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Abstract 

Mounting evidence suggests that ingestive behaviors may also be affected by putative 1 

interplays between taste and gut microbiota. As yet empirically unproven, we here tested the 2 

hypothesis that variations in sensory perception in foods can mirror gut microbial ecology and 3 

shape individual dietary habits. One hundred healthy participants (52% women, 18-30 y/o) 4 

remotely attended a 7-day (D) lasting protocol, and evaluated bitterness (D1) of 6-n-5 

propylthiouracil (PROP) plus liking (D2) and intensity of sensations (D4) evoked by 5 liquid and 6 

5 solid foods, each selected to elicit a target sensation (sweet, sour, bitter, salty, pungent). 7 

Furthermore, volunteers completed a battery of psychological questionnaires (D3), a 4-day 8 

dietary record (D1-D7), and provided one stool sample for fecal microbiota profiling by 16S 9 

rRNA gene sequencing (D4). Using a data-driven segmentation approach based on intensity 10 

scores, we identified two distinct profiles that were hypo- (CL-1, n=36, 55.5% women) and 11 

hyperresponsive (CL-2, n=64, 50% women) to oral stimulations. Moreover, CL-2 showed higher 12 

percentages of PROP Medium Tasters and pronounced pleasure-oriented attitudes. 13 

Interestingly, CL-1 exhibited higher α-diversity metrics and was enriched in 11 beneficial gut 14 

microbes (e.g., genus Eubacterium_xylanophilum_group), while two pro-inflammatory microbial 15 

genera (Ruminococcus gnavus group, Eggerthella) associated with CL-2. Relatedly, CL-1 16 

declared higher intakes of fibers and vegetable proteins, whilst CL-2 habitually consumed more 17 

saturated fats. We describe the first empirical evidence that simultaneous variations in sensory 18 

acuity and gut microbial consortia imply different dietary habits, thus paving the way for 19 

unravelling the complex link between host-related non-genetic factors and aetiology of eating 20 

behaviors.  21 
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1. Introduction 22 

Poor dietary habits pose a serious global health threat as they are associated with the onset of 23 

many modern non-communicable diseases such as type 2 diabetes and cardiovascular diseases 24 

(e.g., Swinburn et al., 2011). Accordingly, improving the current understanding of individual 25 

food choices and preferences is essential to tackle the worldwide spreading of such diseases. 26 

Within this context, the way we experience foods and beverages through our senses is a major 27 

contributor to our eating habits (Köster, 2009). Moreover, substantial interindividual differences 28 

in responses to chemosensory (i.e., taste, smell and chemesthesis) stimuli have been reported 29 

as efficient predictors of dietary quality and health outcomes (e.g., Cox et al., 2016; Duffy, 30 

2007).  31 

Historically, the best-documented sources of interindividual variation in oral responsiveness 32 

revolved around genetically-induced bitterness of 6-n-propylthiouracil (PROP; Bartoshuk, 2000) 33 

and anatomic phenotypes (i.e., fungiform papillae density; Fischer et al., 2013). For years, it 34 

was widely assumed that individuals experiencing PROP as extremely bitter also housed a 35 

higher fungiform papillae density, and that this would have led to enhanced responsiveness to a 36 

wide range of oral stimuli (e.g., Essick et al., 2003; Hayes & Keast, 2011). Nevertheless, recent 37 

large scale studies have failed to corroborate this paradigm (Dinnella et al., 2018; Fischer et al., 38 

2013; Garneau et al., 2014), though apparently confirming PROP acuity (unlike fungiform 39 

papillae density) as a proxy of generalized hypergeusia (Dinnella et al., 2018; Nolden et al., 40 

2020). Thus, as the role of taste phenotypes still remains somehow controversial, other aspects 41 

potentially affecting the mechanisms underlying sensory perception have recently gathered 42 

special interest.  43 

Notably, mounting evidence on eating habits and well-being has emphasized the role of the 44 

gastrointestinal microbiota (Alcock et al., 2014), a metabolically active reservoir of trillions of 45 

microbes that would jointly work with the host chemosensory systems to shape our ingestive 46 

behaviors (Alcock et al., 2014; Leung & Covasa, 2021; Schwartz et al., 2021). Relatedly, gut 47 

microbial disruption (or dysbiosis) has been reported in concomitance with unhealthy eating 48 

attitudes related to chemosensation, such as craving for high-palatable foods (Alcock et al., 49 

2014) or binge-eating episodes (Herman & Bajaka, 2021). Thus, given that nutrient-sensing 50 

mechanisms not only operate in the oral cavity but also in the lower gastrointestinal tract 51 

(Efeyan et al., 2015), research has recently begun to deepen the links between taste and oral 52 

or distal gut microbes (e.g., Feng et al., 2018; Vascellari et al., 2020). 53 
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As an example, Cattaneo, Gargari et al. (2019) assessed the detection thresholds of a wide 54 

range of tastes (i.e., bitter, salty, sour and sweet) and the lingual bacterial populations of 59 55 

individuals who were classified as either Super Tasters (STs) or Non Tasters (NTs) according to 56 

their PROP responsiveness. The authors found STs to be more responsive than NTs to all 57 

tastes, and to harbor greater amounts of three bacterial genera (Actinomyces, Oribacterium, 58 

Campylobacter) in their tongue dorsum. More interestingly, a follow-up study conducted on the 59 

same cohort revealed four oral microbes at genus level (Parvimonas, Peptococcus, 60 

Peptostreptococcus, Prevotella) to be simultaneously anticorrelated with salt taste thresholds 61 

and carbohydrate daily intake, while the opposite was true for the genus Rothia (Cattaneo, 62 

Riso, et al., 2019). Nevertheless, although a variety of likely pathways used by oral microbial 63 

communities to influence taste/flavor perception has been proposed (see Leung & Covasa, 2021 64 

and Schwartz et al., 2021 for reviews), the mechanisms underlying such preliminary findings 65 

have yet to be fully clarified.      66 

Similarly, little is known about how the gut microbiota exerts its influence on taste perception, 67 

though both factors have extensively been linked to dietary habits. It has been proposed that 68 

gut microbes would affect taste perception via modulating the host immune response and 69 

hormone secretion (Leung & Covasa, 2021). However, the afore-mentioned pathways derived 70 

evidence from animal studies (e.g., Swartz et al., 2012) or were theoretically presumed on the 71 

basis of known connections between diet and taste or diet and gut microbial communities (e.g., 72 

Turner et al., 2018, 2019). At present, we are aware of only one previous report simultaneously 73 

evaluating taste responsiveness and gut microbial composition in humans affected by 74 

Parkinson’s disease (PD). In that study, Vascellari et al. (2020) observed that PROP 75 

hyporesponsive PD patients had lower gut bacterial species richness and evenness (i.e., α-76 

diversity) and relative abundances of genus Clostridium compared to PROP hyperresponsive PD 77 

patients. Given how both PROP acuity and predominance of Clostridium species in the gut 78 

environment closely tie to the quality of the diet (e.g., Duffy, 2007; Guo et al., 2020), this study 79 

encourages further investigations on healthy individuals. Taken collectively, this initial evidence 80 

reasonably supports the hypothesis that eating habits can also be affected by a mutualistic 81 

interplay between taste perception and gastrointestinal microbes, and opens new research 82 

avenues on the aetiology of eating behaviors (Alcock et al., 2014; Leung & Covasa, 2021). 83 

Despite mounting interest, human research relating taste to the gastrointestinal microbiota is 84 

still very much in its infancy. As a result, the current literature is affected by a few limitations. 85 
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Firstly, the majority of studies focused on the links between taste functioning and oral microbes. 86 

Beyond the exclusive profiling of the oral microbiota, these reports have mostly operationalized 87 

taste perception via detection thresholds (Besnard et al., 2018; Feng et al., 2018; Fluitman et 88 

al., 2021; Solemdal et al., 2012), which are reportedly uncorrelated with measures of taste 89 

function more relevant for actual perception of food (i.e., suprathreshold intensity measures) 90 

(e.g., Puputti et al., 2018; Webb et al., 2015). Secondly, taste assessments in previous research 91 

have exclusively been obtained in response to aqueous solutions (e.g., Besnard et al., 2018; 92 

Cattaneo et al., 2019; Feng et al., 2018) or paper strips (Fluitman et al., 2021; Solemdal et al., 93 

2012), whilst examples collecting sensory responses from real foods are still lacking. Unlike 94 

single taste solutions or strips, actual foods permit to mimic the daily experienced interplays 95 

between taste qualities, and represent an ecologically sound alternative to identify 96 

subpopulations who are similarly responsive to oral stimulations. In this vein, this approach 97 

would also support the increasingly accepted idea about the existence of individuals with 98 

generalized hypergeusia across different sensory modalities (e.g., taste, ortho- and retronasal 99 

olfaction) (Hayes & Keast, 2011; Piochi et al., 2021; Puputti et al., 2018).  100 

Thirdly, none of the afore-mentioned studies has considered key mediators of sensory 101 

responsiveness such as hedonics, attitudes and personality traits (e.g., Köster, 2009). Given 102 

how both liking and psychological background can mediate variations in oral acuity ultimately 103 

shaping food choices (e.g., Laureati et al., 2018; Spinelli et al., 2018), including such factors in 104 

protocols that seek to link aspects closely related to dietary habits turns out to be crucial. 105 

Lastly, only a few studies reported measures capturing individual dietary habits (e.g., Cattaneo, 106 

Riso, et al., 2019), and the minority (Fluitman et al., 2021; Solemdal et al., 2012) has 107 

considered sufficiently large cohorts in the light of the numerous confounders (demographic, 108 

dietary, environmental) affecting both chemosensation and the gastrointestinal ecosystem (e.g., 109 

Diószegi et al., 2019; Vujkovic-Cvijin et al., 2020). In this vein, a meticulous control of these 110 

covariates is pivotal to robustly detect a range of potential taste-related microbial signatures 111 

that may serve as guide for future taste-oriented microbiome studies in health and disease.  112 

Altogether, there exists a clear need to a) expand the current literature on the putative links 113 

between taste functioning and the gut microbiota, b) elucidate whether the existing knowledge 114 

can be replicated using a multidisciplinary and ecologically valid approach. Against this 115 

backdrop, we here empirically tested the hypothesis that variations in oral responsiveness to 116 

oral sensations can mirror gut microbial ecology and shape individual dietary intakes. To this 117 
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end, we carefully recruited an ethnically homogeneous cohort of 100 healthy individuals lacking 118 

evidence of a lengthy list of known taste- and gut microbiota-related confounders. Eligible 119 

participants then completed a double-blind remote design simultaneously collecting PROP 120 

responsiveness, hedonics and suprathreshold intensities in response to oral sensations evoked 121 

by 5 liquid and 5 solid real foods, attitudinal and psychological correlates of food choices, 122 

detailed information on habitual dietary intakes, and one gut microbial sample. 123 

2. Methods 124 

2.1 Participants 125 

A gender-balanced healthy cohort of 100 young Italian adults (52 % women; 18-30 y/o; mean 126 

age = 23.7 ± 3.9; mean BMI = 22.5 ± 2.6) was enrolled through institutional mailing and social 127 

networks (Facebook, Instagram), word of mouth, articles published on local newspapers, and a 128 

series of public outreach events promoting the study. A detailed socio-demographic overview of 129 

our cohort is given in Supplemental Table S1.  130 

To reliably isolate potential interplays between orosensory responsiveness and gut bacterial 131 

composition, we aimed at recruiting individuals not presenting the majority of conditions 132 

reportedly impairing or affecting perceptual abilities and/or the gut microbial consortium. 133 

Among others, we excluded interested volunteers with ongoing or historical diagnosis of COVID-134 

19 or gastrointestinal chronic diseases (e.g., coeliac disease), or who were habitual smokers or 135 

consumed (pre-) probiotics or antibiotics 6 months before the study. The full list of 136 

inclusion/exclusion criteria here employed (Supplemental Table S2) mostly relies on the protocol 137 

used by the Human Microbiome Project (Turnbaugh et al., 2007) to target the core human gut 138 

microbiota in health.  139 

2.2 Overview of data collection 140 

Interested participants were invited to remotely fill in a logic-based questionnaire designed to 141 

grant eligibility only to those who simultaneously met the inclusion criteria and none of the 142 

exclusion criteria. Eligible participants were then automatically directed to a video that 143 

introduced the whole experimental design, and thus asked to electronically provide their 144 

informed consent. Our cohort attended a double-blind 7-day (D-) lasting remote protocol aimed 145 

at collecting a large variety of sensory and psychometric measures, a food diary, and one stool 146 

sample (Figure 1). Particularly, data collection occurred in four working sessions (D1, D2, D3, 147 



7 
 

D4) to be finalized in four days within a week period, which was employed to increase both 148 

participants’ compliance and reliability of dietary recording. Beyond the four working sessions, 149 

volunteers also completed a 4-day dietary record within the 7 days expected by our design 150 

(Figure 1).  151 

Eligible participants were firstly asked to collect a bag storing all the equipment needed to 152 

complete the study (Supplemental Figure S1) from different pick-up points located in the 153 

Autonomous Province of Trento (Italy). Once the bag was collected, participants accessed a 154 

first working session (D1) revolving around the measurement of PROP responsiveness. To this 155 

end, they were extensively trained on the use of the generalized Labeled Magnitude Scale 156 

(gLMS; Bartoshuk et al., 2004) before rating the bitterness elicited by two PROP impregnated 157 

taste strips. D2 was then devoted to collecting hedonic responses to 5 liquid and 5 solid foods, 158 

each selected to elicit a target taste (i.e., sweet, sour, bitter, salty) or sensation (i.e., pungent). 159 

This session was preceded by detailed instructions on the use of the Labeled Affective 160 

Magnitude scale (LAM; Schutz & Cardello, 2001). At the end of the liking task, volunteers were 161 

asked to rate their familiarity (5-point Likert scale; 1 = Not at all familiar, 5 = Extremely 162 

familiar), and their weekly frequency of consumption (5-point Likert scale; 1 = Never, 5 = Five 163 

or more times/week) of the evaluated food product categories. 164 

At D3, participants filled in a battery of questionnaires aimed at collecting a variety of 165 

psychological and personality traits, food-related attitudes, and demographics. At D4, 166 

volunteers were asked to attend one last working session including the collection of one fecal 167 

sample, and the rating of perceived intensities (gLMS) in response to oral sensations evoked by 168 

the same series of foods evaluated on D2. Participants were asked to provide their stool sample 169 

before starting the session. Once the sample was collected, they were again introduced to the 170 

gLMS just prior to finalizing the intensity task that ended the last working session. Upon 171 

completion of D4, volunteers were asked to confirm they concluded all the expected tasks 172 

before being invited to deliver (D4-D7) their fecal sample at one of the pick-up points available.  173 

Along the entire design, participants were guided by a logic-based system ensuring that 174 

working sessions were completed in the expected order (D1, D2, D3, D4), and that commonly 175 

used good practices in sensory evaluations were respected. Access to the online platforms used 176 

for data collection was granted only when volunteers confirmed to properly comply with the 177 

instructions. In detail, they were instructed to: refrain from eating, drinking (except water) and 178 

brushing their teeth during the 3 h preceding the evaluations; set-up a sufficiently large 179 
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working-station in a quiet and well-illuminated room devoid of cooking smells or home 180 

fragrances; be alone during the whole test (Dinnella et al., 2022).  181 

All measures were collected via Eye Question (Elst, The Netherlands) and Alchemer (Louisville, 182 

CO, USA), whereas a dietetic software package (Dietosystem®, DS Medica, Milan, Italy) was 183 

employed to collect and process dietary records. Remote data collection occurred between May 184 

2021 and (early) January 2022, a relatively restriction-free COVID-19 era in Italy. Nevertheless, 185 

we favored remote testing as it ensured participants’ safety and, if meticulously planned, 186 

constituted a promising and ecologically valid alternative to common lab settings (Dinnella et 187 

al., 2022). Lastly, the study was reviewed and approved by the Research Ethics Committee of 188 

the University of Trento (n° prot. 2020-040, approved on 08/02/2021), and performed in 189 

adherence with the principles laid down in the Declaration of Helsinki.  190 

The next sections provide extensive details on food stimuli, scales training, sensory and 191 

psychometric assessments, dietary recording, and fecal samples collection/processing.  192 

2.3 Sensory stimuli, training and evaluations 193 

2.3.1 Food stimuli 194 

Food stimuli were selected looking at the following criteria: a) being liquid and solid foods each 195 

evoking a clearly and easily recognizable target taste (i.e., sweet, sour, bitter, salty) or 196 

sensation (i.e., pungent) at an expected moderate/very strong level on a gLMS; b) being 197 

common/familiar and widely distributed within the Italian market; c) being ready-to-use, easy 198 

to portion foods and suitable to be consumed at room temperature.  199 

Five liquid and five solid commercially available foods were thus selected, and tested with pilot 200 

studies (n = 3) to confirm their appropriateness. Specifically, pilot tests aimed at defining a 201 

ballot of relevant and easy-to-evaluate sensory attributes (Pilot 1; n = 17; 82 % men; 18-30 202 

y/o), then confirmed on its effectiveness and accuracy by a second cohort (Pilot 2; n = 20; 80 203 

% men; 18-30 y/o). The same cohort was also checked for perceptual differences potentially 204 

induced by a lab (Pilot 2) or remote (Pilot 3) testing condition at an interval of 2 weeks. Overall, 205 

each target sensation was similarly perceived at the expected gLMS range in both conditions 206 

(Supplemental Figure S2), and the scores given to the sensory ballot were strongly correlated 207 

(Supplemental Figure S3) thus corroborating the reliability of the remote protocol. Table 1 lists 208 

relevant information on food matrices and the ballot of sensory attributes here used. 209 

2.3.2 Scales training  210 
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Before each tasting session, volunteers were extensively trained on the use of the gLMS (0 = 211 

no sensation, 100 = the strongest imaginable sensation of any kind; D1 and D4) or the LAM (0 212 

= greatest imaginable dislike, 100 = greatest imaginable like; D2) scale according to standard 213 

procedures (Bartoshuk et al., 2004; Schutz & Cardello, 2001; Webb et al., 2015). Particularly, to 214 

avoid potential idiosyncratic use of the gLMS, participants were firstly invited to watch a video 215 

designed to emphasize the meaning of the anchors (e.g., the strongest imaginable sensation of 216 

any kind), and the continuous nature of the scale to stem common categorial behaviors 217 

(Bartoshuk et al., 2004; Hayes et al., 2013; Webb et al., 2015). Moreover, they were also 218 

trained to adapt their use of the scale as a function of the magnitude of perceptions habitually 219 

experienced across different sensory modalities (Webb et al., 2015).  220 

To this end, volunteers rated the intensities of five recalled extraoral stimuli (D1; Figure 1), 221 

each selected to theoretically represent different rating ranges along the scale (Hayes et al., 222 

2013). For individual orientation, we developed a logic-based system that automatically alerted 223 

participants about erroneous use of the scale (i.e., ratings out of the expected ranges) and 224 

provided clarifications to calibrate its use. Overall, the stimuli were evaluated using different 225 

ranges of the gLMS (Supplemental Figure S4), and the effectiveness of the gLMS training was 226 

further corroborated by the low percentage (7.7 %) of theoretically misleading correlations 227 

between the intensity ratings given to the recalled extraoral stimuli and to the actual foods 228 

(Supplemental Figure S5), and by widely-known correlations between the perceived intensity of 229 

innately (dis)liked oral sensations and hedonic responses (Supplemental Figure S6).  230 

2.3.3 Sensory evaluations 231 

After scales training, volunteers were given access to the tasting sessions. On D1 (Figure 1), 232 

PROP responsiveness was evaluated in duplicate via taste impregnated strips (3-5 μg, 233 

MediSens, Groningen, The Netherlands). Briefly, participants were trained to place each strip in 234 

the middle of their tongue before pushing it to the palate and around the oral cavity (Smutzer 235 

et al., 2013) to spread the sensation. After 10 s, they were asked to expectorate, and then to 236 

wait again for 5 s prior to rating the bitterness elicited by the strip (gLMS).  237 

While PROP responsiveness varies along a continuum, discrete grouping is a common 238 

approximation of this trait (e.g., Dinnella et al., 2018; Laureati et al., 2018) as functional to 239 

easily investigate the host-related features of similarly responsive individuals. Accordingly, the 240 

average of bitterness ratings across the two strips was individually considered to group 241 
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volunteers falling into the lowest (gLMS < 9.5), the second and the third (9.5 ≥ gLMS ≤ 31.3), 242 

and the highest (gLMS > 31.3) quartiles of our cohort’s score distribution as Non, Medium and 243 

Super Tasters, respectively.  244 

On D2 and D4 (Figure 1), instead, food stimuli were evaluated in two independent sets (Table 245 

1), each including 5 liquid (Set 1) and 5 solid (Set 2) samples presented in a fixed order across 246 

individuals. Specifically, foods selected to elicit sweet as target taste (Table 1) were always 247 

evaluated as first then followed by sour, bitter, salty, and pungent stimuli as last. In this way, 248 

we sought to stem potential carry-over effects led by long-lasting sensations of pungent stimuli, 249 

and to simultaneously induce the same perceptual biases across individuals to make 250 

interindividual variations more easily comparable. For the same reason, volunteers always rated 251 

the perceived intensities of target sensations just prior to evaluating other relevant product-252 

specific taste qualities, and flavors as last (Table 1).  253 

To maximize the reliability of the entire tasting protocol, all stimuli were properly anonymized 254 

(e.g., removing brand information), and individually stored in paper-based packages. Each 255 

package was supplemented with a random 3-digit code and with a colored label used as a 256 

diagnostic check (by asking the color of the label after evaluation) of whether individuals tasted 257 

the correct sample. Moreover, each food evaluation (on D2 and D4) was preceded by videos 258 

designed to train volunteers to easily portion the planned amount of the stimulus (Table 1) by 259 

using the supports provided (i.e., spoons and graduated plastic cups). Lastly, a 90 s break was 260 

enforced after each tasting (D1, D2, D4), and mineral water plus plain crackers were used to 261 

remove residual sensations from previous evaluations. Similarly, the assessment of each food 262 

set (Set 1, Set 2) was interspersed with a 5 min break.   263 

2.4 Psychometric and demographic measures 264 

On D3 (Figure 1), volunteers completed a battery of questionnaires assessing their food 265 

neophobia, trait anxiety, health- and taste-oriented food attitudes, eating behaviors, domains of 266 

personality, and demographics. To this end, we used the validated Italian versions of the Food 267 

Neophobia Scale (Laureati et al., 2018; Pliner & Hobden, 1992), the trait anxiety subscale of the 268 

State-Trait Anxiety Inventory Questionnaire (Pedrabissi & Santinello, 1989; Spielberger, 1983), 269 

the Health and Taste Attitude Scale (Roininen & Tuorila, 1999; Saba et al., 2019), the Dutch 270 

Eating Behavior Questionnaire (Monteleone et al., 2017; van Strien et al., 1986), and the Big 271 

Five Inventory (Fossati et al., 2011; John et al., 2008), respectively. Additionally, participants 272 
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were asked to indicate their own gender, age, weight and height (later used to calculate the 273 

BMI as Kg/m2), educational level, job occupation, yearly income, and diet choice. Dietary habits 274 

were measured and eating patterns (omnivores, flexitarians, vegetarians, vegans) defined as 275 

previously proposed (De Backer & Hudders, 2015). All psychometric measures exhibited 276 

satisfactory (α = 0.658; Pleasure domain in the Health and Taste Attitude Scale) up to excellent 277 

(α = 0.941; Trait anxiety Inventory) internal reliability (ordinal Cronbach’s α). Further details on 278 

questionnaires, items (domains), rating scales, scores computation strategy, and internal 279 

reliability are given in Supplemental Table S3. 280 

2.5 Dietary intakes assessment   281 

Along the 7-day lasting protocol, volunteers also completed a food record aimed at gathering 282 

detailed dietary information. While multiple administrations of food records are frequently 283 

needed to assess habitual nutrient intakes, prolonged recording (> 4 days) reportedly affects 284 

the reliability of data due to participant fatigue (Thompson & Subar, 2017). Hence, a 4-day 285 

period (3 week days and 1 w-end day) was chosen as an appropriate trade-off between 286 

accuracy and participant burden.  287 

Volunteers were given video instructions on how to fill in the food recording (with practical 288 

examples), and invited to be as precise as possible in listing recipes, amounts and types of 289 

foods consumed. To improve data accuracy, participants were also granted access to a 290 

comprehensive photographic food atlas (Istituto Scotti Bassani, Milan, Italy), based on the 291 

Italian food composition database (https://www.ieo.it/bda), to be used as reference to easily 292 

estimate portion sizes.  293 

Data were collected using a mobile dietary record app (Dietosystem®, DS Medica, Milan, Italy), 294 

and later processed through the dietetic software Terapia Alimentare Dietosystem® (version 295 

17.00.02, DS Medica, Milan, Italy). This platform enabled us to calculate both daily caloric 296 

intake (as Kcal) and the quantities of a large variety (n = 93) of macronutrients (e.g., main type 297 

of carbohydrates, fats, proteins and fibers) and micronutrients (e.g., hydrosoluble and 298 

liposoluble vitamins, minerals). Lastly, to reliably estimate interindividual differences in single 299 

nutrient intakes unaffected by known confounding factors (gender, BMI, physical activity), 300 

dietary data were energy-adjusted by residual method as previously recommended (Poslusna et 301 

al., 2009) and then individually averaged.  302 

2.6 Stool samples 303 
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2.6.1 Stool collection and preprocessing 304 

Prior to starting the last session (D4; Figure 1), volunteers were instructed (via textual and 305 

video tutorials) to collect one stool sample using OMNIgene®•GUT (OM-200.100, DNA Genotek 306 

Inc., Ottawa, Canada), a widely-used commercially available kit optimized for autonomous feces 307 

collection and preservation of bacterial DNA up to 60 days at ambient temperature.  308 

Volunteers delivered their sample within 1 day (mean = 1.09 ± 2.27 days) after collection. 309 

Upon delivery, the tubes were vigorously shaken for 30 s to further homogenize and liquefy the 310 

samples, and 750 μL aliquots were then stored at -80 °C until subsequent downstream 311 

applications.  312 

2.6.2 Stool DNA extraction, amplification and sequencing 313 

Next, total microbial DNA was extracted from fecal specimens (250 μL) using the QIAamp® 314 

PowerFecal® Pro DNA Kit (Qiagen, Hilden, Germany) with a minor deviation from the 315 

manufacturer instructions. Specifically, the Qiagen Spin column tube was eluted twice with 316 

DEPC-treated water (Thermo Fisher Scientific, Waltham, MA, USA) to a final volume of 100 µL 317 

to optimize bacterial DNA quality and concentration. High-quality microbial DNA was then stored 318 

again at -80 °C until the succeeding Polymerase Chain Reaction (PCR) application.  319 

PCR amplification was performed by targeting 16S rRNA gene V3-V4 hypervariable regions  320 

using the specific bacterial primer set 341 F (5’ CCTACGGGNGGCWGCAG 3’) and 806 R (5’ 321 

GACTACNVGGGTWTCTAATCC 3’) with overhang Illumina adapters (Apprill et al., 2015; 322 

Klindworth et al., 2013). Amplicons were then purified, and libraries prepared as described by 323 

Gaudioso et al. (2021) prior to being sequenced using the Illumina® MiSeq (PE300) platform 324 

(San Diego, CA, USA).  325 

2.6.3 Bioinformatics 326 

Forward and reverse raw sequences were firstly demultiplexed before being trimmed (~265 bp; 327 

PHRED score > 20), and filtered for chimeric sequences, primers, and potential sequencing 328 

artifacts via DADA2 (Callahan et al., 2016). High-quality sequences were thus resolved into 329 

amplicon sequence variants (ASVs) and then mapped against the SILVA database (version 138; 330 

Quast et al., 2013) for taxonomic annotation up to the genus level at 99 % of similarity.  331 

Bioinformatics were carried out using the Quantitative Insights Into Microbial Ecology 2 (QIIME 332 

2™; Bolyen et al., 2019), while subsequent computation of intra-sample (α-) diversity metrics  333 
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(i.e., Chao-1, Shannon, Simpson, Inverse Simpson, and Fischer indices) was performed at 334 

genus level through the R package phyloseq (McMurdie & Holmes, 2013).  335 

2.7 Data analysis 336 

2.7.1 Taste profiles derivation and characterization 337 

We firstly aimed at identifying groups of volunteers homogenous for their overall orosensory 338 

responsiveness in actual foods (hereafter, “taste profiles”). To this end, perceived intensity 339 

responses (gLMS; D4) relevant for each product (Table 1) were organized in as many groups as 340 

the stimuli evaluated (n = 10). A Multiple Factor Analysis (MFA) was then computed to have a 341 

spatial configuration of individuals who were similarly responsive to all target and other relevant 342 

sensations (e.g., flavors) evoked by each stimulus.  343 

To derive distinct taste profiles, we employed a data-driven segmentation approach determining 344 

both algorithm and number of clusters best fitting the data in adherence with previous 345 

guidelines (Kassambara, 2017). Specifically, six algorithms (i.e., K-means, Hierarchical 346 

Agglomerative, PAM, SOTA, CLARA, and DIANA clustering) along an increasing number of 347 

clusters from n = 2 to n = 10 were tested, and optimal partitioning was defined in the light of 348 

the lowest cluster connectivity and the highest silhouette width and Dunn index observed 349 

(Brock et al., 2008). As input, we used the factor scores produced by the first three dimensions 350 

of the MFA model as suggested by the Kaiser criterion (eigenvalues > 1; Kaiser, 1960).  351 

Differences between taste profiles as a function of sensory-related (e.g., intensity and liking 352 

data), psychometric, and dietary measures were then calculated via permutational Wilcoxon 353 

rank sum test (n = 10000), which gives the advantage to accurately estimate exact rates of 354 

significance when groups, as in our case, vary greatly in size (Endrizzi et al., 2022).  355 

2.7.2 Differences in gut microbial ecology between taste profiles 356 

Given the intrinsic compositional nature of sequencing products (Gloor et al., 2017),  357 

dissimilarities in gut bacterial ecology between taste profiles were tested at genus level using a 358 

compositional data approach, which allows to reliably draw inferences based on ratios between 359 

taxa (Gloor et al., 2017). First, to deal with the high sparsity of high-throughput data, zeros 360 

were imputed with sensible counts by geometric Bayesian-multiplicative replacement (Gloor et 361 

al., 2017; Palarea-Albaladejo & Martín-Fernández, 2015). Next, ASVs were centered log ratio 362 

transformed before computing the Euclidean (i.e., Aitchison) distance between samples as 363 
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index of compositional inter-sample (β-) diversity (Gloor et al., 2017). Differences in α- and  β-364 

diversity metrics between taste profiles were then checked via permutational Wilcoxon rank 365 

sum test (as previously described in section 2.7.1) and permutational multivariate analysis of 366 

variance (PERMANOVA; n = 10000), respectively. β-dissimilarities were also graphically 367 

represented using Principal Component Analysis (Gloor et al., 2017).  368 

Lastly, raw ASV counts were filtered for taxa present in at least 10 % of participants before 369 

differential abundance analysis as previously recommended (Nearing et al., 2022). Differentially 370 

abundant taxa between taste profiles were thus defined at different taxonomic levels (phylum, 371 

class, order, family, genus) via Analysis of Compositions of Microbiomes with Bias Correction 372 

(ANCOM-BC; Lin & Peddada, 2020), a compositionally aware method reportedly reducing the 373 

occurrence of false discovery rates (Lin & Peddada, 2020; Nearing et al., 2022). Data are 374 

expressed as median ± interquartile range (IQR), and as mean ± standard deviation (SD) 375 

whenever stated. All tests were two-tailed, and a p value < 0.05 (after permutation test or 376 

Benjamini-Hochberg adjustment in ANCOM-BC) was considered statistically significant.  377 

2.7.3 Software 378 

Statistics were calculated using R 4.2.0 (R Core Team, 2019). Particularly, MFA model 379 

computation and visualization was carried out via FactoMineR (Husson et al., 2018), while the R 380 

packages NbClust (Charrad et al., 2014) and clValid (Brock et al., 2008) were employed within 381 

the data-driven segmentation approach. Lastly, the R packages zCompositions (Palarea-382 

Albaladejo & Martín-Fernández, 2015), vegan (Dixon, 2003), and ANCOMBC (Lin & Peddada, 383 

2020) were used for zeros replacement, β-dissimilarity and differential abundance analysis, 384 

respectively.  385 

3. Results 386 

3.1 Optimal partitioning and taste profiles characterization 387 

Assuming that individuals would show similar patterns of responsiveness across different 388 

sensory modalities (Hayes & Keast, 2011; Nolden et al., 2020; Piochi et al., 2021), relevant 389 

intensity ratings within each food stimulus (n = 10) were separately grouped and submitted to 390 

a MFA to derive taste profiles homogenous for their global orosensory responsiveness.  391 

Overall, participants were uniformly distributed over the first two dimensions of the MFA score 392 

plot (31.0 % of variance; Supplemental Figure S7a), and the sensory ballot positively associated 393 
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with the first component of the model (Supplemental Figure S7b). Along Dim. 2, warning 394 

sensations (e.g., bitter, pungent) tended to be oppositely distributed to innately liked tastes 395 

(e.g., sweet, salty), whilst flavors seemed to be positively or negatively associated with taste 396 

qualities as a function of taste-flavor congruence (e.g., bitter-coffee or sweet-cocoa). 397 

Based on the factor scores from the first three MFA dimensions (39.7 % of variance), we then 398 

sought to define both the algorithm and the partitioning best fitting the data. Results from the 399 

data-driven segmentation approach revealed that cluster solutions derived via K-means 400 

clustering best suited the data (Supplemental Figure S8), and thus it was selected for our 401 

purposes. Nevertheless, while both connectivity and silhouette index suggested n = 2 clusters 402 

as the best partition, we found the highest Dunn index value when parsing into 6 clusters 403 

(Supplemental Figure S8). Hence, to conclusively define the optimal partitioning, we used the 404 

26 cluster validation indices implemented in the R package NbClust (Charrad et al., 2014), and 405 

found n = 2  as the cluster number supported by the majority of these indices (Supplemental 406 

Figure S9).  407 

The two distinct taste profiles (CL-1 CL-2) thus derived (K-means clustering) were not different 408 

for gender proportion, BMI, age, dietary styles, level of food neophobia, trait-anxiety, and 409 

domains of personality. Interestingly, we found CL-2 populated by a higher proportion of PROP 410 

Medium Tasters (and fewer PROP Non Tasters) showing higher external eating behaviors 411 

(Dutch Eating Behaviour Questionnaire; van Strien et al., 1986) and proneness to use food as a 412 

source of reward (Health and Taste Attitudes Scale; Roininen & Tuorila, 1999). Table 2 lists 413 

baseline demographics, attitudes and psychological traits, and PROP taste phenotypes 414 

distribution across taste profiles.  415 

3.2 Differences in orosensory responsiveness, liking, familiarity and 416 

frequency of consumption between taste profiles 417 

As expected, we found CL-2 to be more responsive (p < 0.05) to the majority of oral sensations 418 

measured in both liquid (Figure 2) and solid (Figure 3) foods. Except for bitterness in PR-08 419 

(Figure 3), CL-2 was hyperresponsive to all target tastes (i.e., sweet, sour, bitter, salty), and 420 

this effect went beyond differences on textural properties of stimuli. Relatedly, CL-2 reported 421 

higher intensity ratings for somatosensory sensations, like pungency and astringency, and for 422 

flavors. Also, CL-2 seemed to rate bitterness at higher extent especially in simple matrices (i.e., 423 

PR-03 = coffee) not eliciting concomitant suppressive (i.e., sweet in PR-08) or warning (i.e., 424 
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sour in PR-02) oral sensations. Noteworthily, variations in oral acuity could not be imputed to an 425 

idiosyncratic use of the gLMS, as taste profiles similarly rated the recalled intensities evoked by 426 

the extraoral stimuli used within the training (Supplemental Figure S10).  427 

To check for potential mediators of sensory responsiveness, we then looked into the differences 428 

between taste profiles in terms of liking, familiarity and frequency of consumption (Table 3). 429 

Overall, we found no differences for 7 out of 10 samples for liking and familiarity. Moreover, 430 

both clusters declared to consume all food categories evaluated equally often. Interestingly, CL-431 

2 reported higher liking or familiarity ratings for energy-dense foods (e.g., PR-09 = fries) 432 

eliciting innately liked oral sensations (e.g., salty in PR-04 or PR-09; sweet in PR-01 or PR-06). 433 

3.3 Differences in dietary intakes between taste profiles 434 

Next, we examined variations in habitual dietary intakes between taste profiles. To this end, 435 

total energy intake (as Kcal) and the large variety of macro- and micronutrients (n = 93) 436 

extracted from diary records were considered. Overall, CL-1 reported a 4.3 % (Proteins; p = 437 

0.038) up to 33.7 % (tartaric acid; p = 0.015) higher intakes of several beneficial macro- (e.g., 438 

vegetable proteins) and micronutrients (e.g., a variety of B vitamins and minerals). Oppositely, 439 

CL-2 declared to habitually consume higher amounts of saturated fats (+ 5.7 %; p = 0.005).  440 

Particularly, CL-1 habitually assumed larger quantities of macro- and micronutrients commonly 441 

included in plant-based foods. Among others, we found CL-1 relating to greater intakes of total 442 

fibers (+ 7.2 %; p = 0.001), magnesium (+ 5.6 %; p = 0.008) or retinol (Vit. A; + 12.6 %; p = 443 

0.039). Simultaneously, CL-1 also reported a higher consumption of compounds included in 444 

legumes, oily fish and meat-based products (i.e., purines; + 15.4 %; p = 0.006). More 445 

interestingly, the hyporesponsive cluster also showed significantly higher (p < 0.05) habitual 446 

intakes of molecules supposed to elicit sweetness (i.e.,  glucose = + 21.9 %; fructose = + 26.8 447 

%) or sourness (i.e., Vit. C (ascorbic acid) = + 15.0 %; tartaric acid = + 33.7 %; malic acid = 448 

+ 30.1 %). Figure 4 illustrates significant (p < 0.05) variations in percentages of habitually 449 

consumed nutrients between taste profiles, whilst exact quantities of significantly different 450 

dietary components of groups’ habitual diet are listed in Supplemental Table S4. 451 

3.4 Taste profiles differed in gut microbial diversity and composition  452 

After discarding mitochondrial and Cyanobacteria reads, a total of 7635757 (mean = 76357.6 ± 453 

12292.8 per sample) high-quality sequences were conclusively generated. In line with 454 

numerous reports (e.g., Rinninella et al., 2019), the gut microbial consortium was on average 455 
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dominated by the phyla Firmicutes (59.9 ± 8.0 %), Bacteroidetes (31.4 ± 7.5 %), 456 

Actinobacteria (5.0 ± 4.0 %), Proteobacteria (2.6 ± 1.5 %) and Verrucomicrobia (0.8 ± 1.7 %), 457 

which represented over 99 % of taxa detected in our cohort.  458 

We then evaluated the differences between taste profiles as a function of gut microbial α- and 459 

β- diversity metrics. Compared to CL-2, CL-1 exhibited higher taxonomic richness (e.g., Chao-1; 460 

CL-1 = 104 ± 13.8; CL-2 = 95 ± 24.8;  p = 0.003) and evenness (e.g., Shannon index; CL-1 = 461 

3.3 ± 0.3; CL-2 = 3.2 ± 0.6; p = 0.017), as corroborated by five different intra-sample diversity 462 

metrics (Supplemental Figure S11). Next, we tested the extent of β-dissimilarities between fecal 463 

microbial communities of groups using Aitchison distances (Gloor et al., 2017), and found both 464 

taste profiles effectively separated (PERMANOVA; R2 = 0.026; p = 0.001). More interestingly, 465 

Aitchison distances within members of CL-1 were significantly shorter than in CL-2 (CL-1 = 38.4 466 

± 6.0; CL-2 = 41.0 ± 9.1; p < 0.001), thus suggesting that the hyporesponsive cluster housed 467 

a more homogenous gut bacterial composition (Supplemental Figure S12).    468 

3.5 Taste profiles associated with specific signatures in the gut microbiota  469 

Lastly, we evaluated differentially abundant gut bacterial taxa between taste profiles at five 470 

taxonomic levels (phylum, class, order, family, genus) via ANCOM-BC (Lin & Peddada, 2020). 471 

Overall, taste profiles showed no significantly different (padj > 0.05) gut microbial abundances 472 

at the highest taxonomic levels (phylum, class, order, family). The gut microbiota of both 473 

groups was on average dominated by the phyla Firmicutes (CL-1 = 62.5 ± 6.8 %; CL-2 = 58.4 474 

± 8.3 %) and Bacteroidetes (CL-1 = 29.4 ± 7.1  %; CL-2 = 32.6 ± 7.4 %), which represented 475 

over 90 % of their gut microbial consortium. Moreover, among the 171 genera observed, 476 

Bacteroides was the most abundant (padj > 0.05) both in CL-1 (16.4 ± 6.8 %) and CL-2 (21.8 ± 477 

9.1 %), as commonly documented in healthy individuals (Rinninella et al., 2019). Top abundant 478 

phyla (n = 10) and genera (n = 20) by taste profiles are depicted in Supplemental Figure S13.  479 

Nevertheless, several differences emerged when it came to evaluate the differently abundant 480 

gut microbial genera between groups. Results (Figure 5) revealed abundances of 11 gut taxa at 481 

genus level (phylum Firmicutes) to be significantly higher in CL-1 relative to CL-2. These 482 

included [Eubacterium] coprostanoligenes group (padj = 0.009), [Eubacterium] eligens group 483 

(padj = 0.020), [Eubacterium] xylanophilum group (padj < 0.001), Family XIII UCG-001 (padj = 484 

0.006), Marvinbryantia (padj = 0.004), Ruminiclostridium 6 (padj = 0.004), Ruminococcaceae 485 

NK4A214 group (padj = 0.019), Ruminococcaceae UCG-002 (padj = 0.008), Ruminococcaceae 486 
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UCG-005 (padj = 0.005), Ruminococcus 1 (padj = 0.004), and one uncultured bacterium assigned 487 

to the family Clostridiales vadinBB60 group (padj = 0.003). Conversely, we found two taxa to be 488 

significantly more abundant in the gut microbiota of CL-2, namely the genera [Ruminococcus] 489 

gnavus group (phylum Firmicutes; padj = 0.039) and Eggerthella (phylum Actinobacteria; padj = 490 

0.029). Relative abundances of significantly different gut microbial genera between taste 491 

profiles are listed in Supplemental Table S5.    492 

4. Discussion 493 

4.1 Supporting the existence of individuals with generalized hypergeusia  494 

In this study, we empirically tested the hypothesis that variations in oral responsiveness would 495 

translate into different gut microbial consortia and modulate dietary habits. Our findings largely 496 

confirmed this assumption, as individuals differing for their oral responsiveness in actual foods 497 

went along with a distinctive gut microbial composition and differences in habitual consumption 498 

of macro- and micronutrients. 499 

Motivated by previous reports (e.g., Hayes & Keast, 2011; Nolden et al., 2020; Piochi et al., 500 

2021), we firstly aimed at segmenting our cohort in homogenous groups of individuals 501 

according to their global orosensory responsiveness to the ten foods here tested. To this end, 502 

relevant intensity ratings within each food matrix (n = 10) were grouped separately and 503 

submitted to a MFA model. The MFA factor scores were thus employed to derive clusters using 504 

a variety of quantitative criteria to objectively define the best partition. Overall, we found two 505 

distinct groups (named taste profiles throughout the paper), which were, respectively, hypo- 506 

(CL-1) and hyperresponsive (CL-2) to nearly all tastes, somatosensory sensations or flavors 507 

elicited by the ten foods.  508 

Importantly, differences in orosensory perception between taste profiles were consistently 509 

observed regardless of the textural properties of the stimuli. As a result, hyperresponsive 510 

individuals systematically showed enhanced acuity to tastes or sensations in both liquid and 511 

solid foods, and this leads us to think that taste profiles may also differ on acuity towards 512 

textural properties. However, as currently accepted positive relationships between oral 513 

responsiveness and tactile acuity (Breen et al., 2019; Essick et al., 2003; Linne & Simons, 2017) 514 

have recently been questioned (Mani et al., 2022), we encourage further investigations to 515 

conclusively (dis)confirm such link into real foods. Taken collectively, our findings fall into the 516 

existing literature supporting the existence of groups of individuals with generalized 517 
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hypergeusia (Dinnella et al., 2018; Hayes & Keast, 2011; Nolden et al., 2020; Piochi et al., 518 

2021; Puputti et al., 2018). 519 

However, a surprising result also emerged. Against expectations, the proportion of PROP Super 520 

Tasters was similar (25 %) across taste profiles. This result could tentatively be linked to 521 

methodological concerns on operationalizations of PROP responsiveness via paper strips 522 

(relative to using aqueous solutions). Indeed, impregnated strips reportedly tend to generate 523 

high false positive rates from individuals insensitive to PROP (Lawless, 1980), and may not 524 

guarantee consistent quantities of PROP across the strip thus inducing biases on phenotypic 525 

assignment (Zhao et al., 2003). Furthermore, though extensively trained, participants may have 526 

faced difficulties in complying with the unfamiliar tasting protocol, which could inadvertently 527 

have promoted differences on the amount of PROP delivered across individuals. Nevertheless, 528 

the hyperresponsive group was populated by significantly more Medium Tasters (59.4 % vs 529 

33.3 % in the hyporesponsive group) but fewer Non Tasters (15.6 % vs 41.7 %), thus 530 

reasonably suggesting that oral hyperresponsiveness also corresponds to enhanced PROP acuity 531 

(e.g., Dinnella et al., 2018). 532 

4.2 Role of hedonics, familiarity and psychological traits on variations in 533 

oral responsiveness across taste profiles  534 

While taste profiles were largely similar in terms of liking and familiarity (Table 3) or 535 

demographics, dietary styles and psychological traits (Table 2), the few differences observed 536 

favor a deeper understanding of variations in acuity above mentioned. Particularly, we noticed 537 

the hyperresponsive group giving higher liking ratings for samples evoking innately liked tastes 538 

like sweet (e.g., PR-06 = biscuit) and salty (e.g., PR-09 = fries), and found the same tendency 539 

for familiarity albeit in different samples (e.g., PR-01 = pear juice). Thus, given how these 540 

foods associated with rewarding sensory properties, it was unsurprising to observe most 541 

responsive individuals exhibiting higher pleasure-oriented attitudes (Burton et al., 2007). 542 

Furthermore, these results overlap those by Hayes, Sullivan, and Duffy (2010) who observed 543 

that liking for energy-dense snacks (chips, pretzels) went along with perceived saltiness in 544 

PROP Super Tasters.    545 

Interestingly, we evidenced very few cases of no differences in sour or bitter responsiveness 546 

between taste profiles (Figure 2 and 3). Noteworthily, these mostly occurred in palatable (LAM 547 

> 50; Table 3) and energy-dense matrices simultaneously eliciting rewarding sensations as 548 
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sweet (i.e., PR-01 and PR-08). This suggests that the few circumstances of no variation in oral 549 

acuity between taste profiles may be ascribed to the hedonic orientation of the hyperresponsive 550 

group, which would have deviated volunteers’ attention towards a sensation more frequently 551 

experienced and thus liked (e.g., Burton et al., 2007). Nevertheless, given the substantial 552 

background homogeneity across clusters, we can reasonably conclude that variations in sensory 553 

responsiveness here observed can mostly be allocated to physiological rather than attitudinal 554 

factors.  555 

4.3 Simultaneous variations in oral responsiveness and gut microbial 556 

ecology mirror dietary habits 557 

The main novel contribution of the current study lies in the observed differences between taste 558 

profiles in terms of gut microbiota composition and, ultimately, habitual dietary intakes. Indeed, 559 

the hyporesponsive group showed a more diverse, complex and homogeneous gut microbial 560 

environment over the hyperresponsive group. Moreover, strong (β-) dissimilarities in the overall 561 

genus-level composition of the gut microbiota significantly distinguished both groups. In detail,  562 

hyporesponsive individuals were found to harbor significantly higher abundances of 11 563 

beneficial gut microbial genera, while the gut microbial consortium of the hyperresponsive 564 

group was enriched in two dysbiotic genera ([Ruminococcus] gnavus group and Eggerthella). 565 

Also, oral hyporesponsiveness went along with higher habitual intakes of vegetable proteins, 566 

fibers, simple carbohydrates, and several vitamins and micronutrients, whilst oral 567 

hyperresponsiveness associated with a higher habitual consumption of saturated fats.  568 

Interestingly, the majority of differentially enriched taxa observed in the hyporesponsive group 569 

belonged to the families Lachnospiraceae and Ruminococcaceae. These two reservoirs of 570 

commensal gut taxa reportedly hydrolyze plant polysaccharides to produce a range of short 571 

chain fatty acids (Vacca et al., 2020), and relate to plant-oriented diets (Cronin et al., 2021). As 572 

an example, [Eubacterium] xylanophilum group positively associated with long-term 573 

consumption of healthful fiber sources such as fruits and vegetables (Miao et al., 2022), while a 574 

resistant starch-supplemented diet promoted increased abundances of Ruminococcaceae UCG-575 

005 (Zhang et al., 2019). Similarly, Ma et al. (2021) longitudinally (~30 years) screened the gut 576 

microbiota and diet quality of a large cohort of 5936 individuals, and found [Eubacterium] 577 

eligens group and Ruminococcus 1 consistently associated with healthier dietary patterns (e.g., 578 

fiber-, legume- and whole grain-rich diets). Noteworthily, the same follow-up study observed 579 
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the pro-inflammatory [Ruminococcus] gnavus group systemically anticorrelated with diet quality 580 

(Ma et al., 2021), thus further explaining the habitual diet (high in saturated fats and low in 581 

plant-based components) declared by the hyperresponsive group. Altogether, given how plant-582 

oriented diets can positively boost gut bacterial richness and evenness (Cronin et al., 2021; 583 

Wolters et al., 2019), our findings from both ecological (α- and β-diversity) and differential 584 

abundance analysis reinforce an extensive literature pointing out evident interplays between 585 

dietary habits and the gut microbiota.  586 

In the same vein, expected associations between sensory perception, psychological traits and 587 

dietary intakes also emerged. First, oral hyperresponsiveness translated into lower intakes of 588 

nutrients (in)directly linkable to sweetness (e.g., glucose and fructose), sourness (e.g., malic 589 

acid) or bitterness (e.g., total fibers). Second, it corresponded to higher intakes of saturated 590 

fats, likely due to the mediating effect of pleasure-oriented tendencies (Burton et al., 2007). 591 

Hence, our findings substantially agree with previous reports suggesting how an enhanced oral 592 

acuity for a certain sensation tend to minimize its consumption (e.g., Cattaneo, Riso, et al., 593 

2019), but motivate future studies to increasingly consider key mediators of taste perception 594 

when it comes to evaluate its relationships with dietary patterns. 595 

4.4 Potential interplays between taste perception and gut microbiota in 596 

modulating dietary intakes 597 

At present, the most reasonable paradigm underlying our findings would presume that oral 598 

responsiveness and its psychological covariates affect dietary patterns thus promoting a 599 

cascade system ultimately shaping the gut microbiota (e.g., Cronin et al., 2021; Köster, 2009; 600 

Monteleone et al., 2017; Wolters et al., 2019). However, an alternative model focused on a 601 

putative mutualistic interplay between taste perception and gut communities in modulating 602 

dietary habits could also be speculated.  603 

Gut microbiota has previously been proposed as a reservoir of microbes actively influencing our 604 

food choices (also) via taste perception to selectively dominate the gut environment (Alcock et 605 

al., 2014). A variety of potential mechanisms have been discussed, including the modulation of 606 

the host immune system and hormone secretion (see Leung & Covasa, 2021 for a review). 607 

Interestingly, inflammation appears to play a key role in these pathways. Indeed, bacterial 608 

lipopolysaccharides would play in concert with gut lumen Tool Like Receptors to induce 609 

systemic circulation of inflammatory cytokines (e.g., TNF-α), which ultimately would reach the 610 
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sites of taste transduction in the tongue and jeopardize the expression of taste receptors 611 

(Leung & Covasa, 2021).  612 

In this context, a key difference here observed among the differentially abundant microbes 613 

between the hypo- and hyperresponsive group sits into their anti- or pro-inflammatory 614 

activities. Notably, the gut microbiota of less responsive individuals harbored greater 615 

proportions of gut microbial genera with anti-inflammatory related activities such as short-chain 616 

fatty acids production (e.g., [Eubacterium] xylanophilum group), cholesterol reduction (i.e., 617 

[Eubacterium] coprostanoligenes group) or promotion of potent anti-inflammatory effects (i.e., 618 

[Eubacterium] eligens group) (Cronin et al., 2021; Kenny et al., 2020; Ohira et al., 2017; Vacca 619 

et al., 2020). Conversely, the hyperresponsive group showed higher relative abundances of 620 

[Ruminococcus] gnavus group and Eggerthella, two bacterial genera widely associated with 621 

inflammatory bowel disease (Henke et al., 2019; Pascal et al., 2017). Moreover, the same group 622 

housed a less complex and diverse gut microbial composition, which is reportedly (also) a proxy 623 

of both local and systemic inflammation (e.g., Le Chatelier et al., 2013; Zouiouich et al., 2021).  624 

Noteworthily, these differences parallelly corresponded to hypo- or hyperresponsiveness to oral 625 

stimuli and distinct dietary patterns. Thus, it might be possible that a simultaneous enrichment 626 

or depletion in gut microbial taxa (and/or diversity) promoting (anti-)inflammation could have 627 

manipulated the expression of taste receptors (Leung & Covasa, 2021). Within this context, the 628 

consequent decreased or enhanced taste responsiveness would putatively have induced the 629 

host to select nutritional sources that these taxa needed to ensure their dominance within the 630 

gut environment (Alcock et al., 2014). However, mechanisms underlying potential interplays 631 

between taste perception and gut microbial ecology are far to be conclusively understood. 632 

Relatedly, to infer potential metabolic pathways, future studies should firstly aim at unraveling a 633 

consistent narrow circle of gut biomarkers related to oral acuity in actual foods by coupling 634 

deeper sequencing coverages (i.e., shotgun sequencing) to promising marker-based approaches 635 

like metabarcoding (Ranjan et al., 2016; Taberlet et al., 2012). However, such experimental 636 

efforts would be poorly resolutive unless included in large-scale multidisciplinary designs. 637 

Beyond generalizability of findings, such studies will be pivotal to reliably estimate the actual 638 

weight of key mediators of taste perception and/or gut microbial composition (e.g., age, weight 639 

status, gender, psychological traits) within their interplay. 640 

4.5 Strengths, limitations and conclusions 641 
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To our knowledge, this is the first study empirically supporting that variations in responsiveness 642 

towards a large variety of oral stimuli in foods correspond to parallel changes in gut bacterial 643 

ecology and dietary intakes. The strengths of this study include the comprehensive 644 

experimental design, the use of real foods, and the ecological validity of outcomes. Also, we 645 

provided evidence on the accuracy and feasibility of collecting sensory data remotely. In line 646 

with recent guidelines (Dinnella et al., 2022), the success of remote testing mostly sits in 647 

meticulously planned working sessions enriched in a range of measures guaranteeing the 648 

respect of good practices in sensory analysis and the validation of the tasting protocol. Lastly, 649 

another important strength of the current study is the high background homogeneity and size 650 

(compared to previous reports) of our cohort. While limiting the generalizability of results, such 651 

strategy permitted us to reliably draw inferences minimally affected by known mediators of the 652 

factors under-investigation, and to speculate potential mechanistic explanations underlying the 653 

differences observed.  654 

However, we should also acknowledge a few limitations. In the light of the restricted ethnic and 655 

age range here employed, we can not conclude that our results are generalizable to broader 656 

populations. Moreover, while commonly employed in consumer studies, our sample size was still 657 

relatively small to highlight deeper variations in patterns of sensory responsiveness. Indeed, 658 

given the low variance explained by MFA factor scores (39.7 %), the data-driven segmentation 659 

approach has probably merged groups of individuals with differently enhanced (e.g., 660 

intermediate vs high) oral responsiveness (e.g., Piochi et al., 2021; Puputti et al., 2018) for the 661 

sake of clustering reliability and stability. Nevertheless, objective clustering largely outperforms 662 

commonly used arbitrary criteria (e.g., Sauvageot et al., 2017), and should increasingly be used 663 

in future studies (possibly) along with larger samples to reproducibly target groups of 664 

differentially responsive individuals. Lastly, although dietary records represent the gold standard 665 

in nutritional epidemiological research (Thompson & Subar, 2017), these measures still rely on 666 

self-reporting. Hence, potential over- or underestimations in intakes due to participants’ fatigue 667 

or self-presentation biases may also be possible (Grant et al., 2021; Thompson & Subar, 2017), 668 

though our dietary-related findings largely agree with the current literature.  669 

To conclude, we described the first empirical evidence pointing out, in healthy individuals, a 670 

potential mutualistic interplay between sensory responsiveness and gut bacterial ecology in 671 

shaping dietary patterns. Given how both factors intimately correlate with eating habits, the 672 

results of this study shed new light into the aetiology of eating behaviors and can hopefully 673 
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pave the way towards further research on the conjoint effects of host-related non-genetic 674 

factors and sensory perception.  675 
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10. Figure captions 708 

Figure 1: Graphical overview of data collection. 709 

Figure 2: Differences in oral responsiveness in liquid foods between CL-1 (dark-blue; n = 36) 710 

and CL-2 (orange; n = 64). The raincloud plot graphically represents data distribution (the 711 

“cloud”), individual raw observations (the “rain”), and the median (filled circle) ± IQR 712 

(perpendicular black line) within each taste profile. Statistically significant differences observed 713 

after permutational Wilcoxon rank sum test (n = 10000) are depicted (* = p < 0.05; ** = p < 714 

0.01; *** = p < 0.001). 715 

Figure 3: Differences in oral responsiveness in solid foods between CL-1 (dark-blue; n = 36) 716 

and CL-2 (orange; n = 64). The raincloud plot graphically represents data distribution (the 717 

“cloud”), individual raw observations (the “rain”), and the median (filled circle) ± IQR 718 

(perpendicular black line) within each taste profile. Statistically significant differences observed 719 

after permutational Wilcoxon rank sum test (n = 10000) are depicted (* = p < 0.05; ** = p < 720 

0.01; *** = p < 0.001). 721 

Figure 4: Circular heatmap depicting variations (%) in habitual nutrient intakes between CL-1 722 

(n = 36; outer circumference) and CL-2 (n = 64; inner circumference), as calculated by the 723 

proportional difference between the medians across taste profiles. Macronutrients, essential 724 

amino acids (AA), organic compounds, minerals, and vitamins (Vit.) are plotted. Moreover, 725 

statistically significant differences observed after permutational Wilcoxon rank sum test (n = 726 

10000) are given (* = p < 0.05; ** = p < 0.01; *** = p < 0.001). † to be considered as a 727 

semi-essential amino acid. 728 

Figure 5: Differently abundant taxa between taste profiles. The plot illustrates the main 729 

outcome produced by ANCOM-BC (W statistic), which summarizes the ratio between the effect 730 

size (log fold change) and the standard error (95 % confidence interval) underlying the 731 
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differences observed (Lin & Peddada, 2020). Genera found to be significantly (p < 0.05) more 732 

abundant in CL-1 (n = 36) are depicted in the dark-blue side of the plot (left), whereas the 733 

orange band (right) houses differentially abundant microbial genera that were significantly 734 

enriched in CL-2 (n = 64). Colored bars (dark-blue and orange) show the magnitude of the 735 

effect size (log fold change), whilst colored circles represent the rates of significance after 736 

Benjamini-Hochberg adjustment (orange: p < 0.05; white: p < 0.01; dark-blue: p < 0.001).737 
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11. Tables 738 

Acronym  Set  Order  Product (Brand)  Amount  Consistency  Target 
sensation 

 Other 
sensations 

 Flavor 
                          

PR-01  1  1  Pear juice (Yoga, Italy)  10 mL  Liquid  Sweet  Sour  Pear 

PR-02  1  2  Grapefruit juice (Derby Blue, Italy)   10 mL  Liquid  Sour  Bitter  Grapefruit 

PR-03  1  3  Ready to drink coffee  
(Pocket Bar, Italy) 

 10 mL  Liquid  Bitter  /  Coffee 

PR-04  1  4  Olive pate (Madama Oliva S.r.l, Italy)  10 mL  Liquid  Salty  /  Olive 

PR-05  1  5  Tomato juice  
(Industrie Montali S.r.l, Italy) 

 10 mL  Liquid  Pungent  /  Tomato 
                          

                  
PR-06  2  6  Biscuit (Lotus Bakeries NV, Belgium)   1 unit  Solid  Sweet  /  Caramel 

PR-07  2  7  Lemon candy  
(Perfetti Van Melle S.p.A, Italy) 

 1 unit  Solid  Sour  Sweet  Lemon 

PR-08  2  8  Dark chocolate (Venchi S.p.A, Italy)  1 unit  Solid  Bitter  * Sweet, 
Astringent  

 Cocoa 

PR-09  2  9  Fries (Saiwa S.r.l, Italy)  4 units  Solid  Salty  /  Potato 

PR-10  2  10  Ginger candy  
(Euro Company S.r.l, Italy) 

 2 units  Solid  Pungent  Sweet  Ginger 
                          
 739 

Table 1: Food matrices and ballot of sensory attributes used in the current study. Acronyms, set and order of evaluation, food 740 

products (brands), quantities employed (Amount), textural properties of samples (Consistency), target sensations (i.e., sweet, sour, 741 

bitter, salty, pungent) and other measured relevant oral sensations (Other sensations; Flavor) are listed. * In PR-08, sweetness was 742 

evaluated before astringent, and cocoa flavor as last. 743 
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 744 

Table 2:  Baseline demographics, dietary styles, attitudes and psychological traits, and PROP 745 

taste phenotypes distribution among taste profiles (CL-1, CL-2). Data are summarized as raw 746 

observations (n), mean ± SD (Age, BMI) or median ± IQR whenever appropriate. Differences 747 

between CL-1 (n = 36) and CL-2 (n = 64) are also tabulated (p.value), and calculated via chi-748 

squared test (†), unpaired t-test (††) or permutational Wilcoxon rank sum test (n = 10000). 749 

Values in bold are intended as statistically significant (p < 0.05).750 

  
 

CL-1 (n = 36) 
 

CL-2 (n = 64) 
 

p.value 
           

Gender (n)          
Women  20  32  

0.593† Men  16  32  
           

Age (mean ± SD)  24.6 ± 3.4  23.2 ± 4.1  0.071†† 
BMI (mean ± SD)  22.7 ± 2.7  22.3 ± 2.6  0.555††            

Diet (n)        

0.430† 
Omnivores  23  39  
Flexitarians  8  20  
Vegetarians  4  5  

Vegans  1  0  
           

Food Neophobia Scale (median ± IQR)  23.5 ± 11.0  24.0 ± 10.0  0.822 
Trait Anxiety Inventory  44.5 ± 11.7  44.0 ± 13.5  0.913            

Health and Taste Attitude Scale          
General health interest  4.5 ± 1.1  4.4 ± 1.3  0.564 
Light product interest  4.1 ± 1.4  3.8 ± 1.5  0.862 

Natural product interest  4.0 ± 1.5  3.7 ± 1.7  0.891 
Craving for sweet foods  4.9 ± 1.9  5.4 ± 1.7  0.072 

Using food as reward  4.3 ± 1.2  5.1 ± 1.4  0.016 
Pleasure  4.7 ± 0.9  4.8 ± 1.3  0.554            

Dutch Eating Behaviour Questionnaire          
Restrained Eating  2.7 ± 1.3  2.6 ± 0.9  0.942 
Emotional Eating  2.4 ± 0.9  2.5 ± 0.8  0.421 

External Eating  3.2 ± 0.5  3.5 ± 0.8  0.003            
Big Five Inventory          

Extraversion  3.1 ± 1.2  3.3 ± 1.0  0.362 
Agreeableness  3.7 ± 0.9  3.7 ± 0.6  0.923 

Conscientiousness  3.7 ± 1.1  3.6 ± 0.9  0.487 
Neuroticism  3.3 ± 1.0  2.9 ± 1.3  0.416 

Openness  3.7 ± 0.9  3.9 ± 0.8  0.479            
PROP Taster Status (n)          

Non Tasters  15  10  
0.009† Medium Tasters  12  38  

Super Tasters  9  16  
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Sample  Liking  p.value  Familiarity  p.value  Consumption  p.value 
 CL-1 CL-2   CL-1 CL-2   CL-1 CL-2                   

PR-01  67.6 ± 13.5 69.3 ± 14.2  0.349  3 ± 2 4 ± 1  0.041  2 ± 0 2 ± 0  0.587 

PR-02  45.0 ± 22.6 40.6 ± 24.0  0.112  2 ± 2 2 ± 2  0.974  2 ± 1 2 ± 1  0.456 

PR-03  34.0 ± 22.1 36.5 ± 28.1  0.657  4 ± 1 5 ± 2  1  5 ± 1 4 ± 2  0.384 

PR-04  56.2 ± 30.6 68.9 ± 22.1  0.011  2 ± 2 2 ± 1  0.267  2 ± 1 2 ± 1  0.264 

PR-05  64.8 ± 18.4 68.0 ± 22.4  0.276  4 ± 1 5 ± 1  0.134  3 ± 1 3 ± 1  0.728 

PR-06  76.6 ± 22.2 78.8 ± 12.3  0.029  5 ± 1 5 ± 1  0.274  3 ± 2 4 ± 2  0.093 

PR-07  68.7 ± 20.6 69.5 ± 16.2  0.547  3 ± 2 4 ± 2  0.027  2 ± 1 2 ± 2  0.149 

PR-08  64.4 ± 21.8 62.0 ± 24.5  0.567  4 ± 1 5 ± 1  0.137  3 ± 2 3 ± 1  0.279 

PR-09  72.9 ± 22.0 77.2 ± 9.4  0.007  3 ± 2 4 ± 2  0.032  2 ± 1 2 ± 1  0.174 

PR-10  44.5 ± 29.7 46.9 ± 46.3  0.657  2 ± 1 2 ± 2  0.299  1 ± 1 1 ± 1  0.607 
                    

 751 

Table 3: Differences between CL-1 (n = 36) and CL-2 (n = 64) as a function of liking, familiarity and weekly frequency of 752 

consumption for the n = 10 foods (Sample) here employed. Values are summarized as median ± IQR, and statistically significant (p 753 

< 0.05) differences (p.value) according to permutational Wilcoxon rank sum test (n = 10000) are depicted in bold. 754 
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