
Journal of Information Security and Applications 83 (2024) 103789

A
2
n

O
c
A
S
a

b

A

K
S
V
Z
e
G

1

i
o
t

w
t
p
a
t
m
r
w
c

(

h

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

n cryptographic mechanisms for the selective disclosure of verifiable
redentials
ndrea Flamini a,∗, Giada Sciarretta b, Mario Scuro a, Amir Sharif b, Alessandro Tomasi b,
ilvio Ranise a,b

Department of Mathematics, University of Trento, Trento, Italy
Center for Cybersecurity, Fondazione Bruno Kessler, Trento, Italy

R T I C L E I N F O

eywords:
elective disclosure
erifiable credentials
ero-knowledge proof
IDAS 2
DPR

A B S T R A C T

Verifiable credentials are a digital analogue of physical credentials. Their authenticity and integrity are
protected by means of cryptographic techniques, and they can be presented to verifiers to reveal attributes or
even predicates about the attributes included in the credential. One way to preserve privacy during presentation
consists in selectively disclosing the attributes in a credential. In this paper we present the most widespread
cryptographic mechanisms used to enable selective disclosure of attributes identifying two categories: the
ones based on hiding commitments - e.g., mdl ISO/IEC 18013-5 - and the ones based on non-interactive zero-
knowledge proofs - e.g., BBS signatures. We also include a description of the cryptographic primitives used to
design such cryptographic mechanisms.

We describe the design of the cryptographic mechanisms and compare them by performing an analysis
on their standard maturity in terms of standardization, cryptographic agility and quantum safety, then we
compare the features that they support with main focus on the unlinkability of presentations, the ability to
create predicate proofs and support for threshold credential issuance.

Finally we perform an experimental evaluation based on the Rust open source implementations that we
have considered most relevant. In particular we evaluate the size of credentials and presentations built using
different cryptographic mechanisms and the time needed to generate and verify them. We also highlight some
trade-offs that must be considered in the instantiation of the cryptographic mechanisms.
. Introduction

As more services move online, increasing importance is given to an
ndividual’s digital identity as the foundation for secure and trusted
nline interactions, related to e-government, e-commerce, and e-health
o name just a few.

A new paradigm for identity management based on digital identity
allets is emerging to empower data subjects to selectively disclose

he user attributes within what is called verifiable credentials in a
rivacy-preserving and secure way. A verifiable Credential is a digital
ttestation or evidence of particular information about an individual
hat is intended to be cryptographically secure, and tamper-proof. The
ost prominent example of the aforementioned paradigm is the revised

egulation eIDAS 2 [1], proposing a European Digital Identity (EUDI)
allet that can be used by the user to securely store the issued verifiable

redentials and aims to improve cross-border interoperability. The

∗ Corresponding author.
E-mail addresses: andrea.flamini@unitn.it (A. Flamini), g.sciarretta@fbk.eu (G. Sciarretta), mario.scuro@studenti.unitn.it (M. Scuro), asharif@fbk.eu

A. Sharif), altomasi@fbk.eu (A. Tomasi), ranise@fbk.eu (S. Ranise).

privacy-enhancing aims of the EUDI wallet include offering data sub-
jects the means to control who has access to which of their personally
identifiable information, and making it possible to selectively disclose
only some of the attributes in their verifiable credentials to trusted
parties. When a service provider requests too many subject claims, it
may dissuade users from utilizing the service. Furthermore, extensive
data collection increases the risk of data breaches or misuse, and does
not follow data minimization and privacy by design principles under
the GDPR [2], a basic part of data protection.

In the design of their protocols and implementations, service
providers must consider trade-offs between simplicity vs sophistication
of protocol, implementation, and deployment issues including resource
constraints.

Scenario. To exemplify selective disclosure, we consider the following
simplified scenario: a subject wishes to purchase alcohol and prove that
vailable online 18 May 2024
214-2126/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

ttps://doi.org/10.1016/j.jisa.2024.103789
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/jisa
https://www.elsevier.com/locate/jisa
mailto:andrea.flamini@unitn.it
mailto:g.sciarretta@fbk.eu
mailto:mario.scuro@studenti.unitn.it
mailto:asharif@fbk.eu
mailto:altomasi@fbk.eu
mailto:ranise@fbk.eu
https://doi.org/10.1016/j.jisa.2024.103789
https://doi.org/10.1016/j.jisa.2024.103789
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2024.103789&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.

t
a

H

S

V

t

2

h
s
c
p
a

p
s
a
t

s
W
w
d

p
t
i
𝚐

t
𝚟

s
c
f
c

(s)he is over the legal age limit in the jurisdiction, e.g., 18, without fully
disclosing her entire mobile driving license (mdl).

In this example, the agency in charge of issuing mdl (Issuer) verifies
he mdl Subject’s age during the issuance process and includes it as an
ttribute in the mdl. The data Subject holding the mdl can select to

disclose the single mdl attribute ‘‘age’’ to the liquor store employee
(Verifier). The Verifier can check that the Subject is of age to buy
alcohol without learning any other personal information.

This enhances privacy for the Subject while enabling the Verifier to
check their age while complying with the data minimization principle.

Contributions. eIDAS 2 states that EUDI wallets ‘‘should technically en-
able the selective disclosure of attributes within verifiable credentials’’,
and amendments to the proposal add ‘‘where attestation of attributes
does not require the identification of the user, zero-knowledge at-
testation shall be performed’’ [3]. The EUDI Wallet Architecture and
Reference Framework (ARF) [4], intended to provide more concrete
technical guidelines and tools, states that ‘‘attestation MUST enable
Selective Disclosure of attributes by using Selective Disclosure for JSON
Web Tokens (SD-JWT) and Mobile Security Object (ISO/IEC 18013-5)
scheme’’.

Both schemes cited in the ARF are based on hiding commitment
mechanisms — generating a commitment to a value while keeping it
hidden, with the ability to reveal the committed value later [5]. The
ARF does not currently cover zero-knowledge proofs (ZKP) - e.g., re-
peatedly proving knowledge of a value without ever having to reveal
it [6–8]. Given the complexity and range of available options, it is
non-trivial to assess the pros and cons of each option.

Currently, the literature lacks a comprehensive study that analyses
and compares different solutions based on their maturity and compu-
tational overhead in the context of digital identity wallets. There are
research papers on the application of selective disclosure mechanisms
to other specific use cases, e.g., education [9–11] or presenting a
new proposed scheme for selective disclosure mechanisms [12–18].
We identified only one systematization of knowledge work in this
field [19], but the focus is on a specific selective disclosure tech-
nique (Zero-Knowledge Range Proofs) applied to a different use case
(cryptocurrencies).

To fill this gap and facilitate an informed choice, we provide cryp-
tographic building blocks for credentials with selective disclosure capa-
bility based on hiding commitments and ZKP. In short, we extend our
work in [20] and make the following main contributions:

• We summarize six cryptographic mechanisms (cm) for selective
disclosure based on hiding commitment and ZKP, providing more
detail than [20] and two new cm, BBS (Section 5.2) and PS
(Section 5.4) signatures.

• We provide the structure of Verifiable Credentials and Presen-
tations for the cm, together with the operation of entities that
must be performed for their creation (issuing) and consumption
(presentation).

• We compare the cm w.r.t. several features to assist in selecting
the most appropriate for the use case of interest.
Our analysis has been expanded over [20] by considering the
following features: quantum safety of cryptographic algorithms,
support for threshold credential issuance, and an analysis of
trade-offs that lead to interesting implementation choices in the
solutions we examined. While the first one has been considered to
evaluate the maturity of cryptographic mechanisms w.r.t. quan-
tum resistance, the rest have been considered to evaluate for
each cryptographic mechanism how they support features that are
relevant to the design and implementation of practical privacy
2

preserving Verifiable Credentials. a
Outline. Section 2 introduces the verifiable credential ecosystem, the
formats of verifiable credentials that support the selective disclosure of
attributes, and their lifecycle. Section 3 introduces the cryptographic
primitives used to implement the cryptographic mechanisms described
in Sections 4 and 5. In Section 6, we analyze the mechanisms and dis-
cuss how they support some privacy-enhancing features. In Section 7,
we perform an experimental evaluation of the mechanisms described.
We summarize the main results and discuss future work in Section 8.

For the interested reader, further cryptographic details on zero-
knowledge proofs are provided in Appendix, where we moved this
material to ease reading of the main text.

2. Verifiable credentials and selective disclosure

Following the Verifiable Credential data model [21], a credential
can be defined as ‘‘a set of one or more claims [assertions about
a Subject] made by an Issuer’’, and a Verifiable Credential (VC) as
‘‘a tamper-evident credential that has authorship that can be crypto-
graphically verified’’. We consider the following entities and quote the
descriptions from [22]:

Issuer: ‘‘a role an entity can perform by asserting claims about one or
more subjects, creating a VC from these claims, and transmitting
the VC to a holder’’.

older: ‘‘a role an entity might perform by possessing one or more
VCs and generating presentations from them’’.

ubject: ‘‘the entity about which claims are made’’.

erifier: ‘‘a role an entity performs by receiving one or more VCs,
optionally inside a verifiable presentation’’ and verifies it ‘‘to
make a decision regarding providing a service to the Subject’’.

We describe the general structure of VCs and Verifiable Presenta-
ions (VPs) regardless of the cryptographic mechanism used.

.1. Verifiable credentials and presentations

A VC is composed of three sections (see Table 1): an Issuer protected
eader, containing general information about the credential, for in-
tance the Issuer, the Subject and the credential type, an Issuer payload
ontaining information about the credential attributes, and an Issuer
roof which contains the cryptographic material which attests the
uthenticity of the credential.

A VP is composed of three sections (see Table 2): a presentation
rotected header with general information about the credential; a pre-
entation payload with information related to the disclosed attributes;
nd a presentation proof with the cryptographic material that allows
he Verifier to check the authenticity of the presentation.

The structure of the VC and VP we adopt is consistent, albeit
implified to focus on selective disclosure, with the structure of JSON
eb Proof (JWP) [23], a proposal to standardize a JSON container
hich aims to describe the structure of VCs to allow the selective
isclosure of attributes.

In a preliminary set-up phase, the Issuer must generate its private-
ublic key pair (𝚜𝚔𝙸𝚜𝚜, 𝚙𝚔𝙸𝚜𝚜) using the key generation function of
he digital signature scheme used to sign the VCs, 𝚔𝚎𝚢𝙶𝚎𝚗(). In the
ssuing phase, the Issuer generates an Issuer proof with the function
𝚎𝚗𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(−). The Holder, upon reception of the VC created by
he Issuer, verifies its validity computing the function
𝚎𝚛𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(−). In the presentation phase the Holder can create a VP
pecifying the attributes it wants to disclose. In particular, the Holder
reates the VP containing the Holder-generated proof by computing the
unction 𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(−). The Verifier, upon reception of the VP
omputes the function 𝚟𝚎𝚛𝙿𝚛𝚎𝚜𝚎𝚗𝚝𝙿𝚛𝚘𝚘𝚏(−) to verify it and possibly
ccept the Holder’s claims.

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.

c
o
t
p
a
r
t
f

H

S

b
m
c
o
(

i

3

d
d
s

Table 1
A simplified representation of VC which allows for the selective disclosure of attributes.

VC Hiding-commitment Selective disclosure signature

Issuer protected header Cryptographic mechanism: 𝚌𝚖 Cryptographic mechanism: 𝚌𝚖
Issuer public key: 𝚙𝚔𝙸𝚜𝚜 Issuer public key: 𝚙𝚔𝙸𝚜𝚜

Issuer payloads Attributes and salts: Attributes:
𝙰 = (𝑎1 ,… , 𝑎𝑚) 𝙰 = (𝑎1 ,… , 𝑎𝑚)
𝚂 = (𝑠1 ,… , 𝑠𝑚)

Issuer proof Signed commitment: Selective disclosure signature:
𝚐𝚎𝚗𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝚜𝚔𝙸𝚜𝚜 , 𝙰, 𝚂) 𝚐𝚎𝚗𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝚜𝚔𝙸𝚜𝚜 , 𝙰)
= (𝙲𝙼𝚃, 𝜎 = 𝚐𝚎𝚗𝚂𝚒𝚐(𝚜𝚔𝙸𝚜𝚜 , 𝙲𝙼𝚃)) = 𝜎 = 𝚐𝚎𝚗𝚂𝚒𝚐(𝚜𝚔𝙸𝚜𝚜 , 𝙰)
Table 2
The general structure of a VP derived from a VC as in Table 1.

VP Hiding-commitment Selective disclosure signature

Presentation protected header Cryptographic mechanism: 𝚌𝚖 Cryptographic mechanism: 𝚌𝚖
Issuer public key: 𝚙𝚔𝙸𝚜𝚜 Issuer public key: 𝚙𝚔𝙸𝚜𝚜

Presentation payloads Disclosed attributes and salts: Disclosed attributes:
𝙳𝙰 = (𝑎𝑖1 ,… , 𝑎𝑖𝑑) ⊂ 𝙰 𝙳𝙰 = (𝑎𝑖1 ,… , 𝑎𝑖𝑑) ⊂ 𝙰

𝙳𝚂 = (𝑠𝑖1 ,… , 𝑠𝑖𝑑) ⊂ 𝚂

Presentation proof Signed commitment:
(𝙲𝙼𝚃, 𝜎)

Holder-generated Proof: Holder-generated proof:
𝑃 = 𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝙳𝙰, 𝙳𝚂, 𝙰, 𝚂) 𝑃 = 𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝚙𝚔𝙸𝚜𝚜 , 𝙳𝙰, 𝙰, 𝜎)
G
t

2.2. Taxonomy of cryptographic techniques for VC selective disclosure

There are several methods that allow VCs to support selective
disclosure. [24] identifies the following categories: atomic credentials,
hashed values and selective disclosure signatures (which in literature are
also referred to as anonymous credentials [6,15,16]). Atomic credentials
ontain only a single attribute, therefore the Issuer may provide a set
f atomic credentials, then the Holder presents to a Verifier only those
hat it wants to show. Atomic credentials are unwieldy to manage,
articularly to guarantee that a presentation contains a collection of
tomic credentials that is valid as a whole, but do not introduce or
equire substantially different cryptographic techniques than the other
wo mechanisms; therefore, we do not discuss them further. Instead we
ocus on the other two categories of mechanisms:

ashed values allow an Issuer to issue a single VC containing mul-
tiple claims. Each claim is hidden and committed to using
hash functions, then the commitment is signed by the Issuer.
Examples include hash lists (Section 4.1) and Merkle trees (Sec-
tion 4.2).

elective disclosure signatures are signatures schemes that natively
support selective disclosure of VC claims by using non-
interactive zero-knowledge proofs. Examples are CL
(Section 5.1), BBS (Section 5.2), BBS+ (Section 5.3) and PS
(Section 5.4) signatures.

We provide noteworthy examples of cryptographic mechanisms
ased on hashed values, considered as an instance of hiding com-
itments, which are adopted in the standardized mobile Driving Li-

ense [25] or discussed in [5] (Section 4). We also present examples
f the most relevant selective disclosure signatures adopted in [6–8]
Section 5).

In Table 3 we report all the acronyms, functions and variables used
n the paper.

. Background on cryptographic building blocks

We provide the main cryptographic notions that are useful to un-
erstand the approaches for the creation of VCs supporting selective
isclosure of attributes: digital signatures (Section 3.1), hashing and
alting for the creation of hiding commitments (Section 3.2), and
3

v

Table 3
List of acronyms, functions and variables.
𝚔𝚎𝚢𝙶𝚎𝚗(−) Digital signature key generation algorithm
𝚐𝚎𝚗𝚂𝚒𝚐(−) Signature generation algorithm
𝚟𝚎𝚛𝚂𝚒𝚐(−) Signature verification algorithm
𝚐𝚎𝚗𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(−) Issuer proof generation algorithm
𝚟𝚎𝚛𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(−) Issuer proof verification algorithm
𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(−) Holder-generated proof generation algorithm
𝚟𝚎𝚛𝙿𝚛𝚎𝚜𝚎𝚗𝚝𝙿𝚛𝚘𝚘𝚏(−) Holder-generated proof verification algorithm
VC Verifiable credential
VP Verifiable presentation
𝚌𝚖 Cryptographic mechanism
HVZK Honest verifier zero-knowledge
NIZKP Non-interactive zero-knowledge proof
𝙰 List of attributes included in the VC
𝚂 List of salts included in the VC based on hiding

commitments
𝙳𝙰 Disclosed attributes included in the VP
𝙳𝚂 Disclosed salts included in the VP
𝙲𝙼𝚃 Commitment included in VC and VP based on

hiding commitment
𝚌𝚖𝚝𝙻𝚒𝚜𝚝 List of hash and salt cryptographic mechanism
𝚖𝚎𝚛𝚃𝚛𝚎𝚎 Merkle tree cryptographic mechanism
𝚂𝙳𝚂𝚒𝚐 Selective disclosure signature
𝜎 Output of any digital signature algorithm
(−) Cryptographic hash function

Non Interactive ZKP (NIZKP) to prove statements about undisclosed
attributes in selective disclosure signatures (Section 3.3). We also high-
light the threat models that are useful to understand the security
properties satisfied by each cryptographic primitives.

3.1. Digital signatures

In cryptographic mechanisms based on hiding commitment or selec-
tive disclosure signature, the essential cryptographic tool for proving
the authenticity of a VC, and the validity of the derived VPs, are the
digital signature algorithms used by the Issuer to sign the VC when
issuing it to the Holder.

Digital signature schemes are defined by the algorithms setUp(𝜆)
to generate public parameters pp given a security level 𝜆, key-
en(pp) to generate the public–private key pair (𝚙𝚔, 𝚜𝚔), 𝚐𝚎𝚗𝚂𝚒𝚐(𝚜𝚔, 𝑚)

o sign a message 𝑚 and generate a signature, and 𝚟𝚎𝚛𝚂𝚒𝚐(𝚙𝚔, 𝑚, 𝜎) to

erify the signature 𝜎.

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.

g
u
s
a
m
a
p
p

c
t
e
d
w
w
A
s

s
c

3

v

u
w

T
c
s
n

a
m
c
t
t
c
c
s
o
m

t
d
i

b
t
d
w
i
a

3

𝑊
a
k
t
g
r

S
p

𝜋

t
t
t



a
b
A

o

While the digital signature schemes we use in hiding commitment-
based cryptographic mechanisms (Section 4) may be any standardized
digital signature algorithm, those used in selective disclosure signature-
based cryptographic mechanisms (Section 5) are a special class of
signatures designed to support ZKP, and may require more structured
inputs, e.g., ordered lists of messages. We use the same notation for
brevity, but we stress that signatures for selective disclosure support
different features that additionally require the generation of public
parameters that are specific to individual attributes in a credential.
Depending on the algorithm and the trust model, these elements may
be included in the list of public parameters, or be part of the public
key. We summarize these distinctions in Section 5.5.

Threat model. According to [26], Section 13.2, given a public key 𝑝𝑘
enerated by a signer 𝑆, a forgery is a valid signature 𝜎 (verifiable
sing 𝑝𝑘) of a message 𝑚 not previously signed by 𝑆, and a signature
cheme is secure (or unforgeable) if an adversary is not able to produce
forgery. A signature scheme is said to be unforgeable under a chosen
essage attack if it is secure against an adversary with the power to
sk 𝑆 to provide the signature of many messages of its choice before
roducing a forgery. All the digital signatures that we describe in this
aper are proven unforgeable under a chosen message attack.

To prove a signature secure, or more precisely unforgeable under a
hosen message attack, it is necessary to prove that if an attacker with
he above capability – querying 𝑆 and creating a valid forgery – did
xist, it could be used as a subroutine of an attacker who can win a
ifferent experiment  that is believed infeasible to win. In this case
e will say that ‘‘experiment  is hard to win’’ is the assumption under
hich the digital signature is secure under a chosen message attack.
s long as the assumption holds, no attacker should be able to forge a
ignature.

In the use case of our interest, breaking the unforgeability of the
ignature would give an attacker the ability to create new VCs that
ould be verified using the Issuer’s public key.

.2. Hiding commitments

Informally, a commitment scheme allows a party to commit to a
alue 𝑣 by sending a commitment, and then to reveal 𝑣 by opening the

commitment later. The commitment scheme must satisfy the binding
property, which is: a commitment to a value 𝑣 cannot be opened to
a value 𝑣′ ≠ 𝑣. A hiding commitment scheme must satisfy also the hiding
property: from the commitment it must not be feasible to retrieve the
committed value 𝑣.

Since our goal is to describe the design of VCs that allow the
selective disclosure of attributes, we are interested in hiding commit-
ment schemes that take as input an ordered list of values such that
the opening algorithm can be performed on specific positions of the
list. The hiding and binding properties must hold on the ordered list
of commitments. They are adapted in the following way: it must be
infeasible to retrieve the values in the positions of the list that do not
get opened, and it must be infeasible to open a position of the list to a
different value than the one used to create the commitment, a property
often referred to as position binding [27].

The VC created using hiding commitment based cryptographic
mechanisms instructs the Issuer to create a hiding commitment to the
attributes it wants to include in the VC, then to sign it. By signing the
commitment, the Issuer implicitly also signs the attribute used to create
it. At a later point in time, when the Holder wants to present the VC,
it shows the signature of the commitment to the Verifier, and thanks
to the hiding property of the hiding commitment, this does not reveal
any information about the attributes used to create it. Therefore, the
attribute behind the commitment can be kept hidden if the Holder does
not want to disclose it to a Verifier. On the other hand, if the Holder
wants to reveal an attribute, it can open the signed commitment and
show that the Issuer has certified it. Note that the Holder cannot open
a commitment to a different message from the one used to create it,
4

thanks to the position binding property of the commitment scheme. p
Hash and salt technique. A widely adopted approach for the creation of
hiding commitments is based on cryptographic hash functions. Crypto-
graphic hash functions satisfy very important security properties such
as the preimage resistance property that informally requires that given a
digest 𝑦 it is infeasible to find an input 𝑥 whose digest (𝑥) = 𝑦, and the
collision resistance property which requires that it is infeasible to find 𝑥
and 𝑦 such that (𝑥) = (𝑦).

The commitment scheme based on cryptographic hash functions is
defined as follows: the commitment creation algorithm takes as input
a value 𝑣 to be committed to, and outputs (𝑣 ∥ 𝑠), where 𝑠 is chosen
niformly at random and is referred to as the salt of the commitment,
here 𝑣 ∥ 𝑠 is the concatenation of the bytes strings 𝑣 and 𝑠.

hreat model. Similarly to digital signature schemes, the security of
ommitment schemes are defined using experiments that capture the
ecurity properties that a hiding commitment scheme must satisfy,
amely the hiding property and the binding property.

According to [26], Section 6.6.5, the experiment used to prove that
commitment is hiding is the following: the attacker chooses two
essages 𝑚1 and 𝑚2 and sends it to the challenger. The challenger

hooses at random one of the two messages, creates a commitment
o it and sends it to the attacker. The attacker must decide which of
he two messages has been used to create the commitment. For what
oncerns the binding property, the experiment used to prove that a
ommitment is binding requires the attacker to give to the challenger a
ingle commitment together with two distinct messages and associated
pening material that allow to open the commitment to each of the two
essages.

The hiding property of the commitment based on the hash and salt
echnique is derived from the preimage resistance property of the un-
erlying hash function  and the binding property of the commitment
s derived from the collision resistance property of .

If an attacker were capable of breaking the hiding property, it would
e able to learn information about the attributes that the Holder wants
o keep hidden during a verifiable presentation of a VC as the ones
escribed in Section 4. If an attacker could break the binding property it
ould be able to open a commitment to two different values, therefore

t would be able to present, in distinct VP, different values for the same
ttribute of the same VC as the ones described in Section 4.

.3. Non-interactive zero-knowledge proofs

Non-interactive zero-knowledge proofs (NIZKP) for a relation  ⊂
×𝑌 where 𝑊 is the set of witnesses and 𝑌 the set of statements, allow

n actor, called prover, to convince another actor, called verifier, that it
nows a witness 𝑤 for a statement 𝑦 without revealing anything else to
he verifier. The protocol is non-interactive, meaning that the prover
enerates a proof 𝜋 and the verifier checks that 𝜋 is valid without
equiring additional interactions between prover and verifier.

ignature Proof of Knowledge (SPK). For the sake of brevity, along the
aper we will adopt the notation introduced in [28] and we write

∈ 𝑆𝑃𝐾{(𝑤1,… , 𝑤𝑛) ∶ 𝑦 =
𝑛
∏

𝑖=1
𝑔𝑤𝑖
𝑖 }

o represent a NIZKP of knowledge of a witness (𝑤1,… , 𝑤𝑛) ∈ 𝑊 for
he statement 𝑦 ∈ 𝑌 such that 𝑦 =

∏𝑛
𝑖=1 𝑔

𝑤𝑖
𝑖 . The NIZKP used refers to

he relation

= {((𝑤1,… , 𝑤𝑛), 𝑦)|𝑦 =
𝑛
∏

𝑖=1
𝑔𝑤𝑖
𝑖 } ⊂ 𝑊 × 𝑌

nd is referred to as NIZKP for linear relations which is a main building
lock for the cryptographic mechanisms presented in Section 5. In
ppendix, Fig. A.5, we provide a description this algorithm.

In Section 5 we use NIZKP in combination with a special class
f digital signatures, referred to as selective disclosure signatures. In

articular, the Issuers create VCs by signing the attributes using this

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.

m
p

N
I

𝚟

𝙲

t

O
v
t

c

i
t
p
c

𝙳

𝑠

I

c
d
c

𝙲

t
V

4

𝙲

𝑠

kind of digital signature, and issue it by giving the signature and the
attributes to the Holder. Later the Holder can prove knowledge of such
signature on the set of attributes it wants to disclose to a Verifier in
zero-knowledge using the NIZKP associated to each selective disclosure
signature. The Verifier will only learn that the Holder knows a signature
made by the Issuer over the disclosed attributes. It cannot learn any
information about the signature and about the hidden attributes. We
will describe four NIZKPs based on the NIZKP for linear relations: the
first, in Section 5.1, is based on a variant of the sigma protocol for
linear relation adapted to work having as set of statements 𝑌 a group
of unknown order, whereas in Sections 5.2, 5.3 and 5.4 the set of
statement 𝑌 will be a group of prime order 𝑝.

Threat model. According to [29] (Attack Game 20.3), the threat model
considered for NIZKPs is the following. A challenger offers one of two
games to an attacker, a ‘‘real world’’ game and a ‘‘simulated world’’
game, without revealing which one is being offered. The attacker must
try to distinguish which of the two games it is playing, judging by
the challenger’s responses. The attacker sends the challenger a pair
(𝑤, 𝑦) ∈ , and asks for a proof about it. If the real world game is being
played, the challenger creates a proof 𝜋 as prescribed by the NIZKP
using a real random oracle; if the simulated world game is being played,
the challenger (also called simulator) creates a simulated proof without
using the knowledge of 𝑤, as if it does not know 𝑤, by simulating
also the random oracle1 by programming it according to the queries
it receives from the attacker as in [30], Lemma 3.5.

The protocol is a NIZKP if every attacker has a negligible advantage
in distinguishing whether it is performing the real world experiment
or the simulated world experiment. A more detailed discussion on the
way the NIZKP are built is reported in Appendix and in [29] (Section
20.3.5).

An attacker who can distinguish the real world from the simulated
world might be able to learn some information related to the witness
known by the prover. In the case of selective disclosure signatures for
VCs as in Section 5, this might imply the ability for a Verifier to gain
information about the signature of the VC used by the Holder, or about
the hidden attributes.

4. Hiding-commitment mechanisms

Instances of hiding commitment mechanisms can be obtained by us-
ing lists of hash-based hiding commitments (𝚌𝚖𝚝𝙻𝚒𝚜𝚝, see Section 4.1),
or Merkle Trees (𝚖𝚎𝚛𝚃𝚛𝚎𝚎, see Section 4.2), as suggested in [5].

The Issuer commits to a set of attributes, then digitally signs the
commitment. The properties of hiding commitments allow the Issuer
of a credential to sign the commitments, then a Holder, who knows the
attribute values of a credential, can open only some of the committed
values proving to a Verifier the truthfulness of its claims. The security
of the schemes we describe below resides on the security of the digital
signature used, as discussed in Section 3.1, and on the security of the
hiding commitment schemes as discussed in Section 3.2.

Operations in the issuing phase. The Issuer can create a VC with the
structure of Table 1 and issues it to the Holder. The VC is composed
of the three parts already mentioned:

• the Issuer protected header containing the cryptographic mech-
anism identifier 𝚌𝚖, – specifying primitives such as the chosen
digital signature algorithm and cryptographic hash function – and
the Issuer public key 𝚙𝚔𝙸𝚜𝚜;

• the Issuer payload containing a list of attributes 𝙰 = (𝑎1,… , 𝑎𝑚)
certified by the Issuer who created the credential, together with
a list of random salts, one for each attribute 𝚂 = (𝑠1,… , 𝑠𝑚);

1 This extra power that we give to the simulator is crucial: the protocol
ust be a proof of knowledge of the witness, i.e., a protocol whose output is
roof that can be generated only by someone who knows the witness.
5

l

• the Issuer Proof containing the digital signature of the commit-
ment 𝙲𝙼𝚃 to the attributes 𝙰, constructed according to the chosen
cryptographic mechanism and the list of attributes and salts,
signed by the Issuer, obtaining 𝜎 = 𝚐𝚎𝚗𝚂𝚒𝚐(𝚜𝚔𝙸𝚜𝚜, 𝙲𝙼𝚃). These
operations are performed executing the function 𝚐𝚎𝚗𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏

(𝚜𝚔𝙸𝚜𝚜, 𝙰, 𝚂).

ote that the choice of the digital signature scheme adopted by the
ssuer to sign the 𝙲𝙼𝚃 is not restricted to a specific primitive.

The Holder can verify the VC’s validity by computing the function
𝚎𝚛𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝚅𝙲), which consists in verifying that the commitment
𝙼𝚃 is actually a commitment to the elements in 𝙰 and 𝚂, and verifying
he Issuer’s digital signature.

perations in the presentation phase. The Holder creates a VP to con-
ince the Verifier that the attributes revealed are included in a creden-
ial issued by a trusted Issuer.

A VP in this context has the structure described in Table 2. It is
omposed by:

• a presentation protected header containing the name of the crypto-
graphic mechanism 𝚌𝚖 adopted in the creation of the underlying
credential and the Issuer public key;

• the presentation payloads, containing a subset 𝙳𝙰 ⊂ 𝙰 of attributes
(𝑎𝑖1 ,… , 𝑎𝑖𝑑) that the Holder wants to disclose together with
𝙳𝚂 ⊂ 𝚂, the list of associated salts (𝑠𝑖1 ,… , 𝑠𝑖𝑑);

• a presentation proof generated by the Holder including the com-
mitment 𝙲𝙼𝚃 and its signature 𝜎 created by the Issuer associated
to 𝚙𝚔𝙸𝚜𝚜 and the Holder-generated proof obtained computing the
function 𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝙳𝙰, 𝙳𝚂, 𝙰, 𝚂).

The Verifier verifies a VP received from the Holder by comput-
ng the function 𝚟𝚎𝚛𝙿𝚛𝚎𝚜𝚎𝚗𝚝𝙿𝚛𝚘𝚘𝚏(𝚅𝙿), which consists in (𝑖) verifying
he signature of the 𝙲𝙼𝚃 created by the Issuer, and (𝑖𝑖) verifying the
roof that the disclosed attributes in 𝙳𝙰 are a subset of the attributes
ommitted to in 𝙲𝙼𝚃.

Once the commitment opening algorithm for the pairs (𝑎𝑖, 𝑠𝑖) in
𝙰 × 𝙳𝚂 ⊂ 𝙰 × 𝚂 is defined, the functions 𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝙳𝙰, 𝙳𝚂, 𝙰, 𝚂)

and 𝚟𝚎𝚛𝙿𝚛𝚎𝚜𝚎𝚗𝚝𝙿𝚛𝚘𝚘𝚏(𝚅𝙿) are well defined.

4.1. Commitment list mechanism

In the 𝚌𝚖𝚝𝙻𝚒𝚜𝚝 mechanism, credentials contain ordered lists of
attribute-salt pairs; for each pair, the issuer creates a hiding commit-
ment, then signs the list of commitments.

In 𝚐𝚎𝚗𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝚜𝚔𝙸𝚜𝚜, 𝙰, 𝚂), the Issuer generates a random salt
𝑖 for each attribute 𝑎𝑖 and computes the commitment list entries 𝐿𝑖 =
(𝑎𝑖 ∥ 𝑠𝑖). Finally, 𝙲𝙼𝚃 =

[

𝐿𝑖
]#𝐴
𝑖=1 is signed by the Issuer to create the

ssuer proof.
Since the payload of a Holder-generated VP (Table 2, column 2)

ontains all the information needed to open the commitments to the
isclosed attributes, the Presentation Proof only contains the signed
ommitment i.e. genHolderProof is the null function.

In 𝚟𝚎𝚛𝙿𝚛𝚎𝚜𝚎𝚗𝚝𝙿𝚛𝚘𝚘𝚏(𝚅𝙿) the Verifier verifies the Issuer signature of
𝙼𝚃 and compares (𝑎𝑖𝑗 ∥ 𝑠𝑖𝑗) with 𝐿𝑖𝑗 , for each (𝑎𝑖𝑗 , 𝑠𝑖𝑗) ∈ 𝙳𝙰 × 𝙳𝚂. If
he signature is verified and the digests (𝑎𝑖𝑗 ∥ 𝑠𝑖𝑗) match with 𝐿𝑖𝑗 , the
P is accepted.

.2. Merkle tree mechanism

The 𝚖𝚎𝚛𝚃𝚛𝚎𝚎 mechanism uses Merkle trees to create commitments
𝙼𝚃.
𝚐𝚎𝚗𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝚜𝚔𝙸𝚜𝚜, 𝙰, 𝚂): the Issuer generates one random salt

𝑖 for each attribute 𝑎𝑖, then uses their ordered concatenated pairs as

eaves of a Merkle tree. The Issuer sets the 𝙲𝙼𝚃 equal to the Merkle tree

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.
Fig. 1. Merkle tree constructed over 4 leaves. Disclosing 𝑎3 ∥ 𝑠3, their inclusion proof
in 𝑅 is [3, 𝑑4 , 𝑑5].

root

𝑅 = 𝚐𝚎𝚝𝚁𝚘𝚘𝚝(𝑎1 ∥ 𝑠1, 𝑎2 ∥ 𝑠2,… , 𝑎𝑚 ∥ 𝑠𝑚). (1)

An example of Merkle tree is given in Fig. 1.
To create a VP, the Holder includes the presentation payload as

in column 2 of Table 2. The presentation proof, together with the
signed commitment, also requires the Holder-generated proof, which
the Holder obtains by computing the inclusion paths of the attributes
that the Holder wants to disclose.

The Verifier verifies the presentation computing 𝚟𝚎𝚛𝙿𝚛𝚎𝚜𝚎𝚗𝚝𝙿𝚛𝚘𝚘𝚏

(𝚅𝙿) verifying the signature of 𝙲𝙼𝚃 and verifying that the inclusion
paths in 𝑃 let the Verifier reconstruct the signed root 𝑅, for each
(𝚊𝚒𝚓 , 𝚜𝚒𝚓) ∈ 𝙳𝙰 × 𝙳𝚂.

For example, the inclusion path of the leaf 𝑙3 in position 3 of
the Merkle tree in Fig. 1, given the public root 𝑅, is [3, 𝑑4, 𝑑5]. In
order to verify the inclusion of 𝑙3, the Verifier computes 𝑑3 = (𝑙3),
𝑑6 = (𝑑3 ∥ 𝑑4), and verifies that (𝑑5 ∥ 𝑑6) = 𝑅.

5. Selective disclosure signature mechanism

Selective disclosure signatures, following the naming in [24], are
a class of digital signature algorithms that enable (a) an Issuer to
sign multiple attributes with a single signature, (b) a Holder to prove
possession of a signature and some undisclosed attributes, generating
fresh NIZKP without involving the Issuer - recall Section 3.3, and (c) a
Verifier to verify the validity of a disclosed subset of attributes, given
only the NIZKP of knowledge of the undisclosed attributes and of an
associated signature. The NIZKP created by the Holder, in the literature
are also referred to as signatures of knowledge [31] or signatures proof of
knowledge [16].

Examples of selective disclosure signatures are 𝙲𝙻 (Section 5.1),
𝙱𝙱𝚂 (Section 5.2), 𝙱𝙱𝚂+ (Section 5.3) and 𝙿𝚂 (Section 5.4), which are
signature algorithms for which an ordered list of messages is input to
the signature generation 𝚐𝚎𝚗𝚂𝚒𝚐(𝚜𝚔𝙸𝚜𝚜, (𝚊𝟷,… , 𝚊𝚖)) = 𝜎 and signature
verification 𝚟𝚎𝚛𝚂𝚒𝚐(𝚙𝚔𝙸𝚜𝚜, (𝚊𝟷,… , 𝚊𝚖), 𝜎) = 𝚝𝚛𝚞𝚎∕𝚏𝚊𝚕𝚜𝚎.

The security of the schemes we describe below resides on the
security of the selective disclosure digital signature used, as discussed
in Section 3.1, and on the security of the NIZKP we will present, as
discussed in Section 3.3 and more in detail in Appendix. In the next
sections, before the description of each selective disclosure signature,
we will mention the assumptions used to prove their security.

Operations in the issuing phase. The VC based on the use of selective dis-
closure signature algorithms as cryptographic mechanism is composed
of three parts (see column 3 of Table 1):

• Issuer protected header, containing the name of the crypto-
graphic mechanism 𝚌𝚖 i.e., the chosen selective disclosure signa-
ture scheme, and the Issuer public key 𝚙𝚔𝙸𝚜𝚜;

• Issuer payloads, containing the list of attributes 𝙰 = (𝑎 ,… , 𝑎);
6

1 𝑚
• Issuer proof, containing the selective disclosure signature (𝚂𝙳𝚂𝚒𝚐) of
the attributes in 𝙰, 𝜎 = 𝚐𝚎𝚗𝚂𝚒𝚐(𝚜𝚔𝙸𝚜𝚜, 𝙰).

Therefore the function that allows the Issuer to create the Issuer
proof is just 𝚐𝚎𝚗𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝚜𝚔𝙸𝚜𝚜, 𝙰) = 𝚐𝚎𝚗𝚂𝚒𝚐(𝚜𝚔𝙸𝚜𝚜, 𝙰), and the
function that allows the Holder to verify it is 𝚟𝚎𝚛𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝚅𝙲) =
𝚟𝚎𝚛𝚂𝚒𝚐(𝚙𝚔𝙸𝚜𝚜, 𝙰, 𝜎).

Operations in the presentation phase. To selectively disclose some at-
tributes of a VC to a Verifier, the Holder creates a VP (see column 3
of Table 2) composed of:

• presentation protected header, containing the name of the cryp-
tographic mechanism 𝚌𝚖 and the Issuer public key;

• presentation payload, containing the list 𝙳𝙰 = (𝑎𝑖1 ,… , 𝑎𝑖𝑑) of
disclosed attributes;

• presentation proof 𝑃 , generated by the Holder executing
𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝚙𝚔𝙸𝚜𝚜, 𝙳𝙰, 𝙰, 𝜎), a NIZKP of the signature 𝜎, certi-
fying the revealed attributes in 𝙳𝙰 and proving in zero-knowledge
the knowledge of the hidden attributes in 𝙰⧵𝙳𝙰.

The Verifier verifies the NIZKP 𝑃 by computing the function
𝚟𝚎𝚛𝙿𝚛𝚎𝚜𝚎𝚗𝚝𝙿𝚛𝚘𝚘𝚏(𝚅𝙿).

For 𝙲𝙻, 𝙱𝙱𝚂, 𝙱𝙱𝚂+ and 𝙿𝚂 we provide a high level description
of 𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝚙𝚔𝙸𝚜𝚜, 𝙳𝙰, 𝙰, 𝜎) and 𝚟𝚎𝚛𝙿𝚛𝚎𝚜𝚎𝚗𝚝𝙿𝚛𝚘𝚘𝚏(𝚅𝙿), including
references to computation details omitted for brevity.

𝙲𝙼𝚃 vs. 𝚂𝙳𝚂𝚒𝚐. The purpose of 𝙲𝙼𝚃 is to bind the attributes into an
item that is subsequently signed by the Issuer. The Holder can perform
selective disclosure by revealing 𝙲𝙼𝚃, the attributes to be disclosed, and
a presentation proof. On the other hand, 𝚂𝙳𝚂𝚒𝚐 simultaneously binds
the attributes into an item that is itself a digital signature, certifying
the authorship of the VC. To create a presentation, the Holder must
not reveal 𝚂𝙳𝚂𝚒𝚐, but rather derive from 𝚂𝙳𝚂𝚒𝚐 a randomized proof that
assures the Verifier about the claims. A detailed comparison between
the cryptographic mechanisms that use 𝙲𝙼𝚃 or 𝚂𝙳𝚂𝚒𝚐 is included in
Sections 6 and 7.

5.1. CL signature

The CL signature scheme was presented by Camenish and Lysyan-
skaya and its security relies on the strong RSA assumption [15].

The CL digital signature algorithm is defined as follows [6]:

𝐾𝑒𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝚔𝚎𝚢𝙶𝚎𝚗(). Let 𝑛 ← 𝑝𝑞 be an 𝓁𝑛-bit special RSA
modulus,2 and choose uniformly at random quadratic residues
𝑅1,… , 𝑅𝑚, 𝑆,𝑍.3

Output the public key

𝚙𝚔𝙸𝚜𝚜 = (𝑛,𝑅1,… , 𝑅𝑚, 𝑆,𝑍) (2)

and the secret key

𝚜𝚔𝙸𝚜𝚜 = (𝑝). (3)

𝑆𝑖𝑔𝑛𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝚐𝚎𝚗𝚂𝚒𝚐(𝚜𝚔𝙸𝚜𝚜, 𝙰). On input the messages

𝙰 = {𝑎1,… , 𝑎𝑚}, 𝑎𝑖 ∈ {0, 1}𝓁𝑎 , (4)

and a secret key (3) choose a random prime number 𝑒 ∈ {0, 1}𝓁𝑒 ,
𝓁𝑒 > 𝓁𝑎 + 2, 𝑒 > 2𝓁𝑒−1, and a random number 𝑣 ∈ {0, 1}𝓁𝑣 , where

2 𝑛 = 𝑝𝑞 is a special RSA modulus if 𝑝 = 2𝑝′ + 1 and 𝑞 = 2𝑞′ + 1 with 𝑝′, 𝑞′

prime numbers.
3 𝑞 is a quadratic residue modulo 𝑛 if there exists 𝑎 ∈ Z𝑛 such that 𝑞 = 𝑎2

mod 𝑛. Note that these elements depend on the public key 𝑛.

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.

𝑉

a
g
f
s

𝑃

w
o
s

a

V
s
k
o
i
p

5

r
t

H
a
I

𝑆

𝐾

𝑆

V
(
N
t
𝑟

𝐶

a

T

𝑃

d
a

𝓁𝑣 = 𝓁𝑛 + 𝓁𝑎 + 𝓁∅ with 𝓁∅ a security parameter (e.g. 𝓁∅ = 80).
Compute

𝐴 ←

(

𝑍
𝑅𝑎1
1 …𝑅𝑎𝑚

𝑚 𝑆𝑣

)
1
𝑒

mod 𝑛 (5)

where 1
𝑒 is computed modulo 𝜙(𝑛) = (𝑝− 1)(𝑞 − 1). The resulting

output signature is

𝜎 = (𝐴, 𝑒, 𝑣). (6)

𝑒𝑟𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 𝚟𝚎𝚛𝚂𝚒𝚐(𝚙𝚔𝙸𝚜𝚜, 𝙰, 𝜎). On input a public key (2),
a set of messages (4) and a CL signature (6), check that the
following holds:

𝑍 = 𝐴𝑒𝑅𝑎1
1 …𝑅𝑎𝑚

𝑚 𝑆𝑣 mod 𝑛 (7)

𝑎𝑖 ∈ {0, 1}𝓁𝑎 (8)

𝑒 ∈ [2𝓁𝑒−1 + 1, 2𝓁𝑒 − 1] (9)

These functions completely define 𝚐𝚎𝚗𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝚜𝚔𝙸𝚜𝚜, 𝙰) which
corresponds to 𝚂𝙳𝚂𝚒𝚐 = 𝚐𝚎𝚗𝚂𝚒𝚐(𝚜𝚔𝙸𝚜𝚜, 𝙰) = 𝜎 = (𝐴, 𝑒, 𝑣) ∈ Z𝑛 × {0, 1}𝓁𝑒
×{0, 1}𝓁𝑣 and 𝚟𝚎𝚛𝙸𝚜𝚜𝙿𝚛𝚘𝚘𝚏(𝚅𝙲).

VP creation. At every presentation, the Holder, who possesses (𝐴, 𝑒, 𝑣)
received from the Issuer, generates a new randomized signature
(𝐴′, 𝑒, 𝑣′) from a signature by generating a random integer 𝑟 and
computing 𝑣′ = 𝑣 − 𝑟𝑒 ∈ Z and computing the NIZKP:

⎧

⎪

⎨

⎪

⎩

𝐴′ = 𝐴𝑆𝑟 mod 𝑛
𝜋 ∈ 𝑆𝑃𝐾{(𝑒, 𝑣′, {𝑚𝑖 ∉ 𝙳𝙰}) ∶

𝑍
∏

𝑖∈𝙳𝙰 𝑅
𝑎𝑖
𝑖

= 𝐴′𝑒𝑆𝑣′ ∏
𝑖∉𝙳𝙰 𝑅

𝑎𝑖
𝑖 }

(10)

ccording to the notation SPK introduced in Section 3.3. The Holder-
enerated proof presented above is a proof of knowledge of a signature
rom the Issuer and the attributes signed in it and has the following
tructure:

= 𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝙳𝙰, 𝙰, 𝜎, 𝚙𝚔𝙸𝚜𝚜)

= (𝐴′, 𝜋) = (𝐴′, 𝑐, 𝑒, 𝑣′, 𝑎𝑖1 ,… , 𝑎𝑖(𝑛−𝑑)) (11)

ith 𝚙𝚔𝙸𝚜𝚜 from Eq. (2), and 𝜎 from Eq. (6); 𝑐 ∈ {0, 1}256 is the challenge
f the underlying NIZKP4; 𝐴′ ∈ Z∗

𝑛 is a component of the randomized
ignature;

𝑒 ∈ {0, 1}𝓁
′
𝑒+𝓁+𝓁∅+1 (12)

𝑣′ ∈ {0, 1}𝓁𝑣+𝓁+𝓁∅+1 (13)

𝑎𝑖1 ,… , 𝑎𝑖(𝑛−𝑑) ∈ {0, 1}𝓁𝑎+𝓁+𝓁∅+1 (14)

re the response values of the underlying NIZKP for linear relations.
The protocol is described in detail in Section 6.2.4. of [6].

P verification. The verification algorithm 𝚟𝚎𝚛𝙿𝚛𝚎𝚜𝚎𝚗𝚝𝙿𝚛𝚘𝚘𝚏(𝚅𝙿) con-
ists in (𝑖) verifying the NIZKP for linear relations to prove the Holder
nows a valid undisclosed signature, and (𝑖𝑖) verifying that the size
f the received values (𝑒, 𝑎𝑖1 ,… , 𝑎𝑖(𝑛−𝑑)) lies in the expected integer
nterval [6] to ensure that the undisclosed attributes 𝑎𝑖1 ,… , 𝑎𝑖(𝑛−𝑑) and
arameter 𝑒 used to build the NIZKP have the expected size.

.2. BBS signature

BBS signatures are group signatures presented in [32] and later of
eadapted in [16,33] to obtain a selective disclosure signature BBS+
hat we describe in Section 5.3. Recently Tessaro and Zhu [17] showed

4 Note that in this case the proof 𝜋 contains the challenge 𝑐 instead of
the commitment 𝑇 as described in Fig. A.5. This is an equivalent and more
compact format for the NIZKP as we describe in Section 7.4.
7

i

that the original BBS signature could be used to obtain a selective
disclosure signature proving its security under the 𝑞-strong Diffie–

ellman assumption [17]. This signature algorithm is the object of
standardization effort from W3C and has led to an RFC draft by

RTF [34] which aims to standardize also the associated NIZKP.
The algorithms defining the BBS signature are:

𝑒𝑡-𝑢𝑝. Let G1 = ⟨𝑔1⟩,G2 = ⟨𝑔2⟩ and G𝑇 be groups of prime order 𝑝,
𝐞 ∶ G1 ×G2 → G𝑇 be a pairing5 and (ℎ1,… , ℎ𝑚) ∈ G𝑚

1 a random
vector. Set the public parameters

𝚙𝚙 = (𝑝,G1, 𝑔1,G2, 𝑔2, 𝐺𝑇 , 𝐞, ℎ1,… , ℎ𝑚). (15)

𝑒𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝚔𝚎𝚢𝙶𝚎𝚗(𝚙𝚙). Take a random 𝑥 ∈ Z∗
𝑝 , set

𝚜𝚔𝙸𝚜𝚜 = 𝑥 (16)

and set

𝚙𝚔𝙸𝚜𝚜 = 𝑤 = 𝑔𝑥2 . (17)

𝑖𝑔𝑛𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝚐𝚎𝚗𝚂𝚒𝚐(𝚜𝚔𝙸𝚜𝚜 = 𝑥, 𝙰). On input the secret key (16)
and the messages

𝙰 = (𝑎1,… , 𝑎𝑚) ∈ Z𝑚
𝑝 , (18)

randomly generate 𝑒 ∈ Z𝑝 and compute

𝐶 = (𝑔1
𝑚
∏

𝑖=1
ℎ𝑎𝑖𝑖) (19)

𝐴 = 𝐶
1

𝑒+𝑥 . (20)

Output the pair

𝜎 = (𝐴, 𝑒) ∈ G1 × Z𝑝. (21)

𝑉 𝑒𝑟𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝚟𝚎𝚛𝚂𝚒𝚐(𝚙𝚔𝙸𝚜𝚜, 𝙰, 𝜎). On input the public key
(17), the messages (18), and a signature (21), set 𝐶 = 𝑔1

∏𝑚
𝑖=1 ℎ

𝑎𝑖
𝑖

and check that

𝐞(𝐴,𝑤𝑔𝑒2) = 𝐞(𝐶, 𝑔2).

P creation. The Holder can generate a VP with 𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏

𝙳𝙰, 𝙰, 𝜎, 𝚙𝚔𝙸𝚜𝚜) whose output is obtained from the construction of a
IZKP of knowledge of the signature and the hidden attributes based on

he NIZKP for linear relations. The Holder samples uniformly at random
∈ Z𝑝, computes:

𝐷 = 𝑔1
∏

𝑖∈𝙳𝙰
ℎ𝑎𝑖𝑖 , (22)

nd computes the NIZKP:

⎧

⎪

⎨

⎪

⎩

𝐴 = 𝐴𝑟

𝐵 = 𝐶𝑟𝐴
−𝑒

𝜋 ∈ 𝑆𝑃𝐾{(𝑟, 𝑒, {𝑎𝑖 ∉ 𝙳𝙰}) ∶ 𝐵 = 𝐶𝑟
𝐷𝐴

−𝑒 ∏
𝑖∉𝙳𝙰 ℎ

𝑟𝑎𝑖
𝑖 }

(23)

he function returns

= 𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝙳𝙰, 𝙰, 𝜎, 𝚙𝚔𝙸𝚜𝚜)

= (𝐴,𝐵, 𝜋) = (𝐴,𝐵, 𝑇 , 𝑟̂, 𝑒, 𝑎𝑖1 ,… , 𝑎𝑖𝑚−𝑑) (24)

where 𝐴,𝐵, 𝑇 ∈ G1, and all other elements lie in Z𝑝. For a detailed
description and the security proofs we refer to [17].

5 A pairing is a map satisfying bilinearity, i.e. 𝐞(𝑔𝑥1 , 𝑔
𝑦
2) = 𝐞(𝑔1, 𝑔2)𝑥𝑦, non-

egeneracy, i.e. for each generator 𝑔1 ∈ G1, 𝑔2 ∈ G2, then 𝐞(𝑔1, 𝑔2) generates G𝑇 ,
nd efficiency which means that the map can be efficiently computed for any
nput.

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.

H

𝐶

T

𝜋

a
b

5

s
m
a
a

𝑆

w
a

I
e
𝑔

V
𝚐

s
a
r

𝑟

A
I

VP verification. Having received a VP from a Holder, the Verifier com-
putes the function 𝚟𝚎𝚛𝙿𝚛𝚎𝚜𝚎𝚗𝚝𝙿𝚛𝚘𝚘𝚏(𝚅𝙿), which consists in executing
the verification steps of the underlying NIZKP for linear relations and
verifying that the terms 𝐞(𝐴,𝑤) = 𝐞(𝐵, 𝑔2).

An alternative VP construction. When creating a VP from multiple VCs,
the separate randomization of each attribute in each VC may be a
hindrance to proving predicates such as the equality of two hidden
attributes.

In [34], the authors propose an alternative construction of the VP,6
which allows the Holder not to store the variable 𝐶𝐷 = 𝑔1

∏

𝑖∈𝙳𝙰 ℎ
𝑎𝑖
𝑖 ,

which is used as an element of the representation of 𝐵, when she
computes a proof for a VP. Instead, since 𝐵 must be sent to the verifier
in any case, and since 𝐵 = 𝐶𝑟𝐴

−𝑒
= 𝐶𝑟

𝐷
∏

𝑖∉𝐷𝐴 𝑔𝑟𝑎𝑖𝑖 𝐴
−𝑒

holds, then the
older proves knowledge of a representation of 𝐶𝐷 as follows:

𝐷 = 𝐵
𝑟−1 ∏

𝑖∉𝙳𝙰
ℎ−𝑎𝑖𝑖 𝐴

𝑒𝑟−1
. (25)

herefore the Holder computes:

∈ 𝑆𝑃𝐾{(𝑟, 𝑒, {𝑎𝑖 ∉ 𝙳𝙰}) ∶ 𝐶𝐷 = 𝐵
𝑟−1 ∏

𝑖∉𝙳𝙰
ℎ−𝑎𝑖𝑖 𝐴

𝑒𝑟−1
}.

This alternative algorithm and another variant is described in the
ppendix of a recent update7 of the paper presented at Eurocrypt 2023
y Tessaro and Zhu [17].

.3. BBS+ signature

The BBS+ signature was presented by Au et al. [33] as a provably
ecure extension to BBS group signatures [32] and improved by Ca-
enisch et al. [16]. Its security relies on the 𝑞-strong Diffie–Hellman

ssumption [16]. The digital signature BBS+ is defined by the following
lgorithms:

𝑒𝑡-𝑢𝑝. Let G1 = ⟨𝑔1⟩,G2 = ⟨𝑔2⟩ and G𝑇 be groups of prime order 𝑝,
𝐞 ∶ G1 ×G2 → G𝑇 be a pairing and (ℎ0,… , ℎ𝑚) ∈ G𝑚+1

1 a random
vector. Set the public parameters

𝚙𝚙 = (𝑝,G1, 𝑔1,G2, 𝑔2, 𝐺𝑇 , 𝐞, ℎ0,… , ℎ𝑚). (26)

𝐾𝑒𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝚔𝚎𝚢𝙶𝚎𝚗(𝚙𝚙). Sample uniformly at random a
random 𝑥 ∈ Z∗

𝑝 , set

𝚜𝚔𝙸𝚜𝚜 = 𝑥, (27)

then set

𝚙𝚔𝙸𝚜𝚜 = 𝑤 = 𝑔𝑥2 . (28)

𝑆𝑖𝑔𝑛𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝚐𝚎𝚗𝚂𝚒𝚐(𝚜𝚔𝙸𝚜𝚜 = 𝑥, 𝙰). On input the secret key (27)
and the messages

𝙰 = (𝑎1,… , 𝑎𝑚) ∈ Z𝑚
𝑝 , (29)

randomly generate 𝑒, 𝑠 ∈ Z𝑝, compute

𝐶 = 𝑔1ℎ
𝑠
0

𝑚
∏

𝑖=1
ℎ𝑎𝑖𝑖 (30)

𝐴 = 𝐶
1

𝑒+𝑥 . (31)

Output the triple

𝜎 = (𝐴, 𝑒, 𝑠). (32)

6 Private communication with one of the authors of [34].
7 https://eprint.iacr.org/2023/275 updated on 2023-12-09.
8

𝑉 𝑒𝑟𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝚟𝚎𝚛𝚂𝚒𝚐(𝚙𝚔𝙸𝚜𝚜, 𝙰, 𝜎). On input the public key
(28) messages (29), and a signature (32), check that the follow-
ing holds:

𝐞(𝐴,𝑤𝑔𝑒2) = 𝐞(𝑔1ℎ𝑠0
𝑚
∏

𝑖=1
ℎ𝑎𝑖𝑖 , 𝑔2). (33)

These algorithms define the functions 𝚐𝚎𝚗𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝚜𝚔𝙸𝚜𝚜, 𝙰)
hich corresponds to 𝚂𝙳𝚂𝚒𝚐 = 𝚐𝚎𝚗𝚂𝚒𝚐(𝚜𝚔𝙸𝚜𝚜, 𝙰) = 𝜎 = (𝐴, 𝑒, 𝑠) ∈ G1×Z2

𝑝,
nd 𝚟𝚎𝚛𝙸𝚜𝚜𝚞𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝚅𝙲).

We have presented the algorithms as described by Au et Al. [33].
n the paper from Camenish et Al. [16] the authors include also the
lements ℎ0,… , ℎ𝑚 as part of the public key, which they write as (𝑤 =
𝑥
2 , ℎ0,… , ℎ𝑚) ∈ G2 ×G𝑚

1 .

P creation. The Holder can generate a VP proof with
𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝙳𝙰, 𝙰, 𝜎, 𝚙𝚔𝙸𝚜𝚜), whose output is obtained from the con-
truction of a NIZKP of knowledge of the signature and the hidden
ttributes based on the NIZKP for linear relations. First, the Holder
andomly generates 𝑟1 ∈ Z∗

𝑝 and 𝑟2 ∈ Z𝑝. The Holder then sets

3 =
1
𝑟1

mod 𝑝 (34)

𝑠′ = 𝑠 − 𝑟2𝑟3 mod 𝑝 (35)

and computes the NIZKP:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐴′ = 𝐴𝑟1

𝐴 = 𝐴′−𝑒𝐶𝑟1 (= 𝐴′𝑥)
𝑑 = 𝐶𝑟1ℎ−𝑟20
𝜋 ∈ 𝑆𝑃𝐾{(𝑒, 𝑟2, 𝑟3, 𝑠′, {𝑎𝑖 ∉ 𝙳𝙰}) ∶

𝐴
𝑑 = 𝐴′−𝑒ℎ𝑟20 ∧
𝑔1

∏

𝑖∈𝙳𝙰 ℎ
𝑎𝑖
𝑖 = 𝑑𝑟3ℎ−𝑠′0

∏

𝑖∉𝙳𝙰 ℎ
−𝑎𝑖
𝑖 }

(36)

The proof is then computed as

𝑃 = 𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝙳𝙰, 𝙰, 𝜎, 𝚙𝚔𝙸𝚜𝚜)

= (𝐴′, 𝐴, 𝑑, 𝜋) (37)

= (𝐴′, 𝐴, 𝑑, 𝑇1, 𝑇2, 𝑒, 𝑟̂2, 𝑟3, 𝑠̂
′, 𝑎𝑖1 ,… , 𝑎𝑖𝑚−𝑑) (38)

where 𝐴′, 𝐴, 𝑑, 𝑇1, 𝑇2 ∈ G1, and all other elements lie in Z𝑝. For a
detailed description we refer to [16].

VP verification. Having received a VP from a Holder, the Verifier com-
putes the function 𝚟𝚎𝚛𝙿𝚛𝚎𝚜𝚎𝚗𝚝𝙿𝚛𝚘𝚘𝚏(𝚅𝙿), which consists in executing
the verification steps of the underlying NIZKP for linear relations and
verifying that the terms 𝐴′ ≠ 1G1

computing 𝐞(𝐴′, 𝑤) = 𝐞(𝐴, 𝑔2).

dapting the NIZKP for VC based on BBS to NIZKP for VC based on BBS+.
n order to emphasize the differences between BBS and BBS+ signatures

on messages 𝑎1,… , 𝑎𝑚, we describe the BBS+ signature starting from
the BBS signature.

• the public parameters 𝚙𝚙 of BBS+ (Eq. (26)) are the same as the
ones of BBS (Eq. (15)) with an extra random element ℎ0 ∈ G1;

• the variable 𝐶 computed to generate a BBS signatures is 𝐶 =
𝑔1

∏𝑚
𝑖=1 ℎ

𝑎𝑖
𝑖 (Eq. (20)), while for BBS+ signatures (we rename 𝐶

as 𝐶 ′ to distinguish it from the one used in BBS) the signer must
generate at random 𝑠 ∈ Z𝑝 and compute 𝐶 ′ = 𝑔1ℎ𝑠0

∏𝑚
𝑖=1 ℎ

𝑎𝑖
𝑖 = 𝐶ℎ𝑠0

(Eq. (30));
• the BBS signature is given by (𝐴, 𝑒) = (𝐶

1
𝑥+𝑒 , 𝑒) (Eq. (21)) while

the BBS+ signature is given by (𝐴, 𝑒, 𝑠) = (𝐶 ′ 1
𝑥+𝑒 , 𝑒, 𝑠).

Once highlighted these differences between the two, it is clear that
a BBS+ signature (𝐴, 𝑒, 𝑠) over messages (𝑎1,… , 𝑎𝑚) w.r.t. the public
parameters

𝚙𝚙 = (𝑝,G , 𝑔 ,G , 𝑔 , 𝐺 , 𝐞, ℎ ,… , ℎ)
1 1 2 2 𝑇 0 𝑚

https://eprint.iacr.org/2023/275

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.

t

s

w
s
o
f

𝑃

T
𝐞

g
v
p
b

5

s
v
n
v
e
w
a

t
p

t
o
h

can be univocally turned into a BBS signature (𝐴, 𝑒) over the messages
(𝑠, 𝑎1,… , 𝑎𝑚) w.r.t. exactly the same public parameters 𝚙𝚙. Therefore,
proving knowledge of a BBS+ signature (𝐴, 𝑒, 𝑠) and of some hidden
attributes 𝐻 = {𝑎𝑖 ∉ 𝐷𝐴}, without revealing it, would be equivalent to
prove knowledge of the univocally determined BBS signature (𝐴, 𝑒) and
of the same attributes 𝐻 to which we will add 𝑠.

This means that the NIZKP used for BBS signatures (Eq. (23)) can
be used also to prove knowledge of a BBS+ signature. The idea is the
following: turn the BBS+ signature into the uniquely determined BBS
signature as described above, then prove knowledge of the derived
BBS signature and of the hidden attributes considering that hiding 𝑠
is mandatory.

5.4. PS signature

The Pointcheval-Sanders (PS) signature is secure under the LRSW
assumption [14]. The PS signature is defined by the following algo-
rithms.

𝑆𝑒𝑡-𝑢𝑝 Let G1 = ⟨𝑔1⟩, G2 = ⟨𝑔2⟩, and G𝑇 be groups of prime order 𝑝,
and 𝐞 ∶ G1 ×G2 → G𝑇 be a pairing. Set the public parameters

𝚙𝚙 = (𝑝,G1, 𝑔1,G2, 𝑔2, 𝐺𝑇 , 𝐞). (39)

𝐾𝑒𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝚔𝚎𝚢𝙶𝚎𝚗(𝚙𝚙). Take a random vector

𝚜𝚔𝙸𝚜𝚜 = (𝑥, 𝑦1,… , 𝑦𝑚) ∈ Z𝑚+1
𝑝 , (40)

then set

𝚙𝚔𝙸𝚜𝚜 = (𝑋, 𝑌1,… , 𝑌𝑚) (41)

= (𝑔𝑥1 , 𝑔
𝑦1
1 ,… , 𝑔𝑦𝑚1) ∈ G𝑚+1

1 , (42)

𝑆𝑖𝑔𝑛𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝚐𝚎𝚗𝚂𝚒𝚐(𝚜𝚔𝙸𝚜𝚜, 𝙰). On input the secret key (40) and
the messages

𝙰 = (𝑎1,… , 𝑎𝑚) ∈ Z𝑚
𝑝 , (43)

randomly generate ℎ ∈ G∗
2 and compute

𝜎 = (𝜎1, 𝜎2) = (ℎ, ℎ𝑥+
∑𝑚

𝑗=1 𝑦𝑗𝑎𝑗) ∈ G2
2 (44)

𝑉 𝑒𝑟𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝚟𝚎𝚛𝚂𝚒𝚐(𝚙𝚔𝙸𝚜𝚜, 𝙰, 𝜎). On input a public key (41),
messages (43), and a signature (44), check that both (45) and
(46) hold:

ℎ ≠ 1G1
(45)

𝐞(𝑔1, 𝜎2) = 𝐞(𝑋
𝑚
∏

𝑖=1
𝑌 𝑎𝑖
𝑖 , 𝜎1). (46)

VP creation. The Holder can generate a VP with
𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝙳𝙰, 𝙰, 𝜎, 𝚙𝚔𝙸𝚜𝚜) whose output is obtained from the con-
struction of a NIZKP of knowledge of the signature and the hidden
attributes based on the NIZKP for linear relations applied to a random-
ized signature. In particular, the Holder computes a signature of the
messages (𝑎1,… , 𝑎𝑚, 𝑡), where 𝑡 ∈ Z𝑝 is a random message associated
o the dummy public key 𝑌𝑚+1 = 𝑔1, i.e. (ℎ, ℎ𝑥+(

∑𝑚
𝑗=1 𝑦𝑗𝑎𝑗)+𝑡) ∈ G2

2, then
randomizes it by picking a random 𝑟 ∈ Z𝑝 and computing:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎′ = (𝜎′1, 𝜎
′
2) = (ℎ𝑟, ℎ𝑟(𝑥+(

∑𝑚
𝑗=1 𝑦𝑗𝑎𝑗)+𝑡))

𝜋 ∈ 𝑆𝑃𝐾
{

(𝑡, {𝑚𝑖 ∉ 𝙳𝙰}) ∶ 𝐞(𝑔1, 𝜎′1)
𝑡 ∏

𝑖∉𝙳𝙰 𝐞(𝑌𝑖, 𝜎′1)
𝑚𝑖

= 𝐞(𝑔1, 𝜎′2)
(

𝐞(𝑋, 𝜎′1)
∏

𝑖∈𝙳𝙰 𝐞(𝑌𝑖, 𝜎′1)
𝑚𝑖
)−1

}

.

(47)

and returns to the Verifier the tuple

𝑃 = 𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝙳𝙰, 𝙰, 𝜎, 𝚙𝚔𝙸𝚜𝚜)

= (𝜎′1, 𝜎
′
2, 𝜋) = (𝜎′1, 𝜎

′
2, 𝑇 , 𝑡̂, 𝑎𝑖1 ,… , 𝑎𝑖𝑚−𝑑) (48)

′ ′
9

where 𝜎1, 𝜎2 ∈ G2, 𝑇 ∈ G𝑇 and the other elements are in Z𝑝 [35].
VP verification. Having received a VP from a Holder, the Verifier com-
putes the function 𝚟𝚎𝚛𝙿𝚛𝚎𝚜𝚎𝚗𝚝𝙿𝚛𝚘𝚘𝚏(𝚅𝙿), which consists in executing
the verification steps of the underlying NIZKP for linear relation.

As we will show in the next paragraph it is possible to avoid to
perform computations in G𝑇 and avoid to compute so many pairings
as one would expect by looking at the SPK described above.

A more practical VP construction. The algorithm presented above for the
creation of the Holder-generated proof requires the Holder to perform
computations in G𝑇 , the codomain of the pairing 𝐞 ∶ G1 × G2 → G𝑇 .
However, this can be avoided according to the implementation pro-
posed in Ursa.8 In fact, it is possible to observe that, by the bilinearity
of 𝐞, it holds that

𝐞(𝑔1, 𝜎′1)
𝑡𝐞(𝑋, 𝜎′1)

∏

𝐞(𝑌𝑖, 𝜎′1)
𝑎𝑖 = 𝐞(𝑔𝑡1𝑋

∏

𝑌 𝑎𝑖
𝑖 , 𝜎′1),

o the Holder can send to the Verifier
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎′ = (𝜎′1, 𝜎
′
2) = (ℎ𝑟, ℎ𝑟(𝑥+(

∑𝑚
𝑗=1 𝑦𝑗𝑎𝑗)+𝑡))

𝐽 = 𝑔𝑡1
∏

𝑖∉𝙳𝙰 𝑌
𝑎𝑖
𝑖

𝜋 = 𝑆𝑃𝐾
{(

𝑡, {𝑎𝑖 ∉ 𝙳𝙰}
)

∶ 𝐽 = 𝑔𝑡1
∏

𝑖∉𝙳𝙰 𝑌
𝑎𝑖
𝑖
}

= (𝑇 , 𝑡̂, 𝑎𝑖1 ,… , 𝑎𝑖𝑚−𝑑) ∈ G1 × Z𝑚−𝑑+1
𝑝

(49)

here 𝑟, 𝑡 ∈ Z𝑝 are the random elements used to randomize the
ignature, 𝑑 is the number of disclosed attributes and 𝑚 the number
f attributes in the VC. In this way, the Holder-generated proof has the
ollowing form:

= 𝚐𝚎𝚗𝙷𝚘𝚕𝚍𝚎𝚛𝙿𝚛𝚘𝚘𝚏(𝙳𝙰, 𝙰, 𝜎, 𝚙𝚔𝙸𝚜𝚜)

= (𝜎′1, 𝜎
′
2, 𝐽 , 𝜋) (50)

= (𝜎′1, 𝜎
′
2, 𝐽 , 𝑇 , 𝑡̂, 𝑎𝑖1 ,… , 𝑎𝑖𝑚−𝑑) ∈ G2

2 ×G2
1 × Z𝑚−𝑑+1

𝑝 (51)

o verify 𝜋, the Verifier can compute 𝐽 ′ = 𝐽𝑋
∏

𝑖∈𝙳𝙰 𝑌
𝑎𝑖
𝑖 and check that

(𝜎′1, 𝐽
′)𝐞(𝜎′−12 , 𝑔1) = 1G𝑇

.
In this way all the computations are performed in G1 which is the

roup in which computations are more efficient among the ones in-
olved in the pairing definition. Also the Holder does not have to com-
ute any pairing and the number of pairing computations performed
y the Verifier is reduced to two.

.5. Efficiency and trust on issuer set-up domain parameters

For BBS and BBS+ signatures, the public parameters output by
etUp(𝜆) that give structure to a VC and are used to generate and
erify VCs and VPs may be generated from a seed in a manner that is
ot confidential. It is possible to reduce the size of data required for
erification by requiring the Verifier to reconstruct the public param-
ters from the seed. This is not true for CL and PS digital signatures,
here parameters must be generated by the Issuer in the key generation
lgorithm and are part of the Issuer’s public key.

In addition, BBS and BBS+ public parameters may be provided by a
rusted third party. This may enable the re-use of the same set of public
arameters by multiple Issuers, e.g., for the same kind of VC.

If the dimension of the public key is not a concern or it is preferable
o require each Issuer to perform its own setup, the public parameters
f Eqs. (15) and (26) can be included in the public key; indeed, this is
ow they appear in [8,16,36].

• CL: the quadratic residues 𝑅1,… , 𝑅𝑚, 𝑆,𝑍 ∈ Z𝑛 are needed to
generate the 𝐴 component of the signature according to Eq. (5).
These elements are quadratic residues modulo 𝑛 = 𝑝𝑞, therefore
must be computed according to the secret key (Eq. (3)) and must
necessarily be part of the Issuer public key (Eq. (2)).

8 https://docs.rs/ursa/.

https://docs.rs/ursa/

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.
• BBS (BBS+): ℎ1,… , ℎ𝑚 (ℎ0,… , ℎ𝑚) are needed to generate the
𝐴 component of the signature according to Eq. (20) (Eq. (30)).
These are random elements of the group G1 and do not depend
on the Issuer secret key in Eq. (16) (Eq. (27)). As proposed
in [17,34], these parameters may be generated either by the
Issuer or by a trusted third party by using a hash-to-curve function
that maps a seed to a set of random elements in G1 of the required
cardinality. For security reasons it must be infeasible to compute
the discrete logarithm of ℎ𝑖, therefore these random elements
cannot be generated by picking random scalars 𝑧1,… , 𝑧𝑚 and
computing ℎ𝑖 = 𝑔𝑧𝑖1 .

• PS: (𝑋, 𝑌1,… , 𝑌𝑚) are needed to give structure to the element
of G1 in the right-hand side of Eq. (46), whose validity is part
of the signature verification process. In contrast with the ap-
proach proposed by BBS and BBS+, the signer must know the
discrete logarithm 𝑥, 𝑦1,… , 𝑦𝑚 of 𝑋, 𝑌1,… , 𝑌𝑚 w.r.t. 𝑔1 to com-
pute their analogue w.r.t. any basis ℎ ∈ G2 during the signing
process. In fact, the PS signature (Eq. (44)) can be rewritten as
(ℎ, ℎ𝑥

∏𝑚
𝑖=1(ℎ

𝑦𝑖)𝑎𝑖). For this reason (𝑋, 𝑌1,… , 𝑌𝑚) are part of the
PS public key (Eq. (41)) and their discrete logarithms w.r.t. 𝑔1
are the secret key (Eq. (40)).

6. Solution design analysis

To assess the maturity of options, we consider their standardiza-
tion (Section 6.1.1), cryptographic agility (Section 6.1.2) and quantum
safety (Section 6.1.3).

6.1. Standard maturity

Standardization is important for cryptographic protocols to ensure
expert vetting of correctness, security, and other properties claimed, as
well as to promote interoperability as encouraged e.g., by the proposed
Interoperable Europe Act [37]. Cryptographic agility [38] ‘‘is achieved
when a protocol can easily migrate from one algorithm suite to another
more desirable one, over time’’ [39]. The need to transition between
cryptographic algorithms and key lengths has been steadily gaining
importance, e.g., replacing older versions of the Secure Hash Algorithm,
and preparing for quantum computing [40].

We observe how each mechanism supports privacy and offline
features with regards to presentation unlinkability (Section 6.2.1), and
briefly discuss the advantages of predicate proofs (Section 6.2.2). We
compare the computation cost of each function described in Section 2,
and the size of presentation elements of each mechanism (Section 7);
we also note some trade-offs made by implementations to balance
performance between these measures (Section 7.4). Finally, we describe
how it is possible to perform threshold issuance of the VCs based on
the cryptographic mechanisms we have described (Section 6.2.3). Our
assessment is summarized in Section 7.5.

6.1.1. Standardization
cmtList is the only mechanism featured in official standards: it is

enabled by design in ISO 18013-5 [25], and it is the basis for the IETF
draft SD-JWT [41]. Both are considered mandatory for the European
digital identity wallet [4] developed in the context of the revised eIDAS
regulation [1].

merTree has been proposed in [5] as a possible mechanism for
JSON Web Proof (JWP) [23] - a proposed container format for VCs
and VPs that aims to be agnostic to the proof mechanism, currently
an IETF draft on the Standards Track. merTree also appears in the
experimental Certificate Transparency 2.0 proposal [42].

The BBS (previously BBS+) specification [34] is an IRTF draft. PS
and CL signatures are not specified independently, but CL appear as
part of the Identity Mixer [6] and Hyperledger Ursa [7] anonymous
credentials protocols.

ETSI Technical Report 119 476 [43] gives recommendations on issu-
ing, storage, and presentation of attestations under eIDAS2 in the form
of ISO mdl and/or SD-JWT, with a view towards selective disclosure
10

and unlinkability.
6.1.2. Cryptographic agility
cmtList and merTree offer the greatest agility: any crypto-

graphic hash function can be used to construct them, and any digital
signature can be chosen to sign the hash list or tree root.

BBS, BBS+, and PS signatures can in theory be based on any
pairing-friendly curve, of which several have been identified [44] up
to 256-bit security, and any correspondingly secure cryptographic hash
function. Cipher suites have been drafted [34].

The idemix specification [6] for anonymous credentials with CL
signatures contains a default value for 14 parameters and 7 ‘‘constraints
which parameter choices must satisfy to ensure security and soundness’’
(Tables 2 and 3 therein), and it is left to the reader to adjust these
as required. The default RSA modulus is 2048 bits, which corresponds
to only 112 bits of security.9 Other than increasing the prime factor
length, it is non-trivial to establish how parameters should change to
increase the security level of the scheme as a whole.

The Ursa library also defaults to 2048-bit modulus; the Ursa spec-
ification [7] lists individual parameter values scattered throughout,
including 1536-bit RSA factors, but it is left to the reader to gather the
information, to modify the source code, and to assume that all other
parameters have been set to meet the same level of security.

6.1.3. Quantum safety
The security of cryptographic algorithms is based on the assumption

that a given problem is hard to solve — for example, the factorization
of a number that is the product of two prime numbers, or the discrete
logarithm problems; as long as that problem is difficult to solve, the
cryptographic algorithm has a solid basis on which to claim a certain
level of security.

The cryptographic techniques discussed in this paper to create VCs
and to enable selective disclosure of attributes are digital signatures,
commitment schemes, and NIZKPs. Sections 3.1, 3.2, and 3.3 outline
the security properties that must be met in the respective threat model
paragraphs. These security features hold as long as the assumptions on
which they are based are valid.

The introduction of quantum computers may rewrite the list of
assumptions that can be regarded as reliable, because many conven-
tional assumptions may fail to hold against adversaries with sufficiently
powerful quantum computers, and the cryptographic techniques relying
on these assumptions will become insecure.

As a result, one must be aware of the issues that may develop when
quantum computers will be powerful enough to solve the compromised
cryptographic problems. The consequences that this would have on VC
protocols include:

• the use of an insecure digital signature scheme would allow an
adversary to create VCs without the Issuer’s involvement;

• the use of insecure hiding commitment schemes or NIZKPs would
cause the ability of a Verifier to learn the value of the attributes
that the Holder wants to keep hidden;

Some of the solutions described in this paper are considered quan-
tum resistant.

As noted in [43], cryptographic mechanisms based on hiding com-
mitment can be instantiated using one of the post-quantum digital
signature algorithms selected for standardization by NIST: CRYSTALS-
Dilithium [45], FALCON [46], or SPHINCS+ [47]. The use of post-
quantum signatures makes these cryptographic mechanisms quantum
resistant as well, as long as the hiding commitment scheme also is
quantum resistant — in particular, for those in Section 4, as long as
the cryptographic hash function used to create the list of commitments
or the Merkle tree is quantum resistant.

It should be noted that the three above algorithms were selected for
standardization in 2022, but at the time of writing the standardization

9 See www.keylength.com and references therein.

http://www.keylength.com

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.

s

t
a

m

p
t
a
a
o
i
a
c
c

S
t
t
e
t
s
f

6

V
u
b
a
o

c
t

d
t
a
v

t
s
s
S

a
n
b
p
T

process is still in the draft stage, and some changes have been proposed
in the current draft FIPS 204 and 205 [48,49].

For what concerns the quantum resistance of selective disclosure
signatures, the algorithms described in Section 5 rely on assumptions
that do not hold in a post-quantum setting. Lattice-based cryptography
schemes have been proposed very recently [50–53], but there are no
complete libraries available yet to make a full comparison with other
schemes described here.

6.2. Supported features

We evaluate for each cryptographic mechanism how they support
features that are relevant to the design of practical privacy preserving
VCs, namely the ability to create unlinkable VPs (Section 6.2.1), the
ability to include predicate proofs in the VPs (Section 6.2.2) and the
support for threshold credential Issuance that allow multiple Issuers to
issue a single VC to a Holder (Section 6.2.3).

6.2.1. Presentation unlinkability
Unlinkability can be defined as ensuring that ‘‘no correlatable data

are used in a digitally-signed payload’’ [54]. Sources of correlation
include the signature itself and long-term identifiers, such as the cre-
dential subject, a credential identifier, revocation status information
etc. Guaranteeing this property goes beyond selective disclosure only;
here we focus on signature-based correlation.

Hiding commitment. Since the Presentation Proof of a VP contains the
issuer-signed commitment included in the associated VC, this identifier
links each VP uniquely to one VC, and therefore to its Holder. This
means that the Holder should use always different VCs to generate new
VPs, therefore in the issuing phase the Issuer must provide the Holder
with several distinct versions of the same VC where a distinct version
of VC is built including the same set of attributes hidden using different
salts.

When all the distinct versions of the same VC have been used, the
Issuer must produce and send new ones to the Holder. There must
therefore be an available channel between the Issuer and the Holder
device storing the VCs that guarantees ready access to brand new VCs
that can be used to create unlinkable presentations.

Selective disclosure signatures. As summarized in Table 2, the presen-
tation proof contains only the Holder-generated proof, which is a
randomized element.

Given a VC, the Holder can create a new presentation proof each
time that is indistinguishable from random, and therefore cannot be
correlated to other VPs. The Holder can use the same VC multiple times;
therefore, interaction with the Issuer is required only when requesting
a new credential or renewing an expired one.

6.2.2. Predicate proofs
In some use cases, there may be an interest in asking a ques-

tion (‘‘predicate’’) about an attribute, without disclosing the attribute
itself. For instance, a Verifier may need to know whether an mdl
ubject’s age is over some threshold NN, or in some range, with-

out needing to know their full date of birth. This feature would en-
hance privacy and follow the data minimization principle. We discuss
how it is possible to create predicate proofs for hiding commitment
based cryptographic mechanisms and for selective disclosure signature
11

cryptographic mechanisms. p
Hiding commitments. The cmtList mechanism used in mdl allows
he Issuer to create range proofs only by treating them as individual
ttributes; for instance, in the AAMVA mdl implementation guide-

lines [55] Issuers must identify every likely threshold value in their
jurisdiction and encode a separate attribute age_ over_NN=True or
False for each NN.

The disadvantages of implementing this feature with this mech-
anism are: (a) an increased size of every VC and VP, (b) requiring
the Issuer to keep track of when each threshold is crossed to issue a
new VC, (c) interoperability issues - a Verifier may not find all the
same thresholds represented every separate jurisdiction for the same
VC type (e.g., age above 18, 21, 65, etc.), (d) mistakes are easy to
make and hard to spot, e.g., in a long list of individual and unrelated
entries it would be possible to enter e.g., age_over_18=False and
age_over _21=True. All hiding commitment based cm including
erTree suffer the same disadvantages.

It is possible to create range proofs using hash functions using a
rotocol called HashWire [56]. HashWire is an optimization of the
echnique introduced by Rivest and Shamir in PayWord [57]. To create
commitment to an integer 𝑘, the Issuer generates a random string 𝑟

nd computes the commitment 𝑐 = 𝑘(𝑟), namely 𝑘 repeated iterations
f the hash function . The Issuer reveals the random string 𝑟 and the
nteger 𝑘 to the Holder, who can prove to a Verifier that 𝑘 ≥ 𝑡, for

given threshold 𝑡, by sending the proof 𝜋 = 𝑘−𝑡(𝑟). The Verifier
onsiders the proof 𝜋 valid if 𝑡(𝜋) = 𝑐. This method is both more
ompact and less error-prone than a list of unrelated statements.

elective disclosure signatures. By contrast, selective disclosure signa-
ures enable the Holder to build NIZKP of predicates about the at-
ributes included in the VC without prior involvement of the Issuer. For
xample, range proofs and set membership proof s [58] allow the Prover
o prove that an attribute 𝑎 lies within a range 𝑣 < 𝑎 < 𝑢, or in a given
et of values  , i.e. 𝑎 ∈  , respectively. Examples of predicate proofs
or the CL mechanism can be found in Section 6 of [6].

.2.3. Support for threshold credential issuance
VC ecosystems are initially designed for individual Issuers issuing

Cs to Holders; however, this requires all trust to be placed on individ-
al Issuers, which constitute a single point of failure. This problem can
e mitigated by having the secret key shared among multiple Issuers,
nd by designing threshold digital signatures so that they may agree in
rder to create VCs.

An (𝑛, 𝑡)-threshold signature scheme allows a group of 𝑛 signers to
reate a digital signature only if 𝑡 members of the group agree to sign
he message.

Threshold signature schemes are often designed generalizing stan-
ard digital signature schemes. In fact, a desirable property of some
hreshold signature schemes is that the resulting signature has ex-
ctly the same structure of the signature they generalize, so that the
erification algorithm remains unchanged.

For the threshold issuance of hiding commitment based creden-
ials, any threshold digital signature scheme may be used since the
igned commitment is always revealed. Examples of threshold signature
chemes are the threshold version of EdDSA [59], ECDSA [60], and
chnorr signature [61].

Threshold versions have been proposed for the PS signature [62]
nd for the BBS+ signature [63], which also applies to the BBS sig-
ature with some simple modifications. Since the signatures produced
y the Issuers have the same structure as the one they generalize, the
rotocols for the creation and verification of VP also remain unchanged.
o the best of our knowledge, no threshold version of CL has been

roposed.

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.

s
b

B
t
𝑀
o
r
r

7

P
t

b
b
a
z

t
l

c

7. Experimental evaluation

Our use case of interest is a proximity flow for EUDI Wallets, in
which the Holder and Verifier are physically close and the attestation
exchange and disclosure occurs using proximity protocols - e.g., NFC,
Bluetooth, QR-Codes. The Holder, Verifier, or both may also be offline.
A concrete example involves checking a mobile driving license (mdl),
as considered in Section 1. In this scenario, the Holder device may be
resource-constrained in both computational capability and presentation
exchange bandwidth; we therefore measure the cost of computation,
particularly genHolderProof, in Section 7.2 and the size of VP
elements for each cm in Section 7.3. Based on ISO/IEC 18013-5 [25],
in which an mdl consists of 11 mandatory and 22 optional attributes,
we use credentials with 𝑛𝑎 ≤ 33 total attributes.

7.1. Experimental set-up

Security level. To ensure a fair comparison, we aim for an equivalent
level of security of 128 bits in all tested mechanisms — see SP 800-
57 [64], Table 2. Enforcing this common security level is non-trivial,
as mentioned in Section 6.1.2. This level is achieved by BBS, BBS+,
and PS over BLS12-381, CL with 3072-bit RSA modulus, EdDSA over
ed25519, and the post-quantum signature parameter sets Falcon-512,
Dilithium2, and SPHINCS+-SHA2-128f. Several SPHINCS+ sets meet the
same security level, but the chosen one is optimized for computation
cost, to the detriment of size.

Libraries. We use the Hyperledger Ursa10 library for PS and CL sig-
nature performance. As noted in Section 6.1.2, we had to modify the
CL implementation to achieve the required security level. For BBS and
BBS+, we test docknetwork11 since they implement both, so differences
in measurements can be attributed with greater confidence to the
algorithm rather than implementation differences. They are also the
recently most used BBS crate12 after Ursa at the time of writing, have
an implementation of the threshold versions presented in [63], and are
an active project.

For all proofs in merTree mechanisms we use SHA-256 and
rs_merkle.13 For merTree digital signatures we test EdDSA over
ed25519 using the popular rust crate ed25519-dalek,14 and three PQ
signature standardization candidates implemented in Open Quantum
Safe (OQS).15

Processors. In order to test performance on both desktop PCs and
constrained devices with ARM CPUs more closely resembling mobile
phones – our use case for Holder devices – experiments are run on AMD
Ryzen 7 5800X, raspberry pi 3B+ 1 GB RAM, and pi 4B 4 GB RAM.

7.2. Computational cost

We measure the computational cost of key generation, and signature
and presentation proof generation and verification — see Fig. 2. The
presentation phase is of particular interest since it is expected to occur
frequently on constrained devices; we show results in Table 4. There
is approximately an order of magnitude difference in performance be-
tween a modern desktop CPU (Ryzen 7 5800X) and an ARM raspberry
pi 4B, and another between the pi 4B and pi 3B+. 𝚖𝚎𝚛𝚃𝚛𝚎𝚎 results
are very close for each algorithm except SPHINCS+, which is reported
separately; similarly BBS and BBS+ are very close, so only the former
is reported.

10 https://docs.rs/ursa/.
11 https://github.com/docknetwork/crypto.
12 https://crates.io/search?q=bbs%20signature&sort=recent-downloads.
13 https://docs.rs/rs_merkle/.
14 https://docs.rs/ed25519-dalek/.
15
12

https://github.com/open-quantum-safe/liboqs.
Table 4
Presentation Proof generation and verification times by CPU with 𝑛𝐴 = 33. Times in ms
are median over 𝑛𝐷 ≤ 𝑛𝐴. Falcon and Dilithium results are not significantly different
from EdDSA; BBS+results are not significantly different from BBS.
cm: genHolderProof 5800X pi 4B pi 3B+

𝚖𝚎𝚛𝚃𝚛𝚎𝚎 − 𝐸𝑑𝐷𝑆𝐴 0.0007 0.0044 0.0143
𝚖𝚎𝚛𝚃𝚛𝚎𝚎 − 𝑆𝑃𝐻𝐼𝑁𝐶𝑆+ 0.0007 0.0044 0.0174
BBS 1.6508 11.2507 92.9144
PS 9.3314 34.6971 303.4390
CL 55.270 394.9524 1475.9164

cm: verPresentProof 5800X pi 4B pi 3B+

𝚖𝚎𝚛𝚃𝚛𝚎𝚎 − 𝐸𝑑𝐷𝑆𝐴 0.040 0.2911 1.0715
𝚖𝚎𝚛𝚃𝚛𝚎𝚎 − 𝑆𝑃𝐻𝐼𝑁𝐶𝑆+ 0.4176 7.0385 19.3736
BBS 2.1360 15.7105 117.4054
PS 3.5201 19.4249 210.9906
CL 64.969 456.0057 1687.3662

The computational cost of hashing and of generating Merkle inclu-
sion paths is negligible compared with generating and verifying the
digital signature in cmtList and merTree; we therefore only report
the results of merTree tests.

For SDSig over elliptic curves – BBS, BBS+, and PS – we also
provide a comparison of the number of operations in Table 5. Scalar
multiplication (𝑀) is 𝑛𝑄 for a curve point 𝑄 and a scalar 𝑛, and multi-
calar multiplication of 𝑛 points, 𝑀𝑆𝑀(𝑛), is an operation designed to
e more efficient than the sum of (𝑛−1) separate scalar multiplications.

The relation between the costs of the operations over the curve
LS12-381 are the following: 𝑃 > 𝑀𝑆𝑀 > 𝑀 ≫ 𝐴 ≫ field opera-
ions, which we do not include. Roughly speaking, 𝑃 ≈ 2 𝑀𝑆𝑀(30),
𝑆𝑀(30) ≈ 3 𝑀 , 𝑀 ≈ 200 𝐴, 𝐴 ≈ 100 field operations, and operations

ver G2 cost approximately 2 to 3 times as operations over G1. These
atios consider multiplications 𝑀 and multi-scalar multiplications by
andom scalars.

.3. Presentation size

resentation proof. We compare VP size contributions for each cm, with
rends summarized in Fig. 3.

Attribute size is arbitrary, so 𝙳𝙰 is not included. For commitment
ased mechanisms, one disclosed salt 𝙳𝚂 per disclosed attribute must
e included; therefore, VP size tends to grow with 𝑛𝐷 for 𝚌𝚖𝚝𝙻𝚒𝚜𝚝

nd 𝚖𝚎𝚛𝚃𝚛𝚎𝚎, while it decreases for 𝙲𝙻, 𝙿𝚂, 𝙱𝙱𝚂 and 𝙱𝙱𝚂+ due to one
ero-knowledge proof per undisclosed attribute.

Presentation proof size, for the cases in which multiple construc-
ions are available, namely BBS and PS, is calculated according to the
ibraries we have tested.

The presentation proof size for each cryptographic mechanism is
omputed as follows:

• 𝚌𝚖𝚝𝙻𝚒𝚜𝚝: one digest per attribute in the credential, a signature of
the list of digests, one disclosed salt per disclosed attribute:

|𝙲𝙼𝚃| + |𝜎| + |𝙳𝚂| = 𝑑𝑛𝐴 + |𝜎| + 𝑠𝑛𝐷 (52)

• 𝚖𝚎𝚛𝚃𝚛𝚎𝚎: one tree root (of digest size), a signature of the tree root,
one disclosed salt per disclosed attribute, an inclusion proof for
disclosed attributes. The size of an inclusion proof for a single
attribute is equal to the tree height ⌈log2(𝑛𝐴)⌉ times the digest
size; a simple implementation may return a separate proof per
disclosed attribute, an optimized implementation will be more
compact. An upper bound is therefore:

|𝙲𝙼𝚃| + |𝜎| + |𝙳𝚂| + |𝑃 |

= 𝑑 + |𝜎| + 𝑑𝑛𝐷 + ⌈log2(𝑛𝐴)⌉𝑑𝑛𝐷 (53)

• 𝙲𝙻: in order to make a fair comparison between the algorithms,
we consider a modulus of |𝑛| = 3072 bits to have a security level
of 128 bits. Therefore, a NIZKP of knowledge of a signature and
of the undisclosed attributes (Eq. (11)) is given by:

https://docs.rs/ursa/
https://github.com/docknetwork/crypto
https://crates.io/search?q=bbs%20signature&sort=recent-downloads
https://docs.rs/rs_merkle/
https://docs.rs/ed25519-dalek/
https://github.com/open-quantum-safe/liboqs

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.

a

Fig. 2. Scatter plot of issuing and presentation performance test results on Ryzen 7 5800X for all algorithms. Lower values are better (shorter run time), to the bottom left. Points
re median values over all possible disclosed number of attributes in the range 𝑛𝐷 ∈ {1, 𝑛𝐴} with 𝑛𝐴 = [4, 8, 16, 33]. Darker colors correspond to higher 𝑛𝐴. merTree algorithms

are faster in both generation (𝑥 axis) and verification (𝑦 axis) of signatures and presentations. Quantum-Safe algorithms are very competitive with EdDSA, except SPHINCS+.
Table 5
Number of multiplication (𝑀), multi-scalar multiplication (𝑀𝑆𝑀), addition (𝐴), pairing (𝑃), and random sampling (𝑅) operations over elliptic
curves for BBS, BBS+, and PS, with number of disclosed (𝑛𝐷), undisclosed (𝑛𝑈), and total number of attributes (𝑛𝐴). All operations are in the
group G1 unless otherwise subscripted with G2.
SDSig genSig verSig genHolderProof verPresentProof

𝙱𝙱𝚂 𝑀𝑆𝑀(𝑛𝐴) +𝑀 + 𝐴 𝑀𝑆𝑀(𝑛𝐴) + 𝐴 +
𝐴G2

+𝑀G2
+ 2𝑃

𝑀𝑆𝑀(𝑛𝐴) + 3𝑀 + 2𝐴 +
𝑀𝑆𝑀(𝑛𝐷) +𝑀𝑆𝑀(2 + 𝑛𝑈)

𝑀𝑆𝑀(𝑛𝐷) +𝑀𝑆𝑀(3 +
𝑛𝑈) + 2𝐴 + 2𝑃

𝙱𝙱𝚂+ 𝑀𝑆𝑀(1 + 𝑛𝐴) +𝑀 + 𝐴 𝑀𝑆𝑀(1 + 𝑛𝐴) + 𝐴 +
𝐴G2

+𝑀G2
+ 2𝑃

𝑀𝑆𝑀(1 + 𝑛𝐴) + 3𝑀 + 2𝐴 +
𝑀𝑆𝑀(2 + 𝑛𝑈) +𝑀𝑆𝑀(2)

𝑀𝑆𝑀(𝑛𝐷) +𝑀𝑆𝑀(3 +
𝑛𝑈) +𝑀𝑆𝑀(3) + 3𝐴 + 2𝑃

𝙿𝚂 𝑀G2
+ 𝑅G2

𝑀𝑆𝑀(𝑛𝐴) + 𝐴 + 2𝑃 3𝑀G2
+𝐴G2

+𝑀𝑆𝑀(1 + 𝑛𝑈) 𝑀𝑆𝑀(2 + 𝑛𝑈) + 𝐴 +
𝑀𝑆𝑀(𝑛𝐷) + 2𝑃
I
r
J
e
a
w
f
(
s
a
a

– a digest 𝑐 ∈ {0, 1}256 (32 bytes);
– an element 𝐴′ ∈ Z𝑛 (384 bytes), an element 𝑒 ∈ {0, 1}457 (58

bytes), and 𝑣′ ∈ {0, 1}3744 (468 bytes)
– an element 𝑎𝑖 ∈ {0, 1}593 (75 bytes) for each undisclosed

attribute.

Therefore, the presentation proof size is, in bytes:

|𝑐| + |

|

𝐴′
|

|

+ |

|

𝑒|
|

+ |

|

𝑣′|
|

+ |

|

𝑎𝑖|| (𝑛𝐴 − 𝑛𝐷)

= 32 + 384 + 58 + 468 + 75(𝑛𝐴 − 𝑛𝐷). (54)

• 𝙱𝙱𝚂 ∶ a NIZKP of knowledge of a signature and of the undisclosed
values (Eq. (24)) is given by:

– three elements 𝐴,𝐵, 𝑇 ∈ G1;
– two elements 𝑟̂, 𝑒 ∈ Z𝑝;
– one 𝑎𝑖 ∈ Z𝑝 for each undisclosed attribute.

𝙱𝙱𝚂 can be implemented using the pairing-friendly elliptic curve
BLS12-381, with the prime order of the subgroup of G1 being
𝑝 ∈ {0, 1}256. Therefore, the elements in G1 - i.e., 𝐴,𝐵 and 𝑇 -
can be represented as 48-byte strings and the integer elements as
32-byte strings. Therefore, the presentation proof size is, in bytes:
|

|

|

𝐴||
|

+ |

|

|

𝐵||
|

+ |𝑇 | + |

|

𝑟̂|
|

+ |

|

𝑒′|
|

+ |

|

𝑎𝑖|| (𝑛𝐴 − 𝑛𝐷)

= 3 ⋅ 48 + 32(2 + 𝑛𝐴 − 𝑛𝐷). (55)

• 𝙱𝙱𝚂+: a NIZKP of knowledge of a signature and of the undisclosed
values (Eq. (38)) is given by:

– five elements 𝐴′, 𝐴, 𝑑, 𝑇1, 𝑇2 ∈ G1;
– four elements 𝑒, 𝑟̂2, 𝑟̂3, 𝑠̂′ ∈ Z𝑝;
– one 𝑎𝑖 ∈ Z𝑝 for each undisclosed attribute.

As with 𝙱𝙱𝚂, 𝙱𝙱𝚂+ can be implemented using the pairing-friendly
elliptic curve BLS12-381, with the prime order of the subgroup of
G1 being 𝑝 ∈ {0, 1}256. Therefore, the elements in G1 - i.e., 𝐴′, 𝐴, 𝑑
- can be represented as 48-byte strings and the integer elements as
13
32-byte strings. Therefore, the presentation proof size is, in bytes:

|

|

𝐴′
|

|

+ |

|

|

𝐴||
|

+ |𝑑| + |

|

𝑇1|| + |

|

𝑇2|| + |

|

𝑒|
|

+ |

|

𝑟̂2|| + |

|

𝑟̂3||+

|

|

𝑠̂′|
|

+ |

|

𝑎𝑖|| (𝑛𝐴 − 𝑛𝐷) = 5 ⋅ 48 + 32(4 + 𝑛𝐴 − 𝑛𝐷). (56)

• 𝙿𝚂: a NIZKP of knowledge of a signature and of the undisclosed
values (Eq. (51)) is given by:

– two elements 𝜎′1, 𝜎
′
2 ∈ G2;

– two elements 𝐽 , 𝑇 ∈ G1;
– an element 𝑡̂ ∈ Z𝑝;
– one 𝑎𝑖 ∈ Z𝑝 for each undisclosed attribute.

Also PS can be implemented using the pairing-friendly elliptic
curve BLS12-381 with the prime order of the subgroup of G1
being 𝑝 ∈ {0, 1}256. Therefore, the elements in G2 - i.e., 𝜎′1, 𝜎

′
2 - can

be represented as 96-byte strings, the elements in G1 - i.e., 𝐽 , 𝑇 -
can be represented as 48-byte strings and the integer elements as
32-byte strings. Therefore, the presentation proof size is, in bytes:
|

|

|

𝜎′1
|

|

|

+ |

|

|

𝜎′2
|

|

|

+ |𝐽 | + |𝑇 | + |

|

|

𝑡̂||
|

+ |

|

𝑎𝑖|| (𝑛𝐴 − 𝑛𝐷)

= 2 ⋅ 96 + 2 ⋅ 48 + 32(1 + 𝑛𝐴 − 𝑛𝐷). (57)

ssuer public keys (𝚙𝚔𝙸𝚜𝚜). A VP header may contain either 𝚙𝚔𝙸𝚜𝚜 or a
eference to it. For instance, a JWS [65] header may contain 𝚙𝚔𝙸𝚜𝚜 as
WK or X.509 certificate, or a url as JKU, or a certificate thumbprint,
tc. Note that in standardized digital signatures, public parameters are
ssumed to be known and common to all issuers and verifiers, typically
ritten in source code of implementing libraries, and need not be

etched repeatedly. For instance, the Digital Signature Standard [66]
DSS) specifies methods for signature generation and verification, while
pecifications for the generation of domain parameters e.g., for ECDSA
nd EdDSA are included in SP 800-186 [67]. We do not describe these
lgorithms in detail [66,67].
𝚙𝚔𝙸𝚜𝚜 size may be calculated as follows.

• 𝚖𝚎𝚛𝚃𝚛𝚎𝚎, 𝚌𝚖𝚝𝙻𝚒𝚜𝚝: the public key of an EdDSA digital signature
+
is a 32-byte point of the curve ed25519. A SPHINCS -128 [47]

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.
Fig. 3. VP proof size - Eqs. (52) to (57) - vs. public key size - Eqs. (2), (17), (28),
(41) for SDSig. Both are required by the Verifier, but the public key may be cached
over several presentations, and the Holder-Verifier channel is more likely to have
bandwidth constraints than the Issuer-Verifier channel in a digital wallet scenario, so
a smaller proof size is more significant than a smaller public key size. Lighter hues are
more disclosed attributes (higher 𝑛𝐷). SDSig have smaller holder proofs for higher 𝑛𝐷
as fewer ZKP need to be generated for undisclosed attributes; cmtList mechanisms
follow the opposite trend, as more salts need to be disclosed. Common values used for
comparison, in bytes: salt size 𝑠 = 16; digest size 𝑑 = 32; number of attributes 𝑛𝐴 = 33.

public key is 32 bytes: two 128-bit numbers, a seed and a tree
root. A Dilithium2 [45] public key is 1312 bytes: a 32-byte seed
and a vector of polynomials. A Falcon-512 [46] public key is 897
bytes: 512 14-bit integers (polynomial coefficients), and 1 header
byte.

• 𝙲𝙻: A CL public key (Eq. (2)) is (𝑛,𝑅1,… , 𝑅𝑚, 𝑆,𝑍) ∈ Z𝚖+𝟹
𝚗

of size
384(𝑚 + 3) bytes.

• 𝙱𝙱𝚂: A BBS public key (Eq. (17)) is 𝑤 = 𝑔𝑥2 ∈ G2 of size 96 bytes,
where G2 is obtained using curve BLS12-381.

• 𝙱𝙱𝚂+: A BBS+ public key (Eq. (28)) is 𝑤 = 𝑔𝑥2 of size 96 bytes,
where G2 is obtained using curve BLS12-381.

• 𝙿𝚂: A PS public key (Eq. (41)) is (𝑋, 𝑌1,… , 𝑌𝑚) ∈ G𝑚+1
1 of size

48(𝑚 + 2) = 96 + 48𝑚 bytes if PS is instantiated using curve
BLS12-381.

7.4. Trade-offs

Switching G1 and G2. When considering the groups derived from the
elliptic curve BLS12-381, which is used in the implementations we have
tested, performing computations over the group G1 is more efficient
than performing the same computations in G2. Also the size of elements
in G1 (48 bytes) is smaller than the size of elements in G2 (96 bytes).
However, the bilinearity of the pairing operation allows to define the
BBS, BBS+ and PS signature algorithms (and the associated NIZKP)
inverting the roles of G1 and G2, and this leads to the identification
of some trade-offs that it is worth to consider when instantiating these
schemes.

Note that if PS is implemented inverting the role of G1 and G2, then
the signatures are (𝜎1, 𝜎2) ∈ G2

1 and the public keys are (𝑋, 𝑌1,… , 𝑌𝑚) ∈
G𝑚+1

2 . Then the size of the signature is reduced to 96 bytes, the public
key size is increased to 96 + 96𝑚 bytes and the presentation proof
dimension is unchanged. Since the computations are more efficient
when computed in G1, the signature generation (VC issuance) will be
faster, while the presentation proof generation will be slower.

For what concerns BBS and BBS+ signatures, switching the two
groups G and G reduces the size of the public key to 48 bytes,
14

1 2 L
increases the size of both the signature and the presentation proofs, and
slows down the computations for the generation of both the signatures
and the NIZKPs, since they would be performed in G2.

Structure of NIZKP. In Section 5 we describe the structure of the
NIZKPs corresponding to each selective disclosures signature. As it is
possible to note from Eq. (11), the NIZKP of CL has an element 𝑐 in Z𝑝,
while the NIZKP of BBS (Eq. (24)) and PS (Eq. (51)) have an element
𝑇 in G1 and BBS+ has two elements 𝑇1, 𝑇2 ∈ G1 (Eq. (38)).16 The
NIZKP derived from the sigma protocols for linear relations described
in Appendix (see Fig. A.5) instructs the prover to compute a random
commitment 𝑇 ∈ G, derive deterministically a challenge 𝑐 = (𝚙𝚙, 𝑇) ∈
Z𝑝, where 𝚙𝚙 are public parameters known both to the prover and to the
verifier, and from these compute the response (𝑟1,… , 𝑟𝑛) ∈ Z𝑛

𝑝. Finally
the prover can build its proof 𝜋 in two equivalently secure ways:

1. if the prover sends 𝑇 , (𝑟1,… , 𝑟𝑛), the verifier can compute 𝑐 and
verify the validity of the proof 𝜋;

2. if the prover sends 𝑐, (𝑟1,… , 𝑟𝑛), the verifier can retrieve 𝑇 and
verify the validity of the proof 𝜋. Note that this does not require
inverting  - see Fig. A.5.

When the representation of an element of the group G is bigger in size
than an element of Z𝑝, by choosing the second approach the proof is
smaller.

However, it might be preferable to choose the first approach in a
context in which (𝑖) the Holders can present multiple VCs all at once (by
proving multiple statements), for example to prove predicates which
relate different VCs, and (𝑖𝑖) the Verifiers, in case of failure, want to
identify the statements whose proof was incorrect.17 This approach
improves error checking.

In this context, a single challenge 𝑐 = (𝚙𝚙, 𝑇 1,… , 𝑇𝑛) is generated
according to the commitments associated to each of the 𝑛 relations to
be proved. Then, according to 𝑐, 𝑇1,… , 𝑇𝑛, the Holder generates the
responses included in the VP. If the Verifier receives the commitments
𝑇1,… , 𝑇𝑛 and the responses, it can compute the challenge and verify the
correctness of each proof individually, identifying which proofs have
failed, if any. Instead, if we use the second approach by sending to the
Verifier the challenge 𝑐 and the responses, if any of the relations have
not been proven correctly, it would be impossible to identify which
statements caused the failure. From the responses and the challenge
𝑐, the Verifier can reconstruct the commitments 𝑇1,… , 𝑇𝑛 obtaining
(𝚙𝚙, 𝑇1,… , 𝑇𝑛) = 𝑐′ ≠ 𝑐; this means that one or more statements have
not been proven, but the Verifier cannot identify which ones.

7.5. Assessment summary

We find that cmtList and merTree are very fast to compute,
cryptographically agile and with quantum-safe options, easier to im-
plement than SDSig but more cumbersome for the Issuer to manage.
merTree is reliably smaller in size, but widely adopted in standards
and RFCs. Predicates must be defined by the issuer, and unlinkability
requires the issuer to provide a supply of single-use credentials with
new attribute salts and signatures in advance. While CL is particularly
computationally expensive and large in size, BBS is computationally
feasible and compact; in both cases, predicate proofs can be provided
by the Holder, and the randomness for unlinkability is also generated
by the Holder based on a single selective disclosure signature. Our
assessment is summarized qualitatively in Table 6.

16 The NIZKP that we have described in Eq. (38) is obtained by proving two
relations as in Fig. A.5. Therefore the prover must generate two commitments
𝑇1, 𝑇2, one for each relation, but it can use the same challenge 𝑐 = (𝚙𝚙, 𝑇1, 𝑇2).

17 Private communication with one of the developers of the Docknetwork
ibrary.

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.

o
a
b
v
o

a
f
v
v
w

Table 6
cm assessment summary.

Feature cmtList merTree CL BBS(+) PS

Standard + ± − ± −
Agile + + + + + + −− + +
Unlinkable ± ± + + +
Predicates ± ± + + +
Efficient + + + + + + − ± ±
Compact − + − + +
Quantum-safe + + − − −

8. Conclusion

As the digital landscape continues to expand, the significance of
an individual’s digital identity cannot be overstated, particularly in
the realms of e-government and e-commerce. The emergence of digital
identity wallets represents a pivotal shift in identity management,
enabling data subjects to exercise control over the information they
disclose in a secure and privacy-preserving manner. This paradigm
shift is exemplified by the eIDAS2 regulation, which proposes the
EUDI wallet to enhance cross-border interoperability. Thus, there is
a need for service providers to strike a balance between protocol
sophistication, implementation intricacy, and resource constraints. The
ARF document published by the EU Commission underscores the im-
portance of cryptographic mechanisms that enable selective disclosure
of verifiable credentials, which is a crucial component of providing
privacy-preserving solutions.

To fill this gap, this paper provides an overview of cryptographic
mechanisms to enable selective disclosure of verifiable credentials,
which serve as digital counterparts to physical credentials and are
safeguarded by cryptographic techniques. We analyzed a total of six
mechanisms: hash-based hiding commitments 𝚌𝚖𝚝𝙻𝚒𝚜𝚝, 𝚖𝚎𝚛𝚃𝚛𝚎𝚎, as
well as CL, BBS/BBS+, and PS signatures. For each mechanism, we
defined the credential and presentation structures, and summarized the
operations to be performed to issue VCs and provide VPs. In order
to assist stakeholders with the knowledge needed to make informed
decisions regarding the selection and implementation of cryptographic
mechanisms based on their specific use cases and system requirements,
we compared the cryptographic mechanisms w.r.t. several features such
as standardization, cryptographic agility, performance, and quantum
safety.

In summary, our solution analysis indicates that 𝚌𝚖𝚝𝙻𝚒𝚜𝚝 and
𝚖𝚎𝚛𝚃𝚛𝚎𝚎 are highly efficient in terms of computation cost and offer
cryptographic agility, along with quantum-safe options. These mech-
anisms are relatively straightforward to implement, although they may
pose greater management challenges for the Issuer. On the other hand,
CL exhibits high computational expense and size, whereas BBS presents
a more feasible and compact alternative. In both cases, the Holder
has the capability to provide predicate proofs, and randomness for
achieving unlinkability based on a single selective disclosure signature.
We stress that currently, to develop quantum resistant VCs, one must
employ hiding commitment based cryptographic mechanisms, forego-
ing the handy ability to create numerous unlinkable VPs (Section 6.2.1)
or predicate proofs (Section 6.2.2) beginning with the same VC given
by selective disclosure signatures.

Future work. The most relevant currently missing piece is given by the
absence of implementations of practical selective disclosure signatures
that are quantum resistant. Solutions based on lattices have been
proposed [50–53] that would be interesting to test once libraries im-
plementing them become available. The design of alternative schemes
based on other quantum resistant problems would also be of interest,
such as the code-based cryptography used in fourth-round standardiza-
tion candidate key encapsulation mechanisms BIKE [68], HQC [69],
15

and McEliece [70]. F
Another topic to investigate is an improvement of the cryptographic
mechanisms based on hiding commitments. In fact, as we mentioned
in Section 6.2.2, since the outputs of hash functions lose any alge-
braic structure related to the input, the commitment based on hash
functions do not allow to prove predicates different from range proofs
that can be performed e.g., by using the HashWire [56] technique.
Therefore, it would be interesting to consider post quantum hiding
commitment schemes that would allow the Holder to prove in zero-
knowledge predicates such as equality proofs or set membership proofs
about the committed values without affecting the quantum resistance of
the mechanism. A candidate commitment scheme for such application
could be the non-interactive commitment scheme from cryptographic
group actions proposed in [71].

CRediT authorship contribution statement

Andrea Flamini: Writing – review & editing, Writing – original
draft, Supervision, Conceptualization. Giada Sciarretta: Writing – re-
view & editing, Writing – original draft, Supervision, Conceptualization.
Mario Scuro: Writing – review & editing, Writing – original draft, Su-
pervision, Conceptualization. Amir Sharif: Writing – review & editing,
Writing – original draft, Supervision, Conceptualization. Alessandro
Tomasi: Writing – review & editing, Writing – original draft, Super-
vision, Conceptualization. Silvio Ranise: Writing – review & editing,
Writing – original draft, Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The first author acknowledges support from Eustema S.p.A. through
the PhD scholarship and is a member of GNSAGA of INdAM.

This work has been partially supported by a joint laboratory be-
tween FBK, Italy and the Italian Government Printing Office and Mint,
Italy.

This work was partially supported by project SERICS (PE00000014)
under the MUR National Recovery and Resilience Plan funded by the
European Union - NextGenerationEU.

The authors would like to thank Vasilis Kalos and Lovesh Harchan-
dani for the insightful discussions on BBS specification and implemen-
tations.

Appendix. NIZKP from sigma protocols via Fiat-Shamir transform

The NIZKP that we use in this paper are derived from three-step
interactive protocols called sigma protocols. Sigma protocols allow a
prover to prove a statement to a verifier based on the knowledge of
a secret (e.g. ‘‘given ℎ, 𝑔 ∈ G, I know 𝑥 ∈ Z𝑝 such that ℎ = 𝑔𝑥’’). In
rder to do that, it sends a commitment 𝑇 to the verifier who returns
random challenge 𝑐. Finally, according to 𝑇 , 𝑐 and the statement to

e proven, the prover sends a response 𝑟 to the verifier who checks the
alidity of the transcript (𝑇 , 𝑐, 𝑟) for that specific statement and accept
r rejects the interactive proof.

A sigma protocol can be turned into a non-interactive protocol by
pplying the Fiat-Shamir transform. Informally, the Fiat-Shamir trans-
orm prescribes to replace the generation of the challenge by the
erifier with a computation of a digest of 𝑇 and other public data
ia a cryptographic hash function  computed by the prover. Below
e describe more in detail what is a sigma protocol and what is the

iat-Shamir transform.

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.

a
𝑠

S
b

W
s
a

s
s
c
c
o
t
m

o
e
p

a
b
(

F
a
a

i

Fig. A.4. Sigma protocol for linear relations. The simulator used to prove the zero-knowledge property is defined as follows: it generates uniformly at random 𝑠1 ,… , 𝑠𝑛 , 𝑐 ∈ Z𝑝
nd sets 𝑇 = 𝑦−𝑐

∏𝑛
𝑖=1 𝑔

𝑠𝑖
𝑖 . The transcript (𝑇 , 𝑐, 𝑠1 ,… , 𝑠𝑛) is indistinguishable from a real transcript since 𝑐 is random and 𝑇 is random as well since it is univocally determined by

1 ,… , 𝑠𝑛 which are chosen uniformly at random. The transcripts verify and have been created without knowing 𝑤1 ,… , 𝑤𝑛.
t
t
t
T
v

igma protocols. A sigma protocol (𝑃 , 𝑉) for the relation  is defined
y

• the relation  ⊂ 𝑊 × 𝑌 , where 𝑌 is called the set of statements
and 𝑊 the set of witnesses;

• two algorithms describing the behavior of the actors involved: the
prover 𝑃 and the verifier 𝑉 .

e say that (𝑤, 𝑦) ∈  if and only if 𝑤 is a witness for the statement 𝑦. A
igma protocol for a relation  allows the prover to convince a verifier
bout the knowledge of a secret witness 𝑤 for a public statement 𝑦.

The sigma protocols are three steps protocols with the following
tructure: the prover 𝑃 computes a message 𝑇 called commitment and
ends it to the verifier 𝑉 . Once 𝑉 has received the commitment, it
hooses a random challenge 𝑐 and sends it to the prover 𝑃 . Then, 𝑃
omputes the response 𝑟 and sends it to 𝑉 . Finally 𝑉 outputs 1 (accept)
r 0 (reject) which must be computed according to statement and the
ranscript (𝑇 , 𝑐, 𝑟) generated by the interaction. A secure sigma protocol
ust satisfy the following properties:

• completeness: when a prover knows a witness 𝑤 for a statement 𝑦,
the verifier will output 𝚊𝚌𝚌𝚎𝚙𝚝 at the end of the protocol.

• knowledge soundness: if the verifier outputs 𝚊𝚌𝚌𝚎𝚙𝚝, it is assured
that the prover actually knows a witness 𝑤 for the public state-
ment 𝑦;

• honest-verifier zero-knowledge: the interaction with an honest ver-
ifier in a sigma protocol execution does not leak any information
about the witness known by the prover.

An example of secure sigma protocol, which is the building block
f the NIZKPs mentioned in Section 5, is the sigma protocol for lin-
ar relations [29], a generalization of the well known Schnorr sigma
rotocol [72].

Given 𝑛 ∈ N and 𝑔1,… , 𝑔𝑛 ∈ G, where G is a group of order 𝑝, 𝑔𝑖 ∈ G
re public parameters, the sigma protocol for linear relations is defined
y  = {((𝑤1,… , 𝑤𝑛), 𝑦) ∈ Z𝑛

𝑝 ×G ∣ 𝑦 =
∏𝑛

𝑖=1 𝑔
𝑤𝑖
𝑖 } and by the algorithms

𝑃 , 𝑉) presented in Fig. A.4.

iat-Shamir transform. In 1986 A. Fiat and A. Shamir introduced in [73]
technique to convert identification schemes, used to identify a user

ccording to a secret only she knows,18 into digital signature schemes.

18 From sigma protocols is possible to derive identification schemes. In
dentification schemes, the statements of the sigma protocols are the public
16
However, the same technique can be applied to secure sigma protocols
– satisfying the completeness, knowledge soundness, and HVZK prop-
erties above – to obtain non-interactive zero-knowledge proofs [29].

The Fiat-Shamir transform substitutes the verifier with a random
oracle during the second step of the sigma protocol, in which the
verifier generates a random challenge; this operation can be performed
by a random oracle, considered as a trusted third party that can be
impersonated by a cryptographic hash function. The prover, instead of
sending the commitment to the verifier, computes a cryptographic hash
of the commitment, together with other public data 𝚙𝚙 that identify the
protocol execution; the output becomes the sigma protocol challenge.
The prover then computes the response to the challenge and sends
the transcript to the verifier, who can compute using the same hash
function the same random challenge and verify that the prover does
know a witness.

Applying the Fiat-Shamir transform to the secure sigma protocol in
Fig. A.4 (i.e. which satisfies the completeness, knowledge soundness
and honest-verifier zero-knowledge properties) yields the NIZKP in
Fig. A.5, secure according to the threat model described in Section 3.3.

Below we provide a more formal description of what it means for a
sigma protocol to be HVZK compared to the one given above.

Honest-verifier zero-knowledge. The term HVZK refers to protocols in
which a prover proves to an honest verifier, i.e. a verifier that follows
the protocol instructions, the knowledge of some secret information 𝑤
without disclosing any other information. This concept is formalized
starting from a very reasonable observation: the only way an eavesdrop-
per, who observes their interaction, can try to extract some information
about 𝑤 is by observing real executions of the protocol performed by
the prover and the verifier. Then, based on the information exchanged
between the two parties (a transcript of the protocol), the eavesdropper
tries to learn something about the secret known by the prover.

However, if there exists an efficient algorithm, referred to as Simula-
or, which does not take 𝑤 in input and is capable to create transcripts
hat are indistinguishable from the transcripts of real protocol execu-
ions, then we say that the protocol is honest-verifier zero-knowledge.
he reason is the following: observing the prover interacting with the
erifier, i.e. a real transcript, is indistinguishable from a transcript

keys of users, and the user who knows the witness for such statement proves
its identity.

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.
Fig. A.5. NIZKP for linear relations. The term 𝚙𝚙 is given by the public parameters such as 𝑔1 ,… , 𝑔𝑛 , 𝑦. It would be possible for the prover to create a NIZK proof by sending
(𝑐, 𝑟1 ,… , 𝑟𝑛). In this case the verifier must compute 𝑇 ←←

∏𝑛
𝑖=1 𝑔

𝑟𝑖
𝑖 𝑦

−𝑐 and check that 𝑐
?
= (𝚙𝚙, 𝑇).
generated by the Simulator, i.e. a simulated transcript. This means that
it is possible to extract the same amount of information from the two.
However, the simulator does not know the secret 𝑤, therefore it is
impossible, based on the transcripts it generates, to learn some infor-
mation about 𝑤. This means that, for an eavesdropper, eavesdropping
the conversation between the prover and the verifier and generating
transcripts on its own by executing the Simulator on her laptop, gives
her the same advantage in learning information about 𝑤.

It is not trivial to determine whether a protocol satisfies the HVZK
property, or indeed whether it even admits a simulator or not. The
algorithm must be capable of producing transcripts indistinguishable
from the ones generated in real protocol executions.

An example of simulator for the sigma protocol for linear relations
is provided in the caption of Fig. A.4.

References

[1] Proposal for a Regulation of the European Parliament and of the Council
amending Regulation (EU) No 910/2014 as regards establishing a framework
for a European Digital Identity. 2021.

[2] Consolidated text: Regulation (EU) 2016/679 of the European Parliament and of
the Council of 27 April 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation) (Text with
EEA relevance). 2016.

[3] Amendments by the European Parliament to the Commission Proposal for a
Regulation of the European Parliament and of the Council amending Regulation
(EU) No 910/2014 as regards establishing a framework for a European Digital
Identity. 2023.

[4] The European digital identity wallet architecture and reference framework,
version 1.0.0. DG CONNECT; 2024.

[5] Steele O, Prorock M. JSON web proof for binary Merkle trees. 2021.
[6] Specification of the identity mixer cryptographic library version 2.3.0. Security

Team, Computer Science Dept., IBM Research Zurich; 2010.
[7] Khovratovich D, Lodder M, Parra C. Anonymous credentials with type-3

revocation, version 0.6. Hyperledger Ursa; 2022.
[8] Lodder M, Zundel B, Khovratovich D. Pairings-based anonymous credentials with

circuit-based revocation and permission policies, version 0.7. Hyperledger Ursa;
2019.

[9] Xu X. Zero-knowledge proofs in education: a pathway to disability inclusion and
equitable learning opportunities. Smart Learn Environ 2024;11(7).

[10] Mashima D, Roy A. Privacy preserving disclosure of authenticated energy usage
data. In: 2014 IEEE international conference on smart grid communications.
SmartGridComm, 2014, p. 866–71.

[11] Ermolaev E, Abellán Álvarez I, Sedlmeir J, Fridgen G. z-Commerce: Designing
a data-minimizing one-click checkout solution. In: Design science research for a
17

new society: society 5.0. DESRIST 2023. 2023, p. 3–17.
[12] Sonnino A, Al-Bassam M, Bano S, Meiklejohn S, Danezis G. Coconut: Threshold
issuance selective disclosure credentials with applications to distributed ledgers.
In: Network and distributed systems security (NDSS) symposium 2019. 2019.

[13] Babel M, Sedlmeir J. Bringing data minimization to digital wallets at scale with
general-purpose zero-knowledge proofs. 2023.

[14] Pointcheval D, Sanders O. Short randomizable signatures. In: Topics in cryptology
- CT-RSA 2016. Springer; 2016, p. 111–26.

[15] Camenisch J, Lysyanskaya A. A signature scheme with efficient protocols. In:
SCN 2002. LNCS, vol. 2576, 2002, p. 268–89.

[16] Camenisch J, Drijvers M, Lehmann A. Anonymous attestation using the strong
Diffie Hellman assumption revisited. In: Trust 2016. LNCS, vol. 9824, 2016, p.
1–20.

[17] Tessaro S, Zhu C. Revisiting BBS signatures. In: Advances in cryptology –
EUROCRYPT 2023. LNCS, vol. 14008, Springer; 2023, p. 691–721.

[18] UL LLC. Verifiable credentials and ISO/IEC 18013-5 based credentials. 2021.
[19] Christ M, Baldimtsi F, Chalkias KK, Maram D, Roy A, Wang J. SoK:

Zero-knowledge range proofs. Cryptol ePrint Arch 2024. Paper 2024/430.
[20] Flamini A, Ranise S, Sciarretta G, Scuro M, Sharif A, Tomasi A. A first appraisal

of cryptographic mechanisms for the selective disclosure of verifiable credentials.
In: Proceedings of the 20th international conference on security and cryptography
- SECRYPT. INSTICC, SciTePress; 2023, p. 123–34.

[21] Sporny M, Longley D, Chadwick D. Verifiable credentials data model. W3C; 2022.
[22] Lodderstedt T, Yasuda K, Looker T. OpenID for verifiable credential issuance.

2023.
[23] Miller J, Waite D, Jones MB. JSON web proof. 2023.
[24] Sporny M, Longley D, Chadwick D, Terbu O, Zagidulin D, Zundel B. Verifiable

credentials implementation guidelines 1.0. W3C; 2019.
[25] ISO/IEC 18013-5 Personal identification - ISO-compliant driving licence - Part

5: Mobile driving licence (mDL) application. ISO; 2021.
[26] Katz J, Lindell Y. Introduction to modern cryptography: principles and protocols.

Chapman and hall/CRC; 2007.
[27] Catalano D, Fiore D. Vector commitments and their applications. In: PKC 2013.

LNCS, vol. 7778, Springer; 2013, p. 55–72.
[28] Camenisch J, Stadler M. Efficient group signature schemes for large groups. In:

Annual international cryptology conference. 1997, p. 410–24.
[29] Boneh D, Shoup V. A graduate course in applied cryptography. 2023, https:

//toc.cryptobook.us/.
[30] Abdalla M, An JH, Bellare M, Namprempre C. From identification to signa-

tures via the Fiat-Shamir transform: Minimizing assumptions for security and
forward-security. In: EUROCRYPT 2002. 2002, p. 418–33.

[31] Chase M, Lysyanskaya A. On signatures of knowledge. In: Advances in cryptology
- CRYPTO 2006: 26th annual international cryptology conference, Santa Barbara,
California, USA, August 20-24, 2006. proceedings 26. Springer; 2006, p. 78–96.

[32] Boneh D, Boyen X, Shacham H. Short group signatures. In: CRYPTO 2004. LNCS,
vol. 3152, 2004, p. 41–55.

[33] Au MH, Susilo W, Mu Y. Constant-size dynamic k-TAA. In: SCN 2006. LNCS,
vol. 4116, 2006, p. 111–25.

[34] Looker T, Kalos V, Whitehead A, Lodder M. The BBS signature scheme.
Internet-Draft draft-irtf-cfrg-bbs-signatures-01, Internet Engineering Task Force;
2022.

[35] Pointcheval D, Sanders O. Reassessing security of randomizable signatures. In:
Topics in cryptology - CT-RSA 2018. LNCS, vol. 10808, 2018, p. 319–38.

http://refhub.elsevier.com/S2214-2126(24)00092-9/sb1
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb1
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb1
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb1
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb1
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb2
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb2
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb2
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb2
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb2
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb2
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb2
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb2
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb2
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb3
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb3
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb3
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb3
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb3
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb3
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb3
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb4
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb4
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb4
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb5
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb6
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb6
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb6
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb7
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb7
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb7
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb8
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb8
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb8
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb8
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb8
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb9
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb9
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb9
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb10
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb10
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb10
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb10
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb10
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb11
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb11
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb11
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb11
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb11
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb12
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb12
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb12
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb12
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb12
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb13
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb13
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb13
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb14
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb14
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb14
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb15
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb15
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb15
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb16
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb16
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb16
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb16
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb16
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb17
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb17
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb17
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb18
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb19
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb19
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb19
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb20
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb20
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb20
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb20
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb20
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb20
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb20
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb21
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb22
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb22
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb22
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb23
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb24
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb24
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb24
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb25
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb25
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb25
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb26
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb26
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb26
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb27
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb27
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb27
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb28
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb28
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb28
https://toc.cryptobook.us/
https://toc.cryptobook.us/
https://toc.cryptobook.us/
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb30
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb30
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb30
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb30
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb30
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb31
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb31
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb31
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb31
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb31
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb32
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb32
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb32
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb33
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb33
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb33
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb34
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb34
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb34
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb34
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb34
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb35
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb35
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb35

Journal of Information Security and Applications 83 (2024) 103789A. Flamini et al.
[36] Hesse J, Singh N, Sorniotti A. How to bind anonymous credentials to humans. In:
32nd USENIX security symposium. USENIX security 23, Anaheim, CA: USENIX
Association; 2023, p. 3047–64.

[37] Proposal for a Regulation of the European Parliament and of the Council laying
down measures for a high level of public sector interoperability across the Union
(Interoperable Europe Act). 2022.

[38] Sullivan B. Cryptographic agility. In: Black hat USA. 2010, p. 0740–7459.
[39] Housley R. Guidelines for cryptographic algorithm agility and selecting

mandatory-to-implement algorithms. 2015.
[40] Barker E, Roginsky A. NIST SP 800-131A transitioning the use of cryptographic

algorithms and key lengths. NIST; 2019.
[41] Fett D, Yasuda K, Campbell B. Selective disclosure for JWTs (SD-JWT). IETF;

2023.
[42] Laurie B, Messeri E, Stradling R. Certificate transparency version 2.0. 2021.
[43] ETSI TR 119 476: Electronic Signatures and Infrastructures (ESI); Analysis of

selective disclosure and zero-knowledge proofs applied to Electronic Attestation
of Attributes. 2023.

[44] Sakemi Y, Kobayashi T, Saito T, Wahby RS. Pairing-friendly curves. IRTF; 2022.
[45] Lyubashevsky V, Ducas L, Kiltz E, Lepoint T, Schwabe P, Seiler G, Stehlé D,

Bai S. Crystals-dilithium. Algorithm Specif Support Doc 2020.
[46] Fouque P-A, Hoffstein J, Kirchner P, Lyubashevsky V, Pornin T, Prest T,

Ricosset T, Seiler G, Whyte W, Zhang Z, et al. Falcon: Fast-Fourier lattice-
based compact signatures over NTRU. 2018, p. 1–75, Submission to the NIST’s
post-quantum cryptography standardization process, 36(5).

[47] Bernstein DJ, Hülsing A, Kölbl S, Niederhagen R, Rijneveld J, Schwabe P.
The SPHINCS+ signature framework. In: Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security. 2019, p. 2129–46.

[48] NIST. FIPS 204 (initial public draft) module-lattice-based digital signature
standard. 2023.

[49] NIST. FIPS 205 (initial public draft) stateless hash-based digital signature
standard. 2023.

[50] Boschini C, Camenisch J, Neven G. Relaxed lattice-based signatures with short
zero-knowledge proofs. In: Chen L, Manulis M, Schneider S, editors. Information
security (ISC) 2018. LNCS, vol. 11060, Cham: Springer International Publishing;
2018, p. 3–22.

[51] Jeudy C, Roux-Langlois A, Sanders O. Lattice-based signature with efficient
protocols, revisited. In: CRYPTO 2023. LNCS, vol. 14082, 2023, p. 351–83.

[52] Bootle J, Lyubashevsky V, Nguyen NK, Sorniotti A. A framework for practical
anonymous credentials from lattices. In: CRYPTO 2023. LNCS, vol. 14082, 2023,
p. 384–417.

[53] Blazy O, Chevalier C, Renaut G, Ricosset T, Sageloli E, Senet H. Efficient
implementation of a post-quantum anonymous credential protocol. In: ARES ’23.
2023, p. 1–11.

[54] Sporny M, Longley D. Verifiable credentials data integrity 1.0. W3C; 2022.
[55] Mobile Driver’s License (mDL) implementation guidelines, version 1.2. The

American Association of Motor Vehicle Administrators (AAMVA); 2023.
[56] Chalkias K, Cohen S, Lewi K, Moezinia F, Romailler Y. HashWires: Hyperefficient

credential-based range proofs. In: Proceedings on privacy enhancing technologies.
PoPETS, 2021.
18
[57] Rivest RL, Shamir A. PayWord and MicroMint: Two simple micropayment
schemes. In: International workshop on security protocols. Springer; 1996, p.
69–87.

[58] Camenisch J, Chaabouni R, Shelat A. Efficient protocols for set membership and
range proofs. In: ASIACRYPT. LNCS, vol. 5350, 2008, p. 234–52.

[59] Battagliola M, Longo R, Meneghetti A, Sala M. Provably unforgeable thresh-
old EdDSA with an offline participant and trustless setup. Mediterr J Math
2023;20(5):253.

[60] Gennaro R, Goldfeder S, Narayanan A. Threshold-optimal DSA/ECDSA signatures
and an application to bitcoin wallet security. In: Applied cryptography and
network security: 14th international conference, ACNS 2016, Guildford, UK, June
19-22, 2016. proceedings 14. Springer; 2016, p. 156–74.

[61] Crites E, Komlo C, Maller M. Fully adaptive schnorr threshold signatures. In:
Handschuh H, Lysyanskaya A, editors. Advances in cryptology – CRYPTO 2023.
Cham: Springer Nature Switzerland; 2023, p. 678–709.

[62] Camenisch J, Drijvers M, Lehmann A, Neven G, Towa P. Short threshold dynamic
group signatures. In: International conference on security and cryptography for
networks. SCN, LNCS, vol. 12238, Springer; 2020, p. 401–23.

[63] Doerner J, Kondi Y, Lee E, Shelat A, Tyner L. Threshold BBS+ signatures for
distributed anonymous credential issuance. In: 2023 IEEE symposium on security
and privacy. SP, IEEE; 2023, p. 773–89.

[64] Barker E. NIST SP 800-57r5 recommendation for key management, Part 1:
General. NIST; 2020.

[65] Jones MB, Bradley J, Sakimura N. JSON Web Signature (JWS). 2015.
[66] NIST. FIPS 186-5 Digital Signature Standard (DSS). 2023.
[67] Barker E, Chen L, Moody D, Randall K, Regenscheid A, Robinson A. NIST SP 800-

186 recommendations for discrete logarithm-based cryptography: Elliptic curve
domain parameters. NIST; 2023.

[68] Aragon N, Barreto PSLM, Bettaieb S, Bidoux L, Blazy O, Deneuville J-C,
Gaborit P, Ghosh S, Gueron S, Güneysu T, Aguilar-Melchor C, Misoczki R,
Persichetti E, Richter-Brockmann J, Sendrier N, Tillich J-P, Vasseur V, Zémor G.
BIKE: Bit flipping key encapsulation. Round 4 submission. 2022.

[69] Aguilar-Melchor C, Aragon N, Bettaieb S, Bidoux L, Blazy O, Bos J, Deneuville J-
C, Dion A, Gaborit P, Lacan J, Persichetti E, Robert J-M, Véron P, Zémor G.
Hamming quasi-cyclic (HQC). Fourth round version. 2023.

[70] Bernstein DJ, Chou T, Cid C, Gilcher J, Lange T, Maram V, von Maurich I,
Misoczki R, Niederhagen R, Persichetti E, Peters C, Sendrier N, Szefer J, Tjhai CJ,
Tomlinson M, Wang W. Classic McEliece: conservative code-based cryptography:
cryptosystem specification. 2022.

[71] Gilchrist V, Marco L, Petit C, Tang G. Solving the Tensor Isomorphism Problem
for special orbits with low rank points: Cryptanalysis and repair of an Asiacrypt
2023 commitment scheme. Cryptol ePrint Arch 2024. Paper 2024/337.

[72] Schnorr C-P. Efficient signature generation by smart cards. J Cryptology
1991;4:161–74.

[73] Fiat A, Shamir A. How to prove yourself: Practical solutions to identification and
signature problems. In: CRYPTO ’86. 1986, p. 186–94.

http://refhub.elsevier.com/S2214-2126(24)00092-9/sb36
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb36
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb36
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb36
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb36
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb37
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb37
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb37
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb37
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb37
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb38
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb39
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb39
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb39
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb40
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb40
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb40
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb41
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb41
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb41
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb42
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb43
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb43
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb43
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb43
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb43
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb44
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb45
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb45
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb45
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb46
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb46
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb46
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb46
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb46
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb46
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb46
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb47
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb47
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb47
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb47
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb47
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb48
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb48
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb48
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb49
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb49
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb49
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb50
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb50
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb50
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb50
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb50
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb50
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb50
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb51
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb51
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb51
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb52
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb52
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb52
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb52
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb52
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb53
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb53
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb53
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb53
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb53
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb54
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb55
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb55
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb55
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb56
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb56
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb56
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb56
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb56
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb57
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb57
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb57
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb57
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb57
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb58
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb58
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb58
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb59
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb59
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb59
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb59
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb59
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb60
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb60
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb60
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb60
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb60
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb60
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb60
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb61
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb61
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb61
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb61
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb61
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb62
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb62
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb62
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb62
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb62
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb63
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb63
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb63
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb63
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb63
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb64
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb64
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb64
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb65
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb66
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb67
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb67
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb67
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb67
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb67
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb68
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb68
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb68
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb68
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb68
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb68
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb68
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb69
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb69
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb69
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb69
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb69
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb70
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb70
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb70
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb70
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb70
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb70
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb70
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb71
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb71
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb71
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb71
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb71
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb72
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb72
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb72
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb73
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb73
http://refhub.elsevier.com/S2214-2126(24)00092-9/sb73

	On cryptographic mechanisms for the selective disclosure of verifiable credentials
	Introduction
	Verifiable Credentials and Selective Disclosure
	Verifiable credentials and presentations
	Taxonomy of Cryptographic Techniques for VC Selective Disclosure

	Background on Cryptographic Building Blocks
	Digital signatures
	Hiding commitments
	Non-Interactive Zero-Knowledge Proofs

	Hiding-commitment Mechanisms
	Commitment List Mechanism
	Merkle Tree Mechanism

	Selective Disclosure Signature Mechanism
	CL Signature
	BBS Signature
	BBS+ Signature
	PS Signature
	Efficiency and Trust on Issuer Set-up Domain Parameters

	Solution Design Analysis
	Standard Maturity
	Standardization
	Cryptographic Agility
	Quantum Safety

	Supported Features
	Presentation Unlinkability
	Predicate Proofs
	Support for Threshold Credential Issuance

	Experimental Evaluation
	Experimental Set-Up
	Computational Cost
	Presentation Size
	Trade-offs
	Assessment Summary

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. NIZKP from Sigma Protocols via Fiat-Shamir transform
	References

