9
dt3µ3Θ3 (N − 1)(N − 2)

N2
(21N − 39) . (A.2.15)

Finally, by summing Eq. (A.2.5) and Eq. (A.2.15), we obtain that the second order Trotter error
in Eq. (A.2.2) scales linearly with N . In particular,

ε2(dt) ≤ 4dt3
µ3Θ3

N3

(
N

3

)
+

8

3
dt3

µ3Θ3

N3

(
21

(
N

4

)
+ 6

(
N

3

))
≤ dt3µ

3Θ3

N3

(
20

(
N

3

)
+ 56

(
N

4

))
≤ dt3µ3Θ3 (N − 1)(N − 2)

N2

(7N − 11)

3
= O(dt3µ3N).

(A.2.16)

Developing the system up to T in r2 steps, the total error satisfies

ε2(T ) ≤ r2ε2(dt) =
T 3

r22

µ3Θ3

N3

(
20

(
N

3

)
+ 56

(
N

4

))
= O

(
T 3µ3N

r22

)
, (A.2.17)

and the necessary steps to have a target error below ϵ are

r2(T, ϵ) ≤
(TµΘ)3/2
√
ϵN3/2

√
20

(
N

3

)
+ 56

(
N

4

)
= O

(
T 3/2µ3/2

√
N√

ϵ

)
. (A.2.18)

The number of two-qubit general operations ∈ SU(4) needed to implement the interaction
Hamiltonian for each second order Trotter formula is

2

(
N

2

)
− N

2
=
N(2N − 3)

2
, (A.2.19)

because it is given by two steps with dt/2 in reverse order, minos the layer in the middle, as
shown in Fig. 6.16 of the main text. The complexity is thus

C2(T, ϵ) ≤
(
2

(
N

2

)
− N

2

)
r2(T, ϵ) =

(TµΘ)3/2√
ϵ

1

N3/2

√
20

(
N

3

)
+ 56

(
N

4

)
N(2N − 3)

2

=
(TµΘ)3/2√

ϵ

1

N3/2

√
N(N − 1)(N − 2)

(7N − 11)

3

N(2N − 3)

2

=
(TµΘ)3/2√

ϵ

√
(N − 1)(N − 2)

(7N − 11)

3

(2N − 3)

2

= O

(
(Tµ)3/2√

ϵ
N5/2

)
.

(A.2.20)
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The scaling with the number of neutrinos N has improved considerably within this scheme. The
use of even higher order formulas may allow one to achieve a near optimal scaling C(N2+δ) for
δ ≪ 1, but with possibly much larger constant prefactors.
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